WO2021015165A1 - Wave-motion gear device - Google Patents

Wave-motion gear device Download PDF

Info

Publication number
WO2021015165A1
WO2021015165A1 PCT/JP2020/028069 JP2020028069W WO2021015165A1 WO 2021015165 A1 WO2021015165 A1 WO 2021015165A1 JP 2020028069 W JP2020028069 W JP 2020028069W WO 2021015165 A1 WO2021015165 A1 WO 2021015165A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
fixing
output shaft
flex
cam
Prior art date
Application number
PCT/JP2020/028069
Other languages
French (fr)
Japanese (ja)
Inventor
豊 今川
Original Assignee
Skg株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Skg株式会社 filed Critical Skg株式会社
Publication of WO2021015165A1 publication Critical patent/WO2021015165A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear

Definitions

  • the present invention relates to a strain wave gearing.
  • the rotation of a motor built in an arbitrary arm is decelerated by a speed reducer, and the decelerated output is used to rotationally drive the arm connected to the arm.
  • a speed reducer of this type a speed reducer using a wave gear device is known.
  • an annular circular spline (rigid internal gear), a thin-walled cup-shaped flexspline (flexible external gear) located on the inner peripheral side thereof, and an annular circular spline (flexible external gear) are fitted on the inner peripheral side.
  • a wave gear device including a wave generator having an elliptical cam and a wave gear device is disclosed. The flexspline is flexed into an elliptical shape by the cam of the wave generator and partially meshes with the circular spline.
  • the strain wave gearing according to Patent Document 1 obtains a deceleration rotation output from a flexspline, and specifically, has a structure in which an output shaft is attached to a diaphragm forming the bottom of the flexspline.
  • the strain wave gearing according to Patent Document 1 has a problem that the flexspline is easily damaged due to its structure. This is due to the following reasons.
  • a force transmission point from the rotating flexspline to the output shaft consider a plurality of virtual points arranged in the circumferential direction centered on the rotation axis of the output shaft (hereinafter referred to as an axis).
  • the vector of the force applied to each virtual point from the rotating flexspline is not uniformly oriented in the circumferential direction due to the flexibility of the flexspline and the elliptical shape of the cam, and the phase depends on the point. There is a gap.
  • the flexspline according to Patent Document 1 has a structure in which a rotational force is transmitted to the output shaft all around the cylindrical portion because the output shaft is fixed to a diaphragm that closes one end of the cylindrical portion.
  • the flexspline of this structure rotates the output shaft with a large amount of the force vector causing the phase shift as described above. Then, an unnecessary stress that does not contribute to the torque for rotating the output shaft around the axis is generated in the cylindrical portion of the flexspline, and an unnecessary twisting force is applied.
  • the flexspline has a problem that it is easily damaged because its cylindrical portion is formed with a very thin wall (for example, a wall thickness of about 0.1 mm). is there.
  • the flexspline according to Patent Document 1 has a structure in which the output shaft is fixed to a diaphragm that closes one end of the cylindrical portion, so that the position of the output shaft is input by the height of the cylindrical portion (length along the axis). It moves away from the rotating body on the side (for example, the cam of the wave generator). Therefore, there is also a problem that the wave gear device tends to increase in the direction along the axis.
  • An object of the present invention is to provide a strain wave gearing device that is not easily damaged and can suppress an increase in size of the device.
  • the strain wave gearing according to the present invention
  • An internal gear portion having an inner gear formed along the inner peripheral surface, A wave generating part having a cam part that rotates around an axis line in response to a rotation input, A flex having a ring-shaped outer gear formed along the outer peripheral surface with a smaller number of teeth than the inner gear and having an inner peripheral side fitted into the wave generating portion, and an adjacent portion adjacent to the outer gear in the direction along the axis.
  • Gear part and An output shaft portion having an adjacent portion and an opposing portion facing each other in the radial direction about the axis line and rotating with respect to the internal gear portion together with the flex gear portion.
  • a fixing portion for fixing the flex gear portion to the output shaft portion by partially fixing the adjacent portion to the facing portion in a circumferential direction centered on the axis line is provided.
  • the cam portion has N (N is an integer of 2 or more) poles located at equal intervals in the circumferential direction, and the outer gear is meshed with the inner gear at N points.
  • the fixing portions may include a number of pole-corresponding fixed portions of 2 or more and N or less arranged at equal intervals in the circumferential direction.
  • the plurality of fixing portions may further include auxiliary fixing portions provided at positions different from the pole-corresponding fixing portions in the circumferential direction.
  • auxiliary fixing portions There are a plurality of the auxiliary fixing portions, and they may be arranged at equal intervals in the circumferential direction.
  • the auxiliary fixing portion may be provided at a position avoiding an intermediate position between adjacent pole-corresponding fixing portions in the circumferential direction.
  • the wave gearing device A support portion that rotatably supports the output shaft portion with respect to the internal gear portion is further provided.
  • the adjacent portion and the facing portion may be located between the support portion and the cam portion.
  • One fixing portion may include one or a plurality of fixing pins for fixing the adjacent portion to the facing portion in the radial direction.
  • the number of teeth of the outer gear may be N less than the number of teeth of the inner gear.
  • the present invention it is hard to be damaged and the size of the device can be suppressed.
  • the strain wave gearing device 100 As shown in FIG. 1, the strain wave gearing device 100 according to the present embodiment is incorporated in an industrial robot 200.
  • the robot 200 is composed of, for example, a vertical articulated robot, and includes a robot main body 210 installed on a base 201 and a controller 220 for driving and controlling the robot main body 210.
  • the robot main body 210 includes a first arm 211, a second arm 212 connected to the first arm 211 via a strain wave gearing device 100, and a motor 213 shown in FIG.
  • the motor 213 includes a servomotor and the like, and operates under the control of the controller 220.
  • the controller 220 rotationally drives the second arm portion 212 via the motor 213 and the wave gear device 100 built in the first arm 211 to control the positioning and angle of the second arm portion 212 with respect to the first arm 211. And the rotation speed is controlled.
  • the wave gear device 100 includes a wave generating unit 10, a flex gear unit 20, an internal gear unit 30, an output shaft unit 40, a support unit 50, and a fixing unit 60.
  • FIG. 2 hatching showing a cross section of a partial configuration is omitted in consideration of visibility, and the first arm 211 and the second arm 212 are shown by virtual lines.
  • the right side in FIG. 2 may be referred to as an input side (Fig. Si), and the left side may be referred to as an output side (Fig. So). The same applies to FIG. 5 described later.
  • the wave generation unit 10 includes a cylindrical shaft portion 11, a cam portion 12 integrally formed with the cylindrical shaft portion 11, and a wave bearing 13.
  • the end of the cylindrical shaft portion 11 is rotatably supported by the bearing B1 and the end on the output side is rotatably supported by the bearing B2.
  • the bearing B1 is provided on the immovable portion 211a which is immovable with respect to the first arm 211.
  • the bearing B2 is provided on the inner peripheral surface of the output shaft portion 40.
  • the bearings B1 and B2 are composed of, for example, ball bearings.
  • the rotational power of the motor 213 is transmitted to the cylindrical shaft portion 11 via a known transmission mechanism.
  • the transmission mechanism may be a gear mechanism, a belt mechanism using a timing belt and a pulley, or the like.
  • the cam portion 12 is provided so as to project in the outer diameter direction from the outer peripheral surface of the cylindrical shaft portion 11.
  • the cam portion 12 is provided at a position adjacent to the bearing B1 in a direction along the axis AX (hereinafter, referred to as an axis direction).
  • the cam portion 12 has N (N is an integer of 2 or more) poles located at equal intervals in the circumferential direction about the axis AX.
  • the wave bearing 13 includes an inner ring 13i fixed to the outer peripheral surface of the cam portion 12, a flexible outer ring 13o, and a plurality of balls 13b inserted in a rollable state between the inner ring 13i and the outer ring 13o.
  • the inner ring 13i may be composed of a portion including an outer peripheral surface of the cam portion 12.
  • the flex gear portion 20 is formed of a metal material such as special steel with flexibility, and has an outer gear 21 and an adjacent portion 22 integrally formed with the outer gear 21.
  • the outer gear 21 has teeth 21a having a predetermined number of teeth t formed along the outer peripheral surface and is formed in a ring shape, and the inner peripheral side is fitted into the outer ring 13o of the wave generating portion 10.
  • the plurality of teeth 21a in the outer gear 21 are arranged along the circumferential direction at a constant pitch.
  • the adjacent portion 22 is a portion that is adjacent to the outer gear 21 in the axial direction and protrudes toward the output side of the outer gear 21.
  • a through hole 22a is formed in the adjacent portion 22 so as to penetrate in a direction substantially orthogonal to the axis AX (including a direction just orthogonal to the axis AX).
  • a fixing pin F which will be described later, that constitutes the fixing portion 60 is inserted into the through hole 22a.
  • a portion recessed toward the outer peripheral side is provided at a position corresponding between adjacent teeth 21a formed on the outer gear 21 on the inner peripheral surface of the flex gear portion 20. May be good.
  • the recessed portion makes it possible to satisfactorily bend the flex gear portion 20.
  • the internal gear portion 30 is formed of a metal material with rigidity and is fixed to the inside of the first arm 211.
  • the internal gear portion 30 has an inner gear 31 that partially meshes with the outer gear 21 of the flex gear portion 20 bent by the cam portion 12.
  • the inner gear 31 has teeth 31a having a predetermined number of teeth T (T> t) formed along the inner peripheral surface and is formed in a ring shape.
  • the plurality of teeth 31a in the inner gear 31 are arranged along the circumferential direction at a constant pitch.
  • the output shaft portion 40 rotates with respect to the internal gear portion 30 together with the flex gear portion 20.
  • the output shaft portion 40 is supported by the support portion 50 so as to be rotatable around the axis AX with respect to the internal gear portion 30.
  • the output shaft portion 40 has rigidity and is formed in a ring shape, for example, by a metal material.
  • the output shaft portion 40 is located on the output side of the facing portion 41 facing the adjacent portion 22 of the flex gear portion 20 in the radial direction about the axis AX, and is supported by the support portion 50. It has a supported portion 42 which is.
  • the support portion 50 is made of, for example, a cross roller bearing, the outer ring 51 is fixed to the internal gear portion 30, and the inner ring 52 is fixed to the supported portion 42 of the output shaft portion 40. As a result, the support portion 50 rotatably supports the output shaft portion 40 with respect to the internal gear portion 30 around the axis AX.
  • the output shaft portion 40 is connected to the second arm 212, which is the load of the strain wave gearing device 100, via the inner ring 52 of the support portion 50.
  • the second arm 212 rotates around the axis AX as the output shaft portion 40 rotates.
  • the mode of supporting the output shaft portion 40 by the support portion 50 is arbitrary, and may be, for example, a mode in which the inner peripheral surface of the inner ring 52 of the support portion 50 is fixed to the output shaft portion 40.
  • the connection method between the output shaft portion 40 and the load is also arbitrary, for example, the load is connected to the disk-shaped plate portion fixed to the output shaft portion 40. You may.
  • an adjacent portion 22 of the flex gear portion 20 and an opposing portion 41 of the output shaft portion 40 are located between the support portion 50 and the cam portion 12 in the axial direction.
  • the output shaft portion 40 rotates together with the flex gear portion 20.
  • the fixing portion 60 is composed of, for example, a fixing pin F inserted into a guide bush 41a embedded in the facing portion 41 of the output shaft portion 40.
  • the fixing pin F is fixed in the guide bush 41a through a through hole 22a provided in the adjacent portion 22 of the flex gear portion 20 by a fixing method such as screwing, fitting, fixing, or welding.
  • the fixing pin F fixes the adjacent portion 22 of the flex gear portion 20 to the opposing portion 41 of the output portion 40 from the outer peripheral side to the inner peripheral side.
  • the fixing pin F is preferably along the radial direction about the axis AX.
  • two fixing portions 60 are provided corresponding to this number of poles.
  • the two fixing portions 60 are provided with a distance of 180 ° from each other at a rotation angle about the axis AX. That is, the two fixing portions 60 are arranged at equal intervals in the circumferential direction about the axis AX.
  • one fixing portion 60 is composed of one fixing pin F.
  • the adjacent portion 22 of the flex gear 20 is partially shown.
  • the shape of the adjacent portion 22 that protrudes toward the output side of the outer gear 21 is arbitrary and may be projected in a ring shape, or only the portion corresponding to the fixed portion 60 approaches the output side of the outer gear 21. You may put it out.
  • the rotational power of the motor 213 is transmitted to the cam portion 12 of the wave generating portion 10 via a transmission mechanism (not shown), and the cam portion 12 is relatively around the axis AX. It rotates at high speed.
  • the cam portion 12 before the start of rotation has an initial major axis whose elliptical shape coincides with an axis passing through 0 ° and 180 °. It shall be at position Cs.
  • the angle shown is a rotation angle centered on the axis AX, and it is assumed that the angle increases in the clockwise direction with the 12 o'clock direction as 0 °. Further, the cam portion 12 is assumed to rotate clockwise.
  • the cam portion 12 at the initial position Cs has the flex gear portion 20 (specifically) at two meshing positions E and E of 0 ° and 180 ° corresponding to the two pole portions.
  • the outer gear 21) whose reference numeral is omitted in FIG. 4 is meshed with the internal gear portion 30 (specifically, the inner gear 31 whose reference numeral is omitted in FIG. 4).
  • the fixed point Xo of the internal gear portion 30 is set to the position of 0 °
  • the reference point Xf of the flex gear portion 20 is also set to the position of 0 °.
  • FIG. 4B shows a state in which the cam portion 12 is rotated by 90 ° from the initial position Cs and its major axis direction is at the position C1 corresponding to the axes passing through 90 ° and 270 °.
  • the cam portion 12 is displaced from the initial position Cs to the position C1
  • the meshing positions E and E of the flex gear portion 20 and the internal gear portion 30 move to the positions of 90 ° and 270 °.
  • FIG. 4C shows a state in which the cam portion 12 is rotated by 180 ° from the initial position Cs and its major axis direction is at the position C2 corresponding to the axes passing through 180 ° and 0 °.
  • the meshing positions E and E of the flex gear portion 20 and the internal gear portion 30 move to the positions of 180 ° and 0 °.
  • FIG. 4D shows a state in which the cam portion 12 is rotated 360 ° from the initial position Cs and its major axis direction is at the position C3 corresponding to the axes passing through 0 ° and 180 °.
  • the cam portion 12 is displaced from the initial position Cs to the position C3 (that is, when rotated by 360 °)
  • the meshing positions E and E of the flex gear portion 20 and the internal gear portion 30 return to the positions of 0 ° and 180 °.
  • the reduction ratio i is arbitrary, but is set to, for example, about 1/30 to 1/320.
  • the positions P and P where the fixing portion 60 shown in FIG. 3 is provided are the positions of the reference points Xf of the flex gear portion 20 shown in FIG. 4A. , It is assumed that the position is moved by 180 ° from this position. Then, since the state of the flex gear portion 20 with respect to the internal gear portion 30 is the same at each of the two positions P and P, the rotating flex gear portion 20 is transferred to the output shaft portion 40 via the fixed portion 60. It can be seen that in principle, the phase shift as described in the above task does not occur in the transmitted force vector.
  • the flex gear portion 20 rotates with respect to the internal gear portion 30, the positions P and P where the fixing portion 60 is provided do not stay in the state shown in FIG. However, regardless of the rotation position of the flex gear portion 20, the state of the flex gear portion 20 with respect to the internal gear portion 30 is the same at each of the two positions P and P, so that the flex gear portion 20 rotates. In the vector of the force transmitted from the flex gear portion 20 to the output shaft portion 40 via the fixed portion 60, the phase shift as described in the above-mentioned problem does not occur in principle.
  • the output points (that is, the positions P and P) for transmitting the force from the flex gear portion 20 to the output shaft portion 40 can be evenly distributed in the circumferential direction, the meshing points E of the flex gear portion 20 and the internal gear portion 30 The load per location of E is reduced, and as a result, the output shaft portion 40 can be rotated with high torque.
  • FIG. 5A is a diagram obtained by extracting the strain wave gearing device 100 according to the present embodiment from FIG. 2, and FIG. 5B is a strain wave gearing apparatus according to a conventional example as disclosed in the above-mentioned patent document. It is a figure which shows 100p.
  • the configuration corresponding to each configuration of the strain wave gearing device 100 according to the present embodiment is shown by adding "p" to the end of the reference numeral.
  • the wave generator 10p corresponds to the wave generation unit 10
  • the flex spline 20p corresponds to the flex gear unit 20
  • the circular spline 30p corresponds to the internal gear unit 30. ..
  • the flexspline 20p As shown in FIG. 5B, the flexspline 20p according to the conventional example has a cylindrical portion because the output shaft 40p is fixed by a fixing member 60p to a diaphragm that closes the output-side end of the cylindrical portion.
  • the position of the output shaft 40p moves away from the rotating body on the input side (for example, the cam of the wave generator 10p) by the length Lp corresponding to the height.
  • the strain wave gearing device 100 has a structure in which a force is transmitted from the adjacent portion 22 of the flex gear portion 20 to the output shaft portion 40 via the fixed portion 60.
  • the adjacent portion 22 of the flex gear portion 20 and the opposing portion 41 of the output shaft portion 40 are located between the support portion 50 and the cam portion 12.
  • the length L can be set from the cam portion 12 to the output point of the flex gear portion 20 (that is, the position of the fixed portion 60 that transmits the force from the flex gear portion 20 to the output shaft portion 40).
  • each configuration can be made compact in the axial direction, and the wave gear device 100 can be made compact.
  • the flex gear portion 20 has a bottomless tubular shape (ring shape when viewed from the axial direction), and the end portion on the output side is formed like the flexspline 20p according to the conventional example. Not blocked by diaphragm. Therefore, the flexibility of the flex gear portion 20 can be maintained while ensuring the wall thickness of the flex gear portion 20 to some extent. Therefore, the flex gear portion 20 has good resistance to buckling and is not easily damaged.
  • the wall thickness of the flex gear portion 20 is not limited, but can be set to, for example, about 0.5 mm to 1 mm.
  • the flex gear portion 20 has a bottomless tubular shape, and is easier to process than a bottomed tubular one such as the flexspline 20p according to the conventional example.
  • the cylindrical portion of the flexspline 20p needs to have a certain length in the axial direction due to the structure, and the support portion 50p supporting the output shaft 40p is from the meshing position of the flexspline 20p and the circular spline 30p. Go away.
  • stress in an oblique direction with respect to the axis AX is likely to be applied to both the flexspline 20p and the circular spline 30p, and the gears of each other are likely to be worn.
  • the adjacent portion 22 of the flex gear portion 20 and the opposing portion 41 of the output shaft portion 40 are located between the support portion 50 and the cam portion 12, they are located on each other. It is difficult for stress in the diagonal direction with respect to the axis AX to be applied to the meshing flex gear portion 20 and the internal gear portion 30. As a result, one tooth ridge and the other tooth bottom in the flex gear portion 20 and the internal gear portion 30 can be brought into contact with each other along the axial direction, and wear of the gears of each other can be suppressed.
  • the strain wave gearing device 100 not only the cam portion 12, but also the flex gear portion 20 and the output shaft portion 40 are hollow in a ring shape when viewed from the axial direction, so that wiring or the like is passed therethrough. Space can be secured inside. According to the strain wave gearing device 100 according to the present embodiment, it is needless to say that backlash can be eliminated in principle and lost motion can be minimized.
  • the shape of the cam portion 12 viewed from the axial direction is a regular N-angle shape, and for example, each pole portion and adjacent poles are formed. It has a curved surface that gently swells in the outer peripheral direction between the portions.
  • the outer gear 21 of the flex gear portion 20 is bent by the cam portion 12 having N poles via the wave bearing 13, and meshes with the inner gear 31 of the internal gear portion 30 at N points.
  • the number of teeth t of the outer gear 21 (hereinafter, also referred to as the number of teeth t of the flex gear portion 20) and the number of teeth T of the inner gear 31 (hereinafter, both the number T of the internal gear 30).
  • the flex gear portion 20 moves counterclockwise by N teeth. That is, when the number of poles of the cam portion 12 is N, when the cam portion 12 rotates at an angle of (360 ° / N), the flex gear portion 20 moves with respect to the internal gear portion 30 by one tooth.
  • the fixing portions 60 composed of the fixing pins F are provided at N positions P arranged at equal intervals in the circumferential direction about the axis AX.
  • the position P in which the fixing portion 60 is provided is shown instead of showing the fixing portion 60.
  • FIGS. 6 to 8 show a state in which any of the N poles of the cam portion 12 is at a position of 0 °. This also applies to FIG. 9 referred to in the second embodiment described later.
  • the case where the number of poles is N ⁇ 3 will be described in order.
  • the adjacent portion 22 of the flex gear portion 20 and the opposing portion 41 of the output shaft portion 40 correspond to each of the N positions P (fixed portions 60 at N locations). Provided.
  • the cam of the wave generator 10p is set in an elliptical shape as in the wave gear device 100p according to the conventional example (the reference numerals of the conventional example conform to FIG. 5 (b)).
  • the number of teeth of the circular spline 30p is T
  • the pitch circle diameter is D
  • the number of teeth of the flexspline 20p is t
  • the pitch circle diameter is d
  • N fixed portions 60 are provided corresponding to the number of poles of the cam portion 12, but the fixed portions 60 may be installed at less than N locations.
  • the fixing portions 60 may be provided at two or more and N or less locations arranged at equal intervals in the circumferential direction about the axis AX. Even in this way, it is possible to suppress the application of unnecessary stress and twisting force as described above to the flex gear portion 20 and the output shaft portion 40. In this case, especially when the number of poles is an even number, it is considered preferable to provide the fixing portion 60 for about two or more divisors of the number of poles. For example, as shown in FIG.
  • the number of fixed portions 60 (an example of the pole-corresponding fixed portions) provided corresponding to the cam portion 12 having N poles is 2 or more and N or less.
  • the fixing portion 60 may be partially provided in the circumferential direction, not over the entire circumference of the flex gear portion 20.
  • the fixing portion 60 may be provided at any one position in the circumferential direction about the axis AX.
  • the auxiliary fixing portion 60a is the same as the fixing portion 60 described above, from the fixing pin F for fixing the adjacent portion 22 of the flex gear portion 20 to the facing portion 41 of the output portion 40 from the outer peripheral side to the inner peripheral side. It is configured.
  • the auxiliary fixing portion 60a is provided at a position Q different from the position P of the fixing portion 60 in the circumferential direction about the axis AX.
  • a plurality of auxiliary fixing portions 60a are preferably provided, and are arranged at equal intervals in the circumferential direction.
  • the auxiliary fixing portion 60a is particularly useful when the number of poles of the cam portion 12 is relatively small (for example, when N is 2 or 3).
  • the auxiliary fixing portion 60a increases the location (output point) where the force contributing to the torque for rotating the output shaft portion 40 around the axis AX is transmitted from the flex gear portion 20 to the output shaft portion 40, and the torque is increased. It is set up to earn.
  • N 2
  • auxiliary fixing portions 60a are provided at each of the four positions Q.
  • the angle between adjacent ones among the four positions Q is set to (360 ° / 4).
  • the two positions P are at 0 ° and 180 °, and the four positions Q are at 45 °, 135 °, 225 ° and 315 °. That is, the auxiliary fixing portion 60a is provided at a position avoiding the intermediate position (90 °, 270 °) of the adjacent fixing portions 60 in the circumferential direction. Even if an output point for transmitting force from the flex gear portion 20 to the output shaft portion 40 is set at these intermediate positions (90 ° and 270 °), the torque for rotating the output shaft portion 40 around the axis AX is too large. This is because it does not contribute.
  • N 3
  • auxiliary fixing portions 60a are provided at each of the six positions Q.
  • the angle between adjacent positions Q among the six positions Q is set to (360 ° / 6).
  • the three positions P are at 0 °, 120 °, and 240 °, and the six positions Q are at 30 °, 90 °, 150 °, 210 °, and 270 °. , 330 °. That is, the auxiliary fixing portion 60a is provided at a position avoiding the intermediate positions (60 °, 180 °, 300 °) of the adjacent fixing portions 60 in the circumferential direction. Even if an output point for transmitting force from the flex gear portion 20 to the output shaft portion 40 is set at these intermediate positions (60 °, 180 °, 300 °), the output shaft portion 40 can be rotated around the axis AX. This is because it does not contribute much to torque.
  • the auxiliary fixing portion 60a may be provided in the same way in the case of N ⁇ 4. However, as described above, the auxiliary fixing portion 60a is particularly useful when the number of poles of the cam portion 12 is relatively small (for example, when N is 2 or 3). Further, similarly to the fixing portion 60, an adjacent portion 22 of the flex gear portion 20 and an opposing portion 41 of the output shaft portion 40 are provided corresponding to each of the plurality of positions Q (plurality of auxiliary fixing portions 60a). ..
  • the number and arrangement of the auxiliary fixing portions 60a are not limited to the examples of FIGS. 9A and 9B, and are arbitrary.
  • the plurality of positions Q are set. It is preferable that they are evenly arranged in the circumferential direction.
  • the number of positions Q is preferably an even multiple such as twice N.
  • auxiliary fixing portion 60a The preferred arrangement of the auxiliary fixing portion 60a is as described above, but the auxiliary fixing portion 60a may be provided at the above-mentioned intermediate position, or may be provided at an arbitrary position in the circumferential direction about the axis AX. It may be provided.
  • the strain wave gearing device 100 is incorporated in a robot 200 composed of a vertical articulated robot, but the present invention is not limited to this.
  • the wave gear device 100 may be incorporated in various robots such as a horizontal articulated robot and a delta type robot. Further, the device in which the strain wave gearing device 100 is incorporated is not limited to the robot, and may be arbitrary as long as it is used for the purpose of obtaining a rotation output decelerated at a desired reduction ratio with respect to the rotation input.
  • the number of teeth t of the flex gear portion 20 and the number of teeth T of the internal gear portion 30 are arbitrary as long as T> t.
  • one fixing portion 60 is composed of one fixing pin F, but one fixing portion 60 may be composed of a plurality of fixing pins F.
  • one fixing portion 60 at an arbitrary position P may be composed of a plurality of (for example, two) fixing pins F arranged in the axial direction.
  • one fixing portion 60 at an arbitrary position P may be composed of a plurality of (for example, two) fixing pins F arranged close to each other in the circumferential direction about the axis AX.
  • the auxiliary fixing portion 60a and one auxiliary fixing portion 60 at an arbitrary position Q may be composed of a plurality of fixing pins F.
  • the fixing portion 60 is composed of a fixing pin F if the adjacent portion 22 of the flex gear portion 20 can be partially fixed to the facing portion 41 of the internal gear portion 30 in the circumferential direction centered on the axis AX. It is not limited to any mode and is arbitrary.
  • the fixing portion 60 may be composed of a portion in which the adjacent portion 22 and the facing portion 41 are fitted to each other, a portion in which the adjacent portion 22 and the facing portion 41 are welded, fixed, or adhered to each other.
  • the adjacent portion 22 of the flex gear portion 20 adjacent to the outer gear 21 is partially attached to the facing portion 41 of the output shaft portion 40 in the circumferential direction centered on the axis AX.
  • a fixing portion for example, a fixing portion 60 for fixing to is provided.
  • the cam portion 12 has N (N is an integer of 2 or more) poles located at equal intervals in the circumferential direction, and the outer gear 21 meshes with the inner gear 31 at N points. According to this configuration, as described above, it is possible to suppress unnecessary stress mainly applied to the flex gear portion 20, so that the strain wave gearing device 100 is less likely to be damaged.
  • the portion of the flex gear portion 20 fixed to the output shaft portion 40 is an adjacent portion 22 adjacent to the outer gear 21, it is possible to prevent the wave gear device 100 from becoming larger mainly in the axial direction. Further, if the number of poles N is arbitrarily set, various reduction ratios can be realized with a simple configuration.
  • the plurality of fixing portions include two or more and N or less pole-corresponding fixing portions (mainly corresponding to the fixing portions 60 of the first embodiment) arranged at equal intervals in the circumferential direction. According to this configuration, the output points for transmitting the force from the flex gear portion 20 to the output shaft portion 40 can be evenly distributed in the circumferential direction, so that the output shaft portion 40 can be rotated with high torque.
  • the plurality of fixing portions described in (2) above further include an auxiliary fixing portion 60a provided at a position different from that of the pole-corresponding fixing portion (fixing portion 60) in the circumferential direction.
  • auxiliary fixing portion 60a provided at a position different from that of the pole-corresponding fixing portion (fixing portion 60) in the circumferential direction.
  • auxiliary fixing portions 60a there are a plurality of auxiliary fixing portions 60a, and they are arranged at equal intervals in the circumferential direction. According to these configurations, it is possible to increase the points (output points) where the force contributing to the torque for rotating the output shaft portion 40 around the axis AX is transmitted from the flex gear portion 20 to the output shaft portion 40. And the torque can be earned.
  • FIGS. 9A and 9B there are N fixing portions 60 as pole-corresponding fixing portions, and the auxiliary fixing portions 60a are adjacent pole-corresponding fixing portions in the circumferential direction. It may be provided at a position avoiding the intermediate position of.
  • the strain wave gearing device 100 further includes a support portion 50 that rotatably supports the output shaft portion 40 with respect to the internal gear portion 30, and the adjacent portion 22 and the opposing portion 41 include the support portion 50 and the cam portion 12. Located between. According to this configuration, as described above, the length in the axial direction from the cam portion 12 to the output point of the flex gear portion 20 (that is, the position of the fixed portion 60 that transmits the force from the flex gear portion 20 to the output shaft portion 40). It is possible to make the wave gear device 100 compact by making each configuration compact in the axial direction.
  • the support portion 50 is not limited to the cross roller bearing, and may be a ball bearing or a bearing that rotatably supports the output shaft portion 40 by sliding it.
  • One fixing portion includes one or a plurality of fixing pins F for fixing the adjacent portion 22 to the facing portion 41 in the radial direction about the axis AX.
  • fixing portion 60 or auxiliary fixing portion 60a includes one or a plurality of fixing pins F for fixing the adjacent portion 22 to the facing portion 41 in the radial direction about the axis AX.
  • a mode of fixing with a fixing pin F toward the outer peripheral side may be adopted.
  • Wave gear device 10 ... Wave generating part 11 ... Cylindrical shaft part, 12 ... Cam part, 13 ... Wave bearing 20 ... Flex gear part 21 ... Outer gear, 22 ... Adjacent part 30 ... Internal gear part 31 ... Inner gear 40 ... Output shaft Part 41 ... Opposing part, 42 ... Supported part 50 ... Supporting part 60 ... Fixed part, 60a ... Auxiliary fixing part, F ... Fixed pin 200 ... Robot, 201 ... Base 210 ... Robot body part 211 ... First arm, 212 ... 2nd arm, 213 ... Motor 220 ... Controller

Abstract

A wave-motion gear device (100) is provided with: an internal gear part (30) including an inner gear (31); a wave-motion generation part (10) including a cam part (12); a flex gear part (20) including an outer gear (21); an output shaft part (40) which rotates together with the flex gear part (20); and a fixing part (60) which fixes the flex gear part (20) to the output shaft part (40). The flex gear part (20) includes an adjacent part (22) adjacent to the outer gear (21). The output shaft part (40) includes a facing part (41) facing the adjacent part (22). The fixing part (60) partially fixes the adjacent part (22) to the facing part (41) in the circumferential direction centered on an axial line (AX). The cam part (12) includes N (N is an integer of 2 or more) pieces of polar parts located at regular intervals in the circumferential direction and causes the outer gear (21) to mesh with the inner gear (31) at N locations.

Description

波動歯車装置Strain wave gearing
 本発明は、波動歯車装置に関する。 The present invention relates to a strain wave gearing.
 例えば、関節を介してアームが動作するロボットにおいては、任意のアームに内蔵されたモータの回転を減速機により減速し、減速した出力で当該アームと連結されたアームを回転駆動することが行われている。この種の減速機として、波動歯車装置を用いたものが知られている。 For example, in a robot in which an arm operates via a joint, the rotation of a motor built in an arbitrary arm is decelerated by a speed reducer, and the decelerated output is used to rotationally drive the arm connected to the arm. ing. As a speed reducer of this type, a speed reducer using a wave gear device is known.
 特許文献1には、円環状のサーキュラスプライン(剛性内歯歯車)と、この内周側に位置する薄肉カップ状のフレクスプライン(可撓性外歯歯車)と、この内周側に嵌められた楕円形のカムを有するウェーブジェネレータ(波動発生器)と、を備えた波動歯車装置が開示されている。フレクスプラインは、ウェーブジェネレータのカムにより楕円形に撓められ、サーキュラスプラインと部分的に噛み合わされている。そして、モータ等の回転入力に応じてウェーブジェネレータのカムが回転すると、両歯車の噛み合い位置が円周方向に移動して、両歯車の歯数差に応じた相対回転運動が両歯車の間に発生する。特許文献1に係る波動歯車装置は、フレクスプラインから減速回転出力を得るものであり、具体的には、フレクスプラインの底を形成するダイヤフラムに出力軸が取り付けられる構造を有している。 In Patent Document 1, an annular circular spline (rigid internal gear), a thin-walled cup-shaped flexspline (flexible external gear) located on the inner peripheral side thereof, and an annular circular spline (flexible external gear) are fitted on the inner peripheral side. A wave gear device including a wave generator having an elliptical cam and a wave gear device is disclosed. The flexspline is flexed into an elliptical shape by the cam of the wave generator and partially meshes with the circular spline. Then, when the cam of the wave generator rotates according to the rotation input of the motor or the like, the meshing position of both gears moves in the circumferential direction, and the relative rotational movement according to the difference in the number of teeth of both gears is between the two gears. Occur. The strain wave gearing according to Patent Document 1 obtains a deceleration rotation output from a flexspline, and specifically, has a structure in which an output shaft is attached to a diaphragm forming the bottom of the flexspline.
特開2012-72912号公報Japanese Unexamined Patent Publication No. 2012-72912
 まず、特許文献1に係る波動歯車装置は、その構造上、フレクスプラインが破損しやすいという問題がある。これは次の理由による。ここで、回転するフレクスプラインから出力軸への力の伝達点として、出力軸の回転軸線(以下、軸線と言う。)を中心とした円周方向に配列された複数の仮想点を考える。回転するフレクスプラインから各仮想点に加わる力のベクトルは、フレクスプラインが可撓性を有することや、カムが楕円状であること等により、均一に円周方向に向く訳ではなく、地点によって位相にずれが生じる。ここで、特許文献1に係るフレクスプラインは、円筒部分の一端を閉塞するダイヤフラムに出力軸が固定されているため、いわば円筒部分の全周で出力軸に回転力を伝達する構造を有する。この構造のフレクスプラインは、上述のように位相ずれを起こした力のベクトルを多分に含んだ状態で、出力軸を回転させる。そうすると、フレクスプラインの円筒部分に、軸線を中心として出力軸を回転させるためのトルクに寄与しない無用な応力が生じ、無用なねじれの力が加わる。このように無用なねじれの力が加わることに加えて、フレクスプラインは、その円筒部分が非常に薄肉(例えば、肉厚が0.1mm程度)で形成されているため、破損しやすいという問題がある。 First, the strain wave gearing according to Patent Document 1 has a problem that the flexspline is easily damaged due to its structure. This is due to the following reasons. Here, as a force transmission point from the rotating flexspline to the output shaft, consider a plurality of virtual points arranged in the circumferential direction centered on the rotation axis of the output shaft (hereinafter referred to as an axis). The vector of the force applied to each virtual point from the rotating flexspline is not uniformly oriented in the circumferential direction due to the flexibility of the flexspline and the elliptical shape of the cam, and the phase depends on the point. There is a gap. Here, the flexspline according to Patent Document 1 has a structure in which a rotational force is transmitted to the output shaft all around the cylindrical portion because the output shaft is fixed to a diaphragm that closes one end of the cylindrical portion. The flexspline of this structure rotates the output shaft with a large amount of the force vector causing the phase shift as described above. Then, an unnecessary stress that does not contribute to the torque for rotating the output shaft around the axis is generated in the cylindrical portion of the flexspline, and an unnecessary twisting force is applied. In addition to the unnecessary twisting force applied in this way, the flexspline has a problem that it is easily damaged because its cylindrical portion is formed with a very thin wall (for example, a wall thickness of about 0.1 mm). is there.
 また、特許文献1に係るフレクスプラインは、円筒部分の一端を閉塞するダイヤフラムに出力軸を固定するという構造上、円筒部分の高さ(軸線に沿う長さ)分だけ、出力軸の位置が入力側の回転体(例えばウェーブジェネレータのカム)から遠ざかってしまう。このため、波動歯車装置が軸線に沿う方向に大きくなり易いという問題もある。 Further, the flexspline according to Patent Document 1 has a structure in which the output shaft is fixed to a diaphragm that closes one end of the cylindrical portion, so that the position of the output shaft is input by the height of the cylindrical portion (length along the axis). It moves away from the rotating body on the side (for example, the cam of the wave generator). Therefore, there is also a problem that the wave gear device tends to increase in the direction along the axis.
 本発明は、破損しにくく、装置の大型化を抑制することができる波動歯車装置を提供することを目的とする。 An object of the present invention is to provide a strain wave gearing device that is not easily damaged and can suppress an increase in size of the device.
 上記目的を達成するため、本発明に係る波動歯車装置は、
 内周面に沿って形成されたインナギアを有するインターナルギア部と、
 回転入力に応じて軸線を中心として回転するカム部を有する波動発生部と、
 前記インナギアよりも少ない歯数で外周面に沿って形成され、内周側が前記波動発生部に嵌め込まれたリング状のアウタギア、及び、前記軸線に沿う方向において前記アウタギアと隣り合う隣接部を有するフレックスギア部と、
 前記隣接部と前記軸線を中心とした径方向において対向する対向部を有し、前記フレックスギア部と共に前記インターナルギア部に対して回転する出力軸部と、
 前記隣接部を前記対向部に前記軸線を中心とした円周方向において部分的に固定することで、前記出力軸部に対して前記フレックスギア部を固定する固定部と、備え、
 前記カム部は、前記円周方向において等間隔で位置するN(Nは、2以上の整数)個の極部を有し、前記アウタギアをN箇所で前記インナギアと噛み合わせる。
In order to achieve the above object, the strain wave gearing according to the present invention
An internal gear portion having an inner gear formed along the inner peripheral surface,
A wave generating part having a cam part that rotates around an axis line in response to a rotation input,
A flex having a ring-shaped outer gear formed along the outer peripheral surface with a smaller number of teeth than the inner gear and having an inner peripheral side fitted into the wave generating portion, and an adjacent portion adjacent to the outer gear in the direction along the axis. Gear part and
An output shaft portion having an adjacent portion and an opposing portion facing each other in the radial direction about the axis line and rotating with respect to the internal gear portion together with the flex gear portion.
A fixing portion for fixing the flex gear portion to the output shaft portion by partially fixing the adjacent portion to the facing portion in a circumferential direction centered on the axis line is provided.
The cam portion has N (N is an integer of 2 or more) poles located at equal intervals in the circumferential direction, and the outer gear is meshed with the inner gear at N points.
 前記固定部は、複数あり、
 前記円周方向において等間隔で配列された、2以上でN以下の個数ある極対応固定部を含んでもよい。
There are a plurality of the fixing portions,
It may include a number of pole-corresponding fixed portions of 2 or more and N or less arranged at equal intervals in the circumferential direction.
 複数の前記固定部は、前記円周方向において前記極対応固定部と異なる位置に設けられた補助固定部をさらに含んでもよい。 The plurality of fixing portions may further include auxiliary fixing portions provided at positions different from the pole-corresponding fixing portions in the circumferential direction.
 前記補助固定部は、複数あり、前記円周方向において等間隔で配列されてもよい。 There are a plurality of the auxiliary fixing portions, and they may be arranged at equal intervals in the circumferential direction.
 前記極対応固定部は、N個あり、
 前記補助固定部は、前記円周方向において隣り合う前記極対応固定部の中間位置を避けた位置に設けられてもよい。
There are N fixed parts corresponding to the poles.
The auxiliary fixing portion may be provided at a position avoiding an intermediate position between adjacent pole-corresponding fixing portions in the circumferential direction.
 前記波動歯車装置は、
 前記出力軸部を前記インターナルギア部に対して回転可能に支持する支持部をさらに備え、
 前記隣接部及び前記対向部は、前記支持部と前記カム部との間に位置してもよい。
The wave gearing device
A support portion that rotatably supports the output shaft portion with respect to the internal gear portion is further provided.
The adjacent portion and the facing portion may be located between the support portion and the cam portion.
 1つの前記固定部は、前記隣接部を前記径方向で前記対向部に固定する1又は複数の固定ピンを含んでもよい。 One fixing portion may include one or a plurality of fixing pins for fixing the adjacent portion to the facing portion in the radial direction.
 前記アウタギアの歯数は、前記インナギアの歯数よりもN個少なくてもよい。 The number of teeth of the outer gear may be N less than the number of teeth of the inner gear.
 本発明によれば、破損しにくく、装置の大型化を抑制することができる。 According to the present invention, it is hard to be damaged and the size of the device can be suppressed.
本発明の第1実施形態に係る波動歯車装置が組み込まれるロボットの外観図である。It is external drawing of the robot which incorporates the wave gear device which concerns on 1st Embodiment of this invention. 第1実施形態に係る波動歯車装置の主要構成の概略断面を含む構成図である。It is a block diagram which includes the schematic cross section of the main structure of the wave gear device which concerns on 1st Embodiment. 第1実施形態に係る波動歯車装置における主要構成を軸線方向から見た図である。It is a figure which looked at the main structure in the wave gear device which concerns on 1st Embodiment from the axial direction. (a)~(d)は、第1実施形態に係る波動歯車装置の動作を説明するための原理図である。(A) to (d) are principle diagrams for explaining the operation of the strain wave gearing according to the first embodiment. (a)は、第1実施形態に係る波動歯車装置の主要構成の概略断面図であり、(b)は、従来例に係る波動歯車装置の主要構成の概略断面図である。(A) is a schematic cross-sectional view of the main configuration of the wave gear device according to the first embodiment, and (b) is a schematic cross-sectional view of the main configuration of the wave gear device according to the conventional example. 第1実施形態の変形例を示す図であり、(a)は、カム部の極数が3である場合を示し、(b)は、カム部の極数が4である場合を示す図である。It is a figure which shows the modification of 1st Embodiment, (a) shows the case where the number of poles of a cam part is 3, and (b) is the figure which shows the case where the number of poles of a cam part is 4. is there. 第1実施形態の変形例を示す図であり、(a)は、カム部の極数が5である場合を示し、(b)は、カム部の極数が6である場合を示す図である。It is a figure which shows the modification of 1st Embodiment, (a) shows the case where the number of poles of a cam part is 5, and (b) is the figure which shows the case where the number of poles of a cam part is 6. is there. 第1実施形態の変形例を示す図であり、(a)は、カム部の極数が7である場合を示し、(b)は、カム部の極数が8である場合を示す図である。It is a figure which shows the modification of 1st Embodiment, (a) shows the case where the number of poles of a cam part is 7, and (b) is the figure which shows the case where the number of poles of a cam part is 8. is there. 第2実施形態に係る波動歯車装置の主要構成を示す図であり、(a)は、カム部の極数が2である場合を示し、(b)は、カム部の極数が3である場合を示す図である。It is a figure which shows the main structure of the wave gear device which concerns on 2nd Embodiment, (a) shows the case where the number of poles of a cam part is 2, and (b) shows the case where the number of poles of a cam part is 3. It is a figure which shows the case.
 本発明の一実施形態について図面を参照して説明する。 An embodiment of the present invention will be described with reference to the drawings.
(第1実施形態)
 本実施形態に係る波動歯車装置100は、図1に示すように、産業用のロボット200に組み込まれる。ロボット200は、例えば垂直多関節ロボットからなり、基台201の上に設置されたロボット本体部210と、ロボット本体部210を駆動制御するコントローラ220と、を備える。ロボット本体部210は、第1アーム211と、第1アーム211と波動歯車装置100を介して連結された第2アーム212と、図2に示すモータ213と、を備える。モータ213は、サーボモータ等からなり、コントローラ220の制御により動作する。コントローラ220は、第1アーム211に内蔵されたモータ213及び波動歯車装置100を介して第2アーム部212を回転駆動することで、第1アーム211に対する第2アーム部212の位置決め制御、角度制御及び回転速度制御を行う。
(First Embodiment)
As shown in FIG. 1, the strain wave gearing device 100 according to the present embodiment is incorporated in an industrial robot 200. The robot 200 is composed of, for example, a vertical articulated robot, and includes a robot main body 210 installed on a base 201 and a controller 220 for driving and controlling the robot main body 210. The robot main body 210 includes a first arm 211, a second arm 212 connected to the first arm 211 via a strain wave gearing device 100, and a motor 213 shown in FIG. The motor 213 includes a servomotor and the like, and operates under the control of the controller 220. The controller 220 rotationally drives the second arm portion 212 via the motor 213 and the wave gear device 100 built in the first arm 211 to control the positioning and angle of the second arm portion 212 with respect to the first arm 211. And the rotation speed is controlled.
 波動歯車装置100は、図2に示すように、波動発生部10と、フレックスギア部20と、インターナルギア部30と、出力軸部40と、支持部50と、固定部60と、を備える。 As shown in FIG. 2, the wave gear device 100 includes a wave generating unit 10, a flex gear unit 20, an internal gear unit 30, an output shaft unit 40, a support unit 50, and a fixing unit 60.
 なお、図2では、見易さを考慮して一部構成の断面を示すハッチングを省略するとともに、第1アーム211及び第2アーム212を仮想線で示した。また、以下では、波動歯車装置100の構成を説明する際に、図2における右側を入力側(図示Si)と呼び、左側を出力側(図示So)と呼ぶことがある。後述の図5においても同様である。 Note that in FIG. 2, hatching showing a cross section of a partial configuration is omitted in consideration of visibility, and the first arm 211 and the second arm 212 are shown by virtual lines. Further, in the following, when explaining the configuration of the strain wave gearing 100, the right side in FIG. 2 may be referred to as an input side (Fig. Si), and the left side may be referred to as an output side (Fig. So). The same applies to FIG. 5 described later.
 波動発生部10は、円筒軸部11と、円筒軸部11と一体に形成されたカム部12と、ウェーブベアリング13と、を備える。 The wave generation unit 10 includes a cylindrical shaft portion 11, a cam portion 12 integrally formed with the cylindrical shaft portion 11, and a wave bearing 13.
 円筒軸部11は、入力側の端部がベアリングB1に回転可能に支持され、出力側の端部がベアリングB2に回転可能に支持されている。ベアリングB1は、第1アーム211に対して不動な不動部211aに設けられている。ベアリングB2は、出力軸部40の内周面に設けられている。ベアリングB1,B2は、例えばボールベアリングから構成されている。これにより、円筒軸部11は、第1アーム211に対して軸線AX周りに回転可能に支持されている。円筒軸部11には、モータ213の回転動力が公知の伝達機構を介して伝達される。この伝達機構は、ギア機構、タイミングベルトとプーリーを利用したベルト機構などであればよい。 The end of the cylindrical shaft portion 11 is rotatably supported by the bearing B1 and the end on the output side is rotatably supported by the bearing B2. The bearing B1 is provided on the immovable portion 211a which is immovable with respect to the first arm 211. The bearing B2 is provided on the inner peripheral surface of the output shaft portion 40. The bearings B1 and B2 are composed of, for example, ball bearings. As a result, the cylindrical shaft portion 11 is rotatably supported around the axis AX with respect to the first arm 211. The rotational power of the motor 213 is transmitted to the cylindrical shaft portion 11 via a known transmission mechanism. The transmission mechanism may be a gear mechanism, a belt mechanism using a timing belt and a pulley, or the like.
 カム部12は、円筒軸部11の外周面から外径方向に突出して設けられている。カム部12は、軸線AXに沿う方向(以下、軸線方向と言う。)においてベアリングB1と隣り合う位置に設けられている。カム部12は、軸線AXを中心とした円周方向において等間隔で位置するN(Nは、2以上の整数)個の極部を有する。 The cam portion 12 is provided so as to project in the outer diameter direction from the outer peripheral surface of the cylindrical shaft portion 11. The cam portion 12 is provided at a position adjacent to the bearing B1 in a direction along the axis AX (hereinafter, referred to as an axis direction). The cam portion 12 has N (N is an integer of 2 or more) poles located at equal intervals in the circumferential direction about the axis AX.
 以下では、カム部12が有する極部の数を極数と呼び、本実施形態では、極数がN=2の場合について説明する。N=2の場合、カム部12は、図3に示すように、軸線方向から見て楕円状をなす。図2は、カム部12の極数がN=2の場合の概略断面を示す。 Hereinafter, the number of poles of the cam portion 12 is referred to as the number of poles, and in the present embodiment, the case where the number of poles is N = 2 will be described. When N = 2, the cam portion 12 has an elliptical shape when viewed from the axial direction, as shown in FIG. FIG. 2 shows a schematic cross section when the number of poles of the cam portion 12 is N = 2.
 ウェーブベアリング13は、カム部12の外周面に固定された内輪13iと、フレキシブルな外輪13oと、内輪13i及び外輪13oの間に転動可能な状態で挿入されている複数のボール13bと、を有する。なお、内輪13iは、カム部12の外周面を含む部分から構成されていてもよい。 The wave bearing 13 includes an inner ring 13i fixed to the outer peripheral surface of the cam portion 12, a flexible outer ring 13o, and a plurality of balls 13b inserted in a rollable state between the inner ring 13i and the outer ring 13o. Have. The inner ring 13i may be composed of a portion including an outer peripheral surface of the cam portion 12.
 フレックスギア部20は、特殊鋼等の金属材によりフレキシブル性を有して形成され、アウタギア21と、アウタギア21と一体に形成された隣接部22と、を有する。 The flex gear portion 20 is formed of a metal material such as special steel with flexibility, and has an outer gear 21 and an adjacent portion 22 integrally formed with the outer gear 21.
 アウタギア21は、外周面に沿って形成された所定の歯数tの歯21aを有してリング状に形成され、内周側が波動発生部10の外輪13oに嵌め込まれている。アウタギア21における複数の歯21aは、一定のピッチで円周方向に沿って配列されている。アウタギア21の歯数tは、後述のインナギア31の歯数Tよりも少ない歯数に設定されている。例えば、カム部12の極数がNの場合、歯数tと歯数Tの関係は、「T=t+N」が成り立つように設定される。したがって、N=2の場合には、「T=t+2」の関係が成り立つ。 The outer gear 21 has teeth 21a having a predetermined number of teeth t formed along the outer peripheral surface and is formed in a ring shape, and the inner peripheral side is fitted into the outer ring 13o of the wave generating portion 10. The plurality of teeth 21a in the outer gear 21 are arranged along the circumferential direction at a constant pitch. The number of teeth t of the outer gear 21 is set to be smaller than the number of teeth T of the inner gear 31, which will be described later. For example, when the number of poles of the cam portion 12 is N, the relationship between the number of teeth t and the number of teeth T is set so that "T = t + N" holds. Therefore, when N = 2, the relationship of "T = t + 2" is established.
 隣接部22は、アウタギア21と軸線方向において隣り合い、アウタギア21よりも出力側に迫り出す部分である。隣接部22には、軸線AXと概ね直交する方向(丁度直交する方向も含む。)に向かって貫通する貫通孔22aが形成されている。貫通孔22aには、固定部60を構成する後述の固定ピンFが挿入される。 The adjacent portion 22 is a portion that is adjacent to the outer gear 21 in the axial direction and protrudes toward the output side of the outer gear 21. A through hole 22a is formed in the adjacent portion 22 so as to penetrate in a direction substantially orthogonal to the axis AX (including a direction just orthogonal to the axis AX). A fixing pin F, which will be described later, that constitutes the fixing portion 60 is inserted into the through hole 22a.
 なお、図示しないが、フレックスギア部20の内周面における、アウタギア21に形成された複数の歯21aのうち隣り合うもの同士の間に対応する位置に、外周側に向かって凹む部分を設けてもよい。当該凹む部分により、フレックスギア部20を良好に撓みやすくすることができる。 Although not shown, a portion recessed toward the outer peripheral side is provided at a position corresponding between adjacent teeth 21a formed on the outer gear 21 on the inner peripheral surface of the flex gear portion 20. May be good. The recessed portion makes it possible to satisfactorily bend the flex gear portion 20.
 インターナルギア部30は、金属材により剛性を有して形成され、第1アーム211の内側に固定される。インターナルギア部30は、カム部12に撓められたフレックスギア部20のアウタギア21と部分的に噛み合うインナギア31を有する。 The internal gear portion 30 is formed of a metal material with rigidity and is fixed to the inside of the first arm 211. The internal gear portion 30 has an inner gear 31 that partially meshes with the outer gear 21 of the flex gear portion 20 bent by the cam portion 12.
 インナギア31は、内周面に沿って形成された所定の歯数T(T>t)の歯31aを有してリング状に形成されている。インナギア31における複数の歯31aは、一定のピッチで円周方向に沿って配列されている。 The inner gear 31 has teeth 31a having a predetermined number of teeth T (T> t) formed along the inner peripheral surface and is formed in a ring shape. The plurality of teeth 31a in the inner gear 31 are arranged along the circumferential direction at a constant pitch.
 出力軸部40は、フレックスギア部20と共にインターナルギア部30に対して回転する。出力軸部40は、インターナルギア部30に対して軸線AX周りに回転可能に、支持部50によって支持されている。出力軸部40は、例えば、金属材により剛性を有してリング状に形成されている。出力軸部40は、フレックスギア部20の隣接部22と軸線AXを中心とした径方向において対向する対向部41と、対向部41よりも出力側に位置し、支持部50に支持される部分である被支持部42と、を有する。 The output shaft portion 40 rotates with respect to the internal gear portion 30 together with the flex gear portion 20. The output shaft portion 40 is supported by the support portion 50 so as to be rotatable around the axis AX with respect to the internal gear portion 30. The output shaft portion 40 has rigidity and is formed in a ring shape, for example, by a metal material. The output shaft portion 40 is located on the output side of the facing portion 41 facing the adjacent portion 22 of the flex gear portion 20 in the radial direction about the axis AX, and is supported by the support portion 50. It has a supported portion 42 which is.
 支持部50は、例えばクロスローラーベアリングからなり、外輪51がインターナルギア部30に固定され、内輪52が出力軸部40の被支持部42に固定されている。これにより、支持部50は、出力軸部40を、インターナルギア部30に対して軸線AX周りに回転可能に支持する。 The support portion 50 is made of, for example, a cross roller bearing, the outer ring 51 is fixed to the internal gear portion 30, and the inner ring 52 is fixed to the supported portion 42 of the output shaft portion 40. As a result, the support portion 50 rotatably supports the output shaft portion 40 with respect to the internal gear portion 30 around the axis AX.
 この実施形態では、出力軸部40は、支持部50の内輪52を介して、波動歯車装置100の負荷である第2アーム212に接続される。これにより、出力軸部40の回転に伴って、第2アーム212は、軸線AX周りに回転する。なお、支持部50による出力軸部40の支持態様は任意であり、例えば、支持部50の内輪52の内周面が出力軸部40に固定される態様などであってもよい。また、出力軸部40と負荷(本例では、第2アーム212)の接続手法も任意であり、例えば、出力軸部40に固定された円盤状のプレート部に負荷を接続する態様などであってもよい。 In this embodiment, the output shaft portion 40 is connected to the second arm 212, which is the load of the strain wave gearing device 100, via the inner ring 52 of the support portion 50. As a result, the second arm 212 rotates around the axis AX as the output shaft portion 40 rotates. The mode of supporting the output shaft portion 40 by the support portion 50 is arbitrary, and may be, for example, a mode in which the inner peripheral surface of the inner ring 52 of the support portion 50 is fixed to the output shaft portion 40. Further, the connection method between the output shaft portion 40 and the load (second arm 212 in this example) is also arbitrary, for example, the load is connected to the disk-shaped plate portion fixed to the output shaft portion 40. You may.
 図2に示すように、軸線方向における支持部50とカム部12との間に、フレックスギア部20の隣接部22及び出力軸部40の対向部41が位置する。固定部60によって隣接部22が対向部41に固定されることにより、出力軸部40は、フレックスギア部20と共に回転する。 As shown in FIG. 2, an adjacent portion 22 of the flex gear portion 20 and an opposing portion 41 of the output shaft portion 40 are located between the support portion 50 and the cam portion 12 in the axial direction. By fixing the adjacent portion 22 to the opposing portion 41 by the fixing portion 60, the output shaft portion 40 rotates together with the flex gear portion 20.
 固定部60は、例えば、出力軸部40の対向部41内に埋設されたガイドブッシュ41aに挿入される固定ピンFから構成されている。固定ピンFは、フレックスギア部20の隣接部22に設けられた貫通孔22aを介して、このガイドブッシュ41a内に、螺合、嵌合、固着、溶着等の固定手法で固定されている。固定ピンFは、フレックスギア部20の隣接部22を、外周側から内周側に向かって、出力部40の対向部41に対して固定する。固定ピンFは、軸線AXを中心とした径方向に沿っていることが好ましい。 The fixing portion 60 is composed of, for example, a fixing pin F inserted into a guide bush 41a embedded in the facing portion 41 of the output shaft portion 40. The fixing pin F is fixed in the guide bush 41a through a through hole 22a provided in the adjacent portion 22 of the flex gear portion 20 by a fixing method such as screwing, fitting, fixing, or welding. The fixing pin F fixes the adjacent portion 22 of the flex gear portion 20 to the opposing portion 41 of the output portion 40 from the outer peripheral side to the inner peripheral side. The fixing pin F is preferably along the radial direction about the axis AX.
 図3に示すように、カム部12の極数がN=2である本実施形態では、この極数に対応して固定部60は2つ設けられる。2つの固定部60は、軸線AXを中心とした回転角度において、互いに180°の間隔を空けて設けられている。つまり、2つの固定部60は、軸線AXを中心とした円周方向において等間隔で配列されている。この実施形態では、1つの固定部60が1つの固定ピンFから構成される。 As shown in FIG. 3, in the present embodiment in which the number of poles of the cam portion 12 is N = 2, two fixing portions 60 are provided corresponding to this number of poles. The two fixing portions 60 are provided with a distance of 180 ° from each other at a rotation angle about the axis AX. That is, the two fixing portions 60 are arranged at equal intervals in the circumferential direction about the axis AX. In this embodiment, one fixing portion 60 is composed of one fixing pin F.
 図3では、フレックスギア20の隣接部22を部分的に示した。なお、隣接部22のアウタギア21よりも出力側に迫り出した形状は任意であり、リング状に迫り出していてもよいし、固定部60に対応する部分だけがアウタギア21よりも出力側に迫り出していてもよい。 In FIG. 3, the adjacent portion 22 of the flex gear 20 is partially shown. The shape of the adjacent portion 22 that protrudes toward the output side of the outer gear 21 is arbitrary and may be projected in a ring shape, or only the portion corresponding to the fixed portion 60 approaches the output side of the outer gear 21. You may put it out.
(動作)
 次に、以上の構成からなる波動歯車装置100の動作について、図1~図3を参照しつつ、主に図4(a)~(d)に従って説明する。
(motion)
Next, the operation of the strain wave gearing device 100 having the above configuration will be described mainly according to FIGS. 4 (a) to 4 (d) with reference to FIGS. 1 to 3.
 ロボット200のコントローラ220の制御によりモータ213が動作すると、モータ213の回転動力が図示しない伝達機構を介して波動発生部10のカム部12に伝達され、カム部12は、軸線AX周りに比較的高速で回転する。 When the motor 213 is operated under the control of the controller 220 of the robot 200, the rotational power of the motor 213 is transmitted to the cam portion 12 of the wave generating portion 10 via a transmission mechanism (not shown), and the cam portion 12 is relatively around the axis AX. It rotates at high speed.
 ここで、説明の理解を容易にするため、回転開始前のカム部12は、図4(a)に示すように、その楕円形状の長軸が0°及び180°を通る軸に一致した初期位置Csにあるものとする。なお、図示の角度は、軸線AXを中心とした回転角度であり、12時の方向を0°として、時計方向に角度が増加するものとする。また、カム部12は、時計方向に回転するものとする。 Here, in order to facilitate the understanding of the explanation, as shown in FIG. 4A, the cam portion 12 before the start of rotation has an initial major axis whose elliptical shape coincides with an axis passing through 0 ° and 180 °. It shall be at position Cs. The angle shown is a rotation angle centered on the axis AX, and it is assumed that the angle increases in the clockwise direction with the 12 o'clock direction as 0 °. Further, the cam portion 12 is assumed to rotate clockwise.
 図4(a)に示すように、初期位置Csにあるカム部12は、2つの極部に対応した、0°及び180°の2箇所の噛合位置E,Eでフレックスギア部20(具体的には、図4では符号を省略したアウタギア21)をインターナルギア部30(具体的には、図4では符号を省略したインナギア31)に噛み合わせる。この状態において、インターナルギア部30の固定点Xoを0°の位置に設定し、フレックスギア部20における基準点Xfも0°の位置にあるものとする。 As shown in FIG. 4A, the cam portion 12 at the initial position Cs has the flex gear portion 20 (specifically) at two meshing positions E and E of 0 ° and 180 ° corresponding to the two pole portions. In FIG. 4, the outer gear 21) whose reference numeral is omitted in FIG. 4 is meshed with the internal gear portion 30 (specifically, the inner gear 31 whose reference numeral is omitted in FIG. 4). In this state, the fixed point Xo of the internal gear portion 30 is set to the position of 0 °, and the reference point Xf of the flex gear portion 20 is also set to the position of 0 °.
 図4(b)は、カム部12が初期位置Csから90°回転し、その長軸方向が90°及び270°を通る軸に一致する位置C1にある状態を示している。
 カム部12が初期位置Csから位置C1に変位すると、フレックスギア部20及びインターナルギア部30の噛合位置E,Eが90°及び270°の位置に移動する。この際、フレックスギア部20の基準点Xfは、固定点Xoに対して、アウタギア21の歯数(t)と、インナギア31の歯数(T=t+2)の差「2」の1/4(=90°/360°)である1/2歯分だけ反時計方向に回転する。この反時計方向の回転角度をθ1とすると、θ1={(360°/T)×2}/4が成り立つ。
FIG. 4B shows a state in which the cam portion 12 is rotated by 90 ° from the initial position Cs and its major axis direction is at the position C1 corresponding to the axes passing through 90 ° and 270 °.
When the cam portion 12 is displaced from the initial position Cs to the position C1, the meshing positions E and E of the flex gear portion 20 and the internal gear portion 30 move to the positions of 90 ° and 270 °. At this time, the reference point Xf of the flex gear portion 20 is 1/4 (1/4) of the difference "2" between the number of teeth (t) of the outer gear 21 and the number of teeth (T = t + 2) of the inner gear 31 with respect to the fixed point Xo. = 90 ° / 360 °), rotate counterclockwise by 1/2 tooth. Assuming that the rotation angle in the counterclockwise direction is θ1, θ1 = {(360 ° / T) × 2} / 4 holds.
 図4(c)は、カム部12が初期位置Csから180°回転し、その長軸方向が180°及び0°を通る軸に一致する位置C2にある状態を示している。
 カム部12が初期位置Csから位置C2に変位すると、フレックスギア部20及びインターナルギア部30の噛合位置E,Eが180°及び0°の位置に移動する。この際、フレックスギア部20の基準点Xfは、固定点Xoに対して、歯数の差「2」の1/2(=180°/360°)である1歯分だけ反時計方向に回転する。この反時計方向の回転角度をθ2とすると、θ2={(360°/T)×2}/2が成り立つ。
FIG. 4C shows a state in which the cam portion 12 is rotated by 180 ° from the initial position Cs and its major axis direction is at the position C2 corresponding to the axes passing through 180 ° and 0 °.
When the cam portion 12 is displaced from the initial position Cs to the position C2, the meshing positions E and E of the flex gear portion 20 and the internal gear portion 30 move to the positions of 180 ° and 0 °. At this time, the reference point Xf of the flex gear portion 20 rotates counterclockwise by one tooth, which is 1/2 (= 180 ° / 360 °) of the difference in the number of teeth "2" with respect to the fixed point Xo. To do. Assuming that the rotation angle in the counterclockwise direction is θ2, θ2 = {(360 ° / T) × 2} / 2 holds.
 図4(d)は、カム部12が初期位置Csから360°回転し、その長軸方向が0°及び180°を通る軸に一致する位置C3にある状態を示している。
 カム部12が初期位置Csから位置C3に変位すると(つまり、360°回転すると)、フレックスギア部20及びインターナルギア部30の噛合位置E,Eは、0°及び180°の位置に復帰する。この際、フレックスギア部20の基準点Xfは、固定点Xoに対して、歯数の差「2」の分だけ反時計方向に回転する。この反時計方向の回転角度をθ3とすると、θ3=(360°/T)×2が成り立つ。
FIG. 4D shows a state in which the cam portion 12 is rotated 360 ° from the initial position Cs and its major axis direction is at the position C3 corresponding to the axes passing through 0 ° and 180 °.
When the cam portion 12 is displaced from the initial position Cs to the position C3 (that is, when rotated by 360 °), the meshing positions E and E of the flex gear portion 20 and the internal gear portion 30 return to the positions of 0 ° and 180 °. At this time, the reference point Xf of the flex gear portion 20 rotates counterclockwise by the difference "2" in the number of teeth with respect to the fixed point Xo. Assuming that the rotation angle in the counterclockwise direction is θ3, θ3 = (360 ° / T) × 2 holds.
 以上のように、カム部12を回転させると、フレックスギア部20が弾性変形し、インターナルギア部30との噛合位置E,Eが順次移動していく。そして、カム部12が時計方向に1回転すると、フレックスギア部20は、歯数2(=T-t)だけ反時計方向に移動する。これにより、フレックスギア部20に固定部60で固定された出力軸部40は、カム部12の回転速度に対して、減速比i=(T-t)/tで減速される。つまり、波動歯車装置100によれば、出力軸部40に接続される負荷(本例では、第2アーム212)を、上記の減速比iで減速した出力で、高精度で回転制御することができる。なお、減速比iは任意であるが、例えば、1/30~1/320程度で設定されている。 As described above, when the cam portion 12 is rotated, the flex gear portion 20 is elastically deformed, and the meshing positions E and E with the internal gear portion 30 are sequentially moved. Then, when the cam portion 12 makes one rotation clockwise, the flex gear portion 20 moves counterclockwise by the number of teeth 2 (= Tt). As a result, the output shaft portion 40 fixed to the flex gear portion 20 by the fixing portion 60 is decelerated at a reduction ratio i = (Tt) / t with respect to the rotation speed of the cam portion 12. That is, according to the strain wave gearing device 100, the load (second arm 212 in this example) connected to the output shaft portion 40 can be rotationally controlled with high accuracy by the output decelerated by the reduction ratio i described above. it can. The reduction ratio i is arbitrary, but is set to, for example, about 1/30 to 1/320.
 以上のように、モータ213からの回転入力に応じて波動発生部10のカム部12が回転すると、フレックスギア部20及びインターナルギア部30の両歯車の噛合位置E,Eが円周方向に移動していくとともに、両歯車の歯数差に応じて、フレックスギア部20がインターナルギア部30に対してカム部12とは逆方向に回転する。この際、フレックスギア部20から出力軸部40へは、極数の数(N=2)に対応した2つの固定部60により力が伝達される。 As described above, when the cam portion 12 of the wave generating portion 10 rotates in response to the rotation input from the motor 213, the meshing positions E and E of both gears of the flex gear portion 20 and the internal gear portion 30 move in the circumferential direction. At the same time, the flex gear portion 20 rotates with respect to the internal gear portion 30 in the direction opposite to that of the cam portion 12 according to the difference in the number of teeth of both gears. At this time, the force is transmitted from the flex gear portion 20 to the output shaft portion 40 by two fixing portions 60 corresponding to the number of poles (N = 2).
 ここで、説明の理解を容易にするため、まずは、図3に示した固定部60が設けられる位置P,Pは、図4(a)に示したフレックスギア部20の基準点Xfの位置と、この位置から180°移動した位置であるとする。そうすると、2つの位置P,Pの各々の地点においては、インターナルギア部30に対するフレックスギア部20の状態が同じであるため、回転するフレックスギア部20から固定部60を介して出力軸部40に伝達される力のベクトルにおいて、前述の課題で述べたような位相ずれは原理的に生じないことが分かる。
 実際には、インターナルギア部30に対してフレックスギア部20は回転運動を行うため、固定部60が設けられる位置P,Pは、図3に示す状態に留まらない。しかしながら、フレックスギア部20の回転位置がどのような位置であろうと、2つの位置P,Pの各々の地点においては、インターナルギア部30に対するフレックスギア部20の状態が同じであるため、回転するフレックスギア部20から固定部60を介して出力軸部40に伝達される力のベクトルにおいて、前述の課題で述べたような位相ずれは原理的に生じないことは同様である。
Here, in order to facilitate the understanding of the explanation, first, the positions P and P where the fixing portion 60 shown in FIG. 3 is provided are the positions of the reference points Xf of the flex gear portion 20 shown in FIG. 4A. , It is assumed that the position is moved by 180 ° from this position. Then, since the state of the flex gear portion 20 with respect to the internal gear portion 30 is the same at each of the two positions P and P, the rotating flex gear portion 20 is transferred to the output shaft portion 40 via the fixed portion 60. It can be seen that in principle, the phase shift as described in the above task does not occur in the transmitted force vector.
Actually, since the flex gear portion 20 rotates with respect to the internal gear portion 30, the positions P and P where the fixing portion 60 is provided do not stay in the state shown in FIG. However, regardless of the rotation position of the flex gear portion 20, the state of the flex gear portion 20 with respect to the internal gear portion 30 is the same at each of the two positions P and P, so that the flex gear portion 20 rotates. In the vector of the force transmitted from the flex gear portion 20 to the output shaft portion 40 via the fixed portion 60, the phase shift as described in the above-mentioned problem does not occur in principle.
 つまり、この実施形態に係る位置P,Pに設けられた固定部60によれば、出力軸部40を軸線AX周りに回転させるためのトルクに寄与しない無用な応力がフレックスギア部20及び出力軸部40の各々に生じることが低減されるとともに、無用なねじれの力がフレックスギア部20に加わることが低減される。結果として、本実施形態の波動歯車装置100によれば、フレックスギア部20と出力軸部40の連結によるメカロスを大幅に低減することができ、良好な伝達効率を実現することができる。また、フレックスギア部20が破損することを抑制することができる。 That is, according to the fixing portions 60 provided at the positions P and P according to this embodiment, unnecessary stress that does not contribute to the torque for rotating the output shaft portion 40 around the axis AX is applied to the flex gear portion 20 and the output shaft. The occurrence of unnecessary twisting force on each of the portions 40 is reduced, and the application of unnecessary twisting force to the flex gear portion 20 is reduced. As a result, according to the strain wave gearing device 100 of the present embodiment, the mechanical loss due to the connection between the flex gear portion 20 and the output shaft portion 40 can be significantly reduced, and good transmission efficiency can be realized. In addition, it is possible to prevent the flex gear portion 20 from being damaged.
 また、フレックスギア部20から出力軸部40へ力を伝達する出力点(つまり、位置P,P)を円周方向に均等分散できるため、フレックスギア部20とインターナルギア部30の噛合箇所E,Eの1箇所あたりの負荷が軽減され、結果として高トルクで出力軸部40を回転させることができる。 Further, since the output points (that is, the positions P and P) for transmitting the force from the flex gear portion 20 to the output shaft portion 40 can be evenly distributed in the circumferential direction, the meshing points E of the flex gear portion 20 and the internal gear portion 30 The load per location of E is reduced, and as a result, the output shaft portion 40 can be rotated with high torque.
 さらに、本実施形態に係る波動歯車装置100による優位な点を、図5(a)と図5(b)を比較して説明する。図5(a)は、図2から本実施形態に係る波動歯車装置100を抜き出した図であり、図5(b)は、前述の特許文献に開示されたような従来例に係る波動歯車装置100pを示す図である。 Further, the advantages of the strain wave gearing device 100 according to the present embodiment will be described by comparing FIGS. 5 (a) and 5 (b). FIG. 5A is a diagram obtained by extracting the strain wave gearing device 100 according to the present embodiment from FIG. 2, and FIG. 5B is a strain wave gearing apparatus according to a conventional example as disclosed in the above-mentioned patent document. It is a figure which shows 100p.
 従来例に係る波動歯車装置100pにおいては、本実施形態に係る波動歯車装置100の各構成に対応する構成について、符号末尾に「p」を付加して図示した。従来例と本実施形態の主な対応関係を説明すると、ウェーブジェネレータ10pは波動発生部10に対応し、フレクスプライン20pはフレックスギア部20に対応し、サーキュラスプライン30pはインターナルギア部30に対応する。 In the strain wave gearing device 100p according to the conventional example, the configuration corresponding to each configuration of the strain wave gearing device 100 according to the present embodiment is shown by adding "p" to the end of the reference numeral. Explaining the main correspondence between the conventional example and the present embodiment, the wave generator 10p corresponds to the wave generation unit 10, the flex spline 20p corresponds to the flex gear unit 20, and the circular spline 30p corresponds to the internal gear unit 30. ..
 図5(b)に示すように、従来例に係るフレクスプライン20pは、その円筒部分の出力側の端部を閉塞するダイヤフラムに出力軸40pが固定部材60pにより固定されているため、円筒部分の高さに応じた長さLpだけ、出力軸40pの位置が入力側の回転体(例えばウェーブジェネレータ10pのカム)から遠ざかってしまう。 As shown in FIG. 5B, the flexspline 20p according to the conventional example has a cylindrical portion because the output shaft 40p is fixed by a fixing member 60p to a diaphragm that closes the output-side end of the cylindrical portion. The position of the output shaft 40p moves away from the rotating body on the input side (for example, the cam of the wave generator 10p) by the length Lp corresponding to the height.
 一方、図5(a)に示すように、本実施形態に係る波動歯車装置100では、フレックスギア部20の隣接部22から固定部60を介して出力軸部40に力を伝達する構造であるとともに、フレックスギア部20の隣接部22及び出力軸部40の対向部41は、支持部50とカム部12との間に位置する。これにより、カム部12からフレックスギア部20の出力点(つまり、フレックスギア部20から出力軸部40へ力を伝達する固定部60の位置)までを長さLとすることができ、結果的に、各構成を軸線方向にコンパクトにして、波動歯車装置100を小型に構成することができる。 On the other hand, as shown in FIG. 5A, the strain wave gearing device 100 according to the present embodiment has a structure in which a force is transmitted from the adjacent portion 22 of the flex gear portion 20 to the output shaft portion 40 via the fixed portion 60. At the same time, the adjacent portion 22 of the flex gear portion 20 and the opposing portion 41 of the output shaft portion 40 are located between the support portion 50 and the cam portion 12. As a result, the length L can be set from the cam portion 12 to the output point of the flex gear portion 20 (that is, the position of the fixed portion 60 that transmits the force from the flex gear portion 20 to the output shaft portion 40). In addition, each configuration can be made compact in the axial direction, and the wave gear device 100 can be made compact.
 また、本実施形態に係る波動歯車装置100では、フレックスギア部20が無底筒状(軸線方向から見てリング状)であり、従来例に係るフレクスプライン20pのように出力側の端部がダイヤフラムで閉塞されていない。このため、フレックスギア部20の肉厚をある程度確保しつつも、フレックスギア部20の可撓性を保つことができる。したがって、フレックスギア部20は、座屈に対する耐性が良好であり、破損しにくい。なお、フレックスギア部20の肉厚は限定されるものではないが、例えば、0.5mm~1mm程度に設定することが可能である。また、フレックスギア部20は、無底筒状であり、従来例に係るフレクスプライン20pのように有底筒状のものと比べ、加工し易い。 Further, in the strain wave gearing device 100 according to the present embodiment, the flex gear portion 20 has a bottomless tubular shape (ring shape when viewed from the axial direction), and the end portion on the output side is formed like the flexspline 20p according to the conventional example. Not blocked by diaphragm. Therefore, the flexibility of the flex gear portion 20 can be maintained while ensuring the wall thickness of the flex gear portion 20 to some extent. Therefore, the flex gear portion 20 has good resistance to buckling and is not easily damaged. The wall thickness of the flex gear portion 20 is not limited, but can be set to, for example, about 0.5 mm to 1 mm. Further, the flex gear portion 20 has a bottomless tubular shape, and is easier to process than a bottomed tubular one such as the flexspline 20p according to the conventional example.
 また、従来例においては、構造上、フレクスプライン20pの円筒部分が軸線方向にある程度の長さが必要であり、出力軸40pを支持する支持部50pがフレクスプライン20pとサーキュラスプライン30pの噛合位置から遠ざかる。このような従来例の構造では、フレクスプライン20pとサーキュラスプライン30pの両者に、軸線AXに対して斜めの方向の応力が加わり易く、互いの歯車が摩耗し易い。
 一方、本実施形態に係る波動歯車装置100では、支持部50とカム部12との間に、フレックスギア部20の隣接部22及び出力軸部40の対向部41が位置しているため、互いに噛み合うフレックスギア部20及びインターナルギア部30に、軸線AXに対して斜めの方向の応力が加わりにくい。結果として、フレックスギア部20及びインターナルギア部30における一方の歯山と他方の歯底を軸線方向に沿って接触させることができ、互いの歯車の摩耗を抑制することができる。
Further, in the conventional example, the cylindrical portion of the flexspline 20p needs to have a certain length in the axial direction due to the structure, and the support portion 50p supporting the output shaft 40p is from the meshing position of the flexspline 20p and the circular spline 30p. Go away. In such a conventional structure, stress in an oblique direction with respect to the axis AX is likely to be applied to both the flexspline 20p and the circular spline 30p, and the gears of each other are likely to be worn.
On the other hand, in the strain wave gearing device 100 according to the present embodiment, since the adjacent portion 22 of the flex gear portion 20 and the opposing portion 41 of the output shaft portion 40 are located between the support portion 50 and the cam portion 12, they are located on each other. It is difficult for stress in the diagonal direction with respect to the axis AX to be applied to the meshing flex gear portion 20 and the internal gear portion 30. As a result, one tooth ridge and the other tooth bottom in the flex gear portion 20 and the internal gear portion 30 can be brought into contact with each other along the axial direction, and wear of the gears of each other can be suppressed.
 また、本実施形態に係る波動歯車装置100では、カム部12だけでなく、フレックスギア部20及び出力軸部40も、軸線方向から見てリング状をなす中空状であるため、配線等を通す空間を内部に確保することができる。なお、本実施形態に係る波動歯車装置100によれば、原理上バックラッシをなくすことができることや、ロストモーションを極小にできることは勿論である。 Further, in the strain wave gearing device 100 according to the present embodiment, not only the cam portion 12, but also the flex gear portion 20 and the output shaft portion 40 are hollow in a ring shape when viewed from the axial direction, so that wiring or the like is passed therethrough. Space can be secured inside. According to the strain wave gearing device 100 according to the present embodiment, it is needless to say that backlash can be eliminated in principle and lost motion can be minimized.
(第1実施形態の変形例)
 以上の説明では、カム部12が楕円状で極数がN=2の場合について説明したが、極数は、2以上の整数であれば任意である。ここからは、主に図6~図8を参照して、極数がN≧3の場合について説明する。
(Modified example of the first embodiment)
In the above description, the case where the cam portion 12 is elliptical and the number of poles is N = 2 has been described, but the number of poles is arbitrary as long as it is an integer of 2 or more. From here, the case where the number of poles is N ≧ 3 will be described mainly with reference to FIGS. 6 to 8.
 極数がN≧3の場合、図6~図8に示すように、軸線方向から見たカム部12の形状は、正N角形状をなすとともに、例えば、各極部、及び、隣り合う極部の間が外周方向に緩やかに膨らむ曲面状を有する。
 フレックスギア部20のアウタギア21は、N個の極部を有するカム部12にウェーブベアリング13を介して撓められ、N箇所でインターナルギア部30のインナギア31と噛み合う。カム部12の極数がNの場合、アウタギア21の歯数t(以下、フレックスギア部20の歯数tとも言う。)とインナギア31の歯数T(以下、インターナルギア30の歯数Tとも言う。)の関係は、「T=t+N」が成り立つように設定される。
 そして、例えば、カム部12が時計方向に360°回転すると、フレックスギア部20がN歯分、反時計方向に移動する。つまり、カム部12の極数がNの場合、カム部12が(360°/N)の角度を回転すると、1歯分、インターナルギア部30に対してフレックスギア部20が移動する。カム部12の極数がNの場合、フレックスギア部20に固定された出力軸部40は、カム部12の回転速度に対して、減速比i=(T-t)/t=N/tで減速される。
When the number of poles is N ≧ 3, as shown in FIGS. 6 to 8, the shape of the cam portion 12 viewed from the axial direction is a regular N-angle shape, and for example, each pole portion and adjacent poles are formed. It has a curved surface that gently swells in the outer peripheral direction between the portions.
The outer gear 21 of the flex gear portion 20 is bent by the cam portion 12 having N poles via the wave bearing 13, and meshes with the inner gear 31 of the internal gear portion 30 at N points. When the number of poles of the cam portion 12 is N, the number of teeth t of the outer gear 21 (hereinafter, also referred to as the number of teeth t of the flex gear portion 20) and the number of teeth T of the inner gear 31 (hereinafter, both the number T of the internal gear 30). The relationship of) is set so that "T = t + N" holds.
Then, for example, when the cam portion 12 rotates 360 ° clockwise, the flex gear portion 20 moves counterclockwise by N teeth. That is, when the number of poles of the cam portion 12 is N, when the cam portion 12 rotates at an angle of (360 ° / N), the flex gear portion 20 moves with respect to the internal gear portion 30 by one tooth. When the number of poles of the cam portion 12 is N, the output shaft portion 40 fixed to the flex gear portion 20 has a reduction ratio i = (Tt) / t = N / t with respect to the rotation speed of the cam portion 12. Is decelerated.
 また、極数がN≧3の場合、固定ピンFからなる固定部60は、軸線AXを中心とした円周方向において等間隔で配列されたN個の位置Pに設けられる。なお、図6~図8では、図面の見やすさを考慮して、固定部60を示す代わりに固定部60が設けられる位置Pを示した。なお、以下の第1実施形態の変形例においても、1つの固定部60は1つの固定ピンFから構成されているものとする。また、図6~図8では、カム部12のN個の極部のうち、任意の極部が0°の位置にある状態を示している。これは、後述の第2実施形態で参照する図9についても同様である。以下、極数がN≧3の場合について順に説明する。 Further, when the number of poles is N ≧ 3, the fixing portions 60 composed of the fixing pins F are provided at N positions P arranged at equal intervals in the circumferential direction about the axis AX. In addition, in FIGS. 6 to 8, in consideration of the legibility of the drawing, the position P in which the fixing portion 60 is provided is shown instead of showing the fixing portion 60. In the following modified example of the first embodiment, it is assumed that one fixing portion 60 is composed of one fixing pin F. Further, FIGS. 6 to 8 show a state in which any of the N poles of the cam portion 12 is at a position of 0 °. This also applies to FIG. 9 referred to in the second embodiment described later. Hereinafter, the case where the number of poles is N ≧ 3 will be described in order.
(N=3の場合)
 図6(a)に示すように、カム部12の極数がN=3の場合、フレックスギア部20は、3個の極部を有するカム部12に撓められ、3箇所でインターナルギア部30と噛み合う。そして、フレックスギア部20の歯数tとインターナルギア30の歯数Tとの関係は、「T=t+3」である。この場合、カム部12が時計方向に360°回転すると、フレックスギア部20が3つの歯分、反時計方向に移動する。つまり、カム部12が(360°/3)の角度を回転すると、1歯分、インターナルギア部30に対してフレックスギア部20が移動する。N=3の場合、フレックスギア部20に固定された出力軸部40は、カム部12の回転速度に対して、減速比i=(T-t)/t=3/tで減速される。
 また、カム部12の極数がN=3の場合、フレックスギア部20を出力軸部40に固定する固定部40は、軸線AXを中心とした円周方向において等間隔で配列された3個の位置Pに設けられる。3個の位置Pのうち隣り合うもの同士の角度は、(360°/3)となる。
(When N = 3)
As shown in FIG. 6A, when the number of poles of the cam portion 12 is N = 3, the flex gear portion 20 is bent by the cam portion 12 having three pole portions, and the internal gear portion is formed at three positions. Engage with 30. The relationship between the number of teeth t of the flex gear portion 20 and the number of teeth T of the internal gear 30 is "T = t + 3". In this case, when the cam portion 12 rotates 360 ° clockwise, the flex gear portion 20 moves counterclockwise by three teeth. That is, when the cam portion 12 rotates at an angle of (360 ° / 3), the flex gear portion 20 moves with respect to the internal gear portion 30 by one tooth. When N = 3, the output shaft portion 40 fixed to the flex gear portion 20 is decelerated at a reduction ratio i = (Tt) / t = 3 / t with respect to the rotation speed of the cam portion 12.
Further, when the number of poles of the cam portion 12 is N = 3, three fixing portions 40 for fixing the flex gear portion 20 to the output shaft portion 40 are arranged at equal intervals in the circumferential direction centered on the axis AX. It is provided at the position P of. The angle between adjacent positions P among the three positions P is (360 ° / 3).
(N=4の場合)
 図6(b)に示すように、カム部12の極数がN=4の場合、フレックスギア部20は、4個の極部を有するカム部12に撓められ、4箇所でインターナルギア部30と噛み合う。そして、フレックスギア部20の歯数tとインターナルギア30の歯数Tとの関係は、「T=t+4」である。この場合、カム部12が時計方向に360°回転すると、フレックスギア部20が4つの歯分、反時計方向に移動する。つまり、カム部12が(360°/4)の角度を回転すると、1歯分、インターナルギア部30に対してフレックスギア部20が移動する。N=4の場合、フレックスギア部20に固定された出力軸部40は、カム部12の回転速度に対して、減速比i=(T-t)/t=4/tで減速される。
 また、カム部12の極数がN=4の場合、フレックスギア部20を出力軸部40に固定する固定部40は、軸線AXを中心とした円周方向において等間隔で配列された4個の位置Pに設けられる。4個の位置Pのうち隣り合うもの同士の角度は、(360°/4)となる。
(When N = 4)
As shown in FIG. 6B, when the number of poles of the cam portion 12 is N = 4, the flex gear portion 20 is bent by the cam portion 12 having four pole portions, and the internal gear portion is formed at four locations. Engage with 30. The relationship between the number of teeth t of the flex gear portion 20 and the number of teeth T of the internal gear 30 is "T = t + 4". In this case, when the cam portion 12 rotates 360 ° clockwise, the flex gear portion 20 moves counterclockwise by four teeth. That is, when the cam portion 12 rotates at an angle of (360 ° / 4), the flex gear portion 20 moves with respect to the internal gear portion 30 by one tooth. When N = 4, the output shaft portion 40 fixed to the flex gear portion 20 is decelerated at a reduction ratio i = (Tt) / t = 4 / t with respect to the rotation speed of the cam portion 12.
Further, when the number of poles of the cam portion 12 is N = 4, four fixing portions 40 for fixing the flex gear portion 20 to the output shaft portion 40 are arranged at equal intervals in the circumferential direction centered on the axis AX. It is provided at the position P of. The angle between adjacent positions P among the four positions P is (360 ° / 4).
(N=5の場合)
 図7(a)に示すように、カム部12の極数がN=5の場合、フレックスギア部20は、5個の極部を有するカム部12に撓められ、5箇所でインターナルギア部30と噛み合う。そして、フレックスギア部20の歯数tとインターナルギア30の歯数Tとの関係は、「T=t+5」である。この場合、カム部12が時計方向に360°回転すると、フレックスギア部20が5つの歯分、反時計方向に移動する。つまり、カム部12が(360°/5)の角度を回転すると、1歯分、インターナルギア部30に対してフレックスギア部20が移動する。N=5の場合、フレックスギア部20に固定された出力軸部40は、カム部12の回転速度に対して、減速比i=(T-t)/t=5/tで減速される。
 また、カム部12の極数がN=5の場合、フレックスギア部20を出力軸部40に固定する固定部40は、軸線AXを中心とした円周方向において等間隔で配列された5個の位置Pに設けられる。5個の位置Pのうち隣り合うもの同士の角度は、(360°/5)となる。
(When N = 5)
As shown in FIG. 7A, when the number of poles of the cam portion 12 is N = 5, the flex gear portion 20 is bent by the cam portion 12 having five pole portions, and the internal gear portion is formed at five locations. Engage with 30. The relationship between the number of teeth t of the flex gear portion 20 and the number of teeth T of the internal gear 30 is "T = t + 5". In this case, when the cam portion 12 rotates 360 ° clockwise, the flex gear portion 20 moves counterclockwise by five teeth. That is, when the cam portion 12 rotates at an angle of (360 ° / 5), the flex gear portion 20 moves with respect to the internal gear portion 30 by one tooth. When N = 5, the output shaft portion 40 fixed to the flex gear portion 20 is decelerated at a reduction ratio i = (Tt) / t = 5 / t with respect to the rotation speed of the cam portion 12.
Further, when the number of poles of the cam portion 12 is N = 5, five fixing portions 40 for fixing the flex gear portion 20 to the output shaft portion 40 are arranged at equal intervals in the circumferential direction centered on the axis AX. It is provided at the position P of. The angle between adjacent positions P among the five positions P is (360 ° / 5).
(N=6の場合)
 図7(b)に示すように、カム部12の極数がN=6の場合、フレックスギア部20は、6個の極部を有するカム部12に撓められ、6箇所でインターナルギア部30と噛み合う。そして、フレックスギア部20の歯数tとインターナルギア30の歯数Tとの関係は、「T=t+6」である。この場合、カム部12が時計方向に360°回転すると、フレックスギア部20が6つの歯分、反時計方向に移動する。つまり、カム部12が(360°/6)の角度を回転すると、1歯分、インターナルギア部30に対してフレックスギア部20が移動する。N=6の場合、フレックスギア部20に固定された出力軸部40は、カム部12の回転速度に対して、減速比i=(T-t)/t=6/tで減速される。
 また、カム部12の極数がN=6の場合、フレックスギア部20を出力軸部40に固定する固定部40は、軸線AXを中心とした円周方向において等間隔で配列された6個の位置Pに設けられる。6個の位置Pのうち隣り合うもの同士の角度は、(360°/6)となる。
(When N = 6)
As shown in FIG. 7B, when the number of poles of the cam portion 12 is N = 6, the flex gear portion 20 is bent by the cam portion 12 having six pole portions, and the internal gear portion is formed at six positions. Engage with 30. The relationship between the number of teeth t of the flex gear portion 20 and the number of teeth T of the internal gear 30 is "T = t + 6". In this case, when the cam portion 12 rotates 360 ° clockwise, the flex gear portion 20 moves counterclockwise by six teeth. That is, when the cam portion 12 rotates at an angle of (360 ° / 6), the flex gear portion 20 moves with respect to the internal gear portion 30 by one tooth. When N = 6, the output shaft portion 40 fixed to the flex gear portion 20 is decelerated at a reduction ratio i = (Tt) / t = 6 / t with respect to the rotation speed of the cam portion 12.
Further, when the number of poles of the cam portion 12 is N = 6, six fixing portions 40 for fixing the flex gear portion 20 to the output shaft portion 40 are arranged at equal intervals in the circumferential direction centered on the axis AX. It is provided at the position P of. The angle between adjacent positions P among the six positions P is (360 ° / 6).
(N=7の場合)
 図8(a)に示すように、カム部12の極数がN=7の場合、フレックスギア部20は、7個の極部を有するカム部12に撓められ、7箇所でインターナルギア部30と噛み合う。そして、フレックスギア部20の歯数tとインターナルギア30の歯数Tとの関係は、「T=t+7」である。この場合、カム部12が時計方向に360°回転すると、フレックスギア部20が7つの歯分、反時計方向に移動する。つまり、カム部12が(360°/7)の角度を回転すると、1歯分、インターナルギア部30に対してフレックスギア部20が移動する。N=7の場合、フレックスギア部20に固定された出力軸部40は、カム部12の回転速度に対して、減速比i=(T-t)/t=7/tで減速される。
 また、カム部12の極数がN=7の場合、フレックスギア部20を出力軸部40に固定する固定部40は、軸線AXを中心とした円周方向において等間隔で配列された7個の位置Pに設けられる。7個の位置Pのうち隣り合うもの同士の角度は、(360°/7)となる。
(When N = 7)
As shown in FIG. 8A, when the number of poles of the cam portion 12 is N = 7, the flex gear portion 20 is bent by the cam portion 12 having seven pole portions, and the internal gear portion is formed at seven points. Engage with 30. The relationship between the number of teeth t of the flex gear portion 20 and the number of teeth T of the internal gear 30 is "T = t + 7". In this case, when the cam portion 12 rotates 360 ° clockwise, the flex gear portion 20 moves counterclockwise by seven teeth. That is, when the cam portion 12 rotates at an angle of (360 ° / 7), the flex gear portion 20 moves with respect to the internal gear portion 30 by one tooth. When N = 7, the output shaft portion 40 fixed to the flex gear portion 20 is decelerated at a reduction ratio i = (Tt) / t = 7 / t with respect to the rotation speed of the cam portion 12.
Further, when the number of poles of the cam portion 12 is N = 7, seven fixing portions 40 for fixing the flex gear portion 20 to the output shaft portion 40 are arranged at equal intervals in the circumferential direction centered on the axis AX. It is provided at the position P of. The angle between adjacent positions P among the seven positions P is (360 ° / 7).
(N=8の場合)
 図8(b)に示すように、カム部12の極数がN=8の場合、フレックスギア部20は、8個の極部を有するカム部12に撓められ、8箇所でインターナルギア部30と噛み合う。そして、フレックスギア部20の歯数tとインターナルギア30の歯数Tとの関係は、「T=t+8」である。この場合、カム部12が時計方向に360°回転すると、フレックスギア部20が8つの歯分、反時計方向に移動する。つまり、カム部12が(360°/8)の角度を回転すると、1歯分、インターナルギア部30に対してフレックスギア部20が移動する。N=8の場合、フレックスギア部20に固定された出力軸部40は、カム部12の回転速度に対して、減速比i=(T-t)/t=8/tで減速される。
 また、カム部12の極数がN=8の場合、フレックスギア部20を出力軸部40に固定する固定部40は、軸線AXを中心とした円周方向において等間隔で配列された8個の位置Pに設けられる。7個の位置Pのうち隣り合うもの同士の角度は、(360°/8)となる。
(When N = 8)
As shown in FIG. 8B, when the number of poles of the cam portion 12 is N = 8, the flex gear portion 20 is bent by the cam portion 12 having eight pole portions, and the internal gear portion is formed at eight locations. Engage with 30. The relationship between the number of teeth t of the flex gear portion 20 and the number of teeth T of the internal gear 30 is "T = t + 8". In this case, when the cam portion 12 rotates 360 ° clockwise, the flex gear portion 20 moves counterclockwise by eight teeth. That is, when the cam portion 12 rotates at an angle of (360 ° / 8), the flex gear portion 20 moves with respect to the internal gear portion 30 by one tooth. When N = 8, the output shaft portion 40 fixed to the flex gear portion 20 is decelerated at a reduction ratio i = (Tt) / t = 8 / t with respect to the rotation speed of the cam portion 12.
Further, when the number of poles of the cam portion 12 is N = 8, eight fixing portions 40 for fixing the flex gear portion 20 to the output shaft portion 40 are arranged at equal intervals in the circumferential direction centered on the axis AX. It is provided at the position P of. The angle between adjacent positions P among the seven positions P is (360 ° / 8).
 なお、図示しないが、N≧9の場合についても同様に実現することができる。また、Nがいずれの場合においても、N個の位置P(N箇所の固定部60)の各々に対応して、フレックスギア部20の隣接部22、及び、出力軸部40の対向部41が設けられる。 Although not shown, the same can be achieved in the case of N ≧ 9. Further, in any case of N, the adjacent portion 22 of the flex gear portion 20 and the opposing portion 41 of the output shaft portion 40 correspond to each of the N positions P (fixed portions 60 at N locations). Provided.
 以上の第1実施形態の種々の変形例(N≧3)に係る波動歯車装置100おいても、N=2の場合に述べたのと同様に様々な効果を得ることができる。円周方向に均等に配列したN個の位置Pの各位置でフレックスギア20を出力軸部40に対して固定部60で固定するため、前述と同様に、出力軸部40を軸線AX周りに回転させるためのトルクに寄与しない無用な応力がフレックスギア部20及び出力軸部40の各々に生じることが低減されるとともに、無用なねじれの力がフレックスギア部20に加わることが低減される。結果として、良好な伝達効率の実現、フレックスギア部20の破損抑制など種々な効果を得ることができる。 Even in the strain wave gearing device 100 according to the various modifications (N ≧ 3) of the above first embodiment, various effects can be obtained in the same manner as described in the case of N = 2. Since the flex gear 20 is fixed to the output shaft portion 40 by the fixing portion 60 at each position of the N positions P evenly arranged in the circumferential direction, the output shaft portion 40 is fixed around the axis AX in the same manner as described above. It is reduced that unnecessary stress that does not contribute to the torque for rotation is generated in each of the flex gear portion 20 and the output shaft portion 40, and that unnecessary twisting force is applied to the flex gear portion 20. As a result, various effects such as realization of good transmission efficiency and suppression of damage to the flex gear portion 20 can be obtained.
 ここで、従来例に係る波動歯車装置100pのように、ウェーブジェネレータ10pのカムが楕円状に設定されている場合を考える(従来例の符号は図5(b)に準拠)。サーキュラスプライン30pの歯数をT、ピッチ円直径をDとし、フレクスプライン20pの歯数をt、ピッチ円直径をdとすれば、減速比iは、「i=(T-t)/t=2/t」あるいは、「i=(D-d)/d」と考えることができる。そうすると、減速比iの値を小さくする(より減速した回転出力を得る)には、歯数tを増やしたり、サーキュラスプライン30pの直径Dに対するフレクスプライン20pの直径dの割合を大きくする必要がある。一方、減速比iの値を大きくする(回転出力の減速度合いを抑える)には、歯数tを減らしたり、サーキュラスプライン30pの直径Dに対するフレクスプライン20pの直径dの割合を小さくする必要がある。このように、従来例のように楕円状のカムにだけ頼ると、装置の大きさや条件に様々な制約が生じ、あらゆる減速比の実現が困難である。 Here, consider a case where the cam of the wave generator 10p is set in an elliptical shape as in the wave gear device 100p according to the conventional example (the reference numerals of the conventional example conform to FIG. 5 (b)). If the number of teeth of the circular spline 30p is T, the pitch circle diameter is D, the number of teeth of the flexspline 20p is t, and the pitch circle diameter is d, the reduction ratio i is "i = (Tt) / t =". It can be considered as "2 / t" or "i = (Dd) / d". Then, in order to reduce the value of the reduction ratio i (obtain a more decelerated rotational output), it is necessary to increase the number of teeth t or increase the ratio of the diameter d of the flexspline 20p to the diameter D of the circular spline 30p. .. On the other hand, in order to increase the value of the reduction ratio i (suppress the degree of deceleration of the rotational output), it is necessary to reduce the number of teeth t or reduce the ratio of the diameter d of the flexspline 20p to the diameter D of the circular spline 30p. .. As described above, relying only on the elliptical cam as in the conventional example causes various restrictions on the size and conditions of the device, and it is difficult to realize all reduction ratios.
 一方で、第1実施形態の種々の変形例で説明した、カム部12の極数がN≧3のバリエーションによれば、仮に、インターナルギア部30の歯数Tとフレックスギア部20の歯数tとの少なくともいずれかを一定に保ったとしても、減速比i=N/tから分かるように、極数を増やすだけで減速比の値を大きくする(回転出力の減速度合いを抑える)ことができ、極数を減らすだけで減速比の値を小さくする(より減速した回転出力を得る)ことができる。極数のバリエーションに加えて、さらに、歯数Tや歯数tの設定や、フレックスギア部20やインターナルギア部30の口径を変更することで、ほぼ無数のバリエーションの減速比を実現することができる。 On the other hand, according to the variation in which the number of poles of the cam portion 12 is N ≧ 3, which has been described in various modifications of the first embodiment, the number of teeth T of the internal gear portion 30 and the number of teeth of the flex gear portion 20 are assumed. Even if at least one of t is kept constant, as can be seen from the reduction ratio i = N / t, the value of the reduction ratio can be increased (suppressing the degree of deceleration of the rotational output) simply by increasing the number of poles. It is possible to reduce the reduction ratio value (obtain a more decelerated rotational output) simply by reducing the number of poles. In addition to the variation of the number of poles, by setting the number of teeth T and the number of teeth t and changing the diameter of the flex gear part 20 and the internal gear part 30, it is possible to realize a reduction ratio of almost innumerable variations. it can.
 なお、以上では、カム部12の極数と対応してN箇所の固定部60(極対応固定部の一例)を設けたが、固定部60の設置箇所は、N未満であってもよい。例えば、極数がNである場合、固定部60は、軸線AXを中心とした円周方向において等間隔で配列された、2以上でN以下の箇所に設けられてもよい。こうしても、前述したような無用な応力やねじれの力がフレックスギア部20や出力軸部40に加わることを抑制することができる。この場合において、特に極数が偶数である場合、極数の約数のうち、2以上の約数分だけ固定部60を設けることが好ましいと考えられる。例えば、図7(b)に示すように、N=6の場合は、6の約数のうち、「2」か「3」、つまり、2箇所か3箇所の位置Pに固定部60を円周方向に均等配置すればよい。こうすれば、円周方向に均等配列された複数の位置Pのいずれかにカム部12の任意の極部が位置している際には、他の位置Pにもカム部12の極部が位置することになる。結果として、フレックスギア部20から出力軸部40へ力を伝達する出力点(つまり、位置P)を円周方向に均等分散できるため、高トルクで出力軸部40を回転させることができる。 In the above, N fixed portions 60 (an example of pole-corresponding fixed portions) are provided corresponding to the number of poles of the cam portion 12, but the fixed portions 60 may be installed at less than N locations. For example, when the number of poles is N, the fixing portions 60 may be provided at two or more and N or less locations arranged at equal intervals in the circumferential direction about the axis AX. Even in this way, it is possible to suppress the application of unnecessary stress and twisting force as described above to the flex gear portion 20 and the output shaft portion 40. In this case, especially when the number of poles is an even number, it is considered preferable to provide the fixing portion 60 for about two or more divisors of the number of poles. For example, as shown in FIG. 7B, when N = 6, the fixed portion 60 is circled at "2" or "3", that is, at two or three positions P among the divisors of 6. It may be evenly arranged in the circumferential direction. In this way, when any pole of the cam portion 12 is located at any of the plurality of positions P evenly arranged in the circumferential direction, the pole portion of the cam portion 12 is also located at the other position P. Will be located. As a result, the output points (that is, the position P) for transmitting the force from the flex gear portion 20 to the output shaft portion 40 can be evenly distributed in the circumferential direction, so that the output shaft portion 40 can be rotated with high torque.
 以上のように、極数がNのカム部12に対応して設けられる固定部60(極対応固定部の一例)は、2以上でN以下の個数あることが好ましい。しかしながら、固定部60は、フレックスギア部20の全周に渡ってではなく、円周方向において部分的に設けられてもよい。例えば、固定部60は、軸線AXを中心とした円周方向における任意の1箇所に設けられていてもよい。 As described above, it is preferable that the number of fixed portions 60 (an example of the pole-corresponding fixed portions) provided corresponding to the cam portion 12 having N poles is 2 or more and N or less. However, the fixing portion 60 may be partially provided in the circumferential direction, not over the entire circumference of the flex gear portion 20. For example, the fixing portion 60 may be provided at any one position in the circumferential direction about the axis AX.
(第2実施形態)
 ここからは、フレックスギア部20を出力軸部40に固定する固定部として、前述の極対応固定部の一例である固定部60に加え、補助固定部60aをさらに備える第2実施形態について、主に図9(a)、(b)を参照して説明する。第2実施形態では、第1実施形態と異なる点を説明する。
(Second Embodiment)
From here on, as the fixing portion for fixing the flex gear portion 20 to the output shaft portion 40, in addition to the fixing portion 60 which is an example of the pole-corresponding fixing portion described above, the second embodiment further including the auxiliary fixing portion 60a will be mainly described. 9 (a) and 9 (b) will be referred to. The second embodiment will explain the differences from the first embodiment.
 補助固定部60aは、前述の固定部60と同様に、フレックスギア部20の隣接部22を、外周側から内周側に向かって出力部40の対向部41に対して固定する固定ピンFから構成されている。補助固定部60aは、軸線AXを中心とした円周方向において固定部60の位置Pとは異なる位置Qに設けられている。補助固定部60aは、好ましくは複数あり、円周方向において等間隔で配列されている。 The auxiliary fixing portion 60a is the same as the fixing portion 60 described above, from the fixing pin F for fixing the adjacent portion 22 of the flex gear portion 20 to the facing portion 41 of the output portion 40 from the outer peripheral side to the inner peripheral side. It is configured. The auxiliary fixing portion 60a is provided at a position Q different from the position P of the fixing portion 60 in the circumferential direction about the axis AX. A plurality of auxiliary fixing portions 60a are preferably provided, and are arranged at equal intervals in the circumferential direction.
 補助固定部60aは、カム部12の極数が比較的少ない場合(例えば、Nが2や3の場合)に特に有用である。補助固定部60aは、軸線AXを中心として出力軸部40を回転させるためのトルクに寄与する力がフレックスギア部20から出力軸部40に伝達される箇所(出力点)を増加させ、当該トルクを稼ぐために設けられる。 The auxiliary fixing portion 60a is particularly useful when the number of poles of the cam portion 12 is relatively small (for example, when N is 2 or 3). The auxiliary fixing portion 60a increases the location (output point) where the force contributing to the torque for rotating the output shaft portion 40 around the axis AX is transmitted from the flex gear portion 20 to the output shaft portion 40, and the torque is increased. It is set up to earn.
(N=2の場合)
 図9(a)は、カム部12の極数がN=2の場合を示しており、固定部60(同図においては図示省略)の位置Pは、図3と同様である。N=2の場合、第2実施形態では、2箇所の位置Pに設けられた固定部60に加えて、補助固定部60aが4箇所の位置Qの各々に設けられている。4個の位置Qのうち隣り合うもの同士の角度は、(360°/4)に設定されている。
(When N = 2)
FIG. 9A shows a case where the number of poles of the cam portion 12 is N = 2, and the position P of the fixed portion 60 (not shown in the figure) is the same as that of FIG. When N = 2, in the second embodiment, in addition to the fixing portions 60 provided at the two positions P, auxiliary fixing portions 60a are provided at each of the four positions Q. The angle between adjacent ones among the four positions Q is set to (360 ° / 4).
 また、図9(a)に示した状態では、2つの位置Pが0°、180°の箇所にあり、4つの位置Qが45°、135°、225°、315°の箇所にある。つまり、補助固定部60aは、円周方向において隣り合う固定部60の中間位置(90°、270°)を避けた位置に設けられている。これら中間位置(90°、270°)にフレックスギア部20から出力軸部40に力を伝達する出力点を設定しても、軸線AXを中心として出力軸部40を回転させるためのトルクにあまり寄与しないためである。 Further, in the state shown in FIG. 9A, the two positions P are at 0 ° and 180 °, and the four positions Q are at 45 °, 135 °, 225 ° and 315 °. That is, the auxiliary fixing portion 60a is provided at a position avoiding the intermediate position (90 °, 270 °) of the adjacent fixing portions 60 in the circumferential direction. Even if an output point for transmitting force from the flex gear portion 20 to the output shaft portion 40 is set at these intermediate positions (90 ° and 270 °), the torque for rotating the output shaft portion 40 around the axis AX is too large. This is because it does not contribute.
(N=3の場合)
 図9(b)は、カム部12の極数がN=3の場合を示しており、固定部60(同図においては図示省略)の位置Pは、図6(a)と同様である。N=3の場合、第2実施形態では、3箇所の位置Pに設けられた固定部60に加えて、補助固定部60aが6箇所の位置Qの各々に設けられている。6個の位置Qのうち隣り合うもの同士の角度は、(360°/6)に設定されている。
(When N = 3)
FIG. 9B shows a case where the number of poles of the cam portion 12 is N = 3, and the position P of the fixed portion 60 (not shown in the figure) is the same as that of FIG. 6A. When N = 3, in the second embodiment, in addition to the fixing portions 60 provided at the three positions P, auxiliary fixing portions 60a are provided at each of the six positions Q. The angle between adjacent positions Q among the six positions Q is set to (360 ° / 6).
 また、図9(b)に示した状態では、3つの位置Pが0°、120°、240°の箇所にあり、6つの位置Qが30°、90°、150°、210°、270°、330°の箇所にある。つまり、補助固定部60aは、円周方向において隣り合う固定部60の中間位置(60°、180°、300°)を避けた位置に設けられている。これら中間位置(60°、180°、300°)にフレックスギア部20から出力軸部40に力を伝達する出力点を設定しても、軸線AXを中心として出力軸部40を回転させるためのトルクにあまり寄与しないためである。 Further, in the state shown in FIG. 9B, the three positions P are at 0 °, 120 °, and 240 °, and the six positions Q are at 30 °, 90 °, 150 °, 210 °, and 270 °. , 330 °. That is, the auxiliary fixing portion 60a is provided at a position avoiding the intermediate positions (60 °, 180 °, 300 °) of the adjacent fixing portions 60 in the circumferential direction. Even if an output point for transmitting force from the flex gear portion 20 to the output shaft portion 40 is set at these intermediate positions (60 °, 180 °, 300 °), the output shaft portion 40 can be rotated around the axis AX. This is because it does not contribute much to torque.
 なお、図示しないが、N≧4の場合についても同様な考え方で補助固定部60aを設けてもよい。しかしながら、前述のように、補助固定部60aは、カム部12の極数が比較的少ない場合(例えば、Nが2や3の場合)に特に有用である。また、固定部60と同様に、複数の位置Q(複数の補助固定部60a)の各々に対応して、フレックスギア部20の隣接部22、及び、出力軸部40の対向部41が設けられる。 Although not shown, the auxiliary fixing portion 60a may be provided in the same way in the case of N ≧ 4. However, as described above, the auxiliary fixing portion 60a is particularly useful when the number of poles of the cam portion 12 is relatively small (for example, when N is 2 or 3). Further, similarly to the fixing portion 60, an adjacent portion 22 of the flex gear portion 20 and an opposing portion 41 of the output shaft portion 40 are provided corresponding to each of the plurality of positions Q (plurality of auxiliary fixing portions 60a). ..
 また、補助固定部60aの数や配置は、図9(a)、(b)の例に限定されるものではなく任意である。ただし、フレックスギア部20から出力軸部40へ力を伝達する出力点(位置Q)を円周方向に均等分散し、高トルクで出力軸部40を回転させる観点から、複数の位置Qは、円周方向に均等に配列されていることが好ましい。同様の観点から、カム部12の極数がNである場合、位置Qは、Nの2倍など偶数倍の個数であることが好ましい。なお、補助固定部60aの好ましい配置は前述の通りであるが、補助固定部60aは、前述の中間位置に設けられても構わないし、軸線AXを中心とした円周方向における任意の1箇所に設けられていてもよい。 Further, the number and arrangement of the auxiliary fixing portions 60a are not limited to the examples of FIGS. 9A and 9B, and are arbitrary. However, from the viewpoint of evenly distributing the output points (positions Q) for transmitting the force from the flex gear portion 20 to the output shaft portion 40 in the circumferential direction and rotating the output shaft portion 40 with high torque, the plurality of positions Q are set. It is preferable that they are evenly arranged in the circumferential direction. From the same viewpoint, when the number of poles of the cam portion 12 is N, the number of positions Q is preferably an even multiple such as twice N. The preferred arrangement of the auxiliary fixing portion 60a is as described above, but the auxiliary fixing portion 60a may be provided at the above-mentioned intermediate position, or may be provided at an arbitrary position in the circumferential direction about the axis AX. It may be provided.
 なお、本発明は以上の実施形態、変形例、及び図面によって限定されるものではない。本発明の要旨を変更しない範囲で、適宜、変更(構成要素の削除も含む)を加えることが可能である。 The present invention is not limited to the above embodiments, modifications, and drawings. Changes (including deletion of components) can be made as appropriate without changing the gist of the present invention.
 以上では、波動歯車装置100が垂直多関節ロボットからなるロボット200に組み込まれる例を示したが、これに限られない。波動歯車装置100は、水平多関節ロボット、デルタ型ロボットなど種々のロボットに組み込まれるものであってもよい。また、波動歯車装置100が組み込まれる装置は、ロボットに限定されず任意であり、回転入力に対して所望の減速比で減速した回転出力を得る目的で使用されるものであればよい。 In the above, an example in which the strain wave gearing device 100 is incorporated in a robot 200 composed of a vertical articulated robot has been shown, but the present invention is not limited to this. The wave gear device 100 may be incorporated in various robots such as a horizontal articulated robot and a delta type robot. Further, the device in which the strain wave gearing device 100 is incorporated is not limited to the robot, and may be arbitrary as long as it is used for the purpose of obtaining a rotation output decelerated at a desired reduction ratio with respect to the rotation input.
 また、フレックスギア部20の歯数tと、インターナルギア部30の歯数Tは、T>tであれば任意である。ただし、カム部12の極数がNの場合、歯数tと歯数Tの関係を「T=t+N」と設定することが好ましい。 Further, the number of teeth t of the flex gear portion 20 and the number of teeth T of the internal gear portion 30 are arbitrary as long as T> t. However, when the number of poles of the cam portion 12 is N, it is preferable to set the relationship between the number of teeth t and the number of teeth T as “T = t + N”.
 以上では、1つの固定部60が1つの固定ピンFで構成される例を示したが、1つの固定部60が複数の固定ピンFで構成されてもよい。例えば、任意の位置Pにある1つの固定部60は、軸線方向に並ぶ複数(例えば2本)の固定ピンFから構成されてもよい。また、任意の位置Pにある1つの固定部60は、軸線AXを中心とした円周方向に近接して並ぶ複数(例えば2本)の固定ピンFから構成されてもよい。補助固定部60aについても同様であり、任意の位置Qにある1つの補助固定部60は、複数の固定ピンFから構成されてもよい。 In the above, one fixing portion 60 is composed of one fixing pin F, but one fixing portion 60 may be composed of a plurality of fixing pins F. For example, one fixing portion 60 at an arbitrary position P may be composed of a plurality of (for example, two) fixing pins F arranged in the axial direction. Further, one fixing portion 60 at an arbitrary position P may be composed of a plurality of (for example, two) fixing pins F arranged close to each other in the circumferential direction about the axis AX. The same applies to the auxiliary fixing portion 60a, and one auxiliary fixing portion 60 at an arbitrary position Q may be composed of a plurality of fixing pins F.
 また、固定部60は、フレックスギア部20の隣接部22をインターナルギア部30の対向部41に軸線AXを中心とした円周方向において部分的に固定することができれば、固定ピンFで構成される態様に限られず任意である。例えば、固定部60は、隣接部22及び対向部41を互いに嵌合する部分や、隣接部22及び対向部41を溶着、固着、接着する部分などから構成されていてもよい。 Further, the fixing portion 60 is composed of a fixing pin F if the adjacent portion 22 of the flex gear portion 20 can be partially fixed to the facing portion 41 of the internal gear portion 30 in the circumferential direction centered on the axis AX. It is not limited to any mode and is arbitrary. For example, the fixing portion 60 may be composed of a portion in which the adjacent portion 22 and the facing portion 41 are fitted to each other, a portion in which the adjacent portion 22 and the facing portion 41 are welded, fixed, or adhered to each other.
(1)以上に説明した波動歯車装置100は、フレックスギア部20におけるアウタギア21と隣り合う隣接部22を、出力軸部40の対向部41に、軸線AXを中心とした円周方向において部分的に固定する固定部(例えば、固定部60)を備える。また、カム部12は、円周方向において等間隔で位置するN(Nは、2以上の整数)個の極部を有し、アウタギア21をN箇所でインナギア31と噛み合わせる。
 この構成によれば、前述の通り、主にフレックスギア部20に加わる無用な応力を抑制することができるため、波動歯車装置100が破損しにくい。また、フレックスギア部20における出力軸部40に固定される部分を、アウタギア21と隣り合う隣接部22としたため、主に軸線方向に波動歯車装置100が大型化することを抑制することができる。また、極数のNを任意に設定すれば、種々の減速比を簡易な構成で実現することができる。
(1) In the strain wave gearing device 100 described above, the adjacent portion 22 of the flex gear portion 20 adjacent to the outer gear 21 is partially attached to the facing portion 41 of the output shaft portion 40 in the circumferential direction centered on the axis AX. A fixing portion (for example, a fixing portion 60) for fixing to is provided. Further, the cam portion 12 has N (N is an integer of 2 or more) poles located at equal intervals in the circumferential direction, and the outer gear 21 meshes with the inner gear 31 at N points.
According to this configuration, as described above, it is possible to suppress unnecessary stress mainly applied to the flex gear portion 20, so that the strain wave gearing device 100 is less likely to be damaged. Further, since the portion of the flex gear portion 20 fixed to the output shaft portion 40 is an adjacent portion 22 adjacent to the outer gear 21, it is possible to prevent the wave gear device 100 from becoming larger mainly in the axial direction. Further, if the number of poles N is arbitrarily set, various reduction ratios can be realized with a simple configuration.
(2)また、固定部は、複数あってもよい。そして、複数の固定部は、円周方向において等間隔で配列された、2以上でN以下の個数ある極対応固定部(主に第1実施形態の固定部60に対応。)を含む。
 この構成によれば、フレックスギア部20から出力軸部40へ力を伝達する出力点を円周方向に均等分散できるため、高トルクで出力軸部40を回転させることができる。
(2) Further, there may be a plurality of fixed portions. The plurality of fixing portions include two or more and N or less pole-corresponding fixing portions (mainly corresponding to the fixing portions 60 of the first embodiment) arranged at equal intervals in the circumferential direction.
According to this configuration, the output points for transmitting the force from the flex gear portion 20 to the output shaft portion 40 can be evenly distributed in the circumferential direction, so that the output shaft portion 40 can be rotated with high torque.
(3)また、上記(2)に記載の複数の固定部は、円周方向において極対応固定部(固定部60)と異なる位置に設けられた補助固定部60aをさらに含む。
(4)そして、好ましくは、補助固定部60aは、複数あり、円周方向において等間隔で配列されている。
 これらの構成によれば、軸線AXを中心として出力軸部40を回転させるためのトルクに寄与する力がフレックスギア部20から出力軸部40に伝達される箇所(出力点)を増加させることができ、当該トルクを稼ぐことができる。
(3) Further, the plurality of fixing portions described in (2) above further include an auxiliary fixing portion 60a provided at a position different from that of the pole-corresponding fixing portion (fixing portion 60) in the circumferential direction.
(4) And preferably, there are a plurality of auxiliary fixing portions 60a, and they are arranged at equal intervals in the circumferential direction.
According to these configurations, it is possible to increase the points (output points) where the force contributing to the torque for rotating the output shaft portion 40 around the axis AX is transmitted from the flex gear portion 20 to the output shaft portion 40. And the torque can be earned.
(5)また、図9(a)、(b)に示すように、極対応固定部としての固定部60は、N個あり、補助固定部60aは、円周方向において隣り合う極対応固定部の中間位置を避けた位置に設けられていてもよい。 (5) Further, as shown in FIGS. 9A and 9B, there are N fixing portions 60 as pole-corresponding fixing portions, and the auxiliary fixing portions 60a are adjacent pole-corresponding fixing portions in the circumferential direction. It may be provided at a position avoiding the intermediate position of.
(6)波動歯車装置100は、出力軸部40をインターナルギア部30に対して回転可能に支持する支持部50をさらに備え、隣接部22及び対向部41は、支持部50とカム部12との間に位置する。
 この構成によれば、前述の通り、カム部12からフレックスギア部20の出力点(つまり、フレックスギア部20から出力軸部40へ力を伝達する固定部60の位置)までの軸線方向の長さを抑えることができ、各構成を軸線方向にコンパクトにして、波動歯車装置100を小型に構成することができる。このように出力点までの長さを抑えることができれば、フレックスギア部20及びインターナルギア部30における一方の歯山と他方の歯底を軸線方向に沿って接触させることができ、互いの歯車の摩耗を抑制することもできる。なお、支持部50は、クロスローラーベアリングに限られず、ボールベアリングや出力軸部40を摺動させて回転可能に支持する軸受などであってもよい。
(6) The strain wave gearing device 100 further includes a support portion 50 that rotatably supports the output shaft portion 40 with respect to the internal gear portion 30, and the adjacent portion 22 and the opposing portion 41 include the support portion 50 and the cam portion 12. Located between.
According to this configuration, as described above, the length in the axial direction from the cam portion 12 to the output point of the flex gear portion 20 (that is, the position of the fixed portion 60 that transmits the force from the flex gear portion 20 to the output shaft portion 40). It is possible to make the wave gear device 100 compact by making each configuration compact in the axial direction. If the length to the output point can be suppressed in this way, one tooth ridge and the other tooth bottom in the flex gear portion 20 and the internal gear portion 30 can be brought into contact with each other along the axial direction, and the gears of each other can be brought into contact with each other. Wear can also be suppressed. The support portion 50 is not limited to the cross roller bearing, and may be a ball bearing or a bearing that rotatably supports the output shaft portion 40 by sliding it.
(7)1つの固定部(固定部60又は補助固定部60a)は、軸線AXを中心とした径方向で、隣接部22を対向部41に固定する1又は複数の固定ピンFを含む。
 なお、以上の説明では、フレックスギア20の隣接部22を出力軸部40の対向部41に、外周側から内周側に向かって固定ピンFで固定する例を示したが、内周側から外周側に向かって固定ピンFで固定する態様を採用してもよい。ただし、隣接部22を対向部41に外周側から内周側に向かって固定ピンFで固定したほうが、軸線AXを中心とした径方向に装置が大型化することを抑制することができ、好適である。
(7) One fixing portion (fixing portion 60 or auxiliary fixing portion 60a) includes one or a plurality of fixing pins F for fixing the adjacent portion 22 to the facing portion 41 in the radial direction about the axis AX.
In the above description, an example of fixing the adjacent portion 22 of the flex gear 20 to the opposing portion 41 of the output shaft portion 40 with a fixing pin F from the outer peripheral side to the inner peripheral side has been shown, but from the inner peripheral side. A mode of fixing with a fixing pin F toward the outer peripheral side may be adopted. However, it is preferable to fix the adjacent portion 22 to the facing portion 41 from the outer peripheral side to the inner peripheral side with a fixing pin F because it is possible to prevent the device from becoming larger in the radial direction centered on the axis AX. Is.
(8)また、アウタギア21の歯数tは、インナギア31の歯数TよりもN個少ない(t=T-N)ことが好ましい。 (8) Further, the number of teeth t of the outer gear 21 is preferably N less than the number of teeth T of the inner gear 31 (t = TN).
 以上の説明では、本発明の理解を容易にするために、公知の技術的事項の説明を適宜省略した。 In the above description, in order to facilitate the understanding of the present invention, the description of known technical matters has been omitted as appropriate.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention enables various embodiments and modifications without departing from the broad spirit and scope of the present invention. Moreover, the above-described embodiment is for explaining the present invention, and does not limit the scope of the present invention. That is, the scope of the present invention is indicated not by the embodiment but by the claims. And various modifications made within the scope of the claims and within the equivalent meaning of the invention are considered to be within the scope of the invention.
 本出願は、2019年7月25日に出願された、日本国特許出願特願2019-137164号に基づく。本明細書中に日本国特許出願特願2019-137164号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2019-137164 filed on July 25, 2019. The specification, claims, and drawings of Japanese Patent Application No. 2019-137164 shall be incorporated into this specification as a reference.
100…波動歯車装置
10…波動発生部
11…円筒軸部、12…カム部、13…ウェーブベアリング
20…フレックスギア部
21…アウタギア、22…隣接部
30…インターナルギア部
31…インナギア
40…出力軸部
41…対向部、42…被支持部
50…支持部
60…固定部、60a…補助固定部、F…固定ピン
200…ロボット、201…基台
210…ロボット本体部
211…第1アーム、212…第2アーム、213…モータ
220…コントローラ
100 ... Wave gear device 10 ... Wave generating part 11 ... Cylindrical shaft part, 12 ... Cam part, 13 ... Wave bearing 20 ... Flex gear part 21 ... Outer gear, 22 ... Adjacent part 30 ... Internal gear part 31 ... Inner gear 40 ... Output shaft Part 41 ... Opposing part, 42 ... Supported part 50 ... Supporting part 60 ... Fixed part, 60a ... Auxiliary fixing part, F ... Fixed pin 200 ... Robot, 201 ... Base 210 ... Robot body part 211 ... First arm, 212 ... 2nd arm, 213 ... Motor 220 ... Controller

Claims (8)

  1.  内周面に沿って形成されたインナギアを有するインターナルギア部と、
     回転入力に応じて軸線を中心として回転するカム部を有する波動発生部と、
     前記インナギアよりも少ない歯数で外周面に沿って形成され、内周側が前記波動発生部に嵌め込まれたリング状のアウタギア、及び、前記軸線に沿う方向において前記アウタギアと隣り合う隣接部を有するフレックスギア部と、
     前記隣接部と前記軸線を中心とした径方向において対向する対向部を有し、前記フレックスギア部と共に前記インターナルギア部に対して回転する出力軸部と、
     前記隣接部を前記対向部に前記軸線を中心とした円周方向において部分的に固定することで、前記出力軸部に対して前記フレックスギア部を固定する固定部と、備え、
     前記カム部は、前記円周方向において等間隔で位置するN(Nは、2以上の整数)個の極部を有し、前記アウタギアをN箇所で前記インナギアと噛み合わせる、
     波動歯車装置。
    An internal gear portion having an inner gear formed along the inner peripheral surface,
    A wave generating part having a cam part that rotates around an axis line in response to a rotation input,
    A flex having a ring-shaped outer gear formed along the outer peripheral surface with a smaller number of teeth than the inner gear and having an inner peripheral side fitted into the wave generating portion, and an adjacent portion adjacent to the outer gear in the direction along the axis. Gear part and
    An output shaft portion having an adjacent portion and an opposing portion facing each other in the radial direction about the axis line and rotating with respect to the internal gear portion together with the flex gear portion.
    A fixing portion for fixing the flex gear portion to the output shaft portion by partially fixing the adjacent portion to the facing portion in a circumferential direction centered on the axis line is provided.
    The cam portion has N (N is an integer of 2 or more) poles located at equal intervals in the circumferential direction, and the outer gear is meshed with the inner gear at N points.
    Strain wave gearing.
  2.  前記固定部は、複数あり、
     前記円周方向において等間隔で配列された、2以上でN以下の個数ある極対応固定部を含む、
     請求項1に記載の波動歯車装置。
    There are a plurality of the fixing portions,
    Including a number of pole-corresponding fixed portions of 2 or more and N or less arranged at equal intervals in the circumferential direction.
    The strain wave gearing according to claim 1.
  3.  複数の前記固定部は、前記円周方向において前記極対応固定部と異なる位置に設けられた補助固定部をさらに含む、
     請求項2に記載の波動歯車装置。
    The plurality of fixing portions further include an auxiliary fixing portion provided at a position different from that of the pole-corresponding fixing portion in the circumferential direction.
    The wave gearing device according to claim 2.
  4.  前記補助固定部は、複数あり、前記円周方向において等間隔で配列されている、
     請求項3に記載の波動歯車装置。
    There are a plurality of the auxiliary fixing portions, and the auxiliary fixing portions are arranged at equal intervals in the circumferential direction.
    The strain wave gearing according to claim 3.
  5.  前記極対応固定部は、N個あり、
     前記補助固定部は、前記円周方向において隣り合う前記極対応固定部の中間位置を避けた位置に設けられている、
     請求項3又は4に記載の波動歯車装置。
    There are N fixed parts corresponding to the poles.
    The auxiliary fixing portion is provided at a position avoiding an intermediate position between adjacent pole-corresponding fixing portions in the circumferential direction.
    The strain wave gearing according to claim 3 or 4.
  6.  前記出力軸部を前記インターナルギア部に対して回転可能に支持する支持部をさらに備え、
     前記隣接部及び前記対向部は、前記支持部と前記カム部との間に位置する、
     請求項1乃至5のいずれか1項に記載の波動歯車装置。
    A support portion that rotatably supports the output shaft portion with respect to the internal gear portion is further provided.
    The adjacent portion and the opposing portion are located between the support portion and the cam portion.
    The strain wave gearing according to any one of claims 1 to 5.
  7.  1つの前記固定部は、前記隣接部を前記径方向で前記対向部に固定する1又は複数の固定ピンを含む、
     請求項1乃至6のいずれか1項に記載の波動歯車装置。
    One fixing portion comprises one or more fixing pins for fixing the adjacent portion to the opposing portion in the radial direction.
    The strain wave gearing according to any one of claims 1 to 6.
  8.  前記アウタギアの歯数は、前記インナギアの歯数よりもN個少ない、
     請求項1乃至7のいずれか1項に記載の波動歯車装置。
    The number of teeth of the outer gear is N less than the number of teeth of the inner gear.
    The strain wave gearing according to any one of claims 1 to 7.
PCT/JP2020/028069 2019-07-25 2020-07-20 Wave-motion gear device WO2021015165A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-137164 2019-07-25
JP2019137164A JP7429023B2 (en) 2019-07-25 2019-07-25 Wave gear device

Publications (1)

Publication Number Publication Date
WO2021015165A1 true WO2021015165A1 (en) 2021-01-28

Family

ID=74193664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028069 WO2021015165A1 (en) 2019-07-25 2020-07-20 Wave-motion gear device

Country Status (3)

Country Link
JP (1) JP7429023B2 (en)
TW (1) TW202117211A (en)
WO (1) WO2021015165A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055866A1 (en) * 2022-09-16 2024-03-21 美的集团股份有限公司 Internally-meshing planetary gear device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11913533B2 (en) * 2021-10-29 2024-02-27 Skg Co., Ltd. Strain wave gearing
KR102635634B1 (en) * 2022-03-02 2024-02-13 씨앤엠로보틱스 주식회사 Strain wave generator having circumferentially segmented cam

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622857U (en) * 1985-06-24 1987-01-09
JP2005188740A (en) * 2003-12-05 2005-07-14 Mitsubishi Heavy Ind Ltd Reduction gear
US20130333516A1 (en) * 2012-06-13 2013-12-19 Chun-Shen YEH Flexspline structure of harmonic reducer
JP2017180799A (en) * 2016-03-31 2017-10-05 シチズン時計株式会社 Wave gear reducer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622857U (en) * 1985-06-24 1987-01-09
JP2005188740A (en) * 2003-12-05 2005-07-14 Mitsubishi Heavy Ind Ltd Reduction gear
US20130333516A1 (en) * 2012-06-13 2013-12-19 Chun-Shen YEH Flexspline structure of harmonic reducer
JP2017180799A (en) * 2016-03-31 2017-10-05 シチズン時計株式会社 Wave gear reducer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024055866A1 (en) * 2022-09-16 2024-03-21 美的集团股份有限公司 Internally-meshing planetary gear device

Also Published As

Publication number Publication date
JP7429023B2 (en) 2024-02-07
JP2021021422A (en) 2021-02-18
TW202117211A (en) 2021-05-01

Similar Documents

Publication Publication Date Title
WO2021015165A1 (en) Wave-motion gear device
JP2007127273A (en) Wavy motion gear device having asymmetrical wave generator and flexspline associated with wave generator
JPS63180751A (en) Harmonic speed reducer
JP6918343B2 (en) Rotation deceleration transmission device
WO2012127532A1 (en) Driving method for joint device
WO2009116236A1 (en) Rocking gear device
KR200450505Y1 (en) Gear reducer
JP2023184669A (en) gear unit
JP2016211706A (en) Speed reducer and robot
TWI805890B (en) flex mesh gearing
JP2016075350A (en) Decelerator and robot
JP2018044610A (en) Robot deceleration transmission device
JP2016075348A (en) Decelerator and robot
JP2021092270A (en) Wave gear device
CN116717570A (en) Harmonic reducer, mechanical arm and robot
JP7129267B2 (en) reduction gear
JP6632430B2 (en) Robot deceleration transmission
JP7039097B1 (en) Wave gear device
KR102345641B1 (en) Tractional strain wave reducer
JP2021143692A (en) Gear device and robot
JP2021116863A (en) Gear device and robot
JP6807076B2 (en) Robot deceleration transmission device
JP2020203363A5 (en)
JP6587005B2 (en) Timing belt differential mechanism
JP5367649B2 (en) Electric actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844647

Country of ref document: EP

Kind code of ref document: A1