WO2021015099A1 - Exposure device and exposure method - Google Patents

Exposure device and exposure method Download PDF

Info

Publication number
WO2021015099A1
WO2021015099A1 PCT/JP2020/027723 JP2020027723W WO2021015099A1 WO 2021015099 A1 WO2021015099 A1 WO 2021015099A1 JP 2020027723 W JP2020027723 W JP 2020027723W WO 2021015099 A1 WO2021015099 A1 WO 2021015099A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
stage
reading
light irradiation
reading unit
Prior art date
Application number
PCT/JP2020/027723
Other languages
French (fr)
Japanese (ja)
Inventor
尚敦 張
祥平 山崎
秀人 大墳
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN202080035298.3A priority Critical patent/CN113841089A/en
Priority to KR1020217035926A priority patent/KR20220034028A/en
Publication of WO2021015099A1 publication Critical patent/WO2021015099A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7019Calibration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/708Mark formation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present invention relates to an exposure apparatus and an exposure method.
  • Patent Document 1 discloses an exposure device that calibrates an alignment sensor based on an alignment mark and a reference scale in an exposure device that exposes an image on a substrate arranged on a stage with an exposure head.
  • the first stage on which the substrate is arranged and the second stage on which the reference scale is fixed can be raised and lowered independently.
  • the present invention has been made in view of such circumstances, and an exposure apparatus capable of dealing with variations in the height direction due to various types of substrates having different thicknesses, assembly errors, etc., without using a complicated mechanism. It is an object of the present invention to provide an exposure apparatus.
  • the exposure apparatus is, for example, an exposure apparatus that exposes a substrate, and is a substantially plate-shaped stage on which the substrate is mounted on a substantially horizontal mounting surface.
  • a first driving unit that moves the stage in a first direction substantially along a horizontal plane, a light irradiation unit provided above the stage, and a light irradiation unit adjacent to or in the light irradiation unit.
  • the bottom surface of the rib is provided on the above-described mounting surface, and a plurality of the recognition marks are formed on the upper surface of the rib opposite to the bottom surface in the first direction. It is characterized in that it is provided along the line.
  • the upper surface of the stage on which the mask is placed is a rib whose height changes, and a rib along the first direction is provided, which is opposite to the bottom surface of the rib.
  • a plurality of recognition marks are provided on the upper surface of the side along the first direction.
  • the rib has a first rib and a second rib provided adjacent to each other along the second direction, and the upper surface of the first rib and the upper surface of the second rib have substantially the same inclination.
  • the height of the first rib at the highest position and the height of the second rib at the lowest position may be substantially the same.
  • the length of the stage in the first direction can be shortened.
  • three or more ribs can be considered as a combination of two ribs (first rib and second rib).
  • the relative position between the reading units can be measured, and drawing can be performed using a multi-head exposure machine having a plurality of light irradiation units.
  • three or more light irradiation units can be considered as a combination of two light irradiation units (first light irradiation unit and second light irradiation unit), and three or more reading units are two reading units (first). It can be considered by the combination of the reading unit and the second reading unit).
  • the read unit may be provided in the vicinity of two sides of the stage along the second direction. Thereby, it is possible to detect whether the stage is moving straight along the first direction, whether the stage is moving in the first direction while bending in the second direction, and the like.
  • an alignment mark is provided on the substrate, and the stage is moved in the first direction by the first driving unit to arrange the alignment mark in the field of view of the reading unit, and the second
  • the drive unit moves the light irradiation unit and the reading unit in the vertical direction according to the height of the substrate, the reading unit reads the alignment mark, and the first driving unit reads the stage.
  • the recognition mark is placed in the field of view of the reading unit by moving in one direction, the recognition mark is read by the reading unit, and the light irradiation unit is based on the result of reading the alignment mark and the recognition mark.
  • a control unit that performs drawing processing for irradiating the substrate with light may be provided.
  • the recognition mark has a thickness of about 5 ⁇ m or more, and has a substantially cross shape in a plan view having protrusions protruding in four directions substantially orthogonal to each other, and the cross-sectional shape of the protrusions is wide on the rib side, and the rib side is wide.
  • the opposite side of the rib has a narrow substantially trapezoidal shape, and the first side surface and the second side surface, which are the side surfaces on both sides of the protrusion, are inclined surfaces inclined with respect to the upper surface, and the inclination of the first side surface with respect to the upper surface.
  • the difference between the absolute value of the angle and the absolute value of the inclination angle of the second side surface with respect to the upper surface is within about 1 degree, and the control unit reads the recognition mark while moving the reading unit in the vertical direction. You may. As a result, the reading unit can correctly read the center of the trapezoidal recognition mark regardless of the height of the reading unit. As a result, the inclination of the optical axis of the reading unit is detected, and high-precision drawing becomes possible.
  • a substantially plate-shaped interchangeable read portion provided on the stage is provided, and the recognition mark has a thickness of about 10 nm to about 1 ⁇ m, and the replaceable read portion has a thickness of about 5 ⁇ m.
  • a trapezoidal recognition mark having a thickness of the above and having protrusions protruding in four directions substantially orthogonal to each other is provided, and the cross-sectional shape of the protrusions is in front of the interchangeable read portion.
  • the difference from the absolute value of the inclination angle with respect to the placement surface is within about 1 degree, and the control unit may read the trapezoidal recognition mark while moving the reading unit in the vertical direction.
  • the control unit may read the trapezoidal recognition mark while moving the reading unit in the vertical direction.
  • the exposure method according to the present invention is, for example, an exposure method in which a substrate is exposed using a light irradiation unit provided above a stage movably provided along a first direction.
  • the substrate is a step of placing the substrate on a substantially horizontal surface of the stage, a light irradiation unit, and a reading unit adjacent to the light irradiation unit or provided in the light irradiation unit.
  • At least one of the step of reading the substrate by the reading unit by moving in the vertical direction according to the height of the stage and two sides along the second direction substantially orthogonal to the first direction of the stage.
  • the alignment mark provided on the substrate is read by the reading unit, and in the step of irradiating the substrate with light from the light irradiation unit, the reading result of the alignment mark is obtained.
  • the substrate may be irradiated with light based on the reading result of the recognition mark. As a result, the alignment mark and the recognition mark can be read with the height of the reading unit aligned with the alignment mark.
  • the calibration step has a substantially reduced thickness while moving the reading unit in a direction closer to the stage and a direction away from the stage.
  • a step of reading a trapezoidal recognition mark having a substantially trapezoidal cross-sectional shape having a substantially trapezoidal cross-sectional shape with a wide stage side and a narrow upper surface side, which is 5 ⁇ m or more and having a substantially cross-shaped plan view, and the trapezoidal recognition mark In the step of irradiating the substrate with light from the light irradiation unit, including a step of detecting the inclination of the optical axis of the reading unit based on the reading result of the above, drawing is performed based on the inclination of the optical axis of the reading unit. The position may be adjusted. As a result, the inclination of the optical axis of the reading unit can be detected and high-precision drawing can be performed.
  • the present invention it is possible to deal with variations in the height direction due to various types of substrates having different thicknesses, assembly errors, etc., without using a complicated mechanism.
  • FIG. 1 It is a figure which shows the trapezoidal recognition mark 41, (A) is a plan view, (B) is a CC sectional view of (A). It is a figure which shows the state when the reading unit 60 is moved up and down, (A) is the case where the optical axis of the reading unit 60 is not tilted, (B) is the case where the optical axis of the reading unit 60 is tilted. Is. It is a figure which shows typically the field of view of the reading part 60 when the reading part 60 reads the read part 25. It is a perspective view which shows the schematic structure of the read
  • embodiments of the present invention are applied to an exposure apparatus that generates a photomask by irradiating a photosensitive substrate (for example, a glass substrate) held in a substantially horizontal direction with light such as a laser while moving it in the scanning direction.
  • a photosensitive substrate for example, a glass substrate
  • light such as a laser
  • photosensitive substrate for example, quartz glass having a very small coefficient of thermal expansion (for example, about 5.5 ⁇ 10-7 / K) is used.
  • Photosensitive substrates come in various sizes, ranging from those having a size of about 400 mm ⁇ 400 mm to large ones having a side of more than 1 m (for example, 1400 mm ⁇ 1220 mm).
  • the thickness of the photosensitive substrate varies depending on the size, and is, for example, 7.5 mm to 16 mm.
  • the photomask generated by the exposure device is, for example, an exposure mask used for manufacturing a substrate for a liquid crystal display device.
  • a photomask is a photomask in which one or a plurality of transfer patterns for an image device are formed on a substantially rectangular substrate.
  • the term mask 100 is used to cover the photosensitive substrate before, during, and after processing.
  • the exposure apparatus of the present invention is not limited to the mask manufacturing apparatus.
  • the exposure apparatus of the present invention is a concept including various devices that irradiate light (including laser, UV, polarized light, etc.) while moving a substrate held in a substantially horizontal direction in a scanning direction.
  • FIG. 1 is a perspective view showing an outline of the exposure apparatus 1 according to the first embodiment.
  • the exposure device 1 mainly includes a surface plate 11, a plate-shaped portion 12, rails 13 and 14, a frame body 15, a stage 20, a light irradiation unit 30, a laser interference meter 50, and a reading unit 60. Has. In FIG. 1, some configurations are not shown. Further, the exposure apparatus 1 is maintained at a constant temperature by a temperature adjusting unit (not shown) that covers the entire apparatus.
  • the directions substantially along the horizontal plane are defined as the x direction and the y direction
  • the directions substantially orthogonal to the x direction and the y direction are defined as the z direction.
  • the x direction and the y direction are substantially orthogonal to each other.
  • the surface plate 11 is placed on a plurality of vibration isolation tables (not shown) placed on an installation surface (for example, a floor). As a result, the surface plate 11 is placed on the installation surface via the vibration isolation table. Since the vibration isolator is already known, detailed description thereof will be omitted. The vibration isolation table is not essential.
  • a loader (not shown) for installing the mask 100 on the stage 20 is provided on the + x side of the surface plate 11.
  • the rail 13 is an elongated plate-shaped member made of ceramic, and is fixed to the upper surface 11a of the surface plate 11 so that the longitudinal direction is along the x direction.
  • the end of the rail 13 on the loader side (+ x side) is arranged at the end of the upper surface 11a, and the end of the rail 13 on the opposite loader side ( ⁇ x side) is arranged inside the end of the upper surface 11a.
  • the heights (positions in the z direction) of the three rails 13 are substantially the same, and the upper surfaces thereof are formed with high accuracy and high flatness.
  • the stage 20 is placed on the rail 14.
  • the stage 20 is provided on the upper surface 11a via the plate-shaped portion 12 and the rails 13 and 14.
  • the stage 20 has a substantially rectangular plate shape in a plan view, and has a low expansion ceramic having a coefficient of thermal expansion of about 0.5 to 1 ⁇ 10-7 / K and a coefficient of thermal expansion of about 5 ⁇ 10-8 / K. It is formed using the ultra-low expansion glass ceramic of. This makes it possible to prevent the stage 20 from being deformed.
  • the stage 20 may be formed of a material that expands and contracts like the mask 100.
  • a guide portion (not shown) is provided on the lower surface of the stage 20 so that the longitudinal direction is along the y direction.
  • the moving direction of the stage 20 is restricted so that the stage 20, that is, the plate-shaped portion 12 does not move in any direction other than the y direction.
  • the stage 20 (plate-shaped portion 12) is provided so as to be movable in the x direction along the rail 13, and the stage 20 is provided so as to be movable in the y direction along the rail 14.
  • the stage 20 has a substantially horizontal upper surface 20a which is a surface opposite to the surface facing the upper surface 11a.
  • the upper surface 20a is a mounting surface on which a mask 100 (see FIG. 2) provided with a plurality of alignment marks 101 is mounted. Further, a read portion 25 (see FIG. 2, detailed later) is provided on the upper surface 20a. The alignment mark 101 and the read unit 25 are read by the reading unit 60, and the stage 20, that is, the mask 100 is positioned (detailed later).
  • stage 20 may be configured to be movable not only in the x direction and the y direction but also in the z direction.
  • the exposure device 1 has drive units 81 and 82 (not shown in FIG. 1, see FIG. 8).
  • the drive units 81 and 82 are, for example, linear motors.
  • the drive unit 81 moves the stage 20 (plate-shaped portion 12) in the x direction along the rail 13, and the drive unit 82 moves the stage 20 in the y direction along the rail 14.
  • various already known methods can be used.
  • the exposure device 1 has a laser interferometer 50 that measures the position of the stage 20.
  • the laser interference meter 50 includes a laser interference meter 51 provided on a pillar provided on the ⁇ y side of the frame body 15 and a laser interference meter (not shown) provided on the + x side side surface of the surface plate 11.
  • a method for measuring the position of the stage 20 using the laser interferometer 50 various already known methods can be used.
  • a frame body 15 is provided on the surface plate 11.
  • a casting having a low expansion coefficient for example, a nickel-based alloy
  • the frame body 15 has a support portion 15a and two pillars 15c that support the support portion 15a at both ends.
  • the frame body 15 holds the light irradiation unit 30 above the stage 20 (+ z direction).
  • a light irradiation unit 30 is attached to the support portion 15a.
  • the frame body 15 will be described in detail later.
  • the light irradiation unit 30 irradiates the mask 100 with light (laser light in the present embodiment).
  • the light irradiation units 30 are provided at regular intervals (for example, approximately every 200 mm) along the y direction. In the present embodiment, it has seven light irradiation units 30a, a light irradiation unit 30b, a light irradiation unit 30c, a light irradiation unit 30d, a light irradiation unit 30e, a light irradiation unit 30f, and a light irradiation unit 30g.
  • the moving mechanism 161 see FIG.
  • the driving unit 39 sets the light irradiation unit 30a to 30g in the z direction in a range of about 30 ⁇ m (micrometer) in order to finely adjust the focal position of the light irradiation unit 30a to 30g. Make a slight movement.
  • the light irradiation unit 30 will be described in detail later.
  • the reading unit 60 reads the alignment mark 101 (see FIG. 2) and the recognition mark 25e (see FIG. 3) formed on the mask 100.
  • the alignment mark 101 and the recognition mark 25e are marks used for positioning (calibration, alignment, etc.) of the mask 100.
  • the reading unit 60 includes seven reading units 60a, a reading unit 60b, a reading unit 60c, a reading unit 60d, a reading unit 60e, a reading unit 60f, and a reading unit 60g.
  • the reading units 60a to 60g are provided in the light irradiation units 30a to 30g so as to be adjacent to the light irradiation units 30a to 30g, respectively.
  • the reading units 60a to 60g may be provided in the light irradiation units 30a to 30g, respectively.
  • a microscope having a magnification of about 50 times and a depth of focus of 1 ⁇ m or less is used as the reading unit 60.
  • the reading unit 60 will be described in detail later.
  • FIG. 2 is a plan view showing an outline of the exposure apparatus 1. In FIG. 2, only the main configuration is shown, and the other configurations are omitted.
  • the read unit 25 is provided in the vicinity of two sides 20b and 20c that are substantially parallel in the plan view of the stage 20.
  • the sides 20b and 20c are along the y direction.
  • a plurality of read portions 25 are provided along the sides 20b and 20c.
  • the read unit 25 is arranged between two reading units 60a to 60g adjacent to each other in the y direction.
  • the number of read units 25 provided between the two reading units 60a to 60g is not limited, and at least one read unit 25 may be provided between the two reading units 60a to 60g.
  • one read unit 25 is provided between the reading unit 60a and the reading unit 60b, between the reading unit 60b and the reading unit 60c, and between the reading unit 60d and the reading unit 60e.
  • Two read units 25 are provided between the reading unit 60c and the reading unit 60d, and between the reading unit 60e and the reading unit 60f.
  • the same read unit 25 can be read by two adjacent reading units 60 (for example, the reading unit 60a and the reading unit 60b). Can be done.
  • the read unit 25 is arranged between two reading units 60 adjacent to each other in the y direction. What to do is an essential configuration for drawing.
  • FIG. 3 is a perspective view showing a schematic configuration of the read unit 25.
  • the read portion 25 is provided on the stage 20 via the plate-shaped member 21, but the plate-shaped member 21 is not essential.
  • the upper surface 20a of the stage 20 includes the upper surface of the plate-shaped member 21.
  • the recognition mark 25e is provided with a size based on the inclination of the plate-shaped portions 25d of the ribs 25A and 25B and the characteristics of the reading portion 60.
  • the size of the recognition mark 25e is such that a plurality of recognition marks 25e are included in the field of view of the reading unit 60, and one of the recognition marks 25e is focused (two or more recognition marks 25e). It is a size (so that it is out of focus).
  • FIG. 4 is a perspective view showing an outline of the support portion 15a of the frame body 15, and is a view seen from the back surface side (+ x side).
  • the support portion 15a and the pillar 15c are shown slightly separated for the sake of explanation, but the support portion 15a and the pillar 15c are actually adjacent to each other.
  • the support portion 15a has a substantially rectangular cross-sectional shape and a substantially rod shape, and the inside is hollow.
  • the support portion 15a is provided so that the longitudinal direction is along the y direction.
  • the support portion 15a mainly has a bottom plate 151, a support plate 153, side plates 152 and 154 provided on both sides of the bottom plate 151 and the support plate 153, and a partition wall 159.
  • the bottom plate 151 and the support plate 153 are provided substantially horizontally, and the side plates 152 and 154 are provided substantially vertically.
  • the plate-shaped partition wall 159 is an internal reinforcement of the support portion 15a, and vibration and deformation (bending, twisting, etc.) of the support portion 15a are prevented at the position where the partition wall 159 is provided.
  • Round holes 155a to 155g and 156a to 156g are formed on the bottom plate 151 and the support plate 153, respectively, along the y direction.
  • the round holes 155a to 155g and 156a to 156g are holes that penetrate the bottom plate 151 and the support plate 153 in the substantially vertical direction, respectively, and are substantially circular in plan view. In a plan view, the position of the center of the round holes 155a to 155g and the position of the center of the round holes 156a to 156g are substantially the same.
  • the side plates 152 and 154 are each formed with holes used as cast holes for discharging casting sand during casting to form an internal space. These holes are used to attach the reading unit 60 to the round holes 157a to 157g.
  • the frame body 15 has a moving mechanism 161 that moves the support portion 15a along the pillar 15c in the z direction.
  • the moving mechanism 161 moves the support portion 15a in the z direction within a range of about 10 mm.
  • an actuator 161c (see FIG. 8) that rotationally drives the rack 161a, the pinion 161b, and the pinion 161b can be used.
  • the frame body 15 has two permanent electromagnets 163 provided on the pillar 15c.
  • the permanent magnet 163 is a permanent electromagnetic type having a permanent magnet and an electromagnet, and a current is passed through the coil of the electromagnet only at the time of attachment / detachment to turn on / off the built-in permanent magnet.
  • the permanent electromagnet 163 attracts the support portion 15a by passing an electric current through the coil of the electromagnet.
  • FIG. 5 is a perspective view of a main part showing an outline of the light irradiation unit 30a.
  • the light irradiation unit 30a mainly includes a DMD 31a, an objective lens 32a, a light source unit 33a, an AF processing unit 34a, a tubular portion 35a, a flange 36a, mounting portions 37a and 38a, and a driving unit 39a.
  • the light irradiation units 30b to 30g are DMD 31b to 31g, objective lenses 32b to 32g, light source units 33b to 33g, AF processing units 34b to 34g, tubular portions 35b to 35g, and flanges 36b to, respectively.
  • the objective lens 32a forms an image of the laser light reflected by each micromirror of the DMD 31a on the surface of the mask 100.
  • light is irradiated from each of the light irradiation unit 30a to the light irradiation unit 30g, and the light is imaged on the mask 100 to draw a pattern on the mask 100.
  • the light source unit 33a mainly includes a light source 331, a lens 332, a fly-eye lens 333, a lens 334, 335, and a mirror 336.
  • the light source 331 is, for example, a laser diode, and the light emitted from the light source 331 is guided to the lens 332 via an optical fiber or the like.
  • the fly-eye lens 333 is a two-dimensional arrangement of a plurality of lenses (not shown), and a large number of point light sources are created in the fly-eye lens 333.
  • the light that has passed through the fly-eye lens 333 becomes parallel light through the lens 334, 335 (for example, a condenser lens), and is reflected by the mirror 336 toward the DMD 31a.
  • the AF processing unit 34a focuses the light applied to the mask 100 to the mask 100, and mainly includes an AF light source 341, a collimator lens 342, an AF cylindrical lens 343, a pentaprism 344, and 345. It has a lens 346 and AF sensors 347 and 348.
  • the light emitted from the AF light source 341 becomes parallel light by the collimator lens 342, becomes linear light by the AF cylindrical lens 343, is reflected by the pentaprism 344, and forms an image on the surface of the mask 100.
  • the light reflected by the mask 100 is reflected by the pentaprism 345, condensed by the lens 346, and incident on the AF sensors 347 and 348.
  • the pentaprisms 344 and 345 bend the light at a bending angle of approximately 97 degrees.
  • a mirror may be used instead of the pentaprisms 344 and 345, but it is desirable to use a pentaprism because the focus is blurred due to the angle deviation of the mirror.
  • the AF processing unit 34a performs autofocus processing for obtaining the focusing position based on the result received by the AF sensors 347 and 348. Since such an autofocus process by the optical lever method is already known, detailed description thereof will be omitted.
  • the light irradiation unit 30a has a substantially cylindrical tubular portion 35a provided with an optical system (including an objective lens 32a) inside.
  • a flange 36a is provided at the upper end of the tubular portion 35a.
  • the flange 36a holds the lens 332, the fly-eye lens 333, and the lens 334, 335 on the upper side.
  • the tubular portion 35a is provided with mounting portions 37a and 38a.
  • the mounting portions 37a and 38a are used for mounting on the frame body 15.
  • the mounting portion 37a is provided near the flange 36a, and the mounting portion 38a is provided near the lower end of the tubular portion 35a.
  • a hollow portion 372 having a diameter larger than the outer diameter of the mounting portion 38a is formed in the mounting portion 37a. As a result, the tubular portion 35a can be pulled out upward.
  • the mounting portion 37a (that is, the light irradiation portion 30a) is moved in the vertical direction (z direction) by the driving unit 39a.
  • the drive unit 39a has a piezoelectric element which is a solid actuator in which displacement occurs when a voltage is applied. When the piezoelectric element expands, the light irradiation unit 30a moves in the + z direction, and when the piezoelectric element 391 contracts, the light irradiation unit 30a moves in the ⁇ z direction.
  • the amount of movement of the light irradiation unit 30a by the drive unit 39a is approximately 30 ⁇ m.
  • FIG. 6 is a perspective view showing an outline of the reading unit 60a, and is a perspective view of the main part.
  • the reading unit 60a is a high-magnification microscope optical system, and mainly includes a lens barrel 601 in which an objective lens is provided, a light source unit 602 that irradiates the objective lens with light (here, visible light), titanium, and zirconia.
  • the reading unit 60a is fixed to the tubular portion 35a via a mounting portion (not shown). As a result, the reading unit 60a moves in the z direction together with the light irradiation unit 30a.
  • the guide members 70 and 70A have guide unit main bodies 71 and 71A and pressing rings 72, 72A, 73 and 73A, respectively.
  • the guide portion main bodies 71 and 71A have a substantially thin plate shape and a substantially disc shape in a plan view.
  • the guide portions 71 and 71A are made of a metal having a thickness of about 0.1 mm so as to be easily deformed. As the metal, stainless steel, phosphor bronze and the like can be used, but it is desirable to use more homogeneous phosphor bronze.
  • the reading unit 60a (not shown in FIG. 7) provided in the light irradiation unit 30a also moves up and down as the light irradiation unit 30a moves up and down. Since the lens barrel 601 of the reading unit 60a is inserted into the round hole 157a (see FIG. 4 and the like) and the lens barrel 601 is not fixed to the round hole 157a, no problem occurs due to the vertical movement of the lens barrel 601.
  • the CPU 201 operates based on the programs stored in the RAM 202 and the ROM 203, and controls each part. Signals are input to the CPU 201 from the laser interference meter 50, the reading unit 60, and the like. The signal output from the CPU 201 is output to the drive units 81, 82, the light irradiation unit 30, and the like.
  • the control unit 201a reads the trapezoidal recognition mark 41 provided on the substantially plate-shaped interchangeable read unit (not shown) before performing the drawing process.
  • 9A and 9B are views showing the trapezoidal recognition mark 41, FIG. 9A is a plan view, and FIG. 9B is a sectional view taken along the line CC of FIG. 9A.
  • the bottom surface 41b and the top surface 41e are substantially parallel to the top surface 20a when the replaceable read unit is placed on the top surface 20a of the stage 20.
  • the side surfaces 41c and 41d on both sides of the protrusion 41a are inclined surfaces that are inclined with respect to the bottom surface 41b and the top surface 41e. In the cross-sectional view shown in FIG. 9B, the side surfaces 41c and 41d are substantially symmetrical.
  • the difference between the absolute value of the inclination angle of the side surface 41c with respect to the bottom surface 41b and the absolute value of the inclination angle of the side surface 41d with respect to the bottom surface 41b is preferably within about 1 degree.
  • the accuracy of the exposure apparatus according to the present embodiment is approximately 60 nm, and the accuracy of the exposure apparatus can be satisfied by setting the difference in inclination angles between the side surfaces 41c and 41d to 1 degree or less.
  • the trapezoidal recognition mark 41 is two-dimensionally arranged on the interchangeable read unit.
  • the replaceable read unit is provided separately from the read unit 25, and is removable from the stage 20.
  • the replaceable read unit is placed on the upper surface 20a of the stage 20.
  • the control unit 201a has a trapezoidal shape while moving the reading unit 60 closer to the stage 20 and away from the stage 20 by the driving unit 39 and the moving mechanism 161 while the replaceable reading unit is mounted on the stage 20. Read the recognition mark 41.
  • control unit 201a reads the trapezoidal recognition mark 41 while moving the reading unit 60 toward the stage 20 and away from the stage 20 before the drawing process, and based on the reading result of the trapezoidal recognition mark 41.
  • the characteristics of the reading unit 60, particularly the inclination of the optical axis, are detected.
  • the reading unit 60 reads the trapezoidal recognition mark 41, even if the reading unit 60 is moved up and down, it is possible to focus on some of the side surfaces 41c and 41d of the trapezoidal recognition mark 41. Since the side surfaces 41c and 41d are substantially symmetrical, even if the side surfaces 41c and 41d are focused on the low position (near the bottom surface 41b), the side surfaces 41c and 41d are focused on the high position (near the top surface 41e). Even if they match, the reading unit 60 can correctly read the center O of the trapezoidal recognition mark 41.
  • control unit 201a moves the stage 20 in the x-direction and the y-direction by the drive units 81 and 82 to arrange the read unit 25 provided near the side 20b in the field of view of the reading unit 60, and the reading unit 60. Read the recognition mark 25e with.
  • the control unit 201a detects the positions of the stage 20, that is, the mask 100 in the x-direction and the y-direction based on the reading results of the alignment mark 101 and the recognition mark 25e.
  • the control unit 201a adjusts the drawing position based on the inclination of the optical axis of the reading unit 60 obtained based on the reading result of the trapezoidal recognition mark 41. Then, the control unit 201a irradiates the mask 100 with light from the light irradiation units 30a to 30g based on the corrected drawing position. Specifically, the control unit 201a changes the timing of the signal (horizontal synchronization signal) that irradiates the light irradiation units 30a to 30g with light in the x direction, and shifts the drawing data in the y direction by the amount of the misalignment in the y direction. Adjust the drawing position by moving it.
  • the signal horizontal synchronization signal
  • the thickness of the recognition mark 25e used in the drawing process is made thinner than the depth of focus of the reading unit 60.
  • the recognition mark 25e is thinned.
  • the alignment mark 101 is provided on the mask 100, but the alignment mark 101 is not essential.
  • the control unit 201a may read an arbitrary pattern or the like existing on the mask 100, or the control unit 201a reads a side portion to the corner portion of the mask 100. May be good. Further, the control unit 201a may read the recognition mark 25e calculated from the height of the mask 100.
  • the exposure device 2 has a stage 20-1.
  • the stage 20-1 is provided with a read portion 25-1 via a plate-shaped member 21-1.
  • FIG. 12 is a perspective view showing a schematic configuration of the read unit 25-1.
  • the bottom surface 41b and the top surface 41e of the trapezoidal recognition mark 41 are substantially parallel to the plate-shaped portion 25f.
  • the side surfaces 41c and 41d of the trapezoidal recognition mark 41 are inclined surfaces that are inclined with respect to the plate-shaped portion 25f.
  • the operation of the exposure apparatus 2 configured in this way will be described.
  • the following processing is mainly performed by the control unit 201a.
  • control unit 201a proceeds to the drawing process.
  • the control unit 201a places the mask 100 on the upper surface 20a of the stage 20, and after several hours have passed, the reading unit 60 reads the alignment mark 101 of the mask 100. Further, the control unit 201a reads the trapezoidal recognition mark 41 of the read unit 25 provided in the vicinity of the side 20b by the reading unit 60.
  • the control unit 201a detects the positions of the stage 20 and the mask 100 in the x-direction and the y-direction based on the reading results of the alignment mark 101 and the trapezoidal recognition mark 41.
  • only the trapezoidal recognition mark 41 is provided on the read unit 25-1, but only one trapezoidal recognition mark 41 is provided on the read unit 25-1, and the other recognition marks 25e are provided. It may be provided.
  • substantially horizontal is not limited to the case of being strictly horizontal, and is a concept including an error of, for example, several degrees.
  • approximately 10 ⁇ m is not limited to 10 ⁇ m, but is a concept including an error of, for example, about 1 to 3 ⁇ m.
  • parallel, orthogonal, etc. not only the case of strictly parallel, orthogonal, etc., but also the case of substantially parallel, substantially orthogonal, etc. is included.
  • the "neighborhood” means to include a region of a certain range (which can be arbitrarily determined) near the reference position.
  • a region of a certain range which can be arbitrarily determined
  • it is a concept indicating that it is a region in a certain range near A and may or may not include A.
  • Exposure device 11 Plate 11a: Top surface 12: Plate-shaped portion 12a: Top surface 13, 14: Rail 15: Frame body 15a: Support portion 15c: Pillar 20, 20-1: Stage 20a: Top surface 20b, 20c : Sides 21, 21-1: Plate-shaped members 25, 25-1: Read portions 25A, 25A-1, 25B, 25B-1: Ribs 25a, 25b: Base portion 25c: Adhesive portion 25d, 25f: Plate-shaped portion 25e: Recognition mark 30 (30a to 30g): Light irradiation unit 32a to 32g: Objective lens 33a to 33g: Light source unit 34a to 34g: AF processing unit 35a to 35g: Cylindrical portion 36a to 36g: Flange 37a to 37g: Mounting Parts 38a to 38g: Mounting part 39 (39a to 39g): Drive part 41: Trapezoidal recognition mark 41a: Projection part 41b: Bottom surface 41c, 41d: Side surface 41e: Top surface 50, 51: Laser interferometer

Abstract

The present invention can accommodate variations in a height direction due to various kinds of substrates with different thicknesses, assembly error, and the like without using a complicated mechanism. On the upper surface of a stage on which a mask is mounted, a rib having a height that changes and provided along a first direction approximately along a horizontal plane is provided. On the upper surface on the reverse side of the bottom surface of the rib, a plurality of recognition marks are provided along the first direction.

Description

露光装置及び露光方法Exposure device and exposure method
 本発明は、露光装置及び露光方法に関する。 The present invention relates to an exposure apparatus and an exposure method.
 特許文献1には、ステージ上に配された基板に露光ヘッドによって画像を露光する露光装置において、アライメントマークと基準スケールとに基づいてアライメントセンサの校正を行う露光装置が開示されている。この露光装置では、基板が配される第1のステージと、基準スケールが固定される第2のステージとがそれぞれ独立に昇降自在である。 Patent Document 1 discloses an exposure device that calibrates an alignment sensor based on an alignment mark and a reference scale in an exposure device that exposes an image on a substrate arranged on a stage with an exposure head. In this exposure apparatus, the first stage on which the substrate is arranged and the second stage on which the reference scale is fixed can be raised and lowered independently.
特開2006-337873号公報Japanese Unexamined Patent Publication No. 2006-337773
 特許文献1に記載の発明では、基準スケールの厚みと基板の厚みとが異なる場合、第2のステージを昇降させて基準スケールの高さを露光基準面の高さに一致させなければならず、装置の構造が複雑になるという問題がある。 In the invention described in Patent Document 1, when the thickness of the reference scale and the thickness of the substrate are different, the height of the reference scale must be made to match the height of the exposure reference plane by raising and lowering the second stage. There is a problem that the structure of the device becomes complicated.
 本発明はこのような事情に鑑みてなされたもので、複雑な機構を用いることなく、厚みの異なる様々な種類の基板や組み立て誤差等による高さ方向のばらつきに対応することができる露光装置及び露光装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an exposure apparatus capable of dealing with variations in the height direction due to various types of substrates having different thicknesses, assembly errors, etc., without using a complicated mechanism. It is an object of the present invention to provide an exposure apparatus.
 上記課題を解決するために、本発明に係る露光装置は、例えば、基板に対して露光を行う露光装置であって、略水平な載置面に前記基板が載置される略板状のステージと、前記ステージを水平面に略沿った第1方向に移動させる第1駆動部と、前記ステージの上方に設けられた光照射部と、前記光照射部に隣接して又は前記光照射部に設けられた読取部と、前記光照射部及び前記読取部を鉛直方向に移動させる第2駆動部と、前記載置面の前記第1方向と略直交する第2方向に沿った2つの辺のうちの少なくとも一方の近傍に設けられた被読取部であって、複数の認識マークを含む被読取部と、を備え、前記被読取部は、高さが変化するリブであって、前記第1方向に沿って設けられたリブを有し、前記リブの底面は前記載置面に設けられており、前記リブの前記底面と反対側の上面には、複数の前記認識マークが前記第1方向に沿って設けられていることを特徴とする。 In order to solve the above problems, the exposure apparatus according to the present invention is, for example, an exposure apparatus that exposes a substrate, and is a substantially plate-shaped stage on which the substrate is mounted on a substantially horizontal mounting surface. A first driving unit that moves the stage in a first direction substantially along a horizontal plane, a light irradiation unit provided above the stage, and a light irradiation unit adjacent to or in the light irradiation unit. Of the two sides of the reading unit, the light irradiation unit, the second driving unit that moves the reading unit in the vertical direction, and the second side of the above-mentioned mounting surface along the second direction substantially orthogonal to the first direction. A read portion provided in the vicinity of at least one of the above, including a read portion including a plurality of recognition marks, and the read portion is a rib whose height changes and is in the first direction. The bottom surface of the rib is provided on the above-described mounting surface, and a plurality of the recognition marks are formed on the upper surface of the rib opposite to the bottom surface in the first direction. It is characterized in that it is provided along the line.
 本発明に係る露光装置によれば、マスクが載置されるステージの上面には、高さが変化するリブであって、第1方向に沿ったリブが設けられており、リブの底面と反対側の上面には複数の認識マークが第1方向に沿って設けられている。これにより、マスクの厚みが異なる場合においても、1つの認識マークの高さをアライメントマークの高さと略一致させることができる。したがって、複雑な機構を用いることなく、様々な厚みの基板に対応することができる。また、組み立て誤差による読取部の高さ方向のばらつきに対応することができる。なお、リブの高さは徐々に変化してもよいし、リブが階段状であってもよい。 According to the exposure apparatus according to the present invention, the upper surface of the stage on which the mask is placed is a rib whose height changes, and a rib along the first direction is provided, which is opposite to the bottom surface of the rib. A plurality of recognition marks are provided on the upper surface of the side along the first direction. Thereby, even if the thickness of the mask is different, the height of one recognition mark can be substantially matched with the height of the alignment mark. Therefore, it is possible to deal with substrates of various thicknesses without using a complicated mechanism. In addition, it is possible to deal with variations in the height direction of the reading unit due to assembly errors. The height of the rib may be gradually changed, or the rib may be stepped.
 ここで、前記リブは、前記第2方向に沿って隣接して設けられた第1リブ及び第2リブを有し、前記第1リブの上面及び前記第2リブの上面は、傾きが略同じであり、前記第1リブの最も高い位置における高さと、前記第2リブの最も低い位置における高さとが略同じであってもよい。これにより、ステージの第1方向の長さを短くすることができる。なお、3本以上のリブは2本のリブ(第1リブ及び第2リブ)の組み合わせで考えることができる。 Here, the rib has a first rib and a second rib provided adjacent to each other along the second direction, and the upper surface of the first rib and the upper surface of the second rib have substantially the same inclination. The height of the first rib at the highest position and the height of the second rib at the lowest position may be substantially the same. As a result, the length of the stage in the first direction can be shortened. Note that three or more ribs can be considered as a combination of two ribs (first rib and second rib).
 ここで、前記第1駆動部は、前記ステージを前記第2方向に移動させ、前記光照射部は、前記第2方向に沿って隣接して設けられた第1光照射部と第2光照射部とを有し、前記読取部は、前記第1光照射部に隣接して又は前記第1光照射部に設けられた第1読取部と、前記第2光照射部に隣接して又は前記第2光照射部に設けられた第2読取部とを有し、前記被読取部は、前記第2方向の位置が前記第1読取部と前記第2読取部との間に位置してもよい。これにより、隣接する2つ読取部で同じ被読取部を読むことができる。その結果、読取部間の相対位置を測定し、光照射部が複数あるマルチヘッド露光機を用いて描画を行うことができる。なお、3つ以上の光照射部は2つの光照射部(第1光照射部及び第2光照射部)の組み合わせで考えることができ、3つ以上の読取部は2つの読取部(第1読取部及び第2読取部部)の組み合わせで考えることができる。 Here, the first driving unit moves the stage in the second direction, and the light irradiation unit is a first light irradiation unit and a second light irradiation unit provided adjacent to each other along the second direction. The reading unit has a unit, and the reading unit is adjacent to the first light irradiation unit or adjacent to the first light irradiation unit or provided in the first light irradiation unit and the second light irradiation unit. It has a second reading unit provided in the second light irradiation unit, and the reading unit may be positioned between the first reading unit and the second reading unit in the second direction. Good. As a result, the same read unit can be read by two adjacent reading units. As a result, the relative position between the reading units can be measured, and drawing can be performed using a multi-head exposure machine having a plurality of light irradiation units. In addition, three or more light irradiation units can be considered as a combination of two light irradiation units (first light irradiation unit and second light irradiation unit), and three or more reading units are two reading units (first). It can be considered by the combination of the reading unit and the second reading unit).
 ここで、前記被読取部は、前記ステージの前記第2方向に沿った2つの辺の近傍に設けられていてもよい。これにより、ステージが第1方向に沿って真っ直ぐに移動しているか、ステージが第2方向に湾曲しながら第1方向に移動しているか等を検知することができる。 Here, the read unit may be provided in the vicinity of two sides of the stage along the second direction. Thereby, it is possible to detect whether the stage is moving straight along the first direction, whether the stage is moving in the first direction while bending in the second direction, and the like.
 ここで、前記認識マークは、前記読取部の開口数に基づいた大きさで前記リブに設けられていてもよい。これにより、認識マークの大きさを、1つの認識マークにのみ焦点が合い、複数の認識マークに焦点が合わないような大きさにすることができる。 Here, the recognition mark may be provided on the rib in a size based on the numerical aperture of the reading unit. As a result, the size of the recognition mark can be set so that only one recognition mark is focused and a plurality of recognition marks are not focused.
 ここで、前記基板には、アライメントマークが設けられており、前記第1駆動部により前記ステージを前記第1方向に移動させて前記読取部の視野内に前記アライメントマークを配置し、前記第2駆動部により前記基板の高さに合わせて前記光照射部及び前記読取部を鉛直方向に移動して、前記読取部で前記アライメントマークを読み取り、かつ、前記第1駆動部により前記ステージを前記第1方向に移動させて前記読取部の視野内に前記認識マークを配置し、前記読取部で前記認識マークを読み取る処理と、前記アライメントマーク及び前記認識マークを読み取った結果に基づいて前記光照射部から前記基板に光を照射する描画処理と、を行う制御部を備えてもよい。これにより、時間の経過に伴って温度変化等によりステージや基板の高さが変化したとしても、読取部の高さをアライメントマークに合わせた状態でアライメントマークと認識マークを読み取ることができる。 Here, an alignment mark is provided on the substrate, and the stage is moved in the first direction by the first driving unit to arrange the alignment mark in the field of view of the reading unit, and the second The drive unit moves the light irradiation unit and the reading unit in the vertical direction according to the height of the substrate, the reading unit reads the alignment mark, and the first driving unit reads the stage. The recognition mark is placed in the field of view of the reading unit by moving in one direction, the recognition mark is read by the reading unit, and the light irradiation unit is based on the result of reading the alignment mark and the recognition mark. A control unit that performs drawing processing for irradiating the substrate with light may be provided. As a result, even if the height of the stage or the substrate changes due to a temperature change or the like with the passage of time, the alignment mark and the recognition mark can be read with the height of the reading unit aligned with the alignment mark.
 ここで、前記認識マークは、略5μm以上の厚みであり、略直交する4方向に突出する突起部を有する平面視略十字形状であり、前記突起部の断面形状は、前記リブ側が広く、前記リブの反対側が狭い略台形形状であり、前記突起部の両側の側面である第1側面及び第2側面は、前記上面に対して傾斜する傾斜面であり、前記第1側面の前記上面に対する傾斜角度の絶対値と、前記第2側面の前記上面に対する傾斜角度の絶対値との差が略1度以内であり、前記制御部は、前記読取部を鉛直方向に移動させながら前記認識マークを読み取ってもよい。これにより、読取部の高さに関わらず、読取部が台形型認識マークの中心を正しく読むことができる。その結果、読取部の光軸の傾きを検知し、高精度の描画が可能となる。 Here, the recognition mark has a thickness of about 5 μm or more, and has a substantially cross shape in a plan view having protrusions protruding in four directions substantially orthogonal to each other, and the cross-sectional shape of the protrusions is wide on the rib side, and the rib side is wide. The opposite side of the rib has a narrow substantially trapezoidal shape, and the first side surface and the second side surface, which are the side surfaces on both sides of the protrusion, are inclined surfaces inclined with respect to the upper surface, and the inclination of the first side surface with respect to the upper surface. The difference between the absolute value of the angle and the absolute value of the inclination angle of the second side surface with respect to the upper surface is within about 1 degree, and the control unit reads the recognition mark while moving the reading unit in the vertical direction. You may. As a result, the reading unit can correctly read the center of the trapezoidal recognition mark regardless of the height of the reading unit. As a result, the inclination of the optical axis of the reading unit is detected, and high-precision drawing becomes possible.
 ここで、前記ステージに着脱可能に設けられる略板状の交換式被読取部を備え、前記認識マークは、略数10nmから略1μmの厚みであり、前記交換式被読取部には、略5μm以上の厚みであり、略直交する4方向に突出する突起部を有する平面視略十字形状の台形型認識マークが設けられており、前記突起部の断面形状は、前記交換式被読取部を前記載置面に載置したときに、前記ステージ側が広く、前記ステージの反対側が狭い略台形形状であり、前記突起部の両側の側面である第1側面及び第2側面は、前記交換式被読取部を前記載置面に載置したときに前記載置面に対して傾斜する傾斜面であり、前記第1側面の前記載置面に対する傾斜角度の絶対値と、前記第2側面の前記載置面に対する傾斜角度の絶対値との差が略1度以内であり、前記制御部は、前記読取部を鉛直方向に移動させながら前記台形型認識マークを読み取ってもよい。これにより、読取部の光軸の傾きを検知し、高精度の描画が可能となる。また、台形型認識マークを認識マークと別にして認識マークを薄くすることで、読取部が認識マークを正確に読み取ることができ、高精度の描画が可能となる。 Here, a substantially plate-shaped interchangeable read portion provided on the stage is provided, and the recognition mark has a thickness of about 10 nm to about 1 μm, and the replaceable read portion has a thickness of about 5 μm. A trapezoidal recognition mark having a thickness of the above and having protrusions protruding in four directions substantially orthogonal to each other is provided, and the cross-sectional shape of the protrusions is in front of the interchangeable read portion. When mounted on the mounting surface, the stage side is wide and the opposite side of the stage is narrow in a substantially trapezoidal shape, and the first side surface and the second side surface, which are the side surfaces on both sides of the protrusion, are the interchangeable read-reads. It is an inclined surface that is inclined with respect to the previously described mounting surface when the portion is placed on the previously described mounting surface, and the absolute value of the inclination angle with respect to the previously described mounting surface of the first side surface and the front description of the second side surface. The difference from the absolute value of the inclination angle with respect to the placement surface is within about 1 degree, and the control unit may read the trapezoidal recognition mark while moving the reading unit in the vertical direction. As a result, the inclination of the optical axis of the reading unit is detected, and high-precision drawing becomes possible. Further, by making the recognition mark thinner by separating the trapezoidal recognition mark from the recognition mark, the reading unit can accurately read the recognition mark, and high-precision drawing becomes possible.
 上記課題を解決するために、本発明に係る露光方法は、例えば、第1方向に沿って移動可能に設けられたステージの上方に設けられた光照射部を用いて基板に露光を行う露光方法であって、前記ステージの略水平な面に前記基板を載置するステップと、前記光照射部と、前記光照射部に隣接して又は前記光照射部に設けられた読取部とを前記基板の高さに合わせて鉛直方向に移動して、前記基板を前記読取部で読み取るステップと、前記ステージの前記第1方向と略直交する第2方向に沿った2つの辺のうちの少なくとも一方の近傍に設けられた被読取部であって、前記ステージに設けられた高さが変化するリブの上面に前記第1方向に沿って複数設けられている認識マークを前記読取部で読み取るステップと、前記基板の読取結果と、前記認識マークの読取結果とに基づいて、前記ステージを前記第1方向に移動させながら前記光照射部から前記基板に光を照射するステップと、含むことを特徴とする。これにより、複雑な機構を用いることなく、位置決め用の認識マークを様々な厚みの基板に対応させることができる。 In order to solve the above problems, the exposure method according to the present invention is, for example, an exposure method in which a substrate is exposed using a light irradiation unit provided above a stage movably provided along a first direction. The substrate is a step of placing the substrate on a substantially horizontal surface of the stage, a light irradiation unit, and a reading unit adjacent to the light irradiation unit or provided in the light irradiation unit. At least one of the step of reading the substrate by the reading unit by moving in the vertical direction according to the height of the stage and two sides along the second direction substantially orthogonal to the first direction of the stage. A step of reading a plurality of recognition marks provided in the vicinity along the first direction on the upper surface of a rib provided on the stage whose height changes, and a step of reading the recognition mark by the reading unit. Based on the reading result of the substrate and the reading result of the recognition mark, the step of irradiating the substrate with light from the light irradiation unit while moving the stage in the first direction is included. .. This makes it possible to make the recognition mark for positioning correspond to substrates of various thicknesses without using a complicated mechanism.
 ここで、前記基板を前記読取部で読み取るステップでは、前記基板に設けられたアライメントマークを前記読取部で読み取り、前記光照射部から前記基板に光を照射するステップでは、前記アライメントマークの読取結果と、前記認識マークの読取結果とに基づいて前記基板に光を照射してもよい。これにより、読取部の高さをアライメントマークに合わせた状態でアライメントマークと認識マークを読み取ることができる。 Here, in the step of reading the substrate by the reading unit, the alignment mark provided on the substrate is read by the reading unit, and in the step of irradiating the substrate with light from the light irradiation unit, the reading result of the alignment mark is obtained. The substrate may be irradiated with light based on the reading result of the recognition mark. As a result, the alignment mark and the recognition mark can be read with the height of the reading unit aligned with the alignment mark.
 ここで、前記ステージに前記基板を載置する前に行う校正ステップを有し、前記校正ステップは、前記読取部を前記ステージに近づける方向及び前記ステージから遠ざける方向に移動させながら、厚さが略5μm以上で平面視略十字形状の台形型認識マークであって、前記ステージ側が広く上面側が狭い略台形形状の断面形状を有する台形型認識マークを前記読取部で読み取るステップと、前記台形型認識マークの読取結果に基づいて前記読取部の光軸の傾きを検知するステップと、を含み、前記光照射部から前記基板に光を照射するステップでは、前記読取部の光軸の傾きに基づいて描画位置を調整してもよい。これにより、読取部の光軸の傾きを検知し、高精度の描画を行うことができる。 Here, there is a calibration step performed before mounting the substrate on the stage, and the calibration step has a substantially reduced thickness while moving the reading unit in a direction closer to the stage and a direction away from the stage. A step of reading a trapezoidal recognition mark having a substantially trapezoidal cross-sectional shape having a substantially trapezoidal cross-sectional shape with a wide stage side and a narrow upper surface side, which is 5 μm or more and having a substantially cross-shaped plan view, and the trapezoidal recognition mark In the step of irradiating the substrate with light from the light irradiation unit, including a step of detecting the inclination of the optical axis of the reading unit based on the reading result of the above, drawing is performed based on the inclination of the optical axis of the reading unit. The position may be adjusted. As a result, the inclination of the optical axis of the reading unit can be detected and high-precision drawing can be performed.
 本発明によれば、複雑な機構を用いることなく、厚みの異なる様々な種類の基板や組み立て誤差等による高さ方向のばらつきに対応することができる。 According to the present invention, it is possible to deal with variations in the height direction due to various types of substrates having different thicknesses, assembly errors, etc., without using a complicated mechanism.
第1の実施の形態に係る露光装置1の概略を示す斜視図である。It is a perspective view which shows the outline of the exposure apparatus 1 which concerns on 1st Embodiment. 露光装置1の概略を示す平面図である。It is a top view which shows the outline of the exposure apparatus 1. 被読取部25の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the read | read part 25. 枠体15の支持部15aの概略を示す斜視図であり、背面側(+x側)から見た図である。It is a perspective view which shows the outline of the support part 15a of a frame body 15, and is the figure which was seen from the back side (+ x side). 光照射部30aの概略を示す要部透視図である。It is a main part perspective view which shows the outline of a light irradiation part 30a. 読取部60aの概略を示す斜視図であり、要部を透視した図である。It is a perspective view which shows the outline of the reading part 60a, and is the figure which see through the main part. 光照射部30aの取付構造を模式的に示す図である。It is a figure which shows typically the mounting structure of the light irradiation part 30a. 露光装置1の電気的な構成を示すブロック図である。It is a block diagram which shows the electrical structure of the exposure apparatus 1. 台形型認識マーク41を示す図であり、(A)は平面図であり、(B)は(A)のC-C断面図である。It is a figure which shows the trapezoidal recognition mark 41, (A) is a plan view, (B) is a CC sectional view of (A). 読取部60を上下動させたときの様子を示す図であり、(A)は読取部60の光軸が傾いていない場合であり、(B)は読取部60の光軸が傾いている場合である。It is a figure which shows the state when the reading unit 60 is moved up and down, (A) is the case where the optical axis of the reading unit 60 is not tilted, (B) is the case where the optical axis of the reading unit 60 is tilted. Is. 読取部60で被読取部25を読み取るときの読取部60の視野を模式的に示す図である。It is a figure which shows typically the field of view of the reading part 60 when the reading part 60 reads the read part 25. 被読取部25-1の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the read | read part 25-1.
 以下、本発明を、略水平方向に保持した感光性基板(例えば、ガラス基板)を走査方向に移動させながらレーザ等の光を照射してフォトマスクを生成する露光装置に適用した実施の形態を例に、図面を参照して詳細に説明する。各図面において、同一の要素には同一の符号が付されており、重複する部分については説明を省略する。 Hereinafter, embodiments of the present invention are applied to an exposure apparatus that generates a photomask by irradiating a photosensitive substrate (for example, a glass substrate) held in a substantially horizontal direction with light such as a laser while moving it in the scanning direction. An example will be described in detail with reference to the drawings. In each drawing, the same elements are designated by the same reference numerals, and the description of overlapping portions will be omitted.
 感光性基板としては、例えば、熱膨張率が非常に小さい(例えば、約5.5×10-7/K程度)石英ガラスが用いられる。感光性基板は、様々な大きさのものがあり、400mm×400mm程度のものから、一辺が例えば1mを超える(例えば、1400mm×1220mm)大型のものまである。また、感光性基板は、大きさに応じて厚みが異なり、例えば7.5mm~16mmである。 As the photosensitive substrate, for example, quartz glass having a very small coefficient of thermal expansion (for example, about 5.5 × 10-7 / K) is used. Photosensitive substrates come in various sizes, ranging from those having a size of about 400 mm × 400 mm to large ones having a side of more than 1 m (for example, 1400 mm × 1220 mm). The thickness of the photosensitive substrate varies depending on the size, and is, for example, 7.5 mm to 16 mm.
 露光装置により生成されるフォトマスクは、例えば液晶表示装置用の基板を製造するために用いられる露光用マスクである。フォトマスクは、略矩形形状の基板上に、1個または複数個のイメージデバイス用転写パターンが形成されたものである。以下、加工前、加工中及び加工後の感光性基板を包括してマスク100という用語を使用する。 The photomask generated by the exposure device is, for example, an exposure mask used for manufacturing a substrate for a liquid crystal display device. A photomask is a photomask in which one or a plurality of transfer patterns for an image device are formed on a substantially rectangular substrate. Hereinafter, the term mask 100 is used to cover the photosensitive substrate before, during, and after processing.
 ただし、本発明の露光装置は、マスク製造装置に限定されない。本発明の露光装置は、略水平方向に保持した基板を走査方向に移動させながら光(レーザ、UV、偏光光等を含む)を照射する様々な装置を含む概念である。 However, the exposure apparatus of the present invention is not limited to the mask manufacturing apparatus. The exposure apparatus of the present invention is a concept including various devices that irradiate light (including laser, UV, polarized light, etc.) while moving a substrate held in a substantially horizontal direction in a scanning direction.
<第1の実施の形態>
 図1は、第1の実施の形態に係る露光装置1の概略を示す斜視図である。露光装置1は、主として、定盤11と、板状部12と、レール13、14と、枠体15と、ステージ20と、光照射部30と、レーザ干渉計50と、読取部60と、を有する。なお、図1においては、一部の構成について図示を省略している。また、露光装置1は、装置全体を覆う図示しない温度調整部により、一定温度に保たれている。
<First Embodiment>
FIG. 1 is a perspective view showing an outline of the exposure apparatus 1 according to the first embodiment. The exposure device 1 mainly includes a surface plate 11, a plate-shaped portion 12, rails 13 and 14, a frame body 15, a stage 20, a light irradiation unit 30, a laser interference meter 50, and a reading unit 60. Has. In FIG. 1, some configurations are not shown. Further, the exposure apparatus 1 is maintained at a constant temperature by a temperature adjusting unit (not shown) that covers the entire apparatus.
 以下、水平面に略沿った方向をx方向及びy方向とし、x方向及びy方向と略直交する方向(鉛直方向)をz方向とする。また、x方向とy方向とは略直交する。 Hereinafter, the directions substantially along the horizontal plane are defined as the x direction and the y direction, and the directions substantially orthogonal to the x direction and the y direction (vertical direction) are defined as the z direction. Further, the x direction and the y direction are substantially orthogonal to each other.
 定盤11は、略直方体形状(厚板状)の部材であり、例えば、石(例えば、花崗岩)や低膨張率の鋳物(例えば、ニッケル系の合金)で形成される。定盤11は、上側(+z側)に略水平(xy平面と略平行)な上面11aを有する。 The surface plate 11 is a member having a substantially rectangular parallelepiped shape (thick plate shape), and is formed of, for example, a stone (for example, granite) or a casting having a low expansion coefficient (for example, a nickel-based alloy). The surface plate 11 has an upper surface 11a that is substantially horizontal (approximately parallel to the xy plane) on the upper side (+ z side).
 定盤11は、設置面(例えば、床)上に載置された複数の除振台(図示せず)の上に載置される。これにより、定盤11が除振台を介して設置面上に載置される。除振台はすでに公知であるため、詳細な説明を省略する。なお、除振台は必須ではない。定盤11の+x側には、マスク100をステージ20に設置するローダ(図示せず)が設けられる。 The surface plate 11 is placed on a plurality of vibration isolation tables (not shown) placed on an installation surface (for example, a floor). As a result, the surface plate 11 is placed on the installation surface via the vibration isolation table. Since the vibration isolator is already known, detailed description thereof will be omitted. The vibration isolation table is not essential. A loader (not shown) for installing the mask 100 on the stage 20 is provided on the + x side of the surface plate 11.
 レール13は、セラミック製の細長い板状の部材であり、定盤11の上面11aに、長手方向がx方向に沿うように固定される。レール13のローダ側(+x側)の、端が上面11aの端部に配置され、レール13の反ローダ側(-x側)は、端が上面11aの端部より内側に配置される。3本のレール13は、高さ(z方向の位置)が略同一であり、上面が高精度及び高平坦度で形成される。 The rail 13 is an elongated plate-shaped member made of ceramic, and is fixed to the upper surface 11a of the surface plate 11 so that the longitudinal direction is along the x direction. The end of the rail 13 on the loader side (+ x side) is arranged at the end of the upper surface 11a, and the end of the rail 13 on the opposite loader side (−x side) is arranged inside the end of the upper surface 11a. The heights (positions in the z direction) of the three rails 13 are substantially the same, and the upper surfaces thereof are formed with high accuracy and high flatness.
 板状部12は、レール13の上に載置される。板状部12は、セラミック製の略板状の部材であり、全体として略矩形形状である。板状部12の下面(-z側の面)には、長手方向がx方向に沿うようにガイド部(図示せず)が設けられる。これにより、板状部12がx方向以外に移動しないように板状部12の移動方向が規制される。 The plate-shaped portion 12 is placed on the rail 13. The plate-shaped portion 12 is a substantially plate-shaped member made of ceramic, and has a substantially rectangular shape as a whole. A guide portion (not shown) is provided on the lower surface (the surface on the −z side) of the plate-shaped portion 12 so that the longitudinal direction is along the x direction. As a result, the moving direction of the plate-shaped portion 12 is restricted so that the plate-shaped portion 12 does not move in any direction other than the x direction.
 板状部12の上面12aには、レール14が設けられる。レール14は、長手方向がy方向に沿うように固定される。レール14は、高さが略同一であり、上面が高精度及び高平坦度で形成される。 A rail 14 is provided on the upper surface 12a of the plate-shaped portion 12. The rail 14 is fixed so that the longitudinal direction is along the y direction. The rails 14 have substantially the same height, and the upper surface is formed with high precision and high flatness.
 レール14の上には、ステージ20が載置される。言い換えれば、ステージ20は、板状部12及びレール13、14を介して上面11aに設けられる。 The stage 20 is placed on the rail 14. In other words, the stage 20 is provided on the upper surface 11a via the plate-shaped portion 12 and the rails 13 and 14.
 ステージ20は、平面視略矩形形状の略板状であり、熱膨張係数が略0.5~1×10-7/Kの低膨張性セラミックや熱膨張係数が略5×10-8/Kの超低膨張性ガラスセラミックを用いて形成される。これにより、ステージ20の変形を防止することができる。なお、ステージ20をマスク100と同様に伸び縮みする材料で形成してもよい。 The stage 20 has a substantially rectangular plate shape in a plan view, and has a low expansion ceramic having a coefficient of thermal expansion of about 0.5 to 1 × 10-7 / K and a coefficient of thermal expansion of about 5 × 10-8 / K. It is formed using the ultra-low expansion glass ceramic of. This makes it possible to prevent the stage 20 from being deformed. The stage 20 may be formed of a material that expands and contracts like the mask 100.
 ステージ20の下面には、長手方向がy方向に沿うようにガイド部(図示せず)が設けられる。これにより、ステージ20、すなわち板状部12がy方向以外に移動しないようにステージ20の移動方向が規制される。このように、ステージ20(板状部12)は、レール13に沿ってx方向に移動可能に設けられ、ステージ20は、レール14に沿ってy方向に移動可能に設けられる。 A guide portion (not shown) is provided on the lower surface of the stage 20 so that the longitudinal direction is along the y direction. As a result, the moving direction of the stage 20 is restricted so that the stage 20, that is, the plate-shaped portion 12 does not move in any direction other than the y direction. As described above, the stage 20 (plate-shaped portion 12) is provided so as to be movable in the x direction along the rail 13, and the stage 20 is provided so as to be movable in the y direction along the rail 14.
 ステージ20は、上面11aと対向する面と反対側の面である略水平な上面20aを有する。上面20aは、複数のアライメントマーク101が設けられたマスク100(図2参照)が載置される載置面である。また、上面20aには、被読取部25(図2参照、後に詳述)が設けられている。アライメントマーク101及び被読取部25は、読取部60によって読み取られ、ステージ20すなわちマスク100の位置決めが行われる(後に詳述)。 The stage 20 has a substantially horizontal upper surface 20a which is a surface opposite to the surface facing the upper surface 11a. The upper surface 20a is a mounting surface on which a mask 100 (see FIG. 2) provided with a plurality of alignment marks 101 is mounted. Further, a read portion 25 (see FIG. 2, detailed later) is provided on the upper surface 20a. The alignment mark 101 and the read unit 25 are read by the reading unit 60, and the stage 20, that is, the mask 100 is positioned (detailed later).
 なお、ステージ20は、x方向及びy方向のみでなく、z方向にも移動可能に構成されていてもよい。 Note that the stage 20 may be configured to be movable not only in the x direction and the y direction but also in the z direction.
 露光装置1は、駆動部81、82(図1では図示せず、図8参照)を有する。駆動部81、82は、例えばリニアモータである。駆動部81はステージ20(板状部12)をレール13に沿ってx方向に移動させ、駆動部82はステージ20をレール14に沿ってy方向に移動させる。駆動部81、82が板状部12やステージ20を移動させる方法は、既に公知の様々な方法を用いることができる。 The exposure device 1 has drive units 81 and 82 (not shown in FIG. 1, see FIG. 8). The drive units 81 and 82 are, for example, linear motors. The drive unit 81 moves the stage 20 (plate-shaped portion 12) in the x direction along the rail 13, and the drive unit 82 moves the stage 20 in the y direction along the rail 14. As a method for the drive units 81 and 82 to move the plate-shaped portion 12 and the stage 20, various already known methods can be used.
 また、露光装置1は、ステージ20の位置を測定するレーザ干渉計50を有する。レーザ干渉計50は、枠体15の-y側に設けられた柱に設けられたレーザ干渉計51と、定盤11の+x側の側面に設けられたレーザ干渉計(図示省略)を有する。レーザ干渉計50を用いてステージ20の位置を測定する方法は、既に公知の様々な方法を用いることができる。 Further, the exposure device 1 has a laser interferometer 50 that measures the position of the stage 20. The laser interference meter 50 includes a laser interference meter 51 provided on a pillar provided on the −y side of the frame body 15 and a laser interference meter (not shown) provided on the + x side side surface of the surface plate 11. As a method for measuring the position of the stage 20 using the laser interferometer 50, various already known methods can be used.
 定盤11には、枠体15が設けられる。枠体15には、例えば低膨張率の鋳物(例えば、ニッケル系の合金)が用いられる。枠体15は、支持部15aと、支持部15aを両端で支える2本の柱15cと、を有する。枠体15は、ステージ20の上方(+z方向)に光照射部30を保持する。支持部15aには、光照射部30が取り付けられる。枠体15については後に詳述する。 A frame body 15 is provided on the surface plate 11. For the frame body 15, for example, a casting having a low expansion coefficient (for example, a nickel-based alloy) is used. The frame body 15 has a support portion 15a and two pillars 15c that support the support portion 15a at both ends. The frame body 15 holds the light irradiation unit 30 above the stage 20 (+ z direction). A light irradiation unit 30 is attached to the support portion 15a. The frame body 15 will be described in detail later.
 光照射部30は、マスク100に光(本実施の形態では、レーザ光)を照射する。光照射部30は、y方向に沿って一定間隔(例えば、略200mmおき)で設けられる。本実施の形態では、7個の光照射部30a、光照射部30b、光照射部30c、光照射部30d、光照射部30e、光照射部30f、光照射部30gを有する。移動機構161(図4参照)は、光照射部30a~30gの焦点位置がマスク100の上面に合うように、光照射部30a~30g全体を10mm程度の範囲でz方向に移動させる。また、駆動部39(39a~39g、後に詳述)は、光照射部30a~30gの焦点位置の微調整のため、光照射部30a~30gを30μm(マイクロメートル)程度の範囲でz方向に微動させる。光照射部30については後に詳述する。 The light irradiation unit 30 irradiates the mask 100 with light (laser light in the present embodiment). The light irradiation units 30 are provided at regular intervals (for example, approximately every 200 mm) along the y direction. In the present embodiment, it has seven light irradiation units 30a, a light irradiation unit 30b, a light irradiation unit 30c, a light irradiation unit 30d, a light irradiation unit 30e, a light irradiation unit 30f, and a light irradiation unit 30g. The moving mechanism 161 (see FIG. 4) moves the entire light irradiation unit 30a to 30g in the z direction within a range of about 10 mm so that the focal position of the light irradiation unit 30a to 30g matches the upper surface of the mask 100. Further, the driving unit 39 (39a to 39g, which will be described in detail later) sets the light irradiation unit 30a to 30g in the z direction in a range of about 30 μm (micrometer) in order to finely adjust the focal position of the light irradiation unit 30a to 30g. Make a slight movement. The light irradiation unit 30 will be described in detail later.
 読取部60は、マスク100に形成されたアライメントマーク101(図2参照)や認識マーク25e(図3参照)を読み取る。アライメントマーク101及び認識マーク25eは、マスク100の位置決め(キャリブレーション、アライメント等)に用いられるマークである。読取部60は、7個の読取部60a、読取部60b、読取部60c、読取部60d、読取部60e、読取部60f、読取部60gを有する。読取部60a~60gは、それぞれ光照射部30a~30gに隣接するように、光照射部30a~30gに設けられる。なお、読取部60a~60gは、それぞれ光照射部30a~30gに設けられていてもよい。本実施の形態では、読取部60として、倍率が略50倍、焦点深度が1μm以下の顕微鏡を用いる。読取部60については後に詳述する。 The reading unit 60 reads the alignment mark 101 (see FIG. 2) and the recognition mark 25e (see FIG. 3) formed on the mask 100. The alignment mark 101 and the recognition mark 25e are marks used for positioning (calibration, alignment, etc.) of the mask 100. The reading unit 60 includes seven reading units 60a, a reading unit 60b, a reading unit 60c, a reading unit 60d, a reading unit 60e, a reading unit 60f, and a reading unit 60g. The reading units 60a to 60g are provided in the light irradiation units 30a to 30g so as to be adjacent to the light irradiation units 30a to 30g, respectively. The reading units 60a to 60g may be provided in the light irradiation units 30a to 30g, respectively. In the present embodiment, a microscope having a magnification of about 50 times and a depth of focus of 1 μm or less is used as the reading unit 60. The reading unit 60 will be described in detail later.
 次に、被読取部25について説明する。図2は、露光装置1の概略を示す平面図である。図2では、主要構成のみ図示し、その他の構成については図示を省略している。 Next, the read unit 25 will be described. FIG. 2 is a plan view showing an outline of the exposure apparatus 1. In FIG. 2, only the main configuration is shown, and the other configurations are omitted.
 被読取部25は、ステージ20の平面視において略平行な2つの辺20b、20cの近傍に設けられている。辺20b、20cは、y方向に沿っている。被読取部25は、辺20b、20cに沿って複数設けられている。 The read unit 25 is provided in the vicinity of two sides 20b and 20c that are substantially parallel in the plan view of the stage 20. The sides 20b and 20c are along the y direction. A plurality of read portions 25 are provided along the sides 20b and 20c.
 被読取部25は、y方向に隣接する2つの読取部60a~60gの間に配置されている。なお、2つの読取部60a~60gの間に設けられる被読取部25の数は限定されず、2つの読取部60a~60gの間に被読取部25が少なくとも1つ設けれていればよい。図2に示す例では、読取部60aと読取部60bとの間、読取部60bと読取部60cとの間、及び読取部60dと読取部60eとの間には1つの被読取部25が設けられており、読取部60cと読取部60dとの間、及び読取部60eと読取部60fとの間には2つの被読取部25が設けられている。 The read unit 25 is arranged between two reading units 60a to 60g adjacent to each other in the y direction. The number of read units 25 provided between the two reading units 60a to 60g is not limited, and at least one read unit 25 may be provided between the two reading units 60a to 60g. In the example shown in FIG. 2, one read unit 25 is provided between the reading unit 60a and the reading unit 60b, between the reading unit 60b and the reading unit 60c, and between the reading unit 60d and the reading unit 60e. Two read units 25 are provided between the reading unit 60c and the reading unit 60d, and between the reading unit 60e and the reading unit 60f.
 被読取部25をy方向に隣接する2つの読取部60の間に配置することで、隣接する2つ読取部60(例えば、読取部60aと読取部60b)で同じ被読取部25を読むことができる。光照射部30が複数あるマルチヘッド露光機を用いて描画を行うときには読取部60間の相対位置を測る必要があり、被読取部25をy方向に隣接する2つの読取部60の間に配置することは描画のための必須の構成である。 By arranging the read unit 25 between two adjacent reading units 60 in the y direction, the same read unit 25 can be read by two adjacent reading units 60 (for example, the reading unit 60a and the reading unit 60b). Can be done. When drawing with a multi-head exposure machine having a plurality of light irradiation units 30, it is necessary to measure the relative position between the reading units 60, and the read unit 25 is arranged between two reading units 60 adjacent to each other in the y direction. What to do is an essential configuration for drawing.
 また、被読取部25は、読取部60a~60gとx方向の位置が同じであってもよい。図2に示す例では、読取部60bのx方向の位置と被読取部25のx方向の位置とが略同じである。 Further, the read unit 25 may have the same position in the x direction as the reading units 60a to 60g. In the example shown in FIG. 2, the position of the reading unit 60b in the x direction and the position of the read unit 25 in the x direction are substantially the same.
 図3は、被読取部25の概略構成を示す斜視図である。被読取部25は板状部材21を介してステージ20に設けられているが、板状部材21は必須ではない。ステージ20の上面20aは、板状部材21の上面を含むものとする。 FIG. 3 is a perspective view showing a schematic configuration of the read unit 25. The read portion 25 is provided on the stage 20 via the plate-shaped member 21, but the plate-shaped member 21 is not essential. The upper surface 20a of the stage 20 includes the upper surface of the plate-shaped member 21.
 被読取部25は、主として、リブ25A、25Bを有する。リブ25A、25Bは、それぞれ、高さが徐々に変化するリブであり、x方向に沿って設けられている。なお、本実施の形態では、リブ25A、25Bは、-x側の端が高く、+x側の端が低くなるように高さが徐々に変化しているが、-x側の端が低く、+x側の端が高くなってもよい。 The read unit 25 mainly has ribs 25A and 25B. The ribs 25A and 25B are ribs whose heights gradually change, and are provided along the x direction. In the present embodiment, the heights of the ribs 25A and 25B are gradually changed so that the end on the −x side is high and the end on the + x side is low, but the end on the −x side is low. The edge on the + x side may be higher.
 リブ25A、25Bは、y方向に沿って隣接して設けられている。リブ25A、25Bの底面は、上面20aに設けられている。 The ribs 25A and 25B are provided adjacent to each other along the y direction. The bottom surfaces of the ribs 25A and 25B are provided on the upper surface 20a.
 リブ25A、25Bは、それぞれ、ガラス等の透明部材で形成された土台部25a、25bと、複数の認識マーク25eが形成された板状部25dと、を有する。板状部25dでは、リブ25A、25Bの上面(底面と反対側の面)である。板状部25dは、土台部25a、25bの上側(+z側)に、接着部25cにより貼着又は接着されている。 The ribs 25A and 25B each have a base portion 25a and 25b formed of a transparent member such as glass, and a plate-shaped portion 25d formed with a plurality of recognition marks 25e, respectively. In the plate-shaped portion 25d, it is the upper surface (the surface opposite to the bottom surface) of the ribs 25A and 25B. The plate-shaped portion 25d is attached or adhered to the upper side (+ z side) of the base portions 25a and 25b by the adhesive portion 25c.
 板状部25dは、ガラス等の透明部材で形成されており、上面(+z側の面)には複数の認識マーク25eがx方向に沿って設けられている。認識マーク25eは、金属製の薄膜であり、平面視略十字形状である。認識マーク25eの高さ(厚さ)は、一般的には略数10nm~略100nmであるが、略10nm~略1μmであればよい。また、認識マーク25eの高さは、略10nm~略300nmであることが好ましく、略100nm~略200nmであることがさらに好ましい。 The plate-shaped portion 25d is formed of a transparent member such as glass, and a plurality of recognition marks 25e are provided along the x direction on the upper surface (the surface on the + z side). The recognition mark 25e is a thin film made of metal and has a substantially cross shape in a plan view. The height (thickness) of the recognition mark 25e is generally about 10 nm to about 100 nm, but may be about 10 nm to about 1 μm. The height of the recognition mark 25e is preferably about 10 nm to about 300 nm, and more preferably about 100 nm to about 200 nm.
 認識マーク25eは、リブ25A、25Bにそれぞれ1列ずつ設けられていてもよいし、複数列ずつ設けられていてもよい。リブ25A、25Bのそれぞれに認識マーク25eが複数列設けられてる場合には、認識マーク25eが千鳥配置されていることが望ましい。 The recognition marks 25e may be provided in one row each on the ribs 25A and 25B, or may be provided in a plurality of rows. When a plurality of rows of recognition marks 25e are provided on each of the ribs 25A and 25B, it is desirable that the recognition marks 25e are staggered.
 リブ25Aに設けられた板状部25dの傾きと、リブ25Bに設けられた板状部25dの傾きとは略同一である。リブ25Aの最も高い位置(-x側の端)における高さと、リブ25Bの最も低い位置(+x側の端)における高さとが略同じである。これにより、認識マーク25eを異なる高さに配置しつつ、認識マーク25eの高さの差を連続させることができる。 The inclination of the plate-shaped portion 25d provided on the rib 25A and the inclination of the plate-shaped portion 25d provided on the rib 25B are substantially the same. The height of the rib 25A at the highest position (the end on the −x side) and the height of the rib 25B at the lowest position (the end on the + x side) are substantially the same. As a result, the difference in height of the recognition marks 25e can be made continuous while the recognition marks 25e are arranged at different heights.
 リブ25A、25Bの板状部25dの傾き(傾斜角度)は、ステージ20に載置されるマスク100の厚みや読取部60の特性に基づいた大きさに基づいて決定される。ここで、読取部60の特性とは、開口数(NA)、視野(FOV)、焦点深度(DOF)等を含む。本実施の形態では、ステージ20に様々な厚み(7.5mm~16mm程度)のマスク100が載置されるため、リブ25Aの最も低い位置(+x側の端)における高さと、リブ25Bの最も高い位置(-x側の端)における高さとの差を、ステージ20に載置され得るマスク100の厚みの最大値と最小値との差以上とする。例えば、ステージ20に略8mm(最小値)~略16mm(最大値)のマスク100が載置される場合には、ステージ20に載置されるマスク100の厚みの最大値と最小値との差が略8mmであり、リブ25A、25Bの長さが200mmであるとすると、リブ25A、25Bの板状部25dの傾きは4/100mmである。 The inclination (inclination angle) of the plate-shaped portions 25d of the ribs 25A and 25B is determined based on the thickness of the mask 100 placed on the stage 20 and the size based on the characteristics of the reading portion 60. Here, the characteristics of the reading unit 60 include the numerical aperture (NA), the field of view (FOV), the depth of focus (DOF), and the like. In the present embodiment, since the mask 100 having various thicknesses (about 7.5 mm to 16 mm) is placed on the stage 20, the height at the lowest position (+ x side end) of the rib 25A and the highest of the rib 25B The difference from the height at the high position (the end on the −x side) is equal to or greater than the difference between the maximum value and the minimum value of the thickness of the mask 100 that can be placed on the stage 20. For example, when a mask 100 of about 8 mm (minimum value) to about 16 mm (maximum value) is placed on the stage 20, the difference between the maximum value and the minimum value of the thickness of the mask 100 placed on the stage 20. Is approximately 8 mm, and the lengths of the ribs 25A and 25B are 200 mm, the inclination of the plate-shaped portions 25d of the ribs 25A and 25B is 4/100 mm.
 また、認識マーク25eは、リブ25A、25Bの板状部25dの傾きや読取部60の特性に基づいた大きさで設けられる。本実施の形態では、認識マーク25eの大きさは、読取部60の視野に複数の認識マーク25eが含まれ、そのうちの1つの認識マーク25eに焦点が合うような(2つ以上の認識マーク25eに焦点が合わないような)大きさである。 Further, the recognition mark 25e is provided with a size based on the inclination of the plate-shaped portions 25d of the ribs 25A and 25B and the characteristics of the reading portion 60. In the present embodiment, the size of the recognition mark 25e is such that a plurality of recognition marks 25e are included in the field of view of the reading unit 60, and one of the recognition marks 25e is focused (two or more recognition marks 25e). It is a size (so that it is out of focus).
 次に、枠体15について説明する。図4は、枠体15の支持部15aの概略を示す斜視図であり、背面側(+x側)から見た図である。図4は、説明のため、支持部15aと柱15cとを少し離して図示しているが、実際は支持部15aと柱15cとは隣接している。 Next, the frame body 15 will be described. FIG. 4 is a perspective view showing an outline of the support portion 15a of the frame body 15, and is a view seen from the back surface side (+ x side). In FIG. 4, the support portion 15a and the pillar 15c are shown slightly separated for the sake of explanation, but the support portion 15a and the pillar 15c are actually adjacent to each other.
 支持部15aは、断面形状が略矩形形状の略棒状であり、内部は空洞である。支持部15aは、長手方向がy方向に沿うように設けられる。支持部15aは、主として、底板151と、支持板153と、底板151及び支持板153の両側に設けられた側板152、154と、仕切り壁159とを有する。底板151及び支持板153は略水平に設けられ、側板152、154は略鉛直に設けられる。板状の仕切り壁159は、支持部15aの内部の補強であり、仕切り壁159が設けられた位置においては支持部15aの振動や変形(撓み、捩れ等)が防止される。 The support portion 15a has a substantially rectangular cross-sectional shape and a substantially rod shape, and the inside is hollow. The support portion 15a is provided so that the longitudinal direction is along the y direction. The support portion 15a mainly has a bottom plate 151, a support plate 153, side plates 152 and 154 provided on both sides of the bottom plate 151 and the support plate 153, and a partition wall 159. The bottom plate 151 and the support plate 153 are provided substantially horizontally, and the side plates 152 and 154 are provided substantially vertically. The plate-shaped partition wall 159 is an internal reinforcement of the support portion 15a, and vibration and deformation (bending, twisting, etc.) of the support portion 15a are prevented at the position where the partition wall 159 is provided.
 底板151及び支持板153には、それぞれ、y方向に沿って丸孔155a~155g、156a~156gが形成される。丸孔155a~155g、156a~156gは、それぞれ底板151及び支持板153を略鉛直方向に貫通する孔であり、平面視略円形である。平面視において、丸孔155a~155gの中心の位置と、丸孔156a~156gの中心の位置とは略一致する。 Round holes 155a to 155g and 156a to 156g are formed on the bottom plate 151 and the support plate 153, respectively, along the y direction. The round holes 155a to 155g and 156a to 156g are holes that penetrate the bottom plate 151 and the support plate 153 in the substantially vertical direction, respectively, and are substantially circular in plan view. In a plan view, the position of the center of the round holes 155a to 155g and the position of the center of the round holes 156a to 156g are substantially the same.
 丸孔155a~155g、156a~156gには、それぞれ、丸孔155a~155g、156a~156gを覆うように設けられたガイド部材70、70A(後に詳述)を介して、光照射部30a~30gが取り付けられる。ガイド部材70と丸孔155a~155gとは略同心円状に配置され、ガイド部材70Aと丸孔156a~156gとは略同心円状に配置される。また、ガイド部材70、70Aと光照射部30a~30gとは略同心円状に配置される。光照射部30a~30gを枠体15に取り付ける取付構造については後に詳述する。 The round holes 155a to 155g and 156a to 156g are provided with guide members 70 and 70A (described in detail later) so as to cover the round holes 155a to 155g and 156a to 156g, respectively, and the light irradiation portions 30a to 30g. Is attached. The guide member 70 and the round holes 155a to 155g are arranged substantially concentrically, and the guide member 70A and the round holes 156a to 156g are arranged substantially concentrically. Further, the guide members 70 and 70A and the light irradiation portions 30a to 30g are arranged substantially concentrically. The mounting structure for mounting the light irradiation portions 30a to 30g to the frame body 15 will be described in detail later.
 また、底板151には、丸孔155a~155gに隣接して丸孔157a~157gが形成される。丸孔157a~157gには、読取部60の鏡筒601(後に詳述)が挿入される。 Further, in the bottom plate 151, round holes 157a to 157 g are formed adjacent to the round holes 155a to 155 g. The lens barrel 601 (detailed later) of the reading unit 60 is inserted into the round holes 157a to 157g.
 側板152、154には、それぞれ、鋳造時に鋳砂を排出して内部空間を形成するための鋳抜き穴として用いられる孔が形成される。これらの孔は、丸孔157a~157gへ読取部60を取り付けるのに用いられる。 The side plates 152 and 154 are each formed with holes used as cast holes for discharging casting sand during casting to form an internal space. These holes are used to attach the reading unit 60 to the round holes 157a to 157g.
 枠体15は、支持部15aを柱15cに沿ってz方向に移動させる移動機構161を有する。移動機構161は、支持部15aをz方向に10mm程度の範囲で移動させる。例えば、移動機構161として、ラック161a、ピニオン161b及びピニオン161bを回転駆動するアクチュエータ161c(図8参照)を用いることができる。 The frame body 15 has a moving mechanism 161 that moves the support portion 15a along the pillar 15c in the z direction. The moving mechanism 161 moves the support portion 15a in the z direction within a range of about 10 mm. For example, as the moving mechanism 161, an actuator 161c (see FIG. 8) that rotationally drives the rack 161a, the pinion 161b, and the pinion 161b can be used.
 また枠体15は、柱15cに設けられた2つの永電磁石163を有する。永電磁石163は、永久磁石と電磁石とを有する永電磁式であり、着脱時のみ電磁石のコイルに電流を流し、内蔵されている永久磁石のON-OFFを行う。永電磁石163は、電磁石のコイルに電流を流すことで支持部15aを吸着する。 Further, the frame body 15 has two permanent electromagnets 163 provided on the pillar 15c. The permanent magnet 163 is a permanent electromagnetic type having a permanent magnet and an electromagnet, and a current is passed through the coil of the electromagnet only at the time of attachment / detachment to turn on / off the built-in permanent magnet. The permanent electromagnet 163 attracts the support portion 15a by passing an electric current through the coil of the electromagnet.
 支持部15aの端には、柱15cに沿って弾性部材160が設けられている。図4では、-y側の端に設けられた弾性部材160についてのみ表示し、+y側の端に設けられた弾性部材160については図示を省略している。弾性部材160は、支持部15aの下側に設けられており、支持部15aの上下動にともなって弾性部材160が伸縮可能となる。このように、支持部15aの両端に設けられた弾性部材160が支持部15aの重さを支える。 An elastic member 160 is provided at the end of the support portion 15a along the pillar 15c. In FIG. 4, only the elastic member 160 provided at the end on the −y side is displayed, and the elastic member 160 provided at the end on the + y side is not shown. The elastic member 160 is provided on the lower side of the support portion 15a, and the elastic member 160 can be expanded and contracted as the support portion 15a moves up and down. In this way, the elastic members 160 provided at both ends of the support portion 15a support the weight of the support portion 15a.
 次に、光照射部30について説明する。図5は、光照射部30aの概略を示す要部透視図である。光照射部30aは、主として、DMD31aと、対物レンズ32aと、光源部33aと、AF処理部34aと、筒状部35aと、フランジ36aと、取付部37a、38aと、駆動部39aと、を有する。光照射部30b~光照射部30gは、それぞれDMD31b~31gと、対物レンズ32b~32gと、光源部33b~33gと、AF処理部34b~34gと、筒状部35b~35gと、フランジ36b~36gと、取付部37b~37g、38b~38gと、駆動部39b~39gとを有する。光照射部30b~光照射部30gは、光照射部30aと同一の構成であるため説明を省略する。 Next, the light irradiation unit 30 will be described. FIG. 5 is a perspective view of a main part showing an outline of the light irradiation unit 30a. The light irradiation unit 30a mainly includes a DMD 31a, an objective lens 32a, a light source unit 33a, an AF processing unit 34a, a tubular portion 35a, a flange 36a, mounting portions 37a and 38a, and a driving unit 39a. Have. The light irradiation units 30b to 30g are DMD 31b to 31g, objective lenses 32b to 32g, light source units 33b to 33g, AF processing units 34b to 34g, tubular portions 35b to 35g, and flanges 36b to, respectively. It has 36 g, mounting portions 37b to 37 g, 38b to 38 g, and a driving portion 39b to 39 g. Since the light irradiation unit 30b to the light irradiation unit 30g have the same configuration as the light irradiation unit 30a, the description thereof will be omitted.
 DMD31aは、デジタルミラーデバイス(Digital Mirror Device、DMD)であり、面状のレーザ光が照射可能である。DMD31aは、多数の可動式のマイクロミラー(図示省略)を有し、1枚のマイクロミラーから1画素分の光が照射される。マイクロミラーは、大きさが略10μmであり、2次元状に配置されている。DMD31aには光源部33aから光が照射され、光は各マイクロミラーで反射される。マイクロミラーは、その対角線と略平行な軸を中心に回転可能であり、ON(マスク100に向けて光を反射させる)とOFF(マスク100に向けて光を反射させない)との切り替えが可能である。DMD31aはすでに公知であるため、詳細な説明を省略する。なお、基板に結像させる像を形成するデバイスは、DMD31aに限られず、DMD31a以外の2次元光空間変調器や1次元光空間変調器、例えばGLVを用いてもよい。また、DMD31aに代えて、LCDやフォトマスクを用いてもよい。 The DMD31a is a digital mirror device (DMD), and can be irradiated with a planar laser beam. The DMD31a has a large number of movable micromirrors (not shown), and one pixel of light is emitted from one micromirror. The micromirror has a size of about 10 μm and is arranged two-dimensionally. The DMD 31a is irradiated with light from the light source unit 33a, and the light is reflected by each micromirror. The micromirror can rotate around an axis substantially parallel to its diagonal line, and can be switched between ON (reflecting light toward mask 100) and OFF (does not reflect light toward mask 100). is there. Since DMD31a is already known, detailed description thereof will be omitted. The device that forms the image to be imaged on the substrate is not limited to DMD31a, and a two-dimensional optical space modulator or a one-dimensional optical space modulator other than DMD31a, for example, GLV may be used. Further, instead of DMD31a, an LCD or a photomask may be used.
 対物レンズ32aは、DMD31aの各マイクロミラーで反射されたレーザ光をマスク100の表面に結像させる。描画時には、光照射部30a~光照射部30gのそれぞれから光が照射され、この光がマスク100上で結像することにより、マスク100にパターンが描画される。光源部33aは、主として、光源331と、レンズ332と、フライアイレンズ333と、レンズ334、335と、ミラー336と、を有する。光源331は、例えばレーザダイオードであり、光源331から出射された光は、光ファイバ等を介してレンズ332に導かれる。 The objective lens 32a forms an image of the laser light reflected by each micromirror of the DMD 31a on the surface of the mask 100. At the time of drawing, light is irradiated from each of the light irradiation unit 30a to the light irradiation unit 30g, and the light is imaged on the mask 100 to draw a pattern on the mask 100. The light source unit 33a mainly includes a light source 331, a lens 332, a fly-eye lens 333, a lens 334, 335, and a mirror 336. The light source 331 is, for example, a laser diode, and the light emitted from the light source 331 is guided to the lens 332 via an optical fiber or the like.
 光は、レンズ332からフライアイレンズ333に導かれる。フライアイレンズ333は複数枚のレンズ(図示せず)を2次元状に配置したものであり、フライアイレンズ333において多数の点光源が作られる。フライアイレンズ333を通過した光は、レンズ334、335(例えば、コンデンサレンズ)を通って平行光となり、ミラー336でDMD31aに向けて反射される。 Light is guided from the lens 332 to the fly-eye lens 333. The fly-eye lens 333 is a two-dimensional arrangement of a plurality of lenses (not shown), and a large number of point light sources are created in the fly-eye lens 333. The light that has passed through the fly-eye lens 333 becomes parallel light through the lens 334, 335 (for example, a condenser lens), and is reflected by the mirror 336 toward the DMD 31a.
 AF処理部34aは、マスク100へ照射される光の焦点をマスク100に合わせるものであり、主として、AF用光源341と、コリメータレンズ342と、AF用シリンドリカルレンズ343、ペンタプリズム344、345と、レンズ346と、AFセンサ347、348と、を有する。AF用光源341から照射された光はコリメータレンズ342で平行光となり、AF用シリンドリカルレンズ343で線状の光となり、ペンタプリズム344で反射されてマスク100の表面に結像する。マスク100で反射した光は、ペンタプリズム345で反射され、レンズ346で集光されて、AFセンサ347、348に入射する。ペンタプリズム344、345は、略97度の曲げ角度で光を曲げる。なお、ペンタプリズム344、345の代わりにミラーを用いてもよいが、ミラーの角度ズレにより焦点ボケを起こすため、ペンタプリズムを用いることが望ましい。AF処理部34aは、AFセンサ347、348で受光された結果に基づいて合焦位置を求めるオートフォーカス処理を行う。なお、このような光テコ式によるオートフォーカス処理はすでに公知であるため、詳細な説明を省略する。 The AF processing unit 34a focuses the light applied to the mask 100 to the mask 100, and mainly includes an AF light source 341, a collimator lens 342, an AF cylindrical lens 343, a pentaprism 344, and 345. It has a lens 346 and AF sensors 347 and 348. The light emitted from the AF light source 341 becomes parallel light by the collimator lens 342, becomes linear light by the AF cylindrical lens 343, is reflected by the pentaprism 344, and forms an image on the surface of the mask 100. The light reflected by the mask 100 is reflected by the pentaprism 345, condensed by the lens 346, and incident on the AF sensors 347 and 348. The pentaprisms 344 and 345 bend the light at a bending angle of approximately 97 degrees. A mirror may be used instead of the pentaprisms 344 and 345, but it is desirable to use a pentaprism because the focus is blurred due to the angle deviation of the mirror. The AF processing unit 34a performs autofocus processing for obtaining the focusing position based on the result received by the AF sensors 347 and 348. Since such an autofocus process by the optical lever method is already known, detailed description thereof will be omitted.
 光照射部30aは、内部に光学系(対物レンズ32aを含む)が設けられた略円筒形状の筒状部35aを有する。筒状部35aの上側の端には、フランジ36aが設けられる。フランジ36aは、上側にレンズ332、フライアイレンズ333及びレンズ334、335を保持する。また、筒状部35aには、取付部37a、38aが設けられる。取付部37a、38aは、枠体15への取り付けに用いられる。取付部37aは、フランジ36aの近傍に設けられ、取付部38aは、筒状部35aの下端近傍に設けられる。取付部37aには、取付部38aの外径より大きい直径を有する中空部372が形成される。これにより、筒状部35aが上方に引き抜き可能となる。 The light irradiation unit 30a has a substantially cylindrical tubular portion 35a provided with an optical system (including an objective lens 32a) inside. A flange 36a is provided at the upper end of the tubular portion 35a. The flange 36a holds the lens 332, the fly-eye lens 333, and the lens 334, 335 on the upper side. Further, the tubular portion 35a is provided with mounting portions 37a and 38a. The mounting portions 37a and 38a are used for mounting on the frame body 15. The mounting portion 37a is provided near the flange 36a, and the mounting portion 38a is provided near the lower end of the tubular portion 35a. A hollow portion 372 having a diameter larger than the outer diameter of the mounting portion 38a is formed in the mounting portion 37a. As a result, the tubular portion 35a can be pulled out upward.
 取付部37a(すなわち、光照射部30a)は、駆動部39aにより鉛直方向(z方向)に移動される。駆動部39aは、電圧を印加することで変位が生じる固体アクチュエータである圧電素子を有する。圧電素子が伸びると光照射部30aが+z方向に移動し、圧電素子391が縮むと光照射部30aが-z方向に移動する。駆動部39aによる光照射部30aの移動量は略30μmである。 The mounting portion 37a (that is, the light irradiation portion 30a) is moved in the vertical direction (z direction) by the driving unit 39a. The drive unit 39a has a piezoelectric element which is a solid actuator in which displacement occurs when a voltage is applied. When the piezoelectric element expands, the light irradiation unit 30a moves in the + z direction, and when the piezoelectric element 391 contracts, the light irradiation unit 30a moves in the −z direction. The amount of movement of the light irradiation unit 30a by the drive unit 39a is approximately 30 μm.
 次に、読取部60について説明する。読取部60a~読取部60gは、同一の構成であるため、以下、読取部60aについて説明する。 Next, the reading unit 60 will be described. Since the reading unit 60a to the reading unit 60g have the same configuration, the reading unit 60a will be described below.
 図6は、読取部60aの概略を示す斜視図であり、要部を透視した図である。読取部60aは、高倍率顕微鏡光学系であり、主として、対物レンズが内部に設けられた鏡筒601と、対物レンズへ光(ここでは、可視光)を照射する光源ユニット602と、チタン、ジルコニア等の低熱伝導体で形成された鏡筒603と、鏡筒603の内部に設けられたチューブレンズ604と、光源ユニット602からの光を透過させると共に、対物レンズから導かれた光を反射するハーフミラー605と、を有する顕微鏡と、顕微鏡により取得されたパターンを結像するカメラ606と、を有する。 FIG. 6 is a perspective view showing an outline of the reading unit 60a, and is a perspective view of the main part. The reading unit 60a is a high-magnification microscope optical system, and mainly includes a lens barrel 601 in which an objective lens is provided, a light source unit 602 that irradiates the objective lens with light (here, visible light), titanium, and zirconia. A half that transmits light from a lens barrel 603 formed of a low thermal conductor such as the above, a tube lens 604 provided inside the lens barrel 603, and a light source unit 602, and reflects light guided from an objective lens. It has a mirror having a mirror 605, and a camera 606 that forms a pattern acquired by the mirror.
 光源ユニット602は、可視光線(例えば、波長が略450~600nmの光)を照射する部材であり、面光源状の光を照射する。光源ユニット602は、遠方に設置された光源621と、光源621からの光を導く光バンドルファイバ622と、光ファイバの端面近傍に設置された拡散板623と、拡散板623に隣接して設けられるコリメータレンズ624と、を有する。 The light source unit 602 is a member that irradiates visible light (for example, light having a wavelength of approximately 450 to 600 nm), and irradiates light in the form of a surface light source. The light source unit 602 is provided adjacent to the light source 621 installed at a distance, the optical bundle fiber 622 that guides the light from the light source 621, the diffuser plate 623 installed near the end face of the optical fiber, and the diffuser plate 623. It has a collimator lens 624 and.
 光源621は、例えば白色LEDであり、可視光域の光を照射する。光源621は発熱するため、光源621は読取部60aから離れた位置に設けられる。光源621から照射された光は、光バンドルファイバ622を用いて導光される。拡散板623は、光バンドルファイバ622により導光されて、光バンドルファイバ622の端面から放射される光を広げ均一に変換した後、コリメータレンズ624は、その光を対物レンズに導く。 The light source 621 is, for example, a white LED and irradiates light in the visible light range. Since the light source 621 generates heat, the light source 621 is provided at a position away from the reading unit 60a. The light emitted from the light source 621 is guided by using the optical bundle fiber 622. The diffuser plate 623 is guided by the optical bundle fiber 622 to spread the light radiated from the end face of the optical bundle fiber 622 and uniformly convert the light, and then the collimator lens 624 guides the light to the objective lens.
 光源ユニット602から照射された光は、対物レンズを通り、パターンP等で反射して、再び対物レンズへ導かれる。対物レンズは、倍率が略100倍の高倍率、開口数(NA、numerical aperture)が略0.8、作動距離が略2mmの特性を有する可視光レンズである。チューブレンズ604は、無限遠補正された対物レンズからの光を結像させるレンズであり、焦点距離が略200mmである。 The light emitted from the light source unit 602 passes through the objective lens, is reflected by the pattern P or the like, and is guided to the objective lens again. The objective lens is a visible light lens having a high magnification of about 100 times, a numerical aperture (NA, numerical aperture) of about 0.8, and a working distance of about 2 mm. The tube lens 604 is a lens that forms an image of light from an objective lens corrected for infinity, and has a focal length of approximately 200 mm.
 カメラ606は、解像度がUXGA(1600×1200画素)程度であり、大きさが2/3インチ程度であり、消費電力が3W程度である。カメラ606は、パターンPの像を取得する。カメラ606は、水冷用ウオータージャケットで囲まれている。カメラ606は、制御部201a(図8参照)により、超低速度スキャンが可能であり、したがってマスク100に描画された細かいパターンを正確に読み取ることができる。 The camera 606 has a resolution of about UXGA (1600 x 1200 pixels), a size of about 2/3 inch, and a power consumption of about 3 W. The camera 606 acquires an image of the pattern P. The camera 606 is surrounded by a water cooling water jacket. The camera 606 can perform ultra-low speed scanning by the control unit 201a (see FIG. 8), and therefore can accurately read the fine pattern drawn on the mask 100.
 読取部60aは、図示しない取付部を介して筒状部35aに固定される。これにより、読取部60aは、光照射部30aと共にz方向に移動する。 The reading unit 60a is fixed to the tubular portion 35a via a mounting portion (not shown). As a result, the reading unit 60a moves in the z direction together with the light irradiation unit 30a.
 次に、光照射部30a~30gを枠体15に取り付ける取付構造について説明する。図7は、光照射部30aの取付構造を模式的に示す図である。なお、光照射部30b~光照射部30gの取付構造は、光照射部30aの取付構造と同一の構成であるため説明を省略する。 Next, a mounting structure for mounting the light irradiation units 30a to 30g to the frame body 15 will be described. FIG. 7 is a diagram schematically showing a mounting structure of the light irradiation unit 30a. Since the mounting structure of the light irradiation unit 30b to the light irradiation unit 30g has the same structure as the mounting structure of the light irradiation unit 30a, the description thereof will be omitted.
 ガイド部材70、70Aは、それぞれ、ガイド部本体71、71Aと、押さえリング72、72A、73、73Aと、を有する。ガイド部本体71、71Aは、略薄板状であり、平面視略円板形状である。ガイド部本体71、71Aは、変形しやすいように、厚さが略0.1mm程度の金属で形成される。金属としては、ステンレス鋼、リン青銅等を用いることができるが、より均質なリン青銅を用いることが望ましい。 The guide members 70 and 70A have guide unit main bodies 71 and 71A and pressing rings 72, 72A, 73 and 73A, respectively. The guide portion main bodies 71 and 71A have a substantially thin plate shape and a substantially disc shape in a plan view. The guide portions 71 and 71A are made of a metal having a thickness of about 0.1 mm so as to be easily deformed. As the metal, stainless steel, phosphor bronze and the like can be used, but it is desirable to use more homogeneous phosphor bronze.
 ガイド部本体71、71Aには、それぞれ、略中央に取付孔74、74Aが形成される。取付孔74、74Aには、筒状部35aが挿入される。筒状部35aが取付孔74、74Aに挿入された状態では、光軸axが取付孔74、74Aの中心と略一致する。 Mounting holes 74 and 74A are formed in the guide portion main bodies 71 and 71A at substantially the center, respectively. A tubular portion 35a is inserted into the mounting holes 74 and 74A. When the tubular portion 35a is inserted into the mounting holes 74 and 74A, the optical axis ax substantially coincides with the center of the mounting holes 74 and 74A.
 押さえリング72、72A、73、73Aは、厚さが略3mm程度であり、ガイド部本体71と同じ材料で形成される。押さえリング72、72Aは、略環状であり、ガイド部本体71、71Aの外周に略沿って設けられる。押さえリング73、73Aは、略環状であり、取付孔74、74Aに略沿って設けられる。押さえリング72、72A、73、73Aを介してガイド部材70、70Aを枠体15及び筒状部35aに固定することで、ガイド部本体71、71Aの変形を防止することができる。 The pressing rings 72, 72A, 73, 73A have a thickness of about 3 mm and are made of the same material as the guide portion main body 71. The pressing rings 72 and 72A are substantially annular and are provided substantially along the outer periphery of the guide portion main bodies 71 and 71A. The pressing rings 73 and 73A are substantially annular and are provided substantially along the mounting holes 74 and 74A. By fixing the guide members 70, 70A to the frame body 15 and the tubular portion 35a via the pressing rings 72, 72A, 73, 73A, deformation of the guide portion main bodies 71, 71A can be prevented.
 ガイド部本体71には、孔75、76が設けられている孔75、76は、AF用光源341から下向きに照射された光及びマスク100での反射光が通過できるように、それぞれAF用光源341及びAFセンサ347、348と水平方向の位置が一致する。言い換えれば、孔75、76の位置は、それぞれ平面視においてAF用光源341及びAFセンサ347、348の位置と重なる。このように、孔75、76を形成することで、ガイド部材70、70Aを用いた場合においても光照射部30aのAF処理が可能となる。 Holes 75 and 76 are provided in the guide portion main body 71. The holes 75 and 76 are AF light sources so that the light radiated downward from the AF light source 341 and the reflected light from the mask 100 can pass through, respectively. The horizontal positions of 341 and AF sensors 347 and 348 coincide with each other. In other words, the positions of the holes 75 and 76 overlap with the positions of the AF light source 341 and the AF sensors 347 and 348 in a plan view, respectively. By forming the holes 75 and 76 in this way, the AF treatment of the light irradiation unit 30a becomes possible even when the guide members 70 and 70A are used.
 駆動部39aは、押さえリング73Aを介して取付部37aを押し上げる。駆動部39aが重心Gの近くで光照射部30aを押し上げることで、光照射部30aの上下動が安定する。 The drive unit 39a pushes up the mounting unit 37a via the pressing ring 73A. When the drive unit 39a pushes up the light irradiation unit 30a near the center of gravity G, the vertical movement of the light irradiation unit 30a is stabilized.
 なお、光照射部30aの上下動に伴い、光照射部30aに設けられた読取部60a(図7では図示省略)も上下動する。読取部60aの鏡筒601が丸孔157a(図4等参照)に挿入されており、鏡筒601は丸孔157aに固定されていないため、鏡筒601の上下動により不具合は生じない。 Note that the reading unit 60a (not shown in FIG. 7) provided in the light irradiation unit 30a also moves up and down as the light irradiation unit 30a moves up and down. Since the lens barrel 601 of the reading unit 60a is inserted into the round hole 157a (see FIG. 4 and the like) and the lens barrel 601 is not fixed to the round hole 157a, no problem occurs due to the vertical movement of the lens barrel 601.
 図8は、露光装置1の電気的な構成を示すブロック図である。露光装置1は、CPU(Central Processing Unit)201と、RAM(Random Access Memory)202と、ROM(Read Only Memory)203と、入出力インターフェース(I/F)204と、通信インターフェース(I/F)205と、メディアインターフェース(I/F)206と、を有し、これらは光照射部30、レーザ干渉計50、読取部60、駆動部81、82等と互いに接続されている。 FIG. 8 is a block diagram showing the electrical configuration of the exposure apparatus 1. The exposure device 1 includes a CPU (Central Processing Unit) 201, a RAM (Random Access Memory) 202, a ROM (Read Only Memory) 203, an input / output interface (I / F) 204, and a communication interface (I / F). It has a 205 and a media interface (I / F) 206, which are connected to each other with a light irradiation unit 30, a laser interferometer 50, a reading unit 60, drive units 81, 82 and the like.
 CPU201は、RAM202、ROM203に格納されたプログラムに基づいて動作し、各部の制御を行う。CPU201には、レーザ干渉計50、読取部60等から信号が入力される。CPU201から出力された信号は、駆動部81、82、光照射部30等に出力される。 The CPU 201 operates based on the programs stored in the RAM 202 and the ROM 203, and controls each part. Signals are input to the CPU 201 from the laser interference meter 50, the reading unit 60, and the like. The signal output from the CPU 201 is output to the drive units 81, 82, the light irradiation unit 30, and the like.
 RAM202は、揮発性メモリである。ROM203は、各種制御プログラム等が記憶されている不揮発性メモリである。CPU201は、RAM202、ROM203に格納されたプログラムに基づいて動作し、各部の制御を行う。また、ROM203は、露光装置1の起動時にCPU201が行うブートプログラムや、露光装置1のハードウェアに依存するプログラム、マスク100への描画データなどを格納する。また、RAM202は、CPU201が実行するプログラム及びCPU201が使用するデータなどを格納する。 RAM 202 is a volatile memory. The ROM 203 is a non-volatile memory in which various control programs and the like are stored. The CPU 201 operates based on the programs stored in the RAM 202 and the ROM 203, and controls each part. Further, the ROM 203 stores a boot program performed by the CPU 201 when the exposure device 1 is started, a program depending on the hardware of the exposure device 1, drawing data on the mask 100, and the like. Further, the RAM 202 stores a program executed by the CPU 201, data used by the CPU 201, and the like.
 CPU201は、入出力インターフェース204を介して、キーボードやマウス等の入出力装置211を制御する。通信インターフェース205は、ネットワーク212を介して他の機器からデータを受信してCPU201に送信すると共に、CPU201が生成したデータを、ネットワーク212を介して他の機器に送信する。 The CPU 201 controls an input / output device 211 such as a keyboard and a mouse via the input / output interface 204. The communication interface 205 receives data from another device via the network 212 and transmits the data to the CPU 201, and also transmits the data generated by the CPU 201 to the other device via the network 212.
 メディアインターフェース206は、記憶媒体213に格納されたプログラム又はデータを読み取り、RAM202に格納する。なお、記憶媒体213は、例えば、ICカード、SDカード、DVD等である。 The media interface 206 reads the program or data stored in the storage medium 213 and stores it in the RAM 202. The storage medium 213 is, for example, an IC card, an SD card, a DVD, or the like.
 なお、各機能を実現するプログラムは、例えば、記憶媒体213から読み出されて、RAM202を介して露光装置1にインストールされ、CPU201によって実行される。 The program that realizes each function is read from, for example, the storage medium 213, installed in the exposure apparatus 1 via the RAM 202, and executed by the CPU 201.
 CPU201は、入力信号に基づいて露光装置1の各部を制御する制御部201aの機能を有する。制御部201aは、CPU201が読み込んだ所定のプログラムを実行することにより構築される。制御部201aが行う処理については、後に詳述する。 The CPU 201 has a function of a control unit 201a that controls each unit of the exposure device 1 based on an input signal. The control unit 201a is constructed by executing a predetermined program read by the CPU 201. The process performed by the control unit 201a will be described in detail later.
 図8に示す露光装置1の構成は、本実施形態の特徴を説明するにあたって主要構成を説明したのであって、例えば一般的な情報処理装置が備える構成を排除するものではない。露光装置1の構成要素は、処理内容に応じてさらに多くの構成要素に分類されてもよいし、1つの構成要素が複数の構成要素の処理を実行してもよい。 The configuration of the exposure device 1 shown in FIG. 8 describes the main configuration in explaining the features of the present embodiment, and does not exclude, for example, the configuration provided in a general information processing device. The components of the exposure apparatus 1 may be further classified into more components depending on the processing content, or one component may execute processing of a plurality of components.
 このように構成された露光装置1の作用について説明する。以下の処理は、主として制御部201aによって行われる。 The operation of the exposure apparatus 1 configured in this way will be described. The following processing is mainly performed by the control unit 201a.
 制御部201aは、描画処理を行う前に、略板状の交換式被読取部(図示省略)に設けられた台形型認識マーク41を読み取る。図9は、台形型認識マーク41を示す図であり、(A)は平面図であり、(B)は(A)のC-C断面図である。 The control unit 201a reads the trapezoidal recognition mark 41 provided on the substantially plate-shaped interchangeable read unit (not shown) before performing the drawing process. 9A and 9B are views showing the trapezoidal recognition mark 41, FIG. 9A is a plan view, and FIG. 9B is a sectional view taken along the line CC of FIG. 9A.
 台形型認識マーク41は、図9(A)に示すように、直交する4方向に突出する突起部41aを有する平面視略十字形状である。台形型認識マーク41は、図9(B)に示すように厚肉であり、厚みは略5μm以上である。なお、台形型認識マーク41の厚みは、略5μm以上から略1mmであることが好ましく、略5μmから略100μmであることがより好ましく、略5μm以上から略30μmであることがさらに好ましい。 As shown in FIG. 9A, the trapezoidal recognition mark 41 has a substantially cross shape in a plan view having protrusions 41a protruding in four orthogonal directions. The trapezoidal recognition mark 41 is thick as shown in FIG. 9B, and has a thickness of about 5 μm or more. The thickness of the trapezoidal recognition mark 41 is preferably from about 5 μm or more to about 1 mm, more preferably from about 5 μm to about 100 μm, and even more preferably from about 5 μm or more to about 30 μm.
 突起部41aの断面形状は、底面側が広く、底面の反対側(上面)が狭い略台形形状である。突起部41aの高さtは、読取部60の焦点深度の数倍以上であり、本実施の形態では略5μmである。底面41bの幅wは、高さtよりも大きく、本実施の形態では略8μm~10μmである。 The cross-sectional shape of the protrusion 41a is a substantially trapezoidal shape in which the bottom surface side is wide and the opposite side (top surface) of the bottom surface is narrow. The height t of the protrusion 41a is several times or more the depth of focus of the reading unit 60, and is approximately 5 μm in the present embodiment. The width w of the bottom surface 41b is larger than the height t, and is approximately 8 μm to 10 μm in the present embodiment.
 底面41b及び上面41eは、交換式被読取部をステージ20の上面20aに載置したときに、上面20aと略平行である。突起部41aの両側の側面41c、41dは、底面41b及び上面41eに対して傾斜する傾斜面である。図9(B)に示す断面視において、側面41c、41dは、略左右対称である。そして、側面41cの底面41bに対する傾斜角度の絶対値と、側面41dの底面41bに対する傾斜角度の絶対値との差は、略1度以内であることが望ましい。 The bottom surface 41b and the top surface 41e are substantially parallel to the top surface 20a when the replaceable read unit is placed on the top surface 20a of the stage 20. The side surfaces 41c and 41d on both sides of the protrusion 41a are inclined surfaces that are inclined with respect to the bottom surface 41b and the top surface 41e. In the cross-sectional view shown in FIG. 9B, the side surfaces 41c and 41d are substantially symmetrical. The difference between the absolute value of the inclination angle of the side surface 41c with respect to the bottom surface 41b and the absolute value of the inclination angle of the side surface 41d with respect to the bottom surface 41b is preferably within about 1 degree.
 例えば、底面41bに対する傾斜角度の絶対値が60度である場合、側面41cの傾きと側面41dの傾きが1度異なる場合の中心位置のずれは、略44nm(=5μm×(sin60°-sin59°))となる。本実施の形態の露光装置の精度は略60nmであり、側面41c、41dの傾斜角度の差異が1度以下とすることで露光装置の精度を満足させることができる。 For example, when the absolute value of the inclination angle with respect to the bottom surface 41b is 60 degrees, the deviation of the center position when the inclination of the side surface 41c and the inclination of the side surface 41d differ by 1 degree is approximately 44 nm (= 5 μm × (sin60 ° −sin59 °). )). The accuracy of the exposure apparatus according to the present embodiment is approximately 60 nm, and the accuracy of the exposure apparatus can be satisfied by setting the difference in inclination angles between the side surfaces 41c and 41d to 1 degree or less.
 なお、断面視において側面41c、41dを左右対称にするためには、ウェットエッチングにより台形型認識マーク41を形成することが望ましい。 In order to make the side surfaces 41c and 41d symmetrical in cross-sectional view, it is desirable to form the trapezoidal recognition mark 41 by wet etching.
 台形型認識マーク41は、交換式被読取部に二次元配置されている。交換式被読取部は、被読取部25とは別に設けられるものであり、ステージ20に対して着脱可能である。ここでは、交換式被読取部は、ステージ20の上面20aに載置される。制御部201aは、ステージ20に交換式被読取部を載置した状態で、駆動部39や移動機構161により読取部60をステージ20に近づける方向及びステージ20から遠ざける方向に移動させながら、台形型認識マーク41を読み取る。 The trapezoidal recognition mark 41 is two-dimensionally arranged on the interchangeable read unit. The replaceable read unit is provided separately from the read unit 25, and is removable from the stage 20. Here, the replaceable read unit is placed on the upper surface 20a of the stage 20. The control unit 201a has a trapezoidal shape while moving the reading unit 60 closer to the stage 20 and away from the stage 20 by the driving unit 39 and the moving mechanism 161 while the replaceable reading unit is mounted on the stage 20. Read the recognition mark 41.
 読取部60の光軸が傾いている場合には、読取部60を上下動させることで読取部60の視野がx方向又はy方向にずれる。図10は、読取部60を上下動させたときの様子を示す図であり、(A)は読取部60の光軸が傾いていない場合であり、(B)は読取部60の光軸が傾いている場合である。 When the optical axis of the reading unit 60 is tilted, the field of view of the reading unit 60 shifts in the x direction or the y direction by moving the reading unit 60 up and down. 10A and 10B are views showing a state when the reading unit 60 is moved up and down. FIG. 10A shows a case where the optical axis of the reading unit 60 is not tilted, and FIG. 10B shows a case where the optical axis of the reading unit 60 is not tilted. This is the case when it is tilted.
 図10(A)に示すように、読取部60の光軸が傾いていない場合は、読取部60のz方向の位置が変化しても、光軸とステージ20(又はマスク100)が交差する位置は変化せず、読取部60の視野も変化しない。 As shown in FIG. 10A, when the optical axis of the reading unit 60 is not tilted, the optical axis and the stage 20 (or the mask 100) intersect even if the position of the reading unit 60 in the z direction changes. The position does not change, and the field of view of the reading unit 60 does not change.
 それに対し、図10(B)に示すように、読取部60の光軸が傾いている場合は、読取部60のz方向の位置が変化すると、光軸とステージ20(又はマスク100)が交差する位置が図10における横方向に変化し、読取部60の視野も変化する。 On the other hand, as shown in FIG. 10B, when the optical axis of the reading unit 60 is tilted, the optical axis and the stage 20 (or the mask 100) intersect when the position of the reading unit 60 in the z direction changes. The position to be used changes in the horizontal direction in FIG. 10, and the field of view of the reading unit 60 also changes.
 したがって、制御部201aは、描画処理の前に、読取部60をステージ20に近づける方向及びステージ20から遠ざける方向に移動させながら台形型認識マーク41を読み取り、台形型認識マーク41の読取結果に基づいて読取部60の特性、特に光軸の傾きを検知する。 Therefore, the control unit 201a reads the trapezoidal recognition mark 41 while moving the reading unit 60 toward the stage 20 and away from the stage 20 before the drawing process, and based on the reading result of the trapezoidal recognition mark 41. The characteristics of the reading unit 60, particularly the inclination of the optical axis, are detected.
 また、読取部60が台形型認識マーク41を読み取るため、読取部60を上下動させたとしても、台形型認識マーク41の側面41c、41dのどこかに焦点をあわせることができる。側面41c、41dは、略左右対称であるため、側面41c、41dの低い位置(底面41bの近傍)に焦点が合った場合も、側面41c、41dの高い位置(上面41eの近傍)に焦点が合った場合も、読取部60が台形型認識マーク41の中心Oを正しく読むことができる。 Further, since the reading unit 60 reads the trapezoidal recognition mark 41, even if the reading unit 60 is moved up and down, it is possible to focus on some of the side surfaces 41c and 41d of the trapezoidal recognition mark 41. Since the side surfaces 41c and 41d are substantially symmetrical, even if the side surfaces 41c and 41d are focused on the low position (near the bottom surface 41b), the side surfaces 41c and 41d are focused on the high position (near the top surface 41e). Even if they match, the reading unit 60 can correctly read the center O of the trapezoidal recognition mark 41.
 その後、制御部201aは処理を描画処理に進める。描画処理は、ステージ20から交換式被読取部を取り外し、ステージ20の上面20aにマスク100を載置し、その後数時間経過してから行なわれる。 After that, the control unit 201a proceeds to the drawing process. The drawing process is performed after the interchangeable read unit is removed from the stage 20, the mask 100 is placed on the upper surface 20a of the stage 20, and several hours have passed thereafter.
 まず、制御部201aは、駆動部81、82によりステージ20をx方向やy方向に移動させて読取部60の視野内にアライメントマーク101を配置し、駆動部39や移動機構161により読取部60をマスク100の高さに合わせてx方向に移動させ、読取部60でマスク100のアライメントマーク101を読み取る。読取部60の焦点深度は浅いため、アライメントマーク101に合焦させるため、駆動部39や移動機構161により読取部60をマスク100の高さに合わせる必要がある。 First, the control unit 201a moves the stage 20 in the x direction and the y direction by the drive units 81 and 82 to arrange the alignment mark 101 in the field of view of the reading unit 60, and the drive unit 39 and the moving mechanism 161 move the reading unit 60. Is moved in the x direction according to the height of the mask 100, and the alignment mark 101 of the mask 100 is read by the reading unit 60. Since the depth of focus of the reading unit 60 is shallow, it is necessary to adjust the reading unit 60 to the height of the mask 100 by the driving unit 39 or the moving mechanism 161 in order to focus on the alignment mark 101.
 その後、制御部201aは、駆動部81、82によりステージ20をx方向やy方向に移動させて読取部60の視野内に辺20b近傍に設けられた被読取部25を配置し、読取部60で認識マーク25eを読み取る。 After that, the control unit 201a moves the stage 20 in the x-direction and the y-direction by the drive units 81 and 82 to arrange the read unit 25 provided near the side 20b in the field of view of the reading unit 60, and the reading unit 60. Read the recognition mark 25e with.
 高さが徐々に変化するリブ25A、25Bの板状部25dに認識マーク25eが設けられているため、読取部60の位置がマスク100の高さ、すなわちアライメントマーク101の高さに合わせて調整されていたとしても、1つの認識マーク25eの高さをアライメントマーク101の高さと略一致させ、1つの認識マーク25eに焦点を合わせることができる。 Since the recognition mark 25e is provided on the plate-shaped portions 25d of the ribs 25A and 25B whose heights gradually change, the position of the reading portion 60 is adjusted according to the height of the mask 100, that is, the height of the alignment mark 101. Even if it is, the height of one recognition mark 25e can be made to substantially match the height of the alignment mark 101, and one recognition mark 25e can be focused.
 そして、様々な厚みのマスク100を上面20aに載置したとしても、複数の認識マーク25eのうちの1つの認識マーク25eの高さをアライメントマーク101の高さと略一致させることができる。 Then, even if the masks 100 having various thicknesses are placed on the upper surface 20a, the height of the recognition mark 25e of the plurality of recognition marks 25e can be substantially matched with the height of the alignment mark 101.
 図11は、読取部60で被読取部25を読み取るときの読取部60の視野を模式的に示す図である。図11の点線Aで囲む領域が読取部60の視野であり、図11の点線Bで囲む領域が読取部60の合焦領域である。 FIG. 11 is a diagram schematically showing the field of view of the reading unit 60 when the reading unit 60 reads the read unit 25. The area surrounded by the dotted line A in FIG. 11 is the field of view of the reading unit 60, and the area surrounded by the dotted line B in FIG. 11 is the focusing area of the reading unit 60.
 読取部60は焦点深度が浅く、ステージ20に載置されるマスク100の厚みの最大値と最小値との差(ここでは、略8mm程度)を吸収することはできない。本実施の形態では、読取部60の視野に含まれる認識マーク25eの高さはすべて異なるため、マスク100の高さに合わせて読取部60の高さを調整していたとしても、読取部60が合焦する認識マーク25eが1つ存在する。そして、読取部60が合焦した認識マーク25eを読み取ることで、制御部201aがステージ20の位置を検知することができる。 The reading unit 60 has a shallow depth of focus and cannot absorb the difference between the maximum and minimum thicknesses of the mask 100 mounted on the stage 20 (here, about 8 mm). In the present embodiment, since the heights of the recognition marks 25e included in the field of view of the reading unit 60 are all different, even if the height of the reading unit 60 is adjusted according to the height of the mask 100, the reading unit 60 There is one recognition mark 25e that focuses on. Then, the reading unit 60 can read the focused recognition mark 25e, so that the control unit 201a can detect the position of the stage 20.
 制御部201aは、アライメントマーク101及び認識マーク25eの読取結果に基づいてステージ20、すなわちマスク100のx方向及びy方向の位置を検知する。 The control unit 201a detects the positions of the stage 20, that is, the mask 100 in the x-direction and the y-direction based on the reading results of the alignment mark 101 and the recognition mark 25e.
 制御部201aは、検知したマスク100のx方向及びy方向の位置に基づいて、ステージ20をx方向移動させつつ、光照射部30の下側をマスク100が通過するときに光照射部30から光を照射して、マスク100に対して描画処理を行う。 The control unit 201a moves the stage 20 in the x direction based on the detected positions of the mask 100 in the x and y directions, and when the mask 100 passes under the light irradiation unit 30, the light irradiation unit 30 The mask 100 is irradiated with light to perform drawing processing.
 制御部201aは、台形型認識マーク41の読取結果に基づいて求められた読取部60の光軸の傾きに基づいて、描画位置を調整する。そして、制御部201aは、補正後の描画位置に基づいて、光照射部30a~30gからマスク100へ光を照射する。具体的には、制御部201aは、x方向については光照射部30a~30gへ光を照射する信号(水平同期信号)のタイミングを変え、y方向については描画データを位置ずれ分だけy方向に移動させることで描画位置を調整する。 The control unit 201a adjusts the drawing position based on the inclination of the optical axis of the reading unit 60 obtained based on the reading result of the trapezoidal recognition mark 41. Then, the control unit 201a irradiates the mask 100 with light from the light irradiation units 30a to 30g based on the corrected drawing position. Specifically, the control unit 201a changes the timing of the signal (horizontal synchronization signal) that irradiates the light irradiation units 30a to 30g with light in the x direction, and shifts the drawing data in the y direction by the amount of the misalignment in the y direction. Adjust the drawing position by moving it.
 また、制御部201aは、ステージ20をx方向移動させるときに、辺20b近傍に設けられた認識マーク25e及び辺20c近傍に設けられた認識マーク25eを読取部60で読み取る。これにより、ステージ20がx方向に沿って真っ直ぐに移動しているか、ステージ20がy方向に湾曲しながらx方向に移動しているか等を検知するすることができる。この場合、制御部201aは、検知したステージ20のy方向への湾曲に基づいて描画位置を調整する。 Further, when the stage 20 is moved in the x direction, the control unit 201a reads the recognition mark 25e provided near the side 20b and the recognition mark 25e provided near the side 20c by the reading unit 60. Thereby, it is possible to detect whether the stage 20 is moving straight along the x direction, whether the stage 20 is moving in the x direction while bending in the y direction, and the like. In this case, the control unit 201a adjusts the drawing position based on the detected curvature of the stage 20 in the y direction.
 制御部201aは、描画しつつステージ20を+x端まで移動させたら、ステージ20を-x端まで戻す。そして、制御部201aは、再度ステージ20を+x端まで移動させつつ描画を行う。時間の経過に伴い、温度変化等によりステージ20やマスク100の高さが変化するため、ステージ20を-x端まで戻す度に、制御部201aは、読取部60の高さをアライメントマーク101に合わせた状態でアライメントマーク101と認識マーク25eを読み取り、その読取結果に基づいて次の描画を行う。 The control unit 201a moves the stage 20 to the + x end while drawing, and then returns the stage 20 to the −x end. Then, the control unit 201a draws while moving the stage 20 to the + x end again. Since the heights of the stage 20 and the mask 100 change with the passage of time due to temperature changes and the like, every time the stage 20 is returned to the −x end, the control unit 201a sets the height of the reading unit 60 to the alignment mark 101. The alignment mark 101 and the recognition mark 25e are read in the combined state, and the next drawing is performed based on the reading result.
 本実施の形態によれば、高さが徐々に変化するリブ25A、25Bの板状部25dに認識マーク25eが設けられているため、マスク100(アライメントマーク101)の高さが異なる場合においても、1つの認識マーク25eの高さをアライメントマーク101の高さと略一致させ、1つの認識マーク25eに焦点を合わせることができる。 According to the present embodiment, since the recognition mark 25e is provided on the plate-shaped portions 25d of the ribs 25A and 25B whose heights gradually change, even when the heights of the masks 100 (alignment marks 101) are different. The height of one recognition mark 25e can be substantially matched with the height of the alignment mark 101 to focus on one recognition mark 25e.
 例えば、ステージ20に認識マーク25eが直接設けられている場合には、様々な厚みのマスク100を上面20aに載置すると、読取部60の高さをアライメントマーク101の高さに合わせると認識マーク25eに合焦させることができない。また、マスク100の厚みに合わせて認識マーク25eを上下動させるとすると、装置構成が複雑になってしまう。 For example, when the recognition mark 25e is directly provided on the stage 20, when masks 100 of various thicknesses are placed on the upper surface 20a, the recognition mark is aligned with the height of the reading unit 60 to match the height of the alignment mark 101. Cannot focus on 25e. Further, if the recognition mark 25e is moved up and down according to the thickness of the mask 100, the device configuration becomes complicated.
 それに対し、本実施の形態のように、高さの異なる複数の認識マーク25eを設けておくことで、複雑な機構を用いることなく、様々な厚みの基板に対応することができる。また、高さの異なる複数の認識マーク25eを設けておくことで、組み立て誤差等による読取部60のz方向の位置のばらつきに対応することができる。 On the other hand, by providing a plurality of recognition marks 25e having different heights as in the present embodiment, it is possible to deal with substrates of various thicknesses without using a complicated mechanism. Further, by providing a plurality of recognition marks 25e having different heights, it is possible to deal with variations in the position of the reading unit 60 in the z direction due to an assembly error or the like.
 また、本実施の形態によれば、平行な2つの辺20b、20c近傍に被読取部25を設けることで、ステージ20の移動特性、すなわちステージ20がx方向に沿って真っ直ぐに移動しているか、ステージ20がy方向に湾曲しながらx方向に移動しているか等を検知するすることができる。 Further, according to the present embodiment, by providing the read portion 25 in the vicinity of the two parallel sides 20b and 20c, the movement characteristic of the stage 20, that is, whether the stage 20 is moving straight along the x direction. , It is possible to detect whether the stage 20 is moving in the x direction while being curved in the y direction.
 また、本実施の形態によれば、描画処理の前に、読取部60を上下方向に移動させながら台形型認識マーク41を読み取ることで、読取部60の特性、特に光軸の傾きを検知することができる。また、台形型認識マーク41の側面41c、41dが略左右対称であるため、読取部60の高さ方向の位置によらず、読取部60が台形型認識マーク41の中心Oを正しく読むことができる。 Further, according to the present embodiment, the characteristics of the reading unit 60, particularly the inclination of the optical axis, is detected by reading the trapezoidal recognition mark 41 while moving the reading unit 60 in the vertical direction before the drawing process. be able to. Further, since the side surfaces 41c and 41d of the trapezoidal recognition mark 41 are substantially symmetrical, the reading unit 60 can correctly read the center O of the trapezoidal recognition mark 41 regardless of the position of the reading unit 60 in the height direction. it can.
 また、本実施の形態によれば、描画処理で用いる認識マーク25eの厚みを読取部60の焦点深度より薄くする点に特徴がある。高精度の描画(精度が略60nm)を行う場合には、読取部60の1ピクセル(略100nm)より小さいため、高精度に認識マーク25eを読み取る必要があるが、認識マーク25eを薄くして認識マーク25eに確実に合焦させることで、読取部60が認識マーク25eを正確に読み取ることができる。 Further, according to the present embodiment, the thickness of the recognition mark 25e used in the drawing process is made thinner than the depth of focus of the reading unit 60. When drawing with high accuracy (accuracy is approximately 60 nm), it is necessary to read the recognition mark 25e with high accuracy because it is smaller than one pixel (approximately 100 nm) of the reading unit 60, but the recognition mark 25e is thinned. By ensuring that the recognition mark 25e is in focus, the reading unit 60 can accurately read the recognition mark 25e.
 なお、本実施の形態では、辺20b、20cの近傍に被読取部25が設けられていたが、ステージ20やマスク100のx方向及びy方向の位置を検知するためには、辺20b、20cのうちの少なくとも一方の近傍に被読取部25が設けられていればよい。ただし、ステージ20の移動特性を検知するためには、辺20b、20cの近傍に被読取部25を設けることが望ましい。 In the present embodiment, the read unit 25 is provided in the vicinity of the sides 20b and 20c, but in order to detect the positions of the stage 20 and the mask 100 in the x-direction and the y-direction, the sides 20b and 20c are provided. The read unit 25 may be provided in the vicinity of at least one of them. However, in order to detect the movement characteristics of the stage 20, it is desirable to provide the read unit 25 in the vicinity of the sides 20b and 20c.
 また、本実施の形態では、光照射部30及び読取部60をy方向に沿って複数設けたため、被読取部25もy方向に沿って複数設けたが、光照射部30及び読取部60が1つずつである場合には、被読取部25も1つでよい。 Further, in the present embodiment, since a plurality of light irradiation units 30 and reading units 60 are provided along the y direction, a plurality of reading units 25 are also provided along the y direction, but the light irradiation unit 30 and the reading unit 60 are provided. In the case of one by one, the number of read portions 25 may be one.
 また、本実施の形態では、隣接して2本のリブ25A、25Bを設けたが、リブの数はこれに限られない。例えば、ステージ20や板状部材21のx方向の長さに制限が無ければ、x方向に沿った長いリブ(リブ25A、25Bの長さの倍の長さのリブ)を1本設ければよい。また、例えば、ステージ20や板状部材21のx方向の長さに余裕がなければ、3本以上のリブをy方向に沿って並べればよい。 Further, in the present embodiment, two ribs 25A and 25B are provided adjacent to each other, but the number of ribs is not limited to this. For example, if the length of the stage 20 or the plate-shaped member 21 in the x direction is not limited, one long rib (rib having a length twice the length of the ribs 25A and 25B) along the x direction may be provided. Good. Further, for example, if there is no margin in the length of the stage 20 or the plate-shaped member 21 in the x direction, three or more ribs may be arranged along the y direction.
 また、本実施の形態では、高さが徐々に変化するリブ25A、25Bを用いて高さの異なる複数の認識マーク25eを設けたが、高さの異なる複数の認識マーク25eを設ける形態はこれに限られない。例えば、高さが階段状に変化するリブを用い、踏面に相当する部分にそれぞれ認識マーク25eを設けることで、高さの異なる複数の認識マーク25eを設けてもよい。 Further, in the present embodiment, a plurality of recognition marks 25e having different heights are provided by using ribs 25A and 25B whose heights gradually change, but this is a form in which a plurality of recognition marks 25e having different heights are provided. Not limited to. For example, a plurality of recognition marks 25e having different heights may be provided by using ribs whose height changes in a stepped manner and providing recognition marks 25e on the portions corresponding to the treads.
 また、本実施の形態では、交換式被読取部は着脱可能(交換式)であり、ステージ20の上面20aに載置されるが、交換式被読取部の形態はこれに限られない。例えば、交換式被読取部が交換式でなく、交換式被読取部をステージ20の端面部に設けておいてもよい。 Further, in the present embodiment, the replaceable read portion is removable (replaceable) and is mounted on the upper surface 20a of the stage 20, but the form of the replaceable read portion is not limited to this. For example, the replaceable read portion is not the replaceable type, and the replaceable read portion may be provided on the end face portion of the stage 20.
 また、本実施の形態では、マスク100にアライメントマーク101を設けたが、アライメントマーク101は必須ではない。アライメントマーク101が設けられていない場合には、制御部201aは、マスク100上に存在する任意のパターン等を読み取ってもよいし、制御部201aは、マスク100の角部へ辺部を読み取ってもよい。また、制御部201aは、マスク100の高さから計算される認識マーク25eを読み取ってもよい。 Further, in the present embodiment, the alignment mark 101 is provided on the mask 100, but the alignment mark 101 is not essential. When the alignment mark 101 is not provided, the control unit 201a may read an arbitrary pattern or the like existing on the mask 100, or the control unit 201a reads a side portion to the corner portion of the mask 100. May be good. Further, the control unit 201a may read the recognition mark 25e calculated from the height of the mask 100.
 <第2の実施の形態>
 本発明の第2の実施の形態は、台形型認識マークを被読取部に設ける形態である。以下、第2の実施の形態の露光装置2について説明する。第1の実施の形態の露光装置1と、第2の実施の形態の露光装置2との差異は被読取部のみであるため、以下、第2の実施の形態の露光装置における被読取部についてのみ説明する。また、第1の実施の形態と同一の部分については、同一の符号を付し、説明を省略する。
<Second Embodiment>
A second embodiment of the present invention is a form in which a trapezoidal recognition mark is provided on a read unit. Hereinafter, the exposure apparatus 2 of the second embodiment will be described. Since the difference between the exposure device 1 of the first embodiment and the exposure device 2 of the second embodiment is only the read unit, the read unit in the exposure device of the second embodiment will be described below. Only explain. Further, the same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 露光装置2は、ステージ20-1を有する。ステージ20-1には、板状部材21-1を介して被読取部25-1が設けられている。図12は、被読取部25-1の概略構成を示す斜視図である。 The exposure device 2 has a stage 20-1. The stage 20-1 is provided with a read portion 25-1 via a plate-shaped member 21-1. FIG. 12 is a perspective view showing a schematic configuration of the read unit 25-1.
 被読取部25-1は、主として、リブ25A-1、25B-1を有する。リブ25A-1、25B-1は、それぞれ、ガラス等の透明部材で形成された土台部25a、25bと、複数の台形型認識マーク41が形成された板状部25fと、を有する。板状部25fは、リブ25A-1、25B-1の上面であり、土台部25a、25bの上側(+z側)に接着部25cにより貼着又は接着されている。 The read unit 25-1 mainly has ribs 25A-1 and 25B-1. The ribs 25A-1 and 25B-1 each have a base portion 25a and 25b formed of a transparent member such as glass, and a plate-shaped portion 25f on which a plurality of trapezoidal recognition marks 41 are formed. The plate-shaped portion 25f is the upper surface of the ribs 25A-1 and 25B-1, and is attached or adhered to the upper side (+ z side) of the base portions 25a and 25b by the adhesive portion 25c.
 台形型認識マーク41の底面41b及び上面41eは、板状部25fと略平行である。台形型認識マーク41の側面41c、41dは、板状部25fに対して傾斜する傾斜面である。 The bottom surface 41b and the top surface 41e of the trapezoidal recognition mark 41 are substantially parallel to the plate-shaped portion 25f. The side surfaces 41c and 41d of the trapezoidal recognition mark 41 are inclined surfaces that are inclined with respect to the plate-shaped portion 25f.
 このように構成された露光装置2の作用について説明する。以下の処理は、主として制御部201aによって行われる。 The operation of the exposure apparatus 2 configured in this way will be described. The following processing is mainly performed by the control unit 201a.
 制御部201aは、描画処理を行う前に、駆動部39や移動機構161により読取部60をステージ20に近づける方向及びステージ20から遠ざける方向に移動させながら、被読取部25-1に設けられた台形型認識マーク41を読み取る。制御部201aは、台形型認識マーク41の読取結果に基づいて読取部60の特性、特に光軸の傾きを検知する。 The control unit 201a is provided on the read unit 25-1 while moving the reading unit 60 toward the stage 20 and away from the stage 20 by the driving unit 39 and the moving mechanism 161 before performing the drawing process. Read the trapezoidal recognition mark 41. The control unit 201a detects the characteristics of the reading unit 60, particularly the inclination of the optical axis, based on the reading result of the trapezoidal recognition mark 41.
 その後、制御部201aは処理を描画処理に進める。制御部201aは、ステージ20の上面20aにマスク100を載置して数時間経過した後で、読取部60でマスク100のアライメントマーク101を読み取る。また、制御部201aは、読取部60で辺20b近傍に設けられた被読取部25の台形型認識マーク41を読み取る。制御部201aは、アライメントマーク101及び台形型認識マーク41の読取結果に基づいてステージ20、やマスク100のx方向及びy方向の位置を検知する。 After that, the control unit 201a proceeds to the drawing process. The control unit 201a places the mask 100 on the upper surface 20a of the stage 20, and after several hours have passed, the reading unit 60 reads the alignment mark 101 of the mask 100. Further, the control unit 201a reads the trapezoidal recognition mark 41 of the read unit 25 provided in the vicinity of the side 20b by the reading unit 60. The control unit 201a detects the positions of the stage 20 and the mask 100 in the x-direction and the y-direction based on the reading results of the alignment mark 101 and the trapezoidal recognition mark 41.
 制御部201aは、検知したマスク100のx方向及びy方向の位置に基づいて、ステージ20をx方向移動させつつ、光照射部30の下側をマスク100が通過するときに光照射部30から光を照射して、マスク100に対して描画処理を行う。 The control unit 201a moves the stage 20 in the x direction based on the detected positions of the mask 100 in the x and y directions, and when the mask 100 passes under the light irradiation unit 30, the light irradiation unit 30 The mask 100 is irradiated with light to perform drawing processing.
 本実施の形態によれば、台形型認識マーク41を被読取部25-1に設けることで、台形型認識マーク41が設けられた交換式被読取部を用いることなく読取部60の特性を検知することができる。 According to the present embodiment, by providing the trapezoidal recognition mark 41 on the read unit 25-1, the characteristics of the reading unit 60 can be detected without using the replaceable read unit provided with the trapezoidal recognition mark 41. can do.
 なお、本実施の形態では、被読取部25-1に台形型認識マーク41のみを設けたが、被読取部25-1に1つだけ台形型認識マーク41を設け、その他は認識マーク25eを設けるようにしてもよい。 In the present embodiment, only the trapezoidal recognition mark 41 is provided on the read unit 25-1, but only one trapezoidal recognition mark 41 is provided on the read unit 25-1, and the other recognition marks 25e are provided. It may be provided.
 以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。当業者であれば、実施形態の各要素を、適宜、変更、追加、変換等することが可能である。 Although the embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment and includes design changes and the like within a range not deviating from the gist of the present invention. .. A person skilled in the art can appropriately change, add, convert, and the like each element of the embodiment.
 また、本発明において、「略」とは、厳密に同一である場合のみでなく、同一性を失わない程度の誤差や変形を含む概念である。例えば、略水平とは、厳密に水平の場合には限られず、例えば数度程度の誤差を含む概念である。また、例えば、略10μmとは、10μmに限らず、例えば1~3μm程度の誤差を含む概念である。また、例えば、単に平行、直交等と表現する場合において、厳密に平行、直交等の場合のみでなく、略平行、略直交等の場合を含むものとする。また、本発明において「近傍」とは、基準となる位置の近くのある範囲(任意に定めることができる)の領域を含むことを意味する。例えば、Aの近傍という場合に、Aの近くのある範囲の領域であって、Aを含んでもいても含んでいなくてもよいことを示す概念である。 Further, in the present invention, "abbreviation" is a concept that includes not only the case of being exactly the same but also an error or deformation to the extent that the identity is not lost. For example, substantially horizontal is not limited to the case of being strictly horizontal, and is a concept including an error of, for example, several degrees. Further, for example, approximately 10 μm is not limited to 10 μm, but is a concept including an error of, for example, about 1 to 3 μm. Further, for example, in the case of simply expressing parallel, orthogonal, etc., not only the case of strictly parallel, orthogonal, etc., but also the case of substantially parallel, substantially orthogonal, etc. is included. Further, in the present invention, the "neighborhood" means to include a region of a certain range (which can be arbitrarily determined) near the reference position. For example, in the case of the vicinity of A, it is a concept indicating that it is a region in a certain range near A and may or may not include A.
1、2   :露光装置
11    :定盤
11a   :上面
12    :板状部
12a   :上面
13、14 :レール
15    :枠体
15a   :支持部
15c   :柱
20、20-1:ステージ
20a   :上面
20b、20c:辺
21、21-1:板状部材
25、25-1:被読取部
25A、25A-1、25B、25B-1:リブ
25a、25b:土台部
25c   :接着部
25d、25f:板状部
25e   :認識マーク
30(30a~30g):光照射部
32a~32g:対物レンズ
33a~33g:光源部
34a~34g:AF処理部
35a~35g:筒状部
36a~36g:フランジ
37a~37g:取付部
38a~38g:取付部
39(39a~39g):駆動部
41    :台形型認識マーク
41a   :突起部
41b   :底面
41c、41d:側面
41e   :上面
50、51:レーザ干渉計
60(60a~60g):読取部
70、70A:ガイド部材
71、71A:ガイド部本体
72、72A、73、73A:押さえリング
74、74A:取付孔
75、76 :孔
81、82 :駆動部
100   :マスク
101   :アライメントマーク
151   :底板
152   :側板
153   :支持板
154   :側板
155a~155g、156a~156g、157a~157g:丸孔
159   :仕切り壁
160   :弾性部材
161   :移動機構
161a  :ラック
161b  :ピニオン
161c  :アクチュエータ
163   :永電磁石
201   :CPU
201a  :制御部
202   :RAM
203   :ROM
204   :入出力インターフェース
205   :通信インターフェース
206   :メディアインターフェース
211   :入出力装置
212   :ネットワーク
213   :記憶媒体
331   :光源
332   :レンズ
333   :フライアイレンズ
334、335:レンズ
336   :ミラー
341   :AF用光源
342   :コリメータレンズ
343   :AF用シリンドリカルレンズ
344、345:ペンタプリズム
346   :レンズ
347、348:センサ
372   :中空部
391   :圧電素子
601   :鏡筒
602   :光源ユニット
603   :鏡筒
604   :チューブレンズ
605   :ハーフミラー
606   :カメラ
621   :光源
622   :光バンドルファイバ
623   :拡散板
624   :コリメータレンズ
1, 2: Exposure device 11: Plate 11a: Top surface 12: Plate-shaped portion 12a: Top surface 13, 14: Rail 15: Frame body 15a: Support portion 15c: Pillar 20, 20-1: Stage 20a: Top surface 20b, 20c : Sides 21, 21-1: Plate-shaped members 25, 25-1: Read portions 25A, 25A-1, 25B, 25B-1: Ribs 25a, 25b: Base portion 25c: Adhesive portion 25d, 25f: Plate-shaped portion 25e: Recognition mark 30 (30a to 30g): Light irradiation unit 32a to 32g: Objective lens 33a to 33g: Light source unit 34a to 34g: AF processing unit 35a to 35g: Cylindrical portion 36a to 36g: Flange 37a to 37g: Mounting Parts 38a to 38g: Mounting part 39 (39a to 39g): Drive part 41: Trapezoidal recognition mark 41a: Projection part 41b: Bottom surface 41c, 41d: Side surface 41e: Top surface 50, 51: Laser interferometer 60 (60a to 60g) : Reading unit 70, 70A: Guide member 71, 71A: Guide unit main body 72, 72A, 73, 73A: Pressing ring 74, 74A: Mounting hole 75, 76: Hole 81, 82: Drive unit 100: Mask 101: Alignment mark 151: Bottom plate 152: Side plate 153: Support plate 154: Side plate 155a to 155g, 156a to 156g, 157a to 157g: Round hole 159: Partition wall 160: Elastic member 161: Moving mechanism 161a: Rack 161b: Pinion 161c: Actuator 163: Permanent electromagnet 201: CPU
201a: Control unit 202: RAM
203: ROM
204: Input / output interface 205: Communication interface 206: Media interface 211: Input / output device 212: Network 213: Storage medium 331: Light source 332: Lens 333: Fly-eye lens 334: 335: Lens 336: Mirror 341: AF light source 342 : Collimeter lens 343: Cylindrical lens for AF 344, 345: Penta prism 346: Lens 347, 348: Sensor 372: Hollow part 391: piezoelectric element 601: Lens barrel 602: Light source unit 603: Lens barrel 604: Tube lens 605: Half Mirror 606: Camera 621: Light source 622: Optical bundle fiber 623: Diffusing plate 624: Collimeter lens

Claims (11)

  1.  基板に対して露光を行う露光装置であって、
     略水平な載置面に前記基板が載置される略板状のステージと、
     前記ステージを水平面に略沿った第1方向に移動させる第1駆動部と、
     前記ステージの上方に設けられた光照射部と、
     前記光照射部に隣接して又は前記光照射部に設けられた読取部と、
     前記光照射部及び前記読取部を鉛直方向に移動させる第2駆動部と、
     前記載置面の前記第1方向と略直交する第2方向に沿った2つの辺のうちの少なくとも一方の近傍に設けられた被読取部であって、複数の認識マークを含む被読取部と、
     を備え、
     前記被読取部は、高さが変化するリブであって、前記第1方向に沿って設けられたリブを有し、
     前記リブの底面は前記載置面に設けられており、
     前記リブの前記底面と反対側の上面には、複数の前記認識マークが前記第1方向に沿って設けられている
     ことを特徴とする露光装置。
    An exposure device that exposes a substrate
    A substantially plate-shaped stage on which the substrate is placed on a substantially horizontal mounting surface,
    A first drive unit that moves the stage in a first direction substantially along a horizontal plane,
    A light irradiation unit provided above the stage and
    With a reading unit adjacent to or provided in the light irradiation unit,
    A second drive unit that moves the light irradiation unit and the reading unit in the vertical direction, and
    A read unit provided in the vicinity of at least one of two sides along a second direction substantially orthogonal to the first direction of the above-mentioned mounting surface, and includes a read unit including a plurality of recognition marks. ,
    With
    The read portion is a rib whose height changes, and has a rib provided along the first direction.
    The bottom surface of the rib is provided on the above-mentioned mounting surface.
    An exposure apparatus characterized in that a plurality of the recognition marks are provided along the first direction on the upper surface of the rib opposite to the bottom surface.
  2.  前記リブは、前記第2方向に沿って隣接して設けられた第1リブ及び第2リブを有し、
     前記第1リブの上面及び前記第2リブの上面は、傾きが略同じであり、
     前記第1リブの最も高い位置における高さと、前記第2リブの最も低い位置における高さとが略同じである
     ことを特徴とする請求項1に記載の露光装置。
    The rib has a first rib and a second rib provided adjacent to each other along the second direction.
    The upper surface of the first rib and the upper surface of the second rib have substantially the same inclination.
    The exposure apparatus according to claim 1, wherein the height of the first rib at the highest position and the height of the second rib at the lowest position are substantially the same.
  3.  前記第1駆動部は、前記ステージを前記第2方向に移動させ、
     前記光照射部は、前記第2方向に沿って隣接して設けられた第1光照射部と第2光照射部とを有し、
     前記読取部は、前記第1光照射部に隣接して又は前記第1光照射部に設けられた第1読取部と、前記第2光照射部に隣接して又は前記第2光照射部に設けられた第2読取部とを有し、
     前記被読取部は、前記第2方向の位置が前記第1読取部と前記第2読取部との間に位置する
     ことを特徴とする請求項1又は2に記載の露光装置。
    The first drive unit moves the stage in the second direction.
    The light irradiation unit has a first light irradiation unit and a second light irradiation unit provided adjacent to each other along the second direction.
    The reading unit is adjacent to the first light irradiation unit or is provided on the first light irradiation unit, and is adjacent to the second light irradiation unit or on the second light irradiation unit. It has a second reading unit provided and
    The exposure apparatus according to claim 1 or 2, wherein the read unit is located between the first reading unit and the second reading unit in the second direction.
  4.  前記被読取部は、前記ステージの前記第2方向に沿った2つの辺の近傍に設けられている
     ことを特徴とする請求項1から3のいずれか一項に記載の露光装置。
    The exposure apparatus according to any one of claims 1 to 3, wherein the read unit is provided in the vicinity of two sides of the stage along the second direction.
  5.  前記認識マークは、前記読取部の開口数に基づいた大きさで前記リブに設けられる
     ことを特徴とする請求項1から4のいずれか一項に記載の露光装置。
    The exposure apparatus according to any one of claims 1 to 4, wherein the recognition mark has a size based on the numerical aperture of the reading unit and is provided on the rib.
  6.  前記基板には、アライメントマークが設けられており、
     前記第1駆動部により前記ステージを前記第1方向に移動させて前記読取部の視野内に前記アライメントマークを配置し、前記第2駆動部により前記基板の高さに合わせて前記光照射部及び前記読取部を鉛直方向に移動して、前記読取部で前記アライメントマークを読み取り、かつ、前記第1駆動部により前記ステージを前記第1方向に移動させて前記読取部の視野内に前記認識マークを配置し、前記読取部で前記認識マークを読み取る処理と、前記アライメントマーク及び前記認識マークを読み取った結果に基づいて前記光照射部から前記基板に光を照射する描画処理と、を行う制御部を備えた
     ことを特徴とする請求項1から5のいずれか一項に記載の露光装置。
    An alignment mark is provided on the substrate.
    The stage is moved in the first direction by the first drive unit to arrange the alignment mark in the field of view of the reading unit, and the light irradiation unit and the light irradiation unit are adjusted to the height of the substrate by the second drive unit. The reading unit is moved in the vertical direction, the alignment mark is read by the reading unit, and the stage is moved in the first direction by the first driving unit, and the recognition mark is in the field of view of the reading unit. A control unit that performs a process of reading the recognition mark by the reading unit and a drawing process of irradiating the substrate with light from the light irradiation unit based on the result of reading the alignment mark and the recognition mark. The exposure apparatus according to any one of claims 1 to 5, wherein the exposure apparatus is provided with.
  7.  前記認識マークは、略5μm以上の厚みであり、略直交する4方向に突出する突起部を有する平面視略十字形状であり、
     前記突起部の断面形状は、前記リブ側が広く、前記リブの反対側が狭い略台形形状であり、
     前記突起部の両側の側面である第1側面及び第2側面は、前記上面に対して傾斜する傾斜面であり、前記第1側面の前記上面に対する傾斜角度の絶対値と、前記第2側面の前記上面に対する傾斜角度の絶対値との差が略1度以内であり、
     前記制御部は、前記読取部を鉛直方向に移動させながら前記認識マークを読み取る
     ことを特徴とする請求項6に記載の露光装置。
    The recognition mark has a thickness of about 5 μm or more, and has a substantially cross-shaped plan view having protrusions protruding in four directions substantially orthogonal to each other.
    The cross-sectional shape of the protrusion is a substantially trapezoidal shape in which the rib side is wide and the opposite side of the rib is narrow.
    The first side surface and the second side surface, which are the side surfaces on both sides of the protrusion, are inclined surfaces that are inclined with respect to the upper surface, and the absolute value of the inclination angle of the first side surface with respect to the upper surface and the second side surface. The difference from the absolute value of the inclination angle with respect to the upper surface is within about 1 degree.
    The exposure apparatus according to claim 6, wherein the control unit reads the recognition mark while moving the reading unit in the vertical direction.
  8.  前記ステージに着脱可能に設けられる略板状の交換式被読取部を備え、
     前記認識マークは、略数10nmから略1μmの厚みであり、
     前記交換式被読取部には、略5μm以上の厚みであり、略直交する4方向に突出する突起部を有する平面視略十字形状の台形型認識マークが設けられており、
     前記突起部の断面形状は、前記交換式被読取部を前記載置面に載置したときに、前記ステージ側が広く、前記ステージの反対側が狭い略台形形状であり、
     前記突起部の両側の側面である第1側面及び第2側面は、前記交換式被読取部を前記載置面に載置したときに前記載置面に対して傾斜する傾斜面であり、前記第1側面の前記載置面に対する傾斜角度の絶対値と、前記第2側面の前記載置面に対する傾斜角度の絶対値との差が略1度以内であり、
     前記制御部は、前記読取部を鉛直方向に移動させながら前記台形型認識マークを読み取る
     ことを特徴とする請求項6に記載の露光装置。
    It is provided with a substantially plate-shaped replaceable read unit provided on the stage so as to be removable.
    The recognition mark has a thickness of about 10 nm to about 1 μm.
    The interchangeable read portion is provided with a trapezoidal recognition mark having a thickness of about 5 μm or more and having protrusions protruding in four directions substantially orthogonal to each other in a substantially cross shape in a plan view.
    The cross-sectional shape of the protrusion is a substantially trapezoidal shape in which the stage side is wide and the opposite side of the stage is narrow when the replaceable read portion is placed on the above-mentioned mounting surface.
    The first side surface and the second side surface, which are the side surfaces on both sides of the protrusion, are inclined surfaces that are inclined with respect to the previously described mounting surface when the interchangeable read portion is placed on the previously described mounting surface. The difference between the absolute value of the tilt angle of the first side surface with respect to the previously described mounting surface and the absolute value of the tilt angle of the second side surface with respect to the previously described mounting surface is within approximately 1 degree.
    The exposure apparatus according to claim 6, wherein the control unit reads the trapezoidal recognition mark while moving the reading unit in the vertical direction.
  9.  第1方向に沿って移動可能に設けられたステージの上方に設けられた光照射部を用いて基板に露光を行う露光方法であって、
     前記ステージの略水平な面に前記基板を載置するステップと、
     前記光照射部と、前記光照射部に隣接して又は前記光照射部に設けられた読取部とを前記基板の高さに合わせて鉛直方向に移動して、前記基板を前記読取部で読み取るステップと、
     前記ステージの前記第1方向と略直交する第2方向に沿った2つの辺のうちの少なくとも一方の近傍に設けられた被読取部であって、前記ステージに設けられた高さが変化するリブの上面に前記第1方向に沿って複数設けられている認識マークを前記読取部で読み取るステップと、
     前記基板の読取結果と、前記認識マークの読取結果とに基づいて、前記ステージを前記第1方向に移動させながら前記光照射部から前記基板に光を照射するステップと、
     を含むことを特徴とする露光方法。
    An exposure method in which a substrate is exposed using a light irradiation unit provided above a stage movably provided along a first direction.
    A step of placing the substrate on a substantially horizontal surface of the stage,
    The light irradiation unit and the reading unit adjacent to the light irradiation unit or provided in the light irradiation unit are moved in the vertical direction according to the height of the substrate, and the substrate is read by the reading unit. Steps and
    A rib to be read provided in the vicinity of at least one of two sides along a second direction substantially orthogonal to the first direction of the stage, and a rib provided on the stage whose height changes. A step of reading a plurality of recognition marks provided on the upper surface of the surface along the first direction by the reading unit, and
    Based on the reading result of the substrate and the reading result of the recognition mark, the step of irradiating the substrate with light from the light irradiation unit while moving the stage in the first direction.
    An exposure method comprising.
  10.  前記基板を前記読取部で読み取るステップでは、前記基板に設けられたアライメントマークを前記読取部で読み取り、
     前記光照射部から前記基板に光を照射するステップでは、前記アライメントマークの読取結果と、前記認識マークの読取結果とに基づいて前記基板に光を照射する
     ことを特徴とする請求項9に記載の露光方法。
    In the step of reading the substrate by the reading unit, the alignment mark provided on the substrate is read by the reading unit.
    The ninth aspect of the present invention, wherein in the step of irradiating the substrate with light from the light irradiation unit, the substrate is irradiated with light based on the reading result of the alignment mark and the reading result of the recognition mark. Exposure method.
  11.  前記ステージに前記基板を載置する前に行う校正ステップを有し、
     前記校正ステップは、
     前記読取部を前記ステージに近づける方向及び前記ステージから遠ざける方向に移動させながら、厚さが略5μm以上で平面視略十字形状の台形型認識マークであって、前記ステージ側が広く上面側が狭い略台形形状の断面形状を有する台形型認識マークを前記読取部で読み取るステップと、
     前記台形型認識マークの読取結果に基づいて前記読取部の光軸の傾きを検知するステップと、
     を含み、
     前記光照射部から前記基板に光を照射するステップでは、前記読取部の光軸の傾きに基づいて描画位置を調整する
     ことを特徴とする請求項9又は10に記載の露光方法。
    It has a calibration step performed before mounting the substrate on the stage.
    The calibration step
    A trapezoidal recognition mark having a thickness of about 5 μm or more and a substantially cross-shaped cross-section while moving the reading unit closer to the stage and away from the stage, and the stage side is wide and the upper surface side is narrow. A step of reading a trapezoidal recognition mark having a cross-sectional shape with the reading unit,
    A step of detecting the inclination of the optical axis of the reading unit based on the reading result of the trapezoidal recognition mark, and
    Including
    The exposure method according to claim 9 or 10, wherein in the step of irradiating the substrate with light from the light irradiation unit, the drawing position is adjusted based on the inclination of the optical axis of the reading unit.
PCT/JP2020/027723 2019-07-19 2020-07-16 Exposure device and exposure method WO2021015099A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080035298.3A CN113841089A (en) 2019-07-19 2020-07-16 Exposure apparatus and exposure method
KR1020217035926A KR20220034028A (en) 2019-07-19 2020-07-16 Exposure apparatus and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133870A JP7266864B2 (en) 2019-07-19 2019-07-19 Exposure device and exposure method
JP2019-133870 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021015099A1 true WO2021015099A1 (en) 2021-01-28

Family

ID=74193274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027723 WO2021015099A1 (en) 2019-07-19 2020-07-16 Exposure device and exposure method

Country Status (4)

Country Link
JP (1) JP7266864B2 (en)
KR (1) KR20220034028A (en)
CN (1) CN113841089A (en)
WO (1) WO2021015099A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555111A (en) * 1991-08-22 1993-03-05 Fujitsu Ltd Manufacture of semiconductor device
JPH08227840A (en) * 1995-02-20 1996-09-03 Jeol Ltd Adjusting method and drawing method in charged-particle-line drawing apparatus
JP2005322710A (en) * 2004-05-07 2005-11-17 Nec Electronics Corp Semiconductor manufacturing apparatus
JP2010034331A (en) * 2008-07-29 2010-02-12 Canon Inc Exposure device and device manufacturing method
JP2010219445A (en) * 2009-03-18 2010-09-30 Nuflare Technology Inc Charged particle beam drawing method, position detecting method for reference mark for charged particle beam drawing, and charged particle beam drawing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077004A (en) * 1999-09-03 2001-03-23 Hitachi Ltd Aligner and electron beam aligner
JP2006337873A (en) * 2005-06-03 2006-12-14 Fujifilm Holdings Corp Exposure device and exposure method
JP4754924B2 (en) * 2005-10-07 2011-08-24 株式会社ブイ・テクノロジー Exposure equipment
CN104950587B (en) * 2014-03-25 2017-12-29 上海微电子装备(集团)股份有限公司 Exposure device and exposure method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555111A (en) * 1991-08-22 1993-03-05 Fujitsu Ltd Manufacture of semiconductor device
JPH08227840A (en) * 1995-02-20 1996-09-03 Jeol Ltd Adjusting method and drawing method in charged-particle-line drawing apparatus
JP2005322710A (en) * 2004-05-07 2005-11-17 Nec Electronics Corp Semiconductor manufacturing apparatus
JP2010034331A (en) * 2008-07-29 2010-02-12 Canon Inc Exposure device and device manufacturing method
JP2010219445A (en) * 2009-03-18 2010-09-30 Nuflare Technology Inc Charged particle beam drawing method, position detecting method for reference mark for charged particle beam drawing, and charged particle beam drawing device

Also Published As

Publication number Publication date
KR20220034028A (en) 2022-03-17
JP7266864B2 (en) 2023-05-01
CN113841089A (en) 2021-12-24
JP2021018324A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
JP4676205B2 (en) Exposure apparatus and exposure method
US9645512B2 (en) Substrate distortion measurement
KR100775543B1 (en) System and method to correct for field curvature of multi lens array
JP2006278820A (en) Exposure method and exposure device
JP2008292916A (en) Image exposure device, microlens unit, and its manufacturing method
TW201734666A (en) Lithographic apparatus and device manufacturing method
JP7017239B2 (en) Exposure device and height adjustment method
JP5117250B2 (en) Exposure equipment
JP2007078764A (en) Exposure device and exposure method
CN102007453A (en) Apparatus for supporting an optical element, and method of making same
JP2002170754A (en) Exposure system, method of detecting optical characteristic, and exposure method
WO2021015099A1 (en) Exposure device and exposure method
KR100700370B1 (en) Method of Preparing a Substrate, Method of Measuring, Device Manufacturing Method, Lithographic Apparatus, Computer Program and Substrate
JP2006261418A (en) Projection aligner and process for fabricating device
TWI772544B (en) Optical device mounting structure and exposure device
KR100549780B1 (en) An Alignment tool, A Lithographic Apparatus, An Alignment Method, A Device Manufacturing Method and Device Manufactured thereby
JP5209946B2 (en) Focus position detection method and drawing apparatus
JP4788229B2 (en) Position detection apparatus, alignment apparatus, exposure apparatus, and microdevice manufacturing method
JP4583827B2 (en) Image forming apparatus and image forming method
JP2008177308A (en) Position detection apparatus, exposure apparatus, and device manufacturing method
JPH11233424A (en) Projection optical device, aberration measuring method, projection method, and manufacture of device
JP5859352B2 (en) Exposure drawing apparatus, program, and exposure drawing method
JP2010102130A (en) Exposure apparatus
JP2010185807A (en) Surface profile measuring device, surface profile measuring method, exposure system, and device manufacturing method
JP2006234950A (en) Scanner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844452

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844452

Country of ref document: EP

Kind code of ref document: A1