WO2021015013A1 - Method for manufacturing concentrating photovoltaic power generation module, method for manufacturing concentrating photovoltaic power generation device, and device for manufacturing concentrating photovoltaic power generation module - Google Patents

Method for manufacturing concentrating photovoltaic power generation module, method for manufacturing concentrating photovoltaic power generation device, and device for manufacturing concentrating photovoltaic power generation module Download PDF

Info

Publication number
WO2021015013A1
WO2021015013A1 PCT/JP2020/027083 JP2020027083W WO2021015013A1 WO 2021015013 A1 WO2021015013 A1 WO 2021015013A1 JP 2020027083 W JP2020027083 W JP 2020027083W WO 2021015013 A1 WO2021015013 A1 WO 2021015013A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
wiring board
printed wiring
flexible printed
flexible substrates
Prior art date
Application number
PCT/JP2020/027083
Other languages
French (fr)
Japanese (ja)
Inventor
和正 鳥谷
斉藤 健司
由喜男 小池
隆裕 今井
猛 梅原
永井 陽一
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2021015013A1 publication Critical patent/WO2021015013A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a method for manufacturing a concentrating photovoltaic power generation module, a method for manufacturing a condensing photovoltaic power generation device, and a manufacturing apparatus for a condensing photovoltaic power generation module.
  • a strip-shaped flexible substrate on which a cell or the like is mounted may be used as a module constituting the condensing type photovoltaic power generation device (see, for example, Patent Document 1). Since the cell only needs to be in a position where sunlight collects, a strip-shaped substrate is more cost effective than a planar substrate. Further, the flexible substrate is a substrate using polyimide and is highly flexible. Therefore, the strip-shaped flexible substrate can be easily stretched around the bottom surface of a large housing such as a module.
  • a flexible printed wiring board having a plurality of such strip-shaped flexible substrates is manufactured in a form in which a plurality of flexible substrates are densely packed in order to improve the yield at the time of manufacture.
  • a method for manufacturing a condensing solar power generation module includes a housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, and the plurality of flexible substrates.
  • a method for manufacturing a condensing solar power generation module including a plurality of cells mounted on the upper surface of a substrate and a printed circuit unit including an electric circuit related to the plurality of cells, wherein the flexible printed wiring board is provided.
  • the flexible printed wiring board is held from the upper surface side so that the first step of holding the flexible substrate from the lower surface side and the relative position between the plurality of flexible substrates are the deployed positions when the flexible boards are deployed on the bottom surface.
  • the second step includes a third step of mounting the flexible printed wiring board held from the upper surface side to the bottom surface, and in the second step, the flexible printed wiring board is held from the lower surface side in the first step.
  • the flexible printed wiring board is held from the upper surface side by repeating each of the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates.
  • Another method of manufacturing a condensing type solar power generation device is a housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, and the plurality of flexible printed wiring boards.
  • a method for manufacturing a condensing solar power generation device including a plurality of cells mounted on an upper surface of a flexible substrate and a printed circuit unit including an electric circuit related to the plurality of cells, wherein the flexible printed wiring board is used.
  • the flexible printed wiring board is mounted from the upper surface side so that the first step of holding the plurality of flexible substrates from the lower surface side and the relative positions of the plurality of flexible substrates are the deployed positions when the flexible substrates are deployed on the bottom surface.
  • the second step of holding and the third step of mounting the flexible printed wiring board held from the upper surface side on the bottom surface are included.
  • the flexible printed wiring board is held from the lower surface side in the first step.
  • the flexible printed wiring board is held from the upper surface side by repeating each of the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates.
  • Yet another embodiment of the concentrating solar power generation module manufacturing apparatus includes a housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, and the plurality.
  • a device for manufacturing a condensing solar power generation module including a plurality of cells mounted on the flexible substrate of the above and a printed circuit unit including an electric circuit relating to the plurality of cells, wherein the flexible printed wiring board is provided.
  • the flexible printed wiring board is mounted from the upper surface side so that the first holding mechanism for holding the flexible substrate from the lower surface side and the relative positions of the plurality of flexible substrates are the deployed positions when the flexible boards are deployed on the bottom surface.
  • a second holding mechanism for holding and mounting the held flexible printed wiring board on the bottom surface, and a control unit for controlling the first holding mechanism and the second holding mechanism are provided, and the control unit is the first.
  • the first holding mechanism and the second holding mechanism are controlled so as to repeat the release step of releasing the first holding mechanism and the second holding mechanism so as to repeat the release step for each of the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates.
  • the flexible printed wiring board is held from the upper surface side.
  • FIG. 1 is a perspective view of an example of a condensing type photovoltaic power generation device as viewed from the light receiving surface side.
  • FIG. 2 is a perspective view showing an example of the configuration of the concentrating photovoltaic power generation module.
  • FIG. 3 is a cross-sectional view showing a configuration example of a light receiving portion of the condensing type photovoltaic power generation module.
  • FIG. 4 is a cross-sectional view showing an example of a condensing photovoltaic power generation unit as a basic configuration of an optical system for concentrating power generation constituting a module.
  • FIG. 5 is a diagram showing an example of a prototype of a flexible printed wiring board before unfolding.
  • FIG. 5 is a diagram showing an example of a prototype of a flexible printed wiring board before unfolding.
  • FIG. 6 is a perspective view of a part of the prototype of the flexible printed wiring board seen from diagonally above.
  • FIG. 7 is a cross-sectional view taken along the line ZZ at a portion having a connecting band.
  • FIG. 8 is a diagram schematically showing the configuration of the wiring board mounting device and its operation.
  • FIG. 9 is a flowchart showing an example of a mounting operation process for mounting the flexible printed wiring board on the bottom surface of the module housing.
  • FIG. 10A is a perspective view showing an example of a set table before holding the original form.
  • FIG. 10B is a perspective view showing a state in which the prototype is held on the set table.
  • FIG. 11 is a diagram showing a state in which the connecting band of the prototype is cut.
  • FIG. 10A is a perspective view showing an example of a set table before holding the original form.
  • FIG. 10B is a perspective view showing a state in which the prototype is held on the set table.
  • FIG. 11 is a diagram showing a
  • FIG. 12A is a perspective view showing an example of the suction unit.
  • FIG. 12B is a cross-sectional view showing a suction port portion of the suction block, showing a state in which the flexible substrate is sucked and held.
  • FIG. 13 is a diagram for explaining a procedure for sucking the flexible substrate held on the set table by the suction unit.
  • FIG. 14 is a view of a suction unit in a state where a plurality of suction blocks each suck one flexible substrate as viewed from below.
  • FIG. 15 is a perspective view showing a part of the suction unit used in the method of mounting the flexible printed wiring board according to the second embodiment.
  • FIG. 16 is a flowchart showing an example of a process of mounting the flexible printed wiring board according to the second embodiment.
  • FIG. 17 is a partial cross-sectional view of a suction block used in the method of mounting the flexible printed wiring board according to the third embodiment, and shows a state in which the flexible substrate is sucked and held.
  • FIG. 18 is a diagram showing an embodiment when the flexible substrate is mounted on the bottom surface of the housing by the suction block of the present embodiment.
  • FIG. 19 is a graph showing the relationship between the pressing load when the pressing portion presses the package and the thermal resistance value between the package and the housing.
  • FIG. 20 is a flowchart showing an example of a process of mounting the flexible printed wiring board according to the fourth embodiment.
  • FIG. 21 is a diagram for explaining an aspect when acquiring the position of the light receiving portion on the substrate.
  • FIG. 22 is a plan view showing an aspect of positioning the flexible substrate on the bottom surface.
  • the cell mounted on the flexible printed wiring board needs to be arranged at a position where sunlight is condensed by the condenser lens. Therefore, when the flexible printed wiring board is mounted on the bottom surface of the housing, it is necessary to accurately arrange each of the plurality of flexible substrates at a predetermined position on the bottom surface.
  • the flexible substrate is a thin strip-shaped object
  • the flexible printed wiring board is an aggregate of flexible substrates which are thin strip-shaped objects. Therefore, it is not easy to handle, and it takes a lot of man-hours to develop a plurality of flexible substrates and accurately arrange them at predetermined positions on the bottom surface, which is a factor of increasing the manufacturing cost.
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a technique capable of reducing the manufacturing cost of a concentrating photovoltaic power generation device.
  • the method for manufacturing a condensing type solar power generation module includes a housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, and the above.
  • a method for manufacturing a condensing solar power generation module including a plurality of cells mounted on the upper surface of a plurality of flexible substrates and a printed circuit unit including an electric circuit related to the plurality of cells, wherein the flexible printed wiring board is provided.
  • the flexible printed wiring board is placed on the upper surface so that the first step of holding the flexible boards from the lower surface side and the relative positions of the plurality of flexible boards are the deployed positions when the flexible boards are deployed on the bottom surface.
  • the second step includes a second step of holding from the side and a third step of mounting the flexible printed wiring board held from the upper surface side to the bottom surface, and in the second step, from the lower surface side in the first step.
  • a holding step of holding one of the held flexible substrates from the upper surface side, and a release step of releasing the holding of the one flexible substrate from the lower surface side after the holding step. Are repeated for each of the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates, thereby holding the flexible printed wiring board from the upper surface side.
  • a plurality of flexible printed wiring boards can be held while maintaining either the upper surface side or the lower surface side of the plurality of flexible substrates.
  • the flexible printed wiring board can be held from the upper surface side of a plurality of flexible boards so that the relative positions of the flexible boards are the unfolded positions.
  • the flexible printing is performed by adsorbing the plurality of flexible substrates on a lower adsorption surface capable of adsorbing the plurality of flexible substrates.
  • the flexible printed wiring board is held from the lower surface side, and in the second step, the flexible printed wiring board is attracted from the upper surface side by adsorbing the plurality of flexible substrates to the upper suction surface on which the plurality of flexible substrates can be adsorbed. It is preferable to hold it. In this case, a plurality of strip-shaped flexible substrates can be appropriately held.
  • the first step is performed in the crossing direction in a state where the plurality of flexible substrates are lined up close to the crossing direction where the plurality of flexible substrates intersect in the longitudinal direction of the band.
  • the condensing photovoltaic power generation module is arranged so as to face the bottom surface of the housing, and the sunlight corresponds to the plurality of cells.
  • the second step further includes a condensing unit having a plurality of lens elements that condense light, and the second step is a relative position between the plurality of flexible substrates based on the relative positions of the plurality of lens elements in the condensing unit. It is preferable to further include an adjustment step for adjusting. In this case, by adjusting the relative positions of the plurality of flexible substrates, it is possible to adjust the relative positions of the plurality of cells on the flexible printed wiring board so as to match the relative positions of the plurality of lens elements. As a result, when arranging the condensing unit in the housing, the misalignment error that occurs between the positions of the plurality of lens elements and the positions of the plurality of cells arranged on the bottom surface can be reduced.
  • the condensing type solar power generation module further includes a plurality of packages for holding the plurality of cells on the upper surface of the plurality of flexible substrates.
  • An adhesive layer for adhering the flexible printed wiring board to the bottom surface is provided on at least one of the bottom surface and the flexible printed wiring board, and in the third step, the flexible printed wiring board and the bottom surface are provided.
  • the plurality of packages are selectively pressed toward the bottom surface with the adhesive layer interposed therebetween, and the flexible printed wiring board is mounted on the bottom surface.
  • the mounting portion on which the package is mounted can be adhered in a higher adhesion state than other portions other than the mounting portion.
  • the thermal resistance value of the mounted portion of the flexible substrate with respect to the housing can be made smaller than that of the other portions.
  • the positions on the substrate for acquiring the positions on the substrates of the plurality of cells in the plurality of flexible substrates before being deployed After the acquisition step and the position acquisition step on the substrate, it is determined whether or not to execute the second and subsequent steps based on the comparison result between the acquisition step and the position on the predetermined reference substrate.
  • the pre-determination step and may be further included. In this case, if the error of the position on the board with respect to the predetermined position on the reference board is out of the permissible range, the execution of the second and subsequent steps can be stopped, and the error of the position on the board is out of the permissible range. It is possible to prevent the flexible printed wiring board from being mounted.
  • the condensing photovoltaic power generation module is assembled using the housing to which the flexible printed wiring board is mounted.
  • An assembly step a deployment position acquisition step for acquiring the deployment positions of the plurality of cells after the plurality of flexible substrates are mounted on the bottom surface after the third step and before the assembly step, and After the unfolding position acquisition step, a post-deployment determination step of determining whether or not to execute the assembly step based on the comparison result between the unfolding position and a predetermined reference unfolding position may be further included. Good.
  • the execution of the assembly step can be stopped, and the housing having the light receiving portion whose unfolding position error is out of the permissible range is provided. It can be used to prevent assembly of the concentrating photovoltaic module.
  • another method of manufacturing the condensing type solar power generation device is a flexible printed wiring board having a housing and a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing.
  • a method for manufacturing a condensing type solar power generation device comprising a plurality of cells mounted on the upper surface of the plurality of flexible substrates and a printed circuit unit including an electric circuit related to the plurality of cells.
  • the flexible printed wiring board is such that the first step of holding the printed wiring board from the lower surface side of the plurality of flexible boards and the relative position between the plurality of flexible boards are the deployed positions when the printed wiring boards are deployed on the bottom surface.
  • the second step includes a second step of holding the flexible printed wiring board from the upper surface side and a third step of mounting the flexible printed wiring board held from the upper surface side on the bottom surface.
  • the first step is described.
  • the holding step of holding one of the plurality of flexible substrates held from the lower surface side from the upper surface side and the holding step the holding of the one flexible substrate from the lower surface side is released.
  • the release step for each of the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates the flexible printed wiring board is held from the upper surface side.
  • the manufacturing apparatus of the condensing type solar power generation module is a flexible printed wiring board having a housing and a plurality of strip-shaped flexible substrates deployed on the bottom surface of the housing.
  • a flexible solar power generation module manufacturing apparatus comprising a plurality of cells mounted on the upper surface of the plurality of flexible substrates and a printed circuit unit including an electric circuit relating to the plurality of cells.
  • the flexible printed wiring is such that the first holding mechanism for holding the printed wiring board from the lower surface side of the plurality of flexible substrates and the relative position between the plurality of flexible substrates are the deployed positions when the printed wiring boards are deployed on the bottom surface.
  • a second holding mechanism for holding the plate from the upper surface side and mounting the held flexible printed wiring board on the bottom surface, and a control unit for controlling the first holding mechanism and the second holding mechanism are provided.
  • the control unit has a holding operation in which the second holding mechanism holds one of the plurality of flexible substrates held by the first holding mechanism, and after the holding operation, the first holding mechanism performs the flexible substrate.
  • the first holding mechanism and the second holding mechanism are controlled so that the releasing operation of releasing the holding on one flexible substrate is repeated according to the arrangement order of the plurality of flexible substrates for each of the plurality of flexible substrates.
  • the second holding mechanism holds the flexible printed wiring board from the upper surface side.
  • FIG. 1 is a perspective view of an example of a condensing type photovoltaic power generation device as viewed from the light receiving surface side.
  • the photovoltaic power generation device 100 includes an array (the entire photovoltaic power generation panel) 1 having a shape continuous on the upper side and divided into left and right on the lower side, and a support device 2 thereof.
  • the array 1 is configured by arranging the modules 1M on a tracking mount (not shown) on the back side of the array 1.
  • the support device 2 includes a support column 21, a foundation 22, a two-axis drive unit 23, and a horizontal axis 24 serving as a drive axis.
  • the lower end of the support column 21 is fixed to the foundation 22, and the upper end is provided with a two-axis drive unit 23.
  • the foundation 22 is firmly buried in the ground so that only the upper surface can be seen. With the foundation 22 buried in the ground, the columns 21 are vertical and the horizontal axis 24 is horizontal.
  • the two-axis drive unit 23 can rotate the horizontal axis 24 in two directions, an azimuth angle (an angle centered on the support column 21) and an elevation angle (an angle centered on the horizontal axis 24).
  • the two-axis drive unit 23 rotates the horizontal axis 24 in the direction of the azimuth to rotate the array 1 in the direction of the azimuth, and rotates the horizontal axis 24 in the direction of the elevation angle to rotate the array 1.
  • the two-axis drive unit 23 rotates the array 1 so that the light receiving surface of the array 1 always faces the sun during the daytime. As a result, the array 1 performs the tracking operation of the sun.
  • FIG. 2 is a perspective view showing an example of the configuration of the concentrating photovoltaic power generation module 1M.
  • the module 1M includes, for example, a rectangular flat-bottomed container-shaped housing 11 made of metal or resin, and a condensing unit 12 attached on the housing 11 like a lid.
  • the light collecting unit 12 is configured by, for example, a resin primary lens (Fresnel lens) 12f attached to the back surface of one light-transmitting glass plate 12a.
  • a resin primary lens Resnel lens
  • each section of the illustrated square (14 ⁇ 10 in this example, but the quantity is only an example for explanation) is a primary lens 12f, which converges sunlight to the focal position. be able to.
  • one elongated flexible printed wiring board 13 is arranged so as to be aligned while changing the direction as shown in the drawing. ..
  • the flexible printed wiring board 13 has a relatively wide portion and a narrow portion.
  • the cell (not shown) is mounted on a wide area. The cells are arranged at positions corresponding to the respective optical axes of the Fresnel lens 12f.
  • a metal shielding plate 14 is attached between the flexible printed wiring board 13 and the light collecting unit 12.
  • the shielding plate 14 is formed with a square opening 14a similar to the square of the primary lens 12f at a position corresponding to the center of each primary lens 12f. If the array 1 accurately tracks the sun and the angle of incidence of the sunlight on the module 1M is 0 degrees, the light focused by the primary lens 12f can pass through the aperture 14a. When the tracking is significantly deviated, the collected light is shielded by the shielding plate 14. However, if the tracking deviation is slight, the focused light passes through the opening 14a.
  • FIG. 3 is a cross-sectional view showing a configuration example of the light receiving portion R of the condensing type photovoltaic power generation module. It should be noted that each part shown in FIG. 3 is enlarged as appropriate for the convenience of structural explanation, and is not necessarily a diagram proportional to the actual dimensions (the same applies to FIG. 4).
  • the light receiving portion R includes a secondary lens 30, a support portion 31, a package portion 38, a cell 33, a lead frame (P side) 34, a gold wire 35, a lead frame 36 (N side), and a sealing portion. It is equipped with 37.
  • the light receiving portion R is mounted on the flexible printed wiring board 13.
  • a bypass diode is connected to the cell 33 in parallel, but the illustration is omitted here.
  • the secondary lens 30 is, for example, a ball lens.
  • the secondary lens 30 is supported by the inner peripheral edge 31e of the upper end portion of the support portion 31 so as to form a gap in the optical axis Ax direction with the cell 33.
  • the support portion 31 is, for example, cylindrical and is made of resin or glass.
  • the support portion 31 is fixed on the flat package portion 38.
  • the package portion 38 is made of resin and holds the cell 33 together with the lead frames 34 and 36 thereof.
  • the output of the cell 33 is drawn out to the lead frame 34 on the P side and to the lead frame 36 via the gold wire 35 on the N side.
  • the sealing portion 37 is a light-transmitting silicone resin, and is provided so as to fill the space formed between the secondary lens 30 and the cell 33 inside the support portion 31.
  • the upper end portion of the support portion 31 has a form in which the end surface 31a is expanded to the outside of the secondary lens 30 with the optical axis Ax as the center.
  • a washer-shaped metal protective plate may be placed on the end face 31a.
  • the support unit 31 and the package unit 38 may be referred to as a package 32.
  • FIG. 4 is a cross-sectional view showing an example of a condensing photovoltaic power generation unit 1U as a basic configuration of an optical system for concentrating power generation constituting the module 1M.
  • the condensing type solar power generation unit 1U faces the sun and the incident angle of the sunlight is 0 degrees
  • the secondary lens 30 and the cell of the light receiving unit R are placed on the optical axis Ax of the primary lens 12f.
  • the light collected by the primary lens 12f passes through the opening 14a of the shielding plate 14, is taken into the secondary lens 30 of the light receiving portion R, and is guided to the cell 33.
  • FIG. 5 is a diagram showing an example of the prototype 13A of the flexible printed wiring board 13 before unfolding.
  • this prototype 13A includes 140 light receiving portions R, and when expanded, corresponds to the total number of primary lenses 12f (FIG. 2).
  • the quantity is only an example, and in short, a flexible printed wiring board 13 on which the number of light receiving portions R corresponding to the total number of the primary lenses 12f is mounted is required.
  • the three directions orthogonal to each other shown in FIG. 5 are the X direction, the Y direction, and the Z direction.
  • the light receiving portion R and the like have a constant height in the Z direction, but the overall shape is in the form of a single sheet on the XY plane.
  • the electrical connection is separated between the upper half and the lower half in the Y direction, and is composed of the prototype 13A1 in the upper half and 13A2 in the lower half.
  • the prototype 13A1 in the upper half is provided with ten strip-shaped flexible substrates 131 extending in the X direction and close to each other in the Y direction.
  • the 10 pieces are electrically connected in series while changing direction so as to fold back at the left end and the right end as a whole.
  • a wide portion 131w having a relatively wide width in the Y direction is formed at a portion where the light receiving portion R is mounted, and the width is relatively wide between two light receiving portions R adjacent to each other in the X direction. It is a narrow narrow portion 131n.
  • the lower half prototype 13A2 is also configured in the same manner, and the entire prototype 13A includes 20 flexible substrates 131.
  • the two flexible substrates 131 adjacent to each other in the Y direction are displaced from each other in the position of the wide portion 131w in the X direction, whereby 20 flexible substrates 131 are densely packed as a whole, and manufacturing with good yield is achieved. It is possible.
  • the folded portion 131c at the left end and the right end is folded with the same width as the narrow portion 131n, and by utilizing the thinness, it can be freely expanded in the Y direction and shifted in the X direction to form the prototype 13A (13A1). , 13A2) can be developed into a desired shape.
  • connection bands 131b extending in the Y direction connect the 20 flexible substrates 131 to each other in a state where they are lined up in close proximity to each other.
  • the entire prototype 13A including the 20 flexible substrates 131 becomes a single sheet, which facilitates handling.
  • the margins 131x at the left and right ends are attached due to manufacturing necessity, and are cut off before mounting the prototype 13A as a flexible printed wiring board.
  • FIG. 6 is a perspective view of a part of the prototype 13A of the flexible printed wiring board 13 seen from diagonally above.
  • the connection band 131b is shown with diagonal lines.
  • the light receiving portion R mounted on the upper surface 131s of the flexible substrate 131 at equal intervals in the X direction, and the printed circuit portion 131p including the electric circuit related to the light receiving portion R. Is implemented.
  • a bypass diode 39 which is also a part of the printed circuit unit 131p, is provided near the light receiving unit R.
  • the flexible substrate 131 is folded back at the end in the X direction, the polarities of the two adjacent flexible substrates 131 are opposite to each other.
  • FIG. 7 is a YY cross-sectional view at a portion of the connecting band 131b.
  • X, Y, and Z in the three orthogonal directions are common to FIG.
  • the narrow portion 131n of the flexible substrate 131 has, for example, a configuration in which a copper pattern 1311 on the back surface, an insulating base portion 1312 made of polyimide, a copper pattern 1313 on the front surface side, an adhesive layer 1314, and a coverlay 1315 made of polyimide are laminated.
  • the connection band 131b is configured by, for example, expanding the insulating base portion 1312, the adhesive layer 1314, and the coverlay 1315 as they are.
  • FIG. 8 is a diagram schematically showing the configuration of the wiring board mounting device and its operation.
  • the wiring board mounting device 40 deploys the set base 41 holding the flexible printed wiring board 13 and the flexible printed wiring board 13 held on the set base 41 to expand the housing 11.
  • a suction unit 42 mounted on the bottom surface 11b of the above and a control device 43 for controlling these are provided.
  • the set base 41 has a function of holding the prototype 13A (flexible printed wiring board 13) on the upper surface side.
  • the suction unit 42 has a function of sucking and holding the flexible printed wiring board 13 held on the set base 41 on the lower surface side. Further, the suction unit 42 holds the flexible printed wiring board 13 so that the relative positions of the plurality of flexible substrates 131 are the deployed positions when the plurality of flexible substrates 131 are deployed on the bottom surface 11b of the housing 11.
  • the set base 41 when the direction along the longitudinal direction of the prototype 13A is the X direction, the direction along the width direction of the prototype 13A is the Y direction, and the vertical direction is the Z direction, the set base 41 The upper surface of the flexible printed wiring plate 13 and the lower surface of the suction unit 42 holding the flexible printed wiring plate 13 are in a horizontal state along the XY plane. Further, the set table 41 can be arbitrarily moved in each direction while maintaining the upper surface in a horizontal state.
  • the control device 43 is composed of a computer including a processor, a storage device, and the like.
  • the function of the control device 43 is realized by the processor executing a program stored in the storage device, a recording medium, or the like.
  • the control device 43 has a function of controlling the set base 41 and the suction unit 42. By controlling the set base 41 and the suction unit 42, the control device 43 can execute the work of mounting the flexible printed wiring board 13 on the bottom surface 11b.
  • a housing 11 is arranged below the suction unit 42 in place of the set base 41 as shown in FIG. 8B.
  • the control device 43 attaches the flexible printed wiring board 13 held by the suction unit 42 to the bottom surface 11b of the housing 11.
  • An adhesive tape is previously attached to the bottom surface 11b corresponding to the position where the flexible substrate 131 is mounted.
  • the flexible printed wiring board 13 is attached to the bottom surface 11b by this adhesive tape.
  • the suction unit 42 holds the flexible printed wiring board 13 so that the relative positions of the plurality of flexible substrates 131 are the deployed positions when the plurality of flexible substrates 131 are deployed on the bottom surface 11b of the housing 11. Therefore, the flexible printed wiring board 13 (a plurality of flexible substrates 131) mounted on the bottom surface 11b by the suction unit 42 is in an unfolded state as shown in FIG. 8C.
  • FIG. 9 is a flowchart showing an example of a mounting operation process for mounting the flexible printed wiring board 13 on the bottom surface 11b of the housing 11 of the module 1M.
  • the control device 43 controls the set base 41 and the suction unit 42 to execute the mounting operation.
  • FIG. 10A is a perspective view showing an example of the set base 41 before holding the prototype 13A.
  • the set base 41 is a device (first holding mechanism) for holding the prototype 13A (flexible printed wiring board 13) from the lower surface 131t side of the flexible substrate 131.
  • the direction along the longitudinal direction of the prototype 13A is the X direction
  • the direction along the width direction of the prototype 13A is the Y direction.
  • the set base 41 is, for example, a member made of metal, and is formed in a rectangular shape so as to hold almost the entire area of the prototype 13A from below.
  • a recess 45 is provided on the upper surface of the set base 41.
  • the recess 45 extends in the direction along the X direction, and positions the prototype 13A in the Y direction.
  • the bottom surface 45a of the recess 45 is provided with a convex portion (not shown) along the outer shape (including the hole) of the prototype body 13A. This convex portion is used to position the prototype 13A in the X direction.
  • the prototype 13A is arranged on the upper surface side of the set base 41 so as to match the concave portion 45 and the convex portion. As a result, the prototype 13A is positioned in the X direction and the Y direction with respect to the set base 41.
  • the bottom surface 45a is provided with a large number of suction ports 45b for sucking and holding the prototype 13A.
  • the suction port 45b is connected to a suction pump or the like (not shown).
  • the suction port 45b guides the suction force due to the negative pressure generated by the suction pump to the bottom surface 45a.
  • the bottom surface 45a of the set base 41 attracts and holds the prototype 13A by the suction force of the suction port 45b.
  • the suction port 45b is provided corresponding to each of the plurality of flexible substrates 131 constituting the prototype 13A. Further, the suction port 45b can control whether or not suction is performed corresponding to each of the plurality of flexible substrates 131.
  • the set base 41 can individually hold and release the holding of the plurality of flexible substrates 131. In this way, the set base 41 holds the flexible printed wiring board 13 by sucking the plurality of flexible substrates 131 on the bottom surface 45a (lower suction surface). The holding by the set base 41 and the release of the holding are controlled by the control device 43.
  • step S1 the operator first places the prototype 13A in the recess 45 of the set table 41.
  • the set base 41 attracts the prototype body 13A by the bottom surface 45a based on the control by the control device 43, and the prototype body 13A is attached to the lower surface of the plurality of flexible substrates 131. Hold from the 131t side.
  • FIG. 10B is a perspective view showing a state in which the prototype 13A is held on the set table 41. Also in FIG. 10B, the direction along the longitudinal direction of the prototype 13A is the X direction, and the direction along the width direction of the prototype 13A is the Y direction. The folded-back portion 131c and the margin portion 131x of the prototype body 13A protrude from the end surface 41b of the set base 41 while being held by the set base 41.
  • step S1 in FIG. 9 the control device 43 disconnects the connection band 131b (step S2 in FIG. 9).
  • the wiring board mounting device 40 has a function of cutting the connection band 131b held by the set base 41, and the control device 43 cuts the connection band 131b by the cutting function.
  • FIG. 11 is a diagram showing a state in which the connection band 131b of the prototype body 13A is cut. As shown in FIG. 11, the flexible substrates 131 are separated from each other by cutting the connection band 131b between two adjacent flexible substrates 131, for example, in the middle in the Y direction.
  • each flexible substrate 131 is held by the bottom surface 45a of the set table 41. Therefore, even if each flexible substrate 131 is separated, each flexible substrate 131 maintains the state of being held by the set table 41 and does not move from the held position. That is, the flexible printed wiring board 13 held on the set base 41 is arranged before deployment in which a plurality of flexible substrates 131 are close to each other.
  • the prototype 13A is held on the set base 41, and then the connection band 131b is cut to obtain the flexible printed wiring board 13 before deployment in the state held on the set base 41. be able to.
  • the prototype 13A is easier to handle than the flexible printed wiring board 13 in which a plurality of flexible substrates 131 are separated.
  • the flexible printed wiring board 13 having a plurality of flexible substrates 131 can be appropriately held. Therefore, the flexible printed wiring board can be easily held.
  • step S3 in FIG. 9 the control device 43 cuts off the margin 131x (step S3 in FIG. 9).
  • the wiring board mounting device 40 has a function of cutting the margin portion 131x held by the set table 41, and the control device 43 cuts the margin portion 131x by the cutting function.
  • the margin portion 131x protrudes from the end surface 41b of the set base 41 (FIG. 10B). Therefore, the margin 131x can be easily cut off while the flexible printed wiring board 13 is held on the set table 41.
  • FIG. 12A is a perspective view showing an example of the suction unit 42.
  • FIG. 12A shows a view of the suction unit 42 when viewed from below.
  • the suction unit 42 (second holding mechanism) includes a main body 51 and a plurality of suction blocks 50 attached to the main body 51. Each of the plurality of suction blocks 50 sucks and holds one flexible substrate 131.
  • the suction unit 42 shown in FIG. 12A includes 10 suction blocks 50 and holds the flexible printed wiring board 13 obtained from the prototype 13A1 (13A2) including the 10 flexible substrates 131. That is, the suction unit 42 shown in FIG. 12A holds one of the pair of flexible printed wiring boards 13 mounted on the right half and the left half of the housing 11 shown in FIG.
  • a plurality of suction ports 53 are provided on the lower surface 50a of the plurality of suction blocks 50.
  • the suction port 53 is connected to a suction pump or the like (not shown).
  • the suction port 53 guides the suction force due to the negative pressure generated by the suction pump to the lower surface 50a.
  • the lower surfaces of the plurality of suction blocks 50 suck and hold the flexible substrate 131 by the suction force of the suction port 53.
  • the suction port 53 is provided corresponding to the wide portion 131w of the flexible substrate 131. Therefore, the suction block 50 shown in FIG. 12A is provided with seven suction ports 53.
  • FIG. 12B is a cross-sectional view showing a portion of the suction port 53 of the suction block 50, showing a state in which the flexible substrate 131 is sucked and held.
  • the suction port 53 is provided corresponding to the wide portion 131w, and accommodates the light receiving portion R mounted on the wide portion 131w.
  • the suction block 50 can suck the wide portion 131w while preventing the light receiving portion R protruding from the upper surface 131s of the flexible substrate 131 from coming into contact with the lower surface 50a.
  • the suction unit 42 holds the flexible printed wiring board 13 by sucking the plurality of flexible substrates 131 on the lower surfaces 50a (upper suction surfaces) of the plurality of suction blocks 50.
  • the portion of the suction block 50 other than the portion corresponding to the wide portion 131w is shaped so as to avoid interference with the flexible substrate 131 other than the flexible substrate 131 to which the suction block 50 is sucked. As a result, the suction block 50 can suck one flexible substrate 131 from a plurality of flexible substrates 131 close to each other.
  • the plurality of suction blocks 50 are arranged so that the relative positions of the plurality of held flexible substrates 131 are the deployed positions when the plurality of flexible substrates 131 are deployed on the bottom surface 11b.
  • the suction unit 42 can hold the flexible printed wiring board 13 from the upper surface 131s side of the plurality of flexible boards 131 so that the relative positions of the plurality of flexible boards 131 are the deployment positions. That is, if the suction unit 42 holds the flexible printed wiring board 13, a plurality of flexible substrates 131 can be deployed.
  • each of the plurality of suction blocks 50 is attached to the main body 51 via a linear actuator.
  • the plurality of suction blocks 50 can be individually moved in the vertical direction (Z direction orthogonal to the X direction and the Y direction) by a linear actuator.
  • the suction unit 42 moves one of the plurality of suction blocks 50 downward and sucks one flexible substrate 131.
  • the control device 43 moves the set base 41 holding the flexible substrate 131 below the suction unit 42, and the suction unit 43, as shown in FIG. 12A.
  • the lower surface of the 42 (the lower surface 50a of the plurality of suction blocks 50) and the upper surface of the set table 41 face each other.
  • FIG. 13 is a diagram for explaining a procedure when the suction unit 42 sucks the flexible substrate 131 held on the set table 41.
  • the direction along the longitudinal direction of the flexible printed wiring board 13 (set base 41) is the X direction
  • the direction along the width direction of the flexible printed wiring board 13 is the Y direction
  • the directions orthogonal to the X direction and the Y direction are Z.
  • the direction. First, as shown in FIG. 13A, the set table 41 is moved below the suction unit 42, and is on the horizontal plane (XY plane) of the flexible substrate 131 at the right end of the paper surface among the plurality of flexible substrates 131. Align the position with the position for suction to the suction block 501 on the right edge of the paper surface.
  • the suction block 501 holds one flexible substrate 131 from the upper surface 131s side (holding step).
  • the one flexible substrate 131 held by the suction block 501 is also held by the set table 41 from the lower surface 131t side.
  • the holding by the set base 41 on the one flexible substrate 131 held by the suction block 501 is released (release step), and as shown in (c) in FIG. 13, one flexible substrate 131 is sucked.
  • the suction block 501 is raised to the original position. At least one end of each flexible substrate 131 is connected to the adjacent flexible substrate 131 via the folded-back portion 131c. Therefore, when the suction unit 42 sucks the flexible substrate 131 of the set base 41, the distance between the suction unit 42 and the set base 41 is within the range of the length that the folded-back portion 131c connecting the adjacent flexible boards 131 can reach. Is set to.
  • the suction block 501 When the suction block 501 sucks one flexible substrate 131 and rises to the original position, the set table 41 is moved in the horizontal direction, and the horizontal plane of the flexible substrate 131 arranged next to the flexible substrate 131 sucked by the suction block 501. The upper position is aligned with the position for suction to the suction block 502 arranged next to the suction block 501 ((d) in FIG. 13).
  • one flexible substrate 131 is sucked onto the suction block 502.
  • the above procedure is repeated for each of the plurality of flexible substrates 131 according to the arrangement order of the plurality of flexible substrates 131.
  • one flexible substrate 131 can be adsorbed to each of the plurality of adsorption blocks 50.
  • FIG. 14 is a view of the suction unit 42 in a state where the plurality of suction blocks 50 each suck one flexible substrate 131 as viewed from below.
  • the suction unit 42 holds the flexible printed wiring board 13 so that the relative positions of the plurality of flexible substrates 131 are the deployment positions.
  • the control device 43 sucks and deploys the flexible printed wiring board 13 by the suction unit 42.
  • the flexible printed wiring board 13 before deployment is held from the lower surface 131t side of the plurality of flexible boards 131, either the upper surface 131s side or the lower surface 131t side of one flexible board 131 is held.
  • the flexible printed wiring board 13 can be held from the upper surface 131s side of the plurality of flexible boards 131 so that the relative positions of the plurality of flexible boards 131 are the deployment positions.
  • the plurality of flexible substrates 131 which are thin strip-shaped objects, can be deployed and the plurality of deployed flexible substrates can be mounted on the bottom surface 11b with high accuracy and easily.
  • the man-hours required for manufacturing the module 1M can be reduced, and the manufacturing cost can be reduced.
  • the set base 41 attracts a plurality of flexible substrates 131 to the bottom surface 45a to hold the flexible printed wiring board 13, and the suction unit 42 has a plurality of flexible substrates 50a to the bottom surface 50a of the suction block 50. Since the flexible printed wiring board 13 is held by adsorbing the substrate 131, it is possible to appropriately hold a plurality of flexible substrate 131 which are thin strip-shaped objects.
  • control device 43 attaches the flexible printed wiring board 13 to the bottom surface 11b of the housing 11 by the suction unit 42 (step S5 in FIG. 9: third step).
  • the attachment of the flexible printed wiring board 13 by the suction unit 42 is as described above. That is, the flexible printed wiring board 13 held by the suction unit 42 is brought into contact with the bottom surface 11b of the housing 11 and mounted. At this time, the positional relationship between the suction unit 42 and the housing 11 is controlled by the control device 43, and the flexible printed wiring board 13 is mounted at a predetermined position on the bottom surface 11b. When the flexible printed wiring board 13 is mounted at a predetermined position on the bottom surface 11b, the control device 43 releases the holding of the flexible printed wiring board 13.
  • the control device 43 uses the inspection function of the wiring board mounting device 40. Then, it is inspected whether or not the positions of the light receiving portions R of the plurality of flexible substrates 131 are appropriate positions (step S6 in FIG. 9), and the mounting operation is completed.
  • the housing 11 to which the flexible printed wiring board 13 is mounted is assembled as a module 1M by making necessary wiring in the process after the mounting work, attaching the shielding plate 14, the light collecting portion 12, and the like.
  • the module 1M assembled in this way is incorporated as a component of the photovoltaic power generation device 100.
  • FIG. 15 is a perspective view showing a part of the suction unit 42 used in the method of mounting the flexible printed wiring board according to the second embodiment.
  • the plurality of suction blocks 50 included in the suction unit 42 of the present embodiment are provided so as to be movable in the X direction and in the Y direction in addition to being movable in the Z direction, and are held by the plurality of suction blocks 50. It differs from the first embodiment in that the relative positions of the plurality of flexible substrates 131 can be finely adjusted.
  • the suction unit 42 includes a linear actuator for moving each suction block 50 in the Z direction, a linear actuator 55 for translating each suction block 50 in the X direction, and parallel movement of each suction block 50 in the Y direction.
  • a linear actuator 56 is provided for the operation.
  • the linear actuators 55 and 56 are provided in each of the suction blocks 50. The linear actuators 55 and 56 can move the suction block 50 by several millimeters to several centimeters.
  • the relative positions of the plurality of suction blocks 50 can be adjusted by the linear actuators 55 and 56 while maintaining the basic arrangement.
  • the linear actuators 55 and 56 are controlled by the control device 43.
  • the control device 43 stores the initial positions of the plurality of suction blocks 50 determined in advance by design values and the like, and at the time of starting the work, the linear actuators 55 and 56 so that the plurality of suction blocks 50 are in the initial positions. To control.
  • FIG. 16 is a flowchart showing an example of a process of mounting the flexible printed wiring board 13 according to the second embodiment.
  • the flowchart shown in FIG. 16 is the flowchart according to the first embodiment shown in FIG. 9 in that step S0 is provided before step S1 and that step S41 and step S42 are included in step S4. It's different. Since the other steps are the same as the flowchart according to the first embodiment, the description thereof will be omitted.
  • the flowchart of FIG. 16 shows the mounting work executed by the control device 43 of the wiring board mounting device 40, similarly to the flowchart of FIG. First, the control device 43 that has started the mounting work first receives the lens position information (step S0 in FIG. 16).
  • the lens position information is information indicating the relative positions of a plurality of Fresnel lenses 12f (lens elements) possessed by the condensing unit 12 (see FIG. 2).
  • the relative positions of the plurality of Fresnel lenses 12f are acquired, for example, based on an image captured by a camera or the like of the condensing unit 12 on which the plurality of Fresnel lenses 12f are formed. For example, from the captured image, a feature portion indicating the outer shape of the Fresnel lens 12f, such as the center point and outer contour of each of the plurality of Fresnel lenses 12f, is specified, and the relative positions of the plurality of Fresnel lenses 12f are acquired from the position of the feature portion. To.
  • the relative position of the plurality of Fresnel lenses 12f is represented by, for example, the coordinates when the position of one Fresnel lens 12f among the plurality of Fresnel lenses 12f is used as a reference. That is, the lens position information is the coordinates indicating the position of each Fresnel lens 12f.
  • the lens position information may include the coordinates of all of the plurality of Fresnel lenses 12f, or may include the coordinates of some of the Fresnel lenses 12f among the plurality of Fresnel lenses 12f.
  • step S4 includes two steps of suction and deployment of the flexible printed wiring board 13 (step S41) and position adjustment of the plurality of suction blocks 50 (step S42: adjustment step).
  • step S41 performs the same process as step S4 in FIG. Therefore, in step S41, the control device 43 sucks and deploys the flexible printed wiring board 13 by the suction unit 42. Next, the control device 43 controls the linear actuators 55 and 56 while holding the flexible printed wiring board 13, and adjusts the positions of the plurality of suction blocks 50 (step S42 in FIG. 16). At this time, the control device 43 adjusts the positions of the plurality of suction blocks 50 based on the lens position information (relative positions of the plurality of Fresnel lenses 12f).
  • the plurality of Fresnel lenses 12f included in the condensing unit 12 condense sunlight corresponding to the plurality of light receiving units R (cells 33). Therefore, it is necessary to position the condensing unit 12 and the housing 11 so that the positions of the plurality of Fresnel lenses 12f correspond to the positions of the plurality of light receiving units R.
  • the plurality of Fresnel lenses 12f included in the condensing unit 12 may have variations in relative positions in the process of forming the plurality of Fresnel lenses 12f.
  • the plurality of Fresnel lenses 12f are integrally provided as the condensing unit 12. , The plurality of Fresnel lenses 12f cannot be individually positioned, and there is a possibility that the positions of the plurality of Fresnel lenses 12f and the positions of the plurality of light receiving portions R cannot be properly aligned so as to correspond to each other.
  • the relative positions of the plurality of flexible boards 131 are adjusted by adjusting the positions of the plurality of suction blocks 50 that suck the plurality of flexible boards 131, and the flexible printed wiring board when deployed is used.
  • the relative positions of the plurality of light receiving portions R on the 13 are adjusted so as to match the relative positions of the plurality of Fresnel lenses 12f.
  • the control device 43 stores the relative positions of the plurality of light receiving units R (cells 33) on the flexible printed wiring board 13 when the flexible printed wiring board 13 is deployed by the plurality of suction blocks 50 at the initial positions. ..
  • the control device 43 compares the relative positions of the Fresnel lenses 12f indicated by the lens position information with the relative positions of the light receiving units R developed at the initial positions, and compares the positions of the Fresnel lenses 12f corresponding to each other with the light receiving units R.
  • the positions of the plurality of suction blocks 50 so as to minimize the misalignment error with the position of are obtained.
  • the control device 43 controls the linear actuators 55 and 56 and adjusts the positions of the plurality of suction blocks 50 so as to be obtained.
  • the relative positions of the plurality of flexible substrates 131 are relative to each other so that the relative positions of the plurality of light receiving portions R on the flexible printed wiring board 13 when deployed are aligned with the relative positions of the plurality of Fresnel lenses 12f indicated by the lens position information.
  • the position can be adjusted.
  • control device 43 attaches the flexible printed wiring board 13 to the housing 11 by the suction unit 42 (step S5 in FIG. 16), and inspects the housing 11 (in FIG. 16). Step S6), the work is completed.
  • step S41 in FIG. 16 after the suction unit 42 sucks and deploys the flexible printed wiring board 13 (step S41 in FIG. 16), the positions of the plurality of suction blocks 50 are adjusted (step S42 in FIG. 16).
  • step S42 may be performed at a timing before step S41.
  • FIG. 17 is a partial cross-sectional view of the suction block 50 used in the method of mounting the flexible printed wiring board according to the third embodiment, and shows a state in which the flexible substrate 131 is sucked and held.
  • FIG. 17 shows a cross section of the suction block 50 along the longitudinal direction (X direction).
  • the suction block 50 of the present embodiment is different from the suction block 50 of the first embodiment in that it includes a pressing portion 65 for pressing the light receiving portion R.
  • the suction block 50 includes a square columnar block body 60 and a plurality of pressing portions 65.
  • the block body 60 is provided with a plurality of cylindrical hole-shaped suction ports 53.
  • the suction port 53 penetrates from the lower surface 60a of the block body 60 to the upper surface 60b.
  • the lower surface 60a of the block body 60 constitutes the lower surface 50a of the suction block 50.
  • the pressing portion 65 is inserted into the suction port 53.
  • the pressing portion 65 is a cylindrical rod-shaped member, and is provided so as to be movable in the Z direction with respect to the block main body 60.
  • the pressing portion 65 is driven by the actuator 66.
  • the actuator 66 is controlled by the control device 43.
  • the suction block 50 sucks the flexible substrate 131
  • the pressing portion 65 is arranged so as to be above the lower surface 60a, and a space for accommodating the light receiving portion R inside the suction port 53 is secured.
  • the suction block 50 can suck the flexible substrate 131 while accommodating the light receiving portion R inside the suction port 53, and can hold the flexible substrate 131 on the lower surface 50a.
  • the suction block 50 sucks the flexible substrate 131
  • the inside of the suction port 53 is made a negative pressure to suck the flexible substrate 131. Therefore, the pressing portion 65 is movable with and from the block main body 60 while maintaining airtightness.
  • the lower surface 65a of the pressing portion 65 is provided with a cylindrical hole portion 65b recessed in the axial direction from the lower surface 65a. Therefore, the lower surface 65a is composed of the hole 65b and the end surface 65c around the hole 65b.
  • the inner diameter of the hole 65b is larger than the outer diameter of the secondary lens 30 of the light receiving portion R. As a result, it is possible to prevent the secondary lens 30 of the light receiving portion R housed inside the suction port 53 from coming into contact with the pressing portion 65.
  • the inner diameter of the hole portion 65b is smaller than the outer diameter of the package 32 of the light receiving portion R. Therefore, the end surface 65c can be brought into contact with the upper surface end portion 32a of the package 32. Therefore, when the pressing portion 65 is moved downward, the package 32 can be pressed downward without pressing the secondary lens 30 of the light receiving portion R.
  • FIG. 18 is a diagram showing an embodiment when the flexible substrate 131 is mounted on the bottom surface 11b of the housing 11 by the suction block 50 of the present embodiment.
  • FIG. 18 shows the aspect of step S5 in FIG. 9 in this embodiment.
  • the control device 43 moves the suction unit 42 onto the bottom surface 11b of the housing 11 and XY with respect to the housing 11. It is arranged at a predetermined position on a plane (step S5 in FIG. 9).
  • FIG. 18A shows a state in which the suction block 50 (suction unit 42) holding the flexible printed wiring board 13 (flexible substrate 131) is arranged at a predetermined position on the bottom surface 11b of the housing 11.
  • An adhesive layer 70 made of an adhesive tape, an adhesive, or the like having heat dissipation is provided on the bottom surface 11b of the housing 11.
  • the adhesive layer 70 is provided to bond the flexible substrate 131 (flexible printed wiring board 13) to the bottom surface 11b. Further, due to its heat dissipation property, the adhesive layer 70 can release the heat of the light receiving portion R whose temperature rises due to the irradiation of sunlight to the housing 11.
  • the control device 43 lowers the suction block 50 (suction unit 42) along the Z direction to bring the flexible substrate 131 into contact with the adhesive layer 70 on the bottom surface 11b.
  • the adhesive layer 70 is interposed between the flexible substrate 131 and the bottom surface 11b.
  • the control device 43 releases the holding of the flexible substrate 131 by making the inside of the suction port 53 a positive pressure.
  • the control device 43 raises the block body 60 in a state where the end surface 65c of the pressing portion 65 is in contact with the upper surface end portion 32a of the package 32 of the light receiving portion R. Let me. As a result, the control device 43 separates the block main body 60 from the flexible substrate 131.
  • the control device 43 operates the pressing portion 65 in a state where the block main body 60 is separated from the flexible substrate 131, and presses the upper surface end portion 32a of the package 32 with a predetermined pressing load. Press. As a result, the control device 43 selectively presses only the package 32 of the flexible substrate 131 (flexible printed wiring board 13) toward the bottom surface 11b. The control device 43 selectively presses only the package 32 and presses the flexible substrate 131 against the adhesive layer 70. As a result, the flexible substrate 131 is adhered to the bottom surface 11b via the adhesive layer 70. After that, as shown in (c) in FIG. 18, the control device 43 raises the suction block 50 and finishes mounting the flexible printed wiring board 13.
  • the flexible substrate 131 (flexible printed wiring board 13) is mounted on the bottom surface 11b of the housing 11 (third step in FIG. 9), the flexible substrate 131 and the bottom surface 11b are attached to each other.
  • the package 32 is selectively pressed with the adhesive layer 70 interposed therebetween, and the flexible substrate 131 is adhered to the bottom surface 11b.
  • the wide portion 131w (mounting portion) on which the package 32 is mounted can be adhered in a higher adhesion state than other portions (narrow portion 131n) other than the wide portion 131w.
  • the layer thickness of the adhesive layer 70 corresponding to the wide portion 131w can be made thinner than the layer thickness of the adhesive layer 70 corresponding to the narrow portion 131n.
  • the thermal resistance value between the wide portion 131w and the housing 11 can be made smaller than that between the narrow portion 131n and the housing 11. Therefore, the heat dissipation of the wide portion 131w can be improved, and the heat of the light receiving portion R whose temperature rises due to the irradiation of sunlight can be efficiently dissipated to the housing 11.
  • the wide portion 131w can be adhered more firmly than the narrow portion 131n, and a stress that pulls the wide portion 131w is generated in the narrow portion 131n. It can be suppressed.
  • the adhesive layer 70 is provided on the bottom surface 11b of the housing 11 is illustrated, but the adhesive layer may be provided on the flexible substrate 131 side, or the adhesive layer may be provided on both the bottom surface 11b and the flexible substrate 131. It may be provided.
  • the pressing load when the pressing portion 65 presses one package 32 is preferably 2.5 kgf or more and 5.0 kgf or less.
  • FIG. 19 is a graph showing the relationship between the pressing load when the pressing portion 65 presses the package 32 and the thermal resistance value between the package 32 and the housing 11.
  • FIG. 19 shows the measured values obtained by measuring the thermal resistance values when the pressing load is approximately 0 kgf, 2.5 kgf, and 5 kgf. These measured values are the measured thermal resistance values when one package 32 is pressed by the pressing portion 65 and the flexible substrate 131 is adhered to the bottom surface 11b of the housing 11.
  • the external dimensions of the package 32 are, for example, a rectangular shape of about 6 mm ⁇ about 6 mm.
  • the thermal resistance values are both 6 to 6.5 ° C./W.
  • the thermal resistance value was about 7.7 ° C./W. From this result, it can be seen that the thermal resistance value can be reduced if the pressing load is 2.5 kgf or more. Further, if the pressing load is 10 kgf or more, the package 32 may be damaged. On the other hand, if the pressing load is set to be smaller than 10 kgf, the package 32 will not be damaged.
  • the pressing load is preferably 2.5 kg or more and 5 kgf or less, and by setting in this way, the thermal resistance value can be made relatively small, and the package 32 is damaged when the package 32 is pressed. Can be suppressed.
  • FIG. 20 is a flowchart showing an example of a process of mounting the flexible printed wiring board 13 according to the fourth embodiment.
  • the flowchart shown in FIG. 20 shows that step S11 and step S12 are provided between step S1 and step S2, and that step S20 is provided after step S5, and that step S6 is replaced. It is different from the flowchart according to the first embodiment shown in FIG. 9 in that steps S21 and S22 are provided. Other than that, the same as the flowchart according to the first embodiment, and thus the description thereof will be omitted.
  • the flowchart of FIG. 20 shows the mounting work executed by the control device 43 of the wiring board mounting device 40, similarly to the flowchart of FIG.
  • the control device 43 which has started the mounting operation, first holds the prototype 13A by the set base 41 (step S1 in FIG. 9). Next, the control device 43 acquires the positions on the substrate of the plurality of light receiving units R (cells 33) mounted on the prototype 13A (step S11: position acquisition step on the substrate).
  • the position on the substrate is a position in the wide portion 131w of the light receiving portion R (cell 33) mounted on the wide portion 131w in the prototype 13A (flexible printed wiring board 13 before deployment).
  • FIG. 21 is a diagram for explaining an aspect when acquiring the position of the light receiving portion R on the substrate.
  • the camera 75 is installed on the set table 41 that holds the prototype 13A.
  • the prototype 13A is imaged by the camera 75.
  • the control device 43 takes an image of the prototype 13A by the camera 75. Further, the control device 43 identifies a feature portion indicating the outer shape of the wide portion 131w and the light receiving portion R, such as the outer contour of the wide portion 131w and the outer contour of the secondary lens 30 of the light receiving portion R and the package 32, from the captured image. Then, the position of the light receiving portion R on the substrate on the wide portion 131w is acquired from the position of the feature portion. The position of the light receiving portion R on the substrate is represented by, for example, the relative coordinates set in the wide portion 131w.
  • step S12 pre-deployment determination step.
  • the control device 43 compares the position on the substrate of each light receiving unit R with a predetermined position on the reference substrate, and whether the error of the position of each light receiving unit R on the substrate with respect to the position on the reference substrate is within a preset allowable range. Judge whether or not.
  • the predetermined position on the reference substrate is a design position of the light receiving portion R on the wide portion 131w.
  • step S12 the control device 43 determines whether or not to execute the operations of the second and subsequent steps based on the comparison result between the position on the substrate of each light receiving unit R and the position on the predetermined reference substrate. decide.
  • the control device 43 stops the subsequent work. Therefore, it is possible to prevent the flexible printed wiring board 13 from being mounted by using the prototype 13A having the light receiving portion R whose position error on the substrate is out of the permissible range. As a result, when the flexible printed wiring board 13 is mounted on the bottom surface 11b, the light receiving portion R can be accurately arranged on the bottom surface 11b.
  • Step S20 in FIG. 20 Deployment position acquisition step.
  • the unfolded position is the position of the light receiving portion R (cell 33) on the bottom surface 11b after the flexible printed wiring board 13 is unfolded and mounted on the bottom surface 11b of the housing 11.
  • the unfolded position of the light receiving portion R of the flexible printed wiring board 13 mounted on the housing 11 is acquired based on the captured image captured by the camera, as in the case of acquiring the position on the substrate. That is, the control device 43 arranges the camera above the housing 11 on which the flexible printed wiring board 13 has been mounted. The control device 43 takes an image of the bottom surface 11b of the housing 11 with a camera, and from the captured image, identifies a feature portion indicating the outer shape of the light receiving portion R, such as the secondary lens 30 of the light receiving portion R and the outer contour of the package 32. From the position of the feature portion, the deployed position of the light receiving portion R on the bottom surface 11b can be obtained.
  • the unfolded position of the light receiving portion R on the bottom surface 11b is represented by, for example, the relative coordinates set on the bottom surface 11b.
  • the control device 43 Upon acquiring the unfolded position of the light receiving unit R, the control device 43 determines whether or not the light receiving unit R has an error in the unfolded position outside the permissible range among the plurality of light receiving units R (step S21: unfolded in FIG. 20). Post-judgment step). The control device 43 compares the unfolded position of each light receiving unit R with a predetermined reference unfolded position, and determines whether or not the error of the unfolded position of each light receiving unit R with respect to the reference unfolded position is within a preset allowable range. To do.
  • the predetermined reference deployment position is a design position of the light receiving portion R on the bottom surface 11b.
  • step S22 as an assembly process of the module 1M, the light collecting unit 12 is attached to the housing 11 to which the flexible printed wiring board 13 is mounted. As described above, in step S21, the control device 43 determines whether or not to execute step S22 based on the comparison result between the deployed position of the light receiving unit R and the predetermined reference deployed position.
  • the control device 43 stops the subsequent work. It is possible to prevent the module 1M from being assembled by using the housing 11 having the light receiving portion R whose deployment position error is out of the permissible range. As a result, the housing 11 in which the light receiving portion R arranged on the bottom surface 11b is accurately arranged can be advanced to the subsequent steps.
  • step S20 in FIG. 20 the external contour of the secondary lens 30 of the light receiving portion R and the package 32 are specified from the captured image, and the deployed position of the light receiving portion R on the bottom surface 11b is acquired.
  • the deployment position of the light receiving portion R may be indirectly acquired from the position of the flexible substrate 131 on the bottom surface 11b.
  • FIG. 22 is a plan view showing an aspect of positioning the flexible substrate 131 on the bottom surface 11b.
  • marking lines L1, L2, L3, L4, and L5 are provided in advance on the bottom surface 11b.
  • Each marking line indicates the design position of the flexible printed wiring board 13 on the bottom surface 11b.
  • Each of these marking lines indicates the position of the connection band 131b of the flexible substrate 131.
  • the control device 43 takes an image of the bottom surface 11b of the housing 11 with a camera, and identifies the outer shape of the flexible substrate 131 and each marking line from the image taken. As a result, the control device 43 can specify the position of the flexible substrate 131 with reference to the marking line, and can indirectly acquire the position (deployment position) of the light receiving portion R from the position of the flexible substrate 131. ..
  • control device 43 can determine whether or not the error with respect to each marking line of the outer shape of the specified flexible substrate 131 is out of the permissible range. Further, when the error for each marking line is out of the permissible range, the control device 43 can determine that the unfolded position of the light receiving portion R mounted on the flexible substrate 131 is also out of the permissible range.
  • step S12 in FIG. 20 when it is determined in step S12 in FIG. 20 that there is a light receiving unit R whose position error on the substrate is out of the permissible range among the plurality of light receiving units R, the subsequent work is stopped.
  • the suction unit 42 can adjust the position of the suction block 50 as shown in the second embodiment, the position of the light receiving portion R whose position error on the substrate is out of the permissible range. Is corrected so as to be within the permissible range, and the position of the suction block 50 can be finely adjusted.
  • the flexible printed wiring board 13 can be mounted even when there is a light receiving portion R whose position error on the substrate is out of the allowable range among the plurality of light receiving portions R.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A method for manufacturing a concentrating photovoltaic power generation module, wherein the method includes: a first step for holding a flexible printed wiring board (13) from the lower surface side; a second step for holding, from the upper surface side, the flexible printed wiring board (13) held from the lower surface side, so that the relative positions of a plurality of flexible substrates (131) are at a deployment position for when deployment is performed on the bottom surface of a casing; and a third step for fitting the flexible printed wiring board (13) held from the upper surface side onto the bottom surface. In the second step, a holding step, in which one of the flexible substrates (131) from among the plurality of flexible substrates (131) is held from the upper surface side, and a releasing step, in which the holding of the one of the flexible substrates (131) from the lower surface side is released after the holding step, are repeated for each of the plurality of flexible substrates (131) in the order in which the plurality of flexible substrates (131) are arranged.

Description

集光型太陽光発電モジュールの製造方法、集光型太陽光発電装置の製造方法、及び集光型太陽光発電モジュールの製造装置Manufacturing method of concentrating photovoltaic power generation module, manufacturing method of condensing photovoltaic power generation equipment, and manufacturing equipment of condensing photovoltaic power generation module
 本開示は、集光型太陽光発電モジュールの製造方法、集光型太陽光発電装置の製造方法、及び集光型太陽光発電モジュールの製造装置に関する。
 本出願は、2019年7月19日出願の日本出願第2019-133704号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to a method for manufacturing a concentrating photovoltaic power generation module, a method for manufacturing a condensing photovoltaic power generation device, and a manufacturing apparatus for a condensing photovoltaic power generation module.
This application claims priority based on Japanese Application No. 2019-133704 filed on July 19, 2019, and incorporates all the contents described in the Japanese application.
 集光型太陽光発電装置を構成するモジュールには、セル等が実装された帯状のフレキシブル基板が用いられることがある(例えば、特許文献1参照)。
 セルは太陽光が集まる位置にあればよいので、面状ではなく帯状の基板の方がコスト的に都合がよい。また、フレキシブル基板は、ポリイミドを用いた基板で柔軟性に富む。よって、帯状のフレキシブル基板は、モジュールのような大型の筐体の底面に張り巡らせることが容易である。
 このような帯状のフレキシブル基板を複数有するフレキシブルプリント配線板は、製造時においては、歩留まりを良くするため、複数のフレキシブル基板が密集した形で作製される。
A strip-shaped flexible substrate on which a cell or the like is mounted may be used as a module constituting the condensing type photovoltaic power generation device (see, for example, Patent Document 1).
Since the cell only needs to be in a position where sunlight collects, a strip-shaped substrate is more cost effective than a planar substrate. Further, the flexible substrate is a substrate using polyimide and is highly flexible. Therefore, the strip-shaped flexible substrate can be easily stretched around the bottom surface of a large housing such as a module.
A flexible printed wiring board having a plurality of such strip-shaped flexible substrates is manufactured in a form in which a plurality of flexible substrates are densely packed in order to improve the yield at the time of manufacture.
特開2017-126777号公報JP-A-2017-126777
 一実施形態である集光型太陽光発電モジュールの製造方法は、筐体と、前記筐体の底面に展開して設けられる帯状の複数のフレキシブル基板を有するフレキシブルプリント配線板と、前記複数のフレキシブル基板の上面に実装された複数のセル及び前記複数のセルに関する電気回路を含むプリント回路部と、を備えた集光型太陽光発電モジュールの製造方法であって、前記フレキシブルプリント配線板を前記複数のフレキシブル基板の下面側から保持する第1ステップと、前記複数のフレキシブル基板同士の相対位置が前記底面に展開されたときの展開位置となるように、前記フレキシブルプリント配線板を前記上面側から保持する第2ステップと、前記上面側から保持された前記フレキシブルプリント配線板を前記底面に装着する第3ステップと、を含み、前記第2ステップでは、前記第1ステップにおいて前記下面側から保持された前記複数のフレキシブル基板のうちの一のフレキシブル基板を前記上面側から保持する保持ステップと、前記保持ステップの後、前記一のフレキシブル基板に対する前記下面側からの保持を解放する解放ステップと、を、前記複数のフレキシブル基板それぞれについて前記複数のフレキシブル基板の配列順に従って繰り返すことで、前記フレキシブルプリント配線板を前記上面側から保持する。 A method for manufacturing a condensing solar power generation module according to an embodiment includes a housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, and the plurality of flexible substrates. A method for manufacturing a condensing solar power generation module including a plurality of cells mounted on the upper surface of a substrate and a printed circuit unit including an electric circuit related to the plurality of cells, wherein the flexible printed wiring board is provided. The flexible printed wiring board is held from the upper surface side so that the first step of holding the flexible substrate from the lower surface side and the relative position between the plurality of flexible substrates are the deployed positions when the flexible boards are deployed on the bottom surface. The second step includes a third step of mounting the flexible printed wiring board held from the upper surface side to the bottom surface, and in the second step, the flexible printed wiring board is held from the lower surface side in the first step. A holding step of holding one of the plurality of flexible substrates from the upper surface side, and a release step of releasing the holding of the one flexible substrate from the lower surface side after the holding step. The flexible printed wiring board is held from the upper surface side by repeating each of the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates.
 他の実施形態である集光型太陽光発電装置の製造方法は、筐体と、前記筐体の底面に展開して設けられる帯状の複数のフレキシブル基板を有するフレキシブルプリント配線板と、前記複数のフレキシブル基板の上面に実装された複数のセル及び前記複数のセルに関する電気回路を含むプリント回路部と、を備えた集光型太陽光発電装置の製造方法であって、前記フレキシブルプリント配線板を前記複数のフレキシブル基板の下面側から保持する第1ステップと、前記複数のフレキシブル基板同士の相対位置が前記底面に展開されたときの展開位置となるように、前記フレキシブルプリント配線板を前記上面側から保持する第2ステップと、前記上面側から保持された前記フレキシブルプリント配線板を前記底面に装着する第3ステップと、を含み、前記第2ステップでは、前記第1ステップにおいて前記下面側から保持された前記複数のフレキシブル基板のうちの一のフレキシブル基板を前記上面側から保持する保持ステップと、前記保持ステップの後、前記一のフレキシブル基板に対する前記下面側からの保持を解放する解放ステップと、を、前記複数のフレキシブル基板それぞれについて前記複数のフレキシブル基板の配列順に従って繰り返すことで、前記フレキシブルプリント配線板を前記上面側から保持する。 Another method of manufacturing a condensing type solar power generation device is a housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, and the plurality of flexible printed wiring boards. A method for manufacturing a condensing solar power generation device including a plurality of cells mounted on an upper surface of a flexible substrate and a printed circuit unit including an electric circuit related to the plurality of cells, wherein the flexible printed wiring board is used. The flexible printed wiring board is mounted from the upper surface side so that the first step of holding the plurality of flexible substrates from the lower surface side and the relative positions of the plurality of flexible substrates are the deployed positions when the flexible substrates are deployed on the bottom surface. The second step of holding and the third step of mounting the flexible printed wiring board held from the upper surface side on the bottom surface are included. In the second step, the flexible printed wiring board is held from the lower surface side in the first step. A holding step of holding one of the plurality of flexible substrates from the upper surface side, and a release step of releasing the holding of the one flexible substrate from the lower surface side after the holding step. The flexible printed wiring board is held from the upper surface side by repeating each of the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates.
 さらに他の実施形態である集光型太陽光発電モジュールの製造装置は、筐体と、前記筐体の底面に展開して設けられる帯状の複数のフレキシブル基板を有するフレキシブルプリント配線板と、前記複数のフレキシブル基板に実装された複数のセル及び前記複数のセルに関する電気回路を含むプリント回路部と、を備えた集光型太陽光発電モジュールの製造装置であって、前記フレキシブルプリント配線板を前記複数のフレキシブル基板の下面側から保持する第1保持機構と、前記複数のフレキシブル基板同士の相対位置が前記底面に展開されたときの展開位置となるように、前記フレキシブルプリント配線板を前記上面側から保持し、保持した前記フレキシブルプリント配線板を前記底面に装着する第2保持機構と、前記第1保持機構及び前記第2保持機構を制御する制御部と、を備え、前記制御部は、前記第1保持機構が保持する前記複数のフレキシブル基板のうちの一のフレキシブル基板を前記第2保持機構に保持させる保持ステップと、前記保持ステップの後、前記第1保持機構による前記一のフレキシブル基板に対する保持を解放させる解放ステップと、を、前記複数のフレキシブル基板それぞれについて前記複数のフレキシブル基板の配列順に従って繰り返すように前記第1保持機構及び前記第2保持機構を制御し、前記第2保持機構に前記フレキシブルプリント配線板を前記上面側から保持させる。 Yet another embodiment of the concentrating solar power generation module manufacturing apparatus includes a housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, and the plurality. A device for manufacturing a condensing solar power generation module including a plurality of cells mounted on the flexible substrate of the above and a printed circuit unit including an electric circuit relating to the plurality of cells, wherein the flexible printed wiring board is provided. The flexible printed wiring board is mounted from the upper surface side so that the first holding mechanism for holding the flexible substrate from the lower surface side and the relative positions of the plurality of flexible substrates are the deployed positions when the flexible boards are deployed on the bottom surface. A second holding mechanism for holding and mounting the held flexible printed wiring board on the bottom surface, and a control unit for controlling the first holding mechanism and the second holding mechanism are provided, and the control unit is the first. A holding step of holding one of the plurality of flexible substrates held by the holding mechanism by the second holding mechanism, and holding of the flexible substrate by the first holding mechanism with respect to the one flexible substrate after the holding step. The first holding mechanism and the second holding mechanism are controlled so as to repeat the release step of releasing the first holding mechanism and the second holding mechanism so as to repeat the release step for each of the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates. The flexible printed wiring board is held from the upper surface side.
図1は、集光型の太陽光発電装置の一例を、受光面側から見た斜視図である。FIG. 1 is a perspective view of an example of a condensing type photovoltaic power generation device as viewed from the light receiving surface side. 図2は、集光型太陽光発電モジュールの構成の一例を示す斜視図である。FIG. 2 is a perspective view showing an example of the configuration of the concentrating photovoltaic power generation module. 図3は、集光型太陽光発電モジュールの受光部の構成例を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration example of a light receiving portion of the condensing type photovoltaic power generation module. 図4は、モジュールを構成する集光型発電の光学系の基本構成としての集光型太陽光発電ユニットの一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a condensing photovoltaic power generation unit as a basic configuration of an optical system for concentrating power generation constituting a module. 図5は、展開する前のフレキシブルプリント配線板の原形体の一例を示す図である。FIG. 5 is a diagram showing an example of a prototype of a flexible printed wiring board before unfolding. 図6は、斜め上からフレキシブルプリント配線板の原形体の一部を見た斜視図である。FIG. 6 is a perspective view of a part of the prototype of the flexible printed wiring board seen from diagonally above. 図7は、接続帯のある部分でのY-Z断面図である。FIG. 7 is a cross-sectional view taken along the line ZZ at a portion having a connecting band. 図8は、配線板装着装置の構成、及びその動作を模式的に示した図である。FIG. 8 is a diagram schematically showing the configuration of the wiring board mounting device and its operation. 図9は、フレキシブルプリント配線板をモジュールの筐体の底面に装着する装着作業の工程の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of a mounting operation process for mounting the flexible printed wiring board on the bottom surface of the module housing. 図10Aは、原形体を保持する前のセット台の一例を示す斜視図である。FIG. 10A is a perspective view showing an example of a set table before holding the original form. 図10Bは、原形体がセット台に保持された状態を示す斜視図である。FIG. 10B is a perspective view showing a state in which the prototype is held on the set table. 図11は、原形体の接続帯を切断した状態を示す図である。FIG. 11 is a diagram showing a state in which the connecting band of the prototype is cut. 図12Aは、吸着ユニットの一例を示す斜視図である。FIG. 12A is a perspective view showing an example of the suction unit. 図12Bは、吸着ブロックの吸引口の部分を示す断面図であり、フレキシブル基板を吸着保持した状態を示している。FIG. 12B is a cross-sectional view showing a suction port portion of the suction block, showing a state in which the flexible substrate is sucked and held. 図13は、吸着ユニットがセット台に保持されたフレキシブル基板を吸着する際の手順を説明するための図である。FIG. 13 is a diagram for explaining a procedure for sucking the flexible substrate held on the set table by the suction unit. 図14は、複数の吸着ブロックがそれぞれ1本のフレキシブル基板を吸着した状態の吸着ユニットを下方からみたときの図である。FIG. 14 is a view of a suction unit in a state where a plurality of suction blocks each suck one flexible substrate as viewed from below. 図15は、第2実施形態に係るフレキシブルプリント配線板の装着方法で用いられる吸着ユニットの一部を示す斜視図である。FIG. 15 is a perspective view showing a part of the suction unit used in the method of mounting the flexible printed wiring board according to the second embodiment. 図16は、第2実施形態に係るフレキシブルプリント配線板の装着作業の工程の一例を示すフローチャートである。FIG. 16 is a flowchart showing an example of a process of mounting the flexible printed wiring board according to the second embodiment. 図17は、第3実施形態に係るフレキシブルプリント配線板の装着方法で用いられる吸着ブロックの一部断面図であり、フレキシブル基板を吸着保持した状態を示している。FIG. 17 is a partial cross-sectional view of a suction block used in the method of mounting the flexible printed wiring board according to the third embodiment, and shows a state in which the flexible substrate is sucked and held. 図18は、本実施形態の吸着ブロックによってフレキシブル基板を筐体の底面に装着する際の態様を示す図である。FIG. 18 is a diagram showing an embodiment when the flexible substrate is mounted on the bottom surface of the housing by the suction block of the present embodiment. 図19は、押圧部がパッケージを押圧する際の押圧荷重と、パッケージと筐体との間の熱抵抗値との関係を示したグラフである。FIG. 19 is a graph showing the relationship between the pressing load when the pressing portion presses the package and the thermal resistance value between the package and the housing. 図20は、第4実施形態に係るフレキシブルプリント配線板の装着作業の工程の一例を示すフローチャートである。FIG. 20 is a flowchart showing an example of a process of mounting the flexible printed wiring board according to the fourth embodiment. 図21は、受光部の基板上位置を取得する際の態様を説明するための図である。FIG. 21 is a diagram for explaining an aspect when acquiring the position of the light receiving portion on the substrate. 図22は、底面におけるフレキシブル基板の位置決めを行う際の態様を示す平面図である。FIG. 22 is a plan view showing an aspect of positioning the flexible substrate on the bottom surface.
[本開示が解決しようとする課題]
 フレキシブルプリント配線板に実装されるセルは、集光レンズによって太陽光が集光される位置に配置する必要がある。このため、フレキシブルプリント配線板を筐体の底面に装着するときには、複数のフレキシブル基板それぞれを底面の所定位置に精度よく配置する必要がある。
[Issues to be solved by this disclosure]
The cell mounted on the flexible printed wiring board needs to be arranged at a position where sunlight is condensed by the condenser lens. Therefore, when the flexible printed wiring board is mounted on the bottom surface of the housing, it is necessary to accurately arrange each of the plurality of flexible substrates at a predetermined position on the bottom surface.
 ここで、フレキシブル基板は薄い帯状の物体であり、フレキシブルプリント配線板は、薄い帯状の物体であるフレキシブル基板の集合体である。
 このため、その取り扱いは容易ではなく、複数のフレキシブル基板を展開し、底面の所定位置に精度良く配置するために、多くの工数を要し、製造コストを増加させる要因となっていた。
Here, the flexible substrate is a thin strip-shaped object, and the flexible printed wiring board is an aggregate of flexible substrates which are thin strip-shaped objects.
Therefore, it is not easy to handle, and it takes a lot of man-hours to develop a plurality of flexible substrates and accurately arrange them at predetermined positions on the bottom surface, which is a factor of increasing the manufacturing cost.
 本開示はこのような事情に鑑みてなされたものであり、集光型太陽光発電装置の製造コストを低減することができる技術を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a technique capable of reducing the manufacturing cost of a concentrating photovoltaic power generation device.
〔本開示の効果〕
 本開示によれば、集光型太陽光発電装置の製造コストを低減することができる。
[Effect of the present disclosure]
According to the present disclosure, it is possible to reduce the manufacturing cost of the concentrating photovoltaic power generation device.
[本開示の実施形態の説明]
 最初に実施形態の内容を列記して説明する。
(1)一実施形態である集光型太陽光発電モジュールの製造方法は、筐体と、前記筐体の底面に展開して設けられる帯状の複数のフレキシブル基板を有するフレキシブルプリント配線板と、前記複数のフレキシブル基板の上面に実装された複数のセル及び前記複数のセルに関する電気回路を含むプリント回路部と、を備えた集光型太陽光発電モジュールの製造方法であって、前記フレキシブルプリント配線板を前記複数のフレキシブル基板の下面側から保持する第1ステップと、前記複数のフレキシブル基板同士の相対位置が前記底面に展開されたときの展開位置となるように、前記フレキシブルプリント配線板を前記上面側から保持する第2ステップと、前記上面側から保持された前記フレキシブルプリント配線板を前記底面に装着する第3ステップと、を含み、前記第2ステップでは、前記第1ステップにおいて前記下面側から保持された前記複数のフレキシブル基板のうちの一のフレキシブル基板を前記上面側から保持する保持ステップと、前記保持ステップの後、前記一のフレキシブル基板に対する前記下面側からの保持を解放する解放ステップと、を、前記複数のフレキシブル基板それぞれについて前記複数のフレキシブル基板の配列順に従って繰り返すことで、前記フレキシブルプリント配線板を前記上面側から保持する。
[Explanation of Embodiments of the present disclosure]
First, the contents of the embodiments will be listed and described.
(1) The method for manufacturing a condensing type solar power generation module according to an embodiment includes a housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, and the above. A method for manufacturing a condensing solar power generation module including a plurality of cells mounted on the upper surface of a plurality of flexible substrates and a printed circuit unit including an electric circuit related to the plurality of cells, wherein the flexible printed wiring board is provided. The flexible printed wiring board is placed on the upper surface so that the first step of holding the flexible boards from the lower surface side and the relative positions of the plurality of flexible boards are the deployed positions when the flexible boards are deployed on the bottom surface. The second step includes a second step of holding from the side and a third step of mounting the flexible printed wiring board held from the upper surface side to the bottom surface, and in the second step, from the lower surface side in the first step. A holding step of holding one of the held flexible substrates from the upper surface side, and a release step of releasing the holding of the one flexible substrate from the lower surface side after the holding step. , Are repeated for each of the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates, thereby holding the flexible printed wiring board from the upper surface side.
 上記構成によれば、展開前のフレキシブルプリント配線板を複数のフレキシブル基板の下面側から保持すれば、複数のフレキシブル基板の上面側又は下面側のいずれかが保持された状態を維持しつつ、複数のフレキシブル基板同士の相対位置が展開位置となるようにフレキシブルプリント配線板を複数のフレキシブル基板の上面側から保持することができる。
 これにより、薄い帯状の物体である複数のフレキシブル基板の展開、及び、展開した複数のフレキシブル基板の底面への装着を精度良く、かつ容易に行うことができる。この結果、製造に要する工数を低減でき、製造コストの低減化が可能となる。
According to the above configuration, if the flexible printed wiring board before deployment is held from the lower surface side of the plurality of flexible substrates, a plurality of flexible printed wiring boards can be held while maintaining either the upper surface side or the lower surface side of the plurality of flexible substrates. The flexible printed wiring board can be held from the upper surface side of a plurality of flexible boards so that the relative positions of the flexible boards are the unfolded positions.
As a result, it is possible to deploy the plurality of flexible substrates, which are thin strip-shaped objects, and to mount the deployed plurality of flexible substrates on the bottom surface with high accuracy and easily. As a result, the man-hours required for manufacturing can be reduced, and the manufacturing cost can be reduced.
(2)上記集光型太陽光発電モジュールの製造方法において、前記第1ステップでは、前記複数のフレキシブル基板を吸着可能な下側吸着面に前記複数のフレキシブル基板を吸着することで、前記フレキシブルプリント配線板を前記下面側から保持し、前記第2ステップでは、前記複数のフレキシブル基板を吸着可能な上側吸着面に前記複数のフレキシブル基板を吸着することで、前記フレキシブルプリント配線板を前記上面側から保持することが好ましい。
 この場合、帯状の複数のフレキシブル基板を適切に保持することができる。
(2) In the method for manufacturing a condensing type solar power generation module, in the first step, the flexible printing is performed by adsorbing the plurality of flexible substrates on a lower adsorption surface capable of adsorbing the plurality of flexible substrates. The flexible printed wiring board is held from the lower surface side, and in the second step, the flexible printed wiring board is attracted from the upper surface side by adsorbing the plurality of flexible substrates to the upper suction surface on which the plurality of flexible substrates can be adsorbed. It is preferable to hold it.
In this case, a plurality of strip-shaped flexible substrates can be appropriately held.
(3)また、上記集光型太陽光発電モジュールの製造方法において、前記第1ステップは、前記複数のフレキシブル基板が帯長手方向に交差する交差方向に近接して並んだ状態で前記交差方向に延びる複数の接続帯によって前記複数のフレキシブル基板が相互に接続された前記フレキシブルプリント配線板の原形体を保持するステップと、前記複数の接続帯を切断して前記複数のフレキシブル基板を分離することで、前記原形体を前記フレキシブルプリント配線板とするステップと、を含むことが好ましい。
 この場合、原形体を保持すれば、複数のフレキシブル基板を有するフレキシブルプリント配線板を保持することができ、フレキシブルプリント配線板の保持が容易となる。
(3) Further, in the method for manufacturing the concentrating photovoltaic power generation module, the first step is performed in the crossing direction in a state where the plurality of flexible substrates are lined up close to the crossing direction where the plurality of flexible substrates intersect in the longitudinal direction of the band. By holding the prototype of the flexible printed wiring board in which the plurality of flexible boards are interconnected by a plurality of extending connection bands, and by cutting the plurality of connection bands to separate the plurality of flexible boards. It is preferable to include a step of using the prototype as the flexible printed wiring board.
In this case, if the original form is held, the flexible printed wiring board having a plurality of flexible substrates can be held, and the flexible printed wiring board can be easily held.
(4)また、上記集光型太陽光発電モジュールの製造方法において、前記集光型太陽光発電モジュールは、前記筐体の底面に対向して配置され、前記複数のセルに対応して太陽光を集光する複数のレンズ要素を有する集光部をさらに備え、前記第2ステップは、前記集光部における前記複数のレンズ要素同士の相対位置に基づいて、前記複数のフレキシブル基板同士の相対位置を調整する調整ステップをさらに含むことが好ましい。
 この場合、複数のフレキシブル基板同士の相対位置を調整することで、フレキシブルプリント配線板上の複数のセル同士の相対位置を、複数のレンズ要素同士の相対位置に合わせるように調整することができる。
 この結果、筐体に集光部を配置する際に、複数のレンズ要素の位置と、底面に配置される複数のセルの位置との間に生じる位置ずれ誤差を小さくできる。
(4) Further, in the method for manufacturing the concentrating photovoltaic power generation module, the condensing photovoltaic power generation module is arranged so as to face the bottom surface of the housing, and the sunlight corresponds to the plurality of cells. The second step further includes a condensing unit having a plurality of lens elements that condense light, and the second step is a relative position between the plurality of flexible substrates based on the relative positions of the plurality of lens elements in the condensing unit. It is preferable to further include an adjustment step for adjusting.
In this case, by adjusting the relative positions of the plurality of flexible substrates, it is possible to adjust the relative positions of the plurality of cells on the flexible printed wiring board so as to match the relative positions of the plurality of lens elements.
As a result, when arranging the condensing unit in the housing, the misalignment error that occurs between the positions of the plurality of lens elements and the positions of the plurality of cells arranged on the bottom surface can be reduced.
(5)また、上記集光型太陽光発電モジュールの製造方法において、前記集光型太陽光発電モジュールは、前記複数のセルを前記複数のフレキシブル基板の上面で保持する複数のパッケージをさらに備え、前記底面又は前記フレキシブルプリント配線板の少なくともいずれか一方には、前記フレキシブルプリント配線板を前記底面に接着するための接着層が設けられ、前記第3ステップでは、前記フレキシブルプリント配線板と前記底面との間に前記接着層を介在させた状態で、前記複数のパッケージを前記底面に向けて選択的に押圧し、前記フレキシブルプリント配線板を前記底面に装着することが好ましい。
 この場合、フレキシブル基板のうち、パッケージが搭載された搭載部分を、搭載部分以外の他の部分よりも高い密着状態で接着することができる。
 これにより、筐体に対するフレキシブル基板における搭載部分の熱抵抗値を、他の部分よりも小さくすることができる。
(5) Further, in the method for manufacturing the condensing type solar power generation module, the condensing type solar power generation module further includes a plurality of packages for holding the plurality of cells on the upper surface of the plurality of flexible substrates. An adhesive layer for adhering the flexible printed wiring board to the bottom surface is provided on at least one of the bottom surface and the flexible printed wiring board, and in the third step, the flexible printed wiring board and the bottom surface are provided. It is preferable that the plurality of packages are selectively pressed toward the bottom surface with the adhesive layer interposed therebetween, and the flexible printed wiring board is mounted on the bottom surface.
In this case, of the flexible substrate, the mounting portion on which the package is mounted can be adhered in a higher adhesion state than other portions other than the mounting portion.
As a result, the thermal resistance value of the mounted portion of the flexible substrate with respect to the housing can be made smaller than that of the other portions.
(6)また、上記集光型太陽光発電モジュールの製造方法において、前記第1ステップの後に、展開される前の前記複数のフレキシブル基板における前記複数のセルの基板上位置を取得する基板上位置取得ステップと、前記基板上位置取得ステップの後に、前記基板上位置と、所定の基準基板上位置との比較結果に基づいて、前記第2ステップ以降のステップを実行するか否かを決定する展開前判定ステップと、をさらに含んでいてもよい。
 この場合、所定の基準基板上位置に対する基板上位置の誤差が、許容範囲外であれば、第2ステップ以降のステップの実行を中止することができ、基板上位置の誤差が許容範囲外であるフレキシブルプリント配線板の装着が行われるのを防止することができる。
(6) Further, in the method for manufacturing the concentrating photovoltaic power generation module, after the first step, the positions on the substrate for acquiring the positions on the substrates of the plurality of cells in the plurality of flexible substrates before being deployed. After the acquisition step and the position acquisition step on the substrate, it is determined whether or not to execute the second and subsequent steps based on the comparison result between the acquisition step and the position on the predetermined reference substrate. The pre-determination step and may be further included.
In this case, if the error of the position on the board with respect to the predetermined position on the reference board is out of the permissible range, the execution of the second and subsequent steps can be stopped, and the error of the position on the board is out of the permissible range. It is possible to prevent the flexible printed wiring board from being mounted.
(7)また、上記集光型太陽光発電モジュールの製造方法において、前記第3ステップの後に、前記フレキシブルプリント配線板が装着された前記筐体を用いて前記集光型太陽光発電モジュールを組み立てる組立ステップと、前記第3ステップの後であって前記組立ステップの前に、前記複数のフレキシブル基板が前記底面に装着された後における前記複数のセルの展開位置を取得する展開位置取得ステップと、前記展開位置取得ステップの後に、前記展開位置と、所定の基準展開位置との比較結果に基づいて、前記組立ステップを実行するか否かを決定する展開後判定ステップと、をさらに含んでいてもよい。
 この場合、所定の基準展開位置に対する展開位置の誤差が、許容範囲外であれば、組立ステップの実行を中止することができ、展開位置の誤差が許容範囲外である受光部を有する筐体を用いて集光型太陽光発電モジュールの組立が行われるのを防止することができる。
(7) Further, in the method for manufacturing the concentrating photovoltaic power generation module, after the third step, the condensing photovoltaic power generation module is assembled using the housing to which the flexible printed wiring board is mounted. An assembly step, a deployment position acquisition step for acquiring the deployment positions of the plurality of cells after the plurality of flexible substrates are mounted on the bottom surface after the third step and before the assembly step, and After the unfolding position acquisition step, a post-deployment determination step of determining whether or not to execute the assembly step based on the comparison result between the unfolding position and a predetermined reference unfolding position may be further included. Good.
In this case, if the error of the unfolding position with respect to the predetermined reference unfolding position is out of the permissible range, the execution of the assembly step can be stopped, and the housing having the light receiving portion whose unfolding position error is out of the permissible range is provided. It can be used to prevent assembly of the concentrating photovoltaic module.
(8)また、他の実施形態である集光型太陽光発電装置の製造方法は、筐体と、前記筐体の底面に展開して設けられる帯状の複数のフレキシブル基板を有するフレキシブルプリント配線板と、前記複数のフレキシブル基板の上面に実装された複数のセル及び前記複数のセルに関する電気回路を含むプリント回路部と、を備えた集光型太陽光発電装置の製造方法であって、前記フレキシブルプリント配線板を前記複数のフレキシブル基板の下面側から保持する第1ステップと、前記複数のフレキシブル基板同士の相対位置が前記底面に展開されたときの展開位置となるように、前記フレキシブルプリント配線板を前記上面側から保持する第2ステップと、前記上面側から保持された前記フレキシブルプリント配線板を前記底面に装着する第3ステップと、を含み、前記第2ステップでは、前記第1ステップにおいて前記下面側から保持された前記複数のフレキシブル基板のうちの一のフレキシブル基板を前記上面側から保持する保持ステップと、前記保持ステップの後、前記一のフレキシブル基板に対する前記下面側からの保持を解放する解放ステップと、を、前記複数のフレキシブル基板それぞれについて前記複数のフレキシブル基板の配列順に従って繰り返すことで、前記フレキシブルプリント配線板を前記上面側から保持する。
 上記構成によれば、薄い帯状の物体である複数のフレキシブル基板の展開、及び、展開した複数のフレキシブル基板の所定の位置への装着を容易に行うことができる。この結果、製造に要する工数を低減でき、製造コストの低減化が可能となる。
(8) Further, another method of manufacturing the condensing type solar power generation device according to the embodiment is a flexible printed wiring board having a housing and a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing. A method for manufacturing a condensing type solar power generation device, comprising a plurality of cells mounted on the upper surface of the plurality of flexible substrates and a printed circuit unit including an electric circuit related to the plurality of cells. The flexible printed wiring board is such that the first step of holding the printed wiring board from the lower surface side of the plurality of flexible boards and the relative position between the plurality of flexible boards are the deployed positions when the printed wiring boards are deployed on the bottom surface. Includes a second step of holding the flexible printed wiring board from the upper surface side and a third step of mounting the flexible printed wiring board held from the upper surface side on the bottom surface. In the second step, the first step is described. After the holding step of holding one of the plurality of flexible substrates held from the lower surface side from the upper surface side and the holding step, the holding of the one flexible substrate from the lower surface side is released. By repeating the release step for each of the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates, the flexible printed wiring board is held from the upper surface side.
According to the above configuration, it is possible to easily deploy a plurality of flexible substrates, which are thin strip-shaped objects, and mount the plurality of deployed flexible substrates at predetermined positions. As a result, the man-hours required for manufacturing can be reduced, and the manufacturing cost can be reduced.
(9)また、他の実施形態である集光型太陽光発電モジュールの製造装置は、筐体と、前記筐体の底面に展開して設けられる帯状の複数のフレキシブル基板を有するフレキシブルプリント配線板と、前記複数のフレキシブル基板の上面に実装された複数のセル及び前記複数のセルに関する電気回路を含むプリント回路部と、を備えた集光型太陽光発電モジュールの製造装置であって、前記フレキシブルプリント配線板を前記複数のフレキシブル基板の下面側から保持する第1保持機構と、前記複数のフレキシブル基板同士の相対位置が前記底面に展開されたときの展開位置となるように、前記フレキシブルプリント配線板を前記上面側から保持し、保持した前記フレキシブルプリント配線板を前記底面に装着する第2保持機構と、前記第1保持機構及び前記第2保持機構を制御する制御部と、を備え、前記制御部は、前記第1保持機構が保持する前記複数のフレキシブル基板のうちの一のフレキシブル基板を前記第2保持機構が保持する保持動作と、前記保持動作の後、前記第1保持機構が前記一のフレキシブル基板に対する保持を解放する解放動作と、を、前記複数のフレキシブル基板それぞれについて前記複数のフレキシブル基板の配列順に従って繰り返すように前記第1保持機構及び前記第2保持機構を制御し、前記第2保持機構に前記フレキシブルプリント配線板を前記上面側から保持させる。
 上記構成によれば、薄い帯状の物体である複数のフレキシブル基板の展開、及び、展開した複数のフレキシブル基板の所定の位置への装着を容易に行うことができる。この結果、製造に要する工数を低減でき、製造コストの低減化が可能となる。
(9) Further, the manufacturing apparatus of the condensing type solar power generation module according to another embodiment is a flexible printed wiring board having a housing and a plurality of strip-shaped flexible substrates deployed on the bottom surface of the housing. A flexible solar power generation module manufacturing apparatus comprising a plurality of cells mounted on the upper surface of the plurality of flexible substrates and a printed circuit unit including an electric circuit relating to the plurality of cells. The flexible printed wiring is such that the first holding mechanism for holding the printed wiring board from the lower surface side of the plurality of flexible substrates and the relative position between the plurality of flexible substrates are the deployed positions when the printed wiring boards are deployed on the bottom surface. A second holding mechanism for holding the plate from the upper surface side and mounting the held flexible printed wiring board on the bottom surface, and a control unit for controlling the first holding mechanism and the second holding mechanism are provided. The control unit has a holding operation in which the second holding mechanism holds one of the plurality of flexible substrates held by the first holding mechanism, and after the holding operation, the first holding mechanism performs the flexible substrate. The first holding mechanism and the second holding mechanism are controlled so that the releasing operation of releasing the holding on one flexible substrate is repeated according to the arrangement order of the plurality of flexible substrates for each of the plurality of flexible substrates. The second holding mechanism holds the flexible printed wiring board from the upper surface side.
According to the above configuration, it is possible to easily deploy a plurality of flexible substrates, which are thin strip-shaped objects, and mount the plurality of deployed flexible substrates at predetermined positions. As a result, the man-hours required for manufacturing can be reduced, and the manufacturing cost can be reduced.
[実施形態の詳細]
 以下、好ましい実施形態について図面を参照しつつ説明する。
 なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
[Details of Embodiment]
Hereinafter, preferred embodiments will be described with reference to the drawings.
In addition, at least a part of the embodiments described below may be arbitrarily combined.
〔集光型太陽光発電装置の構成〕
 図1は、集光型の太陽光発電装置の一例を、受光面側から見た斜視図である。
 図1において、この太陽光発電装置100は、上部側で連続し、下部側で左右に分かれた形状のアレイ(太陽光発電パネル全体)1と、その支持装置2とを備えている。アレイ1は、アレイ1の背面側の追尾架台(図示省略)上にモジュール1Mを整列させて構成されている。図1の例では、左右のウイングを構成する(96(=12×8)×2)個と、中央の渡り部分の8個との、合計200個のモジュール1Mの集合体として、アレイ1が構成されている。
[Structure of concentrating photovoltaic power generation device]
FIG. 1 is a perspective view of an example of a condensing type photovoltaic power generation device as viewed from the light receiving surface side.
In FIG. 1, the photovoltaic power generation device 100 includes an array (the entire photovoltaic power generation panel) 1 having a shape continuous on the upper side and divided into left and right on the lower side, and a support device 2 thereof. The array 1 is configured by arranging the modules 1M on a tracking mount (not shown) on the back side of the array 1. In the example of FIG. 1, the array 1 is an aggregate of 200 modules 1M in total, consisting of (96 (= 12 × 8) × 2) pieces constituting the left and right wings and 8 pieces in the central crossover portion. It is configured.
 支持装置2は、支柱21と、基礎22と、2軸駆動部23と、駆動軸となる水平軸24とを備えている。支柱21は、下端が基礎22に固定され、上端に2軸駆動部23を備えている。
 図1において、基礎22は、上面のみが見える程度に地中に堅固に埋設される。基礎22を地中に埋設した状態で、支柱21は鉛直となり、水平軸24は水平となる。
The support device 2 includes a support column 21, a foundation 22, a two-axis drive unit 23, and a horizontal axis 24 serving as a drive axis. The lower end of the support column 21 is fixed to the foundation 22, and the upper end is provided with a two-axis drive unit 23.
In FIG. 1, the foundation 22 is firmly buried in the ground so that only the upper surface can be seen. With the foundation 22 buried in the ground, the columns 21 are vertical and the horizontal axis 24 is horizontal.
 2軸駆動部23は、水平軸24を、方位角(支柱21を中心軸とした角度)及び仰角(水平軸24を中心軸とした角度)の2方向に回動させることができる。
 2軸駆動部23は、水平軸24を方位角の方向に回動させることで、アレイ1を方位角の方向に回動させ、水平軸24を仰角の方向に回動させることで、アレイ1を仰角の方向に回動させることができる。
 2軸駆動部23は、日中において、アレイ1の受光面が常に太陽に正対する姿勢となるようにアレイ1を回動させる。これにより、アレイ1は太陽の追尾動作を行う。
The two-axis drive unit 23 can rotate the horizontal axis 24 in two directions, an azimuth angle (an angle centered on the support column 21) and an elevation angle (an angle centered on the horizontal axis 24).
The two-axis drive unit 23 rotates the horizontal axis 24 in the direction of the azimuth to rotate the array 1 in the direction of the azimuth, and rotates the horizontal axis 24 in the direction of the elevation angle to rotate the array 1. Can be rotated in the direction of elevation.
The two-axis drive unit 23 rotates the array 1 so that the light receiving surface of the array 1 always faces the sun during the daytime. As a result, the array 1 performs the tracking operation of the sun.
〔集光型太陽光発電モジュールの構成例〕
 図2は、集光型太陽光発電モジュール1Mの構成の一例を示す斜視図である。但し、底面11b側はフレキシブルプリント配線板13のみ示し、ここでは、他の構成要素は省略している。
 モジュール1Mは、外観上の物理的な形態としては、例えば金属製又は樹脂製で長方形の平底容器状の筐体11と、その上に蓋のように取り付けられる集光部12と、を備えている。集光部12は、例えば1枚の光透過性のガラス板12aの裏面に樹脂製の一次レンズ(フレネルレンズ)12fが貼り付けられて構成されている。例えば図示の正方形(この例では14個×10個であるが、数量は説明上の一例に過ぎない。)の区画の1つ1つが、一次レンズ12fであり、太陽光を焦点位置に収束させることができる。
[Configuration example of condensing photovoltaic module]
FIG. 2 is a perspective view showing an example of the configuration of the concentrating photovoltaic power generation module 1M. However, only the flexible printed wiring board 13 is shown on the bottom surface 11b side, and other components are omitted here.
As a physical form in appearance, the module 1M includes, for example, a rectangular flat-bottomed container-shaped housing 11 made of metal or resin, and a condensing unit 12 attached on the housing 11 like a lid. There is. The light collecting unit 12 is configured by, for example, a resin primary lens (Fresnel lens) 12f attached to the back surface of one light-transmitting glass plate 12a. For example, each section of the illustrated square (14 × 10 in this example, but the quantity is only an example for explanation) is a primary lens 12f, which converges sunlight to the focal position. be able to.
 筐体11の底面11b上には、例えば筐体11の左半分・右半分の各々において、1本の細長いフレキシブルプリント配線板13が図示のように方向転換しながら整列するように配置されている。フレキシブルプリント配線板13には相対的に幅広な部位と幅狭な部位とがある。セル(図示せず。)が実装されるのは幅広な部位である。セルはフレネルレンズ12fの各々の光軸に対応する位置に配置される。 On the bottom surface 11b of the housing 11, for example, in each of the left half and the right half of the housing 11, one elongated flexible printed wiring board 13 is arranged so as to be aligned while changing the direction as shown in the drawing. .. The flexible printed wiring board 13 has a relatively wide portion and a narrow portion. The cell (not shown) is mounted on a wide area. The cells are arranged at positions corresponding to the respective optical axes of the Fresnel lens 12f.
 フレキシブルプリント配線板13と集光部12との間には、例えば金属製の遮蔽板14が取り付けられている。遮蔽板14には、個々の一次レンズ12fの中心に対応した位置に、一次レンズ12fの正方形に相似な正方形の開口14aが形成されている。アレイ1が太陽を正確に追尾し、モジュール1Mに対する太陽光の入射角が0度であれば、一次レンズ12fにより集光された光は開口14aを通過することができる。追尾が大きくずれた場合は、集光された光は遮蔽板14により遮蔽される。但し、追尾のずれが僅かな場合は、集光された光は開口14aを通過する。 For example, a metal shielding plate 14 is attached between the flexible printed wiring board 13 and the light collecting unit 12. The shielding plate 14 is formed with a square opening 14a similar to the square of the primary lens 12f at a position corresponding to the center of each primary lens 12f. If the array 1 accurately tracks the sun and the angle of incidence of the sunlight on the module 1M is 0 degrees, the light focused by the primary lens 12f can pass through the aperture 14a. When the tracking is significantly deviated, the collected light is shielded by the shielding plate 14. However, if the tracking deviation is slight, the focused light passes through the opening 14a.
〔受光部の構成例〕
 図3は、集光型太陽光発電モジュールの受光部Rの構成例を示す断面図である。なお、図3に示す各部は、構造説明の都合上、適宜拡大して描いており、必ずしも実際の寸法に比例した図ではない(図4も同様)。
[Structure example of light receiving part]
FIG. 3 is a cross-sectional view showing a configuration example of the light receiving portion R of the condensing type photovoltaic power generation module. It should be noted that each part shown in FIG. 3 is enlarged as appropriate for the convenience of structural explanation, and is not necessarily a diagram proportional to the actual dimensions (the same applies to FIG. 4).
 図3において、受光部Rは、二次レンズ30、サポート部31、パッケージ部38、セル33、リードフレーム(P側)34、金ワイヤー35、リードフレーム36(N側)、及び、封止部37を備えている。受光部Rは、フレキシブルプリント配線板13上に実装されている。なお、セル33には並列にバイパスダイオードが接続されるが、ここでは図示を省略している。 In FIG. 3, the light receiving portion R includes a secondary lens 30, a support portion 31, a package portion 38, a cell 33, a lead frame (P side) 34, a gold wire 35, a lead frame 36 (N side), and a sealing portion. It is equipped with 37. The light receiving portion R is mounted on the flexible printed wiring board 13. A bypass diode is connected to the cell 33 in parallel, but the illustration is omitted here.
 二次レンズ30は例えばボールレンズである。二次レンズ30はサポート部31の上端部内周エッジ31eにより、セル33との間に光軸Ax方向の隙間が形成されるように支持されている。サポート部31は、例えば円筒状であり、樹脂製又はガラス製である。サポート部31は、フラットなパッケージ部38の上に固着されている。パッケージ部38は樹脂製であり、セル33を、そのリードフレーム34,36と共に保持している。セル33の出力は、P側がリードフレーム34に、N側が金ワイヤー35を介してリードフレーム36に、それぞれ引き出される。封止部37は、光透過性のシリコーン樹脂であり、サポート部31の内側の、二次レンズ30とセル33との間に形成される空間を満たすように設けられている。 The secondary lens 30 is, for example, a ball lens. The secondary lens 30 is supported by the inner peripheral edge 31e of the upper end portion of the support portion 31 so as to form a gap in the optical axis Ax direction with the cell 33. The support portion 31 is, for example, cylindrical and is made of resin or glass. The support portion 31 is fixed on the flat package portion 38. The package portion 38 is made of resin and holds the cell 33 together with the lead frames 34 and 36 thereof. The output of the cell 33 is drawn out to the lead frame 34 on the P side and to the lead frame 36 via the gold wire 35 on the N side. The sealing portion 37 is a light-transmitting silicone resin, and is provided so as to fill the space formed between the secondary lens 30 and the cell 33 inside the support portion 31.
 図3において、サポート部31の上端部は、光軸Axを中心として二次レンズ30の外側に端面31aを拡げた形態となっている。なお、サポート部31が樹脂製の場合には、端面31aの上に、ワッシャ状の金属の保護板を載せる場合もある。
 なお、以下の説明では、サポート部31と、パッケージ部38とを含めてパッケージ32と呼ぶことがある。
In FIG. 3, the upper end portion of the support portion 31 has a form in which the end surface 31a is expanded to the outside of the secondary lens 30 with the optical axis Ax as the center. When the support portion 31 is made of resin, a washer-shaped metal protective plate may be placed on the end face 31a.
In the following description, the support unit 31 and the package unit 38 may be referred to as a package 32.
〔集光型太陽光発電ユニットの構成例〕
 図4は、モジュール1Mを構成する集光型発電の光学系の基本構成としての集光型太陽光発電ユニット1Uの一例を示す断面図である。
 図において、集光型太陽光発電ユニット1Uが、太陽と正対し、太陽光の入射角が0度であると、一次レンズ12fの光軸Ax上に、受光部Rの二次レンズ30及びセル33があり、一次レンズ12fにより集光する光は遮蔽板14の開口14aを通り、受光部Rの二次レンズ30に取り込まれ、セル33に導かれる。
[Configuration example of concentrating photovoltaic power generation unit]
FIG. 4 is a cross-sectional view showing an example of a condensing photovoltaic power generation unit 1U as a basic configuration of an optical system for concentrating power generation constituting the module 1M.
In the figure, when the condensing type solar power generation unit 1U faces the sun and the incident angle of the sunlight is 0 degrees, the secondary lens 30 and the cell of the light receiving unit R are placed on the optical axis Ax of the primary lens 12f. There is 33, and the light collected by the primary lens 12f passes through the opening 14a of the shielding plate 14, is taken into the secondary lens 30 of the light receiving portion R, and is guided to the cell 33.
〔フレキシブルプリント配線板の原形体〕
 次に、図2に示したフレキシブルプリント配線板13について詳細に説明する。図2に示したフレキシブルプリント配線板13は、展開して筐体11の底面11bに装着した状態である。
 一方、図5は、展開する前のフレキシブルプリント配線板13の原形体13Aの一例を示す図である。図において、この原形体13Aは、受光部Rが140個含まれており、展開すると、一次レンズ12f(図2)の全数と対応している。なお、数量は一例に過ぎず、要するに、一次レンズ12fの全数と対応した数の受光部Rを搭載するフレキシブルプリント配線板13が必要である。
[Prototype of flexible printed wiring board]
Next, the flexible printed wiring board 13 shown in FIG. 2 will be described in detail. The flexible printed wiring board 13 shown in FIG. 2 is in a state of being unfolded and mounted on the bottom surface 11b of the housing 11.
On the other hand, FIG. 5 is a diagram showing an example of the prototype 13A of the flexible printed wiring board 13 before unfolding. In the figure, this prototype 13A includes 140 light receiving portions R, and when expanded, corresponds to the total number of primary lenses 12f (FIG. 2). The quantity is only an example, and in short, a flexible printed wiring board 13 on which the number of light receiving portions R corresponding to the total number of the primary lenses 12f is mounted is required.
 ここで、図5中に示す互いに直交する3方向を、X方向,Y方向,Z方向とする。原形体13Aは、受光部R等がZ方向に一定の高さを有するが、全体としての形態を概観すれば、X-Y平面上で、1枚のシート状になっている。但し、Y方向の上半分と下半分とで電気的な接続は分離されており、上半分の原形体13A1と、下半分の13A2とにより構成されている。 Here, the three directions orthogonal to each other shown in FIG. 5 are the X direction, the Y direction, and the Z direction. In the prototype 13A, the light receiving portion R and the like have a constant height in the Z direction, but the overall shape is in the form of a single sheet on the XY plane. However, the electrical connection is separated between the upper half and the lower half in the Y direction, and is composed of the prototype 13A1 in the upper half and 13A2 in the lower half.
 例えば上半分の原形体13A1は、X方向に延びる細片状のフレキシブル基板131が10本、Y方向に互いに近接して設けられている。当該10本は、全体として左端・右端で折り返すように方向転換しながら電気的に直列に繋がっている。各フレキシブル基板131において、受光部Rを搭載する箇所では相対的にY方向の幅が広い幅広部131wとなっており、X方向に隣り合う2つの受光部Rの間は、相対的に幅が狭い幅狭部131nとなっている。
 下半分の原形体13A2も、同様に構成されており、原形体13Aの全体で、20本のフレキシブル基板131を含んでいる。
For example, the prototype 13A1 in the upper half is provided with ten strip-shaped flexible substrates 131 extending in the X direction and close to each other in the Y direction. The 10 pieces are electrically connected in series while changing direction so as to fold back at the left end and the right end as a whole. In each flexible substrate 131, a wide portion 131w having a relatively wide width in the Y direction is formed at a portion where the light receiving portion R is mounted, and the width is relatively wide between two light receiving portions R adjacent to each other in the X direction. It is a narrow narrow portion 131n.
The lower half prototype 13A2 is also configured in the same manner, and the entire prototype 13A includes 20 flexible substrates 131.
 Y方向に隣り合う2本のフレキシブル基板131同士は、幅広部131wのX方向の位置がずれるようになっており、これにより、全体として20本のフレキシブル基板131を密集させ、歩留まりの良い製造を可能としている。左端・右端の折り返し部131cは幅狭部131nと同じ幅での折り返しとなっており、その細さを利用して自在にY方向に拡げ、かつ、X方向にずらして、原形体13A(13A1,13A2)を所望の形状に展開することができるようになっている。 The two flexible substrates 131 adjacent to each other in the Y direction are displaced from each other in the position of the wide portion 131w in the X direction, whereby 20 flexible substrates 131 are densely packed as a whole, and manufacturing with good yield is achieved. It is possible. The folded portion 131c at the left end and the right end is folded with the same width as the narrow portion 131n, and by utilizing the thinness, it can be freely expanded in the Y direction and shifted in the X direction to form the prototype 13A (13A1). , 13A2) can be developed into a desired shape.
 Y方向に延びる6本の接続帯131bは、20本のフレキシブル基板131が互いに近接して並んだ状態で、これらを相互に接続している。これにより、20本のフレキシブル基板131を含む原形体13Aの全体は、1枚のシート状になり、取り扱いが容易になる。なお、左右の端部にある余白部131xは、製造上の必要性から付いている部分であり、フレキシブルプリント配線板として原形体13Aを装着する前には切除される。 The six connection bands 131b extending in the Y direction connect the 20 flexible substrates 131 to each other in a state where they are lined up in close proximity to each other. As a result, the entire prototype 13A including the 20 flexible substrates 131 becomes a single sheet, which facilitates handling. The margins 131x at the left and right ends are attached due to manufacturing necessity, and are cut off before mounting the prototype 13A as a flexible printed wiring board.
 図6は、斜め上からフレキシブルプリント配線板13の原形体13Aの一部を見た斜視図である。接続帯131bには斜線を付して示している。X方向に延びる細片状のフレキシブル基板131をベースとして、フレキシブル基板131の上面131sに、X方向に等間隔で搭載された受光部R、及び、受光部Rに関する電気回路を含むプリント回路部131pが実装されている。受光部Rの傍には、プリント回路部131pの一部でもあるバイパスダイオード39が設けられている。前述のように、フレキシブル基板131は、X方向の端部で折り返すため、隣り合う2本のフレキシブル基板131の極性は、互いに逆になる。 FIG. 6 is a perspective view of a part of the prototype 13A of the flexible printed wiring board 13 seen from diagonally above. The connection band 131b is shown with diagonal lines. Based on the strip-shaped flexible substrate 131 extending in the X direction, the light receiving portion R mounted on the upper surface 131s of the flexible substrate 131 at equal intervals in the X direction, and the printed circuit portion 131p including the electric circuit related to the light receiving portion R. Is implemented. A bypass diode 39, which is also a part of the printed circuit unit 131p, is provided near the light receiving unit R. As described above, since the flexible substrate 131 is folded back at the end in the X direction, the polarities of the two adjacent flexible substrates 131 are opposite to each other.
 図7は、接続帯131bのある部分でのY-Z断面図である。直交3方向のX,Y,Zは、図5と共通である。フレキシブル基板131の幅狭部131nは、例えば、裏面の銅パターン1311、ポリイミド製の絶縁基部1312、表面側の銅パターン1313、接着層1314、及び、ポリイミド製のカバーレイ1315を積層した構成となっている。接続帯131bは、例えば、絶縁基部1312、接着層1314、及び、カバーレイ1315をそのまま拡張して構成されている。 FIG. 7 is a YY cross-sectional view at a portion of the connecting band 131b. X, Y, and Z in the three orthogonal directions are common to FIG. The narrow portion 131n of the flexible substrate 131 has, for example, a configuration in which a copper pattern 1311 on the back surface, an insulating base portion 1312 made of polyimide, a copper pattern 1313 on the front surface side, an adhesive layer 1314, and a coverlay 1315 made of polyimide are laminated. ing. The connection band 131b is configured by, for example, expanding the insulating base portion 1312, the adhesive layer 1314, and the coverlay 1315 as they are.
〔第1実施形態について〕
 次に、第1実施形態に係るフレキシブルプリント配線板の装着方法について説明する。このフレキシブルプリント配線板の装着方法は、モジュール1M(集光型太陽光発電装置)の製造方法に含まれる。
[About the first embodiment]
Next, a method of mounting the flexible printed wiring board according to the first embodiment will be described. The method of mounting the flexible printed wiring board is included in the method of manufacturing the module 1M (concentrating photovoltaic power generation device).
 フレキシブルプリント配線板13を筐体11の底面11bに装着する際には、配線板装着装置が用いられる。
 図8は、配線板装着装置の構成、及びその動作を模式的に示した図である。
 図8中の(a)に示すように、配線板装着装置40は、フレキシブルプリント配線板13を保持するセット台41と、セット台41に保持したフレキシブルプリント配線板13を展開して筐体11の底面11bに装着する吸着ユニット42と、これらを制御する制御装置43とを備える。
When the flexible printed wiring board 13 is mounted on the bottom surface 11b of the housing 11, a wiring board mounting device is used.
FIG. 8 is a diagram schematically showing the configuration of the wiring board mounting device and its operation.
As shown in FIG. 8A, the wiring board mounting device 40 deploys the set base 41 holding the flexible printed wiring board 13 and the flexible printed wiring board 13 held on the set base 41 to expand the housing 11. A suction unit 42 mounted on the bottom surface 11b of the above and a control device 43 for controlling these are provided.
 セット台41は、上面側で原形体13A(フレキシブルプリント配線板13)を保持する機能を有する。
 吸着ユニット42は、セット台41に保持されたフレキシブルプリント配線板13を下面側で吸着し保持する機能を有する。また、吸着ユニット42は、複数のフレキシブル基板131同士の相対位置が筐体11の底面11bに展開されたときの展開位置となるように、フレキシブルプリント配線板13を保持する。
The set base 41 has a function of holding the prototype 13A (flexible printed wiring board 13) on the upper surface side.
The suction unit 42 has a function of sucking and holding the flexible printed wiring board 13 held on the set base 41 on the lower surface side. Further, the suction unit 42 holds the flexible printed wiring board 13 so that the relative positions of the plurality of flexible substrates 131 are the deployed positions when the plurality of flexible substrates 131 are deployed on the bottom surface 11b of the housing 11.
 図8中の(a)に示すように、原形体13Aの長手方向に沿う方向をX方向、原形体13Aの幅方向に沿う方向をY方向、上下方向をZ方向としたとき、セット台41がフレキシブルプリント配線板13を保持する上面、及び吸着ユニット42がフレキシブルプリント配線板13を保持する下面は、X-Y平面に沿う水平状態である。また、セット台41は、上面を水平状態に維持しつつ各方向に任意に移動させることができる。 As shown in FIG. 8A, when the direction along the longitudinal direction of the prototype 13A is the X direction, the direction along the width direction of the prototype 13A is the Y direction, and the vertical direction is the Z direction, the set base 41 The upper surface of the flexible printed wiring plate 13 and the lower surface of the suction unit 42 holding the flexible printed wiring plate 13 are in a horizontal state along the XY plane. Further, the set table 41 can be arbitrarily moved in each direction while maintaining the upper surface in a horizontal state.
 制御装置43は、プロセッサや、記憶装置等を備えたコンピュータによって構成されている。制御装置43が有する機能は、前記記憶装置や記録媒体等に記憶されたプログラムを前記プロセッサが実行することにより実現される。
 制御装置43は、セット台41及び吸着ユニット42を制御する機能を有する。制御装置43は、セット台41及び吸着ユニット42を制御することで、フレキシブルプリント配線板13を底面11bに装着する作業を実行することができる。
The control device 43 is composed of a computer including a processor, a storage device, and the like. The function of the control device 43 is realized by the processor executing a program stored in the storage device, a recording medium, or the like.
The control device 43 has a function of controlling the set base 41 and the suction unit 42. By controlling the set base 41 and the suction unit 42, the control device 43 can execute the work of mounting the flexible printed wiring board 13 on the bottom surface 11b.
 吸着ユニット42がフレキシブルプリント配線板13を保持した後、吸着ユニット42の下方には、図8中の(b)に示すように、セット台41に代えて筐体11が配置される。制御装置43は、吸着ユニット42が保持するフレキシブルプリント配線板13を、筐体11の底面11bに当接させ、装着する。底面11bには、フレキシブル基板131を装着する位置に対応して接着テープが予め貼り付けられている。フレキシブルプリント配線板13は、この接着テープによって底面11bに装着される。 After the suction unit 42 holds the flexible printed wiring board 13, a housing 11 is arranged below the suction unit 42 in place of the set base 41 as shown in FIG. 8B. The control device 43 attaches the flexible printed wiring board 13 held by the suction unit 42 to the bottom surface 11b of the housing 11. An adhesive tape is previously attached to the bottom surface 11b corresponding to the position where the flexible substrate 131 is mounted. The flexible printed wiring board 13 is attached to the bottom surface 11b by this adhesive tape.
 吸着ユニット42は、上述のように、複数のフレキシブル基板131同士の相対位置が筐体11の底面11bに展開されたときの展開位置となるように、フレキシブルプリント配線板13を保持する。よって、吸着ユニット42によって底面11bに装着されたフレキシブルプリント配線板13(の複数のフレキシブル基板131)は、図8中の(c)に示すように、展開された状態となる。 As described above, the suction unit 42 holds the flexible printed wiring board 13 so that the relative positions of the plurality of flexible substrates 131 are the deployed positions when the plurality of flexible substrates 131 are deployed on the bottom surface 11b of the housing 11. Therefore, the flexible printed wiring board 13 (a plurality of flexible substrates 131) mounted on the bottom surface 11b by the suction unit 42 is in an unfolded state as shown in FIG. 8C.
 次に装着作業についてより詳細に説明する。
 図9は、フレキシブルプリント配線板13をモジュール1Mの筐体11の底面11bに装着する装着作業の工程の一例を示すフローチャートである。
 以下の説明では、制御装置43が、セット台41及び吸着ユニット42を制御し装着作業を実行する場合について説明する。
Next, the mounting work will be described in more detail.
FIG. 9 is a flowchart showing an example of a mounting operation process for mounting the flexible printed wiring board 13 on the bottom surface 11b of the housing 11 of the module 1M.
In the following description, a case where the control device 43 controls the set base 41 and the suction unit 42 to execute the mounting operation will be described.
 装着作業を開始した制御装置43は、まず、セット台41によって原形体13Aを保持する(図9中、ステップS1:第1ステップ)。
 図10Aは、原形体13Aを保持する前のセット台41の一例を示す斜視図である。
 セット台41は、原形体13A(フレキシブルプリント配線板13)を、フレキシブル基板131の下面131t側から保持する装置(第1保持機構)である。
 なお、図10Aでは、原形体13Aの長手方向に沿う方向をX方向、原形体13Aの幅方向に沿う方向をY方向とする。
The control device 43, which has started the mounting operation, first holds the prototype 13A by the set base 41 (step S1: first step in FIG. 9).
FIG. 10A is a perspective view showing an example of the set base 41 before holding the prototype 13A.
The set base 41 is a device (first holding mechanism) for holding the prototype 13A (flexible printed wiring board 13) from the lower surface 131t side of the flexible substrate 131.
In FIG. 10A, the direction along the longitudinal direction of the prototype 13A is the X direction, and the direction along the width direction of the prototype 13A is the Y direction.
 セット台41は、例えば、金属によって形成された部材であり、原形体13Aのほぼ全域を下側から保持するように矩形状に形成されている。
 セット台41の上面には、凹部45が設けられている。凹部45は、X方向に沿う方向に延びており、原形体13AをY方向に位置決めする。
 また、凹部45の底面45aには、原形体13Aの外形(穴を含む)に沿う凸部(図示省略)が設けられている。この凸部は、原形体13AをX方向に位置決めするために用いられる。
 原形体13Aは、凹部45及び凸部に合わせてセット台41の上面側に配置される。これにより、原形体13Aは、セット台41に対してX方向及びY方向に位置決めされる。
The set base 41 is, for example, a member made of metal, and is formed in a rectangular shape so as to hold almost the entire area of the prototype 13A from below.
A recess 45 is provided on the upper surface of the set base 41. The recess 45 extends in the direction along the X direction, and positions the prototype 13A in the Y direction.
Further, the bottom surface 45a of the recess 45 is provided with a convex portion (not shown) along the outer shape (including the hole) of the prototype body 13A. This convex portion is used to position the prototype 13A in the X direction.
The prototype 13A is arranged on the upper surface side of the set base 41 so as to match the concave portion 45 and the convex portion. As a result, the prototype 13A is positioned in the X direction and the Y direction with respect to the set base 41.
 また、底面45aには、原形体13Aを吸着して保持するための吸引口45bが多数設けられている。吸引口45bは、吸引ポンプ等(図示省略)に接続されている。吸引口45bは、前記吸引ポンプが発生する負圧による吸引力を底面45aに導く。セット台41の底面45aは、吸引口45bによる吸引力により、原形体13Aを吸着して保持する。
 吸引口45bは、原形体13Aを構成する複数のフレキシブル基板131それぞれに対応して設けられている。さらに、吸引口45bは、複数のフレキシブル基板131それぞれに対応して吸引するか否かを制御可能とされている。よって、セット台41は、複数のフレキシブル基板131を個別に保持、及び保持の解放が可能である。
 このように、セット台41は、底面45a(下側吸着面)に複数のフレキシブル基板131を吸着することで、フレキシブルプリント配線板13を保持する。
 セット台41による保持、及び保持の解放は、制御装置43によって制御される。
Further, the bottom surface 45a is provided with a large number of suction ports 45b for sucking and holding the prototype 13A. The suction port 45b is connected to a suction pump or the like (not shown). The suction port 45b guides the suction force due to the negative pressure generated by the suction pump to the bottom surface 45a. The bottom surface 45a of the set base 41 attracts and holds the prototype 13A by the suction force of the suction port 45b.
The suction port 45b is provided corresponding to each of the plurality of flexible substrates 131 constituting the prototype 13A. Further, the suction port 45b can control whether or not suction is performed corresponding to each of the plurality of flexible substrates 131. Therefore, the set base 41 can individually hold and release the holding of the plurality of flexible substrates 131.
In this way, the set base 41 holds the flexible printed wiring board 13 by sucking the plurality of flexible substrates 131 on the bottom surface 45a (lower suction surface).
The holding by the set base 41 and the release of the holding are controlled by the control device 43.
 ステップS1(図9)では、まずオペレータが原形体13Aをセット台41の凹部45に載置する。
 次いで、オペレータが制御装置43に装着作業を開始させると、セット台41は、制御装置43による制御に基づいて、底面45aによって原形体13Aを吸着し、原形体13Aを複数のフレキシブル基板131の下面131t側から保持する。
In step S1 (FIG. 9), the operator first places the prototype 13A in the recess 45 of the set table 41.
Next, when the operator starts the mounting work on the control device 43, the set base 41 attracts the prototype body 13A by the bottom surface 45a based on the control by the control device 43, and the prototype body 13A is attached to the lower surface of the plurality of flexible substrates 131. Hold from the 131t side.
 図10Bは、原形体13Aがセット台41に保持された状態を示す斜視図である。
 図10Bにおいても、原形体13Aの長手方向に沿う方向をX方向、原形体13Aの幅方向に沿う方向をY方向とする。
 原形体13Aの折り返し部131c及び余白部131xは、セット台41に保持された状態で、セット台41の端面41bから突出している。
FIG. 10B is a perspective view showing a state in which the prototype 13A is held on the set table 41.
Also in FIG. 10B, the direction along the longitudinal direction of the prototype 13A is the X direction, and the direction along the width direction of the prototype 13A is the Y direction.
The folded-back portion 131c and the margin portion 131x of the prototype body 13A protrude from the end surface 41b of the set base 41 while being held by the set base 41.
 図9中のステップS1の後、制御装置43は、接続帯131bを切断する(図9中のステップS2)。配線板装着装置40は、セット台41に保持された接続帯131bを切断する機能を有しており、制御装置43は、その切断機能によって接続帯131bを切断する。 After step S1 in FIG. 9, the control device 43 disconnects the connection band 131b (step S2 in FIG. 9). The wiring board mounting device 40 has a function of cutting the connection band 131b held by the set base 41, and the control device 43 cuts the connection band 131b by the cutting function.
 図11は、原形体13Aの接続帯131bを切断した状態を示す図である。
 図11に示すように、隣り合う2本のフレキシブル基板131の間にある接続帯131bを、例えばY方向の中間で切断することにより、各フレキシブル基板131を、互いに分離する。
FIG. 11 is a diagram showing a state in which the connection band 131b of the prototype body 13A is cut.
As shown in FIG. 11, the flexible substrates 131 are separated from each other by cutting the connection band 131b between two adjacent flexible substrates 131, for example, in the middle in the Y direction.
 これにより、接続帯131bによって各フレキシブル基板131が接続された原形体13Aは、各フレキシブル基板131が展開可能なフレキシブルプリント配線板13となる。
 なお、このとき、各フレキシブル基板131は、セット台41の底面45aによって保持されている。よって、各フレキシブル基板131が分離したとしても、各フレキシブル基板131は、セット台41に保持された状態を維持し、保持された位置から移動することはない。
 つまり、セット台41に保持されたフレキシブルプリント配線板13は、複数のフレキシブル基板131が互いに近接している展開前の配置となっている。
As a result, the prototype 13A to which each flexible substrate 131 is connected by the connection band 131b becomes a flexible printed wiring board 13 to which each flexible substrate 131 can be deployed.
At this time, each flexible substrate 131 is held by the bottom surface 45a of the set table 41. Therefore, even if each flexible substrate 131 is separated, each flexible substrate 131 maintains the state of being held by the set table 41 and does not move from the held position.
That is, the flexible printed wiring board 13 held on the set base 41 is arranged before deployment in which a plurality of flexible substrates 131 are close to each other.
 このように、本実施形態では、原形体13Aをセット台41に保持し、その後、接続帯131bを切断することで、セット台41に保持された状態の展開前のフレキシブルプリント配線板13を得ることができる。
 ここで、原形体13Aは、複数のフレキシブル基板131が分離した状態のフレキシブルプリント配線板13よりも取り扱いが容易である。本実施形態では、取り扱いが容易な原形体13Aを保持すれば、複数のフレキシブル基板131を有するフレキシブルプリント配線板13を適切に保持することができる。このため、フレキシブルプリント配線板の保持が容易となる。
As described above, in the present embodiment, the prototype 13A is held on the set base 41, and then the connection band 131b is cut to obtain the flexible printed wiring board 13 before deployment in the state held on the set base 41. be able to.
Here, the prototype 13A is easier to handle than the flexible printed wiring board 13 in which a plurality of flexible substrates 131 are separated. In the present embodiment, if the prototype 13A that is easy to handle is held, the flexible printed wiring board 13 having a plurality of flexible substrates 131 can be appropriately held. Therefore, the flexible printed wiring board can be easily held.
 図9中のステップS2の後、制御装置43は、余白部131xを切除する(図9中のステップS3)。配線板装着装置40は、セット台41に保持された余白部131xを切除する機能を有しており、制御装置43は、その切除機能によって余白部131xを切除する。 After step S2 in FIG. 9, the control device 43 cuts off the margin 131x (step S3 in FIG. 9). The wiring board mounting device 40 has a function of cutting the margin portion 131x held by the set table 41, and the control device 43 cuts the margin portion 131x by the cutting function.
 余白部131xは、上述のように、セット台41の端面41bから突出している(図10B)。よって、フレキシブルプリント配線板13をセット台41に保持した状態で、余白部131xを容易に切除することができる。 As described above, the margin portion 131x protrudes from the end surface 41b of the set base 41 (FIG. 10B). Therefore, the margin 131x can be easily cut off while the flexible printed wiring board 13 is held on the set table 41.
 図9中のステップS3の後、制御装置43は、吸着ユニット42によって、フレキシブルプリント配線板13の吸着、展開を行う(図9中のステップS4:第2ステップ)。
 図12Aは、吸着ユニット42の一例を示す斜視図である。図12Aは、吸着ユニット42を下方から見たときの図を示している。
After step S3 in FIG. 9, the control device 43 sucks and deploys the flexible printed wiring board 13 by the suction unit 42 (step S4 in FIG. 9: second step).
FIG. 12A is a perspective view showing an example of the suction unit 42. FIG. 12A shows a view of the suction unit 42 when viewed from below.
 吸着ユニット42(第2保持機構)は、本体部51と、本体部51に取り付けられた複数の吸着ブロック50とを備える。複数の吸着ブロック50は、それぞれが1本のフレキシブル基板131を吸着して保持する。図12Aに示す吸着ユニット42は、10個の吸着ブロック50を備えており、10本のフレキシブル基板131を含む原形体13A1(13A2)から得られるフレキシブルプリント配線板13を保持する。
 つまり、図12Aに示す吸着ユニット42は、図2に示す筐体11の右半分及び左半分に装着される一対のフレキシブルプリント配線板13のうちの一方を保持する。
The suction unit 42 (second holding mechanism) includes a main body 51 and a plurality of suction blocks 50 attached to the main body 51. Each of the plurality of suction blocks 50 sucks and holds one flexible substrate 131. The suction unit 42 shown in FIG. 12A includes 10 suction blocks 50 and holds the flexible printed wiring board 13 obtained from the prototype 13A1 (13A2) including the 10 flexible substrates 131.
That is, the suction unit 42 shown in FIG. 12A holds one of the pair of flexible printed wiring boards 13 mounted on the right half and the left half of the housing 11 shown in FIG.
 複数の吸着ブロック50の下面50aには、複数の吸引口53が設けられている。吸引口53は、吸引ポンプ等(図示省略)に接続されている。吸引口53は、前記吸引ポンプが発生する負圧による吸引力を下面50aに導く。複数の吸着ブロック50の下面は、吸引口53による吸引力により、フレキシブル基板131を吸着して保持する。
 吸引口53は、フレキシブル基板131の幅広部131wに対応して設けられている。よって、図12Aに示す吸着ブロック50には、7つの吸引口53が設けられている。
A plurality of suction ports 53 are provided on the lower surface 50a of the plurality of suction blocks 50. The suction port 53 is connected to a suction pump or the like (not shown). The suction port 53 guides the suction force due to the negative pressure generated by the suction pump to the lower surface 50a. The lower surfaces of the plurality of suction blocks 50 suck and hold the flexible substrate 131 by the suction force of the suction port 53.
The suction port 53 is provided corresponding to the wide portion 131w of the flexible substrate 131. Therefore, the suction block 50 shown in FIG. 12A is provided with seven suction ports 53.
 図12Bは、吸着ブロック50の吸引口53の部分を示す断面図であり、フレキシブル基板131を吸着保持した状態を示している。
 図12Bに示すように、吸引口53は、幅広部131wに対応して設けられており、幅広部131wに搭載された受光部Rを収容する。
 これにより、吸着ブロック50は、フレキシブル基板131の上面131sから突出する受光部Rが下面50aに接触するのを防止しつつ、幅広部131wの部分を吸着することができる。
 このように、吸着ユニット42は、複数の吸着ブロック50の下面50a(上側吸着面)に複数のフレキシブル基板131を吸着することで、フレキシブルプリント配線板13を保持する。
FIG. 12B is a cross-sectional view showing a portion of the suction port 53 of the suction block 50, showing a state in which the flexible substrate 131 is sucked and held.
As shown in FIG. 12B, the suction port 53 is provided corresponding to the wide portion 131w, and accommodates the light receiving portion R mounted on the wide portion 131w.
As a result, the suction block 50 can suck the wide portion 131w while preventing the light receiving portion R protruding from the upper surface 131s of the flexible substrate 131 from coming into contact with the lower surface 50a.
In this way, the suction unit 42 holds the flexible printed wiring board 13 by sucking the plurality of flexible substrates 131 on the lower surfaces 50a (upper suction surfaces) of the plurality of suction blocks 50.
 なお、吸着ブロック50において幅広部131wに対応する部分以外の部分は、吸着ブロック50が吸着するフレキシブル基板131以外の他のフレキシブル基板131に対する干渉を回避するような形状とされている。これによって、吸着ブロック50は、互いに近接した複数のフレキシブル基板131の中から1本のフレキシブル基板131を吸着することができる。 The portion of the suction block 50 other than the portion corresponding to the wide portion 131w is shaped so as to avoid interference with the flexible substrate 131 other than the flexible substrate 131 to which the suction block 50 is sucked. As a result, the suction block 50 can suck one flexible substrate 131 from a plurality of flexible substrates 131 close to each other.
 複数の吸着ブロック50は、保持した複数のフレキシブル基板131同士の相対位置が底面11bに展開されたときの展開位置となるように配置されている。
 これにより、吸着ユニット42は、複数のフレキシブル基板131同士の相対位置が展開位置となるように、フレキシブルプリント配線板13を、複数のフレキシブル基板131の上面131s側から保持することができる。
 つまり、吸着ユニット42は、フレキシブルプリント配線板13を保持すれば、複数のフレキシブル基板131を展開することができる。
The plurality of suction blocks 50 are arranged so that the relative positions of the plurality of held flexible substrates 131 are the deployed positions when the plurality of flexible substrates 131 are deployed on the bottom surface 11b.
As a result, the suction unit 42 can hold the flexible printed wiring board 13 from the upper surface 131s side of the plurality of flexible boards 131 so that the relative positions of the plurality of flexible boards 131 are the deployment positions.
That is, if the suction unit 42 holds the flexible printed wiring board 13, a plurality of flexible substrates 131 can be deployed.
 また、複数の吸着ブロック50は、それぞれ、リニアアクチュエータを介して本体部51に取り付けられている。複数の吸着ブロック50は、リニアアクチュエータによって個別に上下方向(X方向及びY方向に直交するZ方向)に移動可能とされている。
 吸着ユニット42は、フレキシブルプリント配線板13を保持する際、複数の吸着ブロック50のうちの1つを下方向へ移動させ、1本のフレキシブル基板131を吸着する。
Further, each of the plurality of suction blocks 50 is attached to the main body 51 via a linear actuator. The plurality of suction blocks 50 can be individually moved in the vertical direction (Z direction orthogonal to the X direction and the Y direction) by a linear actuator.
When holding the flexible printed wiring board 13, the suction unit 42 moves one of the plurality of suction blocks 50 downward and sucks one flexible substrate 131.
 吸着ユニット42によるフレキシブルプリント配線板13の吸着、展開を行う場合、制御装置43は、図12Aに示すように、フレキシブル基板131を保持したセット台41を吸着ユニット42の下方に移動させ、吸着ユニット42の下面(複数の吸着ブロック50の下面50a)と、セット台41の上面とを対向させる。 When the flexible printed wiring board 13 is sucked and deployed by the suction unit 42, the control device 43 moves the set base 41 holding the flexible substrate 131 below the suction unit 42, and the suction unit 43, as shown in FIG. 12A. The lower surface of the 42 (the lower surface 50a of the plurality of suction blocks 50) and the upper surface of the set table 41 face each other.
 図13は、吸着ユニット42がセット台41に保持されたフレキシブル基板131を吸着する際の手順を説明するための図である。図13において、フレキシブルプリント配線板13(セット台41)の長手方向に沿う方向をX方向、フレキシブルプリント配線板13の幅方向に沿う方向をY方向、X方向及びY方向に直交する方向をZ方向とする。
 まず、図13中の(a)に示すように、セット台41を吸着ユニット42の下方に移動させ、複数のフレキシブル基板131のうち紙面右端のフレキシブル基板131の水平面(X-Y平面)上の位置を、紙面右端の吸着ブロック501に吸着させるための位置に合わせる。
FIG. 13 is a diagram for explaining a procedure when the suction unit 42 sucks the flexible substrate 131 held on the set table 41. In FIG. 13, the direction along the longitudinal direction of the flexible printed wiring board 13 (set base 41) is the X direction, the direction along the width direction of the flexible printed wiring board 13 is the Y direction, and the directions orthogonal to the X direction and the Y direction are Z. The direction.
First, as shown in FIG. 13A, the set table 41 is moved below the suction unit 42, and is on the horizontal plane (XY plane) of the flexible substrate 131 at the right end of the paper surface among the plurality of flexible substrates 131. Align the position with the position for suction to the suction block 501 on the right edge of the paper surface.
 次いで、図13中の(b)に示すように、吸着ブロック501のみを下方に移動させて下面501aを1本のフレキシブル基板131に当接させ、吸着ブロック501に1本のフレキシブル基板131を吸着させる。
 これにより、吸着ブロック501は、1本のフレキシブル基板131を上面131s側から保持する(保持ステップ)。
 なお、吸着ブロック501に保持された1本のフレキシブル基板131は、セット台41によって下面131t側からも保持されている。
Next, as shown in FIG. 13B, only the suction block 501 is moved downward to bring the lower surface 501a into contact with one flexible substrate 131, and one flexible substrate 131 is sucked onto the suction block 501. Let me.
As a result, the suction block 501 holds one flexible substrate 131 from the upper surface 131s side (holding step).
The one flexible substrate 131 held by the suction block 501 is also held by the set table 41 from the lower surface 131t side.
 次に、吸着ブロック501に保持された1本のフレキシブル基板131に対するセット台41による保持を解放させ(解放ステップ)、図13中の(c)に示すように、1本のフレキシブル基板131を吸着した吸着ブロック501を元の位置へ上昇させる。
 なお、各フレキシブル基板131の少なくとも一端は、折り返し部131cを介して隣り合うフレキシブル基板131に接続されている。よって、吸着ユニット42がセット台41のフレキシブル基板131を吸着する際における、吸着ユニット42とセット台41との間隔は、隣り合うフレキシブル基板131同士を接続する折り返し部131cが届く長さの範囲内に設定される。
Next, the holding by the set base 41 on the one flexible substrate 131 held by the suction block 501 is released (release step), and as shown in (c) in FIG. 13, one flexible substrate 131 is sucked. The suction block 501 is raised to the original position.
At least one end of each flexible substrate 131 is connected to the adjacent flexible substrate 131 via the folded-back portion 131c. Therefore, when the suction unit 42 sucks the flexible substrate 131 of the set base 41, the distance between the suction unit 42 and the set base 41 is within the range of the length that the folded-back portion 131c connecting the adjacent flexible boards 131 can reach. Is set to.
 吸着ブロック501が1本のフレキシブル基板131を吸着して元の位置へ上昇すると、セット台41を水平方向に移動させ、吸着ブロック501に吸着されたフレキシブル基板131の隣に並ぶフレキシブル基板131の水平面上の位置を、吸着ブロック501の隣に配置された吸着ブロック502に吸着させるための位置に合わせる(図13中の(d))。 When the suction block 501 sucks one flexible substrate 131 and rises to the original position, the set table 41 is moved in the horizontal direction, and the horizontal plane of the flexible substrate 131 arranged next to the flexible substrate 131 sucked by the suction block 501. The upper position is aligned with the position for suction to the suction block 502 arranged next to the suction block 501 ((d) in FIG. 13).
 以下、吸着ブロック501と同様に、吸着ブロック502に1本のフレキシブル基板131を吸着させる。
 上記手順を、複数のフレキシブル基板131それぞれについて複数のフレキシブル基板131の配列順に従って繰り返す。
 これにより、複数の吸着ブロック50それぞれに、1本のフレキシブル基板131を吸着させることができる。
Hereinafter, similarly to the suction block 501, one flexible substrate 131 is sucked onto the suction block 502.
The above procedure is repeated for each of the plurality of flexible substrates 131 according to the arrangement order of the plurality of flexible substrates 131.
As a result, one flexible substrate 131 can be adsorbed to each of the plurality of adsorption blocks 50.
 図14は、複数の吸着ブロック50がそれぞれ1本のフレキシブル基板131を吸着した状態の吸着ユニット42を下方から見たときの図である。
 図14に示すように、吸着ユニット42は、複数のフレキシブル基板131同士の相対位置が展開位置となるように、フレキシブルプリント配線板13を保持する。
 以上のようにして、制御装置43は、吸着ユニット42によるフレキシブルプリント配線板13の吸着、展開を行う。
FIG. 14 is a view of the suction unit 42 in a state where the plurality of suction blocks 50 each suck one flexible substrate 131 as viewed from below.
As shown in FIG. 14, the suction unit 42 holds the flexible printed wiring board 13 so that the relative positions of the plurality of flexible substrates 131 are the deployment positions.
As described above, the control device 43 sucks and deploys the flexible printed wiring board 13 by the suction unit 42.
 この構成によれば、展開前のフレキシブルプリント配線板13を複数のフレキシブル基板131の下面131t側から保持した後、1本のフレキシブル基板131の上面131s側又は下面131t側のいずれかが保持された状態を維持しつつ、複数のフレキシブル基板131同士の相対位置が展開位置となるようにフレキシブルプリント配線板13を複数のフレキシブル基板131の上面131s側から保持することができる。
 これにより、薄い帯状の物体である複数のフレキシブル基板131の展開、及び、展開した複数のフレキシブル基板の底面11bへの装着を精度よく、かつ容易に行うことができる。この結果、モジュール1Mの製造に要する工数を低減でき、製造コストの低減化が可能となる。
According to this configuration, after the flexible printed wiring board 13 before deployment is held from the lower surface 131t side of the plurality of flexible boards 131, either the upper surface 131s side or the lower surface 131t side of one flexible board 131 is held. While maintaining the state, the flexible printed wiring board 13 can be held from the upper surface 131s side of the plurality of flexible boards 131 so that the relative positions of the plurality of flexible boards 131 are the deployment positions.
As a result, the plurality of flexible substrates 131, which are thin strip-shaped objects, can be deployed and the plurality of deployed flexible substrates can be mounted on the bottom surface 11b with high accuracy and easily. As a result, the man-hours required for manufacturing the module 1M can be reduced, and the manufacturing cost can be reduced.
 また、上記構成では、セット台41が、底面45aに複数のフレキシブル基板131を吸着することで、フレキシブルプリント配線板13を保持するとともに、吸着ユニット42が、吸着ブロック50の下面50aに複数のフレキシブル基板131を吸着することで、フレキシブルプリント配線板13を保持するので、薄い帯状の物体である複数のフレキシブル基板131を適切に保持することができる。 Further, in the above configuration, the set base 41 attracts a plurality of flexible substrates 131 to the bottom surface 45a to hold the flexible printed wiring board 13, and the suction unit 42 has a plurality of flexible substrates 50a to the bottom surface 50a of the suction block 50. Since the flexible printed wiring board 13 is held by adsorbing the substrate 131, it is possible to appropriately hold a plurality of flexible substrate 131 which are thin strip-shaped objects.
 図9中のステップS4の後、制御装置43は、吸着ユニット42によって、フレキシブルプリント配線板13の筐体11の底面11bへの装着を行う(図9中のステップS5:第3ステップ)。 After step S4 in FIG. 9, the control device 43 attaches the flexible printed wiring board 13 to the bottom surface 11b of the housing 11 by the suction unit 42 (step S5 in FIG. 9: third step).
 吸着ユニット42によるフレキシブルプリント配線板13の装着は、上述した通りである。すなわち、吸着ユニット42が保持するフレキシブルプリント配線板13を、筐体11の底面11bに当接させ、装着する。なお、このとき、吸着ユニット42と、筐体11との間の位置関係は、制御装置43によって制御され、フレキシブルプリント配線板13は、底面11bにおける所定の位置に装着される。
 フレキシブルプリント配線板13を底面11bにおける所定の位置に装着すると、制御装置43は、フレキシブルプリント配線板13の保持を解放する。
The attachment of the flexible printed wiring board 13 by the suction unit 42 is as described above. That is, the flexible printed wiring board 13 held by the suction unit 42 is brought into contact with the bottom surface 11b of the housing 11 and mounted. At this time, the positional relationship between the suction unit 42 and the housing 11 is controlled by the control device 43, and the flexible printed wiring board 13 is mounted at a predetermined position on the bottom surface 11b.
When the flexible printed wiring board 13 is mounted at a predetermined position on the bottom surface 11b, the control device 43 releases the holding of the flexible printed wiring board 13.
 図9中のステップS5によって、複数のフレキシブル基板131が底面11bに展開された状態で、フレキシブルプリント配線板13の装着が完了すると、制御装置43は、配線板装着装置40が有する検査機能を用いて、複数のフレキシブル基板131の受光部Rの位置が適正な位置であるか否かの検査を行い(図9中のステップS6)、装着作業を終了する。 When the mounting of the flexible printed wiring board 13 is completed in the state where the plurality of flexible substrates 131 are deployed on the bottom surface 11b by step S5 in FIG. 9, the control device 43 uses the inspection function of the wiring board mounting device 40. Then, it is inspected whether or not the positions of the light receiving portions R of the plurality of flexible substrates 131 are appropriate positions (step S6 in FIG. 9), and the mounting operation is completed.
 フレキシブルプリント配線板13が装着された筐体11は、装着作業以降の工程において、必要な配線がなされ、遮蔽板14や集光部12等が取り付けられ、モジュール1Mとして組み立てられる。このように組み立てられたモジュール1Mは、太陽光発電装置100の構成要素として組み込まれる。 The housing 11 to which the flexible printed wiring board 13 is mounted is assembled as a module 1M by making necessary wiring in the process after the mounting work, attaching the shielding plate 14, the light collecting portion 12, and the like. The module 1M assembled in this way is incorporated as a component of the photovoltaic power generation device 100.
〔第2実施形態について〕
 図15は、第2実施形態に係るフレキシブルプリント配線板の装着方法で用いられる吸着ユニット42の一部を示す斜視図である。
 本実施形態の吸着ユニット42が有する複数の吸着ブロック50は、Z方向に移動可能であるのに加えて、X方向及びY方向に平行移動可能に設けられており、複数の吸着ブロック50によって保持される複数のフレキシブル基板131同士の相対位置を微調整することができる点において第1実施形態と相違する。
[About the second embodiment]
FIG. 15 is a perspective view showing a part of the suction unit 42 used in the method of mounting the flexible printed wiring board according to the second embodiment.
The plurality of suction blocks 50 included in the suction unit 42 of the present embodiment are provided so as to be movable in the X direction and in the Y direction in addition to being movable in the Z direction, and are held by the plurality of suction blocks 50. It differs from the first embodiment in that the relative positions of the plurality of flexible substrates 131 can be finely adjusted.
 吸着ユニット42は、各吸着ブロック50をZ方向に移動させるためのリニアアクチュエータの他、各吸着ブロック50をX方向に平行移動させるためのリニアアクチュエータ55と、各吸着ブロック50をY方向に平行移動させるためのリニアアクチュエータ56とを備える。
 リニアアクチュエータ55,56は、吸着ブロック50それぞれに設けられている。リニアアクチュエータ55,56は、吸着ブロック50を数ミリ~数センチ程度移動させることができる。
The suction unit 42 includes a linear actuator for moving each suction block 50 in the Z direction, a linear actuator 55 for translating each suction block 50 in the X direction, and parallel movement of each suction block 50 in the Y direction. A linear actuator 56 is provided for the operation.
The linear actuators 55 and 56 are provided in each of the suction blocks 50. The linear actuators 55 and 56 can move the suction block 50 by several millimeters to several centimeters.
 よって、複数の吸着ブロック50の相対的な位置は、基本的な配置を維持しつつリニアアクチュエータ55,56によって調整可能である。リニアアクチュエータ55,56は、制御装置43によって制御される。
 制御装置43は、予め設計値等によって定められた複数の吸着ブロック50の初期位置を記憶しており、作業開始時点においては、複数の吸着ブロック50が初期位置となるようにリニアアクチュエータ55,56を制御する。
Therefore, the relative positions of the plurality of suction blocks 50 can be adjusted by the linear actuators 55 and 56 while maintaining the basic arrangement. The linear actuators 55 and 56 are controlled by the control device 43.
The control device 43 stores the initial positions of the plurality of suction blocks 50 determined in advance by design values and the like, and at the time of starting the work, the linear actuators 55 and 56 so that the plurality of suction blocks 50 are in the initial positions. To control.
 図16は、第2実施形態に係るフレキシブルプリント配線板13の装着作業の工程の一例を示すフローチャートである。
 図16に示すフローチャートは、ステップS1の前にステップS0が設けられている点、及び、ステップS4にステップS41及びステップS42が含まれている点において図9に示す第1実施形態に係るフローチャートと相違する。それ以外のステップは、第1実施形態に係るフローチャートと同様なので説明を省略する。
FIG. 16 is a flowchart showing an example of a process of mounting the flexible printed wiring board 13 according to the second embodiment.
The flowchart shown in FIG. 16 is the flowchart according to the first embodiment shown in FIG. 9 in that step S0 is provided before step S1 and that step S41 and step S42 are included in step S4. It's different. Since the other steps are the same as the flowchart according to the first embodiment, the description thereof will be omitted.
 図16のフローチャートは、図9のフローチャートと同様、配線板装着装置40の制御装置43が実行する装着作業を示している。
 まず、装着作業を開始した制御装置43は、まず、レンズ位置情報を受け付ける(図16中、ステップS0)。
The flowchart of FIG. 16 shows the mounting work executed by the control device 43 of the wiring board mounting device 40, similarly to the flowchart of FIG.
First, the control device 43 that has started the mounting work first receives the lens position information (step S0 in FIG. 16).
 レンズ位置情報とは、集光部12(図2参照)が有する複数のフレネルレンズ12f(レンズ要素)同士の相対位置を示す情報である。
 複数のフレネルレンズ12f同士の相対位置は、例えば、複数のフレネルレンズ12fが形成された集光部12をカメラ等によって撮像した撮像画像に基づいて取得される。
 例えば、撮像画像から、複数のフレネルレンズ12fそれぞれの中心点や外形輪郭等、フレネルレンズ12fの外形を示す特徴部が特定され、特徴部の位置から複数のフレネルレンズ12f同士の相対位置が取得される。
 複数のフレネルレンズ12f同士の相対位置は、例えば、複数のフレネルレンズ12fのうちの1つのフレネルレンズ12fの位置を基準としたときの座標によって表される。つまり、レンズ位置情報は各フレネルレンズ12fの位置を示す座標である。
 なお、レンズ位置情報は、複数のフレネルレンズ12f全ての座標を含んでいてもよいし、複数のフレネルレンズ12fのうち、一部のフレネルレンズ12fの座標を含んでいてもよい。
The lens position information is information indicating the relative positions of a plurality of Fresnel lenses 12f (lens elements) possessed by the condensing unit 12 (see FIG. 2).
The relative positions of the plurality of Fresnel lenses 12f are acquired, for example, based on an image captured by a camera or the like of the condensing unit 12 on which the plurality of Fresnel lenses 12f are formed.
For example, from the captured image, a feature portion indicating the outer shape of the Fresnel lens 12f, such as the center point and outer contour of each of the plurality of Fresnel lenses 12f, is specified, and the relative positions of the plurality of Fresnel lenses 12f are acquired from the position of the feature portion. To.
The relative position of the plurality of Fresnel lenses 12f is represented by, for example, the coordinates when the position of one Fresnel lens 12f among the plurality of Fresnel lenses 12f is used as a reference. That is, the lens position information is the coordinates indicating the position of each Fresnel lens 12f.
The lens position information may include the coordinates of all of the plurality of Fresnel lenses 12f, or may include the coordinates of some of the Fresnel lenses 12f among the plurality of Fresnel lenses 12f.
 本実施形態では、筐体11に取り付けられる集光部12のレンズ位置情報は、予め取得される。制御装置43は、配線板装着装置40を操作するオペレータによる入力によってレンズ位置情報を受け付ける。
 その後、ステップS2、及びステップS3を実行した制御装置43は、吸着ユニット42によって、フレキシブルプリント配線板13の吸着、展開を行う(図16中のステップS4)。
 図16に示すように、ステップS4は、フレキシブルプリント配線板13の吸着、展開(ステップS41)、及び、複数の吸着ブロック50の位置調整(ステップS42:調整ステップ)の2つの工程を含む。
In the present embodiment, the lens position information of the condensing unit 12 attached to the housing 11 is acquired in advance. The control device 43 receives the lens position information by input by an operator who operates the wiring board mounting device 40.
After that, the control device 43 that has executed steps S2 and S3 sucks and deploys the flexible printed wiring board 13 by the suction unit 42 (step S4 in FIG. 16).
As shown in FIG. 16, step S4 includes two steps of suction and deployment of the flexible printed wiring board 13 (step S41) and position adjustment of the plurality of suction blocks 50 (step S42: adjustment step).
 図16中、ステップS41は、図9中のステップS4と同様の処理を行う。
 よって、ステップS41において、制御装置43は、吸着ユニット42によるフレキシブルプリント配線板13の吸着、展開を行う。
 次いで、制御装置43は、フレキシブルプリント配線板13を保持した状態で、リニアアクチュエータ55,56を制御し、複数の吸着ブロック50の位置調整を行う(図16中、ステップS42)。
 このとき、制御装置43は、レンズ位置情報(複数のフレネルレンズ12f同士の相対位置)に基づいて複数の吸着ブロック50の位置調整を行う。
In FIG. 16, step S41 performs the same process as step S4 in FIG.
Therefore, in step S41, the control device 43 sucks and deploys the flexible printed wiring board 13 by the suction unit 42.
Next, the control device 43 controls the linear actuators 55 and 56 while holding the flexible printed wiring board 13, and adjusts the positions of the plurality of suction blocks 50 (step S42 in FIG. 16).
At this time, the control device 43 adjusts the positions of the plurality of suction blocks 50 based on the lens position information (relative positions of the plurality of Fresnel lenses 12f).
 集光部12が有する複数のフレネルレンズ12fは、複数の受光部R(セル33)に対応して太陽光を集光する。よって、複数のフレネルレンズ12fの位置と、複数の受光部Rの位置とが対応するように、集光部12と、筐体11との位置決めを行う必要がある。
 ここで、集光部12が有する複数のフレネルレンズ12fは、複数のフレネルレンズ12fを形成する過程において、相対位置にばらつきが生じることがある。
The plurality of Fresnel lenses 12f included in the condensing unit 12 condense sunlight corresponding to the plurality of light receiving units R (cells 33). Therefore, it is necessary to position the condensing unit 12 and the housing 11 so that the positions of the plurality of Fresnel lenses 12f correspond to the positions of the plurality of light receiving units R.
Here, the plurality of Fresnel lenses 12f included in the condensing unit 12 may have variations in relative positions in the process of forming the plurality of Fresnel lenses 12f.
 複数のフレネルレンズ12f同士の相対位置にばらつきが生じると、集光部12と筐体11との位置決めを行ったとしても、複数のフレネルレンズ12fは集光部12として一体に設けられているため、複数のフレネルレンズ12fを個別に位置決めできず、複数のフレネルレンズ12fの位置と、複数の受光部Rの位置とが対応するように適切な位置合わせができないおそれがある。複数のフレネルレンズ12fの位置と、複数の受光部Rの位置との位置合わせが適切に行えない場合、フレネルレンズ12fが集光した太陽光が適切に受光部Rに導けなくなり、発電効率を低下させる。 If the relative positions of the plurality of Fresnel lenses 12f vary, even if the condensing unit 12 and the housing 11 are positioned, the plurality of Fresnel lenses 12f are integrally provided as the condensing unit 12. , The plurality of Fresnel lenses 12f cannot be individually positioned, and there is a possibility that the positions of the plurality of Fresnel lenses 12f and the positions of the plurality of light receiving portions R cannot be properly aligned so as to correspond to each other. If the positions of the plurality of Fresnel lenses 12f and the positions of the plurality of light receiving parts R cannot be properly aligned, the sunlight collected by the Fresnel lens 12f cannot be properly guided to the light receiving parts R, and the power generation efficiency is lowered. Let me.
 そこで、本実施形態では、複数のフレキシブル基板131を吸着する複数の吸着ブロック50の位置調整を行うことで、複数のフレキシブル基板131同士の相対位置を調整し、展開されたときにおけるフレキシブルプリント配線板13上の複数の受光部R同士の相対位置を複数のフレネルレンズ12f同士の相対位置に合わせるように調整する。 Therefore, in the present embodiment, the relative positions of the plurality of flexible boards 131 are adjusted by adjusting the positions of the plurality of suction blocks 50 that suck the plurality of flexible boards 131, and the flexible printed wiring board when deployed is used. The relative positions of the plurality of light receiving portions R on the 13 are adjusted so as to match the relative positions of the plurality of Fresnel lenses 12f.
 制御装置43は、初期位置の複数の吸着ブロック50によってフレキシブルプリント配線板13が展開されたときにおけるフレキシブルプリント配線板13上の複数の受光部R(セル33)同士の相対位置を記憶している。
 制御装置43は、レンズ位置情報が示すフレネルレンズ12f同士の相対位置と、初期位置で展開された受光部R同士の相対位置とを比較し、互いに対応するフレネルレンズ12fの位置と、受光部Rの位置との間の位置ずれ誤差が最も小さくなるような複数の吸着ブロック50の位置を求める。
The control device 43 stores the relative positions of the plurality of light receiving units R (cells 33) on the flexible printed wiring board 13 when the flexible printed wiring board 13 is deployed by the plurality of suction blocks 50 at the initial positions. ..
The control device 43 compares the relative positions of the Fresnel lenses 12f indicated by the lens position information with the relative positions of the light receiving units R developed at the initial positions, and compares the positions of the Fresnel lenses 12f corresponding to each other with the light receiving units R. The positions of the plurality of suction blocks 50 so as to minimize the misalignment error with the position of are obtained.
 制御装置43は、リニアアクチュエータ55,56を制御し、複数の吸着ブロック50が求めた位置となるように調整する。
 これによって、展開されたときにおけるフレキシブルプリント配線板13上の複数の受光部Rの相対位置をレンズ位置情報が示す複数のフレネルレンズ12fの相対位置に合わせるように、複数のフレキシブル基板131同士の相対位置を調整することができる。
The control device 43 controls the linear actuators 55 and 56 and adjusts the positions of the plurality of suction blocks 50 so as to be obtained.
As a result, the relative positions of the plurality of flexible substrates 131 are relative to each other so that the relative positions of the plurality of light receiving portions R on the flexible printed wiring board 13 when deployed are aligned with the relative positions of the plurality of Fresnel lenses 12f indicated by the lens position information. The position can be adjusted.
 この結果、集光部12と筐体11との位置決めを行ったときに、複数のフレネルレンズ12fの位置と、底面11bに配置される複数の受光部Rの位置との間に生じる位置ずれ誤差を小さくでき、複数のフレネルレンズ12fの位置と、複数の受光部Rの位置とを適切に位置合わせすることができる。 As a result, when the condensing unit 12 and the housing 11 are positioned, a misalignment error occurs between the positions of the plurality of Fresnel lenses 12f and the positions of the plurality of light receiving units R arranged on the bottom surface 11b. Can be reduced, and the positions of the plurality of Fresnel lenses 12f and the positions of the plurality of light receiving portions R can be appropriately aligned.
 図16中、ステップS42を終えると、制御装置43は、吸着ユニット42によって、フレキシブルプリント配線板13を筐体11に装着し(図16中、ステップS5)、検査を行って(図16中、ステップS6)、作業を終える。 After completing step S42 in FIG. 16, the control device 43 attaches the flexible printed wiring board 13 to the housing 11 by the suction unit 42 (step S5 in FIG. 16), and inspects the housing 11 (in FIG. 16). Step S6), the work is completed.
 なお、本実施形態では、吸着ユニット42によるフレキシブルプリント配線板13の吸着、展開(図16中、ステップS41)の後、複数の吸着ブロック50の位置調整(図16中、ステップS42)を行う場合を例示したが、ステップS42はステップS41の前のタイミングで行ってもよい。 In the present embodiment, after the suction unit 42 sucks and deploys the flexible printed wiring board 13 (step S41 in FIG. 16), the positions of the plurality of suction blocks 50 are adjusted (step S42 in FIG. 16). However, step S42 may be performed at a timing before step S41.
〔第3実施形態について〕
 図17は、第3実施形態に係るフレキシブルプリント配線板の装着方法で用いられる吸着ブロック50の一部断面図であり、フレキシブル基板131を吸着保持した状態を示している。図17は、吸着ブロック50の長手方向(X方向)に沿った断面を示している。
 図17に示すように、本実施形態の吸着ブロック50は、受光部Rを押圧するための押圧部65を備えている点において第1実施形態の吸着ブロック50と相違する。
[About the third embodiment]
FIG. 17 is a partial cross-sectional view of the suction block 50 used in the method of mounting the flexible printed wiring board according to the third embodiment, and shows a state in which the flexible substrate 131 is sucked and held. FIG. 17 shows a cross section of the suction block 50 along the longitudinal direction (X direction).
As shown in FIG. 17, the suction block 50 of the present embodiment is different from the suction block 50 of the first embodiment in that it includes a pressing portion 65 for pressing the light receiving portion R.
 吸着ブロック50は、四角柱状のブロック本体60と、複数の押圧部65とを備える。
 ブロック本体60には、円筒孔状の吸引口53が複数設けられている。吸引口53は、ブロック本体60の下面60aから上面60bに亘って貫通している。なお、ブロック本体60の下面60aは、吸着ブロック50の下面50aを構成する。
The suction block 50 includes a square columnar block body 60 and a plurality of pressing portions 65.
The block body 60 is provided with a plurality of cylindrical hole-shaped suction ports 53. The suction port 53 penetrates from the lower surface 60a of the block body 60 to the upper surface 60b. The lower surface 60a of the block body 60 constitutes the lower surface 50a of the suction block 50.
 押圧部65は、吸引口53に挿入されている。押圧部65は、円筒棒状の部材であり、ブロック本体60に対してZ方向に移動可能に設けられている。押圧部65はアクチュエータ66によって駆動される。アクチュエータ66は制御装置43によって制御される。
 吸着ブロック50がフレキシブル基板131を吸着する場合、押圧部65は下面60aよりも上方となるよう配置され、受光部Rを吸引口53の内部に収容するための空間が確保される。これにより、吸着ブロック50は、受光部Rを吸引口53の内部に収容しつつ、フレキシブル基板131を吸着し、フレキシブル基板131を下面50aで保持することができる。
 また、吸着ブロック50がフレキシブル基板131を吸着する場合、吸引口53の内部を負圧にしてフレキシブル基板131を吸着する。このため、押圧部65は、ブロック本体60との間で気密性を維持しつつ移動可能とされている。
The pressing portion 65 is inserted into the suction port 53. The pressing portion 65 is a cylindrical rod-shaped member, and is provided so as to be movable in the Z direction with respect to the block main body 60. The pressing portion 65 is driven by the actuator 66. The actuator 66 is controlled by the control device 43.
When the suction block 50 sucks the flexible substrate 131, the pressing portion 65 is arranged so as to be above the lower surface 60a, and a space for accommodating the light receiving portion R inside the suction port 53 is secured. As a result, the suction block 50 can suck the flexible substrate 131 while accommodating the light receiving portion R inside the suction port 53, and can hold the flexible substrate 131 on the lower surface 50a.
Further, when the suction block 50 sucks the flexible substrate 131, the inside of the suction port 53 is made a negative pressure to suck the flexible substrate 131. Therefore, the pressing portion 65 is movable with and from the block main body 60 while maintaining airtightness.
 押圧部65の下面65aには、下面65aから軸方向に凹む円筒状の孔部65bが設けられている。よって、下面65aは、孔部65bと孔部65b周囲の端面65cとによって構成される。
 孔部65bの内径は、受光部Rの二次レンズ30の外径よりも大きい。
 これにより、吸引口53の内部に収容された受光部Rの二次レンズ30が押圧部65に接触するのを防止することができる。
 また、孔部65bの内径は、受光部Rのパッケージ32の外形寸法よりも小さい。よって、端面65cをパッケージ32の上面端部32aに当接させることができる。このため、押圧部65を下方へ移動させた場合、受光部Rの二次レンズ30を押圧することなく、パッケージ32を下方に押圧することができる。
The lower surface 65a of the pressing portion 65 is provided with a cylindrical hole portion 65b recessed in the axial direction from the lower surface 65a. Therefore, the lower surface 65a is composed of the hole 65b and the end surface 65c around the hole 65b.
The inner diameter of the hole 65b is larger than the outer diameter of the secondary lens 30 of the light receiving portion R.
As a result, it is possible to prevent the secondary lens 30 of the light receiving portion R housed inside the suction port 53 from coming into contact with the pressing portion 65.
Further, the inner diameter of the hole portion 65b is smaller than the outer diameter of the package 32 of the light receiving portion R. Therefore, the end surface 65c can be brought into contact with the upper surface end portion 32a of the package 32. Therefore, when the pressing portion 65 is moved downward, the package 32 can be pressed downward without pressing the secondary lens 30 of the light receiving portion R.
 図18は、本実施形態の吸着ブロック50によってフレキシブル基板131を筐体11の底面11bに装着する際の態様を示す図である。
 図18は、本実施形態における図9中のステップS5の態様を示している。
 制御装置43は、フレキシブルプリント配線板13の吸着、展開を行うと(図9中、ステップS4)、吸着ユニット42を筐体11の底面11b上に移動させ、筐体11に対してX-Y平面上における所定の位置に配置する(図9中、ステップS5)。
FIG. 18 is a diagram showing an embodiment when the flexible substrate 131 is mounted on the bottom surface 11b of the housing 11 by the suction block 50 of the present embodiment.
FIG. 18 shows the aspect of step S5 in FIG. 9 in this embodiment.
When the control device 43 sucks and deploys the flexible printed wiring board 13 (step S4 in FIG. 9), the control device 43 moves the suction unit 42 onto the bottom surface 11b of the housing 11 and XY with respect to the housing 11. It is arranged at a predetermined position on a plane (step S5 in FIG. 9).
 図18中の(a)は、フレキシブルプリント配線板13(フレキシブル基板131)を保持した吸着ブロック50(吸着ユニット42)を、筐体11の底面11b上の所定の位置に配置した状態を示している。
 筐体11の底面11bには、放熱性を有する接着テープや接着剤等からなる接着層70が設けられている。接着層70は、フレキシブル基板131(フレキシブルプリント配線板13)を底面11bに接着するために設けられている。
 また、接着層70は、その放熱性によって、太陽光が照射されることによって温度が上昇する受光部Rの熱を筐体11へ逃がすことができる。
FIG. 18A shows a state in which the suction block 50 (suction unit 42) holding the flexible printed wiring board 13 (flexible substrate 131) is arranged at a predetermined position on the bottom surface 11b of the housing 11. There is.
An adhesive layer 70 made of an adhesive tape, an adhesive, or the like having heat dissipation is provided on the bottom surface 11b of the housing 11. The adhesive layer 70 is provided to bond the flexible substrate 131 (flexible printed wiring board 13) to the bottom surface 11b.
Further, due to its heat dissipation property, the adhesive layer 70 can release the heat of the light receiving portion R whose temperature rises due to the irradiation of sunlight to the housing 11.
 制御装置43は、図18中の(a)の状態から、吸着ブロック50(吸着ユニット42)をZ方向に沿って下降させ、フレキシブル基板131を底面11b上の接着層70に当接させる。これにより、フレキシブル基板131と、底面11bとの間に接着層70が介在する。
 その後、制御装置43は、吸引口53の内部を正圧にしてフレキシブル基板131の保持を解除する。
 さらに、制御装置43は、図18中の(b)に示すように、押圧部65の端面65cを受光部Rのパッケージ32の上面端部32aに当接させた状態で、ブロック本体60を上昇させる。これにより、制御装置43は、ブロック本体60をフレキシブル基板131から離間させる。
From the state (a) in FIG. 18, the control device 43 lowers the suction block 50 (suction unit 42) along the Z direction to bring the flexible substrate 131 into contact with the adhesive layer 70 on the bottom surface 11b. As a result, the adhesive layer 70 is interposed between the flexible substrate 131 and the bottom surface 11b.
After that, the control device 43 releases the holding of the flexible substrate 131 by making the inside of the suction port 53 a positive pressure.
Further, as shown in FIG. 18B, the control device 43 raises the block body 60 in a state where the end surface 65c of the pressing portion 65 is in contact with the upper surface end portion 32a of the package 32 of the light receiving portion R. Let me. As a result, the control device 43 separates the block main body 60 from the flexible substrate 131.
 図18中の(b)に示すように、ブロック本体60がフレキシブル基板131から離間した状態で、制御装置43は、押圧部65を動作させ、パッケージ32の上面端部32aを所定の押圧荷重で押圧する。
 これにより、制御装置43は、フレキシブル基板131(フレキシブルプリント配線板13)のうち、パッケージ32のみを底面11bに向けて選択的に押圧する。
 制御装置43は、パッケージ32のみを選択的に押圧し、フレキシブル基板131を接着層70に押圧する。これによって、フレキシブル基板131は、接着層70を介して底面11bに接着される。
 その後、制御装置43は、図18中の(c)に示すように、吸着ブロック50を上昇させ、フレキシブルプリント配線板13の装着を終える。
As shown in FIG. 18B, the control device 43 operates the pressing portion 65 in a state where the block main body 60 is separated from the flexible substrate 131, and presses the upper surface end portion 32a of the package 32 with a predetermined pressing load. Press.
As a result, the control device 43 selectively presses only the package 32 of the flexible substrate 131 (flexible printed wiring board 13) toward the bottom surface 11b.
The control device 43 selectively presses only the package 32 and presses the flexible substrate 131 against the adhesive layer 70. As a result, the flexible substrate 131 is adhered to the bottom surface 11b via the adhesive layer 70.
After that, as shown in (c) in FIG. 18, the control device 43 raises the suction block 50 and finishes mounting the flexible printed wiring board 13.
 このように、本実施形態では、フレキシブル基板131(フレキシブルプリント配線板13)を筐体11の底面11bに装着する際に(図9中、第3ステップ)、フレキシブル基板131と、底面11bとの間に接着層70を介在させた状態で、パッケージ32を選択的に押圧し、フレキシブル基板131を底面11bに接着する。 As described above, in the present embodiment, when the flexible substrate 131 (flexible printed wiring board 13) is mounted on the bottom surface 11b of the housing 11 (third step in FIG. 9), the flexible substrate 131 and the bottom surface 11b are attached to each other. The package 32 is selectively pressed with the adhesive layer 70 interposed therebetween, and the flexible substrate 131 is adhered to the bottom surface 11b.
 これにより、フレキシブル基板131のうち、パッケージ32が搭載された幅広部131w(搭載部分)を、幅広部131w以外の他の部分(幅狭部131n)よりも高い密着状態で接着することができる。さらに、接着層70のうち、幅広部131wに対応する接着層70の層厚を、幅狭部131nに対応する接着層70の層厚よりも薄くすることができる。
 この結果、幅広部131wと筐体11との間の熱抵抗値を、幅狭部131nと筐体11との間よりも小さくすることができる。
 よって、幅広部131wの放熱性を高めることができ、太陽光が照射されることによって温度が上昇する受光部Rの熱を効率よく筐体11に放熱することができる。
As a result, of the flexible substrate 131, the wide portion 131w (mounting portion) on which the package 32 is mounted can be adhered in a higher adhesion state than other portions (narrow portion 131n) other than the wide portion 131w. Further, among the adhesive layers 70, the layer thickness of the adhesive layer 70 corresponding to the wide portion 131w can be made thinner than the layer thickness of the adhesive layer 70 corresponding to the narrow portion 131n.
As a result, the thermal resistance value between the wide portion 131w and the housing 11 can be made smaller than that between the narrow portion 131n and the housing 11.
Therefore, the heat dissipation of the wide portion 131w can be improved, and the heat of the light receiving portion R whose temperature rises due to the irradiation of sunlight can be efficiently dissipated to the housing 11.
 さらに、パッケージ32を選択的に押圧することで、幅広部131wを、幅狭部131nよりも強固に接着することができ、幅広部131wを引っ張るような応力を幅狭部131nに生じさせるのを抑制することができる。 Further, by selectively pressing the package 32, the wide portion 131w can be adhered more firmly than the narrow portion 131n, and a stress that pulls the wide portion 131w is generated in the narrow portion 131n. It can be suppressed.
 本実施形態では、筐体11の底面11bに接着層70を設けた場合を例示したが、フレキシブル基板131側に接着層を設けてもよいし、底面11b及びフレキシブル基板131の両方に接着層を設けてもよい。 In the present embodiment, the case where the adhesive layer 70 is provided on the bottom surface 11b of the housing 11 is illustrated, but the adhesive layer may be provided on the flexible substrate 131 side, or the adhesive layer may be provided on both the bottom surface 11b and the flexible substrate 131. It may be provided.
 なお、押圧部65が一つのパッケージ32を押圧する際の押圧荷重は、2.5kgf以上、5.0kgf以下であることが好ましい。
 図19は、押圧部65がパッケージ32を押圧する際の押圧荷重と、パッケージ32と筐体11との間の熱抵抗値との関係を示したグラフである。
 図19では、押圧荷重がほぼ0kgfの場合、2.5kgfの場合、5kgfの場合において熱抵抗値を測定した測定値を示している。これら測定値は、一つのパッケージ32を押圧部65によって押圧し、筐体11の底面11bにフレキシブル基板131を接着したときの熱抵抗値を測定したものである。なお、パッケージ32の外形寸法は、例えば、約6mm×約6mmの矩形状である。
The pressing load when the pressing portion 65 presses one package 32 is preferably 2.5 kgf or more and 5.0 kgf or less.
FIG. 19 is a graph showing the relationship between the pressing load when the pressing portion 65 presses the package 32 and the thermal resistance value between the package 32 and the housing 11.
FIG. 19 shows the measured values obtained by measuring the thermal resistance values when the pressing load is approximately 0 kgf, 2.5 kgf, and 5 kgf. These measured values are the measured thermal resistance values when one package 32 is pressed by the pressing portion 65 and the flexible substrate 131 is adhered to the bottom surface 11b of the housing 11. The external dimensions of the package 32 are, for example, a rectangular shape of about 6 mm × about 6 mm.
 図19に示すように、押圧荷重が2.5kgf、及び5.0kgfの場合、熱抵抗値は、共に、6~6.5℃/Wである。
 一方、押圧荷重がほぼ0kgfの場合、熱抵抗値は、約7.7℃/Wであった。
 この結果から、押圧荷重は2.5kgf以上であれば、熱抵抗値を小さくできることが判る。
 また、押圧荷重を10kgf以上にすると、パッケージ32に破損が生じる場合がある。一方、押圧荷重を10kgfよりも小さく設定すれば、パッケージ32に破損が生じることはない。
As shown in FIG. 19, when the pressing load is 2.5 kgf and 5.0 kgf, the thermal resistance values are both 6 to 6.5 ° C./W.
On the other hand, when the pressing load was approximately 0 kgf, the thermal resistance value was about 7.7 ° C./W.
From this result, it can be seen that the thermal resistance value can be reduced if the pressing load is 2.5 kgf or more.
Further, if the pressing load is 10 kgf or more, the package 32 may be damaged. On the other hand, if the pressing load is set to be smaller than 10 kgf, the package 32 will not be damaged.
 上記結果より、押圧荷重は2.5kg以上、5kgf以下とすることが好ましく、このように設定することで、熱抵抗値を比較的小さくすることができるとともに、パッケージ32の押圧時にパッケージ32に破損が生じるのを抑制することができる。 From the above results, the pressing load is preferably 2.5 kg or more and 5 kgf or less, and by setting in this way, the thermal resistance value can be made relatively small, and the package 32 is damaged when the package 32 is pressed. Can be suppressed.
〔第4実施形態について〕
 図20は、第4実施形態に係るフレキシブルプリント配線板13の装着作業の工程の一例を示すフローチャートである。
 図20に示すフローチャートは、ステップS1とステップS2との間にステップS11及びステップS12が設けられている点、及び、ステップS5の後に、ステップS20が設けられている点、及び、ステップS6に代えてステップS21、ステップS22が設けられている点において図9に示す第1実施形態に係るフローチャートと相違する。それ以外は、第1実施形態に係るフローチャートと同様なので説明を省略する。
[About the fourth embodiment]
FIG. 20 is a flowchart showing an example of a process of mounting the flexible printed wiring board 13 according to the fourth embodiment.
The flowchart shown in FIG. 20 shows that step S11 and step S12 are provided between step S1 and step S2, and that step S20 is provided after step S5, and that step S6 is replaced. It is different from the flowchart according to the first embodiment shown in FIG. 9 in that steps S21 and S22 are provided. Other than that, the same as the flowchart according to the first embodiment, and thus the description thereof will be omitted.
 図20のフローチャートは、図9のフローチャートと同様、配線板装着装置40の制御装置43が実行する装着作業を示している。 The flowchart of FIG. 20 shows the mounting work executed by the control device 43 of the wiring board mounting device 40, similarly to the flowchart of FIG.
 装着作業を開始した制御装置43は、まず、セット台41によって原形体13Aを保持する(図9中、ステップS1)。
 次いで、制御装置43は、原形体13Aに搭載された複数の受光部R(セル33)の基板上位置を取得する(ステップS11:基板上位置取得ステップ)。
 基板上位置とは、原形体13A(展開される前のフレキシブルプリント配線板13)において幅広部131wに搭載された受光部R(セル33)の幅広部131wにおける位置である。
The control device 43, which has started the mounting operation, first holds the prototype 13A by the set base 41 (step S1 in FIG. 9).
Next, the control device 43 acquires the positions on the substrate of the plurality of light receiving units R (cells 33) mounted on the prototype 13A (step S11: position acquisition step on the substrate).
The position on the substrate is a position in the wide portion 131w of the light receiving portion R (cell 33) mounted on the wide portion 131w in the prototype 13A (flexible printed wiring board 13 before deployment).
 原形体13Aにおける受光部Rの基板上位置は、カメラによって撮像した撮像画像に基づいて取得される。
 図21は、受光部Rの基板上位置を取得する際の態様を説明するための図である。
 図21に示すように、原形体13Aを保持するセット台41上には、カメラ75が設置される。このカメラ75によって、原形体13Aが撮像される。
The position of the light receiving portion R on the substrate in the prototype 13A is acquired based on the captured image captured by the camera.
FIG. 21 is a diagram for explaining an aspect when acquiring the position of the light receiving portion R on the substrate.
As shown in FIG. 21, the camera 75 is installed on the set table 41 that holds the prototype 13A. The prototype 13A is imaged by the camera 75.
 制御装置43は、カメラ75によって原形体13Aを撮像する。さらに、制御装置43は、その撮像画像から、幅広部131wの外形輪郭、受光部Rの二次レンズ30やパッケージ32の外形輪郭等、幅広部131w及び受光部Rの外形を示す特徴部を特定し、特徴部の位置から幅広部131w上における受光部Rの基板上位置を取得する。
 受光部Rの基板上位置は、例えば、幅広部131wに設定された相対座標によって表される。
The control device 43 takes an image of the prototype 13A by the camera 75. Further, the control device 43 identifies a feature portion indicating the outer shape of the wide portion 131w and the light receiving portion R, such as the outer contour of the wide portion 131w and the outer contour of the secondary lens 30 of the light receiving portion R and the package 32, from the captured image. Then, the position of the light receiving portion R on the substrate on the wide portion 131w is acquired from the position of the feature portion.
The position of the light receiving portion R on the substrate is represented by, for example, the relative coordinates set in the wide portion 131w.
 図20に示すように、受光部Rの基板上位置を取得すると、制御装置43は、複数の受光部Rのうち、基板上位置の誤差が許容範囲外である受光部Rの有無を判定する(図20中、ステップS12:展開前判定ステップ)。
 制御装置43は、各受光部Rの基板上位置と、所定の基準基板上位置とを比較し、基準基板上位置に対する各受光部Rの基板上位置の誤差が予め設定された許容範囲内か否かを判定する。所定の基準基板上位置とは、幅広部131w上における受光部Rの設計上の位置である。
As shown in FIG. 20, when the position of the light receiving unit R on the substrate is acquired, the control device 43 determines the presence or absence of the light receiving unit R whose position error on the substrate is out of the permissible range among the plurality of light receiving units R. (In FIG. 20, step S12: pre-deployment determination step).
The control device 43 compares the position on the substrate of each light receiving unit R with a predetermined position on the reference substrate, and whether the error of the position of each light receiving unit R on the substrate with respect to the position on the reference substrate is within a preset allowable range. Judge whether or not. The predetermined position on the reference substrate is a design position of the light receiving portion R on the wide portion 131w.
 複数の受光部Rのうち、基板上位置の誤差が許容範囲外である受光部Rが有ると判定する場合、制御装置43は、以降の作業を中止する。よって、このような原形体13Aが筐体11に装着されるのを防止することができる。
 一方、複数の受光部Rのうち、基板上位置の誤差が許容範囲外である受光部Rが無いと判定する場合、制御装置43は、ステップS2へ進む。
 このように、制御装置43は、ステップS12において、各受光部Rの基板上位置と、所定の基準基板上位置との比較結果に基づいて、第2ステップ以降の作業を実行するか否かを決定する。
When it is determined that there is a light receiving unit R whose position error on the substrate is out of the permissible range among the plurality of light receiving units R, the control device 43 stops the subsequent work. Therefore, it is possible to prevent such a prototype 13A from being attached to the housing 11.
On the other hand, when it is determined that there is no light receiving unit R whose position error on the substrate is out of the permissible range among the plurality of light receiving units R, the control device 43 proceeds to step S2.
As described above, in step S12, the control device 43 determines whether or not to execute the operations of the second and subsequent steps based on the comparison result between the position on the substrate of each light receiving unit R and the position on the predetermined reference substrate. decide.
 基板上位置の誤差が許容範囲外である受光部Rを有する原形体13Aを展開し、フレキシブルプリント配線板13として筐体11に装着した場合、フレキシブルプリント配線板13を装着した後の受光部Rの位置に誤差が生じるおそれがある。
 これに対して、本実施形態では、複数の受光部Rのうち、基板上位置の誤差が許容範囲外である受光部Rが有ると判定する場合、制御装置43は、以降の作業を中止するので、基板上位置の誤差が許容範囲外である受光部Rを有する原形体13Aを用いてフレキシブルプリント配線板13の装着が行われるのを防止することができる。
 この結果、フレキシブルプリント配線板13を底面11bに装着したときに、受光部Rを精度よく底面11bに配置することができる。
When the prototype 13A having the light receiving portion R whose position error on the board is out of the allowable range is developed and mounted on the housing 11 as the flexible printed wiring board 13, the light receiving portion R after mounting the flexible printed wiring board 13 There is a risk of error in the position of.
On the other hand, in the present embodiment, when it is determined that there is a light receiving unit R whose position error on the substrate is out of the permissible range among the plurality of light receiving units R, the control device 43 stops the subsequent work. Therefore, it is possible to prevent the flexible printed wiring board 13 from being mounted by using the prototype 13A having the light receiving portion R whose position error on the substrate is out of the permissible range.
As a result, when the flexible printed wiring board 13 is mounted on the bottom surface 11b, the light receiving portion R can be accurately arranged on the bottom surface 11b.
 以降、ステップS2からステップS5まで進み、フレキシブルプリント配線板13の筐体11の底面11bへの装着を終えると、制御装置43は、装着されたフレキシブルプリント配線板13上の受光部Rの展開位置を取得する(図20中、ステップS20:展開位置取得ステップ)。
 展開位置とは、フレキシブルプリント配線板13が展開され筐体11の底面11bに装着された後の底面11bにおける受光部R(セル33)の位置である。
After that, the process proceeds from step S2 to step S5, and when the mounting of the flexible printed wiring board 13 on the bottom surface 11b of the housing 11 is completed, the control device 43 is in the unfolded position of the light receiving portion R on the mounted flexible printed wiring board 13. (Step S20 in FIG. 20: Deployment position acquisition step).
The unfolded position is the position of the light receiving portion R (cell 33) on the bottom surface 11b after the flexible printed wiring board 13 is unfolded and mounted on the bottom surface 11b of the housing 11.
 筐体11に装着されたフレキシブルプリント配線板13の受光部Rの展開位置は、基板上位置を取得する場合と同様、カメラによって撮像した撮像画像に基づいて取得される。
 すなわち、制御装置43は、フレキシブルプリント配線板13の装着を終えた筐体11の上方にカメラを配置する。
 制御装置43は、カメラによって筐体11の底面11bを撮像し、その撮像画像から、受光部Rの二次レンズ30やパッケージ32の外形輪郭等、受光部Rの外形を示す特徴部を特定し、特徴部の位置から底面11bにおける受光部Rの展開位置を取得することができる。
 底面11bにおける受光部Rの展開位置は、例えば、底面11bに設定された相対座標によって表される。
The unfolded position of the light receiving portion R of the flexible printed wiring board 13 mounted on the housing 11 is acquired based on the captured image captured by the camera, as in the case of acquiring the position on the substrate.
That is, the control device 43 arranges the camera above the housing 11 on which the flexible printed wiring board 13 has been mounted.
The control device 43 takes an image of the bottom surface 11b of the housing 11 with a camera, and from the captured image, identifies a feature portion indicating the outer shape of the light receiving portion R, such as the secondary lens 30 of the light receiving portion R and the outer contour of the package 32. From the position of the feature portion, the deployed position of the light receiving portion R on the bottom surface 11b can be obtained.
The unfolded position of the light receiving portion R on the bottom surface 11b is represented by, for example, the relative coordinates set on the bottom surface 11b.
 受光部Rの展開位置を取得すると、制御装置43は、複数の受光部Rのうち、展開位置の誤差が許容範囲外である受光部Rの有無を判定する(図20中、ステップS21:展開後判定ステップ)。
 制御装置43は、各受光部Rの展開位置と、所定の基準展開位置とを比較し、基準展開位置に対する各受光部Rの展開位置の誤差が予め設定された許容範囲内か否かを判定する。所定の基準展開位置とは、底面11b上における受光部Rの設計上の位置である。
Upon acquiring the unfolded position of the light receiving unit R, the control device 43 determines whether or not the light receiving unit R has an error in the unfolded position outside the permissible range among the plurality of light receiving units R (step S21: unfolded in FIG. 20). Post-judgment step).
The control device 43 compares the unfolded position of each light receiving unit R with a predetermined reference unfolded position, and determines whether or not the error of the unfolded position of each light receiving unit R with respect to the reference unfolded position is within a preset allowable range. To do. The predetermined reference deployment position is a design position of the light receiving portion R on the bottom surface 11b.
 複数の受光部Rのうち、展開位置の誤差が許容範囲外である受光部Rが有ると判定する場合、制御装置43は、以降の作業を中止する。よって、このような筐体11が後の工程に進むのを防止することができる。
 一方、複数の受光部Rのうち、展開位置の誤差が許容範囲外である受光部Rが無いと判定する場合、制御装置43は、ステップS22へ進む。
 ステップS22では、モジュール1Mの組み立て工程として、フレキシブルプリント配線板13が装着された筐体11に集光部12が取り付けられる。
 このように、制御装置43は、ステップS21において、受光部Rの展開位置と、所定の基準展開位置との比較結果に基づいて、ステップS22を実行するか否かを決定する。
When it is determined that there is a light receiving unit R whose deployment position error is out of the permissible range among the plurality of light receiving units R, the control device 43 stops the subsequent work. Therefore, it is possible to prevent such a housing 11 from proceeding to a later process.
On the other hand, when it is determined that there is no light receiving unit R whose deployment position error is out of the permissible range among the plurality of light receiving units R, the control device 43 proceeds to step S22.
In step S22, as an assembly process of the module 1M, the light collecting unit 12 is attached to the housing 11 to which the flexible printed wiring board 13 is mounted.
As described above, in step S21, the control device 43 determines whether or not to execute step S22 based on the comparison result between the deployed position of the light receiving unit R and the predetermined reference deployed position.
 展開位置の誤差が許容範囲外である受光部Rを有する筐体11を用いてモジュール1Mを組み立てた場合、集光部12が有する複数のフレネルレンズ12fと、複数の受光部Rとの位置合わせが適切に行えないおそれが生じる。
 これに対して、本実施形態では、複数の受光部Rのうち、展開位置の誤差が許容範囲外である受光部Rが有ると判定する場合、制御装置43は、以降の作業を中止するので、展開位置の誤差が許容範囲外である受光部Rを有する筐体11を用いてモジュール1Mの組み立てが行われるのを防止することができる。
 この結果、底面11bに配置された受光部Rが精度よく配置された筐体11を、以降の工程に進ませることができる。
When the module 1M is assembled using the housing 11 having the light receiving portion R whose deployment position error is out of the permissible range, the plurality of Fresnel lenses 12f included in the condensing unit 12 are aligned with the plurality of light receiving portions R. May not be performed properly.
On the other hand, in the present embodiment, when it is determined that there is a light receiving unit R whose deployment position error is out of the permissible range among the plurality of light receiving units R, the control device 43 stops the subsequent work. It is possible to prevent the module 1M from being assembled by using the housing 11 having the light receiving portion R whose deployment position error is out of the permissible range.
As a result, the housing 11 in which the light receiving portion R arranged on the bottom surface 11b is accurately arranged can be advanced to the subsequent steps.
 なお、本実施形態において、図20中のステップS20において、撮像画像から、受光部Rの二次レンズ30やパッケージ32の外形輪郭等を特定し、底面11bにおける受光部Rの展開位置を取得する場合を例示したが、底面11bにおけるフレキシブル基板131の位置から、間接的に受光部Rの展開位置を取得してもよい。 In the present embodiment, in step S20 in FIG. 20, the external contour of the secondary lens 30 of the light receiving portion R and the package 32 are specified from the captured image, and the deployed position of the light receiving portion R on the bottom surface 11b is acquired. Although the case has been illustrated, the deployment position of the light receiving portion R may be indirectly acquired from the position of the flexible substrate 131 on the bottom surface 11b.
 図22は、底面11bにおけるフレキシブル基板131の位置決めを行う際の態様を示す平面図である。
 図22では、底面11bに予めケガキ線L1,L2,L3,L4,L5が設けられている。各ケガキ線は、底面11bにおけるフレキシブルプリント配線板13の設計上の位置を示している。なお、これら各ケガキ線は、フレキシブル基板131の接続帯131bの位置を示している。
 制御装置43は、フレキシブルプリント配線板13を装着した後、カメラによって筐体11の底面11bを撮像し、その撮像画像から、フレキシブル基板131の外形と、各ケガキ線とを特定する。これによって、制御装置43は、ケガキ線を基準とするフレキシブル基板131の位置を特定することができ、フレキシブル基板131の位置から受光部Rの位置(展開位置)も間接的に取得することができる。
FIG. 22 is a plan view showing an aspect of positioning the flexible substrate 131 on the bottom surface 11b.
In FIG. 22, marking lines L1, L2, L3, L4, and L5 are provided in advance on the bottom surface 11b. Each marking line indicates the design position of the flexible printed wiring board 13 on the bottom surface 11b. Each of these marking lines indicates the position of the connection band 131b of the flexible substrate 131.
After mounting the flexible printed wiring board 13, the control device 43 takes an image of the bottom surface 11b of the housing 11 with a camera, and identifies the outer shape of the flexible substrate 131 and each marking line from the image taken. As a result, the control device 43 can specify the position of the flexible substrate 131 with reference to the marking line, and can indirectly acquire the position (deployment position) of the light receiving portion R from the position of the flexible substrate 131. ..
 なお、この場合、制御装置43は、特定したフレキシブル基板131の外形の各ケガキ線に対する誤差が許容範囲外であるか否かを判定することができる。
 さらに、各ケガキ線に対する誤差が許容範囲外である場合、制御装置43は、そのフレキシブル基板131に搭載された受光部Rの展開位置も許容範囲外であると判定することができる。
In this case, the control device 43 can determine whether or not the error with respect to each marking line of the outer shape of the specified flexible substrate 131 is out of the permissible range.
Further, when the error for each marking line is out of the permissible range, the control device 43 can determine that the unfolded position of the light receiving portion R mounted on the flexible substrate 131 is also out of the permissible range.
 また、本実施形態では、図20中、ステップS12において、複数の受光部Rのうち、基板上位置の誤差が許容範囲外である受光部Rが有ると判定すると、以降の作業を中止する場合を例示したが、例えば、吸着ユニット42が、第2実施形態で示したように、吸着ブロック50の位置調整が可能であれば、基板上位置の誤差が許容範囲外である受光部Rの位置を許容範囲内とするように補正を行い、吸着ブロック50の位置を微調整するように構成することができる。
 この場合、複数の受光部Rのうち、基板上位置の誤差が許容範囲外である受光部Rが有る場合でも、フレキシブルプリント配線板13の装着を行うことができる。
Further, in the present embodiment, when it is determined in step S12 in FIG. 20 that there is a light receiving unit R whose position error on the substrate is out of the permissible range among the plurality of light receiving units R, the subsequent work is stopped. However, for example, if the suction unit 42 can adjust the position of the suction block 50 as shown in the second embodiment, the position of the light receiving portion R whose position error on the substrate is out of the permissible range. Is corrected so as to be within the permissible range, and the position of the suction block 50 can be finely adjusted.
In this case, the flexible printed wiring board 13 can be mounted even when there is a light receiving portion R whose position error on the substrate is out of the allowable range among the plurality of light receiving portions R.
〔その他〕
 なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。
 上記実施形態では、制御装置43が、セット台41及び吸着ユニット42を制御し装着作業を実行する場合について例示したが、配線板装着装置40を操作するオペレータが、制御装置43に命令を与えることで、オペレータが装着作業を実行することもできる。
[Other]
It should be noted that the embodiments disclosed this time are examples in all respects and are not restrictive.
In the above embodiment, the case where the control device 43 controls the set base 41 and the suction unit 42 to execute the mounting operation has been illustrated, but the operator who operates the wiring board mounting device 40 gives a command to the control device 43. The operator can also perform the mounting operation.
 また、上記実施形態では、セット台41及び吸着ユニット42が、吸引ポンプ等による吸引力で複数のフレキシブル基板131を吸引保持する場合を例示したが、複数のフレキシブル基板131を物理的に把持する等、他の方法によって複数のフレキシブル基板131を保持してもよい。 Further, in the above embodiment, the case where the set table 41 and the suction unit 42 suck and hold a plurality of flexible substrates 131 by the suction force of a suction pump or the like is illustrated, but the plurality of flexible boards 131 are physically gripped and the like. , A plurality of flexible substrates 131 may be held by other methods.
 本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。 The scope of the present invention is indicated by the claims and is intended to include all modifications within the meaning and scope equivalent to the claims.
1    アレイ
1M   集光型太陽光発電モジュール
1U   集光型太陽光発電ユニット
2    支持装置
11   筐体
11b  底面
12   集光部
12a  ガラス板
12f  フレネルレンズ
13   フレキシブルプリント配線板
13A,13A1,13A2 原形体
14   遮蔽板
14a  開口
21   支柱
22   基礎
23   2軸駆動部
24   水平軸
30   二次レンズ
31   サポート部
31a  端面
31e  上端部内周エッジ
32   パッケージ
32a  上面端部
33   セル
34   リードフレーム
35   金ワイヤー
36   リードフレーム
37   封止部
38   パッケージ部
39   バイパスダイオード
40   配線板装着装置
41   セット台
41b  端面
42   吸着ユニット
43   制御装置
45   凹部
45a  底面
45b  吸引口
50   吸着ブロック
50a  下面
51   本体部
53   吸引口
55   リニアアクチュエータ
56   リニアアクチュエータ
60   ブロック本体
60a  下面
60b  上面
65   押圧部
65a  下面
65b  孔部
65c  端面
66   アクチュエータ
70   接着層
75   カメラ
100  太陽光発電装置
131  フレキシブル基板
131b 接続帯
131c 折り返し部
131n 幅狭部
131p プリント回路部
131s 上面
131t 下面
131w 幅広部
131x 余白部
501  吸着ブロック
501a 下面
502  吸着ブロック
1311 銅パターン
1312 絶縁基部
1313 銅パターン
1314 接着層
1315 カバーレイ
Ax   光軸
L1,L2,L3,L4,L5 ケガキ線
R    受光部
1 Array 1M Condensing type solar power generation module 1U Condensing type solar power generation unit 2 Support device 11 Housing 11b Bottom surface 12 Condensing part 12a Glass plate 12f Frenel lens 13 Flexible printed wiring board 13A, 13A1, 13A2 Prototype 14 Shielding Plate 14a Opening 21 Strut 22 Foundation 23 2-axis drive unit 24 Horizontal axis 30 Secondary lens 31 Support part 31a End face 31e Upper end inner peripheral edge 32 Package 32a Top end 33 Cell 34 Lead frame 35 Gold wire 36 Lead frame 37 Sealing part 38 Package part 39 Bypass diode 40 Wire board mounting device 41 Set stand 41b End face 42 Suction unit 43 Control device 45 Recess 45a Bottom surface 45b Suction port 50 Suction block 50a Bottom surface 51 Main body part 53 Suction port 55 Linear actuator 56 Linear actuator 60 Block body 60a Bottom surface 60b Top surface 65 Pressing part 65a Bottom surface 65b Hole part 65c End surface 66 Actuator 70 Adhesive layer 75 Camera 100 Solar power generation device 131 Flexible substrate 131b Connection band 131c Folded part 131n Narrow part 131p Printed circuit part 131s Top surface 131t Bottom surface 131w Wide part 131x Margin 501 Suction block 501a Bottom surface 502 Suction block 1311 Copper pattern 1312 Insulation base 1313 Copper pattern 1314 Adhesive layer 1315 Coverlay Ax Optical axis L1, L2, L3, L4, L5 Injured wire R Light receiving part

Claims (9)

  1.  筐体と、前記筐体の底面に展開して設けられる帯状の複数のフレキシブル基板を有するフレキシブルプリント配線板と、前記複数のフレキシブル基板の上面に実装された複数のセル及び前記複数のセルに関する電気回路を含むプリント回路部と、を備えた集光型太陽光発電モジュールの製造方法であって、
     前記フレキシブルプリント配線板を前記複数のフレキシブル基板の下面側から保持する第1ステップと、
     前記複数のフレキシブル基板同士の相対位置が前記底面に展開されたときの展開位置となるように、前記フレキシブルプリント配線板を前記上面側から保持する第2ステップと、
     前記上面側から保持された前記フレキシブルプリント配線板を前記底面に装着する第3ステップと、を含み、
     前記第2ステップでは、前記第1ステップにおいて前記下面側から保持された前記複数のフレキシブル基板のうちの一のフレキシブル基板を前記上面側から保持する保持ステップと、前記保持ステップの後、前記一のフレキシブル基板に対する前記下面側からの保持を解放する解放ステップと、を、前記複数のフレキシブル基板それぞれについて前記複数のフレキシブル基板の配列順に従って繰り返すことで、前記フレキシブルプリント配線板を前記上面側から保持する
    集光型太陽光発電モジュールの製造方法。
    Electricity relating to a housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, a plurality of cells mounted on the upper surfaces of the plurality of flexible substrates, and the plurality of cells. It is a manufacturing method of a condensing type photovoltaic power generation module including a printed circuit part including a circuit.
    The first step of holding the flexible printed wiring board from the lower surface side of the plurality of flexible substrates, and
    A second step of holding the flexible printed wiring board from the upper surface side so that the relative positions of the plurality of flexible substrates are the unfolded positions when the flexible substrates are deployed on the bottom surface.
    Including a third step of mounting the flexible printed wiring board held from the upper surface side to the bottom surface.
    In the second step, in the first step, one of the plurality of flexible substrates held from the lower surface side is held from the upper surface side, and after the holding step, the one The flexible printed wiring board is held from the upper surface side by repeating the release step of releasing the holding of the flexible substrate from the lower surface side according to the arrangement order of the plurality of flexible boards for each of the plurality of flexible boards. A method for manufacturing a condensing solar power generation module.
  2.  前記第1ステップでは、前記複数のフレキシブル基板を吸着可能な下側吸着面に前記複数のフレキシブル基板を吸着することで、前記フレキシブルプリント配線板を前記下面側から保持し、
     前記第2ステップでは、前記複数のフレキシブル基板を吸着可能な上側吸着面に前記複数のフレキシブル基板を吸着することで、前記フレキシブルプリント配線板を前記上面側から保持する
    請求項1に記載の集光型太陽光発電モジュールの製造方法。
    In the first step, the flexible printed wiring board is held from the lower surface side by adsorbing the plurality of flexible substrates on a lower adsorption surface capable of adsorbing the plurality of flexible substrates.
    The light collection according to claim 1, wherein in the second step, the flexible printed wiring board is held from the upper surface side by adsorbing the plurality of flexible substrates on an upper suction surface capable of adsorbing the plurality of flexible substrates. Manufacturing method of type photovoltaic power generation module.
  3.  前記第1ステップは、前記複数のフレキシブル基板が帯長手方向に交差する交差方向に近接して並んだ状態で前記交差方向に延びる複数の接続帯によって前記複数のフレキシブル基板が相互に接続された前記フレキシブルプリント配線板の原形体を保持するステップと、
     前記複数の接続帯を切断して前記複数のフレキシブル基板を分離することで、前記原形体を前記フレキシブルプリント配線板とするステップと、を含む
    請求項1又は請求項2に記載の集光型太陽光発電モジュールの製造方法。
    In the first step, the plurality of flexible substrates are connected to each other by a plurality of connecting bands extending in the intersecting direction in a state where the plurality of flexible substrates are arranged close to each other in the intersecting direction in the longitudinal direction of the strip. Steps to hold the original form of the flexible printed wiring board,
    The condensing solar according to claim 1 or 2, further comprising a step of making the original form into the flexible printed wiring board by cutting the plurality of connecting bands to separate the plurality of flexible substrates. Manufacturing method of photovoltaic module.
  4.  前記集光型太陽光発電モジュールは、前記筐体の底面に対向して配置され、前記複数のセルに対応して太陽光を集光する複数のレンズ要素を有する集光部をさらに備え、
     前記第2ステップは、前記集光部における前記複数のレンズ要素同士の相対位置に基づいて、前記複数のフレキシブル基板同士の相対位置を調整する調整ステップをさらに含む
    請求項1から請求項3のいずれか一項に記載の集光型太陽光発電モジュールの製造方法。
    The condensing photovoltaic module is further provided with a condensing unit that is arranged to face the bottom surface of the housing and has a plurality of lens elements that condense sunlight corresponding to the plurality of cells.
    The second step is any of claims 1 to 3, further comprising an adjustment step of adjusting the relative positions of the plurality of flexible substrates based on the relative positions of the plurality of lens elements in the condensing unit. The method for manufacturing a concentrating photovoltaic module according to claim 1.
  5.  前記集光型太陽光発電モジュールは、前記複数のセルを前記複数のフレキシブル基板の上面で保持する複数のパッケージをさらに備え、
     前記底面又は前記フレキシブルプリント配線板の少なくともいずれか一方には、前記フレキシブルプリント配線板を前記底面に接着するための接着層が設けられ、
     前記第3ステップでは、前記フレキシブルプリント配線板と前記底面との間に前記接着層を介在させた状態で、前記複数のパッケージを前記底面に向けて選択的に押圧し、前記フレキシブルプリント配線板を前記底面に装着する
    請求項1から請求項4のいずれか一項に記載の集光型太陽光発電モジュールの製造方法。
    The concentrating photovoltaic module further comprises a plurality of packages for holding the plurality of cells on the upper surfaces of the plurality of flexible substrates.
    An adhesive layer for adhering the flexible printed wiring board to the bottom surface is provided on at least one of the bottom surface and the flexible printed wiring board.
    In the third step, the plurality of packages are selectively pressed toward the bottom surface with the adhesive layer interposed between the flexible printed wiring board and the bottom surface, and the flexible printed wiring board is pressed. The method for manufacturing a concentrating photovoltaic module according to any one of claims 1 to 4, which is mounted on the bottom surface.
  6.  前記第1ステップの後に、展開される前の前記複数のフレキシブル基板における前記複数のセルの基板上位置を取得する基板上位置取得ステップと、
     前記基板上位置取得ステップの後に、前記基板上位置と、所定の基準基板上位置との比較結果に基づいて、前記第2ステップ以降のステップを実行するか否かを決定する展開前判定ステップと、をさらに含む
    請求項1から請求項5のいずれか一項に記載の集光型太陽光発電モジュールの製造方法。
    After the first step, a substrate position acquisition step for acquiring the substrate positions of the plurality of cells in the plurality of flexible substrates before deployment, and a substrate position acquisition step.
    After the position acquisition step on the substrate, a pre-deployment determination step for determining whether or not to execute the second and subsequent steps based on the comparison result between the position on the substrate and the position on the predetermined reference substrate. The method for manufacturing a concentrating photovoltaic power generation module according to any one of claims 1 to 5, further comprising.
  7.  前記第3ステップの後に、前記フレキシブルプリント配線板が装着された前記筐体を用いて前記集光型太陽光発電モジュールを組み立てる組立ステップと、
     前記第3ステップの後であって前記組立ステップの前に、前記複数のフレキシブル基板が前記底面に装着された後における前記複数のセルの展開位置を取得する展開位置取得ステップと、
     前記展開位置取得ステップの後に、前記展開位置と、所定の基準展開位置との比較結果に基づいて、前記組立ステップを実行するか否かを決定する展開後判定ステップと、をさらに含む
    請求項1から請求項6のいずれか一項に記載の集光型太陽光発電モジュールの製造方法。
    After the third step, an assembly step of assembling the concentrating photovoltaic power generation module using the housing to which the flexible printed wiring board is mounted, and
    A deployment position acquisition step for acquiring the deployment positions of the plurality of cells after the plurality of flexible substrates are mounted on the bottom surface after the third step and before the assembly step.
    Claim 1 further includes, after the deployment position acquisition step, a post-deployment determination step that determines whether or not to execute the assembly step based on a comparison result between the deployment position and a predetermined reference deployment position. The method for manufacturing a concentrating photovoltaic power generation module according to any one of claims 6.
  8.  筐体と、前記筐体の底面に展開して設けられる帯状の複数のフレキシブル基板を有するフレキシブルプリント配線板と、前記複数のフレキシブル基板の上面に実装された複数のセル及び前記複数のセルに関する電気回路を含むプリント回路部と、を備えた集光型太陽光発電装置の製造方法であって、
     前記フレキシブルプリント配線板を前記複数のフレキシブル基板の下面側から保持する第1ステップと、
     前記複数のフレキシブル基板同士の相対位置が前記底面に展開されたときの展開位置となるように、前記フレキシブルプリント配線板を前記上面側から保持する第2ステップと、
     前記上面側から保持された前記フレキシブルプリント配線板を前記底面に装着する第3ステップと、を含み、
     前記第2ステップでは、前記第1ステップにおいて前記下面側から保持された前記複数のフレキシブル基板のうちの一のフレキシブル基板を前記上面側から保持する保持ステップと、前記保持ステップの後、前記一のフレキシブル基板に対する前記下面側からの保持を解放する解放ステップと、を、前記複数のフレキシブル基板それぞれについて前記複数のフレキシブル基板の配列順に従って繰り返すことで、前記フレキシブルプリント配線板を前記上面側から保持する
    集光型太陽光発電装置の製造方法。
    A housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, a plurality of cells mounted on the upper surfaces of the plurality of flexible substrates, and electricity relating to the plurality of cells. It is a manufacturing method of a condensing type photovoltaic power generation device including a printed circuit part including a circuit.
    The first step of holding the flexible printed wiring board from the lower surface side of the plurality of flexible substrates, and
    A second step of holding the flexible printed wiring board from the upper surface side so that the relative positions of the plurality of flexible substrates are the unfolded positions when the flexible substrates are deployed on the bottom surface.
    Including a third step of mounting the flexible printed wiring board held from the upper surface side to the bottom surface.
    In the second step, in the first step, one of the plurality of flexible substrates held from the lower surface side is held from the upper surface side, and after the holding step, the one The flexible printed wiring board is held from the upper surface side by repeating the release step of releasing the holding of the flexible substrate from the lower surface side according to the arrangement order of the plurality of flexible boards for each of the plurality of flexible boards. A method for manufacturing a concentrating solar power generation device.
  9.  筐体と、前記筐体の底面に展開して設けられる帯状の複数のフレキシブル基板を有するフレキシブルプリント配線板と、前記複数のフレキシブル基板の上面に実装された複数のセル及び前記複数のセルに関する電気回路を含むプリント回路部と、を備えた集光型太陽光発電モジュールの製造装置であって、
     前記フレキシブルプリント配線板を前記複数のフレキシブル基板の下面側から保持する第1保持機構と、
     前記複数のフレキシブル基板同士の相対位置が前記底面に展開されたときの展開位置となるように、前記フレキシブルプリント配線板を前記上面側から保持し、保持した前記フレキシブルプリント配線板を前記底面に装着する第2保持機構と、
     前記第1保持機構及び前記第2保持機構を制御する制御部と、を備え、
     前記制御部は、
     前記第1保持機構が保持する前記複数のフレキシブル基板のうちの一のフレキシブル基板を前記第2保持機構が保持する保持動作と、前記保持動作の後、前記第1保持機構が前記一のフレキシブル基板に対する保持を解放する解放動作と、を、前記複数のフレキシブル基板それぞれについて前記複数のフレキシブル基板の配列順に従って繰り返すように前記第1保持機構及び前記第2保持機構を制御し、前記第2保持機構に前記フレキシブルプリント配線板を前記上面側から保持させる
    集光型太陽光発電モジュールの製造装置。
    Electricity relating to a housing, a flexible printed wiring board having a plurality of strip-shaped flexible substrates provided on the bottom surface of the housing, a plurality of cells mounted on the upper surfaces of the plurality of flexible substrates, and the plurality of cells. It is a manufacturing device of a condensing type photovoltaic power generation module provided with a printed circuit part including a circuit.
    A first holding mechanism for holding the flexible printed wiring board from the lower surface side of the plurality of flexible substrates, and
    The flexible printed wiring board is held from the upper surface side and the held flexible printed wiring board is mounted on the bottom surface so that the relative positions of the plurality of flexible substrates are the deployed positions when the flexible substrates are deployed on the bottom surface. The second holding mechanism and
    A control unit that controls the first holding mechanism and the second holding mechanism is provided.
    The control unit
    After the holding operation in which the second holding mechanism holds the flexible substrate of one of the plurality of flexible substrates held by the first holding mechanism and the holding operation, the first holding mechanism is the one flexible substrate. The first holding mechanism and the second holding mechanism are controlled so as to repeat the release operation for releasing the holding with respect to the plurality of flexible substrates according to the arrangement order of the plurality of flexible substrates, and the second holding mechanism is used. A device for manufacturing a condensing type solar power generation module that holds the flexible printed wiring board from the upper surface side.
PCT/JP2020/027083 2019-07-19 2020-07-10 Method for manufacturing concentrating photovoltaic power generation module, method for manufacturing concentrating photovoltaic power generation device, and device for manufacturing concentrating photovoltaic power generation module WO2021015013A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019133704 2019-07-19
JP2019-133704 2019-07-19

Publications (1)

Publication Number Publication Date
WO2021015013A1 true WO2021015013A1 (en) 2021-01-28

Family

ID=74193940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027083 WO2021015013A1 (en) 2019-07-19 2020-07-10 Method for manufacturing concentrating photovoltaic power generation module, method for manufacturing concentrating photovoltaic power generation device, and device for manufacturing concentrating photovoltaic power generation module

Country Status (1)

Country Link
WO (1) WO2021015013A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157724A (en) * 2000-11-17 2002-05-31 Tdk Corp Processing method of fpc used for head supporting body
JP2011210799A (en) * 2010-03-29 2011-10-20 Nec Corp Positioning device and method of flexible member
JP2013080760A (en) * 2011-10-03 2013-05-02 Sumitomo Electric Ind Ltd Concentrated solar power generation module, concentrated solar power generation panel, and flexible printed wiring board for concentrated solar power generation module
US20130146120A1 (en) * 2011-12-09 2013-06-13 Semprius, Inc. High concentration photovoltaic modules and methods of fabricating the same
JP2014209584A (en) * 2013-03-26 2014-11-06 住友電気工業株式会社 Concentrator photovoltaic power generation module, concentrator photovoltaic power generation panel and flexible printed wiring board for concentrator photovoltaic power generation module
JP2015170699A (en) * 2014-03-06 2015-09-28 住友電気工業株式会社 Flexible printed circuit board and photovoltaic power generation module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002157724A (en) * 2000-11-17 2002-05-31 Tdk Corp Processing method of fpc used for head supporting body
JP2011210799A (en) * 2010-03-29 2011-10-20 Nec Corp Positioning device and method of flexible member
JP2013080760A (en) * 2011-10-03 2013-05-02 Sumitomo Electric Ind Ltd Concentrated solar power generation module, concentrated solar power generation panel, and flexible printed wiring board for concentrated solar power generation module
US20130146120A1 (en) * 2011-12-09 2013-06-13 Semprius, Inc. High concentration photovoltaic modules and methods of fabricating the same
JP2014209584A (en) * 2013-03-26 2014-11-06 住友電気工業株式会社 Concentrator photovoltaic power generation module, concentrator photovoltaic power generation panel and flexible printed wiring board for concentrator photovoltaic power generation module
JP2015170699A (en) * 2014-03-06 2015-09-28 住友電気工業株式会社 Flexible printed circuit board and photovoltaic power generation module

Similar Documents

Publication Publication Date Title
JP6659715B2 (en) Battery pack and method of manufacturing battery pack
KR101874756B1 (en) Bonding apparatus and bonding method
CN104779320A (en) Method for producing concentrator photovoltaic unit, production apparatus used in the method, method for producing concentrator photovoltaic module, and production apparatus used in the method
JP2008543066A (en) Photovoltaic concentrator, photovoltaic concentrator module formed therefrom, and production method therefor
JP5899382B2 (en) IMAGING MODULE, ELECTRONIC DEVICE HAVING THE SAME, AND METHOD FOR MANUFACTURING IMAGING MODULE
TWI644443B (en) Solar cell, concentrating solar power generation unit, concentrating solar power generation module, and illuminating solar power generation module manufacturing method
US20180287111A1 (en) Method for assembling battery pack, and battery pack
JP2012004143A (en) Mounting device and mounting method for electronic component
WO2021015013A1 (en) Method for manufacturing concentrating photovoltaic power generation module, method for manufacturing concentrating photovoltaic power generation device, and device for manufacturing concentrating photovoltaic power generation module
TW201635870A (en) Flexible printed circuit joining structure, concentrator photovoltaic module, and flexible printed circuit joining method
US11411286B2 (en) Battery stack forming apparatus and battery stack forming method
WO2008044490A1 (en) Method for manufacturing photovoltaic power generation unit and system for manufacturing photovoltaic power generation unit
CN114567142A (en) Memory alloy motor module, assembly system and assembly method
JP2009180911A (en) Substrate lamination method, substrate lamination apparatus, and display device manufactured by using method or apparatus
KR100558564B1 (en) Apparatus for bonding a printed circuit on fpd panel
JP5451039B2 (en) Solar cell module manufacturing apparatus and solar cell module manufacturing method
US10367449B2 (en) Micro-concentrator module and deployment method
FI125116B (en) Method and apparatus for assembling a photoelectric module
JP6028564B2 (en) Concentrating solar power generation module and manufacturing method thereof
JP6113749B2 (en) Method and apparatus for industrial wiring and final inspection of photovoltaic concentrator modules
FI124969B (en) Composition of photovoltaic module
JP2021104664A (en) Laminating apparatus and method for manufacturing laminate
CN117637907A (en) Battery string preparation method, photovoltaic module and preparation method thereof
JPWO2020004144A1 (en) Prototype of flexible printed wiring board, manufacturing method of flexible printed wiring board, concentrating solar power generation module, and light emitting module
JP5370023B2 (en) Manufacturing method of camera module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20843533

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP