WO2021014693A1 - Ceramic matrix composite material - Google Patents

Ceramic matrix composite material Download PDF

Info

Publication number
WO2021014693A1
WO2021014693A1 PCT/JP2020/015673 JP2020015673W WO2021014693A1 WO 2021014693 A1 WO2021014693 A1 WO 2021014693A1 JP 2020015673 W JP2020015673 W JP 2020015673W WO 2021014693 A1 WO2021014693 A1 WO 2021014693A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
ceramic
matrix
based composite
raw material
Prior art date
Application number
PCT/JP2020/015673
Other languages
French (fr)
Japanese (ja)
Inventor
真吾 金澤
中村 武志
朋紀 岸
厚生 隠善
良二 垣内
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2021014693A1 publication Critical patent/WO2021014693A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like

Definitions

  • the following disclosure relates to ceramic-based composite materials applied to equipment that requires high-temperature strength, such as jet engines for aircraft.
  • Ceramics have extremely high heat resistance, but on the other hand, many ceramics have the drawback of being brittle. In order to overcome brittleness, attempts have been made conventionally to combine ceramic fibers with a base material (matrix) made of other ceramics or metals.
  • CVI vapor phase impregnation
  • liquid phase impregnation for example, polymer melt impregnation thermal decomposition (PIP)
  • PIP polymer melt impregnation thermal decomposition
  • SPI solid phase impregnation
  • MI molten metal impregnation
  • SiC silicon carbide
  • Patent Documents 1 and 2 disclose related technologies.
  • the MI method inevitably uses a high temperature, so a rapid reaction can be expected, and since the matrix does not shrink with the reaction, there is no noticeable defect in the product. However, it is a problem that a small amount of unreacted carbon and silicon remain.
  • the ceramic-based composite is one or more elements selected from SiC and Zr, Yb, Y, Hf, which combine with the reinforcing fibers and bond the reinforcing fibers to each other. It comprises a dispersion of the silices of the above, and a matrix containing.
  • a ceramic-based composite material that repairs defects in the matrix by itself at high temperatures.
  • FIG. 1 is a flowchart illustrating a method for manufacturing a ceramic-based composite material according to an embodiment.
  • FIG. 2 is a diagram schematically showing the excitation process.
  • FIG. 3 is a schematic view showing a process in which an ingot impregnates a molded product in a melting / impregnation step.
  • FIG. 4 shows the X-ray diffraction results of the ceramic-based composite material after melting and impregnation.
  • FIG. 5 is a photograph of a cross section of the ceramic-based composite material after melting and impregnation observed with a scanning electron microscope.
  • FIG. 6 is a graph showing the relationship between the volume fraction of ZrC in the slurry and the volume fraction of ZrSi 2 in the matrix.
  • FIG. 7 shows the high temperature strength measurement results of the ceramic-based composite material.
  • FIG. 8 shows the fatigue test results of the ceramic-based composite material in the atmosphere at 1400 ° C.
  • Suitable uses of the ceramic-based composite material according to the present embodiment are mechanical parts exposed to a high temperature environment such as components of an aircraft jet engine, and examples thereof include turbine blades, combustors, and afterburners. Of course, it can be applied to other uses.
  • the ceramic-based composite material according to the present embodiment generally consists of reinforcing fibers made of ceramics such as silicon carbide (SiC) and a matrix composited with the reinforcing fibers to bond the reinforcing fibers to each other, and the matrix is SiC and this. It is provided with a dispersion made of a silicified material such as zirconium silicate (ZrSi 2 ) dispersed in. Examples of the silicified product include ZrSi 2 as well as ytterbium silicate (YbSi 2 ), yttrium silicate (YSi 2 ), and hafnium silicate (HfSi 2 ).
  • YbSi 2 ytterbium silicate
  • YSi 2 yttrium silicate
  • HfSi 2 hafnium silicate
  • Such a composite material can also be produced by melt-impregnating a molded product containing reinforcing fibers and raw material powder with pure silicon (Si) or a silicon alloy.
  • the raw material powder is mainly composed of SiC and carbon (C), and further contains zirconium carbide (ZrC).
  • the raw material powder may contain any one or more carbides of ytterbium (Yb), yttrium (Y), and hafnium (Hf).
  • the matrix formed by impregnating silicon or a silicon alloy bonds the SiC fabrics to each other, thereby forming a ceramic-based composite material.
  • the reaction between Si and C produces SiC, which occupies a major part of the matrix, but the added ZrC produces ZrSi 2 .
  • Yb, Y, and Hf also have similar properties.
  • any one or more of gas phase impregnation (CVI), liquid phase impregnation (for example, polymer melt impregnation thermal decomposition (PIP)), and solid phase impregnation (SPI) can be further combined.
  • CVI gas phase impregnation
  • PIP polymer melt impregnation thermal decomposition
  • SPI solid phase impregnation
  • the manufacturing method of the ceramic-based composite material will be mainly described with reference to FIG.
  • the raw material fiber such as SiC may be used as it is, or may be coated.
  • the coating include, but are not limited to, C, BN, and rare earth silicates.
  • the BN coating prevents the propagation of cracks from the matrix to the fibers and increases toughness.
  • the rare earth silicate coating enhances the water vapor oxidation resistance of the fiber.
  • two or more coatings may be applied in layers. As a coating method, any known method such as a vapor phase method or a dip method can be used.
  • the raw material fibers may remain as bundles of fibers, but are preferably woven two-dimensionally or three-dimensionally to form a woven fabric 10, and a shape determined according to the application. (Fabric molding step S1).
  • the raw material fiber commercially available ones can be applied, and those available under the name of Tyranno fiber ZMI grade (Ube Industries, Ltd.) and those available under the name of Nicalon or Hainalon (NGS Advanced Fiber Co., Ltd.) can be used. ..
  • the raw material fiber in addition to silicon carbide (SiC), it can be appropriately selected and contained from the group of other inorganic substances according to the required characteristics.
  • the raw material powder can be contained in the raw material fiber or the woven fabric 10 in advance, but in the present embodiment, an impregnation step using a liquid phase is used instead of or in addition to this. Therefore, in parallel with the above-mentioned step, the mixture 20 for impregnating the woven fabric 10 is prepared (impregnated liquid preparation step S3).
  • the mixture 20 is a mixture of SiC and C powder containing ZrC or an equivalent thereof and a medium made of an organic solvent and suspended, and may take the form of a so-called slurry.
  • the medium can include a polymeric raw material that produces a matrix by heating.
  • the particle size of the C powder is not particularly limited, but is, for example, an average particle size of 1 ⁇ m or more and 10 ⁇ m or less, and more preferably an average particle size of about 6 ⁇ m. The smaller the particle size, the easier it is to impregnate the fine voids in the woven fabric, and conversely, the larger the particle size, the easier it is to handle.
  • the organic solvent is not particularly limited, but methanol, ethanol, xylene and the like can be exemplified.
  • an appropriate organic solvent for dissolving the polymer raw material is preferable, and for example, xylene is preferable.
  • the medium may contain a viscosity modifier.
  • the above-mentioned raw material powder is added to an organic solvent or an organic solution having an adjusted viscosity, and mixed so as to be sufficiently uniform to form a mixture 20.
  • the mixture 20 may be allowed to stand for an appropriate period of time to cause precipitation 30 if precipitation occurs (precipitation step S5).
  • the mixture 20 may also be placed under reduced pressure for defoaming.
  • the woven fabric 10 is buried in the mixture 20 or in the precipitate 30 when the precipitate 30 is formed, and is vibrated from the outside (vibration step S7).
  • the conditions for vibration are not particularly limited, but it is desirable to use an ultrasonic vibration device.
  • An example of an ultrasonic vibration device is one that is generally available under the trade name of Sonoquick (Ultrasonic Engineering Co., Ltd.). With this device, for example, an ultrasonic wave having a vibration frequency of 38 kHz and an output of 250 W is applied to the mixture 20 for 10 minutes.
  • This vibration step can be carried out in the atmosphere under normal temperature and pressure, but may be carried out under reduced pressure or pressurized. By the vibration step, the raw material powder impregnates the gaps between the fibers of the woven fabric 10.
  • the woven fabric 10 containing the powder is pulled up from the mixture 20 and dried by, for example, exposing it to an appropriate high temperature to obtain the molded product 1 shown in FIG.
  • the raw material powder is kneaded in a binder containing an appropriate thermoplastic resin, which is made into a sheet, laminated with the woven fabric 10, and rolled down through a press or a rolling mill.
  • a step of impregnating the woven fabric 10 with the raw material powder together with the binder may be adopted.
  • the binder decomposes and disappears in the melt impregnation step described later.
  • the binder may be eliminated by heating before the melt impregnation step.
  • an ingot of Si or Si alloy to be melt-impregnated is prepared.
  • the ingot can contain elements that improve oxidation resistance, such as titanium (Ti) and hafnium (Hf), and can also contain elements that exclusively contribute to melting point reduction, such as yttrium (Y). Alternatively, other elements may be included for other purposes.
  • the ingot is formed into an appropriate shape and size in consideration of the shape of the ceramic molded body to be adhered.
  • the produced ingot 3 is attached to the ceramic molded body 1 and inserted into the reaction furnace.
  • the furnace is evacuated to vacuum or purged with an inert gas such as argon.
  • the molded body 1 and the ingot 3 are heated in the furnace so that the ingot 3 is melt-impregnated in the molded body 1 (melt impregnation step S9).
  • the heating temperature profile can be appropriately determined. For example, the temperature is raised to the maximum temperature at which the ingot 3 is melted at a heating rate of 10 ° C./min, held for a sufficient time for melt impregnation, and then slowly cooled. It can depend on the profile. In the process of raising the temperature, a step of temporarily stopping the raising of the temperature to maintain the temperature may be included. Further, as the temperature approaches the maximum temperature, the rate of temperature rise may be suppressed to, for example, 5 ° C./min.
  • the maximum temperature should be high enough to cause its melting and an appropriate temperature to prevent deterioration of the reinforcing fibers.
  • the melting point of the ingot 3 + 100 ° C. may be appropriately determined.
  • the ingot 3 starts melting and gradually impregnates the molded product 1 as shown by reference numeral 5, as schematically shown in the middle part of FIG.
  • the Si melted in parallel with the impregnation reacts with C in the raw material powder to form SiC, which combines with the SiC in the raw material powder to form a matrix.
  • Carbides such as ZrC in the raw material powder produce silicified products such as ZrSi 2 , which become dispersions in the matrix.
  • the matrix fills the voids between the fibers and bonds the fibers to each other, and as schematically shown in the lower part of FIG. 3, the ceramic-based composite material 100 is obtained.
  • the holding time can be determined in consideration of these, and is, for example, 60 to 120 minutes.
  • the ceramic-based composite material 100 is taken out from the furnace.
  • An appropriate cooling rate can be set to avoid a sudden thermal shock.
  • the obtained ceramic-based composite material is usually subjected to finish processing to make a final product. Further coating may be applied after the finishing process for the purpose of preventing corrosion, improving heat resistance, or preventing the adhesion of foreign substances.
  • the raw material powders having each composition listed in Table 1 were prepared, mixed with an organic solvent having an adjusted viscosity (methanol in this case), suspended to form a slurry, and impregnated into a woven fabric made of SiC fibers.
  • an organic solvent having an adjusted viscosity methanol in this case
  • Each sample L-1 to L-6 and H-1 to H-6 were combined with an ingot made of pure Si and heated in vacuum for melt impregnation.
  • the temperature profile was as described above, and the maximum temperature was 1450 ° C. for samples L-1 to L-6 and 1600 ° C. for samples H-1 to H-6.
  • the time to maintain the maximum temperature was 100 minutes in each case.
  • the curves a1 to a6 are the X-ray diffraction results obtained from the samples L-1 to L-6, respectively. Strong peaks derived from SiC were observed in both curves, which are considered to be derived from reinforcing fibers and matrix. Further, since peaks derived from Si are observed in all the curves, it is considered that unreacted Si remains even after melt impregnation. Except for the curves a1 and a2, peaks derived from ZrSi 2 were observed, which is considered to indicate that ZrC mixed with the raw material powder reacted with Si to generate ZrSi 2 .
  • each phase can be identified as a contrast difference by SEM observation.
  • a relatively dark region is a SiC phase
  • a relatively bright region is a Si phase
  • the brightest region is a ZrSi 2 phase.
  • a relatively small amount of ZrSi 2 phase is dispersed in the ground SiC phase, and the rest is a residual Si phase recognized as an unavoidable impurity.
  • the area ratio of each phase was measured by image analysis, and the relationship between the volume fraction of ZrC in the raw material slurry and the volume fraction of ZrSi 2 in the obtained matrix was investigated as shown in FIG.
  • the volume fraction of ZrC in the raw material slurry is increased, the volume fraction of ZrSi 2 in the matrix also tends to increase.
  • the volume fraction of ZrSi 2 in the matrix tends to be saturated at a level lower than 10% by volume.
  • the volume fraction of ZrSi 2 in the matrix does not saturate to a level of at least 34% by volume. That is, from the viewpoint of obtaining a larger volume fraction of ZrSi 2 , the maximum temperature is preferably higher, and it is possible to produce a matrix in which the dispersion accounts for more than 0% by volume and 35% by volume or less.
  • a ceramic-based composite material that repairs defects by itself at a high temperature is obtained, and as is clear from the above-described embodiment, the present embodiment improves its high-temperature strength and high-temperature fatigue limit.
  • a ceramic-based composite material that repairs defects in the matrix by itself at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

A ceramic matrix composite material according to the present invention is provided with: reinforcing fibers; and a matrix which contains SiC and a dispersoid that is composed of a silicide of one or more elements that are selected from among Zr, Yb, Y and Hf, and which is complexed with the reinforcing fibers so as to bind the reinforcing fibers with each other.

Description

セラミックス基複合材Ceramic-based composite material
 以下の開示は、航空機用ジェットエンジン等、高温強度を必要とする機器に適用されるセラミックス基複合材に関する。 The following disclosure relates to ceramic-based composite materials applied to equipment that requires high-temperature strength, such as jet engines for aircraft.
 セラミックスは極めて高い耐熱性を有するが、その一方多くのセラミックスは脆いという欠点がある。脆性を克服すべく、セラミックスの繊維を他のセラミックスや金属よりなる母材(マトリックス)と複合化する試みが、従来からなされている。 Ceramics have extremely high heat resistance, but on the other hand, many ceramics have the drawback of being brittle. In order to overcome brittleness, attempts have been made conventionally to combine ceramic fibers with a base material (matrix) made of other ceramics or metals.
 複合化のために、気相含浸(CVI)、液相含浸(例えばポリマー溶融含浸熱分解(PIP))、固相含浸(SPI)、溶融金属含浸(MI)等の方法が提案されている。例えばMI法によれば、炭化珪素(SiC)等の強化繊維よりなる織物に炭素の粉末を含侵し、これに珪素の鋳塊を付着し、溶融することにより炭素粉末と珪素とを反応させて炭化珪素マトリックスを生じ、以って炭化珪素-炭化珪素複合材料を製造することができる。 For compounding, methods such as vapor phase impregnation (CVI), liquid phase impregnation (for example, polymer melt impregnation thermal decomposition (PIP)), solid phase impregnation (SPI), and molten metal impregnation (MI) have been proposed. For example, according to the MI method, a woven fabric made of reinforcing fibers such as silicon carbide (SiC) is impregnated with carbon powder, and ingots of silicon are attached to the woven fabric, and the carbon powder and silicon are reacted by melting. A silicon carbide matrix is formed, whereby a silicon carbide-silicon carbide composite material can be produced.
 特許文献1,2は、関連する技術を開示する。 Patent Documents 1 and 2 disclose related technologies.
特開2013-147366号公報Japanese Unexamined Patent Publication No. 2013-147366 国際公開第2018/047419号International Publication No. 2018/047419
 MI法は、必然的に高温を利用することから迅速な反応を期待でき、また反応に伴ってマトリックスの収縮が起こるわけではないので、製品に目立った欠陥を生じることもない。しかしながら未反応の炭素や珪素が僅かながら残ることは問題である。 The MI method inevitably uses a high temperature, so a rapid reaction can be expected, and since the matrix does not shrink with the reaction, there is no noticeable defect in the product. However, it is a problem that a small amount of unreacted carbon and silicon remain.
 本発明者らが検討したところによれば、複合材が再び高温に曝されたときには、未反応の炭素や珪素は水蒸気酸化されて徐々に蒸発し、その後には微細な空洞のごとき欠陥が残されてしまうことが明らかとなった。 According to the studies by the present inventors, when the composite material is exposed to high temperature again, unreacted carbon and silicon are vapor-oxidized and gradually evaporated, and then defects such as fine cavities remain. It became clear that it would be done.
 以下に開示されるものは上述の問題に鑑みて創作されたものである。 What is disclosed below was created in view of the above problems.
 一局面によれば、セラミックス基複合材は、強化繊維と、前記強化繊維と複合して前記強化繊維を相互に結合する、SiCと、Zr,Yb,Y,Hfより選択された一以上の元素の珪化物よりなる分散物と、を含むマトリックスと、を備える。 According to one aspect, the ceramic-based composite is one or more elements selected from SiC and Zr, Yb, Y, Hf, which combine with the reinforcing fibers and bond the reinforcing fibers to each other. It comprises a dispersion of the silices of the above, and a matrix containing.
 高温下においてマトリックス中の欠陥を自ら修復するセラミックス基複合材が提供される。 Provided is a ceramic-based composite material that repairs defects in the matrix by itself at high temperatures.
図1は、一実施形態によるセラミックス基複合材の製造方法を概括的に説明するフローチャートである。FIG. 1 is a flowchart illustrating a method for manufacturing a ceramic-based composite material according to an embodiment. 図2は、加振工程を模式的に表わす図である。FIG. 2 is a diagram schematically showing the excitation process. 図3は、溶融・含浸工程において鋳塊が成形体に含浸する過程を表す模式図である。FIG. 3 is a schematic view showing a process in which an ingot impregnates a molded product in a melting / impregnation step. 図4は、溶融・含浸後のセラミックス基複合材のX線回折結果である。FIG. 4 shows the X-ray diffraction results of the ceramic-based composite material after melting and impregnation. 図5は、溶融・含浸後のセラミックス基複合材の断面を走査型電子顕微鏡で観察した写真である。FIG. 5 is a photograph of a cross section of the ceramic-based composite material after melting and impregnation observed with a scanning electron microscope. 図6は、スラリー中におけるZrCの体積率とマトリックス中におけるZrSiの体積率との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the volume fraction of ZrC in the slurry and the volume fraction of ZrSi 2 in the matrix. 図7は、セラミックス基複合材の高温強度測定結果である。FIG. 7 shows the high temperature strength measurement results of the ceramic-based composite material. 図8は、1400℃の大気中におけるセラミックス基複合材の疲労試験結果である。FIG. 8 shows the fatigue test results of the ceramic-based composite material in the atmosphere at 1400 ° C.
 添付の図面を参照して以下に幾つかの例示的な実施形態を説明する。 Some exemplary embodiments will be described below with reference to the accompanying drawings.
 本実施形態によるセラミックス基複合材の好適な用途は、航空機用ジェットエンジンの構成部品のごとき高温環境に曝される機械部品であって、タービン翼、燃焼器、アフターバーナー等が例示できる。勿論他の用途に適用することもできる。 Suitable uses of the ceramic-based composite material according to the present embodiment are mechanical parts exposed to a high temperature environment such as components of an aircraft jet engine, and examples thereof include turbine blades, combustors, and afterburners. Of course, it can be applied to other uses.
 本実施形態によるセラミックス基複合材は、概して、炭化珪素(SiC)のごときセラミックスよりなる強化繊維と、強化繊維と複合して前記強化繊維を相互に結合するマトリックスよりなり、マトリックスはSiCと、これに分散した珪化ジルコニウム(ZrSi)のごとき珪化物よりなる分散物とを備える。珪化物としてはZrSiの他、珪化イッテルビウム(YbSi)、珪化イットリウム(YSi)、珪化ハフニウム(HfSi)が例示できる。かかる複合材は、また、強化繊維と原料粉末とを含む成形体に、純シリコン(Si)またはシリコン合金を溶融含浸することにより製造できる。ここで原料粉末は主にSiCおよび炭素(C)よりなり、さらに炭化ジルコニウム(ZrC)を含むものである。あるいはZrCに代えて、または加えて、原料粉末はイッテルビウム(Yb)、イットリウム(Y)、およびハフニウム(Hf)の何れか一または二以上の炭化物が含まれうる。 The ceramic-based composite material according to the present embodiment generally consists of reinforcing fibers made of ceramics such as silicon carbide (SiC) and a matrix composited with the reinforcing fibers to bond the reinforcing fibers to each other, and the matrix is SiC and this. It is provided with a dispersion made of a silicified material such as zirconium silicate (ZrSi 2 ) dispersed in. Examples of the silicified product include ZrSi 2 as well as ytterbium silicate (YbSi 2 ), yttrium silicate (YSi 2 ), and hafnium silicate (HfSi 2 ). Such a composite material can also be produced by melt-impregnating a molded product containing reinforcing fibers and raw material powder with pure silicon (Si) or a silicon alloy. Here, the raw material powder is mainly composed of SiC and carbon (C), and further contains zirconium carbide (ZrC). Alternatively, or in addition to ZrC, the raw material powder may contain any one or more carbides of ytterbium (Yb), yttrium (Y), and hafnium (Hf).
 シリコンまたはシリコン合金が含浸して生じたマトリックスは、SiC織物同士を相互に結合し、以ってセラミックス基複合材が形成される。このときSiとCとの反応によりSiCが生じ、これはマトリックスの主要な部分を占めるが、添加されたZrCからはZrSiが生じる。これは高温において酸化されると体積膨張して欠陥を充填し、またマトリックスと一体化し、以って複合材の強度を回復する。Yb,Y,Hfも同様な性質を有する。 The matrix formed by impregnating silicon or a silicon alloy bonds the SiC fabrics to each other, thereby forming a ceramic-based composite material. At this time, the reaction between Si and C produces SiC, which occupies a major part of the matrix, but the added ZrC produces ZrSi 2 . When oxidized at high temperatures, it expands in volume to fill defects and integrate with the matrix, thus restoring the strength of the composite. Yb, Y, and Hf also have similar properties.
 なおマトリックスを形成するに、気相含浸(CVI)、液相含浸(例えばポリマー溶融含浸熱分解(PIP))、固相含浸(SPI)の何れか一以上をさらに組み合わせることができる。 In order to form the matrix, any one or more of gas phase impregnation (CVI), liquid phase impregnation (for example, polymer melt impregnation thermal decomposition (PIP)), and solid phase impregnation (SPI) can be further combined.
 主に図1を参照してセラミックス基複合材の製造方法を説明する。 The manufacturing method of the ceramic-based composite material will be mainly described with reference to FIG.
 SiCのごとき原料繊維は、そのままでもよいが、コーティングを施してもよい。コーティングとしては、C,BN,希土類シリケートを例示することができるが、必ずしもこれらに限られない。例えばBNコーティングは、マトリックスから繊維への亀裂の伝播を防ぎ、靱性を増大する。あるいは希土類シリケートコーティングは繊維の耐水蒸気酸化性を高める。また2以上のコーティングを重ねて施してもよい。コーティングの方法としては、気相法やディップ法などの公知の何れかの方法を利用することができる。 The raw material fiber such as SiC may be used as it is, or may be coated. Examples of the coating include, but are not limited to, C, BN, and rare earth silicates. For example, the BN coating prevents the propagation of cracks from the matrix to the fibers and increases toughness. Alternatively, the rare earth silicate coating enhances the water vapor oxidation resistance of the fiber. Further, two or more coatings may be applied in layers. As a coating method, any known method such as a vapor phase method or a dip method can be used.
 図1に組み合わせて図2を参照するに、原料繊維は繊維の束のままでもよいが、好ましくは2次元的にまたは3次元的に織布して織物10とし、用途に応じて定められる形状に成形する(織物成形工程S1)。原料繊維は、市販で入手しうるものが適用でき、チラノ繊維ZMIグレード(宇部興産株式会社)の名称で入手できるものやニカロンまたはハイニカロン(NGSアドバンストファイバー株式会社)の名称で入手できるものが利用できる。また原料繊維としては、炭化珪素(SiC)の他、他の無機物の群から、必要とされる特性に応じて適宜に選択して含ませることができる。 As referred to FIG. 2 in combination with FIG. 1, the raw material fibers may remain as bundles of fibers, but are preferably woven two-dimensionally or three-dimensionally to form a woven fabric 10, and a shape determined according to the application. (Fabric molding step S1). As the raw material fiber, commercially available ones can be applied, and those available under the name of Tyranno fiber ZMI grade (Ube Industries, Ltd.) and those available under the name of Nicalon or Hainalon (NGS Advanced Fiber Co., Ltd.) can be used. .. Further, as the raw material fiber, in addition to silicon carbide (SiC), it can be appropriately selected and contained from the group of other inorganic substances according to the required characteristics.
 原料粉末は、原料繊維または織物10に予め含ませておくことができるが、本実施形態においては、これに代えて、または加えて、液相を利用した含浸工程を用いる。そこで上述の工程と並行して、織物10に含浸するための混合物20を調製する(含浸液調製工程S3)。混合物20は、上述の通りZrCまたはその均等物を含むSiCおよびC粉末と、有機溶媒よりなる媒質と、を混合して懸濁したものであり、いわゆるスラリーの形態をとりうる。あるいは媒質は、加熱によりマトリックスを生じるポリマー原料を含むことができる。 The raw material powder can be contained in the raw material fiber or the woven fabric 10 in advance, but in the present embodiment, an impregnation step using a liquid phase is used instead of or in addition to this. Therefore, in parallel with the above-mentioned step, the mixture 20 for impregnating the woven fabric 10 is prepared (impregnated liquid preparation step S3). As described above, the mixture 20 is a mixture of SiC and C powder containing ZrC or an equivalent thereof and a medium made of an organic solvent and suspended, and may take the form of a so-called slurry. Alternatively, the medium can include a polymeric raw material that produces a matrix by heating.
 C粉末には、気相合成によるもの、焼成等による合成の黒鉛を粉末化したもの、天然の黒鉛の粉末、等の何れも利用することができ、また市販で入手しうるものを利用することができる。C粉末の粒径について特に限定されることは無いが、例えば平均粒径1μm以上10μm以下であり、より好適には平均粒径は6μm程度である。粒径が小さいほうが前記織物中の微細な空隙に含浸することが容易であろうし、逆に粒径が大きいほうが取り扱いは容易であろう。 As the C powder, any of those produced by vapor phase synthesis, powdered graphite synthesized by firing, natural graphite powder, etc. can be used, and commercially available powders can be used. Can be done. The particle size of the C powder is not particularly limited, but is, for example, an average particle size of 1 μm or more and 10 μm or less, and more preferably an average particle size of about 6 μm. The smaller the particle size, the easier it is to impregnate the fine voids in the woven fabric, and conversely, the larger the particle size, the easier it is to handle.
 有機溶媒は、特に限定されるものではないが、メタノール、エタノール、キシレンなどが例示できる。前記混合物20にポリマー原料が含まれる場合には、これを溶解するのに適宜な有機溶媒が好ましく、例えばキシレンが好適である。またスラリーが適度の粘性を有すれば、粉末の凝集を抑制して適度な分散状態を維持しやすく、後述の加振工程において粉末の含浸を促進する。そこで媒質は粘度調整剤を含んでもよい。 The organic solvent is not particularly limited, but methanol, ethanol, xylene and the like can be exemplified. When the mixture 20 contains a polymer raw material, an appropriate organic solvent for dissolving the polymer raw material is preferable, and for example, xylene is preferable. Further, if the slurry has an appropriate viscosity, it is easy to suppress the agglutination of the powder and maintain an appropriate dispersed state, and the impregnation of the powder is promoted in the vibration step described later. Therefore, the medium may contain a viscosity modifier.
 上述の原料粉末を、有機溶媒または粘度の調整された有機溶液に添加し、十分に均一となるべく混合して混合物20となす。 The above-mentioned raw material powder is added to an organic solvent or an organic solution having an adjusted viscosity, and mixed so as to be sufficiently uniform to form a mixture 20.
 混合物20は適当な時間静置して、沈殿が生ずる場合には沈殿30を生ぜしめてもよい(沈殿工程S5)。また脱泡のために混合物20を減圧下に置いてもよい。 The mixture 20 may be allowed to stand for an appropriate period of time to cause precipitation 30 if precipitation occurs (precipitation step S5). The mixture 20 may also be placed under reduced pressure for defoaming.
 織物10を、前記混合物20中に、または沈殿30が生ずる場合には沈殿30中に、埋没し、外部から加振する(加振工程S7)。加振の条件は特に限定されるものではないが、超音波加振装置によることが望ましい。超音波加振装置の例としては、ソノクイック(超音波工業株式会社)の商品名で一般に入手可能なものがある。この装置により、例えば振動周波数38kHzで出力250Wの超音波を10分間前記混合物20に引加する。この加振工程は、大気中で常温常圧下で実施できるが、減圧下または加圧下で実施してもよい。加振工程により、原料粉末が織物10の繊維間の空隙に含浸する。 The woven fabric 10 is buried in the mixture 20 or in the precipitate 30 when the precipitate 30 is formed, and is vibrated from the outside (vibration step S7). The conditions for vibration are not particularly limited, but it is desirable to use an ultrasonic vibration device. An example of an ultrasonic vibration device is one that is generally available under the trade name of Sonoquick (Ultrasonic Engineering Co., Ltd.). With this device, for example, an ultrasonic wave having a vibration frequency of 38 kHz and an output of 250 W is applied to the mixture 20 for 10 minutes. This vibration step can be carried out in the atmosphere under normal temperature and pressure, but may be carried out under reduced pressure or pressurized. By the vibration step, the raw material powder impregnates the gaps between the fibers of the woven fabric 10.
 次に粉末を含む織物10を混合物20から引き上げ、例えば適宜の高温に曝すことにより、乾燥して、図3に示す成形体1とする。 Next, the woven fabric 10 containing the powder is pulled up from the mixture 20 and dried by, for example, exposing it to an appropriate high temperature to obtain the molded product 1 shown in FIG.
 あるいは上述の工程に代えて、または加えて、原料粉末を適宜の熱可塑性樹脂を含むバインダ中に混練し、これをシート状にして織物10と重ね、プレス機や圧延機を通して圧下することにより、バインダとともに原料粉末を織物10に含浸せしめる工程を採用してもよい。バインダは後述の溶融含浸工程において分解し消失する。あるいは溶融含浸工程の以前に加熱をして、バインダを消失せしめてもよい。 Alternatively, instead of or in addition to the above steps, the raw material powder is kneaded in a binder containing an appropriate thermoplastic resin, which is made into a sheet, laminated with the woven fabric 10, and rolled down through a press or a rolling mill. A step of impregnating the woven fabric 10 with the raw material powder together with the binder may be adopted. The binder decomposes and disappears in the melt impregnation step described later. Alternatively, the binder may be eliminated by heating before the melt impregnation step.
 上述の工程と並行して、溶融含浸せしめるSiまたはSi合金の鋳塊を作成する。鋳塊は、例えばチタニウム(Ti)やハフニウム(Hf)のごとき耐酸化性を改善する元素を含むことができ、またイットリウム(Y)のごとく専ら融点降下に寄与する元素を含むことができるが、あるいは他の目的で他の元素を含めてもよい。鋳塊は、付着せしめるセラミックス成形体の形状を考慮して適宜な形状および寸法に成形する。 In parallel with the above process, an ingot of Si or Si alloy to be melt-impregnated is prepared. The ingot can contain elements that improve oxidation resistance, such as titanium (Ti) and hafnium (Hf), and can also contain elements that exclusively contribute to melting point reduction, such as yttrium (Y). Alternatively, other elements may be included for other purposes. The ingot is formed into an appropriate shape and size in consideration of the shape of the ceramic molded body to be adhered.
 図1に組み合わせて図3参照するに、セラミックス成形体1に、作成された鋳塊3を付着し、反応炉中に挿入する。好ましくは炉を真空に脱気し、あるいはアルゴン等の不活性ガスによりパージする。 As shown in FIG. 3 in combination with FIG. 1, the produced ingot 3 is attached to the ceramic molded body 1 and inserted into the reaction furnace. Preferably, the furnace is evacuated to vacuum or purged with an inert gas such as argon.
 鋳塊3を成形体1に溶融含浸せしめるべく(溶融含浸工程S9)、炉中において成形体1および鋳塊3を加熱する。加熱の温度プロファイルは適宜に定めることができるが、例えば鋳塊3が溶融する最高温度まで昇温速度10℃/minで昇温し、十分な溶融含浸が生じる時間だけ保持し、その後徐冷するプロファイルによることができる。昇温の過程において、一時的に昇温を停止して温度を保持する段階を含んでもよい。また最高温度に近づくに従い、昇温速度を例えば5℃/minに抑制してもよい。 The molded body 1 and the ingot 3 are heated in the furnace so that the ingot 3 is melt-impregnated in the molded body 1 (melt impregnation step S9). The heating temperature profile can be appropriately determined. For example, the temperature is raised to the maximum temperature at which the ingot 3 is melted at a heating rate of 10 ° C./min, held for a sufficient time for melt impregnation, and then slowly cooled. It can depend on the profile. In the process of raising the temperature, a step of temporarily stopping the raising of the temperature to maintain the temperature may be included. Further, as the temperature approaches the maximum temperature, the rate of temperature rise may be suppressed to, for example, 5 ° C./min.
 最高温度は鋳塊3の組成に応じ、その溶融を引き起こすに十分な高温であって強化繊維の劣化を防止するに適切な温度を選択するべきである。例えば鋳塊3の融点+100℃のように適宜に定めてもよい。 Depending on the composition of the ingot 3, the maximum temperature should be high enough to cause its melting and an appropriate temperature to prevent deterioration of the reinforcing fibers. For example, the melting point of the ingot 3 + 100 ° C. may be appropriately determined.
 融点に達すると、図3の中段に模式的に示すごとく、鋳塊3は溶融を開始し、符号5に示すごとく次第に成形体1に含浸してゆく。含浸と並行して溶融したSiは原料粉末中のCと反応してSiCを生じ、またこれは原料粉末中のSiCと結合し、マトリックスを構成する。原料粉末中のZrCのごとき炭化物からはZrSiのごとき珪化物を生じ、マトリックス中の分散物となる。かかる過程が十分に進行するとマトリックスは繊維間の空隙を埋め、かつ繊維同士を結合し、図3の下段に模式的に示すごとく、セラミックス基複合材100が得られる。 When the melting point is reached, the ingot 3 starts melting and gradually impregnates the molded product 1 as shown by reference numeral 5, as schematically shown in the middle part of FIG. The Si melted in parallel with the impregnation reacts with C in the raw material powder to form SiC, which combines with the SiC in the raw material powder to form a matrix. Carbides such as ZrC in the raw material powder produce silicified products such as ZrSi 2 , which become dispersions in the matrix. When this process proceeds sufficiently, the matrix fills the voids between the fibers and bonds the fibers to each other, and as schematically shown in the lower part of FIG. 3, the ceramic-based composite material 100 is obtained.
 十分な反応を引き起こすには、最高温度に保持する時間は長いほうがよい。一方、長すぎれば強化繊維の劣化が進行するので、保持時間は適宜に短くするべきである。保持時間はこれらを考慮して定めることができるが、例えば60分から120分である。 In order to cause a sufficient reaction, it is better to keep it at the maximum temperature for a long time. On the other hand, if it is too long, the reinforcing fibers will deteriorate, so the holding time should be shortened appropriately. The holding time can be determined in consideration of these, and is, for example, 60 to 120 minutes.
 その後、徐々に冷却した後にセラミックス基複合材100は炉から取り出される。急激な熱的ショックを避けるべく、適宜の冷却速度を設定することができる。 Then, after gradually cooling, the ceramic-based composite material 100 is taken out from the furnace. An appropriate cooling rate can be set to avoid a sudden thermal shock.
 得られたセラミックス基複合材は、通常は仕上げ加工に付されて最終製品とする。防食や耐熱性向上、あるいは外来物質の付着を防止する等の目的で、仕上げ加工後にさらにコーティングを施してもよい。 The obtained ceramic-based composite material is usually subjected to finish processing to make a final product. Further coating may be applied after the finishing process for the purpose of preventing corrosion, improving heat resistance, or preventing the adhesion of foreign substances.
 本実施形態による効果を検証するべく、幾つかの試験を実施した。 Several tests were conducted to verify the effect of this embodiment.
 表1に掲げる各組成の原料粉末を用意し、粘度の調整された有機溶媒(この場合はメタノール)に混合し懸濁してスラリーとし、それぞれSiC繊維よりなる織物に含浸した。 The raw material powders having each composition listed in Table 1 were prepared, mixed with an organic solvent having an adjusted viscosity (methanol in this case), suspended to form a slurry, and impregnated into a woven fabric made of SiC fibers.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 各試料L-1~L-6,H-1~H-6をそれぞれ純Siよりなる鋳塊と組み合わせ、真空中において加熱して溶融含浸した。温度プロファイルは既に述べた通りであり、最高温度は試料L-1~L-6の場合に1450℃であり、試料H-1~H-6の場合に1600℃であった。最高温度を保持する時間はいずれも100分であった。 Each sample L-1 to L-6 and H-1 to H-6 were combined with an ingot made of pure Si and heated in vacuum for melt impregnation. The temperature profile was as described above, and the maximum temperature was 1450 ° C. for samples L-1 to L-6 and 1600 ° C. for samples H-1 to H-6. The time to maintain the maximum temperature was 100 minutes in each case.
 得られたセラミックス基複合材をそれぞれ切断し、X線回折による相の同定を行い、また断面を研磨して、走査型電子顕微鏡(SEM)により断面観察した。 Each of the obtained ceramic-based composite materials was cut, the phase was identified by X-ray diffraction, the cross section was polished, and the cross section was observed with a scanning electron microscope (SEM).
 図4を参照するに、曲線a1~a6はそれぞれ試料L-1~L-6から得られたX線回折結果である。いずれの曲線にもSiCに由来する強いピークが認められ、これらは強化繊維およびマトリックスに由来するものと考えられる。またいずれの曲線にもSiに由来するピークが認められるので、溶融含浸後も未反応のSiが残留するものとみられる。曲線a1,a2を除き、ZrSiに由来するピークが認められ、これは原料粉末に混合したZrCがSiに反応してZrSiを生じたことを示すと考えられる。 With reference to FIG. 4, the curves a1 to a6 are the X-ray diffraction results obtained from the samples L-1 to L-6, respectively. Strong peaks derived from SiC were observed in both curves, which are considered to be derived from reinforcing fibers and matrix. Further, since peaks derived from Si are observed in all the curves, it is considered that unreacted Si remains even after melt impregnation. Except for the curves a1 and a2, peaks derived from ZrSi 2 were observed, which is considered to indicate that ZrC mixed with the raw material powder reacted with Si to generate ZrSi 2 .
 図5を参照するに、SEM観察によれば各相はコントラスト上の相違として識別することができる。図5においては、比較的に暗い領域がSiC相であり、比較的に明るい領域がSi相であり、最も明るい領域がZrSi相である。地であるSiC相に、比較的に少量のZrSi相が分散し、さらに残部は不可避的不純物と認識される残留Si相である。 With reference to FIG. 5, each phase can be identified as a contrast difference by SEM observation. In FIG. 5, a relatively dark region is a SiC phase, a relatively bright region is a Si phase, and the brightest region is a ZrSi 2 phase. A relatively small amount of ZrSi 2 phase is dispersed in the ground SiC phase, and the rest is a residual Si phase recognized as an unavoidable impurity.
 画像解析により各相の面積比を測定し、図6に示すごとく、原料スラリー中のZrCの体積率と、得られたマトリックス中のZrSiの体積率との関係を調べた。いずれも原料スラリー中のZrCの体積率を増大すればマトリックス中のZrSiの体積率も増大する傾向を見て取ることができる。ただし1450℃で加熱したものでは、原料スラリー中のZrCの体積率を0から34体積%にまで増やしても、マトリックスにおいてZrSiの体積率は10体積%を下回る水準において飽和する傾向がある。一方、1600℃で加熱したものでは、マトリックスにおいてZrSiの体積率は少なくとも34体積%の水準まで飽和が見られない。すなわち、より大きなZrSiの体積率を得る観点に限れば、最高温度はより高温が好ましく、分散物がマトリックスにおいて0体積%を超えて35体積%以下を占めるものを製造することができる。 The area ratio of each phase was measured by image analysis, and the relationship between the volume fraction of ZrC in the raw material slurry and the volume fraction of ZrSi 2 in the obtained matrix was investigated as shown in FIG. In each case, it can be seen that if the volume fraction of ZrC in the raw material slurry is increased, the volume fraction of ZrSi 2 in the matrix also tends to increase. However, in the case of heating at 1450 ° C., even if the volume fraction of ZrC in the raw material slurry is increased from 0 to 34% by volume, the volume fraction of ZrSi 2 in the matrix tends to be saturated at a level lower than 10% by volume. On the other hand, when heated at 1600 ° C., the volume fraction of ZrSi 2 in the matrix does not saturate to a level of at least 34% by volume. That is, from the viewpoint of obtaining a larger volume fraction of ZrSi 2 , the maximum temperature is preferably higher, and it is possible to produce a matrix in which the dispersion accounts for more than 0% by volume and 35% by volume or less.
 図7を参照するに、各試料について高温引張試験を行った。図中、白抜き四角および黒四角印は、「ハンドブック・オブ・セラミックコンポジッツ」(コールマン,ルスラ編)2005年版に記載された先行技術に相当するものであり、白抜き丸および白抜き三角印は試料L-1に相当するものであり、黒三角印は試料L-3に相当するものである。マトリックス中にZrSiを含む試料L-3では、他の例に比較して、いずれの温度においても引張強度が向上している。 With reference to FIG. 7, a high temperature tensile test was performed on each sample. In the figure, the white squares and black squares correspond to the prior art described in the 2005 edition of "Handbook of Ceramic Compositions" (Coleman, Rusla), and the white circles and white triangles. Corresponds to sample L-1, and the black triangle mark corresponds to sample L-3. In the sample L-3 containing ZrSi 2 in the matrix, the tensile strength is improved at any temperature as compared with other examples.
 図8を参照するに、1400℃の大気中において疲労試験を行った。白抜き丸印は試料L-1に相当するものであり、黒丸印は試料L-3に相当するものである。マトリックス中にZrSiを含む試料L-3は、これを含まない試料L-1に比較して、疲労限界が向上している。 With reference to FIG. 8, a fatigue test was performed in the air at 1400 ° C. The white circles correspond to the sample L-1, and the black circles correspond to the sample L-3. Sample L-3 containing ZrSi 2 in the matrix has an improved fatigue limit as compared with Sample L-1 not containing it.
 本実施形態によれば、高温下において欠陥を自ら修復するセラミックス基複合材が得られ、さらに上述の実施例より明らかな通り、本実施形態はその高温強度及び高温疲労限界を改善する。 According to the present embodiment, a ceramic-based composite material that repairs defects by itself at a high temperature is obtained, and as is clear from the above-described embodiment, the present embodiment improves its high-temperature strength and high-temperature fatigue limit.
 幾つかの実施形態を説明したが、上記開示内容に基づいて実施形態の修正または変形をすることが可能である。 Although some embodiments have been described, it is possible to modify or modify the embodiments based on the above disclosure contents.
 高温下においてマトリックス中の欠陥を自ら修復するセラミックス基複合材が提供される。 Provided is a ceramic-based composite material that repairs defects in the matrix by itself at high temperatures.

Claims (4)

  1.  強化繊維と、
     前記強化繊維と複合して前記強化繊維を相互に結合する、SiCと、Zr,Yb,Y,Hfより選択された一以上の元素の珪化物よりなる分散物と、を含むマトリックスと、
     を備えたセラミックス基複合材。
    Reinforcing fiber and
    A matrix comprising SiC and a dispersion of silices of one or more elements selected from Zr, Yb, Y, Hf, which are composited with the reinforcing fibers to bond the reinforcing fibers to each other.
    Ceramic-based composite material with.
  2.  前記分散物は、前記マトリックスにおいて0体積%を超えて35体積%以下を占める、請求項1のセラミックス基複合材。 The ceramic-based composite material according to claim 1, wherein the dispersion accounts for more than 0% by volume and 35% by volume or less in the matrix.
  3.  前記マトリックスはSiCと前記分散物と、残部不可避的不純物と、よりなる、請求項1のセラミックス基複合材。 The ceramic-based composite material according to claim 1, wherein the matrix comprises SiC, the dispersion, and unavoidable impurities in the balance.
  4.  前記珪化物はZrSiである、請求項1から3の何れか1項のセラミックス基複合材。 The ceramic-based composite material according to any one of claims 1 to 3, wherein the silicified wood is ZrSi 2 .
PCT/JP2020/015673 2019-07-25 2020-04-07 Ceramic matrix composite material WO2021014693A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-136620 2019-07-25
JP2019136620 2019-07-25

Publications (1)

Publication Number Publication Date
WO2021014693A1 true WO2021014693A1 (en) 2021-01-28

Family

ID=74193307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015673 WO2021014693A1 (en) 2019-07-25 2020-04-07 Ceramic matrix composite material

Country Status (1)

Country Link
WO (1) WO2021014693A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515994A (en) * 2013-03-15 2016-06-02 ロールス−ロイス コーポレイション Silicon carbide ceramic matrix composite containing rare earth compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016515994A (en) * 2013-03-15 2016-06-02 ロールス−ロイス コーポレイション Silicon carbide ceramic matrix composite containing rare earth compounds

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKUYA AOKI, TOSHIO OGASAWARA, YOSUKE OKUBO, KATSUMI YOSHIDA, TOYOHIKO YANO: "Fabrication and properties of Si-Hf alloy melt- infiltrated Tyranno ZMI fiber/SiC-based matrix composites", COMPOSITES PART A: APPLIED SCIENCE AND MANUFACTURING, vol. 66, 2014, pages 155 - 162, XP055786257 *
TONG Y G, BAI S X, ZHANG H, YE Y C: "Effect of C/C preform density on microstructure and mechanical properties of C/C-SiC composites prepared by alloyed reactive melt infiltration", MATERIALS SCIENCE AND TECHNOLOGY, vol. 28, no. 12, 2012, pages 1505 - 1512, XP055786252 *

Similar Documents

Publication Publication Date Title
US5990025A (en) Ceramic matrix composite and method of manufacturing the same
JP4106086B2 (en) Ceramic matrix fiber composite material
JPH05105521A (en) Carbon-fiber reinforced silicon nitride-based nano-composite material and its production
JP6658897B2 (en) Ceramic based composite material and method for producing the same
Zou et al. In-situ ZrB2-hBN ceramics with high strength and low elasticity
JP4517334B2 (en) Composite material and manufacturing method thereof
US11987533B2 (en) Ceramic matrix composite component and method of producing the same
RU2621241C1 (en) Nanostructured composite material based on boron carbide and the method of its obtaining
WO2018047419A1 (en) Method for producing ceramic base composite material
US8906288B2 (en) Process for producing SiC fiber-bonded ceramics
Frage et al. The effect of Fe addition on the densification of B 4 C powder by spark plasma sintering
JPH1059780A (en) Ceramic-base fiber composite material and its production
WO2021014693A1 (en) Ceramic matrix composite material
JP7173372B2 (en) Ceramic matrix composite material and its manufacturing method
JPH09268065A (en) Continuous filament composite ceramics and their production
Waku et al. Future trends and recent developments of fabrication technology for advanced metal matrix composites
JP4612608B2 (en) Method for producing silicon / silicon carbide composite material
KR101659188B1 (en) Fabricating method for nitride reinforced metal matrix composite materials by spontaneous substitution reaction and composite materials fabricated by the method
JP2881189B2 (en) Method for producing silicon nitride-silicon carbide composite ceramics
JPH09268079A (en) Ceramic-based fiber composite material and its production
JP3756583B2 (en) Ceramic-based fiber composite material and manufacturing method thereof
JPH09268080A (en) Production of composite ceramic of filament
JP2007055897A (en) Silicon/silicon carbide composite material
Xu et al. Pressureless sintering of SiC-coated carbon nanofiber/SiC composites and their properties
JP2001278668A (en) Method for manufacturing ceramic composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20844157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20844157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP