WO2021014567A1 - Mirror surface shape measurement device, mirror surface shape measurement method, and reflection mirror system - Google Patents

Mirror surface shape measurement device, mirror surface shape measurement method, and reflection mirror system Download PDF

Info

Publication number
WO2021014567A1
WO2021014567A1 PCT/JP2019/028842 JP2019028842W WO2021014567A1 WO 2021014567 A1 WO2021014567 A1 WO 2021014567A1 JP 2019028842 W JP2019028842 W JP 2019028842W WO 2021014567 A1 WO2021014567 A1 WO 2021014567A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
split
microlenses
mirrors
light
Prior art date
Application number
PCT/JP2019/028842
Other languages
French (fr)
Japanese (ja)
Inventor
佳史 三輪
貴雄 遠藤
彰裕 藤江
俊行 安藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/028842 priority Critical patent/WO2021014567A1/en
Priority to JP2021534456A priority patent/JP6980160B2/en
Publication of WO2021014567A1 publication Critical patent/WO2021014567A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a mirror surface shape measuring device for calculating a step between a plurality of split mirrors, a mirror surface shape measuring method, and a reflector system.
  • Non-Patent Document 1 a reflector in which a plurality of split mirrors are combined.
  • a reflector in which a plurality of split mirrors are combined may have a step between the plurality of split mirrors.
  • two grism arrays that disperse the light reflected by the reflector are used, and the relative piston, which is a step between a plurality of split mirrors of the reflector, is used as an interference fringe.
  • the method of measurement is disclosed.
  • the two grism arrays are dispersion elements having different diffraction directions.
  • the drive mechanism rotates the filter wheel and uses the grism array for the spectroscopy of the light reflected by the reflector among the two grism arrays. I am trying to switch.
  • Non-Patent Document 1 In order to measure the step between the plurality of split mirrors of the reflector by the method disclosed in Non-Patent Document 1, it is necessary to provide a drive mechanism for rotating the filter wheel. Since the drive mechanism is not maintenance-free, regular maintenance is required. However, when the reflector is used in outer space, it is difficult to easily maintain the drive mechanism. Therefore, when measuring the step between a plurality of split mirrors of a reflector used in outer space by the method disclosed in Non-Patent Document 1, there is a risk of failure of the drive mechanism. There was a problem.
  • the present invention has been made to solve the above-mentioned problems, and it is possible to calculate the step between a plurality of split mirrors possessed by the test mirror without using a drive mechanism that requires maintenance. It is an object of the present invention to obtain a mirror surface shape measuring device, a mirror surface shape measuring method, and a reflector system that can be used.
  • the mirror surface shape measuring device has a microlens array having a plurality of microlenses for condensing light reflected by a test mirror in which a plurality of dividing mirrors are combined, and a plurality of microlenses for condensing the light.
  • the plurality of wavelength components contained in the light the longer the wavelength component is, the larger the diffraction is performed, and each of the diffracted wavelength components is imaged as a spot image.
  • the imaging element that captures each of the imaged spot images and the plurality of spot images imaged by the imaging element, the light is reflected by each of the two dividing mirrors that are adjacent to each other in the plurality of dividing mirrors. It is provided with a step calculation unit for calculating a step between two dividing mirrors based on a spot image corresponding to the light.
  • FIG. 5 is a hardware configuration diagram of a computer when the data processing unit 20 is realized by software, firmware, or the like. It is a flowchart which shows the processing procedure of the data processing unit 20. It is explanatory drawing which shows the image of light 3 by a microlens array 11 and the arrangement of a plurality of microlenses 11a which a microlens array 11 has.
  • FIG. 6A is an explanatory view showing a spot image 60 in which the light 3 focused by the microlens 11an is diffracted by the Fresnel zone plate 13 and then imaged on the image pickup element 17 by the lens 14, FIG. 6B.
  • the explanatory view showing the spot image 70 imaged on the image pickup element 17 by the lens 14 after the light 3 focused by the microlenses 11a- (1) (2) and the like is diffracted by the Frenel zone plate 13. is there.
  • It is a block diagram which shows the reflector system including the mirror surface shape measuring apparatus 2 which concerns on Embodiment 2.
  • FIG. 1 is a configuration diagram showing a reflector system including the mirror surface shape measuring device 2 according to the first embodiment.
  • the test mirror 1 is, for example, a reflector used in outer space.
  • the test mirror 1 is not limited to the reflector used in outer space, and may be a reflector used on the earth.
  • the test mirror 1 is a combination of a plurality of split mirrors 1-1 to 1-6.
  • Each of the split mirrors 1-1 to 1-6 is a partial mirror that constitutes a part of the test mirror 1.
  • the test mirror 1 includes six split mirrors 1-1 to 1-6, but it is sufficient if two or more split mirrors are provided, and five or less split mirrors are used. It may be provided with a mirror or seven or more split mirrors.
  • the mirror surface shape measuring device 2 is a device that calculates a step or the like between a plurality of split mirrors 1-1 to 1-6 possessed by the test mirror 1. If the step between the plurality of split mirrors 1-1 to 1-6 is calculated by the mirror surface shape measuring device 2, the control unit (not shown) can remove the step, for example, the split mirror 1-1. It is possible to correct the positions of ⁇ 1-6.
  • the light 3 is light that is incident on the test mirror 1 from the outside of the mirror surface shape measuring device 2 shown in FIG. 1 and is reflected by the test mirror 1.
  • the microlens array 11, the Fresnel zone plate 13, the lens 14, and the image sensor 17 are optical systems to be tested in the mirror surface shape measuring device 2.
  • Each of the test mirror 1, the microlens array 11, the Frenel zone plate 13, the lens 14, and the image pickup element 17 is in a direction parallel to the x-axis in a Cartesian coordinate system in three-dimensional space (hereinafter referred to as "x-direction"). And the plane including the direction parallel to the y-axis (hereinafter referred to as "y-direction") (hereinafter referred to as "xy-plane"). Further, each of the test mirror 1, the microlens array 11, the Fresnel zone plate 13, the lens 14, and the image sensor 17 are arranged in a direction parallel to the z-axis (hereinafter, referred to as "z-direction").
  • an optical system may be installed between the mirror 1 to be inspected and the mirror surface shape measuring device 2. Further, inside the mirror surface shape measuring device 2, the optical system may be installed closer to the mirror 1 to be examined than the microlens array 11.
  • the microlens array 11 is arranged on the pupil surface of the optical system to be examined, and has a plurality of microlenses 11a for condensing the light 3 reflected by the mirror 1 to be examined.
  • the microlens 11a is an optical element that collects the light 3 reflected by the test mirror 1, and the plurality of microlenses 11a are arranged at equal intervals.
  • the microlens array 11 has 23 microlenses 11a.
  • the microlens array 11 is adjacent to each other in the microlens 11a that collects the light 3 reflected by the split mirrors 1-1 to 1-6 and the split mirrors 1-1 to 1-6.
  • the number of microlenses 11a included in the microlens array 11 is not limited to the 23 microlenses 11a.
  • the image change optical system 12 includes a Fresnel zone plate 13 and a lens 14.
  • the image transfer optical system 12 diffracts the longer wavelength component of the plurality of wavelength components contained in the light 3 condensed by the plurality of microlenses 11a, and diffracts each wavelength component.
  • An image is formed on the image pickup element 17 as a spot image.
  • the Frenel zone plate 13 is an optical element having chromatic aberration, and among a plurality of wavelength components contained in the light 3 focused by the plurality of microlenses 11a, the longer the wavelength component, the larger the diffraction.
  • the wavelength component 15 is one of a plurality of wavelength components contained in the light 3 focused by the plurality of microlenses 11a, and is a component having a longer wavelength than the short wavelength component 16.
  • the wavelength component 16 is one of a plurality of wavelength components contained in the light 3 focused by the plurality of microlenses 11a, and is a component having a shorter wavelength than the short wavelength component 15.
  • two wavelength components 15 and 16 are shown as examples of a plurality of wavelength components contained in the light 3 focused by the plurality of microlenses 11a, respectively. However, this is only an example, and there may be three or more wavelength components contained in the light 3 condensed by the plurality of microlenses 11a.
  • the lens 14 causes the image pickup device 17 to image each of the plurality of wavelength components diffracted by the Fresnel zone plate 13 as a spot image.
  • the image sensor 17 captures each spot image formed by the lens 14 of the image transfer optical system 12.
  • the image sensor 17 outputs spot data to the data extraction unit 21 of the data processing unit 20, which will be described later, as data indicating the imaging results of each spot image.
  • the data processing unit 20 includes a data extraction unit 21, a split mirror wave surface calculation unit 22, a step calculation unit 23, and a mirror wave surface calculation unit 24 to be inspected.
  • FIG. 2 is a hardware configuration diagram showing the hardware of the data processing unit 20.
  • the data extraction unit 21 is realized by, for example, the data extraction circuit 31 shown in FIG.
  • Spot data indicating the imaging result (hereinafter, referred to as “spot data in the split mirror DD n ”) is output to the split mirror wave surface calculation unit 22.
  • spot data DD 1 in the split mirror shows the imaging result of the spot image corresponding to the light 3 reflected by the split mirror 1-1
  • the spot data DD 2 in the split mirror is reflected by the split mirror 1-2.
  • the imaging result of the spot image corresponding to the light 3 is shown.
  • the spot data DD 6 in the split mirror shows the imaging result of the spot image corresponding to the light 3 reflected by the split mirror 1-6.
  • the data extraction unit 21 corresponds to the light 3 reflected by each of the two dividing mirrors adjacent to each other in the dividing mirrors 1-1 to 1-6 among the spot data output from the image sensor 17.
  • Spot data (hereinafter, referred to as “boundary spot data BD n ”) indicating the imaging result of the spot image to be imaged is output to the step calculation unit 23.
  • the dividing mirror 1-1 and the dividing mirror 1-2 are adjacent to each other, and the dividing mirror 1-2 and the dividing mirror 1-3 are adjacent to each other. Further, the dividing mirrors 1-3 and the dividing mirrors 1-4 are adjacent to each other, and the dividing mirrors 1-4 and the dividing mirrors 1-5 are adjacent to each other.
  • the dividing mirror 1-5 and the dividing mirror 1-6 are adjacent to each other, and the dividing mirror 1-6 and the dividing mirror 1-1 are adjacent to each other.
  • the boundary spot data BD 1 shows the imaging result of the spot image corresponding to the light 3 reflected by the dividing mirror 1-1 and the dividing mirror 1-2
  • the boundary spot data BD 2 is the dividing mirror 1-.
  • the imaging result of the spot image corresponding to the light 3 reflected by each of 2 and the split mirror 1-3 is shown.
  • the boundary spot data BD 6 shows the imaging result of the spot image corresponding to the light 3 reflected by each of the split mirror 1-6 and the split mirror 1-1.
  • coordinate information indicating at which coordinate of the image sensor 17 the spot image corresponding to the light 3 reflected by the split mirror 1-n is formed is stored. ing. Further, in the internal memory of the data extraction unit 21, a spot image corresponding to the light 3 reflected by each of the two dividing mirrors adjacent to each other is imaged at the coordinates of the image sensor 17. The indicated coordinate information is stored. The data extraction unit 21 identifies each of the spot data DD n in the split mirror and the boundary spot data BD n included in the spot data output from the image sensor 17 based on the coordinate information stored in the internal memory. To do.
  • the divided mirror wave surface calculation unit 22 is realized by, for example, the divided mirror wave surface calculation circuit 32 shown in FIG.
  • the split mirror wave surface calculation unit 22 uses the split mirror based on the spot image corresponding to the light 3 reflected by each of the split mirrors 1-1 to 1-6 among the plurality of spot images captured by the image sensor 17. Calculate each wave surface of 1-1 to 1-6. That is, the split mirror wave surface calculation unit 22 calculates the wave plane of the split mirror 1-n based on the imaging result of the spot image indicated by the spot data DD n in the split mirror output from the data extraction unit 21.
  • the step calculation unit 23 is realized by, for example, the step calculation circuit 33 shown in FIG.
  • the step calculation unit 23 is the light 3 reflected by each of the two split mirrors adjacent to each other in the split mirrors 1-1 to 1-6 among the plurality of spot images captured by the image pickup element 17.
  • the step between the two split mirrors is calculated based on the spot image corresponding to. That is, the step calculation unit 23 calculates the step between the two split mirrors based on the imaging result of the spot image indicated by the boundary spot data BD n output from the data extraction unit 21.
  • the test mirror wave surface calculation unit 24 is realized by, for example, the test mirror wave surface calculation circuit 34 shown in FIG.
  • the wave surface calculation unit 24 of the test mirror 1 is based on the step calculated by the step calculation unit 23 and the wave surfaces of the split mirrors 1-1 to 1-6 calculated by the split mirror wave surface calculation unit 22. Is calculated.
  • each of the data extraction unit 21, the split mirror wave surface calculation unit 22, the step calculation unit 23, and the test mirror wave surface calculation unit 24, which are the components of the data processing unit 20, is dedicated hardware as shown in FIG. It is supposed to be realized by ware. That is, it is assumed that the data processing unit 20 is realized by the data extraction circuit 31, the split mirror wave surface calculation circuit 32, the step calculation circuit 33, and the mirror wave surface calculation circuit 34 to be inspected.
  • each of the data extraction circuit 31, the divided mirror wave surface calculation circuit 32, the step calculation circuit 33, and the test mirror wave surface calculation circuit 34 is, for example, a single circuit, a composite circuit, a programmed processor, or a parallel programmed processor. , ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the components of the data processing unit 20 are not limited to those realized by dedicated hardware, and even if the data processing unit 20 is realized by software, firmware, or a combination of software and firmware. Good.
  • the software or firmware is stored as a program in the memory of the computer.
  • a computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). To do.
  • FIG. 3 is a hardware configuration diagram of a computer when the data processing unit 20 is realized by software, firmware, or the like.
  • a program for causing a computer to execute the processing procedures of the data extraction unit 21, the split mirror wave surface calculation unit 22, the step calculation unit 23, and the mirror wave surface calculation unit 24. Is stored in the memory 41.
  • the processor 42 of the computer executes the program stored in the memory 41.
  • FIG. 2 shows an example in which each of the components of the data processing unit 20 is realized by dedicated hardware
  • FIG. 3 shows an example in which the data processing unit 20 is realized by software, firmware, or the like. ..
  • FIG. 4 is a flowchart showing a processing procedure of the data processing unit 20.
  • the light 3 reflected by the test mirror 1 is incident on the microlens array 11.
  • the plurality of microlenses 11a included in the microlens array 11 collect the light 3 reflected by the test mirror 1 on the Fresnel zone plate 13 of the translocation optical system 12.
  • the position where the light 3 is focused by the microlens 11a changes depending on the local inclination of the reflection point of the light 3 in the test mirror 1.
  • FIG. 5 is an explanatory diagram showing an image of light 3 by the microlens array 11 and an arrangement of a plurality of microlenses 11a included in the microlens array 11.
  • the image 51-1 is an image of the light 3 reflected by the split mirror 1-1
  • the image 51-2 is an image of the light 3 reflected by the split mirror 1-2
  • the image 51-3 is an image of the light 3 reflected by the split mirror 1-2. It is an image of light 3 reflected by the split mirror 1-3.
  • Image 51-4 is an image of light 3 reflected by the split mirror 1-4
  • image 51-5 is an image of light 3 reflected by the split mirror 1-5
  • image 51-6 is an image of light 3 reflected by the split mirror 1-5. It is an image of light 3 reflected by 6.
  • the microlens 11a-1 is a microlens 11a that collects the light 3 reflected by the split mirror 1-1 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-2 is a microlens 11a that collects the light 3 reflected by the split mirror 1-2 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-3 is a microlens 11a that collects the light 3 reflected by the split mirror 1-3 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-4 is a microlens 11a that collects the light 3 reflected by the split mirrors 1-4 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-5 is a microlens 11a that collects the light 3 reflected by the split mirror 1-5 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-6 is a microlens 11a that collects the light 3 reflected by the split mirror 1-6 among the plurality of microlenses 11a included in the microlens array 11.
  • FIG. 5 eight microlenses 11a-1, microlenses 11a-2, microlenses 11a-3, microlenses 11a-4, microlenses 11a-5, and microlenses 11a-6 are arranged.
  • An example is shown. However, this is only an example, and for example, 7 may be arranged or 9 may be arranged.
  • FIG. 5 shows an example in which each of the microlenses 11a-1 to 11a-6 is arranged so as to be in contact with the adjacent microlens. However, each of the microlenses 11a-1 to 11a-6 may be arranged at equal intervals, and may be arranged at regular intervals with the adjacent microlenses. In FIG. 1, a plurality of microlenses 11a are arranged at regular intervals from adjacent microlenses.
  • the microlenses 11a- (1) and (2) collect the light 3 reflected by the split mirror 1-1 and the split mirror 1-2 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (2) (3) collect the light 3 reflected by each of the split mirrors 1-2 and the split mirrors 1-3 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (3) (4) collect the light 3 reflected by the dividing mirrors 1-3 and the dividing mirrors 1-4 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (4) (5) collect the light 3 reflected by the split mirrors 1-4 and the split mirrors 1-5 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (5) (6) collect the light 3 reflected by the split mirrors 1-5 and the split mirrors 1-6 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • An example is shown in which three 11a- (5) (6) and three microlenses 11a- (6) (1) are arranged. However, this is only an example, and for example, two may be arranged, or four or more may be arranged. Further, FIG. 5 shows an example in which each of the microlenses 11a- (1) (2) to 11a- (6) (1) is arranged so as to be in contact with the adjacent microlens. However, each of the microlenses 11a- (1) (2) to 11a- (6) (1) need only be arranged at equal intervals, and is arranged at regular intervals with the adjacent microlenses. There may be.
  • the Fresnel zone plate 13 diffracts more wavelength components having a longer wavelength among the plurality of wavelength components contained in the light 3 focused by the plurality of microlenses 11a. For example, as shown in FIG. 1, the Fresnel zone plate 13 diffracts the wavelength component 15 having a wavelength longer than that of the short wavelength component 16 more than the short wavelength component 16.
  • the lens 14 causes the image pickup device 17 to image each of the plurality of wavelength components diffracted by the Fresnel zone plate 13 as a spot image.
  • the lens 14 causes the image sensor 17 to image each of the wavelength component 15 and the wavelength component 16 as spot images.
  • FIG. 6 is an explanatory diagram showing a spot image formed on the image sensor 17 by the image transfer optical system 12.
  • FIG. 6A shows a spot image 60 in which the light 3 focused by the microlens 11an is diffracted by the Fresnel zone plate 13 and then imaged on the image sensor 17 by the lens 14.
  • FIG. 6B shows a spot image 70 formed on the image sensor 17 by the lens 14 after the light 3 focused by the microlenses 11a- (1) and (2) is diffracted by the Fresnel zone plate 13. ing.
  • the spot image 60 contains a plurality of wavelength components.
  • a short wavelength component 61, an intermediate wavelength component 62, and a long wavelength component 63 are shown as some wavelength components included in the spot image 60. Since the short wavelength component 61, the intermediate wavelength component 62, and the long wavelength component 63 are components having different wavelengths from each other, the magnitude of diffraction by the Fresnel zone plate 13 is different from each other. Therefore, the shape of the spot image 60 becomes an elliptical shape extending in the radial direction.
  • the radial direction is the direction from the center of the test mirror 1 toward the outer circumference.
  • the spot image 70 contains a plurality of wavelength components.
  • a short wavelength component 71, an intermediate wavelength component 72, and a long wavelength component 73 are shown as some wavelength components included in the spot image 70. Since the short wavelength component 71, the intermediate wavelength component 72, and the long wavelength component 73 have different wavelengths from each other, the magnitude of diffraction by the Fresnel zone plate 13 is different from each other. Therefore, the shape of the spot image 70 becomes an elliptical shape extending in the radial direction. Further, since the spot image 70 is a spot image corresponding to the light 3 reflected by each of the two dividing mirrors adjacent to each other, there are two spot images 70 in the angular direction (see FIG. 5). Bright lines (1), (2), and (3) of light 3 reflected on each of the split mirrors are generated.
  • the relative piston at the intermediate wavelength component 72 is an integral multiple of the wavelength (hereinafter referred to as N times), and the relative piston at the short wavelength component 71 is larger than the N times the wavelength.
  • the shape is somewhat longer, with the relative piston at the long wavelength component 73 being somewhat shorter than N times the wavelength.
  • the bright line (1) of the spot image 70 crosses the center of the intermediate wavelength component 72 because the light 3 reflected by each of the two dividing mirrors adjacent to each other has the same phase in the intermediate wavelength component 72.
  • the bright line (1) crosses to the right of the center of the short wavelength component 71 because the light 3 reflected by each of the two adjacent split mirrors is slightly out of phase with the short wavelength component 71. ..
  • the phase of the light 3 reflected by each of the two dividing mirrors adjacent to each other is shifted by a code opposite to that of the short wavelength component 71, so that the bright line (1) is the long wavelength component.
  • Cross to the left of the center of 73 Since the phase of the light 3 is aligned at the center of the wavelength component where the relative piston is N-1 times the wavelength or N + 1 times the wavelength, the two are deviated from the bright line (1) in the radial direction.
  • Bright lines (2) and (3) occur.
  • the relative phase which is the phase difference of the light 3 reflected by each of the two split mirrors, is different for all the wavelength components included in the spot image 70, and the position of the bright line changes continuously.
  • an interference fringe 74 having an inclination according to a step between the two split mirrors appears.
  • the image sensor 17 captures each spot image formed by the lens 14 of the image transfer optical system 12.
  • the image sensor 17 images, for example, the spot image 60 and the spot image 70, respectively.
  • the image sensor 17 outputs spot data to the data extraction unit 21 of the data processing unit 20 as data indicating the imaging results of each spot image.
  • the data extraction unit 21 identifies the spot data DD n in the split mirror included in the spot data output from the image sensor 17 based on the coordinate information stored in the internal memory, and spots in the split mirror.
  • the data DD n is output to the split mirror wave surface calculation unit 22 (step ST1 in FIG. 4).
  • the data extraction unit 21 specifies, for example, the boundary spot data BD n included in the spot data output from the image sensor 17 based on the coordinate information stored in the internal memory, and the boundary spot data BD n is output to the step calculation unit 23 (step ST2 in FIG. 4).
  • the split mirror wave plane calculation unit 22 receives the spot data DD n in the split mirror from the data extraction unit 21, the wave plane of the split mirror 1-n is based on the imaging result of the spot image 60 indicated by the spot data DD n in the split mirror. Is calculated (step ST3 in FIG. 4).
  • the wave surface calculation process of the split mirror 1-n by the split mirror wave surface calculation unit 22 will be specifically described.
  • the lateral magnification of the divided mirror 1-n to the microlens array 11 is 1 ⁇ M
  • 2 ⁇ M is the transverse magnification of the Fresnel zone plate 13 and the lens 14
  • the focal length of the microlens array 11 is assumed to be f.
  • Splitting mirror wavefront calculation unit 22 as shown in the following equation (1), the product of each of the illuminance L k in a plurality of pixels g k, and x-coordinate x k in which a plurality of pixels g k are present Calculate the total Lx.
  • the split mirror wave plane calculation unit 22 divides the total sum Lx of the products by the sum of the illuminance L k of the plurality of pixels g k , thereby dividing the center of gravity of the spot image 60 in the x direction. Calculate C x .
  • the split mirror wave surface calculation unit 22 acquires the y coordinate y k in which a plurality of pixels g k exist from the imaging result of the spot image 60 indicated by the spot data DD n in the split mirror.
  • Splitting mirror wavefront calculation unit 22 as shown in the following equation (3), the product of each of the illuminance L k in a plurality of pixels g k, and y-coordinate y k to a plurality of pixels g k are present Calculate the total Ly.
  • the split mirror wave surface calculation unit 22 divides the total product Ly by the total sum of the illuminance L k of the plurality of pixels g k , thereby dividing the center of gravity of the spot image 60 in the y direction. to calculate the C y.
  • the split mirror wave surface calculation unit 22 determines the position of the reference spot image (x 0 , y 0 ) and the position of the center of gravity of the spot image 60 (C x , C). From y ) and the eccentricity of the spot image 60 (2 ⁇ x fM 2 / M 1 , 2 ⁇ y fM 2 / M 1 ), the local inclination ( ⁇ x , ⁇ y ) of the split mirror 1-n is determined. calculate.
  • the local inclination ( ⁇ x , ⁇ y ) of the dividing mirror 1-n is the inclination of the reflection point of the light 3 in the dividing mirror 1-n.
  • the position (x 0 , y 0 ) of the reference spot image is an existing value and is stored in, for example, the internal memory of the split mirror wave surface calculation unit 22. Further, the lateral magnification M 1 ⁇ a lateral magnification M 2 times, and each of the focal length f, is already values, for example, are stored in the internal memory of the divided mirror wavefront calculator 22.
  • the wave surface Z 1-n of the split mirror 1-n which is the shape of the curved surface indicated by W (x j , y j ). Since the process itself of estimating the wave surface Z 1-n of the split mirror 1-n from the 2 ⁇ J relational expressions is a known technique, detailed description thereof will be omitted.
  • the mirror surface shape and the wave surface shape are different by twice because of the folding back due to reflection. The fact that the local inclination of the wave surface can be calculated by the equations (5), (6), and (7) is not limited to the case where the test mirror 1 turns the light ray in the incident direction.
  • ( ⁇ x , ⁇ y ) coincides with the local inclination of the test mirror 1 when the test mirror 1 turns back the light beam in the incident direction, and the test mirror 1 emits the light ray in the incident direction. If it does not fold, it is necessary to multiply the local slope of the wave surface by the coefficient according to the fold angle and convert it.
  • the step calculation unit 23 When the step calculation unit 23 receives the boundary spot data BD n from the data extraction unit 21, the step calculation unit 23 calculates the step gap between the two dividing mirrors based on the imaging result of the spot image 70 indicated by the boundary spot data BD n (). Step ST4 in FIG. 4).
  • the step Gap calculation process by the step calculation unit 23 will be specifically described.
  • the step calculation unit 23 calculates the inclination of the interference fringes 74 from the imaging result of the spot image 70 indicated by the boundary spot data BD n . That is, the step calculation unit 23 uses the imaging result of the spot image 70 as the image I (x, y), performs spatial Fourier transform on the image I (x, y), and obtains the Fourier transform result F ( ⁇ x, ⁇ y). The step calculation unit 23 converts the Fourier transform result F ( ⁇ x, ⁇ y) into polar coordinates to obtain the polar coordinate transformation result G (r', ⁇ ') as shown in the following equation (8).
  • exp ( ⁇ ⁇ ′ r) is an envelope component of G (r ′, ⁇ ′) that decreases exponentially as r ′ increases.
  • ⁇ ⁇ ' is an exponential decrease coefficient, and the smaller the exponential decrease coefficient ⁇ ⁇ ' , the slower the decrease rate of the envelope.
  • the exponential reduction coefficients ⁇ ⁇ 'and ⁇ ' are dependent on each other.
  • g (r', ⁇ ') is, for example, a vibration component represented by cos (r').
  • the step calculation unit 23 changes the ⁇ 'of the polar coordinate conversion result G (r', ⁇ '), compares the exponential decrease coefficient ⁇ ⁇ 'corresponding to each ⁇ ' , and has the smallest exponential decrease coefficient ⁇ ⁇ . ' Identify.
  • the step calculation unit 23 calculates the step Gap between the two split mirrors from the inclination direction ⁇ '.
  • the formula for calculating the steps Gap 1 and 2 between the split mirror 1-1 and the split mirror 1-2 is expressed as the following formula (9).
  • D 1 and 2 are the aperture diameters of the microlenses 11a- (1) and (2)
  • r 1 and 2 are the distances from the center of the pupil to the microlenses 11a- (1) and (2)
  • f 1 and 2 are the micro lenses. This is the focal length of the lenses 11a- (1) and (2).
  • Test mirror wavefront calculation unit 24 step Gap, 1, 2 calculated by the step calculation unit 23, Gap 2,3, Gap 3,4, Gap 4,5, Gap 5,6, and Gap, 6,1, divided Wave surfaces of the split mirrors 1-1 to 1-6 calculated by the mirror wave surface calculation unit 22 Z 1-1, Z 1-2, Z 1-3, Z 1-4, Z 1-5, Z 1-6 From, the wave surface of the test mirror 1 is calculated (step ST5 in FIG. 4).
  • the wave surface calculation process of the test mirror 1 by the test mirror wave surface calculation unit 24 will be specifically described.
  • test mirror wave surface calculation unit 24 sets the equation shown in the following equation (10).
  • p 1 , p 2 , p 3 , p 4 , p 5 , and p 6 are unknown parameters.
  • Gap 1 and 2 are steps between the dividing mirror 1-1 and the dividing mirror 1-2, and Gap 2 and 3 are steps between the dividing mirror 1-2 and the dividing mirror 1-3, Gap 3 , 4 Is a step between the split mirrors 1-3 and the split mirrors 1-4.
  • Gap 4 , 5 is the step between the dividing mirror 1-4 and the dividing mirror 1-5
  • Gap 5 , 6 is the step between the dividing mirror 1-5 and the dividing mirror 1-6
  • Gap 6 , 1 Is a step between the split mirror 1-6 and the split mirror 1-1.
  • the mirror wave surface calculation unit 24 estimates unknown parameters p 1 , p 2 , p 3 , p 4 , p 5 , p 6 in the equation shown in equation (10) by, for example, the least squares method. Since the estimation process itself of the unknown parameters p 1 , p 2 , p 3 , p 4 , p 5 , and p 6 is a known technique, detailed description thereof will be omitted.
  • the wave surface calculation unit 24 to be inspected corrects the wave surfaces Z 1-1 to Z 1-6 of the split mirrors 1-1 to 1-6 as in the following equation (11), and the corrected wave surface Z 1- the 1 ' ⁇ Z 1-6', the wavefront of the mirror 1.
  • the microlens array 11 has a plurality of microlenses 11a for condensing the light 3 reflected by the test mirror 1 in which a plurality of split mirrors 1-1 to 1-6 are combined.
  • the longer the wavelength component the larger the diffraction, and each diffracted wavelength component is imaged as a spot image.
  • the step calculation unit 23 that calculates the step between the two dividing mirrors based on the spot image corresponding to the light reflected by each of the two dividing mirrors adjacent to each other.
  • the mirror surface shape measuring device 2 was configured to be provided. Therefore, the mirror surface shape measuring device 2 can calculate the step between the plurality of split mirrors 1-1 to 1-6 possessed by the test mirror 1 without using a drive mechanism that requires maintenance. ..
  • Embodiment 2 a mirror surface shape measuring device including the first cylindrical lens array 81 and the second cylindrical lens array 82 will be described.
  • FIG. 7 is a configuration diagram showing a reflector system including the mirror surface shape measuring device 2 according to the second embodiment.
  • the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
  • the test mirror 1 is a two-wheeled band mirror.
  • the test mirror 1 is a combination of a plurality of split mirrors 1-1 to 1-6, 1-11 to 1-22. Each of the split mirrors 1-1 to 1-6 and 1-11 to 1-22 is a partial mirror that constitutes a part of the test mirror 1.
  • the first cylindrical relay lens array 81 is arranged between the test mirror 1 and the second cylindrical relay lens array 82, and is arranged parallel to the xy plane.
  • the first cylindrical relay lens array 81 includes a plurality of cylindrical lenses 81a on the surface on the side of the test mirror 1, and a plurality of cylindrical lenses 81b on the surface on the side of the second cylindrical relay lens array 82.
  • Each of the plurality of cylindrical lenses 81a and the plurality of cylindrical lenses 81b are arranged in the x direction.
  • the plurality of cylindrical lenses 81a are paired with any one of the plurality of cylindrical lenses 81b.
  • the pair of the cylindrical lens 81a and the cylindrical lens 81b are arranged so that the focused lines coincide with each other.
  • the image of the light 3 reflected by any of the dividing mirrors 1-1 to 1-6 and 1-11 to 1-22 is parallel to the y-axis.
  • Axis is inverted as a symmetric axis.
  • the second cylindrical relay lens array 82 is arranged between the first cylindrical relay lens array 81 and the microlens array 11, and is arranged parallel to the xy plane.
  • the second cylindrical lens array 82 includes a plurality of cylindrical lenses 82a on the surface of the first cylindrical relay lens array 81, and a plurality of cylindrical lenses 82b on the surface of the microlens array 11 side.
  • the plurality of cylindrical lenses 82a are paired with any one of the plurality of cylindrical lenses 82b.
  • the pair of the cylindrical lens 82a and the cylindrical lens 82b are arranged so that the focused lines coincide with each other.
  • the pair of the cylindrical lens 82a and the cylindrical lens 82b inverts the image of the light 3 emitted from the cylindrical relay lens 81.
  • the pitch of the plurality of cylindrical lenses 82a is the same as the pitch of the plurality of cylindrical lenses 81a. However, the same pitch is not limited to exactly the same pitch, and the pitch may be different within a range where there is no practical problem.
  • the arrangement direction of the plurality of cylindrical lenses 82a is different from the arrangement direction of the plurality of cylindrical lenses 81a. In the mirror surface shape measuring device 2 shown in FIG. 7, the arrangement direction of the plurality of cylindrical lenses 82a is a direction inclined by 60 degrees from the x direction. However, this is only an example, and the arrangement direction of the plurality of cylindrical lenses 82a may be, for example, a direction inclined by 40 degrees from the x direction or a direction inclined by 50 degrees.
  • the first cylindrical relay lens array 81 includes a plurality of cylindrical lenses 81a on the surface on the test mirror 1 side, and the surface on the second cylindrical relay lens array 82 side. Is equipped with a plurality of cylindrical lenses 81b. However, this is only an example, and the first cylindrical relay lens is arranged by arranging the cylindrical lens array provided with the plurality of cylindrical lenses 81a and the cylindrical lens array provided with the plurality of cylindrical lenses 81b so as to face each other.
  • the array 81 may be configured. Further, in the mirror surface shape measuring device 2 shown in FIG.
  • the second cylindrical relay lens array 82 includes a plurality of cylindrical lenses 82a on the surface on the side of the first cylindrical relay lens array 81, and the surface on the microlens array 11 side. Is equipped with a plurality of cylindrical lenses 82b. However, this is only an example, and the second cylindrical relay lens is provided by arranging the cylindrical lens array provided with the plurality of cylindrical lenses 82a and the cylindrical lens array provided with the plurality of cylindrical lenses 82b so as to face each other.
  • the array 82 may be configured.
  • FIG. 8 is an explanatory diagram showing an image of light 3 by the microlens array 11 and an arrangement of a plurality of microlenses 11a included in the microlens array 11.
  • Image 51-11 is an image of light 3 reflected by the split mirror 1-11
  • image 51-12 is an image of light 3 reflected by the split mirror 1-12
  • image 51-13 is an image of light 3 reflected by the split mirror 1-12. It is an image of light 3 reflected by 13.
  • Image 51-14 is an image of light 3 reflected by the split mirror 1-14
  • image 51-15 is an image of light 3 reflected by the split mirror 1-15
  • image 51-16 is an image of light 3 reflected by the split mirror 1-15. It is an image of light 3 reflected by 16.
  • Image 51-17 is an image of light 3 reflected by the split mirror 1-17
  • image 51-18 is an image of light 3 reflected by the split mirror 1-18
  • image 51-19 is an image of light 3 reflected by the split mirror 1-18. It is an image of light 3 reflected by 19.
  • Image 51-20 is an image of light 3 reflected by the split mirror 1-20
  • image 51-21 is an image of light 3 reflected by the split mirror 1-21
  • image 51-22 is an image of light 3 reflected by the split mirror 1-21. It is an image of light 3 reflected by 22.
  • the microlens 11a-11 is a microlens 11a that collects the light 3 reflected by the split mirror 1-11 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-12 is a microlens 11a that collects the light 3 reflected by the split mirror 1-12 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-13 is a microlens 11a that collects the light 3 reflected by the split mirror 1-13 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-14 is a microlens 11a that collects the light 3 reflected by the split mirror 1-14 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-15 is a microlens 11a that collects the light 3 reflected by the split mirror 1-15 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-16 is a microlens 11a that collects the light 3 reflected by the split mirror 1-16 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-17 is a microlens 11a that collects the light 3 reflected by the split mirror 1-17 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-18 is a microlens 11a that collects the light 3 reflected by the split mirror 1-18 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-19 is a microlens 11a that collects the light 3 reflected by the split mirror 1-19 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-20 is a microlens 11a that collects the light 3 reflected by the split mirror 1-20 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-21 is a microlens 11a that collects the light 3 reflected by the split mirror 1-21 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlens 11a-22 is a microlens 11a that collects the light 3 reflected by the split mirror 1-22 among the plurality of microlenses 11a included in the microlens array 11.
  • the microlenses 11a- (11) (12) collect the light 3 reflected by each of the split mirrors 1-11 and the split mirrors 1-12 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (12) (13) collect the light 3 reflected by each of the split mirrors 1-12 and the split mirrors 1-13 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (13) (14) collect the light 3 reflected by each of the split mirrors 1-13 and the split mirrors 1-14 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (14) (15) collect the light 3 reflected by each of the split mirrors 1-14 and the split mirrors 1-15 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (15) (16) collect the light 3 reflected by each of the split mirrors 1-15 and the split mirrors 1-16 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (16) (17) collect the light 3 reflected by each of the split mirrors 1-16 and the split mirrors 1-17 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (17) (18) collect the light 3 reflected by each of the split mirrors 1-17 and the split mirrors 1-18 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (18) (19) collect the light 3 reflected by each of the split mirrors 1-18 and the split mirrors 1-19 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (19) (20) collect the light 3 reflected by each of the split mirrors 1-19 and the split mirrors 1-20 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (20) (21) collect the light 3 reflected by each of the split mirror 1-20 and the split mirror 1-21 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (21) (22) collect the light 3 reflected by each of the split mirrors 1-21 and the split mirrors 1-22 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (22) (11) collect the light 3 reflected by each of the split mirrors 1-22 and the split mirrors 1-11 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (1) (11) collect the light 3 reflected by each of the split mirror 1-1 and the split mirror 1-11 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (2) (11) collect the light 3 reflected by each of the split mirrors 1-2 and the split mirrors 1-11 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (2) (12) collect the light 3 reflected by each of the split mirrors 1-2 and the split mirrors 1-12 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (2) (13) collect the light 3 reflected by each of the split mirrors 1-2 and the split mirrors 1-13 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (3) (13) collect the light 3 reflected by the split mirrors 1-3 and the split mirrors 1-13 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (3) (14) collect the light 3 reflected by each of the split mirrors 1-3 and the split mirrors 1-14 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (3) (15) collect the light 3 reflected by each of the split mirrors 1-3 and the split mirrors 1-15 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (4) (15) collect the light 3 reflected by the split mirrors 1-4 and the split mirrors 1-15 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (4) (16) collect the light 3 reflected by the split mirrors 1-4 and the split mirrors 1-16 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (4) (17) collect the light 3 reflected by each of the split mirrors 1-4 and the split mirrors 1-17 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (5) (17) collect the light 3 reflected by each of the split mirrors 1-5 and the split mirrors 1-17 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (5) (18) collect the light 3 reflected by each of the split mirrors 1-5 and the split mirrors 1-18 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (5) (19) collect the light 3 reflected by each of the split mirrors 1-5 and the split mirrors 1-19 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (6) (19) collect the light 3 reflected by each of the split mirrors 1-6 and the split mirrors 1-19 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (6) (20) collect the light 3 reflected by each of the split mirrors 1-6 and the split mirrors 1-20 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (6) (21) collect the light 3 reflected by each of the split mirrors 1-6 and the split mirrors 1-21 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (1) (21) collect the light 3 reflected by each of the split mirror 1-1 and the split mirror 1-21 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • the microlenses 11a- (1) and (22) collect the light 3 reflected by the split mirror 1-1 and the split mirror 1-22 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
  • FIG. 9 shows an image of light 3 by the microlens array 11, an arrangement of a plurality of microlenses 11a included in the microlens array 11, an arrangement of a first cylindrical lens array 81, and a second cylindrical lens array. It is explanatory drawing which shows the arrangement of 82.
  • the plurality of microlenses 11a shown in FIG. 9 are arranged so that the effective diameter of the microlenses 11a with respect to the lens pitch is ⁇ 3 / 2.
  • the arrangement direction of the plurality of cylindrical lenses 81a is the x direction.
  • Each of the cylindrical lenses 81a is arranged in parallel with the plurality of microlenses 11a arranged in a row in the y direction among the plurality of microlenses 11a included in the microlens array 11.
  • the pitch of the plurality of cylindrical lenses 81a is 1 / of the pitch of the plurality of microlenses 11a arranged in a direction inclined by 30 degrees from the x direction among the plurality of microlenses 11a included in the microlens array 11. It is cos (30) times.
  • the arrangement direction of the plurality of cylindrical lenses 82a is a direction inclined by about 60 degrees from the x direction.
  • Each of the cylindrical lenses 82a is arranged in parallel with a plurality of microlenses 21a arranged in a row in a direction inclined by 30 degrees from the x direction among the plurality of microlenses 11a included in the microlens array 11. ing.
  • the pitch of the plurality of cylindrical lenses 82a is 1 / cos (30) times the pitch of the plurality of microlenses 12a arranged in the y direction among the plurality of microlenses 11a included in the microlens array 11. ..
  • the light 3 focused by each of the plurality of microlenses 11a shown in FIG. 9 is light that is not divided by the boundaries of the plurality of cylindrical lenses 81a, and is not divided by the boundaries of the plurality of cylindrical lenses 82a. It is light.
  • the test mirror 1 is a one-wheeled mirror and a plurality of split mirrors 1-1 to 1-6 are combined, a step between the two split mirrors.
  • Bright lines (1) to (3) corresponding to are generated in the angular direction.
  • the transposition optical system 12 has a larger wavelength component among a plurality of wavelength components contained in the light 3 condensed by the plurality of microlenses 11a, respectively. It is diffracted, and each of the diffracted wavelength components is imaged on the image pickup device 17 as a spot image. Therefore, the step calculation unit 23 can calculate the inclination of the interference fringes 74 from the imaging result of the spot image 70, and calculate the step between the two split mirrors from the inclination of the interference fringes 74.
  • the test mirror 1 is a two-wheeled band mirror, and a plurality of split mirrors 1-1 to 1-6, 1-11 to 1-22 are combined.
  • a plurality of bright lines corresponding to the steps between the two split mirrors arranged in the radial direction are generated in the radial direction.
  • the transposition optical system 12 diffracts the longer wavelength component of the plurality of wavelength components contained in the light 3 condensed by the plurality of microlenses 11a, the longer the wavelength component, the larger the wavelength component is generated in the radial direction.
  • Multiple bright lines overlap. Therefore, the step calculation unit 23 cannot calculate the inclination of the interference fringes 74 from the imaging result of the spot image 70, and cannot calculate the step between the two split mirrors arranged in the radial direction. ..
  • the arrangement direction of the plurality of cylindrical lenses 81a and the arrangement direction of the plurality of cylindrical lenses 82a are different by 60 degrees. Further, each of the cylindrical lens 81a and the cylindrical lens 82a inverts the image of the light 3 reflected by any of the dividing mirrors 1-1 to 1-6 and 1-11 to 1-22. There is. As a result, the image of the light 3 reflected by any of the split mirrors is rotated by 120 degrees.
  • the arrangement directions of the plurality of cylindrical lenses 81a and the arrangement directions of the plurality of cylindrical lenses 82a differ by 60 degrees, a plurality of bright lines corresponding to the steps between the two dividing mirrors arranged in the radial direction.
  • the step calculation unit 23 includes a plurality of bright lines corresponding to the steps between the two split mirrors arranged in the radial direction and the two split mirrors arranged in the angular direction. It is possible to distinguish from a plurality of bright lines corresponding to the steps between them.
  • the step calculation unit 23 can calculate a plurality of bright lines corresponding to the steps between the two dividing mirrors arranged in the radial direction as the inclination of the interference fringes 74 from the imaging result of the spot image 70. it can. Further, the step calculation unit 23 can calculate a plurality of bright lines corresponding to the steps between the two dividing mirrors arranged in the angular direction as the inclination of the interference fringes 74 from the imaging result of the spot image 70. ..
  • the step calculation unit 23 includes a plurality of bright lines corresponding to the steps between the two split mirrors arranged in the radial direction and the two split mirrors arranged in the angular direction. Distinguish between multiple bright lines corresponding to the steps between them.
  • the step calculation unit 23 determines the inclination direction ⁇ 'of the interference fringes 74 for the plurality of bright lines corresponding to the steps between the two split mirrors arranged in the radial direction, as in the first embodiment.
  • the step calculation unit 23 since a plurality of bright lines corresponding to the steps between the two split mirrors arranged in the radial direction are inclined by 120 degrees with respect to the radial direction, the step calculation unit 23 is 120 degrees with respect to the radial direction.
  • the inclination direction ⁇ 'of the interference fringe 74 is corrected based on the inclination of.
  • the correction formula for the inclination direction ⁇ 1, 22'of the interference fringes 74 related to the split mirror 1-1 and the split mirror 1-22 is expressed as the following formula (12).
  • ⁇ 1 , 22 are the inclination directions of the corrected interference fringes 74.
  • the step calculation unit 23 calculates the step Gap between the two split mirrors arranged in the radial direction from the tilt direction of the corrected interference fringes 74.
  • the calculation formula for the steps Gap 1 and 22 between the split mirror 1-1 and the split mirror 1-22 is expressed as the following formula (13).
  • D 1,22 is the aperture diameter of the microlenses 11a- (1) (22)
  • r 1,22 is the distance from the center of the pupil to the microlenses 11a- (1) (22)
  • f 1,22 is the micro. This is the focal length of the lenses 11a- (1) and (22).
  • the step calculation unit 23 determines the inclination direction ⁇ 'of the interference fringes 74 for the plurality of bright lines corresponding to the steps between the two split mirrors arranged in the angular direction, as in the first embodiment.
  • the step calculation unit 23 since a plurality of bright lines corresponding to the steps between the two split mirrors arranged in the angular direction are inclined by 30 degrees with respect to the radial direction, the step calculation unit 23 is 30 degrees with respect to the radial direction.
  • the inclination direction ⁇ 'of the interference fringe 74 is corrected based on the inclination.
  • the correction formula for the inclination directions ⁇ 12 , 13'of the interference fringes 74 related to the split mirror 1-12 and the split mirror 1-13 is expressed as the following formula (14).
  • ⁇ 12 and 13 are the inclination directions of the corrected interference fringes 74.
  • the step calculation unit 23 calculates the step Gap between the two split mirrors arranged in the angular direction from the tilt direction of the corrected interference fringes 74.
  • the calculation formulas for the steps Gap 12 and 13 between the split mirrors 1-12 and the split mirrors 1-13 are expressed as the following formula (15).
  • D 12 and 13 are the aperture diameters of the microlenses 11a- (12) and (13)
  • r 12 and 13 are the distances from the center of the pupil to the microlenses 11a- (12) and (13)
  • f 12 and 13 are the micro lenses. It is the focal length of the lenses 11a-(12) (13).
  • the first cylindrical lens array 81 having the plurality of cylindrical lenses 81a and the second cylindrical lens array 82 having the plurality of cylindrical lenses 82a are provided, and the first cylindrical lens array 81 and the first cylindrical lens array 81 are provided.
  • Each of the second cylindrical lens arrays 82 is arranged between the test mirror 1 and the microlens array 11, and the arrangement direction of the plurality of cylindrical lenses 81a included in the first cylindrical lens array 81 and the second
  • the mirror surface shape measuring device 2 is configured so that the arrangement directions of the plurality of cylindrical lenses 82a included in the cylindrical lens array 82 are different from each other.
  • the mirror surface measuring device 2 even if the mirror 1 is a two-wheeled mirror, the mirror surface measuring device 2 is used between a plurality of split mirrors possessed by the mirror 1 without using a drive mechanism that requires maintenance. Steps can be calculated.
  • the mirror 1 to be inspected is a two-wheeled band mirror
  • the step calculation unit 23 is a plurality of split mirrors 1 possessed by the inspected mirror 1 which is a mirror of the two-wheeled band.
  • the step between -1 to 1-6 and 1-11 to 1-22 is calculated.
  • the test mirror 1 may be a mirror having a three-wheeled band or more
  • the step calculation unit 23 may have a step between a plurality of split mirrors possessed by the mirror having the three-wheeled band or more. May be calculated.
  • the present invention is suitable for a mirror surface shape measuring device, a mirror surface shape measuring method, and a reflector system for calculating a step between a plurality of split mirrors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

A mirror surface shape measurement device (2) comprises: a microlens array (11) comprising a plurality of microlenses (11a) for concentrating light (3) reflected by a mirror (1) under inspection in which a plurality of divided mirrors (1-1)-(1-6) are combined; an image transfer optical system (12) for diffracting a plurality of wavelength components included in the light (3) concentrated by the plurality of microlenses (11a) such that wavelength components with longer wavelengths are diffracted more greatly and forming each diffracted wavelength component into a spot image; an imaging element (17) for imaging the spot images formed by the image transfer optical system (12); and a level difference calculation unit (23) for calculating the level difference between two adjacent divided mirrors from among the plurality of divided mirrors (1-1)-(1-6) on the basis of the spot images from among the plurality of spot images imaged by the imaging element (17) that correspond to the light (3) reflected by the two divided mirrors.

Description

鏡面形状測定装置、鏡面形状測定方法及び反射鏡システムMirror surface shape measuring device, mirror surface shape measuring method and reflector system
 この発明は、複数の分割鏡の間の段差を算出する鏡面形状測定装置、鏡面形状測定方法及び反射鏡システムに関するものである。 The present invention relates to a mirror surface shape measuring device for calculating a step between a plurality of split mirrors, a mirror surface shape measuring method, and a reflector system.
 望遠鏡に用いられる大口径の反射鏡の中には、複数の分割鏡が組み合わされている反射鏡がある。複数の分割鏡が組み合わされている反射鏡は、複数の分割鏡の間に段差が生じていることがある。
 以下の非特許文献1には、反射鏡により反射された光を分光する2つのグリズムアレイを用いて、反射鏡が有している複数の分割鏡の間の段差である相対ピストンを干渉縞として測定する方法が開示されている。2つのグリズムアレイは、回折方向が互いに異なる分散素子である。
 非特許文献1に開示されている方法では、相対ピストンを測定する際、駆動機構が、フィルターホイールを回転させて、2つのグリズムアレイのうち、反射鏡により反射された光の分光に用いるグリズムアレイを切り替えるようにしている。
Among the large-diameter reflectors used for telescopes, there is a reflector in which a plurality of split mirrors are combined. A reflector in which a plurality of split mirrors are combined may have a step between the plurality of split mirrors.
In the following Non-Patent Document 1, two grism arrays that disperse the light reflected by the reflector are used, and the relative piston, which is a step between a plurality of split mirrors of the reflector, is used as an interference fringe. The method of measurement is disclosed. The two grism arrays are dispersion elements having different diffraction directions.
In the method disclosed in Non-Patent Document 1, when measuring the relative piston, the drive mechanism rotates the filter wheel and uses the grism array for the spectroscopy of the light reflected by the reflector among the two grism arrays. I am trying to switch.
 非特許文献1に開示されている方法によって、反射鏡が有している複数の分割鏡の間の段差を測定するには、フィルターホイールを回転させる駆動機構を備える必要がある。駆動機構は、メンテナンスフリーなものではないため、定期的なメンテナンスが必要である。しかし、反射鏡が宇宙空間で使用される場合、駆動機構を容易にメンテナンスすることが困難である。
 したがって、非特許文献1に開示されている方法によって、宇宙空間で使用される反射鏡が有している複数の分割鏡の間の段差を測定する場合、駆動機構の故障リスクを負うことになるという課題があった。
In order to measure the step between the plurality of split mirrors of the reflector by the method disclosed in Non-Patent Document 1, it is necessary to provide a drive mechanism for rotating the filter wheel. Since the drive mechanism is not maintenance-free, regular maintenance is required. However, when the reflector is used in outer space, it is difficult to easily maintain the drive mechanism.
Therefore, when measuring the step between a plurality of split mirrors of a reflector used in outer space by the method disclosed in Non-Patent Document 1, there is a risk of failure of the drive mechanism. There was a problem.
 この発明は上記のような課題を解決するためになされたもので、メンテナンスが必要な駆動機構を用いることなく、被検鏡が有している複数の分割鏡の間の段差を算出することができる鏡面形状測定装置、鏡面形状測定方法及び反射鏡システムを得ることを目的とする。 The present invention has been made to solve the above-mentioned problems, and it is possible to calculate the step between a plurality of split mirrors possessed by the test mirror without using a drive mechanism that requires maintenance. It is an object of the present invention to obtain a mirror surface shape measuring device, a mirror surface shape measuring method, and a reflector system that can be used.
 この発明に係る鏡面形状測定装置は、複数の分割鏡が組み合わされている被検鏡により反射された光を集光させる複数のマイクロレンズを有するマイクロレンズアレイと、複数のマイクロレンズによりそれぞれ集光された光に含まれている複数の波長成分のうち、波長が長い波長成分ほど大きく回折させ、回折させたそれぞれの波長成分をスポット像として結像させる転像光学系と、転像光学系により結像されたそれぞれのスポット像を撮像する撮像素子と、撮像素子により撮像された複数のスポット像のうち、複数の分割鏡の中で、互いに隣り合っている2つの分割鏡のそれぞれに反射された光に対応するスポット像に基づいて、2つの分割鏡の間の段差を算出する段差算出部とを備えるようにしたものである。 The mirror surface shape measuring device according to the present invention has a microlens array having a plurality of microlenses for condensing light reflected by a test mirror in which a plurality of dividing mirrors are combined, and a plurality of microlenses for condensing the light. Of the plurality of wavelength components contained in the light, the longer the wavelength component is, the larger the diffraction is performed, and each of the diffracted wavelength components is imaged as a spot image. Of the imaging element that captures each of the imaged spot images and the plurality of spot images imaged by the imaging element, the light is reflected by each of the two dividing mirrors that are adjacent to each other in the plurality of dividing mirrors. It is provided with a step calculation unit for calculating a step between two dividing mirrors based on a spot image corresponding to the light.
 この発明によれば、メンテナンスが必要な駆動機構を用いることなく、被検鏡が有している複数の分割鏡の間の段差を算出することができる。 According to the present invention, it is possible to calculate the step between a plurality of split mirrors possessed by the test mirror without using a drive mechanism that requires maintenance.
実施の形態1に係る鏡面形状測定装置2を含む反射鏡システムを示す構成図である。It is a block diagram which shows the reflector system including the mirror surface shape measuring apparatus 2 which concerns on Embodiment 1. FIG. データ処理部20のハードウェアを示すハードウェア構成図である。It is a hardware block diagram which shows the hardware of the data processing unit 20. データ処理部20が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。FIG. 5 is a hardware configuration diagram of a computer when the data processing unit 20 is realized by software, firmware, or the like. データ処理部20の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of the data processing unit 20. マイクロレンズアレイ11による光3の像と、マイクロレンズアレイ11が有している複数のマイクロレンズ11aの配置とを示す説明図である。It is explanatory drawing which shows the image of light 3 by a microlens array 11 and the arrangement of a plurality of microlenses 11a which a microlens array 11 has. 図6Aは、マイクロレンズ11a-nにより集光された光3が、フレネルゾーンプレート13によって回折されたのち、レンズ14によって撮像素子17に結像されたスポット像60を示す説明図、図6Bは、マイクロレンズ11a-(1)(2)等により集光された光3が、フレネルゾーンプレート13によって回折されたのち、レンズ14によって撮像素子17に結像されたスポット像70を示す説明図である。FIG. 6A is an explanatory view showing a spot image 60 in which the light 3 focused by the microlens 11an is diffracted by the Fresnel zone plate 13 and then imaged on the image pickup element 17 by the lens 14, FIG. 6B. In the explanatory view showing the spot image 70 imaged on the image pickup element 17 by the lens 14 after the light 3 focused by the microlenses 11a- (1) (2) and the like is diffracted by the Frenel zone plate 13. is there. 実施の形態2に係る鏡面形状測定装置2を含む反射鏡システムを示す構成図である。It is a block diagram which shows the reflector system including the mirror surface shape measuring apparatus 2 which concerns on Embodiment 2. FIG. マイクロレンズアレイ11による光3の像と、マイクロレンズアレイ11が有している複数のマイクロレンズ11aの配置とを示す説明図である。It is explanatory drawing which shows the image of light 3 by a microlens array 11 and the arrangement of a plurality of microlenses 11a which a microlens array 11 has. マイクロレンズアレイ11による光3の像と、マイクロレンズアレイ11が有している複数のマイクロレンズ11aの配置と、第1のシリンドリカルレンズアレイ81の配置と、第2のシリンドリカルレンズアレイ82の配置とを示す説明図である。The image of the light 3 by the microlens array 11, the arrangement of the plurality of microlenses 11a included in the microlens array 11, the arrangement of the first cylindrical lens array 81, and the arrangement of the second cylindrical lens array 82. It is explanatory drawing which shows.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係る鏡面形状測定装置2を含む反射鏡システムを示す構成図である。
 図1において、被検鏡1は、例えば、宇宙空間で使用される反射鏡である。ただし、被検鏡1は、宇宙空間で使用される反射鏡に限るものではなく、地球上で使用される反射鏡であってもよい。
 被検鏡1は、複数の分割鏡1-1~1-6が組み合わされている。
 分割鏡1-1~1-6のそれぞれは、被検鏡1の一部を構成している部分鏡である。
 図1に示す反射鏡システムでは、被検鏡1が、6つの分割鏡1-1~1-6を備えているが、2つ以上の分割鏡を備えていればよく、5つ以下の分割鏡、又は、7つ以上の分割鏡を備えているものであってもよい。
Embodiment 1.
FIG. 1 is a configuration diagram showing a reflector system including the mirror surface shape measuring device 2 according to the first embodiment.
In FIG. 1, the test mirror 1 is, for example, a reflector used in outer space. However, the test mirror 1 is not limited to the reflector used in outer space, and may be a reflector used on the earth.
The test mirror 1 is a combination of a plurality of split mirrors 1-1 to 1-6.
Each of the split mirrors 1-1 to 1-6 is a partial mirror that constitutes a part of the test mirror 1.
In the reflector system shown in FIG. 1, the test mirror 1 includes six split mirrors 1-1 to 1-6, but it is sufficient if two or more split mirrors are provided, and five or less split mirrors are used. It may be provided with a mirror or seven or more split mirrors.
 鏡面形状測定装置2は、被検鏡1が有している複数の分割鏡1-1~1-6の間の段差等を算出する装置である。鏡面形状測定装置2によって、複数の分割鏡1-1~1-6の間の段差が算出されれば、図示せぬ制御部が、例えば、段差が解消されるように、分割鏡1-1~1-6の位置を補正することが可能となる。
 光3は、図1に示す鏡面形状測定装置2の外部から被検鏡1に入射され、被検鏡1により反射された光である。
 マイクロレンズアレイ11、フレネルゾーンプレート13、レンズ14及び撮像素子17は、鏡面形状測定装置2における被検光学系である。
 被検鏡1、マイクロレンズアレイ11、フレネルゾーンプレート13、レンズ14及び撮像素子17のそれぞれは、3次元空間の直交座標系における、x軸と平行な方向(以下、「x方向」と称する)と、y軸と平行な方向(以下、「y方向」と称する)とを含む平面(以下、「xy平面」と称する)に配置されている。
 また、被検鏡1、マイクロレンズアレイ11、フレネルゾーンプレート13、レンズ14及び撮像素子17のそれぞれは、z軸と平行な方向(以下、「z方向」と称する)に並んでいる。
 図1に示す反射鏡システムでは、被検鏡1と鏡面形状測定装置2との間に光学系が設置されていてもよい。また、鏡面形状測定装置2の内部において、マイクロレンズアレイ11よりも被検鏡1側に、光学系が設置されていてもよい。
The mirror surface shape measuring device 2 is a device that calculates a step or the like between a plurality of split mirrors 1-1 to 1-6 possessed by the test mirror 1. If the step between the plurality of split mirrors 1-1 to 1-6 is calculated by the mirror surface shape measuring device 2, the control unit (not shown) can remove the step, for example, the split mirror 1-1. It is possible to correct the positions of ~ 1-6.
The light 3 is light that is incident on the test mirror 1 from the outside of the mirror surface shape measuring device 2 shown in FIG. 1 and is reflected by the test mirror 1.
The microlens array 11, the Fresnel zone plate 13, the lens 14, and the image sensor 17 are optical systems to be tested in the mirror surface shape measuring device 2.
Each of the test mirror 1, the microlens array 11, the Frenel zone plate 13, the lens 14, and the image pickup element 17 is in a direction parallel to the x-axis in a Cartesian coordinate system in three-dimensional space (hereinafter referred to as "x-direction"). And the plane including the direction parallel to the y-axis (hereinafter referred to as "y-direction") (hereinafter referred to as "xy-plane").
Further, each of the test mirror 1, the microlens array 11, the Fresnel zone plate 13, the lens 14, and the image sensor 17 are arranged in a direction parallel to the z-axis (hereinafter, referred to as "z-direction").
In the reflector system shown in FIG. 1, an optical system may be installed between the mirror 1 to be inspected and the mirror surface shape measuring device 2. Further, inside the mirror surface shape measuring device 2, the optical system may be installed closer to the mirror 1 to be examined than the microlens array 11.
 マイクロレンズアレイ11は、被検光学系の瞳面に配置されており、被検鏡1により反射された光3を集光させる複数のマイクロレンズ11aを有している。
 マイクロレンズ11aは、被検鏡1により反射された光3を集光させる光学素子であり、複数のマイクロレンズ11aは、等間隔に配置されている。
 図1に示す鏡面形状測定装置2では、マイクロレンズアレイ11が、23個のマイクロレンズ11aを有している。しかし、マイクロレンズアレイ11は、分割鏡1-1~1-6のそれぞれに反射された光3を集光させるマイクロレンズ11aと、分割鏡1-1~1-6の中で、互いに隣り合っている2つの分割鏡のそれぞれに反射された光3を集光させるマイクロレンズ11aとを有していればよい。したがって、マイクロレンズアレイ11が有するマイクロレンズ11aの個数は、23個のマイクロレンズ11aに限るものではない。
The microlens array 11 is arranged on the pupil surface of the optical system to be examined, and has a plurality of microlenses 11a for condensing the light 3 reflected by the mirror 1 to be examined.
The microlens 11a is an optical element that collects the light 3 reflected by the test mirror 1, and the plurality of microlenses 11a are arranged at equal intervals.
In the mirror surface shape measuring device 2 shown in FIG. 1, the microlens array 11 has 23 microlenses 11a. However, the microlens array 11 is adjacent to each other in the microlens 11a that collects the light 3 reflected by the split mirrors 1-1 to 1-6 and the split mirrors 1-1 to 1-6. It suffices to have a microlens 11a for condensing the light 3 reflected by each of the two split mirrors. Therefore, the number of microlenses 11a included in the microlens array 11 is not limited to the 23 microlenses 11a.
 転像光学系12は、フレネルゾーンプレート13及びレンズ14を備えている。
 転像光学系12は、複数のマイクロレンズ11aによりそれぞれ集光された光3に含まれている複数の波長成分のうち、波長が長い波長成分ほど大きく回折させ、回折させたそれぞれの波長成分をスポット像として撮像素子17に結像させる。
 フレネルゾーンプレート13は、色収差を有する光学素子であり、複数のマイクロレンズ11aによりそれぞれ集光された光3に含まれている複数の波長成分のうち、波長が長い波長成分ほど大きく回折させる。
 波長成分15は、複数のマイクロレンズ11aによりそれぞれ集光された光3に含まれている複数の波長成分の中の1つであり、短波長成分16よりも波長が長い成分である。
 波長成分16は、複数のマイクロレンズ11aによりそれぞれ集光された光3に含まれている複数の波長成分の中の1つであり、短波長成分15よりも波長が短い成分である。
 図1には、複数のマイクロレンズ11aによりそれぞれ集光された光3に含まれている複数の波長成分の例として、2つの波長成分15,16が記載されている。しかし、これは一例に過ぎず、複数のマイクロレンズ11aによりそれぞれ集光された光3に含まれている複数の波長成分が、3つ以上あってもよい。
 レンズ14は、フレネルゾーンプレート13により回折された複数の波長成分のそれぞれをスポット像として撮像素子17に結像させる。
The image change optical system 12 includes a Fresnel zone plate 13 and a lens 14.
The image transfer optical system 12 diffracts the longer wavelength component of the plurality of wavelength components contained in the light 3 condensed by the plurality of microlenses 11a, and diffracts each wavelength component. An image is formed on the image pickup element 17 as a spot image.
The Frenel zone plate 13 is an optical element having chromatic aberration, and among a plurality of wavelength components contained in the light 3 focused by the plurality of microlenses 11a, the longer the wavelength component, the larger the diffraction.
The wavelength component 15 is one of a plurality of wavelength components contained in the light 3 focused by the plurality of microlenses 11a, and is a component having a longer wavelength than the short wavelength component 16.
The wavelength component 16 is one of a plurality of wavelength components contained in the light 3 focused by the plurality of microlenses 11a, and is a component having a shorter wavelength than the short wavelength component 15.
In FIG. 1, two wavelength components 15 and 16 are shown as examples of a plurality of wavelength components contained in the light 3 focused by the plurality of microlenses 11a, respectively. However, this is only an example, and there may be three or more wavelength components contained in the light 3 condensed by the plurality of microlenses 11a.
The lens 14 causes the image pickup device 17 to image each of the plurality of wavelength components diffracted by the Fresnel zone plate 13 as a spot image.
 撮像素子17は、転像光学系12のレンズ14により結像されたそれぞれのスポット像を撮像する。
 撮像素子17は、それぞれのスポット像の撮像結果を示すデータとして、スポットデータを、後述するデータ処理部20のデータ抽出部21に出力する。
The image sensor 17 captures each spot image formed by the lens 14 of the image transfer optical system 12.
The image sensor 17 outputs spot data to the data extraction unit 21 of the data processing unit 20, which will be described later, as data indicating the imaging results of each spot image.
 データ処理部20は、データ抽出部21、分割鏡波面算出部22、段差算出部23及び被検鏡波面算出部24を備えている。
 図2は、データ処理部20のハードウェアを示すハードウェア構成図である。
The data processing unit 20 includes a data extraction unit 21, a split mirror wave surface calculation unit 22, a step calculation unit 23, and a mirror wave surface calculation unit 24 to be inspected.
FIG. 2 is a hardware configuration diagram showing the hardware of the data processing unit 20.
 データ抽出部21は、例えば、図2に示すデータ抽出回路31によって実現される。
 データ抽出部21は、撮像素子17から出力されたスポットデータのうち、分割鏡1-n(n=1,2,3,4,5,6)により反射された光3に対応するスポット像の撮像結果を示すスポットデータ(以下、「分割鏡内スポットデータDD」と称する)を分割鏡波面算出部22に出力する。
 例えば、分割鏡内スポットデータDDは、分割鏡1-1により反射された光3に対応するスポット像の撮像結果を示し、分割鏡内スポットデータDDは、分割鏡1-2により反射された光3に対応するスポット像の撮像結果を示している。また、分割鏡内スポットデータDDは、分割鏡1-6により反射された光3に対応するスポット像の撮像結果を示している。
The data extraction unit 21 is realized by, for example, the data extraction circuit 31 shown in FIG.
The data extraction unit 21 is a spot image corresponding to the light 3 reflected by the split mirror 1-n (n = 1,2,3,4,5,6) among the spot data output from the image sensor 17. Spot data indicating the imaging result (hereinafter, referred to as “spot data in the split mirror DD n ”) is output to the split mirror wave surface calculation unit 22.
For example, the spot data DD 1 in the split mirror shows the imaging result of the spot image corresponding to the light 3 reflected by the split mirror 1-1, and the spot data DD 2 in the split mirror is reflected by the split mirror 1-2. The imaging result of the spot image corresponding to the light 3 is shown. Further, the spot data DD 6 in the split mirror shows the imaging result of the spot image corresponding to the light 3 reflected by the split mirror 1-6.
 データ抽出部21は、撮像素子17から出力されたスポットデータのうち、分割鏡1-1~1-6の中で、互いに隣り合っている2つの分割鏡のそれぞれに反射された光3に対応するスポット像の撮像結果を示すスポットデータ(以下、「境界スポットデータBD」と称する)を段差算出部23に出力する。
 分割鏡1-1と分割鏡1-2とは互いに隣り合っており、分割鏡1-2と分割鏡1-3とは互いに隣り合っている。
 また、分割鏡1-3と分割鏡1-4とは互いに隣り合っており、分割鏡1-4と分割鏡1-5とは互いに隣り合っている。
 また、分割鏡1-5と分割鏡1-6とは互いに隣り合っており、分割鏡1-6と分割鏡1-1とは互いに隣り合っている。
 例えば、境界スポットデータBDは、分割鏡1-1及び分割鏡1-2のそれぞれに反射された光3に対応するスポット像の撮像結果を示し、境界スポットデータBDは、分割鏡1-2及び分割鏡1-3のそれぞれに反射された光3に対応するスポット像の撮像結果を示している。また、境界スポットデータBDは、分割鏡1-6及び分割鏡1-1のそれぞれに反射された光3に対応するスポット像の撮像結果を示している。
The data extraction unit 21 corresponds to the light 3 reflected by each of the two dividing mirrors adjacent to each other in the dividing mirrors 1-1 to 1-6 among the spot data output from the image sensor 17. Spot data (hereinafter, referred to as “boundary spot data BD n ”) indicating the imaging result of the spot image to be imaged is output to the step calculation unit 23.
The dividing mirror 1-1 and the dividing mirror 1-2 are adjacent to each other, and the dividing mirror 1-2 and the dividing mirror 1-3 are adjacent to each other.
Further, the dividing mirrors 1-3 and the dividing mirrors 1-4 are adjacent to each other, and the dividing mirrors 1-4 and the dividing mirrors 1-5 are adjacent to each other.
Further, the dividing mirror 1-5 and the dividing mirror 1-6 are adjacent to each other, and the dividing mirror 1-6 and the dividing mirror 1-1 are adjacent to each other.
For example, the boundary spot data BD 1 shows the imaging result of the spot image corresponding to the light 3 reflected by the dividing mirror 1-1 and the dividing mirror 1-2, and the boundary spot data BD 2 is the dividing mirror 1-. The imaging result of the spot image corresponding to the light 3 reflected by each of 2 and the split mirror 1-3 is shown. Further, the boundary spot data BD 6 shows the imaging result of the spot image corresponding to the light 3 reflected by each of the split mirror 1-6 and the split mirror 1-1.
 例えば、データ抽出部21の内部メモリには、分割鏡1-nにより反射された光3に対応するスポット像が、撮像素子17のどこの座標に結像されるかを示す座標情報が記憶されている。
 また、データ抽出部21の内部メモリには、互いに隣り合っている2つの分割鏡のそれぞれに反射された光3に対応するスポット像が、撮像素子17のどこの座標に結像されるかを示す座標情報が記憶されている。
 データ抽出部21は、内部メモリに格納されている座標情報に基づいて、撮像素子17から出力されたスポットデータに含まれている分割鏡内スポットデータDD及び境界スポットデータBDのそれぞれを特定する。
For example, in the internal memory of the data extraction unit 21, coordinate information indicating at which coordinate of the image sensor 17 the spot image corresponding to the light 3 reflected by the split mirror 1-n is formed is stored. ing.
Further, in the internal memory of the data extraction unit 21, a spot image corresponding to the light 3 reflected by each of the two dividing mirrors adjacent to each other is imaged at the coordinates of the image sensor 17. The indicated coordinate information is stored.
The data extraction unit 21 identifies each of the spot data DD n in the split mirror and the boundary spot data BD n included in the spot data output from the image sensor 17 based on the coordinate information stored in the internal memory. To do.
 分割鏡波面算出部22は、例えば、図2に示す分割鏡波面算出回路32によって実現される。
 分割鏡波面算出部22は、撮像素子17により撮像された複数のスポット像のうち、分割鏡1-1~1-6のそれぞれに反射された光3に対応するスポット像に基づいて、分割鏡1-1~1-6のそれぞれの波面を算出する。
 即ち、分割鏡波面算出部22は、データ抽出部21から出力された分割鏡内スポットデータDDが示すスポット像の撮像結果に基づいて、分割鏡1-nの波面を算出する。
The divided mirror wave surface calculation unit 22 is realized by, for example, the divided mirror wave surface calculation circuit 32 shown in FIG.
The split mirror wave surface calculation unit 22 uses the split mirror based on the spot image corresponding to the light 3 reflected by each of the split mirrors 1-1 to 1-6 among the plurality of spot images captured by the image sensor 17. Calculate each wave surface of 1-1 to 1-6.
That is, the split mirror wave surface calculation unit 22 calculates the wave plane of the split mirror 1-n based on the imaging result of the spot image indicated by the spot data DD n in the split mirror output from the data extraction unit 21.
 段差算出部23は、例えば、図2に示す段差算出回路33によって実現される。
 段差算出部23は、撮像素子17により撮像された複数のスポット像のうち、分割鏡1-1~1-6の中で、互いに隣り合っている2つの分割鏡のそれぞれに反射された光3に対応するスポット像に基づいて、2つの分割鏡の間の段差を算出する。
 即ち、段差算出部23は、データ抽出部21から出力された境界スポットデータBDが示すスポット像の撮像結果に基づいて、2つの分割鏡の間の段差を算出する。
The step calculation unit 23 is realized by, for example, the step calculation circuit 33 shown in FIG.
The step calculation unit 23 is the light 3 reflected by each of the two split mirrors adjacent to each other in the split mirrors 1-1 to 1-6 among the plurality of spot images captured by the image pickup element 17. The step between the two split mirrors is calculated based on the spot image corresponding to.
That is, the step calculation unit 23 calculates the step between the two split mirrors based on the imaging result of the spot image indicated by the boundary spot data BD n output from the data extraction unit 21.
 被検鏡波面算出部24は、例えば、図2に示す被検鏡波面算出回路34によって実現される。
 被検鏡波面算出部24は、段差算出部23により算出された段差と、分割鏡波面算出部22により算出された分割鏡1-1~1-6の波面とから、被検鏡1の波面を算出する。
The test mirror wave surface calculation unit 24 is realized by, for example, the test mirror wave surface calculation circuit 34 shown in FIG.
The wave surface calculation unit 24 of the test mirror 1 is based on the step calculated by the step calculation unit 23 and the wave surfaces of the split mirrors 1-1 to 1-6 calculated by the split mirror wave surface calculation unit 22. Is calculated.
 図1では、データ処理部20の構成要素であるデータ抽出部21、分割鏡波面算出部22、段差算出部23及び被検鏡波面算出部24のそれぞれが、図2に示すような専用のハードウェアによって実現されるものを想定している。即ち、データ処理部20が、データ抽出回路31、分割鏡波面算出回路32、段差算出回路33及び被検鏡波面算出回路34によって実現されるものを想定している。
 ここで、データ抽出回路31、分割鏡波面算出回路32、段差算出回路33及び被検鏡波面算出回路34のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
In FIG. 1, each of the data extraction unit 21, the split mirror wave surface calculation unit 22, the step calculation unit 23, and the test mirror wave surface calculation unit 24, which are the components of the data processing unit 20, is dedicated hardware as shown in FIG. It is supposed to be realized by ware. That is, it is assumed that the data processing unit 20 is realized by the data extraction circuit 31, the split mirror wave surface calculation circuit 32, the step calculation circuit 33, and the mirror wave surface calculation circuit 34 to be inspected.
Here, each of the data extraction circuit 31, the divided mirror wave surface calculation circuit 32, the step calculation circuit 33, and the test mirror wave surface calculation circuit 34 is, for example, a single circuit, a composite circuit, a programmed processor, or a parallel programmed processor. , ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
 データ処理部20の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、データ処理部20がソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
The components of the data processing unit 20 are not limited to those realized by dedicated hardware, and even if the data processing unit 20 is realized by software, firmware, or a combination of software and firmware. Good.
The software or firmware is stored as a program in the memory of the computer. A computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). To do.
 図3は、データ処理部20が、ソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 データ処理部20がソフトウェア又はファームウェア等によって実現される場合、データ抽出部21、分割鏡波面算出部22、段差算出部23及び被検鏡波面算出部24の処理手順をコンピュータに実行させるためのプログラムがメモリ41に格納される。そして、コンピュータのプロセッサ42がメモリ41に格納されているプログラムを実行する。
 また、図2では、データ処理部20の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図3では、データ処理部20がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、データ処理部20における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。
FIG. 3 is a hardware configuration diagram of a computer when the data processing unit 20 is realized by software, firmware, or the like.
When the data processing unit 20 is realized by software, firmware, or the like, a program for causing a computer to execute the processing procedures of the data extraction unit 21, the split mirror wave surface calculation unit 22, the step calculation unit 23, and the mirror wave surface calculation unit 24. Is stored in the memory 41. Then, the processor 42 of the computer executes the program stored in the memory 41.
Further, FIG. 2 shows an example in which each of the components of the data processing unit 20 is realized by dedicated hardware, and FIG. 3 shows an example in which the data processing unit 20 is realized by software, firmware, or the like. .. However, this is only an example, and some components in the data processing unit 20 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
 次に、図1に示す鏡面形状測定装置2の動作について説明する。図4は、データ処理部20の処理手順を示すフローチャートである。
 被検鏡1によって反射された光3は、マイクロレンズアレイ11に入射される。
 マイクロレンズアレイ11が有している複数のマイクロレンズ11aは、被検鏡1により反射された光3を、転像光学系12のフレネルゾーンプレート13に集光させる。
 マイクロレンズ11aによって光3が集光される位置は、被検鏡1における光3の反射点の局所的な傾斜によって変化する。
Next, the operation of the mirror surface shape measuring device 2 shown in FIG. 1 will be described. FIG. 4 is a flowchart showing a processing procedure of the data processing unit 20.
The light 3 reflected by the test mirror 1 is incident on the microlens array 11.
The plurality of microlenses 11a included in the microlens array 11 collect the light 3 reflected by the test mirror 1 on the Fresnel zone plate 13 of the translocation optical system 12.
The position where the light 3 is focused by the microlens 11a changes depending on the local inclination of the reflection point of the light 3 in the test mirror 1.
 図5は、マイクロレンズアレイ11による光3の像と、マイクロレンズアレイ11が有している複数のマイクロレンズ11aの配置とを示す説明図である。
 図5において、像51-1は、分割鏡1-1により反射された光3の像、像51-2は、分割鏡1-2により反射された光3の像、像51-3は、分割鏡1-3により反射された光3の像である。
 像51-4は、分割鏡1-4により反射された光3の像、像51-5は、分割鏡1-5により反射された光3の像、像51-6は、分割鏡1-6により反射された光3の像である。
FIG. 5 is an explanatory diagram showing an image of light 3 by the microlens array 11 and an arrangement of a plurality of microlenses 11a included in the microlens array 11.
In FIG. 5, the image 51-1 is an image of the light 3 reflected by the split mirror 1-1, the image 51-2 is an image of the light 3 reflected by the split mirror 1-2, and the image 51-3 is an image of the light 3 reflected by the split mirror 1-2. It is an image of light 3 reflected by the split mirror 1-3.
Image 51-4 is an image of light 3 reflected by the split mirror 1-4, image 51-5 is an image of light 3 reflected by the split mirror 1-5, and image 51-6 is an image of light 3 reflected by the split mirror 1-5. It is an image of light 3 reflected by 6.
 マイクロレンズ11a-1は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-1により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-2は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-2により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-3は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-3により反射された光3を集光するマイクロレンズ11aである。
The microlens 11a-1 is a microlens 11a that collects the light 3 reflected by the split mirror 1-1 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-2 is a microlens 11a that collects the light 3 reflected by the split mirror 1-2 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-3 is a microlens 11a that collects the light 3 reflected by the split mirror 1-3 among the plurality of microlenses 11a included in the microlens array 11.
 マイクロレンズ11a-4は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-4により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-5は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-5により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-6は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-6により反射された光3を集光するマイクロレンズ11aである。
The microlens 11a-4 is a microlens 11a that collects the light 3 reflected by the split mirrors 1-4 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-5 is a microlens 11a that collects the light 3 reflected by the split mirror 1-5 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-6 is a microlens 11a that collects the light 3 reflected by the split mirror 1-6 among the plurality of microlenses 11a included in the microlens array 11.
 図5では、マイクロレンズ11a-1、マイクロレンズ11a-2、マイクロレンズ11a-3、マイクロレンズ11a-4、マイクロレンズ11a-5及びマイクロレンズ11a-6のそれぞれが、8つずつ配置されている例を示している。しかし、これは一例に過ぎず、例えば、7つずつ配置されていてもよいし、9つずつ配置されていてもよい。
 また、図5では、マイクロレンズ11a-1~11a-6のそれぞれが、隣のマイクロレンズと接するように配置されている例を示している。しかし、マイクロレンズ11a-1~11a-6のそれぞれは、等間隔に配置されていればよく、隣のマイクロレンズと一定の間隔をもって配置されているものであってもよい。図1では、複数のマイクロレンズ11aが、隣のマイクロレンズと一定の間隔をもって配置されている。
In FIG. 5, eight microlenses 11a-1, microlenses 11a-2, microlenses 11a-3, microlenses 11a-4, microlenses 11a-5, and microlenses 11a-6 are arranged. An example is shown. However, this is only an example, and for example, 7 may be arranged or 9 may be arranged.
Further, FIG. 5 shows an example in which each of the microlenses 11a-1 to 11a-6 is arranged so as to be in contact with the adjacent microlens. However, each of the microlenses 11a-1 to 11a-6 may be arranged at equal intervals, and may be arranged at regular intervals with the adjacent microlenses. In FIG. 1, a plurality of microlenses 11a are arranged at regular intervals from adjacent microlenses.
 マイクロレンズ11a-(1)(2)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-1及び分割鏡1-2のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(2)(3)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-2及び分割鏡1-3のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(3)(4)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-3及び分割鏡1-4のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (1) and (2) collect the light 3 reflected by the split mirror 1-1 and the split mirror 1-2 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (2) (3) collect the light 3 reflected by each of the split mirrors 1-2 and the split mirrors 1-3 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (3) (4) collect the light 3 reflected by the dividing mirrors 1-3 and the dividing mirrors 1-4 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 マイクロレンズ11a-(4)(5)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-4及び分割鏡1-5のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(5)(6)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-5及び分割鏡1-6のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(6)(1)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-6及び分割鏡1-1のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (4) (5) collect the light 3 reflected by the split mirrors 1-4 and the split mirrors 1-5 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (5) (6) collect the light 3 reflected by the split mirrors 1-5 and the split mirrors 1-6 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (6) (1) collect the light 3 reflected by each of the split mirrors 1-6 and the split mirror 1-1 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 図5では、マイクロレンズ11a-(1)(2)、マイクロレンズ11a-(2)(3)、マイクロレンズ11a-(3)(4)、マイクロレンズ11a-(4)(5)、マイクロレンズ11a-(5)(6)及びマイクロレンズ11a-(6)(1)のそれぞれが、3つずつ配置されている例を示している。しかし、これは一例に過ぎず、例えば、2つずつ配置されているものであってもよいし、4つ以上ずつ配置されているものであってもよい。
 また、図5では、マイクロレンズ11a-(1)(2)~11a-(6)(1)のそれぞれが、隣のマイクロレンズと接するように配置されている例を示している。しかし、マイクロレンズ11a-(1)(2)~11a-(6)(1)のそれぞれは、等間隔に配置されていればよく、隣のマイクロレンズと一定の間隔をもって配置されているものであってもよい。
In FIG. 5, the microlens 11a- (1) (2), the microlens 11a- (2) (3), the microlens 11a- (3) (4), the microlens 11a- (4) (5), the microlens An example is shown in which three 11a- (5) (6) and three microlenses 11a- (6) (1) are arranged. However, this is only an example, and for example, two may be arranged, or four or more may be arranged.
Further, FIG. 5 shows an example in which each of the microlenses 11a- (1) (2) to 11a- (6) (1) is arranged so as to be in contact with the adjacent microlens. However, each of the microlenses 11a- (1) (2) to 11a- (6) (1) need only be arranged at equal intervals, and is arranged at regular intervals with the adjacent microlenses. There may be.
 フレネルゾーンプレート13は、複数のマイクロレンズ11aによりそれぞれ集光された光3に含まれている複数の波長成分のうち、波長が長い波長成分ほど大きく回折させる。
 フレネルゾーンプレート13は、例えば、図1に示すように、短波長成分16よりも波長が長い波長成分15を、短波長成分16よりも大きく回折させている。
 レンズ14は、フレネルゾーンプレート13により回折された複数の波長成分のそれぞれをスポット像として撮像素子17に結像させる。レンズ14は、例えば、波長成分15及び波長成分16のそれぞれをスポット像として撮像素子17に結像させる。
The Fresnel zone plate 13 diffracts more wavelength components having a longer wavelength among the plurality of wavelength components contained in the light 3 focused by the plurality of microlenses 11a.
For example, as shown in FIG. 1, the Fresnel zone plate 13 diffracts the wavelength component 15 having a wavelength longer than that of the short wavelength component 16 more than the short wavelength component 16.
The lens 14 causes the image pickup device 17 to image each of the plurality of wavelength components diffracted by the Fresnel zone plate 13 as a spot image. For example, the lens 14 causes the image sensor 17 to image each of the wavelength component 15 and the wavelength component 16 as spot images.
 図6は、転像光学系12によって撮像素子17に結像されたスポット像を示す説明図である。
 図6Aは、マイクロレンズ11a-nにより集光された光3が、フレネルゾーンプレート13によって回折されたのち、レンズ14によって撮像素子17に結像されたスポット像60を示している。
 図6Bは、マイクロレンズ11a-(1)(2)等により集光された光3が、フレネルゾーンプレート13によって回折されたのち、レンズ14によって撮像素子17に結像されたスポット像70を示している。
FIG. 6 is an explanatory diagram showing a spot image formed on the image sensor 17 by the image transfer optical system 12.
FIG. 6A shows a spot image 60 in which the light 3 focused by the microlens 11an is diffracted by the Fresnel zone plate 13 and then imaged on the image sensor 17 by the lens 14.
FIG. 6B shows a spot image 70 formed on the image sensor 17 by the lens 14 after the light 3 focused by the microlenses 11a- (1) and (2) is diffracted by the Fresnel zone plate 13. ing.
 スポット像60は、複数の波長成分を含んでいる。図6Aの例では、スポット像60に含まれている一部の波長成分として、短波長成分61、中間波長成分62及び長波長成分63を示している。
 短波長成分61、中間波長成分62及び長波長成分63は、互いに波長が異なる成分であるため、フレネルゾーンプレート13による回折の大きさが互いに異なる。このため、スポット像60の形状は、動径方向に伸長された楕円の形状になる。動径方向は、被検鏡1の中心から外周へ向かう方向である。
The spot image 60 contains a plurality of wavelength components. In the example of FIG. 6A, a short wavelength component 61, an intermediate wavelength component 62, and a long wavelength component 63 are shown as some wavelength components included in the spot image 60.
Since the short wavelength component 61, the intermediate wavelength component 62, and the long wavelength component 63 are components having different wavelengths from each other, the magnitude of diffraction by the Fresnel zone plate 13 is different from each other. Therefore, the shape of the spot image 60 becomes an elliptical shape extending in the radial direction. The radial direction is the direction from the center of the test mirror 1 toward the outer circumference.
 スポット像70は、複数の波長成分を含んでいる。図6Bの例では、スポット像70に含まれている一部の波長成分として、短波長成分71、中間波長成分72及び長波長成分73を示している。
 短波長成分71、中間波長成分72及び長波長成分73は、互いに波長が異なる成分であるため、フレネルゾーンプレート13による回折の大きさが互いに異なる。このため、スポット像70の形状は、動径方向に伸長された楕円の形状になる。
 また、スポット像70は、互いに隣り合っている2つの分割鏡のそれぞれに反射された光3に対応するスポット像であるため、スポット像70の角度方向(図5を参照)には、2つの分割鏡のそれぞれに反射された光3の明線(1)(2)(3)が生じる。
The spot image 70 contains a plurality of wavelength components. In the example of FIG. 6B, a short wavelength component 71, an intermediate wavelength component 72, and a long wavelength component 73 are shown as some wavelength components included in the spot image 70.
Since the short wavelength component 71, the intermediate wavelength component 72, and the long wavelength component 73 have different wavelengths from each other, the magnitude of diffraction by the Fresnel zone plate 13 is different from each other. Therefore, the shape of the spot image 70 becomes an elliptical shape extending in the radial direction.
Further, since the spot image 70 is a spot image corresponding to the light 3 reflected by each of the two dividing mirrors adjacent to each other, there are two spot images 70 in the angular direction (see FIG. 5). Bright lines (1), (2), and (3) of light 3 reflected on each of the split mirrors are generated.
 互いに隣り合っている2つの分割鏡の間には、段差があり、2つの分割鏡のそれぞれに反射された光3の波面には、段差の2倍の相対ピストンがある。図6Bに示すスポット像70の形状は、中間波長成分72での相対ピストンが波長の整数倍(以下、N倍と称する)であり、短波長成分71での相対ピストンが波長のN倍よりも幾らか長く、長波長成分73での相対ピストンが波長のN倍よりも幾らか短い場合の形状である。
 スポット像70の明線(1)は、中間波長成分72では互いに隣り合っている2つの分割鏡のそれぞれに反射された光3の位相が揃っているため、中間波長成分72の中央を横切る。短波長成分71では互いに隣り合っている2つの分割鏡のそれぞれに反射された光3の位相が幾らかずれているため、明線(1)は、短波長成分71の中央よりも右を横切る。長波長成分73では互いに隣り合っている2つの分割鏡のそれぞれに反射された光3の位相が短波長成分71とは逆の符号でずれているため、明線(1)は、長波長成分73の中央よりも左を横切る。
 相対ピストンが、波長のN-1倍、又は、波長のN+1倍となる波長成分の中央も光3の位相が揃っているため、明線(1)から、動径方向にずれている2つの明線(2)(3)が生じる。図6Bでは、明線が3本ある場合を示したが、波長の整数倍に対応した4本以上の明線を生じる場合もある。
 2つの分割鏡のそれぞれに反射された光3の位相の差である相対位相が、スポット像70に含まれている全ての波長成分で異なっており、明線の位置が連続的に変化するため、全ての波長成分が合わされると、2つの分割鏡の間の段差に応じた傾斜を有する干渉縞74が現れる。
There is a step between the two split mirrors that are adjacent to each other, and the wave surface of the light 3 reflected by each of the two split mirrors has a relative piston that is twice the step. In the shape of the spot image 70 shown in FIG. 6B, the relative piston at the intermediate wavelength component 72 is an integral multiple of the wavelength (hereinafter referred to as N times), and the relative piston at the short wavelength component 71 is larger than the N times the wavelength. The shape is somewhat longer, with the relative piston at the long wavelength component 73 being somewhat shorter than N times the wavelength.
The bright line (1) of the spot image 70 crosses the center of the intermediate wavelength component 72 because the light 3 reflected by each of the two dividing mirrors adjacent to each other has the same phase in the intermediate wavelength component 72. The bright line (1) crosses to the right of the center of the short wavelength component 71 because the light 3 reflected by each of the two adjacent split mirrors is slightly out of phase with the short wavelength component 71. .. In the long wavelength component 73, the phase of the light 3 reflected by each of the two dividing mirrors adjacent to each other is shifted by a code opposite to that of the short wavelength component 71, so that the bright line (1) is the long wavelength component. Cross to the left of the center of 73.
Since the phase of the light 3 is aligned at the center of the wavelength component where the relative piston is N-1 times the wavelength or N + 1 times the wavelength, the two are deviated from the bright line (1) in the radial direction. Bright lines (2) and (3) occur. Although FIG. 6B shows a case where there are three bright lines, there are cases where four or more bright lines corresponding to an integral multiple of the wavelength are generated.
The relative phase, which is the phase difference of the light 3 reflected by each of the two split mirrors, is different for all the wavelength components included in the spot image 70, and the position of the bright line changes continuously. When all the wavelength components are combined, an interference fringe 74 having an inclination according to a step between the two split mirrors appears.
 撮像素子17は、転像光学系12のレンズ14により結像されたそれぞれのスポット像を撮像する。
 撮像素子17は、例えば、スポット像60及びスポット像70のそれぞれを撮像する。
 撮像素子17は、それぞれのスポット像の撮像結果を示すデータとして、スポットデータをデータ処理部20のデータ抽出部21に出力する。
The image sensor 17 captures each spot image formed by the lens 14 of the image transfer optical system 12.
The image sensor 17 images, for example, the spot image 60 and the spot image 70, respectively.
The image sensor 17 outputs spot data to the data extraction unit 21 of the data processing unit 20 as data indicating the imaging results of each spot image.
 データ抽出部21は、例えば、内部メモリに記憶されている座標情報に基づいて、撮像素子17から出力されたスポットデータに含まれている分割鏡内スポットデータDDを特定し、分割鏡内スポットデータDDを分割鏡波面算出部22に出力する(図4のステップST1)。
 また、データ抽出部21は、例えば、内部メモリに記憶されている座標情報に基づいて、撮像素子17から出力されたスポットデータに含まれている境界スポットデータBDを特定し、境界スポットデータBDを段差算出部23に出力する(図4のステップST2)。
For example, the data extraction unit 21 identifies the spot data DD n in the split mirror included in the spot data output from the image sensor 17 based on the coordinate information stored in the internal memory, and spots in the split mirror. The data DD n is output to the split mirror wave surface calculation unit 22 (step ST1 in FIG. 4).
Further, the data extraction unit 21 specifies, for example, the boundary spot data BD n included in the spot data output from the image sensor 17 based on the coordinate information stored in the internal memory, and the boundary spot data BD n is output to the step calculation unit 23 (step ST2 in FIG. 4).
 分割鏡波面算出部22は、データ抽出部21から分割鏡内スポットデータDDを受けると、分割鏡内スポットデータDDが示すスポット像60の撮像結果に基づいて、分割鏡1-nの波面を算出する(図4のステップST3)。
 以下、分割鏡波面算出部22による分割鏡1-nの波面の算出処理を具体的に説明する。
When the split mirror wave plane calculation unit 22 receives the spot data DD n in the split mirror from the data extraction unit 21, the wave plane of the split mirror 1-n is based on the imaging result of the spot image 60 indicated by the spot data DD n in the split mirror. Is calculated (step ST3 in FIG. 4).
Hereinafter, the wave surface calculation process of the split mirror 1-n by the split mirror wave surface calculation unit 22 will be specifically described.
 例えば、分割鏡1-nからマイクロレンズアレイ11までの横倍率がM倍、フレネルゾーンプレート13及びレンズ14による横倍率がM倍、マイクロレンズアレイ11の焦点距離がfであるとする。
 分割鏡1-nの鏡面が、マイクロレンズアレイ11における光の入射面に対して、θ=(θ,θ)だけ傾いている場合、分割鏡1-nにより反射された光3は、2θだけ傾いた状態でマイクロレンズアレイ11に入射されて、角度倍率1/M倍でマイクロレンズアレイ11を透過する。このとき、レンズ14によって結像されるスポット像60は、当該光3が入射されるマイクロレンズ11a-nの光軸から、x方向に2θf/Mだけ偏心され、y方向に2θf/Mだけ偏心される。
 また、スポット像60は、横倍率M倍で撮像素子17に結像されるので、基準のスポット像の位置(x,y)から、x方向に2θfM/Mだけ偏心し、y方向に2θfM/Mだけ偏心している位置にスポット像60が現れる。基準のスポット像の位置(x,y)は、θ=0,θ=0のときの位置である。
For example, the lateral magnification of the divided mirror 1-n to the microlens array 11 is 1 × M, 2 × M is the transverse magnification of the Fresnel zone plate 13 and the lens 14, the focal length of the microlens array 11 is assumed to be f.
When the mirror surface of the split mirror 1-n is tilted by θ = (θ x , θ y ) with respect to the incident surface of the light in the microlens array 11, the light 3 reflected by the split mirror 1-n is is incident on the microlens array 11 only tilted 2 [Theta], is transmitted through the microlens array 11 at an angle magnification 1 / M 1 times. At this time, the spot image 60 imaged by the lens 14 is eccentric by 2θ x f / M 1 in the x direction from the optical axis of the microlens 11an into which the light 3 is incident, and 2θ y in the y direction. Only f / M 1 is eccentric.
Furthermore, the spot image 60, since it is formed on the image sensor 17 at twice the lateral magnification M, from the reference position of the spot image (x 0, y 0), in the x direction by 2 [Theta] x fM 2 / M 1 eccentric Then, the spot image 60 appears at a position eccentric by 2 θ y fM 2 / M 1 in the y direction. The position of the reference spot image (x 0 , y 0 ) is the position when θ x = 0 and θ y = 0.
 分割鏡波面算出部22は、分割鏡内スポットデータDDが示すスポット像60の撮像結果から、スポット像60に対応する撮像素子17における複数の画素g(k=1,・・・,K)の照度Lと、複数の画素gが存在しているx座標xとを取得する。Kは、2以上の整数である。
 分割鏡波面算出部22は、以下の式(1)に示すように、複数の画素gにおけるそれぞれの照度Lと、複数の画素gが存在しているx座標xとの積の総和Lxを算出する。

Figure JPOXMLDOC01-appb-I000001
 分割鏡波面算出部22は、以下の式(2)に示すように、積の総和Lxを、複数の画素gの照度Lの総和で除算することで、スポット像60のx方向の重心Cを算出する。

Figure JPOXMLDOC01-appb-I000002
From the image pickup result of the spot image 60 indicated by the spot data DD n in the split mirror, the split mirror wave surface calculation unit 22 has a plurality of pixels g k (k = 1, ..., K) in the image pickup device 17 corresponding to the spot image 60. ) The illuminance L k and the x-coordinate x k in which a plurality of pixels g k exist are acquired. K is an integer greater than or equal to 2.
Splitting mirror wavefront calculation unit 22, as shown in the following equation (1), the product of each of the illuminance L k in a plurality of pixels g k, and x-coordinate x k in which a plurality of pixels g k are present Calculate the total Lx.

Figure JPOXMLDOC01-appb-I000001
As shown in the following equation (2), the split mirror wave plane calculation unit 22 divides the total sum Lx of the products by the sum of the illuminance L k of the plurality of pixels g k , thereby dividing the center of gravity of the spot image 60 in the x direction. Calculate C x .

Figure JPOXMLDOC01-appb-I000002
 分割鏡波面算出部22は、分割鏡内スポットデータDDが示すスポット像60の撮像結果から、複数の画素gが存在しているy座標yを取得する。
 分割鏡波面算出部22は、以下の式(3)に示すように、複数の画素gにおけるそれぞれの照度Lと、複数の画素gが存在しているy座標yとの積の総和Lyを算出する。

Figure JPOXMLDOC01-appb-I000003
 分割鏡波面算出部22は、以下の式(4)に示すように、積の総和Lyを、複数の画素gの照度Lの総和で除算することで、スポット像60のy方向の重心Cを算出する。


Figure JPOXMLDOC01-appb-I000004
The split mirror wave surface calculation unit 22 acquires the y coordinate y k in which a plurality of pixels g k exist from the imaging result of the spot image 60 indicated by the spot data DD n in the split mirror.
Splitting mirror wavefront calculation unit 22, as shown in the following equation (3), the product of each of the illuminance L k in a plurality of pixels g k, and y-coordinate y k to a plurality of pixels g k are present Calculate the total Ly.

Figure JPOXMLDOC01-appb-I000003
As shown in the following equation (4), the split mirror wave surface calculation unit 22 divides the total product Ly by the total sum of the illuminance L k of the plurality of pixels g k , thereby dividing the center of gravity of the spot image 60 in the y direction. to calculate the C y.


Figure JPOXMLDOC01-appb-I000004
 分割鏡波面算出部22は、以下の式(5)及び式(6)に示すように、基準のスポット像の位置(x,y)と、スポット像60の重心位置(C,C)と、スポット像60の偏心量である(2θfM/M,2θfM/M)とから、分割鏡1-nの局所的な傾き(θ,θ)を算出する。分割鏡1-nの局所的な傾き(θ,θ)は、分割鏡1-nにおける光3の反射地点の傾きである。

Figure JPOXMLDOC01-appb-I000005
 基準のスポット像の位置(x,y)は、既値であり、例えば、分割鏡波面算出部22の内部メモリに格納されている。
 また、横倍率M倍、横倍率M倍、及び焦点距離fのそれぞれは、既値であり、例えば、分割鏡波面算出部22の内部メモリに格納されている。
As shown in the following equations (5) and (6), the split mirror wave surface calculation unit 22 determines the position of the reference spot image (x 0 , y 0 ) and the position of the center of gravity of the spot image 60 (C x , C). From y ) and the eccentricity of the spot image 60 (2θ x fM 2 / M 1 , 2θ y fM 2 / M 1 ), the local inclination (θ x , θ y ) of the split mirror 1-n is determined. calculate. The local inclination (θ x , θ y ) of the dividing mirror 1-n is the inclination of the reflection point of the light 3 in the dividing mirror 1-n.

Figure JPOXMLDOC01-appb-I000005
The position (x 0 , y 0 ) of the reference spot image is an existing value and is stored in, for example, the internal memory of the split mirror wave surface calculation unit 22.
Further, the lateral magnification M 1 × a lateral magnification M 2 times, and each of the focal length f, is already values, for example, are stored in the internal memory of the divided mirror wavefront calculator 22.
 分割鏡波面算出部22は、分割鏡1-nの局所的な傾き(θ,θ)を算出すると、分割鏡1-nの局所的な傾き(θ,θ)から、分割鏡1-nの波面を算出する。
 分割鏡1-nの波面は、3次元空間上の曲面である。分割鏡1-nの波面がZ1-n=W(x,y)で表されるとすると、分割鏡1-nの波面Z1-nと、分割鏡1-nの局所的な傾き(θ,θ)との間には、以下の式(7)に示すような関係がある。(x,y)は、分割鏡1-nに係るスポット像60の位置であり、j=1,・・・,Jである。Jは、2以上の整数である。
Splitting mirror wavefront calculation unit 22, the local inclination of the divided mirror 1-n (θ x, θ y) when calculating the local slope of the divided mirror 1-n (θ x, θ y) from the divided mirror The wave surface of 1-n is calculated.
The wave surface of the split mirror 1-n is a curved surface in three-dimensional space. Assuming that the wave plane of the split mirror 1-n is represented by Z 1-n = W (x j , y j ), the wave plane Z 1-n of the split mirror 1-n and the local of the split mirror 1-n There is a relationship with the slope (θ x , θ y ) as shown in the following equation (7). (X j , y j ) is the position of the spot image 60 related to the split mirror 1-n, and j = 1, ..., J. J is an integer of 2 or more.

Figure JPOXMLDOC01-appb-I000006

Figure JPOXMLDOC01-appb-I000006
 式(7)が示す2×J個の関係式から、W(x,y)が示す曲面の形状である分割鏡1-nの波面Z1-nを推定することが可能である。
 2×J個の関係式から、分割鏡1-nの波面Z1-nを推定する処理自体は、公知の技術であるため、詳細な説明を省略する。
 式(5)(6)(7)では、反射による折り返しのため、鏡面の形状と波面の形状が、2倍だけ異なる関係を用いている。波面の局所的な傾きが、式(5)(6)(7)によって計算できることは、被検鏡1が入射方向に光線を折り返す場合に限定されない。ただし、(θ,θ)が被検鏡1の局所的な傾きと一致するのは、被検鏡1が入射方向に光線を折り返す場合であり、被検鏡1が入射方向に光線を折り返さない場合、折り返し角度に応じた係数を波面の局所的な傾きに乗じて換算する必要がある。
From the 2 × J relational expressions shown in the equation (7), it is possible to estimate the wave surface Z 1-n of the split mirror 1-n, which is the shape of the curved surface indicated by W (x j , y j ).
Since the process itself of estimating the wave surface Z 1-n of the split mirror 1-n from the 2 × J relational expressions is a known technique, detailed description thereof will be omitted.
In the equations (5), (6) and (7), the mirror surface shape and the wave surface shape are different by twice because of the folding back due to reflection. The fact that the local inclination of the wave surface can be calculated by the equations (5), (6), and (7) is not limited to the case where the test mirror 1 turns the light ray in the incident direction. However, (θ x , θ y ) coincides with the local inclination of the test mirror 1 when the test mirror 1 turns back the light beam in the incident direction, and the test mirror 1 emits the light ray in the incident direction. If it does not fold, it is necessary to multiply the local slope of the wave surface by the coefficient according to the fold angle and convert it.
 段差算出部23は、データ抽出部21から境界スポットデータBDを受けると、境界スポットデータBDが示すスポット像70の撮像結果に基づいて、2つの分割鏡の間の段差Gapを算出する(図4のステップST4)。
 以下、段差算出部23による段差Gapの算出処理を具体的に説明する。
When the step calculation unit 23 receives the boundary spot data BD n from the data extraction unit 21, the step calculation unit 23 calculates the step gap between the two dividing mirrors based on the imaging result of the spot image 70 indicated by the boundary spot data BD n (). Step ST4 in FIG. 4).
Hereinafter, the step Gap calculation process by the step calculation unit 23 will be specifically described.
 段差算出部23は、境界スポットデータBDが示すスポット像70の撮像結果から、干渉縞74の傾斜を算出する。
 即ち、段差算出部23は、スポット像70の撮像結果を画像I(x,y)として、画像I(x,y)を空間フーリエ変換し、フーリエ変換結果F(ωx,ωy)を得る。
 段差算出部23は、フーリエ変換結果F(ωx,ωy)を極座標変換して、以下の式(8)に示すような極座標変換結果G(r’,θ’)を得る。

Figure JPOXMLDOC01-appb-I000007
 式(8)において、exp(-αθ’r)は、r’が大きくなるほど、指数関数的に減少していく、G(r’,θ’)の包絡線成分である。αθ’は、指数減少係数であり、指数減少係数αθ’が小さいほど、包絡線の減少速度が遅くなる。指数減少係数αθ’とθ’は、互いに依存している。g(r’,θ’)は、例えば、cos(r’)で表される振動成分である。
 段差算出部23は、極座標変換結果G(r’,θ’)のθ’を変化させて、それぞれのθ’に対応する指数減少係数αθ’を互いに比較し、最も小さい指数減少係数αθ’を特定する。
 最も小さい指数減少係数αθ’に対応するθ’の方向は、画像I(x,y)の中で、自己相関が最も大きい方向であるため、干渉縞74の傾斜方向と対応する。
 段差算出部23は、最も小さい指数減少係数αθ’に対応するθ’を、干渉縞74の傾斜方向に決定する。
The step calculation unit 23 calculates the inclination of the interference fringes 74 from the imaging result of the spot image 70 indicated by the boundary spot data BD n .
That is, the step calculation unit 23 uses the imaging result of the spot image 70 as the image I (x, y), performs spatial Fourier transform on the image I (x, y), and obtains the Fourier transform result F (ωx, ωy).
The step calculation unit 23 converts the Fourier transform result F (ωx, ωy) into polar coordinates to obtain the polar coordinate transformation result G (r', θ') as shown in the following equation (8).

Figure JPOXMLDOC01-appb-I000007
In the formula (8), exp (−α θ ′ r) is an envelope component of G (r ′, θ ′) that decreases exponentially as r ′ increases. α θ'is an exponential decrease coefficient, and the smaller the exponential decrease coefficient α θ' , the slower the decrease rate of the envelope. The exponential reduction coefficients α θ'and θ'are dependent on each other. g (r', θ') is, for example, a vibration component represented by cos (r').
The step calculation unit 23 changes the θ'of the polar coordinate conversion result G (r', θ'), compares the exponential decrease coefficient α θ'corresponding to each θ' , and has the smallest exponential decrease coefficient α θ. ' Identify.
The direction of θ'corresponding to the smallest exponential decrease coefficient α θ'corresponds to the inclination direction of the interference fringes 74 because it is the direction having the largest autocorrelation in the image I (x, y).
The step calculation unit 23 determines θ'corresponding to the smallest exponential decrease coefficient α θ'in the inclination direction of the interference fringes 74.
 段差算出部23は、干渉縞74の傾斜方向θ’を決定すると、傾斜方向θ’から2つの分割鏡の間の段差Gapを算出する。
 例えば、分割鏡1-1と分割鏡1-2との間の段差Gap1,2の算出式は、以下の式(9)のように表される。

Figure JPOXMLDOC01-appb-I000008
 D1,2は、マイクロレンズ11a-(1)(2)の開口径、r1,2は、瞳中心からマイクロレンズ11a-(1)(2)までの距離、f1,2は、マイクロレンズ11a-(1)(2)の焦点距離である。
When the step calculation unit 23 determines the inclination direction θ'of the interference fringes 74, the step calculation unit 23 calculates the step Gap between the two split mirrors from the inclination direction θ'.
For example, the formula for calculating the steps Gap 1 and 2 between the split mirror 1-1 and the split mirror 1-2 is expressed as the following formula (9).

Figure JPOXMLDOC01-appb-I000008
D 1 and 2 are the aperture diameters of the microlenses 11a- (1) and (2), r 1 and 2 are the distances from the center of the pupil to the microlenses 11a- (1) and (2), and f 1 and 2 are the micro lenses. This is the focal length of the lenses 11a- (1) and (2).
 被検鏡波面算出部24は、段差算出部23により算出された段差Gap1,2、Gap2,3、Gap3,4、Gap4,5、Gap5,6、Gap6,1と、分割鏡波面算出部22により算出された分割鏡1-1~1-6の波面Z1-1、1-2、1-3、1-4、1-5、1-6とから、被検鏡1の波面を算出する(図4のステップST5)。
 以下、被検鏡波面算出部24による被検鏡1の波面の算出処理を具体的に説明する。
Test mirror wavefront calculation unit 24, step Gap, 1, 2 calculated by the step calculation unit 23, Gap 2,3, Gap 3,4, Gap 4,5, Gap 5,6, and Gap, 6,1, divided Wave surfaces of the split mirrors 1-1 to 1-6 calculated by the mirror wave surface calculation unit 22 Z 1-1, Z 1-2, Z 1-3, Z 1-4, Z 1-5, Z 1-6 From, the wave surface of the test mirror 1 is calculated (step ST5 in FIG. 4).
Hereinafter, the wave surface calculation process of the test mirror 1 by the test mirror wave surface calculation unit 24 will be specifically described.
 まず、被検鏡波面算出部24は、以下の式(10)に示す方程式を設定する。

1-1+p-(Z1-2+p)=2Gap1,2
1-2+p-(Z1-3+p)=2Gap2,3
1-3+p-(Z1-4+p)=2Gap3,4
1-4+p-(Z1-5+p)=2Gap4,5
1-5+p-(Z1-6+p)=2Gap5,6
1-6+p-(Z1-1+p)=2Gap6,1
             (10)
 式(10)において、p,p,p,p,p,pは、未知のパラメータである。
 Gap1,2は、分割鏡1-1と分割鏡1-2との間の段差、Gap2,3は、分割鏡1-2と分割鏡1-3との間の段差、Gap3,4は、分割鏡1-3と分割鏡1-4との間の段差である。
 Gap4,5は、分割鏡1-4と分割鏡1-5との間の段差、Gap5,6は、分割鏡1-5と分割鏡1-6との間の段差、Gap6,1は、分割鏡1-6と分割鏡1-1との間の段差である。
First, the test mirror wave surface calculation unit 24 sets the equation shown in the following equation (10).

Z 1-1 + p 1- (Z 1-2 + p 2 ) = 2Gap 1,2
Z 1-2 + p 2- (Z 1-3 + p 3 ) = 2Gap 2,3
Z 1-3 + p 3- (Z 1-4 + p 4 ) = 2Gap 3,4
Z 1-4 + p 4 - (Z 1-5 + p 5) = 2Gap 4,5
Z 1-5 + p 5- (Z 1-6 + p 6 ) = 2Gap 5,6
Z 1-6 + p 6- (Z 1-1 + p 1 ) = 2Gap 6,1
(10)
In equation (10), p 1 , p 2 , p 3 , p 4 , p 5 , and p 6 are unknown parameters.
Gap 1 and 2 are steps between the dividing mirror 1-1 and the dividing mirror 1-2, and Gap 2 and 3 are steps between the dividing mirror 1-2 and the dividing mirror 1-3, Gap 3 , 4 Is a step between the split mirrors 1-3 and the split mirrors 1-4.
Gap 4 , 5 is the step between the dividing mirror 1-4 and the dividing mirror 1-5, Gap 5 , 6 is the step between the dividing mirror 1-5 and the dividing mirror 1-6, Gap 6 , 1 Is a step between the split mirror 1-6 and the split mirror 1-1.
 被検鏡波面算出部24は、式(10)に示す方程式における未知のパラメータp,p,p,p,p,pを、例えば、最小二乗法によって推定する。未知のパラメータp,p,p,p,p,pの推定処理自体は、公知の技術であるため詳細な説明を省略する。
 被検鏡波面算出部24は、分割鏡1-1~1-6の波面Z1-1~Z1-6を、以下の式(11)のように補正し、補正後の波面Z1-1’~Z1-6’を、被検鏡1の波面とする。

1-1’=Z1-1+p
1-2’=Z1-2+p
1-3’=Z1-3+p
1-4’=Z1-4+p
1-5’=Z1-5+p
1-6’=Z1-6+p
             (11)
The mirror wave surface calculation unit 24 estimates unknown parameters p 1 , p 2 , p 3 , p 4 , p 5 , p 6 in the equation shown in equation (10) by, for example, the least squares method. Since the estimation process itself of the unknown parameters p 1 , p 2 , p 3 , p 4 , p 5 , and p 6 is a known technique, detailed description thereof will be omitted.
The wave surface calculation unit 24 to be inspected corrects the wave surfaces Z 1-1 to Z 1-6 of the split mirrors 1-1 to 1-6 as in the following equation (11), and the corrected wave surface Z 1- the 1 '~ Z 1-6', the wavefront of the mirror 1.

Z 1-1 '= Z 1-1 + p 1
Z 1-2 '= Z 1-2 + p 2
Z 1-3 '= Z 1-3 + p 3
Z 1-4 '= Z 1-4 + p 4
Z 1-5 '= Z 1-5 + p 5
Z 1-6 '= Z 1-6 + p 6
(11)
 以上の実施の形態1では、複数の分割鏡1-1~1-6が組み合わされている被検鏡1により反射された光3を集光させる複数のマイクロレンズ11aを有するマイクロレンズアレイ11と、複数のマイクロレンズ11aによりそれぞれ集光された光3に含まれている複数の波長成分のうち、波長が長い波長成分ほど大きく回折させ、回折させたそれぞれの波長成分をスポット像として結像させる転像光学系12と、転像光学系12により結像されたそれぞれのスポット像を撮像する撮像素子17と、撮像素子17により撮像された複数のスポット像のうち、複数の分割鏡1-1~1-6の中で、互いに隣り合っている2つの分割鏡のそれぞれに反射された光に対応するスポット像に基づいて、2つの分割鏡の間の段差を算出する段差算出部23とを備えるように、鏡面形状測定装置2を構成した。したがって、鏡面形状測定装置2は、メンテナンスが必要な駆動機構を用いることなく、被検鏡1が有している複数の分割鏡1-1~1-6の間の段差を算出することができる。 In the above embodiment 1, the microlens array 11 has a plurality of microlenses 11a for condensing the light 3 reflected by the test mirror 1 in which a plurality of split mirrors 1-1 to 1-6 are combined. Of the plurality of wavelength components contained in the light 3 condensed by the plurality of microlenses 11a, the longer the wavelength component, the larger the diffraction, and each diffracted wavelength component is imaged as a spot image. Of the image pickup element 17 that captures the image of each spot imaged by the image change optical system 12, the image pickup element 17 imaged by the image transfer optical system 12, and the plurality of spot images imaged by the image pickup element 17, a plurality of split mirrors 1-1 In 1-6, the step calculation unit 23 that calculates the step between the two dividing mirrors based on the spot image corresponding to the light reflected by each of the two dividing mirrors adjacent to each other. The mirror surface shape measuring device 2 was configured to be provided. Therefore, the mirror surface shape measuring device 2 can calculate the step between the plurality of split mirrors 1-1 to 1-6 possessed by the test mirror 1 without using a drive mechanism that requires maintenance. ..
実施の形態2.
 実施の形態2では、第1のシリンドリカルレンズアレイ81と、第2のシリンドリカルレンズアレイ82とを備える鏡面形状測定装置について説明する。
Embodiment 2.
In the second embodiment, a mirror surface shape measuring device including the first cylindrical lens array 81 and the second cylindrical lens array 82 will be described.
 図7は、実施の形態2に係る鏡面形状測定装置2を含む反射鏡システムを示す構成図である。図7において、図1と同一符号は同一又は相当部分を示すので説明を省略する。
 図7に示す反射鏡システムでは、被検鏡1が、二輪帯の鏡であるものとする。
 被検鏡1は、複数の分割鏡1-1~1-6,1-11~1-22が組み合わされている。
 分割鏡1-1~1-6,1-11~1-22のそれぞれは、被検鏡1の一部を構成している部分鏡である。
FIG. 7 is a configuration diagram showing a reflector system including the mirror surface shape measuring device 2 according to the second embodiment. In FIG. 7, the same reference numerals as those in FIG. 1 indicate the same or corresponding parts, and thus the description thereof will be omitted.
In the reflector system shown in FIG. 7, it is assumed that the test mirror 1 is a two-wheeled band mirror.
The test mirror 1 is a combination of a plurality of split mirrors 1-1 to 1-6, 1-11 to 1-22.
Each of the split mirrors 1-1 to 1-6 and 1-11 to 1-22 is a partial mirror that constitutes a part of the test mirror 1.
 第1のシリンドリカルリレーレンズアレイ81は、被検鏡1と第2のシリンドリカルリレーレンズアレイ82との間に配置されており、かつ、xy平面と平行に配置されている。
 第1のシリンドリカルリレーレンズアレイ81は、被検鏡1側の面に複数のシリンドリカルレンズ81aを備え、第2のシリンドリカルリレーレンズアレイ82側の面に複数のシリンドリカルレンズ81bを備えている。
 複数のシリンドリカルレンズ81a及び複数のシリンドリカルレンズ81bのそれぞれは、x方向に並んでいる。
 複数のシリンドリカルレンズ81aは、複数のシリンドリカルレンズ81bの中のいずれかのシリンドリカルレンズ81bとペアになっている。
 シリンドリカルレンズ81aとシリンドリカルレンズ81bとのペアは、焦線が一致するように配置されている。
 シリンドリカルレンズ81aとシリンドリカルレンズ81bとのペアは、分割鏡1-1~1-6,1-11~1-22のうち、いずれかの分割鏡により反射された光3の像をy軸と平行な軸を対称の軸として反転させる。
The first cylindrical relay lens array 81 is arranged between the test mirror 1 and the second cylindrical relay lens array 82, and is arranged parallel to the xy plane.
The first cylindrical relay lens array 81 includes a plurality of cylindrical lenses 81a on the surface on the side of the test mirror 1, and a plurality of cylindrical lenses 81b on the surface on the side of the second cylindrical relay lens array 82.
Each of the plurality of cylindrical lenses 81a and the plurality of cylindrical lenses 81b are arranged in the x direction.
The plurality of cylindrical lenses 81a are paired with any one of the plurality of cylindrical lenses 81b.
The pair of the cylindrical lens 81a and the cylindrical lens 81b are arranged so that the focused lines coincide with each other.
In the pair of the cylindrical lens 81a and the cylindrical lens 81b, the image of the light 3 reflected by any of the dividing mirrors 1-1 to 1-6 and 1-11 to 1-22 is parallel to the y-axis. Axis is inverted as a symmetric axis.
 第2のシリンドリカルリレーレンズアレイ82は、第1のシリンドリカルリレーレンズアレイ81とマイクロレンズアレイ11との間に配置されており、かつ、xy平面と平行に配置されている。
 第2のシリンドリカルレンズアレイ82は、第1のシリンドリカルリレーレンズアレイ81側の面に複数のシリンドリカルレンズ82aを備え、マイクロレンズアレイ11側の面に複数のシリンドリカルレンズ82bを備えている。
 複数のシリンドリカルレンズ82aは、複数のシリンドリカルレンズ82bの中のいずれかのシリンドリカルレンズ82bとペアになっている。
 シリンドリカルレンズ82aとシリンドリカルレンズ82bとのペアは、焦線が一致するように配置されている。
 シリンドリカルレンズ82aとシリンドリカルレンズ82bとのペアは、シリンドリカルリレーレンズ81から出射された光3の像を反転させる。
The second cylindrical relay lens array 82 is arranged between the first cylindrical relay lens array 81 and the microlens array 11, and is arranged parallel to the xy plane.
The second cylindrical lens array 82 includes a plurality of cylindrical lenses 82a on the surface of the first cylindrical relay lens array 81, and a plurality of cylindrical lenses 82b on the surface of the microlens array 11 side.
The plurality of cylindrical lenses 82a are paired with any one of the plurality of cylindrical lenses 82b.
The pair of the cylindrical lens 82a and the cylindrical lens 82b are arranged so that the focused lines coincide with each other.
The pair of the cylindrical lens 82a and the cylindrical lens 82b inverts the image of the light 3 emitted from the cylindrical relay lens 81.
 複数のシリンドリカルレンズ82aのピッチは、複数のシリンドリカルレンズ81aのピッチと同一である。ただし、ピッチの同一は、厳密に同一であるものに限るものではなく、実用上問題のない範囲でピッチが異なっていてもよい。
 複数のシリンドリカルレンズ82aの配列方向は、複数のシリンドリカルレンズ81aの配列方向と異なっている。
 図7に示す鏡面形状測定装置2では、複数のシリンドリカルレンズ82aの配列方向が、x方向から60度傾いている方向である。しかし、これは一例に過ぎず、複数のシリンドリカルレンズ82aの配列方向が、例えば、x方向から40度傾いている方向であってもよいし、50度傾いている方向であってもよい。
 また、図7に示す鏡面形状測定装置2では、第1のシリンドリカルリレーレンズアレイ81が、被検鏡1側の面に複数のシリンドリカルレンズ81aを備え、第2のシリンドリカルリレーレンズアレイ82側の面に複数のシリンドリカルレンズ81bを備えている。しかし、これは一例に過ぎず、複数のシリンドリカルレンズ81aを備えたシリンドリカルレンズアレイと、複数のシリンドリカルレンズ81bを備えたシリンドリカルレンズアレイとを対向するように配置することにより、第1のシリンドリカルリレーレンズアレイ81を構成してもよい。
 また、図7に示す鏡面形状測定装置2では、第2のシリンドリカルリレーレンズアレイ82が、第1のシリンドリカルリレーレンズアレイ81側の面に複数のシリンドリカルレンズ82aを備え、マイクロレンズアレイ11側の面に複数のシリンドリカルレンズ82bを備えている。しかし、これは一例に過ぎず、複数のシリンドリカルレンズ82aを備えたシリンドリカルレンズアレイと、複数のシリンドリカルレンズ82bを備えたシリンドリカルレンズアレイとを対向するように配置することにより、第2のシリンドリカルリレーレンズアレイ82を構成してもよい。
The pitch of the plurality of cylindrical lenses 82a is the same as the pitch of the plurality of cylindrical lenses 81a. However, the same pitch is not limited to exactly the same pitch, and the pitch may be different within a range where there is no practical problem.
The arrangement direction of the plurality of cylindrical lenses 82a is different from the arrangement direction of the plurality of cylindrical lenses 81a.
In the mirror surface shape measuring device 2 shown in FIG. 7, the arrangement direction of the plurality of cylindrical lenses 82a is a direction inclined by 60 degrees from the x direction. However, this is only an example, and the arrangement direction of the plurality of cylindrical lenses 82a may be, for example, a direction inclined by 40 degrees from the x direction or a direction inclined by 50 degrees.
Further, in the mirror surface shape measuring device 2 shown in FIG. 7, the first cylindrical relay lens array 81 includes a plurality of cylindrical lenses 81a on the surface on the test mirror 1 side, and the surface on the second cylindrical relay lens array 82 side. Is equipped with a plurality of cylindrical lenses 81b. However, this is only an example, and the first cylindrical relay lens is arranged by arranging the cylindrical lens array provided with the plurality of cylindrical lenses 81a and the cylindrical lens array provided with the plurality of cylindrical lenses 81b so as to face each other. The array 81 may be configured.
Further, in the mirror surface shape measuring device 2 shown in FIG. 7, the second cylindrical relay lens array 82 includes a plurality of cylindrical lenses 82a on the surface on the side of the first cylindrical relay lens array 81, and the surface on the microlens array 11 side. Is equipped with a plurality of cylindrical lenses 82b. However, this is only an example, and the second cylindrical relay lens is provided by arranging the cylindrical lens array provided with the plurality of cylindrical lenses 82a and the cylindrical lens array provided with the plurality of cylindrical lenses 82b so as to face each other. The array 82 may be configured.
 図8は、マイクロレンズアレイ11による光3の像と、マイクロレンズアレイ11が有している複数のマイクロレンズ11aの配置とを示す説明図である。図8において、図5と同一符号は同一又は相当部分を示すので説明を省略する。
 像51-11は、分割鏡1-11により反射された光3の像、像51-12は、分割鏡1-12により反射された光3の像、像51-13は、分割鏡1-13により反射された光3の像である。
 像51-14は、分割鏡1-14により反射された光3の像、像51-15は、分割鏡1-15により反射された光3の像、像51-16は、分割鏡1-16により反射された光3の像である。
 像51-17は、分割鏡1-17により反射された光3の像、像51-18は、分割鏡1-18により反射された光3の像、像51-19は、分割鏡1-19により反射された光3の像である。
 像51-20は、分割鏡1-20により反射された光3の像、像51-21は、分割鏡1-21により反射された光3の像、像51-22は、分割鏡1-22により反射された光3の像である。
FIG. 8 is an explanatory diagram showing an image of light 3 by the microlens array 11 and an arrangement of a plurality of microlenses 11a included in the microlens array 11. In FIG. 8, the same reference numerals as those in FIG. 5 indicate the same or corresponding parts, and thus the description thereof will be omitted.
Image 51-11 is an image of light 3 reflected by the split mirror 1-11, image 51-12 is an image of light 3 reflected by the split mirror 1-12, and image 51-13 is an image of light 3 reflected by the split mirror 1-12. It is an image of light 3 reflected by 13.
Image 51-14 is an image of light 3 reflected by the split mirror 1-14, image 51-15 is an image of light 3 reflected by the split mirror 1-15, and image 51-16 is an image of light 3 reflected by the split mirror 1-15. It is an image of light 3 reflected by 16.
Image 51-17 is an image of light 3 reflected by the split mirror 1-17, image 51-18 is an image of light 3 reflected by the split mirror 1-18, and image 51-19 is an image of light 3 reflected by the split mirror 1-18. It is an image of light 3 reflected by 19.
Image 51-20 is an image of light 3 reflected by the split mirror 1-20, image 51-21 is an image of light 3 reflected by the split mirror 1-21, and image 51-22 is an image of light 3 reflected by the split mirror 1-21. It is an image of light 3 reflected by 22.
 マイクロレンズ11a-11は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-11により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-12は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-12により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-13は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-13により反射された光3を集光するマイクロレンズ11aである。
The microlens 11a-11 is a microlens 11a that collects the light 3 reflected by the split mirror 1-11 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-12 is a microlens 11a that collects the light 3 reflected by the split mirror 1-12 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-13 is a microlens 11a that collects the light 3 reflected by the split mirror 1-13 among the plurality of microlenses 11a included in the microlens array 11.
 マイクロレンズ11a-14は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-14により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-15は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-15により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-16は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-16により反射された光3を集光するマイクロレンズ11aである。
The microlens 11a-14 is a microlens 11a that collects the light 3 reflected by the split mirror 1-14 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-15 is a microlens 11a that collects the light 3 reflected by the split mirror 1-15 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-16 is a microlens 11a that collects the light 3 reflected by the split mirror 1-16 among the plurality of microlenses 11a included in the microlens array 11.
 マイクロレンズ11a-17は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-17により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-18は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-18により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-19は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-19により反射された光3を集光するマイクロレンズ11aである。
The microlens 11a-17 is a microlens 11a that collects the light 3 reflected by the split mirror 1-17 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-18 is a microlens 11a that collects the light 3 reflected by the split mirror 1-18 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-19 is a microlens 11a that collects the light 3 reflected by the split mirror 1-19 among the plurality of microlenses 11a included in the microlens array 11.
 マイクロレンズ11a-20は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-20により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-21は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-21により反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-22は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-22により反射された光3を集光するマイクロレンズ11aである。
The microlens 11a-20 is a microlens 11a that collects the light 3 reflected by the split mirror 1-20 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-21 is a microlens 11a that collects the light 3 reflected by the split mirror 1-21 among the plurality of microlenses 11a included in the microlens array 11.
The microlens 11a-22 is a microlens 11a that collects the light 3 reflected by the split mirror 1-22 among the plurality of microlenses 11a included in the microlens array 11.
 マイクロレンズ11a-(11)(12)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-11及び分割鏡1-12のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(12)(13)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-12及び分割鏡1-13のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(13)(14)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-13及び分割鏡1-14のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (11) (12) collect the light 3 reflected by each of the split mirrors 1-11 and the split mirrors 1-12 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (12) (13) collect the light 3 reflected by each of the split mirrors 1-12 and the split mirrors 1-13 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (13) (14) collect the light 3 reflected by each of the split mirrors 1-13 and the split mirrors 1-14 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 マイクロレンズ11a-(14)(15)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-14及び分割鏡1-15のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(15)(16)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-15及び分割鏡1-16のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(16)(17)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-16及び分割鏡1-17のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (14) (15) collect the light 3 reflected by each of the split mirrors 1-14 and the split mirrors 1-15 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (15) (16) collect the light 3 reflected by each of the split mirrors 1-15 and the split mirrors 1-16 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (16) (17) collect the light 3 reflected by each of the split mirrors 1-16 and the split mirrors 1-17 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 マイクロレンズ11a-(17)(18)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-17及び分割鏡1-18のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(18)(19)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-18及び分割鏡1-19のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(19)(20)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-19及び分割鏡1-20のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (17) (18) collect the light 3 reflected by each of the split mirrors 1-17 and the split mirrors 1-18 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (18) (19) collect the light 3 reflected by each of the split mirrors 1-18 and the split mirrors 1-19 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (19) (20) collect the light 3 reflected by each of the split mirrors 1-19 and the split mirrors 1-20 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 マイクロレンズ11a-(20)(21)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-20及び分割鏡1-21のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(21)(22)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-21及び分割鏡1-22のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(22)(11)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-22及び分割鏡1-11のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (20) (21) collect the light 3 reflected by each of the split mirror 1-20 and the split mirror 1-21 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (21) (22) collect the light 3 reflected by each of the split mirrors 1-21 and the split mirrors 1-22 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (22) (11) collect the light 3 reflected by each of the split mirrors 1-22 and the split mirrors 1-11 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 マイクロレンズ11a-(1)(11)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-1及び分割鏡1-11のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(2)(11)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-2及び分割鏡1-11のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(2)(12)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-2及び分割鏡1-12のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (1) (11) collect the light 3 reflected by each of the split mirror 1-1 and the split mirror 1-11 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (2) (11) collect the light 3 reflected by each of the split mirrors 1-2 and the split mirrors 1-11 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (2) (12) collect the light 3 reflected by each of the split mirrors 1-2 and the split mirrors 1-12 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 マイクロレンズ11a-(2)(13)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-2及び分割鏡1-13のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(3)(13)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-3及び分割鏡1-13のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(3)(14)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-3及び分割鏡1-14のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (2) (13) collect the light 3 reflected by each of the split mirrors 1-2 and the split mirrors 1-13 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (3) (13) collect the light 3 reflected by the split mirrors 1-3 and the split mirrors 1-13 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (3) (14) collect the light 3 reflected by each of the split mirrors 1-3 and the split mirrors 1-14 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 マイクロレンズ11a-(3)(15)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-3及び分割鏡1-15のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(4)(15)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-4及び分割鏡1-15のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(4)(16)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-4及び分割鏡1-16のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (3) (15) collect the light 3 reflected by each of the split mirrors 1-3 and the split mirrors 1-15 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (4) (15) collect the light 3 reflected by the split mirrors 1-4 and the split mirrors 1-15 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (4) (16) collect the light 3 reflected by the split mirrors 1-4 and the split mirrors 1-16 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 マイクロレンズ11a-(4)(17)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-4及び分割鏡1-17のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(5)(17)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-5及び分割鏡1-17のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(5)(18)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-5及び分割鏡1-18のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (4) (17) collect the light 3 reflected by each of the split mirrors 1-4 and the split mirrors 1-17 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (5) (17) collect the light 3 reflected by each of the split mirrors 1-5 and the split mirrors 1-17 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (5) (18) collect the light 3 reflected by each of the split mirrors 1-5 and the split mirrors 1-18 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 マイクロレンズ11a-(5)(19)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-5及び分割鏡1-19のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(6)(19)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-6及び分割鏡1-19のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(6)(20)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-6及び分割鏡1-20のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (5) (19) collect the light 3 reflected by each of the split mirrors 1-5 and the split mirrors 1-19 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (6) (19) collect the light 3 reflected by each of the split mirrors 1-6 and the split mirrors 1-19 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (6) (20) collect the light 3 reflected by each of the split mirrors 1-6 and the split mirrors 1-20 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 マイクロレンズ11a-(6)(21)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-6及び分割鏡1-21のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(1)(21)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-1及び分割鏡1-21のそれぞれに反射された光3を集光するマイクロレンズ11aである。
 マイクロレンズ11a-(1)(22)は、マイクロレンズアレイ11が有している複数のマイクロレンズ11aのうち、分割鏡1-1及び分割鏡1-22のそれぞれに反射された光3を集光するマイクロレンズ11aである。
The microlenses 11a- (6) (21) collect the light 3 reflected by each of the split mirrors 1-6 and the split mirrors 1-21 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (1) (21) collect the light 3 reflected by each of the split mirror 1-1 and the split mirror 1-21 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
The microlenses 11a- (1) and (22) collect the light 3 reflected by the split mirror 1-1 and the split mirror 1-22 among the plurality of microlenses 11a included in the microlens array 11. It is a shining microlens 11a.
 図9は、マイクロレンズアレイ11による光3の像と、マイクロレンズアレイ11が有している複数のマイクロレンズ11aの配置と、第1のシリンドリカルレンズアレイ81の配置と、第2のシリンドリカルレンズアレイ82の配置とを示す説明図である。
 図9に示す複数のマイクロレンズ11aは、レンズピッチに対するマイクロレンズ11aの有効径が√3/2であるように配置されている。
 複数のシリンドリカルレンズ81aの配列方向は、x方向である。
 それぞれのシリンドリカルレンズ81aは、マイクロレンズアレイ11が有している複数のマイクロレンズ11aの中で、y方向に一列に並んでいる複数のマイクロレンズ11aと平行に配置されている。
 複数のシリンドリカルレンズ81aのピッチは、マイクロレンズアレイ11が有している複数のマイクロレンズ11aの中で、x方向から30度傾いている方向に並んでいる複数のマイクロレンズ11aのピッチの1/cos(30)倍である。
FIG. 9 shows an image of light 3 by the microlens array 11, an arrangement of a plurality of microlenses 11a included in the microlens array 11, an arrangement of a first cylindrical lens array 81, and a second cylindrical lens array. It is explanatory drawing which shows the arrangement of 82.
The plurality of microlenses 11a shown in FIG. 9 are arranged so that the effective diameter of the microlenses 11a with respect to the lens pitch is √3 / 2.
The arrangement direction of the plurality of cylindrical lenses 81a is the x direction.
Each of the cylindrical lenses 81a is arranged in parallel with the plurality of microlenses 11a arranged in a row in the y direction among the plurality of microlenses 11a included in the microlens array 11.
The pitch of the plurality of cylindrical lenses 81a is 1 / of the pitch of the plurality of microlenses 11a arranged in a direction inclined by 30 degrees from the x direction among the plurality of microlenses 11a included in the microlens array 11. It is cos (30) times.
 複数のシリンドリカルレンズ82aの配列方向は、x方向から約60度傾いている方向である。
 それぞれのシリンドリカルレンズ82aは、マイクロレンズアレイ11が有している複数のマイクロレンズ11aの中で、x方向から30度傾いている方向に一列に並んでいる複数のマイクロレンズ21aと平行に配置されている。
 複数のシリンドリカルレンズ82aのピッチは、マイクロレンズアレイ11が有している複数のマイクロレンズ11aの中で、y方向に並んでいる複数のマイクロレンズ12aのピッチの1/cos(30)倍である。
 図9に示す複数のマイクロレンズ11aのそれぞれにより集光される光3は、複数のシリンドリカルレンズ81aの境界によって分断されていない光であり、また、複数のシリンドリカルレンズ82aの境界によって分断されていない光である。
The arrangement direction of the plurality of cylindrical lenses 82a is a direction inclined by about 60 degrees from the x direction.
Each of the cylindrical lenses 82a is arranged in parallel with a plurality of microlenses 21a arranged in a row in a direction inclined by 30 degrees from the x direction among the plurality of microlenses 11a included in the microlens array 11. ing.
The pitch of the plurality of cylindrical lenses 82a is 1 / cos (30) times the pitch of the plurality of microlenses 12a arranged in the y direction among the plurality of microlenses 11a included in the microlens array 11. ..
The light 3 focused by each of the plurality of microlenses 11a shown in FIG. 9 is light that is not divided by the boundaries of the plurality of cylindrical lenses 81a, and is not divided by the boundaries of the plurality of cylindrical lenses 82a. It is light.
 図1及び図5に示すように、被検鏡1が、一輪帯の鏡であって、複数の分割鏡1-1~1-6が組み合わされている場合、2つの分割鏡の間の段差に対応する明線(1)~(3)が角度方向に生成される。
 図1に示す鏡面形状測定装置2では、転像光学系12が、複数のマイクロレンズ11aによりそれぞれ集光された光3に含まれている複数の波長成分のうち、波長が長い波長成分ほど大きく回折させ、回折させたそれぞれの波長成分をスポット像として撮像素子17に結像させている。したがって、段差算出部23が、スポット像70の撮像結果から、干渉縞74の傾斜を算出して、干渉縞74の傾斜から、2つの分割鏡の間の段差を算出することができる。
As shown in FIGS. 1 and 5, when the test mirror 1 is a one-wheeled mirror and a plurality of split mirrors 1-1 to 1-6 are combined, a step between the two split mirrors. Bright lines (1) to (3) corresponding to are generated in the angular direction.
In the mirror surface shape measuring device 2 shown in FIG. 1, the transposition optical system 12 has a larger wavelength component among a plurality of wavelength components contained in the light 3 condensed by the plurality of microlenses 11a, respectively. It is diffracted, and each of the diffracted wavelength components is imaged on the image pickup device 17 as a spot image. Therefore, the step calculation unit 23 can calculate the inclination of the interference fringes 74 from the imaging result of the spot image 70, and calculate the step between the two split mirrors from the inclination of the interference fringes 74.
 しかし、図7及び図8に示すように、被検鏡1が、二輪帯の鏡であって、複数の分割鏡1-1~1-6,1-11~1-22が組み合わされている場合、動径方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線が、動径方向に生成される。
 転像光学系12が、複数のマイクロレンズ11aによりそれぞれ集光された光3に含まれている複数の波長成分のうち、波長が長い波長成分ほど大きく回折させても、動径方向に生成された複数の明線が重なってしまう。したがって、段差算出部23が、スポット像70の撮像結果から、干渉縞74の傾斜を算出することができず、動径方向に並んでいる2つの分割鏡の間の段差を算出することができない。
However, as shown in FIGS. 7 and 8, the test mirror 1 is a two-wheeled band mirror, and a plurality of split mirrors 1-1 to 1-6, 1-11 to 1-22 are combined. In this case, a plurality of bright lines corresponding to the steps between the two split mirrors arranged in the radial direction are generated in the radial direction.
Even if the transposition optical system 12 diffracts the longer wavelength component of the plurality of wavelength components contained in the light 3 condensed by the plurality of microlenses 11a, the longer the wavelength component, the larger the wavelength component is generated in the radial direction. Multiple bright lines overlap. Therefore, the step calculation unit 23 cannot calculate the inclination of the interference fringes 74 from the imaging result of the spot image 70, and cannot calculate the step between the two split mirrors arranged in the radial direction. ..
 図7に示す鏡面形状測定装置2では、複数のシリンドリカルレンズ81aの配列方向と、複数のシリンドリカルレンズ82aの配列方向とが、60度異なっている。また、シリンドリカルレンズ81a及びシリンドリカルレンズ82aのそれぞれが、分割鏡1-1~1-6,1-11~1-22のうち、いずれかの分割鏡により反射された光3の像を反転させている。これにより、いずれかの分割鏡により反射された光3の像は、120度、回転される。
 複数のシリンドリカルレンズ81aの配列方向と、複数のシリンドリカルレンズ82aの配列方向とが、60度異なっている場合、動径方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線は、動径方向に対して、120度傾く。また、角度方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線は、動径方向に対して、30度傾く。
 段差算出部23は、動径方向に対する傾きの違いから、動径方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線と、角度方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線とを区別することができる。
 したがって、段差算出部23は、スポット像70の撮像結果から、動径方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線を、干渉縞74の傾斜として算出することができる。また、段差算出部23は、スポット像70の撮像結果から、角度方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線を、干渉縞74の傾斜として算出することができる。
In the mirror surface shape measuring device 2 shown in FIG. 7, the arrangement direction of the plurality of cylindrical lenses 81a and the arrangement direction of the plurality of cylindrical lenses 82a are different by 60 degrees. Further, each of the cylindrical lens 81a and the cylindrical lens 82a inverts the image of the light 3 reflected by any of the dividing mirrors 1-1 to 1-6 and 1-11 to 1-22. There is. As a result, the image of the light 3 reflected by any of the split mirrors is rotated by 120 degrees.
When the arrangement directions of the plurality of cylindrical lenses 81a and the arrangement directions of the plurality of cylindrical lenses 82a differ by 60 degrees, a plurality of bright lines corresponding to the steps between the two dividing mirrors arranged in the radial direction. Tilts 120 degrees with respect to the radial direction. Further, the plurality of bright lines corresponding to the steps between the two split mirrors arranged in the angular direction are inclined by 30 degrees with respect to the radial direction.
Due to the difference in inclination with respect to the radial direction, the step calculation unit 23 includes a plurality of bright lines corresponding to the steps between the two split mirrors arranged in the radial direction and the two split mirrors arranged in the angular direction. It is possible to distinguish from a plurality of bright lines corresponding to the steps between them.
Therefore, the step calculation unit 23 can calculate a plurality of bright lines corresponding to the steps between the two dividing mirrors arranged in the radial direction as the inclination of the interference fringes 74 from the imaging result of the spot image 70. it can. Further, the step calculation unit 23 can calculate a plurality of bright lines corresponding to the steps between the two dividing mirrors arranged in the angular direction as the inclination of the interference fringes 74 from the imaging result of the spot image 70. ..
 以下、段差算出部23による段差の算出処理を具体的に説明する。
 段差算出部23は、動径方向に対する傾きの違いから、動径方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線と、角度方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線とを区別する。
 段差算出部23は、動径方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線について、実施の形態1と同様に、干渉縞74の傾斜方向θ’を決定する。
 段差算出部23は、動径方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線が、動径方向に対して、120度傾いているため、動径方向に対する120度の傾きに基づいて、干渉縞74の傾斜方向θ’を補正する。
 例えば、分割鏡1-1と分割鏡1-22とに係る干渉縞74の傾斜方向θ1,22’の補正式は、以下の式(12)のように表される。

Figure JPOXMLDOC01-appb-I000009
 式(12)において、β1,22は、補正後の干渉縞74の傾斜方向である。
Hereinafter, the step calculation process by the step calculation unit 23 will be specifically described.
Due to the difference in inclination with respect to the radial direction, the step calculation unit 23 includes a plurality of bright lines corresponding to the steps between the two split mirrors arranged in the radial direction and the two split mirrors arranged in the angular direction. Distinguish between multiple bright lines corresponding to the steps between them.
The step calculation unit 23 determines the inclination direction θ'of the interference fringes 74 for the plurality of bright lines corresponding to the steps between the two split mirrors arranged in the radial direction, as in the first embodiment.
In the step calculation unit 23, since a plurality of bright lines corresponding to the steps between the two split mirrors arranged in the radial direction are inclined by 120 degrees with respect to the radial direction, the step calculation unit 23 is 120 degrees with respect to the radial direction. The inclination direction θ'of the interference fringe 74 is corrected based on the inclination of.
For example, the correction formula for the inclination direction θ 1, 22'of the interference fringes 74 related to the split mirror 1-1 and the split mirror 1-22 is expressed as the following formula (12).

Figure JPOXMLDOC01-appb-I000009
In the formula (12), β 1 , 22 are the inclination directions of the corrected interference fringes 74.
 段差算出部23は、補正後の干渉縞74の傾斜方向から、動径方向に並んでいる2つの分割鏡の間の段差Gapを算出する。
 例えば、分割鏡1-1と分割鏡1-22との間の段差Gap1,22の算出式は、以下の式(13)のように表される。

Figure JPOXMLDOC01-appb-I000010
 D1,22は、マイクロレンズ11a-(1)(22)の開口径、r1,22は、瞳中心からマイクロレンズ11a-(1)(22)までの距離、f1,22は、マイクロレンズ11a-(1)(22)の焦点距離である。
The step calculation unit 23 calculates the step Gap between the two split mirrors arranged in the radial direction from the tilt direction of the corrected interference fringes 74.
For example, the calculation formula for the steps Gap 1 and 22 between the split mirror 1-1 and the split mirror 1-22 is expressed as the following formula (13).

Figure JPOXMLDOC01-appb-I000010
D 1,22 is the aperture diameter of the microlenses 11a- (1) (22), r 1,22 is the distance from the center of the pupil to the microlenses 11a- (1) (22), and f 1,22 is the micro. This is the focal length of the lenses 11a- (1) and (22).
 段差算出部23は、角度方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線について、実施の形態1と同様に、干渉縞74の傾斜方向θ’を決定する。
 段差算出部23は、角度方向に並んでいる2つの分割鏡の間の段差に対応する複数の明線が、動径方向に対して、30度傾いているため、動径方向に対する30度の傾きに基づいて、干渉縞74の傾斜方向θ’を補正する。
 例えば、分割鏡1-12と分割鏡1-13とに係る干渉縞74の傾斜方向θ12,13’の補正式は、以下の式(14)のように表される。

Figure JPOXMLDOC01-appb-I000011
 式(14)において、β12,13は、補正後の干渉縞74の傾斜方向である。
The step calculation unit 23 determines the inclination direction θ'of the interference fringes 74 for the plurality of bright lines corresponding to the steps between the two split mirrors arranged in the angular direction, as in the first embodiment.
In the step calculation unit 23, since a plurality of bright lines corresponding to the steps between the two split mirrors arranged in the angular direction are inclined by 30 degrees with respect to the radial direction, the step calculation unit 23 is 30 degrees with respect to the radial direction. The inclination direction θ'of the interference fringe 74 is corrected based on the inclination.
For example, the correction formula for the inclination directions θ 12 , 13'of the interference fringes 74 related to the split mirror 1-12 and the split mirror 1-13 is expressed as the following formula (14).

Figure JPOXMLDOC01-appb-I000011
In the formula (14), β 12 and 13 are the inclination directions of the corrected interference fringes 74.
 段差算出部23は、補正後の干渉縞74の傾斜方向から、角度方向に並んでいる2つの分割鏡の間の段差Gapを算出する。
 例えば、分割鏡1-12と分割鏡1-13との間の段差Gap12,13の算出式は、以下の式(15)のように表される。

Figure JPOXMLDOC01-appb-I000012
 D12,13は、マイクロレンズ11a-(12)(13)の開口径、r12,13は、瞳中心からマイクロレンズ11a-(12)(13)までの距離、f12,13は、マイクロレンズ11a-(12)(13)の焦点距離である。
The step calculation unit 23 calculates the step Gap between the two split mirrors arranged in the angular direction from the tilt direction of the corrected interference fringes 74.
For example, the calculation formulas for the steps Gap 12 and 13 between the split mirrors 1-12 and the split mirrors 1-13 are expressed as the following formula (15).

Figure JPOXMLDOC01-appb-I000012
D 12 and 13 are the aperture diameters of the microlenses 11a- (12) and (13), r 12 and 13 are the distances from the center of the pupil to the microlenses 11a- (12) and (13), and f 12 and 13 are the micro lenses. It is the focal length of the lenses 11a-(12) (13).
 以上の実施の形態2では、複数のシリンドリカルレンズ81aを有する第1のシリンドリカルレンズアレイ81と、複数のシリンドリカルレンズ82aを有する第2のシリンドリカルレンズアレイ82とを備え、第1のシリンドリカルレンズアレイ81及び第2のシリンドリカルレンズアレイ82のそれぞれが、被検鏡1とマイクロレンズアレイ11との間に配置されており、第1のシリンドリカルレンズアレイ81が有する複数のシリンドリカルレンズ81aの配列方向と、第2のシリンドリカルレンズアレイ82が有する複数のシリンドリカルレンズ82aの配列方向とが異なるように、鏡面形状測定装置2を構成した。したがって、鏡面形状測定装置2は、被検鏡1が、二輪帯の鏡であっても、メンテナンスが必要な駆動機構を用いることなく、被検鏡1が有している複数の分割鏡の間の段差を算出することができる。 In the second embodiment as described above, the first cylindrical lens array 81 having the plurality of cylindrical lenses 81a and the second cylindrical lens array 82 having the plurality of cylindrical lenses 82a are provided, and the first cylindrical lens array 81 and the first cylindrical lens array 81 are provided. Each of the second cylindrical lens arrays 82 is arranged between the test mirror 1 and the microlens array 11, and the arrangement direction of the plurality of cylindrical lenses 81a included in the first cylindrical lens array 81 and the second The mirror surface shape measuring device 2 is configured so that the arrangement directions of the plurality of cylindrical lenses 82a included in the cylindrical lens array 82 are different from each other. Therefore, in the mirror surface shape measuring device 2, even if the mirror 1 is a two-wheeled mirror, the mirror surface measuring device 2 is used between a plurality of split mirrors possessed by the mirror 1 without using a drive mechanism that requires maintenance. Steps can be calculated.
 図7に示す鏡面形状測定装置2では、被検鏡1が、二輪帯の鏡であり、段差算出部23が、二輪帯の鏡である被検鏡1が有している複数の分割鏡1-1~1-6,1-11~1-22の間の段差を算出している。しかし、これは一例に過ぎず、被検鏡1が、三輪帯以上の鏡であってもよく、段差算出部23が、三輪帯以上の鏡が有している複数の分割鏡の間の段差を算出するようにしてもよい。 In the mirror surface shape measuring device 2 shown in FIG. 7, the mirror 1 to be inspected is a two-wheeled band mirror, and the step calculation unit 23 is a plurality of split mirrors 1 possessed by the inspected mirror 1 which is a mirror of the two-wheeled band. The step between -1 to 1-6 and 1-11 to 1-22 is calculated. However, this is only an example, and the test mirror 1 may be a mirror having a three-wheeled band or more, and the step calculation unit 23 may have a step between a plurality of split mirrors possessed by the mirror having the three-wheeled band or more. May be calculated.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 この発明は、複数の分割鏡の間の段差を算出する鏡面形状測定装置、鏡面形状測定方法及び反射鏡システムに適している。 The present invention is suitable for a mirror surface shape measuring device, a mirror surface shape measuring method, and a reflector system for calculating a step between a plurality of split mirrors.
 1 被検鏡、1-1~1-6,1-11~1-22 分割鏡、2 鏡面形状測定装置、3 光、11 マイクロレンズアレイ、11a マイクロレンズ、11a-1,11a-2,11a-3,11a-4,11a-5,11a-6,11a-11,11a-12,11a-13,11a-14,11a-15,11a-16,11a-17,11a-18,11a-19,11a-20,11a-21,11a-22 マイクロレンズ、11a-(1)(2),11a-(2)(3),11a-(3)(4),11a-(4)(5),11a-(5)(6),11a-(6)(1),11a-(11)(12),11a-(12)(13),11a-(13)(14),11a-(14)(15),11a-(15)(16),11a-(16)(17),11a-(17)(18),11a-(18)(19),11a-(19)(20),11a-(20)(21),11a-(21)(22),11a-(22)(11),11a-(1)(11),11a-(2)(11),11a-(2)(12),11a-(2)(13),11a-(3)(13),11a-(3)(14),11a-(3)(15),11a-(4)(15),11a-(4)(16),11a-(4)(17),11a-(5)(17),11a-(5)(18),11a-(5)(19),11a-(6)(19),11a-(6)(20),11a-(6)(21),11a-(1)(21),11a-(1)(22) マイクロレンズ、12 転像光学系、13 フレネルゾーンプレート、13 レンズ、15 波長成分、16 波長成分、17 撮像素子、20 データ処理部、21 データ抽出部、22 分割鏡波面算出部、23 段差算出部、24 被検鏡波面算出部、31 データ抽出回路、32 分割鏡波面算出回路、33 段差算出回路、34 被検鏡波面算出回路、41 メモリ、42 プロセッサ、51-1,51-2,51-3,51-4,51-5,51-6,51-11,51-12,51-13,51-14,51-15,51-16,51-17,51-18,51-19,51-20,51-21,51-22 像、60 スポット像、61 短波長成分、62 中間波長成分、63 長波長成分、70 スポット像、71 短波長成分、72 中間波長成分、73 長波長成分、74 干渉縞、81 第1のシリンドリカルリレーレンズアレイ、81a,81b シリンドリカルレンズ、82 第2のシリンドリカルリレーレンズアレイ、82a,82b シリンドリカルレンズ。 1 Specimen to be inspected, 1-1 to 1-6, 1-11 to 1-22 Divided mirror, 2 Mirror surface shape measuring device, 3 Light, 11 Microlens array, 11a Microlens, 11a-1, 11a-2, 11a -3,11a-4,11a-5,11a-6,11a-11,11a-12,11a-13,11a-14,11a-15,11a-16,11a-17,11a-18,11a-19 , 11a-20, 11a-21,11a-22 Microlens, 11a- (1) (2), 11a- (2) (3), 11a- (3) (4), 11a- (4) (5) , 11a- (5) (6), 11a- (6) (1), 11a- (11) (12), 11a- (12) (13), 11a- (13) (14), 11a- (14) ) (15), 11a- (15) (16), 11a- (16) (17), 11a- (17) (18), 11a- (18) (19), 11a- (19) (20), 11a- (20) (21), 11a- (21) (22), 11a- (22) (11), 11a- (1) (11), 11a- (2) (11), 11a- (2) (12), 11a- (2) (13), 11a- (3) (13), 11a- (3) (14), 11a- (3) (15), 11a- (4) (15), 11a -(4) (16), 11a- (4) (17), 11a- (5) (17), 11a- (5) (18), 11a- (5) (19), 11a- (6) ( 19), 11a- (6) (20), 11a- (6) (21), 11a- (1) (21), 11a- (1) (22) Microlens, 12 conversion optical system, 13 Frenel zone Plate, 13 lens, 15 wavelength component, 16 wavelength component, 17 image pickup element, 20 data processing unit, 21 data extraction unit, 22 split mirror wave surface calculation unit, 23 step calculation unit, 24 test mirror wave surface calculation unit, 31 data extraction Circuit, 32 split mirror wave surface calculation circuit, 33 step calculation circuit, 34 test mirror wave surface calculation circuit, 41 memory, 42 processor, 51-1, 51-2, 51-3, 51-4, 51-5, 51- 6,51-11,51-12,51-13,51-14,51-15,51-16,51-17,51-18,51-19,51-20,51-21,51-22 Image , 60 spot image, 61 short wavelength component, 62 intermediate wavelength component, 63 long wavelength component, 70 spot image, 71 short wavelength component, 72 intermediate wavelength component, 73 long wavelength component, 74 interference fringes, 81 First Cylindrical Relay Lens Array, 81a, 81b Cylindrical Lens, 82 Second Cylindrical Relay Lens Array, 82a, 82b Cylindrical Lens.

Claims (6)

  1.  複数の分割鏡が組み合わされている被検鏡により反射された光を集光させる複数のマイクロレンズを有するマイクロレンズアレイと、
     前記複数のマイクロレンズによりそれぞれ集光された光に含まれている複数の波長成分のうち、波長が長い波長成分ほど大きく回折させ、回折させたそれぞれの波長成分をスポット像として結像させる転像光学系と、
     前記転像光学系により結像されたそれぞれのスポット像を撮像する撮像素子と、
     前記撮像素子により撮像された複数のスポット像のうち、前記複数の分割鏡の中で、互いに隣り合っている2つの分割鏡のそれぞれに反射された光に対応するスポット像に基づいて、前記2つの分割鏡の間の段差を算出する段差算出部と
     を備えた鏡面形状測定装置。
    A microlens array having multiple microlenses that collects the light reflected by the test mirror, which is a combination of multiple split mirrors.
    Of the plurality of wavelength components contained in the light focused by the plurality of microlenses, the longer the wavelength component is, the larger the diffraction is, and each diffracted wavelength component is imaged as a spot image. Optical system and
    An image sensor that captures each spot image formed by the image transfer optical system,
    Of the plurality of spot images captured by the image sensor, the above 2 is based on the spot image corresponding to the light reflected by the two split mirrors adjacent to each other in the plurality of split mirrors. A mirror surface shape measuring device equipped with a step calculation unit that calculates the step between two split mirrors.
  2.  前記撮像素子により撮像された複数のスポット像のうち、それぞれの分割鏡により反射された光に対応するスポット像に基づいて、それぞれの分割鏡の波面を算出する分割鏡波面算出部を備えたことを特徴とする請求項1記載の鏡面形状測定装置。 Among the plurality of spot images captured by the image sensor, a split mirror wave surface calculation unit that calculates the wave plane of each split mirror based on the spot image corresponding to the light reflected by each split mirror is provided. The mirror surface shape measuring device according to claim 1.
  3.  前記段差算出部により算出された段差と、前記分割鏡波面算出部により算出されたそれぞれの分割鏡の波面とから、前記被検鏡の波面を算出する被検鏡波面算出部を備えたことを特徴とする請求項2記載の鏡面形状測定装置。 A test mirror wave surface calculation unit for calculating the wave surface of the test mirror from the step calculated by the step calculation unit and the wave surface of each of the split mirrors calculated by the split mirror wave surface calculation unit is provided. The mirror surface shape measuring device according to claim 2.
  4.  複数のシリンドリカルレンズを有する第1のシリンドリカルレンズアレイと、
     複数のシリンドリカルレンズを有する第2のシリンドリカルレンズアレイとを備え、
     前記第1のシリンドリカルレンズアレイ及び前記第2のシリンドリカルレンズアレイのそれぞれが、前記被検鏡と前記マイクロレンズアレイとの間に配置されており、
     前記第1のシリンドリカルレンズアレイが有する複数のシリンドリカルレンズの配列方向と、前記第2のシリンドリカルレンズアレイが有する複数のシリンドリカルレンズの配列方向とが異なることを特徴とする請求項1記載の鏡面形状測定装置。
    A first cylindrical lens array with multiple cylindrical lenses,
    With a second cylindrical lens array with multiple cylindrical lenses,
    Each of the first cylindrical lens array and the second cylindrical lens array is arranged between the test mirror and the microlens array.
    The mirror surface shape measurement according to claim 1, wherein the arrangement direction of the plurality of cylindrical lenses included in the first cylindrical lens array is different from the arrangement direction of the plurality of cylindrical lenses included in the second cylindrical lens array. apparatus.
  5.  複数の分割鏡が組み合わされている被検鏡により反射された光を集光させる複数のマイクロレンズを有するマイクロレンズアレイと、
     前記複数のマイクロレンズによりそれぞれ集光された光に含まれている複数の波長成分のうち、波長が長い波長成分ほど大きく回折させ、回折させたそれぞれの波長成分をスポット像として結像させる転像光学系と、
     前記転像光学系により結像されたそれぞれのスポット像を撮像する撮像素子とが設けられているとき、
     段差算出部が、前記撮像素子により撮像された複数のスポット像のうち、前記複数の分割鏡の中で、互いに隣り合っている2つの分割鏡のそれぞれに反射された光に対応するスポット像に基づいて、前記2つの分割鏡の間の段差を算出する鏡面形状測定方法。
    A microlens array having multiple microlenses that collects the light reflected by the test mirror, which is a combination of multiple split mirrors.
    Of the plurality of wavelength components contained in the light focused by the plurality of microlenses, the longer the wavelength component is, the larger the diffraction is, and each diffracted wavelength component is imaged as a spot image. Optical system and
    When an image sensor for capturing each spot image formed by the image transfer optical system is provided.
    Among the plurality of spot images imaged by the image sensor, the step calculation unit creates a spot image corresponding to the light reflected by each of the two split mirrors adjacent to each other in the plurality of split mirrors. A mirror surface shape measuring method for calculating a step between the two split mirrors based on the above.
  6.  複数の分割鏡が組み合わされている被検鏡と、
     前記複数の分割鏡の中で、互いに隣り合っている2つの分割鏡の間の段差を算出する鏡面形状測定装置とを備え、
     前記鏡面形状測定装置は、請求項1から請求項4のうちのいずれか1項記載の鏡面形状測定装置であることを特徴とする反射鏡システム。
    A test mirror in which multiple split mirrors are combined,
    A mirror surface shape measuring device for calculating a step between two divided mirrors adjacent to each other among the plurality of divided mirrors is provided.
    The reflector system according to any one of claims 1 to 4, wherein the mirror surface shape measuring device is the mirror surface shape measuring device according to any one of claims 1 to 4.
PCT/JP2019/028842 2019-07-23 2019-07-23 Mirror surface shape measurement device, mirror surface shape measurement method, and reflection mirror system WO2021014567A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/028842 WO2021014567A1 (en) 2019-07-23 2019-07-23 Mirror surface shape measurement device, mirror surface shape measurement method, and reflection mirror system
JP2021534456A JP6980160B2 (en) 2019-07-23 2019-07-23 Mirror surface shape measuring device, mirror surface shape measuring method and reflector system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028842 WO2021014567A1 (en) 2019-07-23 2019-07-23 Mirror surface shape measurement device, mirror surface shape measurement method, and reflection mirror system

Publications (1)

Publication Number Publication Date
WO2021014567A1 true WO2021014567A1 (en) 2021-01-28

Family

ID=74193534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028842 WO2021014567A1 (en) 2019-07-23 2019-07-23 Mirror surface shape measurement device, mirror surface shape measurement method, and reflection mirror system

Country Status (2)

Country Link
JP (1) JP6980160B2 (en)
WO (1) WO2021014567A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244030A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Wavefront sensor and optical phase distribution control device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244030A (en) * 2008-03-31 2009-10-22 Mitsubishi Electric Corp Wavefront sensor and optical phase distribution control device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. S. ACTON ET AL.: "Wavefront sensing and controls for the James Webb Space Telescope", PROC. OF SPIE, vol. 8442, 21 September 2012 (2012-09-21), XP060026952, DOI: 10.117/12.925015 *
F. SHI ET AL.: "Experimental verification of despersed fringe sensing as a segment phasing technique using the Keck telescope", APPLIED OPTICS, vol. 43, no. 23, 10 August 2004 (2004-08-10), pages 4474 - 4477, XP055785884 *

Also Published As

Publication number Publication date
JPWO2021014567A1 (en) 2021-10-14
JP6980160B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
JP6494205B2 (en) Wavefront measuring method, shape measuring method, optical element manufacturing method, optical device manufacturing method, program, wavefront measuring apparatus
KR101790830B1 (en) Interferometer, lithography apparatus, and method of manufacturing article
CN106840027A (en) The astigmatic compensation type interference checking device and detection method of freeform optics surface
JP2006214856A (en) Measuring apparatus and method
JP2004061515A (en) Method and device for determining influence onto polarization state by optical system, and analyzer
CN101034034A (en) Method and device for aspherical mirror diffraction image
US6912055B2 (en) Spherical form measuring and analyzing method
US20200141832A1 (en) Eccentricity measuring method, lens manufacturing method, and eccentricity measuring apparatus
JP2009281992A (en) Measurement method, measurement apparatus, and method for manufacturing optical system
JP6072317B2 (en) Eccentricity measuring method and eccentricity measuring device
WO2021014567A1 (en) Mirror surface shape measurement device, mirror surface shape measurement method, and reflection mirror system
JP3352298B2 (en) Lens performance measuring method and lens performance measuring device using the same
JP2001147174A (en) Interference measuring apparatus
JP2000329648A (en) Method and apparatus for evaluation of lens as well as adjusting apparatus for lens
US10976249B1 (en) Reflective pupil relay system
CN110455420B (en) Wavefront measuring device
JP6395582B2 (en) Phase singularity evaluation method and phase singularity evaluation apparatus
JP2011232243A (en) Measuring device
JP2006133058A (en) Point diffraction interference measuring device
JP2005315683A (en) Shearing interferometer and interference measuring device
JPH11311600A (en) Method and apparatus for measuring refractive index distribution
JP3146591B2 (en) Reference surface shape measurement method and shape measurement system
JP2005147966A (en) Interferometer and pinhole plate
JPH109957A (en) Spectrometer
JP3315806B2 (en) Image plane measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938952

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938952

Country of ref document: EP

Kind code of ref document: A1