WO2021014512A1 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
WO2021014512A1
WO2021014512A1 PCT/JP2019/028536 JP2019028536W WO2021014512A1 WO 2021014512 A1 WO2021014512 A1 WO 2021014512A1 JP 2019028536 W JP2019028536 W JP 2019028536W WO 2021014512 A1 WO2021014512 A1 WO 2021014512A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat plate
bus bar
terminal
power
capacitor
Prior art date
Application number
PCT/JP2019/028536
Other languages
French (fr)
Japanese (ja)
Inventor
皓一 古川
泰輔 藁科
遥 飯島
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2021534871A priority Critical patent/JP7092268B2/en
Priority to PCT/JP2019/028536 priority patent/WO2021014512A1/en
Publication of WO2021014512A1 publication Critical patent/WO2021014512A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the technology disclosed in this specification relates to a power converter.
  • the present invention relates to a power converter in which a laminated unit in which a plurality of power modules are laminated and a capacitor are connected by a bus bar.
  • Each power module contains one or more switching elements for power conversion.
  • the conductor that electrically connects the terminals of the power module and the capacitor is sometimes called a bus bar.
  • the power module and the capacitor are connected by two buses.
  • the power converter disclosed in Documents 1 and 2 has the following structure.
  • Each power module included in the stacking unit contains a switching element for power conversion.
  • a first terminal and a second terminal conducting with the switching element extend from the side surface of each power module.
  • the capacitors are located next to the stacking unit.
  • the first terminal of the plurality of power modules and one electrode of the capacitor are connected by the first bus bar.
  • the second terminal of the plurality of power modules and the other electrode of the capacitor are connected by a second bus bar.
  • the first bus bar is provided with a first flat plate, a plurality of first holes, and a plurality of first branch portions.
  • the first flat plate extends from the capacitor along the side surface of the power module.
  • the plurality of first holes are provided in the first flat plate.
  • the first terminal of the corresponding power module passes through each of the plurality of first holes.
  • Each first branch extends from the edge of the corresponding first hole along the first terminal and is connected to the first terminal.
  • the second bus bar has the same structure as the first bus bar, and includes a second flat plate, a plurality of second holes, and a plurality of second branches. A second terminal passes through each of the second holes, and each second terminal is connected to each second branch.
  • the first bus bar and the second bus bar are a positive electrode bus bar connected to the positive electrode of the capacitor and a negative electrode bus bar connected to the negative electrode of the capacitor.
  • the stacking direction of a plurality of power modules will be referred to as a first direction.
  • the first flat plate and the second flat plate are provided with ribs at both ends in the first direction.
  • a direction orthogonal to the first direction and parallel to the first flat plate will be referred to as a second direction.
  • the ribs do not significantly contribute to the suppression of deformation of the first flat plate (second flat plate) when viewed from the second direction.
  • This specification describes the deformation (particularly when the second plate) of the first plate (second plate) of the first bus bar (second bus bar) connecting the capacitors to the plurality of first terminals (second terminals) of the laminated unit (especially when the second plate is bitten).
  • the power converter disclosed in the present specification includes a laminated unit in which a plurality of power modules are laminated, a capacitor arranged next to the laminated unit, a first bus bar, and a second bus bar.
  • Each power module contains a switching element for power conversion.
  • the first terminal and the second terminal conducting with the switching element extend from the side surface of the power module.
  • the first terminals of the plurality of power modules are arranged in a row along the stacking direction (first direction) of the power modules, and the plurality of second terminals are arranged in a row in parallel with the row of the first terminals.
  • the first bus bar is connected to the first terminals of a plurality of power modules and is also connected to one electrode of the capacitor.
  • the first bus bar includes a first flat plate extending from the capacitor along the side surface of the power module (the side surface where the first terminal and the second terminal are provided).
  • the first flat plate is provided with a plurality of first holes and a plurality of first branch portions.
  • the first terminal passes through each of the plurality of first holes.
  • Each first branch extends from the edge of each first hole and is connected to each first terminal.
  • the second bus bar is connected to the second terminal of a plurality of power modules and is connected to the other electrode of the capacitor.
  • the second bus bar includes a second plate extending from the capacitor in parallel with the first plate.
  • the second flat plate is provided with a plurality of second holes and a plurality of second branch portions.
  • the second terminal passes through each of the plurality of second holes.
  • Each second branch extends from the edge of each second hole and is connected to each second terminal.
  • the first rib is provided on the edge far from the capacitor of the first flat plate. Due to this first rib, the deformation of the first flat plate when viewed from the second direction is suppressed.
  • a second rib may be provided on the edge far from the capacitor of the second flat plate. The second rib suppresses the deformation of the second flat plate when viewed from the second direction.
  • the first rib and the second rib extend from the respective flat plates along the third direction.
  • the third direction is a direction orthogonal to both the first direction and the second direction.
  • the first rib and the second rib extend in a direction separated from each other in the third direction.
  • the first rib and the second rib extending in the direction away from each other do not interfere with each other.
  • FIG. 1 It is a block diagram of the electric power system of the electric vehicle including the electric power converter of an Example. It is a perspective view of the assembly of a laminated unit, a bus bar and a capacitor unit. It is an exploded perspective view of an assembly. It is a perspective view of the assembly of the power converter of a modification. It is an enlarged view of the vicinity of the notch in FIG.
  • FIG. 1 shows a block diagram of an electric power system of an electric vehicle 100 including a power converter 2.
  • the electric vehicle 100 includes two traveling motors 83a and 83b. Therefore, the power converter 2 includes two sets of inverter circuits 13a and 13b. The outputs of the two motors 83a and 83b are combined / distributed by the gearbox 85 and transmitted to the axle 86 (that is, the drive wheels).
  • the power converter 2 is connected to the battery 81 via the system main relay 82.
  • the power converter 2 includes a voltage converter circuit 12 that boosts the voltage of the battery 81, and two sets of inverter circuits 13a and 13b that convert the boosted DC power into alternating current.
  • the voltage converter circuit 12 is a bidirectional DC-DC converter capable of performing both step-up operation and step-down operation.
  • the voltage converter circuit 12 boosts the voltage applied to the terminal on the battery side and outputs it to the terminal on the inverter side.
  • the voltage converter circuit 12 steps down the voltage applied to the terminal on the inverter side and outputs it to the terminal on the battery side.
  • the terminal on the battery side low voltage side
  • the terminal on the inverter side high voltage side
  • the positive electrode and the negative electrode of the input end 18 are referred to as an input positive electrode end 18a and an input negative electrode end 18b, respectively.
  • the positive electrode and the negative electrode of the output end 19 are referred to as an output positive electrode end 19a and an output negative electrode end 19b, respectively.
  • the notations "input end 18" and "output end 19" are for convenience of explanation. As described above, since the voltage converter circuit 12 is a bidirectional DC-DC converter, the output end Power may flow from 19 to the input end 18.
  • the voltage converter circuit 12 is composed of a series circuit of two switching elements 9a and 9b, a reactor 7, a filter capacitor 5, and a diode connected in antiparallel to each switching element.
  • One end of the reactor 7 is connected to the input positive electrode end 18a, and the other end is connected to the midpoint of the series circuit.
  • the filter capacitor 5 is connected between the input positive electrode end 18a and the input negative electrode end 18b.
  • the input negative electrode end 18b is directly connected to the output negative electrode end 19b.
  • the switching element 9b is mainly involved in the step-up operation, and the switching element 9a is mainly involved in the step-down operation. Since the voltage converter circuit 12 of FIG. 1 is well known, detailed description thereof will be omitted.
  • Reference numerals 25a and 25b indicate terminals extending from the power module 8a.
  • Reference numeral 25a indicates a terminal (positive electrode terminal 25a) conducting with the high potential side of the series circuit of the switching elements 9a and 9b.
  • Reference numeral 25b represents a terminal (negative electrode terminal 25b) conducting with the low potential side of the series circuit of the switching elements 9a and 9b.
  • the notation of positive electrode terminal 25a and negative electrode terminal 25b is also used in other power modules.
  • the terminal connected to the midpoint of the series connection of the two switching elements is referred to as a midpoint terminal.
  • the inverter circuit 13a has a configuration in which three sets of series circuits of two switching elements are connected in parallel.
  • the switching elements 9c and 9d, the switching elements 9e and 9f, and the switching elements 9g and 9h form a series circuit, respectively. Diodes are connected in anti-parallel to each switching element.
  • the high potential side terminal (positive electrode terminal 25a) of the three sets of series circuits is connected to the output positive electrode end 19a of the voltage converter circuit 12, and the low potential side terminal (negative electrode terminal 25b) of the three sets of series circuits is voltage. It is connected to the output negative electrode end 19b of the converter circuit 12.
  • Three-phase alternating current (U phase, V phase, W phase) is output from the midpoint terminal of the three sets of series circuits.
  • Each of the three sets of series circuits corresponds to the power modules 8b, 8c, and 8d described later.
  • the inverter circuit 13b Since the configuration of the inverter circuit 13b is the same as that of the inverter circuit 13a, the specific circuit is not shown in FIG. Similar to the inverter circuit 13a, the inverter circuit 13b also has a configuration in which three sets of series circuits of two switching elements are connected in parallel. The terminal on the high potential side of the three sets of series circuits is connected to the output positive end 19a of the voltage converter circuit 12, and the terminal on the low potential side of the three sets of series circuits is connected to the output negative end 19b of the voltage converter circuit 12. Has been done.
  • the hardware corresponding to each series circuit is referred to as a power module 8e, 8f, 8g.
  • a smoothing capacitor 6 is connected in parallel to the input ends of the inverter circuits 13a and 13b. In other words, the smoothing capacitor 6 is connected in parallel to the output terminal 19 of the voltage converter circuit 12. The smoothing capacitor 6 eliminates the pulsation of the output current of the voltage converter circuit 12.
  • the switching elements 9a-9h are transistors, typically IGBTs (Insulated Gate Bipolar Transistors), but may be other transistors, for example, MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). Further, the switching element referred to here is used for power conversion, and is sometimes called a power semiconductor element.
  • each of the broken lines 8a-8g corresponds to the power module.
  • the power converter 2 includes seven sets of a series circuit of two switching elements. As hardware, two switching elements constituting a series circuit and a diode connected in antiparallel to each switching element are housed in one package (main body of a power module). In the following, when any one of the power modules 8a to 8g is shown without distinction, it is referred to as the power module 8.
  • the high potential side terminal (positive electrode terminal 25a) of the seven power modules (7 sets of series circuits) is connected to the positive electrode of the smoothing capacitor 6, and the low potential side terminal (negative electrode terminal 25b) is the negative of the smoothing capacitor 6.
  • the conductive path in the broken line indicated by reference numeral 30 corresponds to a bus bar (positive electrode bus bar) that connects the positive electrode terminals 25a of the plurality of power modules 8 and the positive electrodes of the smoothing capacitor 6 to each other.
  • the conductive path in the broken line indicated by reference numeral 40 corresponds to a bus bar (negative electrode bus bar) that connects the plurality of negative electrode terminals 25b and the negative electrodes of the smoothing capacitor 6 to each other.
  • FIG. 2 shows a perspective view of the hardware of the power converter 2.
  • the housing of the power converter 2 and some parts are not shown.
  • the plurality of power modules 8 (8a-8g) together with the plurality of coolers 22 constitute a stacking unit 20. Since the power modules 8a-8g all have the same shape, in FIGS. 2 and 3, only the leftmost power module is designated by reference numeral 8, and the other power modules are designated by reference numerals. Further, in FIGS. 2 and 3, the reference numerals 22 are attached only to the two leftmost coolers, and the reference numerals are omitted for the other coolers. FIG. 3 will be described later.
  • FIG. 2 is a perspective view of the power converter 2, but only the assembly of the laminated unit 20, the positive electrode bus bar 30, the negative electrode bus bar 40, and the capacitor unit 60 is drawn, and the other parts are not shown.
  • the stacking unit 20 a plurality of power modules 8 are laminated.
  • the stacking unit 20 is a device in which a plurality of card-type coolers 22 are arranged in parallel, and a card-type power module 8 is sandwiched between adjacent coolers 22.
  • the card-type power module 8 has its wide surface facing the cooler 22.
  • the X direction of the coordinate system in the figure corresponds to the stacking direction of the plurality of power modules 8. In the following figures, the X direction also indicates the stacking direction.
  • Three terminals extend from one side surface 80a of each power module 8.
  • reference numerals 25a, 25b, and 25c are attached only to the terminals of the power module 8 located at the left end of the stacking unit 20, and the reference numerals indicating the terminals are omitted from the remaining power modules 8.
  • the positive electrode terminal 25a and the negative electrode terminal 25b are a terminal on the high potential side and a terminal on the low potential side of the series circuit housed in the power module 8.
  • the midpoint terminal 25c is a terminal conducting with the midpoint of the series circuit. In other words, all three terminals 25a-25c are conducting with the switching element inside the power module 8.
  • the three terminals 25a-25c extend in the positive direction of the Z axis in the drawing from one side surface 80a intersecting the wide surface of the power module 8.
  • a plurality of control terminals extend in the negative direction of the Z axis in the drawing from the side surface opposite to one side surface 80a.
  • the control terminals are a gate terminal conducting with the gate electrode of the switching element built in the power module 8, a signal terminal conducting with the temperature sensor and the current sensor built in the power module 8, and the like. ..
  • the rightmost cooler 22 in the figure is provided with a refrigerant supply port 28 and a refrigerant discharge port 29.
  • the adjacent coolers 22 are connected by two connecting pipes.
  • One connecting pipe is positioned so as to overlap the refrigerant supply port 28 when viewed from the stacking direction.
  • the other connecting pipe is positioned so as to overlap the refrigerant discharge port 29 when viewed from the stacking direction.
  • a refrigerant circulation device (not shown) is connected to the refrigerant supply port 28 and the refrigerant discharge port 29.
  • the refrigerant supplied from the refrigerant supply port 28 is distributed to all the coolers 22 through one connecting pipe.
  • the refrigerant absorbs heat from the adjacent power module 8 while passing through the cooler 22.
  • the heat-absorbed refrigerant is discharged from the stacking unit 20 through the other connecting pipe and the refrigerant discharge port 29. Since each power module 8 is cooled from both sides thereof, the laminated unit 20 has high cooling performance.
  • the three terminals 25a-25c of each power module 8 are all flat plates.
  • the positive electrode terminals 25a of the plurality of power modules 8 are arranged in a row in the X direction (stacking direction) so as to face the flat surface of the positive electrode terminals 25a of the adjacent power modules 8.
  • the negative electrode terminals 25b of the plurality of power modules 8 are also arranged in a row in the X direction (stacking direction) so as to face the flat surface of the negative electrode terminals 25b of the adjacent power modules 8.
  • the rows of the positive electrode terminals 25a, the rows of the negative electrode terminals 25b, and the rows of the midpoint terminals 25c of the plurality of power modules 8 are parallel.
  • the capacitor unit 60 is arranged next to the laminated unit 20.
  • the capacitor unit 60 is long along the stacking direction (X direction in the figure) of the power module 8.
  • the capacitor unit 60 is aligned with the stacking unit 20 in a direction (Y direction) intersecting the stacking direction.
  • Two capacitor elements 61 (described later) are housed in the case of the capacitor unit 60.
  • the positive electrode bus bar 30 connects the positive electrode terminals 25a of the plurality of power modules 8 to the capacitor elements in the capacitor unit 60
  • the negative electrode bus bar 40 connects the negative electrode terminals 25b of the plurality of power modules 8 to the capacitors.
  • the capacitor element in the unit 60 is connected.
  • FIG. 3 shows an exploded perspective view of the assembly of the positive electrode bus bar 30, the negative electrode bus bar 40, the laminated unit 20, and the capacitor element 61 (capacitor unit 60).
  • the capacitor unit 60 of FIG. 2 accommodates two capacitor elements 61.
  • the case of the capacitor unit 60 is omitted, and the internal capacitor element 61 is drawn. Although details are omitted, the periphery of the capacitor element 61 in the case of the capacitor unit 60 is filled with a filler.
  • the capacitor element 61 corresponds to the smoothing capacitor 6 in FIG.
  • the positive electrode 25a of the plurality of power modules 8 and the positive electrode 61a of the capacitor element 61 are connected by the positive electrode bus bar 30, and the plurality of negative electrode terminals 25b and the negative electrode 61b of the capacitor element 61 are connected by the negative electrode bus bar 40.
  • the positive electrode bus bar 30 includes a plate-shaped electrode portion 39 and a flat plate 31.
  • the flat plate 31 is provided with a plurality of positive electrode terminal holes 32 and a plurality of branch portions 33.
  • the electrode portion 39 is connected to the positive electrode 61a of the capacitor element 61.
  • the plurality of positive electrode terminal holes 32 are arranged in a row along the X direction.
  • a branch portion 33 extends in the Z direction from the edge of each positive electrode terminal hole 32.
  • the positive electrode terminal 25a of the power module 8 corresponding to each positive electrode terminal hole 32 passes through, and the positive electrode terminal 25a and the branch portion 33 are joined by welding.
  • the negative electrode bus bar 40 includes a plate-shaped electrode portion 49 and a flat plate 41.
  • the flat plate 41 is provided with a plurality of negative electrode terminal holes 42 and a plurality of branch portions 43.
  • the electrode portion 49 is connected to the negative electrode 61b of the capacitor element 61.
  • the plurality of negative electrode terminal holes 42 are arranged in a row along the X direction.
  • a branch portion 43 extends in the Z direction from the edge of each negative electrode terminal hole 42.
  • the negative electrode terminal 25b of the power module 8 corresponding to each negative electrode terminal hole 42 passes through, and the negative electrode terminal 25b and the branch portion 43 are joined.
  • the negative electrode bus bar 40 is located on the opposite side of the laminated unit 20 of the positive electrode bus bar 30.
  • the negative electrode bus bar 40 is provided with a plurality of positive electrode terminal holes 45.
  • the positive electrode terminal 25a of the power module 8 and the branch portion 33 of the positive electrode bus bar 30 pass through each of the positive electrode terminal holes 45.
  • the flat plate 31 of the positive electrode bus bar 30 and the flat plate 41 of the negative electrode bus bar 40 are arranged in parallel with the insulating plate 50 (described later) interposed therebetween and are close to each other.
  • an eddy current is generated in the other bus bar by the magnetic field of one bus bar.
  • the generation of eddy currents weakens the magnetic field of one bus bar.
  • the weakening of the magnetic field means that the inductance becomes smaller.
  • the insulating plate 50 is sandwiched between the positive electrode bus bar 30 and the negative electrode bus bar 40.
  • the insulating plate 50 insulates between the positive electrode bus bar 30 and the negative electrode bus bar 40.
  • the insulating plate 50 is provided with a plurality of tubular portions 53. Ribs 57 extending in the Y direction are provided on both sides of the insulating plate 50 in the stacking direction (X direction). As shown in FIG. 2, the rib 57 is sandwiched between the reinforcing rib 37 of the positive electrode bus bar 30 and the reinforcing rib 47 of the negative electrode bus bar 40 to insulate both of them. Reinforcing ribs 37 and 47 will be described later.
  • the tubular portion 53 of the insulating plate 50 passes through the positive electrode terminal hole 45 of the negative electrode bus bar 40.
  • the branch portion 33 of the positive electrode bus bar 30 and the positive electrode terminal 25a of the power module 8 pass through the inside of the tubular portion 53.
  • the tubular portion 53 reliably insulates the positive electrode terminal 25a and the branch portion 33 from the negative electrode bus bar 40.
  • Both ends of the flat plate 31 of the positive electrode bus bar 30 in the stacking direction (X direction) are bent at right angles.
  • the portion bent at a right angle is referred to as a reinforcing rib 37.
  • Both ends of the flat plate 41 of the negative electrode bus bar 40 in the stacking direction (X direction) are also bent at right angles.
  • the portion bent at a right angle is referred to as a reinforcing rib 47.
  • the capacitor element 61 is housed in the case and is embedded in the filler in the case. Therefore, a part of the positive electrode bus bar 30 and a part of the negative electrode bus bar 40 are also embedded in the filler in the case of the capacitor unit 60. Naturally, the electrode portions 39 and 49 will be embedded in the filler.
  • a part 31a of the flat plate 31 of the positive electrode bus bar 30 is also embedded in the filler, and a part 41a of the flat plate 41 of the negative electrode bus bar 40 is also embedded in the filler.
  • the portion indicated by reference numerals 31b and 41b is an exposed portion exposed from the capacitor unit 60 in the flat plates 31 and 41.
  • a part 37a of the reinforcing rib 37 and a part 47a of the reinforcing rib 47 are also embedded in the filler.
  • Reinforcing ribs 38 are also provided on the edge of the positive electrode bus bar 30 (flat plate 31) farthest from the condenser element 61.
  • the reinforcing rib 38 is provided on the edge of the flat plate 31 extending in the X direction on the side farther from the capacitor element 61.
  • Reinforcing ribs 48 are also provided on the edge of the negative electrode bus bar 40 (flat plate 41) on the side far from the capacitor element 61.
  • the reinforcing rib 48 is provided on the edge of the flat plate 41 extending in the X direction on the side farther from the capacitor element 61.
  • the reinforcing rib 38 extends from the flat plate 31 in the -Z direction.
  • the reinforcing rib 48 extends from the flat plate 41 in the + Z direction. That is, the reinforcing rib 38 and the reinforcing rib 48 extend in a direction away from each other. Therefore, even if the positive electrode bus bar 30 and the negative electrode bus bar 40 overlap, the reinforcing rib 38 and the reinforcing rib 48 do not interfere with each other.
  • the reinforcing rib 37 described above increases the rigidity of the positive electrode bus bar 30 (flat plate 31) against bending when viewed from the X direction. In other words, the reinforcing rib 37 suppresses the deformation of the positive electrode bus bar 30 (flat plate 31) around the axis extending in the X direction.
  • the reinforcing rib 38 increases the rigidity of the positive electrode bus bar 30 (flat plate 31) against bending when viewed from the Y direction. In other words, the reinforcing rib 38 suppresses the deformation of the positive electrode bus bar 30 (flat plate 31) around the axis extending in the Y direction.
  • the reinforcing rib 47 increases the rigidity of the negative electrode bus bar 40 (flat plate 41) against bending when viewed from the X direction. In other words, the reinforcing rib 47 suppresses deformation of the negative electrode bus bar 40 (flat plate 41) around the axis extending in the X direction.
  • the reinforcing rib 48 increases the rigidity of the negative electrode bus bar 40 (flat plate 41) against bending when viewed from the Y direction. In other words, the reinforcing rib 48 suppresses deformation of the negative electrode bus bar 40 (flat plate 41) around the axis extending in the Y direction.
  • the branch portion 33 of the positive electrode bus bar 30 is joined to the positive electrode terminal 25a of the power module 8.
  • the branch portion 33 and the positive electrode terminal 25a are gripped by the chuck.
  • the flat plate 31 of the positive electrode bus bar 30 may be deformed by the force received from the chuck.
  • the reinforcing rib 38 suppresses deformation of the flat plate 31 due to the force of the chuck.
  • the same applies to the negative electrode bus bar 40, and the reinforcing rib 48 suppresses the deformation of the flat plate 41 due to the force of the chuck (the force sandwiching the branch portion 43 and the negative electrode terminal 25b).
  • Reinforcing ribs 37 and 38 are made by bending one flat plate (flat plate 31).
  • the reinforcing ribs 47 and 48 are made by bending one flat plate (flat plate 41).
  • FIG. 4 shows a perspective view of a modified power converter 2a.
  • FIG. 4 corresponds to FIG.
  • each of the plurality of power modules 8 is given a unique reference numeral (8a-8g).
  • the reinforcing ribs 138 and 148 of the power converter 2a of the modified example are different from the reinforcing ribs 38 and 48 of the power converter 2 of the embodiment.
  • the structure of the power converter 2a is the same as that of the power converter 2 except for the reinforcing ribs 138 and 148.
  • Reinforcing rib 148 has two notches 149a and 149b.
  • FIG. 5 shows an enlarged view of the vicinity of the notch 149a.
  • the notches 149a and 149b reach the negative electrode terminal hole 42.
  • the reinforcing rib 148 suppresses the deformation of the flat plate 41 when viewed from the Y direction.
  • the reinforcing rib 148 by providing the reinforcing rib 148, the rigidity of the flat plate 41 is increased, and stress may be locally concentrated when a force is applied.
  • the stress concentration when the flat plate 41 receives a force is relaxed.
  • the notch 149a is provided between the power module 8a and the power module 8b. More specifically, the notch 149a is provided between the midpoint terminal 25c of the power module 8a and the midpoint terminal 25c of the power module 8b. As described with reference to FIG. 1, the power module 8a is used in the voltage converter circuit 12, and the power module 8b is used in the inverter circuit 13a. That is, the notch 149a is provided between the two power modules 8a and 8b used in different conversion circuits.
  • the switching elements of the power modules 8a and 8b operate at timings independent of each other, and switching noise interferes with each other.
  • the notch 149a reduces noise interference from switching elements that operate at mutually independent timings.
  • the notch 149b is provided between the power module 8d and the power module 8e. More specifically, the notch 149b is provided between the midpoint terminal 25c of the power module 8d and the midpoint terminal 25c of the power module 8e.
  • the power module 8d is used in the inverter circuit 13a
  • the power module 8e is used in the inverter circuit 13b.
  • the switching elements of the power modules 8d and 8e operate at timings independent of each other, and switching noise interferes with each other.
  • the notch 149b also reduces noise interference from switching elements that operate at mutually independent timings.
  • a similar notch is provided in the reinforcing rib 138 of the positive electrode bus bar 30.
  • the notch provided in the reinforcing rib 138 has the same effect as the notch 149a and 149b of the reinforcing rib 148.
  • the negative electrode bus bar 40 of the embodiment corresponds to an example of the first bus bar.
  • Each of the flat plate 41, the negative electrode terminal hole 42, and the branch portion 43 of the negative electrode bus bar 40 corresponds to an example of the first flat plate, the first hole, and the first branch portion.
  • the positive electrode bus bar 30 of the embodiment corresponds to an example of the second bus bar.
  • Each of the flat plate 31, the positive electrode terminal hole 32, and the branch portion 33 of the positive electrode bus bar 30 corresponds to an example of the second flat plate, the second hole, and the second branch portion.
  • the reinforcing rib 48 corresponds to an example of the first rib.
  • the reinforcing rib 38 corresponds to an example of the second rib.
  • the X direction of the coordinate system in the figure corresponds to the first direction
  • the Y direction corresponds to the second direction.

Abstract

The present invention suppresses deformation of a positive-electrode busbar and a negative-electrode busbar. A power converter 2 comprises a first busbar 30 that connects a terminal 25a of a power module 8 to a capacitor 60. The first busbar 30 comprises: a first flat plate 31; a plurality of first holes 32 provided to the first flat plate 31; and first branch parts 33 extending from an edge of each of the first holes 32. A reinforcing rib 38 is provided on the edge of the first flat plate 31 which is far from the capacitor 60. The reinforcing rib 38 suppresses deformation of the first flat plate 31 when viewed from the Y direction.

Description

電力変換器Power converter
 本明細書が開示する技術は、電力変換器に関する。特に、複数のパワーモジュールが積層されている積層ユニットとコンデンサがバスバで接続されている電力変換器に関する。 The technology disclosed in this specification relates to a power converter. In particular, the present invention relates to a power converter in which a laminated unit in which a plurality of power modules are laminated and a capacitor are connected by a bus bar.
 上記した電力変換器が例えば特開2018-042424号公報(文献1)、特開2018-042309号公報(文献2)、特開2018-026885号公報(文献3)に開示されている。各パワーモジュールは、1個あるいは複数個の電力変換用のスイッチング素子を収容している。パワーモジュールが有する端子とコンデンサを電気的に接続する導体はバスバと呼ばれることがある。パワーモジュールとコンデンサは、2個のバスバで接続される。 The above-mentioned power converter is disclosed in, for example, JP-A-2018-0422424 (Reference 1), JP-A-2018-042309 (Reference 2), and JP-A-2018-026885 (Reference 3). Each power module contains one or more switching elements for power conversion. The conductor that electrically connects the terminals of the power module and the capacitor is sometimes called a bus bar. The power module and the capacitor are connected by two buses.
 文献1と文献2に開示された電力変換器は、次の構造を有している。積層ユニットに含まれている各パワーモジュールには電力変換用のスイッチング素子が収容されている。各パワーモジュールの側面から、スイッチング素子と導通している第1端子と第2端子が延びている。コンデンサは積層ユニットの隣りに配置されている。複数のパワーモジュールの第1端子とコンデンサの一方の電極は第1バスバで接続されている。複数のパワーモジュールの第2端子とコンデンサの他方の電極は第2バスバで接続されている。 The power converter disclosed in Documents 1 and 2 has the following structure. Each power module included in the stacking unit contains a switching element for power conversion. A first terminal and a second terminal conducting with the switching element extend from the side surface of each power module. The capacitors are located next to the stacking unit. The first terminal of the plurality of power modules and one electrode of the capacitor are connected by the first bus bar. The second terminal of the plurality of power modules and the other electrode of the capacitor are connected by a second bus bar.
 第1バスバは、第1平板と、複数の第1孔と、複数の第1枝部を備えている。第1平板は、コンデンサからパワーモジュールの側面に沿って延びている。複数の第1孔は、第1平板に設けられている。複数の第1孔のそれぞれに、対応するパワーモジュールの第1端子が通過している。それぞれの第1枝部は、対応する第1孔の縁から第1端子に沿って延びており、第1端子と接続されている。第2バスバは、第1バスバと同様の構造を有しており、第2平板と、複数の第2孔と、複数の第2枝部を備えている。それぞれの第2孔に第2端子が通過しており、それぞれの第2枝部にそれぞれの第2端子が接続されている。第1バスバと第2バスバは、具体的には、コンデンサの正極と接続される正極バスバと、コンデンサの負極と接続される負極バスバである。 The first bus bar is provided with a first flat plate, a plurality of first holes, and a plurality of first branch portions. The first flat plate extends from the capacitor along the side surface of the power module. The plurality of first holes are provided in the first flat plate. The first terminal of the corresponding power module passes through each of the plurality of first holes. Each first branch extends from the edge of the corresponding first hole along the first terminal and is connected to the first terminal. The second bus bar has the same structure as the first bus bar, and includes a second flat plate, a plurality of second holes, and a plurality of second branches. A second terminal passes through each of the second holes, and each second terminal is connected to each second branch. Specifically, the first bus bar and the second bus bar are a positive electrode bus bar connected to the positive electrode of the capacitor and a negative electrode bus bar connected to the negative electrode of the capacitor.
 以下では、説明の便宜上、複数のパワーモジュールの積層方向を第1方向と称する。文献1に開示されている電力変換器では、第1平板と第2平板は、第1方向の両端にリブを備えている。リブを備えることで第1平板と第2平板の剛性が向上し、第1平板と第2平板の変形が抑えられる。 In the following, for convenience of explanation, the stacking direction of a plurality of power modules will be referred to as a first direction. In the power converter disclosed in Document 1, the first flat plate and the second flat plate are provided with ribs at both ends in the first direction. By providing the ribs, the rigidity of the first flat plate and the second flat plate is improved, and the deformation of the first flat plate and the second flat plate is suppressed.
 以下では、説明の便宜上、第1方向に直交するとともに第1平板に対して平行な方向を第2方向と称する。上記のリブにより、第1方向から見たときの第1平板(第2平板)の変形は抑えられる。しかしながら、上記のリブは、第2方向から見たときの第1平板(第2平板)の変形抑制には大きく寄与しない。本明細書は、積層ユニットの複数の第1端子(第2端子)とコンデンサを接続する第1バスバ(第2バスバ)の第1平板(第2平板)の変形(特に第2方向かみたときの変形)を抑える技術を提供する。 In the following, for convenience of explanation, a direction orthogonal to the first direction and parallel to the first flat plate will be referred to as a second direction. With the above ribs, deformation of the first flat plate (second flat plate) when viewed from the first direction is suppressed. However, the ribs do not significantly contribute to the suppression of deformation of the first flat plate (second flat plate) when viewed from the second direction. This specification describes the deformation (particularly when the second plate) of the first plate (second plate) of the first bus bar (second bus bar) connecting the capacitors to the plurality of first terminals (second terminals) of the laminated unit (especially when the second plate is bitten). We provide technology to suppress the deformation of).
 本明細書が開示する電力変換器は、複数のパワーモジュールが積層されている積層ユニットと、積層ユニットの隣りに配置されているコンデンサと、第1バスバと、第2バスバを備えている。それぞれのパワーモジュールは、電力変換用のスイッチング素子を収容している。スイッチング素子と導通している第1端子と第2端子が、パワーモジュールの側面から延びている。複数のパワーモジュールの第1端子は、パワーモジュールの積層方向(第1方向)に沿って一列に並んでおり、複数の第2端子は、第1端子の列と平行に一列に並んでいる。 The power converter disclosed in the present specification includes a laminated unit in which a plurality of power modules are laminated, a capacitor arranged next to the laminated unit, a first bus bar, and a second bus bar. Each power module contains a switching element for power conversion. The first terminal and the second terminal conducting with the switching element extend from the side surface of the power module. The first terminals of the plurality of power modules are arranged in a row along the stacking direction (first direction) of the power modules, and the plurality of second terminals are arranged in a row in parallel with the row of the first terminals.
 第1バスバは、複数のパワーモジュールの第1端子と接合しているとともに、コンデンサの一方の電極と接続している。第1バスバは、コンデンサからパワーモジュールの側面(第1端子と第2端子が設けられている側面)に沿って延びている第1平板を含んでいる。第1平板には、複数の第1孔と複数の第1枝部が設けられている。複数の第1孔のそれぞれを第1端子が通過する。それぞれの第1枝部は、それぞれの第1孔の縁から延びており、それぞれの第1端子と接続されている。 The first bus bar is connected to the first terminals of a plurality of power modules and is also connected to one electrode of the capacitor. The first bus bar includes a first flat plate extending from the capacitor along the side surface of the power module (the side surface where the first terminal and the second terminal are provided). The first flat plate is provided with a plurality of first holes and a plurality of first branch portions. The first terminal passes through each of the plurality of first holes. Each first branch extends from the edge of each first hole and is connected to each first terminal.
 第2バスバは、複数のパワーモジュールの第2端子と接合しているとともに、コンデンサの他方の電極と接続している。第2バスバは、コンデンサから第1平板と平行に延びている第2平板を含んでいる。第2平板には、複数の第2孔と複数の第2枝部が設けられている。複数の第2孔のそれぞれを第2端子が通過する。それぞれの第2枝部は、それぞれの第2孔の縁から延びており、それぞれの第2端子と接続されている。 The second bus bar is connected to the second terminal of a plurality of power modules and is connected to the other electrode of the capacitor. The second bus bar includes a second plate extending from the capacitor in parallel with the first plate. The second flat plate is provided with a plurality of second holes and a plurality of second branch portions. The second terminal passes through each of the plurality of second holes. Each second branch extends from the edge of each second hole and is connected to each second terminal.
 第1平板のコンデンサから遠い側の縁に第1リブが設けられている。この第1リブにより、第2方向からみたときの第1平板の変形が抑えられる。第2平板のコンデンサから遠い側の縁に第2リブが設けられていてもよい。第2リブは、第2方向からみたときの第2平板の変形を抑える。第1リブと第2リブは、第3方向に沿ってそれぞれの平板から延びている。第3方向は、第1方向と第2方向の両方に直交する方向である。第1リブと第2リブは、第3方向で互いに離間する方向に延びている。互いに離間する方向に延びる第1リブと第2リブは相互に干渉することがない。 The first rib is provided on the edge far from the capacitor of the first flat plate. Due to this first rib, the deformation of the first flat plate when viewed from the second direction is suppressed. A second rib may be provided on the edge far from the capacitor of the second flat plate. The second rib suppresses the deformation of the second flat plate when viewed from the second direction. The first rib and the second rib extend from the respective flat plates along the third direction. The third direction is a direction orthogonal to both the first direction and the second direction. The first rib and the second rib extend in a direction separated from each other in the third direction. The first rib and the second rib extending in the direction away from each other do not interfere with each other.
 本明細書が開示する技術の詳細とさらなる改良は以下の「発明を実施するための形態」にて説明する。 Details and further improvements of the techniques disclosed herein will be described in the "Modes for Carrying Out the Invention" below.
実施例の電力変換器を含む電気自動車の電力系のブロック図である。It is a block diagram of the electric power system of the electric vehicle including the electric power converter of an Example. 積層ユニットとバスバとコンデンサユニットのアセンブリの斜視図である。It is a perspective view of the assembly of a laminated unit, a bus bar and a capacitor unit. アセンブリの分解斜視図である。It is an exploded perspective view of an assembly. 変形例の電力変換器のアセンブリの斜視図である。It is a perspective view of the assembly of the power converter of a modification. 図4における切欠の近傍の拡大図である。It is an enlarged view of the vicinity of the notch in FIG.
 図面を参照して実施例の電力変換器を説明する。実施例の電力変換器は電気自動車に搭載されるデバイスである。電力変換器は、バッテリの電力を走行用モータの駆動電力に変換する。図1に、電力変換器2を含む電気自動車100の電力系のブロック図を示す。電気自動車100は、2個の走行用モータ83a、83bを備える。それゆえ、電力変換器2は、2セットのインバータ回路13a、13bを備える。なお、2個のモータ83a、83bの出力は、ギアボックス85で合成/分配されて車軸86(即ち駆動輪)へと伝達される。 The power converter of the embodiment will be described with reference to the drawings. The power converter of the embodiment is a device mounted on an electric vehicle. The power converter converts the power of the battery into the drive power of the traction motor. FIG. 1 shows a block diagram of an electric power system of an electric vehicle 100 including a power converter 2. The electric vehicle 100 includes two traveling motors 83a and 83b. Therefore, the power converter 2 includes two sets of inverter circuits 13a and 13b. The outputs of the two motors 83a and 83b are combined / distributed by the gearbox 85 and transmitted to the axle 86 (that is, the drive wheels).
 電力変換器2は、システムメインリレー82を介してバッテリ81と接続されている。電力変換器2は、バッテリ81の電圧を昇圧する電圧コンバータ回路12と、昇圧後の直流電力を交流に変換する2セットのインバータ回路13a、13bを備えている。 The power converter 2 is connected to the battery 81 via the system main relay 82. The power converter 2 includes a voltage converter circuit 12 that boosts the voltage of the battery 81, and two sets of inverter circuits 13a and 13b that convert the boosted DC power into alternating current.
 電圧コンバータ回路12は、昇圧動作と降圧動作の双方を行うことが可能な双方向DC-DCコンバータである。昇圧動作では、電圧コンバータ回路12は、バッテリ側の端子に印加された電圧を昇圧してインバータ側の端子に出力する。降圧動作では、電圧コンバータ回路12は、インバータ側の端子に印加された電圧を降圧してバッテリ側の端子に出力する。説明の便宜上、以下では、バッテリ側(低電圧側)の端子を入力端18と称し、インバータ側(高電圧側)の端子を出力端19と称する。また、入力端18の正極と負極を夫々、入力正極端18aと入力負極端18bと称する。出力端19の正極と負極を夫々、出力正極端19aと出力負極端19bと称する。「入力端18」、「出力端19」との表記は説明の便宜を図るためのものであり、先に述べたように、電圧コンバータ回路12は双方向DC-DCコンバータであるので、出力端19から入力端18へ電力が流れる場合がある。 The voltage converter circuit 12 is a bidirectional DC-DC converter capable of performing both step-up operation and step-down operation. In the boosting operation, the voltage converter circuit 12 boosts the voltage applied to the terminal on the battery side and outputs it to the terminal on the inverter side. In the step-down operation, the voltage converter circuit 12 steps down the voltage applied to the terminal on the inverter side and outputs it to the terminal on the battery side. For convenience of explanation, in the following, the terminal on the battery side (low voltage side) will be referred to as an input terminal 18, and the terminal on the inverter side (high voltage side) will be referred to as an output terminal 19. Further, the positive electrode and the negative electrode of the input end 18 are referred to as an input positive electrode end 18a and an input negative electrode end 18b, respectively. The positive electrode and the negative electrode of the output end 19 are referred to as an output positive electrode end 19a and an output negative electrode end 19b, respectively. The notations "input end 18" and "output end 19" are for convenience of explanation. As described above, since the voltage converter circuit 12 is a bidirectional DC-DC converter, the output end Power may flow from 19 to the input end 18.
 電圧コンバータ回路12は、2個のスイッチング素子9a、9bの直列回路、リアクトル7、フィルタコンデンサ5、各スイッチング素子に逆並列に接続されているダイオードで構成されている。リアクトル7は、一端が入力正極端18aに接続されており、他端は直列回路の中点に接続されている。フィルタコンデンサ5は、入力正極端18aと入力負極端18bの間に接続されている。入力負極端18bは、出力負極端19bと直接に接続されている。スイッチング素子9bが主に昇圧動作に関与し、スイッチング素子9aが主に降圧動作に関与する。図1の電圧コンバータ回路12はよく知られているので詳細な説明は省略する。 The voltage converter circuit 12 is composed of a series circuit of two switching elements 9a and 9b, a reactor 7, a filter capacitor 5, and a diode connected in antiparallel to each switching element. One end of the reactor 7 is connected to the input positive electrode end 18a, and the other end is connected to the midpoint of the series circuit. The filter capacitor 5 is connected between the input positive electrode end 18a and the input negative electrode end 18b. The input negative electrode end 18b is directly connected to the output negative electrode end 19b. The switching element 9b is mainly involved in the step-up operation, and the switching element 9a is mainly involved in the step-down operation. Since the voltage converter circuit 12 of FIG. 1 is well known, detailed description thereof will be omitted.
 符号8aが示す破線矩形の範囲の回路が、後述するパワーモジュール8aに対応する。符号25a、25bは、パワーモジュール8aから延出している端子を示している。符号25aは、スイッチング素子9a、9bの直列回路の高電位側と導通している端子(正極端子25a)を示している。符号25bは、スイッチング素子9a、9bの直列回路の低電位側と導通している端子(負極端子25b)を表している。次に説明するように、正極端子25a、負極端子25bという表記は、他のパワーモジュールでも用いる。なお、2個のスイッチング素子の直列接続の中点に接続される端子は中点端子と称する。 The circuit in the range of the broken line rectangle indicated by the reference numeral 8a corresponds to the power module 8a described later. Reference numerals 25a and 25b indicate terminals extending from the power module 8a. Reference numeral 25a indicates a terminal (positive electrode terminal 25a) conducting with the high potential side of the series circuit of the switching elements 9a and 9b. Reference numeral 25b represents a terminal (negative electrode terminal 25b) conducting with the low potential side of the series circuit of the switching elements 9a and 9b. As will be described next, the notation of positive electrode terminal 25a and negative electrode terminal 25b is also used in other power modules. The terminal connected to the midpoint of the series connection of the two switching elements is referred to as a midpoint terminal.
 インバータ回路13aは、2個のスイッチング素子の直列回路が3セット並列に接続された構成を有している。スイッチング素子9cと9d、スイッチング素子9eと9f、スイッチング素子9gと9hがそれぞれ直列回路を構成している。各スイッチング素子にはダイオードが逆並列に接続されている。3セットの直列回路の高電位側の端子(正極端子25a)が電圧コンバータ回路12の出力正極端19aに接続されており、3セットの直列回路の低電位側の端子(負極端子25b)が電圧コンバータ回路12の出力負極端19bに接続されている。3セットの直列回路の中点端子から3相交流(U相、V相、W相)が出力される。3セットの直列回路の夫々が、後述するパワーモジュール8b、8c、8dに対応する。 The inverter circuit 13a has a configuration in which three sets of series circuits of two switching elements are connected in parallel. The switching elements 9c and 9d, the switching elements 9e and 9f, and the switching elements 9g and 9h form a series circuit, respectively. Diodes are connected in anti-parallel to each switching element. The high potential side terminal (positive electrode terminal 25a) of the three sets of series circuits is connected to the output positive electrode end 19a of the voltage converter circuit 12, and the low potential side terminal (negative electrode terminal 25b) of the three sets of series circuits is voltage. It is connected to the output negative electrode end 19b of the converter circuit 12. Three-phase alternating current (U phase, V phase, W phase) is output from the midpoint terminal of the three sets of series circuits. Each of the three sets of series circuits corresponds to the power modules 8b, 8c, and 8d described later.
 インバータ回路13bの構成はインバータ回路13aと同じであるため、図1では具体的な回路の図示を省略している。インバータ回路13bもインバータ回路13aと同様に、2個のスイッチング素子の直列回路が3セット並列に接続された構成を有している。3セットの直列回路の高電位側の端子が電圧コンバータ回路12の出力正極端19aに接続されており、3セットの直列回路の低電位側の端子が電圧コンバータ回路12の出力負極端19bに接続されている。各直列回路に対応するハードウエアをパワーモジュール8e、8f、8gと称する。 Since the configuration of the inverter circuit 13b is the same as that of the inverter circuit 13a, the specific circuit is not shown in FIG. Similar to the inverter circuit 13a, the inverter circuit 13b also has a configuration in which three sets of series circuits of two switching elements are connected in parallel. The terminal on the high potential side of the three sets of series circuits is connected to the output positive end 19a of the voltage converter circuit 12, and the terminal on the low potential side of the three sets of series circuits is connected to the output negative end 19b of the voltage converter circuit 12. Has been done. The hardware corresponding to each series circuit is referred to as a power module 8e, 8f, 8g.
 インバータ回路13a、13bの入力端に平滑コンデンサ6が並列に接続されている。平滑コンデンサ6は、別言すれば、電圧コンバータ回路12の出力端19に並列に接続されている。平滑コンデンサ6は、電圧コンバータ回路12の出力電流の脈動を除去する。 A smoothing capacitor 6 is connected in parallel to the input ends of the inverter circuits 13a and 13b. In other words, the smoothing capacitor 6 is connected in parallel to the output terminal 19 of the voltage converter circuit 12. The smoothing capacitor 6 eliminates the pulsation of the output current of the voltage converter circuit 12.
 スイッチング素子9a-9hは、トランジスタであり、典型的にはIGBT(Insulated Gate Bipolar Transistor)であるが、他のトランジスタ、例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)であってもよい。また、ここでいうスイッチング素子は、電力変換に用いられるものであり、パワー半導体素子と呼ばれることもある。 The switching elements 9a-9h are transistors, typically IGBTs (Insulated Gate Bipolar Transistors), but may be other transistors, for example, MOSFETs (Metal Oxide Semiconductor Field Effect Transistors). Further, the switching element referred to here is used for power conversion, and is sometimes called a power semiconductor element.
 図1において、破線8a-8gの夫々がパワーモジュールに相当する。電力変換器2は、2個のスイッチング素子の直列回路を7セット備えている。ハードウエアとしては、直列回路を構成する2個のスイッチング素子、および各スイッチング素子に逆並列に接続されているダイオードが一つのパッケージ(パワーモジュールの本体)に収容されている。以下では、パワーモジュール8a-8gのいずれか一つを区別なく示すときにはパワーモジュール8と表記する。 In FIG. 1, each of the broken lines 8a-8g corresponds to the power module. The power converter 2 includes seven sets of a series circuit of two switching elements. As hardware, two switching elements constituting a series circuit and a diode connected in antiparallel to each switching element are housed in one package (main body of a power module). In the following, when any one of the power modules 8a to 8g is shown without distinction, it is referred to as the power module 8.
 7個のパワーモジュール(7セットの直列回路)の高電位側の端子(正極端子25a)が平滑コンデンサ6の正電極に接続され、低電位側の端子(負極端子25b)が平滑コンデンサ6の負電極に接続される。図1において、符号30が示す破線内の導電経路は、複数のパワーモジュール8の正極端子25aと平滑コンデンサ6の正電極を相互に接続するバスバ(正極バスバ)に対応する。符号40が示す破線内の導電経路は、複数の負極端子25bと平滑コンデンサ6の負電極を相互に接続するバスバ(負極バスバ)に対応する。次に、複数のパワーモジュール8と正極バスバ30、負極バスバ40の構造について説明する。 The high potential side terminal (positive electrode terminal 25a) of the seven power modules (7 sets of series circuits) is connected to the positive electrode of the smoothing capacitor 6, and the low potential side terminal (negative electrode terminal 25b) is the negative of the smoothing capacitor 6. Connected to the electrode. In FIG. 1, the conductive path in the broken line indicated by reference numeral 30 corresponds to a bus bar (positive electrode bus bar) that connects the positive electrode terminals 25a of the plurality of power modules 8 and the positive electrodes of the smoothing capacitor 6 to each other. The conductive path in the broken line indicated by reference numeral 40 corresponds to a bus bar (negative electrode bus bar) that connects the plurality of negative electrode terminals 25b and the negative electrodes of the smoothing capacitor 6 to each other. Next, the structures of the plurality of power modules 8, the positive electrode bus bar 30, and the negative electrode bus bar 40 will be described.
 図2に、電力変換器2のハードウエアの斜視図を示す。なお、図2では、電力変換器2のハウジングと一部の部品の図示を省略している。複数のパワーモジュール8(8a-8g)は、複数の冷却器22とともに積層ユニット20を構成している。パワーモジュール8a-8gは全て同じ形状であるので、図2と図3では、左端のパワーモジュールにのみ、符号8を付し、他のパワーモジュールには符号を省略した。また、図2と図3では、左端の2個の冷却器にのみ、符号22を付し、他の冷却器には符号を省略した。図3については後述する。 FIG. 2 shows a perspective view of the hardware of the power converter 2. In FIG. 2, the housing of the power converter 2 and some parts are not shown. The plurality of power modules 8 (8a-8g) together with the plurality of coolers 22 constitute a stacking unit 20. Since the power modules 8a-8g all have the same shape, in FIGS. 2 and 3, only the leftmost power module is designated by reference numeral 8, and the other power modules are designated by reference numerals. Further, in FIGS. 2 and 3, the reference numerals 22 are attached only to the two leftmost coolers, and the reference numerals are omitted for the other coolers. FIG. 3 will be described later.
 図2は、電力変換器2の斜視図であるが、積層ユニット20、正極バスバ30、負極バスバ40、及び、コンデンサユニット60のアセンブリのみを描いてあり、他の部品は図示を省略した。積層ユニット20において、複数のパワーモジュール8は積層されている。積層ユニット20は、複数のカードタイプの冷却器22が平行に配置されているとともに、隣り合う冷却器22の間にカードタイプのパワーモジュール8が挟まれているデバイスである。カードタイプのパワーモジュール8は、その幅広面を冷却器22に対向させている。図中の座標系のX方向が複数のパワーモジュール8の積層方向に相当する。以降の図でも、X方向が積層方向を示す。 FIG. 2 is a perspective view of the power converter 2, but only the assembly of the laminated unit 20, the positive electrode bus bar 30, the negative electrode bus bar 40, and the capacitor unit 60 is drawn, and the other parts are not shown. In the stacking unit 20, a plurality of power modules 8 are laminated. The stacking unit 20 is a device in which a plurality of card-type coolers 22 are arranged in parallel, and a card-type power module 8 is sandwiched between adjacent coolers 22. The card-type power module 8 has its wide surface facing the cooler 22. The X direction of the coordinate system in the figure corresponds to the stacking direction of the plurality of power modules 8. In the following figures, the X direction also indicates the stacking direction.
 各パワーモジュール8の一つの側面80aから3個の端子(正極端子25a、負極端子25b、中点端子25c)が延びている。図2と図3では、積層ユニット20の左端に位置するパワーモジュール8の端子にのみ符号25a、25b、25cを付し、残りのパワーモジュール8には端子を示す符号を省略した。 Three terminals (positive electrode terminal 25a, negative electrode terminal 25b, midpoint terminal 25c) extend from one side surface 80a of each power module 8. In FIGS. 2 and 3, reference numerals 25a, 25b, and 25c are attached only to the terminals of the power module 8 located at the left end of the stacking unit 20, and the reference numerals indicating the terminals are omitted from the remaining power modules 8.
 正極端子25aと負極端子25bは、先に述べたように、パワーモジュール8に収容されている直列回路の高電位側の端子と低電位側の端子である。中点端子25cは、直列回路の中点と導通している端子である。別言すれば、3個の端子25a-25cは、いずれも、パワーモジュール8の内部でスイッチング素子と導通している。3個の端子25a-25cは、パワーモジュール8の幅広面と交差する一側面80aから図中のZ軸正方向に延びている。一側面80aの反対側の側面から複数の制御端子が図中のZ軸負方向に延びている。制御端子は、パワーモジュール8に内蔵されているスイッチング素子のゲート電極と導通しているゲート端子、及び、パワーモジュール8に内蔵されている温度センサや電流センサと導通している信号端子などである。 As described above, the positive electrode terminal 25a and the negative electrode terminal 25b are a terminal on the high potential side and a terminal on the low potential side of the series circuit housed in the power module 8. The midpoint terminal 25c is a terminal conducting with the midpoint of the series circuit. In other words, all three terminals 25a-25c are conducting with the switching element inside the power module 8. The three terminals 25a-25c extend in the positive direction of the Z axis in the drawing from one side surface 80a intersecting the wide surface of the power module 8. A plurality of control terminals extend in the negative direction of the Z axis in the drawing from the side surface opposite to one side surface 80a. The control terminals are a gate terminal conducting with the gate electrode of the switching element built in the power module 8, a signal terminal conducting with the temperature sensor and the current sensor built in the power module 8, and the like. ..
 図中の右端の冷却器22には、冷媒供給口28と冷媒排出口29が設けられている。隣接する冷却器22同士は、2個の連結管で接続されている。一方の連結管は、積層方向からみて冷媒供給口28と重なるように位置している。他方の連結管は、積層方向からみて冷媒排出口29と重なるように位置している。冷媒供給口28と冷媒排出口29には、不図示の冷媒循環装置が接続される。冷媒供給口28から供給される冷媒は、一方の連結管を通じて全ての冷却器22に分配される。冷媒は冷却器22を通る間に隣接するパワーモジュール8から熱を吸収する。熱を吸収した冷媒は、他方の連結管と冷媒排出口29を通じて積層ユニット20から排出される。各パワーモジュール8は、その両側から冷却されるので、積層ユニット20は冷却性能が高い。 The rightmost cooler 22 in the figure is provided with a refrigerant supply port 28 and a refrigerant discharge port 29. The adjacent coolers 22 are connected by two connecting pipes. One connecting pipe is positioned so as to overlap the refrigerant supply port 28 when viewed from the stacking direction. The other connecting pipe is positioned so as to overlap the refrigerant discharge port 29 when viewed from the stacking direction. A refrigerant circulation device (not shown) is connected to the refrigerant supply port 28 and the refrigerant discharge port 29. The refrigerant supplied from the refrigerant supply port 28 is distributed to all the coolers 22 through one connecting pipe. The refrigerant absorbs heat from the adjacent power module 8 while passing through the cooler 22. The heat-absorbed refrigerant is discharged from the stacking unit 20 through the other connecting pipe and the refrigerant discharge port 29. Since each power module 8 is cooled from both sides thereof, the laminated unit 20 has high cooling performance.
 各パワーモジュール8の3個の端子25a-25cはいずれも平板状である。複数のパワーモジュール8の正極端子25aは、隣接するパワーモジュール8の正極端子25aの平坦面と対向するように、X方向(積層方向)に一列に並んでいる。複数のパワーモジュール8の負極端子25bも、隣接するパワーモジュール8の負極端子25bの平坦面と対向するように、X方向(積層方向)に一列に並んでいる。複数のパワーモジュール8の中点端子25cも同様である。複数のパワーモジュール8の正極端子25aの列と、負極端子25bの列と、中点端子25cの列は、平行である。 The three terminals 25a-25c of each power module 8 are all flat plates. The positive electrode terminals 25a of the plurality of power modules 8 are arranged in a row in the X direction (stacking direction) so as to face the flat surface of the positive electrode terminals 25a of the adjacent power modules 8. The negative electrode terminals 25b of the plurality of power modules 8 are also arranged in a row in the X direction (stacking direction) so as to face the flat surface of the negative electrode terminals 25b of the adjacent power modules 8. The same applies to the midpoint terminals 25c of the plurality of power modules 8. The rows of the positive electrode terminals 25a, the rows of the negative electrode terminals 25b, and the rows of the midpoint terminals 25c of the plurality of power modules 8 are parallel.
 積層ユニット20の横にコンデンサユニット60が配置されている。コンデンサユニット60は、パワーモジュール8の積層方向(図中のX方向)に沿って長い。コンデンサユニット60は、積層方向と交差する方向(Y方向)で積層ユニット20と並んでいる。コンデンサユニット60のケースの中には、2個のコンデンサ素子61(後述)が収容されている。正極バスバ30は、複数のパワーモジュール8の夫々の正極端子25aと、コンデンサユニット60の中のコンデンサ素子を接続しており、負極バスバ40は、複数のパワーモジュール8の夫々の負極端子25bとコンデンサユニット60の中のコンデンサ素子を接続する。 The capacitor unit 60 is arranged next to the laminated unit 20. The capacitor unit 60 is long along the stacking direction (X direction in the figure) of the power module 8. The capacitor unit 60 is aligned with the stacking unit 20 in a direction (Y direction) intersecting the stacking direction. Two capacitor elements 61 (described later) are housed in the case of the capacitor unit 60. The positive electrode bus bar 30 connects the positive electrode terminals 25a of the plurality of power modules 8 to the capacitor elements in the capacitor unit 60, and the negative electrode bus bar 40 connects the negative electrode terminals 25b of the plurality of power modules 8 to the capacitors. The capacitor element in the unit 60 is connected.
 図3に、正極バスバ30と負極バスバ40と積層ユニット20とコンデンサ素子61(コンデンサユニット60)のアセンブリの分解斜視図を示す。なお、図2のコンデンサユニット60には、2個のコンデンサ素子61が収容されている。図3では、コンデンサユニット60のケースを省略し、内部のコンデンサ素子61を描いてある。詳細は割愛するが、コンデンサユニット60のケースの中でコンデンサ素子61の周囲は充填材で満たされている。コンデンサ素子61は、図1の平滑コンデンサ6に相当する。 FIG. 3 shows an exploded perspective view of the assembly of the positive electrode bus bar 30, the negative electrode bus bar 40, the laminated unit 20, and the capacitor element 61 (capacitor unit 60). The capacitor unit 60 of FIG. 2 accommodates two capacitor elements 61. In FIG. 3, the case of the capacitor unit 60 is omitted, and the internal capacitor element 61 is drawn. Although details are omitted, the periphery of the capacitor element 61 in the case of the capacitor unit 60 is filled with a filler. The capacitor element 61 corresponds to the smoothing capacitor 6 in FIG.
 複数のパワーモジュール8の正極端子25aとコンデンサ素子61の正電極61aが正極バスバ30で接続され、複数の負極端子25bとコンデンサ素子61の負電極61bが負極バスバ40で接続される。 The positive electrode 25a of the plurality of power modules 8 and the positive electrode 61a of the capacitor element 61 are connected by the positive electrode bus bar 30, and the plurality of negative electrode terminals 25b and the negative electrode 61b of the capacitor element 61 are connected by the negative electrode bus bar 40.
 正極バスバ30は、板状の電極部39と平板31を備えている。平板31には、複数の正極端子孔32と複数の枝部33が設けられている。電極部39が、コンデンサ素子61の正電極61aに接続される。複数の正極端子孔32は、X方向に沿って一列に並んでいる。それぞれの正極端子孔32の縁から枝部33がZ方向に延びている。それぞれの正極端子孔32を対応するパワーモジュール8の正極端子25aが通り、その正極端子25aと枝部33が溶接にて接合される。 The positive electrode bus bar 30 includes a plate-shaped electrode portion 39 and a flat plate 31. The flat plate 31 is provided with a plurality of positive electrode terminal holes 32 and a plurality of branch portions 33. The electrode portion 39 is connected to the positive electrode 61a of the capacitor element 61. The plurality of positive electrode terminal holes 32 are arranged in a row along the X direction. A branch portion 33 extends in the Z direction from the edge of each positive electrode terminal hole 32. The positive electrode terminal 25a of the power module 8 corresponding to each positive electrode terminal hole 32 passes through, and the positive electrode terminal 25a and the branch portion 33 are joined by welding.
 負極バスバ40は、板状の電極部49と平板41を備えている。平板41には、複数の負極端子孔42と複数の枝部43が設けられている。電極部49が、コンデンサ素子61の負電極61bに接続される。複数の負極端子孔42は、X方向に沿って一列に並んでいる。それぞれの負極端子孔42の縁から枝部43がZ方向に延びている。それぞれの負極端子孔42を対応するパワーモジュール8の負極端子25bが通り、その負極端子25bと枝部43が接合される。 The negative electrode bus bar 40 includes a plate-shaped electrode portion 49 and a flat plate 41. The flat plate 41 is provided with a plurality of negative electrode terminal holes 42 and a plurality of branch portions 43. The electrode portion 49 is connected to the negative electrode 61b of the capacitor element 61. The plurality of negative electrode terminal holes 42 are arranged in a row along the X direction. A branch portion 43 extends in the Z direction from the edge of each negative electrode terminal hole 42. The negative electrode terminal 25b of the power module 8 corresponding to each negative electrode terminal hole 42 passes through, and the negative electrode terminal 25b and the branch portion 43 are joined.
 負極バスバ40は、正極バスバ30の積層ユニット20とは反対側に位置している。負極バスバ40には、複数の正極端子孔45が設けられている。それぞれの正極端子孔45を、パワーモジュール8の正極端子25aと、正極バスバ30の枝部33が通過する。正極バスバ30の平板31と、負極バスバ40の平板41は、絶縁板50(後述)を挟んで平行に配置されているとともに、相互に近接対向している。一方のバスバに電流が流れると、その電流に起因してバスバの周囲に磁界が発生する。磁界の大きさとバスバのインダクタンスには正の相関がある。磁界が大きいほど、インダクタンスも大きくなる。正極バスバ30の平板31と負極バスバ40の平板41が近接対向していると、一方のバスバの磁界によって他方のバスバに渦電流が生じる。渦電流の発生は、一方のバスバの磁界を弱める。磁界が弱まるということは、インダクタンスが小さくなることを意味する。バスバの平板31、41を近接配置することで、バスバのインダクタンスを小さくすることができる。 The negative electrode bus bar 40 is located on the opposite side of the laminated unit 20 of the positive electrode bus bar 30. The negative electrode bus bar 40 is provided with a plurality of positive electrode terminal holes 45. The positive electrode terminal 25a of the power module 8 and the branch portion 33 of the positive electrode bus bar 30 pass through each of the positive electrode terminal holes 45. The flat plate 31 of the positive electrode bus bar 30 and the flat plate 41 of the negative electrode bus bar 40 are arranged in parallel with the insulating plate 50 (described later) interposed therebetween and are close to each other. When a current flows through one of the bus bars, a magnetic field is generated around the bus bar due to the current. There is a positive correlation between the magnitude of the magnetic field and the inductance of the bus bar. The larger the magnetic field, the larger the inductance. When the flat plate 31 of the positive electrode bus bar 30 and the flat plate 41 of the negative electrode bus bar 40 are in close contact with each other, an eddy current is generated in the other bus bar by the magnetic field of one bus bar. The generation of eddy currents weakens the magnetic field of one bus bar. The weakening of the magnetic field means that the inductance becomes smaller. By arranging the flat plates 31 and 41 of the bus bar close to each other, the inductance of the bus bar can be reduced.
 正極バスバ30と負極バスバ40の間に絶縁板50が挟まれている。絶縁板50は、正極バスバ30と負極バスバ40の間を絶縁する。絶縁板50には、複数の筒部53が設けられている。絶縁板50の積層方向(X方向)の両側には、Y方向に延びているリブ57が設けられている。図2に示されているように、リブ57は、正極バスバ30の補強リブ37と負極バスバ40の補強リブ47の間に挟まれ、両者を絶縁する。補強リブ37、47については後述する。 The insulating plate 50 is sandwiched between the positive electrode bus bar 30 and the negative electrode bus bar 40. The insulating plate 50 insulates between the positive electrode bus bar 30 and the negative electrode bus bar 40. The insulating plate 50 is provided with a plurality of tubular portions 53. Ribs 57 extending in the Y direction are provided on both sides of the insulating plate 50 in the stacking direction (X direction). As shown in FIG. 2, the rib 57 is sandwiched between the reinforcing rib 37 of the positive electrode bus bar 30 and the reinforcing rib 47 of the negative electrode bus bar 40 to insulate both of them. Reinforcing ribs 37 and 47 will be described later.
 絶縁板50の筒部53は、負極バスバ40の正極端子孔45を通過している。筒部53の内部を、正極バスバ30の枝部33と、パワーモジュール8の正極端子25aが通過する。筒部53は、正極端子25aと枝部33を負極バスバ40から確実に絶縁する。 The tubular portion 53 of the insulating plate 50 passes through the positive electrode terminal hole 45 of the negative electrode bus bar 40. The branch portion 33 of the positive electrode bus bar 30 and the positive electrode terminal 25a of the power module 8 pass through the inside of the tubular portion 53. The tubular portion 53 reliably insulates the positive electrode terminal 25a and the branch portion 33 from the negative electrode bus bar 40.
 正極バスバ30の平板31の積層方向(X方向)の両端は、直角に折り曲げられている。直角に折り曲げられた部分を補強リブ37と称する。負極バスバ40の平板41の積層方向(X方向)の両端も、直角に折り曲げられている。直角に折り曲げられた部分を補強リブ47と称する。先に述べたように、コンデンサ素子61は、ケースに収容されるとともに、ケースの中で充填材に埋設される。従って、正極バスバ30の一部と負極バスバ40の一部もコンデンサユニット60のケースの中で充填材に埋設される。当然、電極部39、49は、充填材に埋設されることになる。正極バスバ30の平板31の一部31aも充填材に埋設され、負極バスバ40の平板41の一部41aも充填材に埋設される。符号31b、41bが示す箇所は、平板31、41のなかでコンデンサユニット60から露出する露出部である。補強リブ37の一部37a、補強リブ47の一部47aも、充填材に埋設される。 Both ends of the flat plate 31 of the positive electrode bus bar 30 in the stacking direction (X direction) are bent at right angles. The portion bent at a right angle is referred to as a reinforcing rib 37. Both ends of the flat plate 41 of the negative electrode bus bar 40 in the stacking direction (X direction) are also bent at right angles. The portion bent at a right angle is referred to as a reinforcing rib 47. As described above, the capacitor element 61 is housed in the case and is embedded in the filler in the case. Therefore, a part of the positive electrode bus bar 30 and a part of the negative electrode bus bar 40 are also embedded in the filler in the case of the capacitor unit 60. Naturally, the electrode portions 39 and 49 will be embedded in the filler. A part 31a of the flat plate 31 of the positive electrode bus bar 30 is also embedded in the filler, and a part 41a of the flat plate 41 of the negative electrode bus bar 40 is also embedded in the filler. The portion indicated by reference numerals 31b and 41b is an exposed portion exposed from the capacitor unit 60 in the flat plates 31 and 41. A part 37a of the reinforcing rib 37 and a part 47a of the reinforcing rib 47 are also embedded in the filler.
 正極バスバ30(平板31)のコンデンサ素子61から最も遠い側の縁にも補強リブ38が設けられている。補強リブ38は、平板31のX方向に延びる2個の縁のうち、コンデンサ素子61から遠い側の縁に設けられている。負極バスバ40(平板41)のコンデンサ素子61から遠い側の縁にも補強リブ48が設けられている。補強リブ48は、平板41のX方向に延びる2個の縁のうち、コンデンサ素子61から遠い側の縁に設けられている。 Reinforcing ribs 38 are also provided on the edge of the positive electrode bus bar 30 (flat plate 31) farthest from the condenser element 61. The reinforcing rib 38 is provided on the edge of the flat plate 31 extending in the X direction on the side farther from the capacitor element 61. Reinforcing ribs 48 are also provided on the edge of the negative electrode bus bar 40 (flat plate 41) on the side far from the capacitor element 61. The reinforcing rib 48 is provided on the edge of the flat plate 41 extending in the X direction on the side farther from the capacitor element 61.
 補強リブ38は、平板31からーZ方向に延びている。補強リブ48は、平板41から+Z方向に延びている。すなわち、補強リブ38と補強リブ48は、互いに離れる方向に延びている。それゆえ、正極バスバ30と負極バスバ40が重なっていても、補強リブ38と補強リブ48が干渉することはない。 The reinforcing rib 38 extends from the flat plate 31 in the -Z direction. The reinforcing rib 48 extends from the flat plate 41 in the + Z direction. That is, the reinforcing rib 38 and the reinforcing rib 48 extend in a direction away from each other. Therefore, even if the positive electrode bus bar 30 and the negative electrode bus bar 40 overlap, the reinforcing rib 38 and the reinforcing rib 48 do not interfere with each other.
 先に述べた補強リブ37は、正極バスバ30(平板31)をX方向からみたときの曲げに対する剛性を高める。別言すれば、補強リブ37は、X方向に延びる軸回りの正極バスバ30(平板31)の変形を抑制する。一方、補強リブ38は、正極バスバ30(平板31)をY方向からみたときの曲げに対する剛性を高める。別言すれば、補強リブ38は、Y方向に延びる軸回りの正極バスバ30(平板31)の変形を抑制する。 The reinforcing rib 37 described above increases the rigidity of the positive electrode bus bar 30 (flat plate 31) against bending when viewed from the X direction. In other words, the reinforcing rib 37 suppresses the deformation of the positive electrode bus bar 30 (flat plate 31) around the axis extending in the X direction. On the other hand, the reinforcing rib 38 increases the rigidity of the positive electrode bus bar 30 (flat plate 31) against bending when viewed from the Y direction. In other words, the reinforcing rib 38 suppresses the deformation of the positive electrode bus bar 30 (flat plate 31) around the axis extending in the Y direction.
 補強リブ47も同様である。補強リブ47は、負極バスバ40(平板41)をX方向からみたときの曲げに対する剛性を高める。別言すれば、補強リブ47は、X方向に延びる軸回りの負極バスバ40(平板41)の変形を抑制する。補強リブ48は、負極バスバ40(平板41)をY方向からみたときの曲げに対する剛性を高める。別言すれば、補強リブ48は、Y方向に延びる軸回りの負極バスバ40(平板41)の変形を抑制する。 The same applies to the reinforcing rib 47. The reinforcing rib 47 increases the rigidity of the negative electrode bus bar 40 (flat plate 41) against bending when viewed from the X direction. In other words, the reinforcing rib 47 suppresses deformation of the negative electrode bus bar 40 (flat plate 41) around the axis extending in the X direction. The reinforcing rib 48 increases the rigidity of the negative electrode bus bar 40 (flat plate 41) against bending when viewed from the Y direction. In other words, the reinforcing rib 48 suppresses deformation of the negative electrode bus bar 40 (flat plate 41) around the axis extending in the Y direction.
 電力変換器2の製造工程において、正極バスバ30の枝部33がパワーモジュール8の正極端子25aと接合される。接合の際、枝部33と正極端子25aがチャックで掴まれる。チャックから受ける力により、正極バスバ30の平板31が変形するおそれがある。補強リブ38は、チャックの力に起因する平板31の変形を抑える。負極バスバ40についても同様であり、補強リブ48は、チャックの力(枝部43と負極端子25bを挟む力)に起因する平板41の変形を抑える。 In the manufacturing process of the power converter 2, the branch portion 33 of the positive electrode bus bar 30 is joined to the positive electrode terminal 25a of the power module 8. At the time of joining, the branch portion 33 and the positive electrode terminal 25a are gripped by the chuck. The flat plate 31 of the positive electrode bus bar 30 may be deformed by the force received from the chuck. The reinforcing rib 38 suppresses deformation of the flat plate 31 due to the force of the chuck. The same applies to the negative electrode bus bar 40, and the reinforcing rib 48 suppresses the deformation of the flat plate 41 due to the force of the chuck (the force sandwiching the branch portion 43 and the negative electrode terminal 25b).
 補強リブ37、38は、一枚の平板(平板31)を折り曲げて作られる。補強リブ47、48は、一枚の平板(平板41)を折り曲げて作られる。 Reinforcing ribs 37 and 38 are made by bending one flat plate (flat plate 31). The reinforcing ribs 47 and 48 are made by bending one flat plate (flat plate 41).
 図4に、変形例の電力変換器2aの斜視図を示す。図4は、図2に対応する。なお、図4では、複数のパワーモジュール8のそれぞれに固有の符号(8a-8g)を付してある。 FIG. 4 shows a perspective view of a modified power converter 2a. FIG. 4 corresponds to FIG. In FIG. 4, each of the plurality of power modules 8 is given a unique reference numeral (8a-8g).
 変形例の電力変換器2aの補強リブ138と補強リブ148は、実施例の電力変換器2の補強リブ38、48と相違する。補強リブ138、148を除いて、電力変換器2aの構造は電力変換器2の構造と同じである。 The reinforcing ribs 138 and 148 of the power converter 2a of the modified example are different from the reinforcing ribs 38 and 48 of the power converter 2 of the embodiment. The structure of the power converter 2a is the same as that of the power converter 2 except for the reinforcing ribs 138 and 148.
 補強リブ148は、2カ所の切欠149a、149bを有している。図5に、切欠149aの近傍の拡大図を示してある。切欠149a、149bは、負極端子孔42に達している。先に述べたように、補強リブ148は、Y方向からみたときの平板41の変形を抑える。一方、補強リブ148を設けることで、平板41の剛性が高くなり、力を受けたときに局所的に応力が集中するおそれがある。切欠149a、149bを設けることで平板41が力を受けたときの応力集中が緩和される。 Reinforcing rib 148 has two notches 149a and 149b. FIG. 5 shows an enlarged view of the vicinity of the notch 149a. The notches 149a and 149b reach the negative electrode terminal hole 42. As described above, the reinforcing rib 148 suppresses the deformation of the flat plate 41 when viewed from the Y direction. On the other hand, by providing the reinforcing rib 148, the rigidity of the flat plate 41 is increased, and stress may be locally concentrated when a force is applied. By providing the notches 149a and 149b, the stress concentration when the flat plate 41 receives a force is relaxed.
 また、切欠149aは、パワーモジュール8aとパワーモジュール8bの間に設けられている。より詳しくは、切欠149aは、パワーモジュール8aの中点端子25cとパワーモジュール8bの中点端子25cの間に設けられている。図1を用いて説明したように、パワーモジュール8aは電圧コンバータ回路12に用いられており、パワーモジュール8bはインバータ回路13aに用いられている。すなわち、切欠149aは、異なる変換回路に用いられている2個のパワーモジュール8a、8bの間に設けられている。パワーモジュール8a、8bのスイッチング素子は相互に独立したタイミングで動作し、スイッチングノイズが互いに干渉する。切欠149aは、相互に独立したタイミングで動作するスイッチング素子のノイズの干渉を低減する。 Further, the notch 149a is provided between the power module 8a and the power module 8b. More specifically, the notch 149a is provided between the midpoint terminal 25c of the power module 8a and the midpoint terminal 25c of the power module 8b. As described with reference to FIG. 1, the power module 8a is used in the voltage converter circuit 12, and the power module 8b is used in the inverter circuit 13a. That is, the notch 149a is provided between the two power modules 8a and 8b used in different conversion circuits. The switching elements of the power modules 8a and 8b operate at timings independent of each other, and switching noise interferes with each other. The notch 149a reduces noise interference from switching elements that operate at mutually independent timings.
 切欠149bはパワーモジュール8dとパワーモジュール8eの間に設けられている。より詳しくは、切欠149bは、パワーモジュール8dの中点端子25cとパワーモジュール8eの中点端子25cの間に設けられている。パワーモジュール8dはインバータ回路13aに用いられており、パワーモジュール8eはインバータ回路13bに用いられている。パワーモジュール8d、8eのスイッチング素子は相互に独立したタイミングで動作し、スイッチングノイズが互いに干渉する。切欠149bも、相互に独立したタイミングで動作するスイッチング素子のノイズの干渉を低減する。 The notch 149b is provided between the power module 8d and the power module 8e. More specifically, the notch 149b is provided between the midpoint terminal 25c of the power module 8d and the midpoint terminal 25c of the power module 8e. The power module 8d is used in the inverter circuit 13a, and the power module 8e is used in the inverter circuit 13b. The switching elements of the power modules 8d and 8e operate at timings independent of each other, and switching noise interferes with each other. The notch 149b also reduces noise interference from switching elements that operate at mutually independent timings.
 図4では隠れて見えないが、正極バスバ30の補強リブ138にも同様の切欠が設けられている。補強リブ138に設けられた切欠も、補強リブ148の切欠149a、149bと同じ効果を奏する。 Although it is hidden and invisible in FIG. 4, a similar notch is provided in the reinforcing rib 138 of the positive electrode bus bar 30. The notch provided in the reinforcing rib 138 has the same effect as the notch 149a and 149b of the reinforcing rib 148.
 実施例で説明した技術に関する留意点を述べる。実施例の負極バスバ40が第1バスバの一例に相当する。負極バスバ40の平板41、負極端子孔42、枝部43のそれぞれが、第1平板、第1孔、第1枝部の一例に相当する。実施例の正極バスバ30が第2バスバの一例に相当する。正極バスバ30の平板31、正極端子孔32、枝部33のそれぞれが、第2平板、第2孔、第2枝部の一例に相当する。補強リブ48が第1リブの一例に相当する。補強リブ38が第2リブの一例に相当する。図中の座標系のX方向が第1方向に相当し、Y方向が第2方向に相当する。 The points to keep in mind regarding the technology explained in the examples will be described. The negative electrode bus bar 40 of the embodiment corresponds to an example of the first bus bar. Each of the flat plate 41, the negative electrode terminal hole 42, and the branch portion 43 of the negative electrode bus bar 40 corresponds to an example of the first flat plate, the first hole, and the first branch portion. The positive electrode bus bar 30 of the embodiment corresponds to an example of the second bus bar. Each of the flat plate 31, the positive electrode terminal hole 32, and the branch portion 33 of the positive electrode bus bar 30 corresponds to an example of the second flat plate, the second hole, and the second branch portion. The reinforcing rib 48 corresponds to an example of the first rib. The reinforcing rib 38 corresponds to an example of the second rib. The X direction of the coordinate system in the figure corresponds to the first direction, and the Y direction corresponds to the second direction.
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above. The technical elements described herein or in the drawings exhibit their technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the techniques illustrated in the present specification or drawings can achieve a plurality of purposes at the same time, and achieving one of the purposes itself has technical usefulness.

Claims (6)

  1.  電力変換用のスイッチング素子を収容しており、前記スイッチング素子と導通している第1端子と第2端子が側面から延びている複数のパワーモジュールが第1方向にて積層されている積層ユニットと、
     前記積層ユニットの隣りに配置されているコンデンサと、
     複数の前記パワーモジュールの前記第1端子と接合しているとともに、前記コンデンサの一方の電極と接続している第1バスバと、
     複数の前記パワーモジュールの前記第2端子と接合しているとともに、前記コンデンサの他方の電極と接続している第2バスバと、
    を備えており、
     複数の前記パワーモジュールの前記第1端子は、前記第1方向に沿って一列に並んでおり、複数の前記第2端子は、前記第1端子の列と平行に一列に並んでおり、
     前記第1バスバは、前記コンデンサから前記パワーモジュールの前記側面に沿って延びている第1平板と、前記第1平板に設けられている複数の第1孔であってそれぞれに前記第1端子が通過している複数の第1孔と、それぞれの前記第1孔の縁から延びており、それぞれの前記第1端子と接続されている複数の第1枝部と、を備えており、
     前記第2バスバは、前記コンデンサから前記第1平板と平行に延びている第2平板と、前記第2平板に設けられている複数の第2孔であってそれぞれに前記第2端子が通過している複数の第2孔と、それぞれの前記第2孔の縁から延びており、それぞれの前記第2端子と接続されている複数の第2枝部と、を備えており、
     前記第1平板の前記コンデンサから遠い側の縁に第1リブが設けられている、電力変換器。
    A laminated unit that houses a switching element for power conversion, and has a plurality of power modules in which a first terminal and a second terminal extending from the side surface are laminated in the first direction. ,
    The capacitors placed next to the laminated unit and
    A first bus bar that is joined to the first terminal of the plurality of power modules and is connected to one electrode of the capacitor.
    A second bus bar that is joined to the second terminal of the plurality of power modules and is connected to the other electrode of the capacitor.
    Is equipped with
    The first terminals of the plurality of power modules are arranged in a row along the first direction, and the plurality of second terminals are arranged in a row parallel to the row of the first terminals.
    The first bus bar is a first flat plate extending from the capacitor along the side surface of the power module, and a plurality of first holes provided in the first flat plate, each of which has a first terminal. It is provided with a plurality of first holes passing through and a plurality of first branch portions extending from the edge of each of the first holes and connected to each of the first terminals.
    The second bus bar is a second flat plate extending from the capacitor in parallel with the first flat plate, and a plurality of second holes provided in the second flat plate through which the second terminal passes. It is provided with a plurality of second holes, and a plurality of second branches extending from the edge of each of the second holes and connected to each of the second terminals.
    A power converter in which a first rib is provided on an edge of the first flat plate on the side far from the capacitor.
  2.  前記第1方向に延びている前記第2平板の縁であって前記コンデンサから遠い側の縁に第2リブが設けられており、前記第1リブと前記第2リブは、互いに離間する方向に延びている、請求項1に記載の電力変換器。 A second rib is provided on the edge of the second flat plate extending in the first direction and far from the capacitor, and the first rib and the second rib are separated from each other. The power converter according to claim 1, which extends.
  3.  前記第1平板と前記第1リブは一枚の金属板で作られている、請求項1または2に記載の電力変換器。 The power converter according to claim 1 or 2, wherein the first flat plate and the first rib are made of one metal plate.
  4.  前記第1リブは前記第1平板に達する切欠を備えている、請求項1から3のいずれか1項に記載の電力変換器。 The power converter according to any one of claims 1 to 3, wherein the first rib has a notch that reaches the first flat plate.
  5.  前記第1リブは複数の前記切欠を備えている、請求項4に記載の電力変換器。 The power converter according to claim 4, wherein the first rib includes a plurality of the notches.
  6.  前記第1リブは、第1電力変換回路に用いられている第1の前記パワーモジュールと、第2電力変換回路に用いられている第2の前記パワーモジュールとの間に設けられている、請求項4または5に記載の電力変換器。 The first rib is provided between the first power module used in the first power conversion circuit and the second power module used in the second power conversion circuit. Item 4. The power converter according to Item 4.
PCT/JP2019/028536 2019-07-19 2019-07-19 Power converter WO2021014512A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021534871A JP7092268B2 (en) 2019-07-19 2019-07-19 Power converter
PCT/JP2019/028536 WO2021014512A1 (en) 2019-07-19 2019-07-19 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028536 WO2021014512A1 (en) 2019-07-19 2019-07-19 Power converter

Publications (1)

Publication Number Publication Date
WO2021014512A1 true WO2021014512A1 (en) 2021-01-28

Family

ID=74192690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028536 WO2021014512A1 (en) 2019-07-19 2019-07-19 Power converter

Country Status (2)

Country Link
JP (1) JP7092268B2 (en)
WO (1) WO2021014512A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190569A (en) * 2000-12-20 2002-07-05 Nissan Motor Co Ltd Semiconductor device
JP2015116056A (en) * 2013-12-12 2015-06-22 三菱自動車工業株式会社 Bus bar
JP2018042424A (en) * 2016-09-09 2018-03-15 トヨタ自動車株式会社 Power conversion device
JP2018042309A (en) * 2016-09-05 2018-03-15 トヨタ自動車株式会社 Power conversion device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002190569A (en) * 2000-12-20 2002-07-05 Nissan Motor Co Ltd Semiconductor device
JP2015116056A (en) * 2013-12-12 2015-06-22 三菱自動車工業株式会社 Bus bar
JP2018042309A (en) * 2016-09-05 2018-03-15 トヨタ自動車株式会社 Power conversion device
JP2018042424A (en) * 2016-09-09 2018-03-15 トヨタ自動車株式会社 Power conversion device

Also Published As

Publication number Publication date
JP7092268B2 (en) 2022-06-28
JPWO2021014512A1 (en) 2021-12-09

Similar Documents

Publication Publication Date Title
JP5700022B2 (en) Power converter
JP6690478B2 (en) Power converter
JP2013211943A (en) Electric power conversion device
JP2015139299A (en) power converter
CN109873567B (en) Power conversion device
JP7035845B2 (en) Power converter
JP2015136223A (en) power converter
JP2015136224A (en) power converter
JP2015139270A (en) Power conversion device
JP6409737B2 (en) Power converter
JP6758571B2 (en) Power converter
CN111478606B (en) Power converter and method for manufacturing same
JP2019187207A (en) Electric power converter
JP6693349B2 (en) Power converter
JP6693348B2 (en) Power converter
JP7092268B2 (en) Power converter
JP6758570B2 (en) Power converter
JP7035543B2 (en) Power converter
JP7193003B2 (en) power converter
JP2018073915A (en) Manufacturing method for power converter
JP7074028B2 (en) Power converter
JP6372433B2 (en) Power converter
JP2020141540A (en) Power converter
JP2019187206A (en) Electric power converter
JP2015136225A (en) power converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021534871

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938811

Country of ref document: EP

Kind code of ref document: A1