WO2021014493A1 - Terminal and wireless communication method - Google Patents

Terminal and wireless communication method Download PDF

Info

Publication number
WO2021014493A1
WO2021014493A1 PCT/JP2019/028466 JP2019028466W WO2021014493A1 WO 2021014493 A1 WO2021014493 A1 WO 2021014493A1 JP 2019028466 W JP2019028466 W JP 2019028466W WO 2021014493 A1 WO2021014493 A1 WO 2021014493A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
channel
csi
signal
precoding
Prior art date
Application number
PCT/JP2019/028466
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
佑一 柿島
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201980098602.6A priority Critical patent/CN114175710B/en
Priority to PCT/JP2019/028466 priority patent/WO2021014493A1/en
Priority to CN202410078226.7A priority patent/CN117880838A/en
Publication of WO2021014493A1 publication Critical patent/WO2021014493A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • a beam management method has been introduced.
  • a beam at at least one of a base station and a user terminal (user terminal, User Equipment (UE)).
  • UE User Equipment
  • Beams can be broadly divided into digital beams (digital precoding) that can form multiple beams at the same time and analog beams (analog precoding) that can form up to one beam at the same time.
  • digital precoding digital precoding
  • analog beams analog precoding
  • the UE may not be able to process the signal / channel properly. If the UE cannot properly process the signal / channel to which the precoding (beam) is applied, the increase in communication throughput may be suppressed.
  • one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately processing a signal / channel to which precoding is applied.
  • the terminal executes processing for at least one of the signal and the channel based on the receiving unit that receives the related information of at least one of the digitally precoded signal and the channel and the related information. It is characterized by having a control unit.
  • signals / channels to which precoding has been applied can be appropriately processed.
  • FIG. 1A and 1B are diagrams showing an example of a transmission / reception configuration in which beam management is used.
  • FIG. 2 is a diagram showing a forecast of progress in MIMO technology.
  • 3A and 3B are diagrams showing an example of beam operation.
  • FIG. 4 is a diagram showing an example in which beams interfere with other UEs.
  • FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • Beam management In NR, a beam management method has been introduced. For example, in NR, it is considered to form (or utilize) a beam in at least one of a base station and a UE.
  • Beam Forming Beam Forming (BF)
  • BF Beam Forming
  • BF is a technique for forming a beam (antenna directivity) by controlling the amplitude / phase of a signal transmitted or received from each element (also called precoding) using, for example, a super multi-element antenna.
  • MIMO Multiple Input Multiple Output
  • MIMO uses such a super multi-element antenna is also called large-scale MIMO (massive MIMO).
  • FIGS. 1A and 1B are diagrams showing an example of a transmission / reception configuration in which beam management is used.
  • the transmitting (Tx) side can form four beams (transmitting beams # 1- # 4), and the receiving (Rx) side forms two beams (receiving beams # 1- # 2).
  • the transmitting (Tx) side can form four beams (transmitting beams # 1- # 4)
  • the receiving (Rx) side forms two beams (receiving beams # 1- # 2).
  • FIG. 1A it is preferable to perform beam sweeping in both transmission and reception, and to control so as to select an appropriate pair from all eight patterns of transmission / reception beam pair candidates shown in FIG. 1B. ..
  • the pair of the transmitting beam and the receiving beam may be called a beam pair.
  • multiple levels of beam control such as a thick beam (rough beam) and a thin beam (fine beam) may be performed.
  • Digital BF and analog BF can be classified into digital BF and analog BF.
  • Digital BF and analog BF may be referred to as digital precoding and analog precoding, respectively.
  • Digital BF is, for example, a method of performing precoding signal processing (for a digital signal) on the baseband.
  • parallel processing such as inverse fast Fourier transform (IFFT), digital-to-analog converter (DAC), and radio frequency (RF) is performed by the antenna port (or RF chain (RF)). Only the number of chain)) is required. On the other hand, as many beams as the number of RF chains can be formed at any timing.
  • IFFT inverse fast Fourier transform
  • DAC digital-to-analog converter
  • RF radio frequency
  • Analog BF is, for example, a method of using a phase shifter on RF. Although the analog BF cannot form a plurality of beams at the same timing, it can be easily configured and inexpensively realized because it only rotates the phase of the RF signal.
  • a hybrid BF configuration that combines a digital BF and an analog BF is also feasible.
  • the introduction of large-scale MIMO is being considered, but if a huge number of beams are formed only by digital BF, the circuit configuration becomes expensive, so the use of hybrid BF configuration is also expected.
  • TCI transmission configuration indication state
  • Receive processing eg, at least one of reception, demapping, demodulation, decoding
  • transmission processing eg, transmission, mapping, precoding, modulation, coding
  • the TCI state may represent what applies to the downlink signal / channel.
  • the equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
  • the TCI state is information related to signal / channel pseudo colocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information (SRI), or the like.
  • QCL Signal / channel pseudo colocation
  • SRI spatial relation information
  • the TCI state may be set in the UE per channel or per signal.
  • QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, a Doppler shift, a Doppler spread, and an average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
  • the spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL.
  • the QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be specified for the QCL.
  • QCL types AD QCL types with different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters are shown below:
  • QCL Type A Doppler shift, Doppler spread, average delay and delay spread
  • ⁇ QCL type B Doppler shift and Doppler spread
  • -QCL type C Doppler shift and average delay
  • -QCL type D Spatial reception parameter.
  • Types A to C may correspond to QCL information related to synchronization processing of at least one of time and frequency
  • type D may correspond to QCL information related to beam control.
  • the UE may assume that a given control resource set (Control Resource Set (CORESET)) has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal. , QCL assumption (QCL assumption) may be called.
  • CORESET Control Resource Set
  • QCL assumption QCL assumption
  • the UE may determine at least one of the transmission beam (Tx beam) and the reception beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
  • the TCI state is, for example, a target channel (or a reference signal (Reference Signal (RS)) for the channel) and another signal (for example, another downlink reference signal (Downlink Reference Signal (DL-RS))). It may be information about QCL with.
  • the TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the channels for which the TCI state is set are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared Channel (PUSCH)). )), It may be at least one of the uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the DL-RS may be a CSI-RS (also referred to as a Tracking Reference Signal (TRS)) used for tracking or a reference signal (also referred to as a QRS) used for QCL detection.
  • CSI-RS also referred to as a Tracking Reference Signal (TRS)
  • TRS Tracking Reference Signal
  • QRS reference signal
  • the SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the SSB may be referred to as an SS / PBCH block.
  • the information element of the TCI state (“TCI-state IE” of RRC) set by the upper layer signaling may include one or more QCL information (“QCL-Info”).
  • the QCL information may include at least one of information related to DL-RS having a QCL relationship (DL-RS related information) and information indicating a QCL type (QCL type information).
  • the DL-RS related information includes the DL-RS index (for example, SSB index, non-zero power CSI-RS (Non-Zero-Power (NZP) CSI-RS) resource ID (Identifier)), and the index of the cell in which the RS is located.
  • Information such as the index of Bandwidth Part (BWP) where RS is located may be included.
  • BWP Bandwidth Part
  • MIMO technology has been used in a frequency band (or frequency band) lower than 6 GHz, but it is being studied to apply it to a frequency band higher than 6 GHz in the future.
  • a frequency band lower than 6 GHz may be referred to as sub-6, frequency range (FR) 1, or the like.
  • Frequency bands higher than 6 GHz may be referred to as above-6, FR2, millimeter wave (mmW), FR4 and the like.
  • FIG. 2 is a diagram showing a forecast of progress in MIMO technology.
  • FIG. 2 shows an example of how many MIMO layers can be realized at each frequency for each age group (for example, 2020, 2030, 2040s), with frequency on the horizontal axis and the number of MIMO layers on the vertical axis. ing. The maximum number of MIMO layers is assumed to be limited by antenna size.
  • the number of layers is the largest in the frequency band of about sub 6 GHz, and the number of layers is quite small in the high frequency band such as 28 GHz.
  • the line of the 2040s is expected to be a line that is a further expansion of the line of the 2030s toward the upper right of the drawing.
  • the boundaries of digital precoding are expected to shift to frequency bands much higher than in the 2020s.
  • orthogonal precoding or orthogonal beam, digital beam
  • improvement of frequency utilization efficiency can be expected by applying orthogonal precoding (or orthogonal beam, digital beam) to a plurality of UEs at the same time. If the digital beam is not applied properly, interference between UEs will increase, leading to deterioration of communication quality (or decrease in cell capacity).
  • the orthogonality of the present disclosure may be read as quasi-orthogonal.
  • FIGS. 3A and 3B are diagrams showing an example of beam operation.
  • FR2 is assumed, but the frequency range of the present disclosure is not limited to this.
  • FIG. 3A shows the operation of the analog beam as used in Rel-15
  • FIG. 3B shows the operation of the digital beam as used in Rel-17 and later.
  • a base station (transmission / reception point (TRP), which may be read as a panel, etc.) can transmit only one beam (beam # 2 in FIG. 3A) at a certain time. Therefore, the base station switches the beam to the UE to transmit and receive.
  • TRP transmission / reception point
  • the base station can transmit a plurality of beams (beams # 1 to # 4 in FIG. 3B) at a certain time. Therefore, the base station can transmit and receive to and from a plurality of UEs using different beams at the same time.
  • the UE may not be able to process the signal / channel properly. If the UE cannot properly process the signal / channel to which the precoding (beam) is applied, the increase in communication throughput may be suppressed.
  • the present inventors have conceived a method for the UE to appropriately process a signal / channel to which precoding (for example, a digital beam) is applied.
  • precoding may be read as “digital precoding”.
  • DL channel may be read as “DL channel / RS”, “DL channel / RS corresponding to the DL channel”, “DMRS of DL channel” and the like.
  • the UE receives information regarding the application of precoding to at least one of the precoded signals and channels, and based on that information, performs processing on at least one of the signals and channels.
  • the information may be referred to as precoding-related information or the like. Further, when the UE does not receive the precoding related information, the UE may execute the above processing based on a predetermined assumption.
  • Method 1 The base station performs the same precoding on the CSI-RS as the DL channel, and notifies the UE that the same precoding has been performed.
  • the CSI-RS and the DL channel may be considered to have a QCL relationship.
  • the UE assumes that the TCI state (TCI state) set or instructed for the DL channel includes the CSI-RS as an RS (DL-RS) having a QCL relationship with the DL channel. May be good.
  • the UE When the base station notifies that the same precoding has been performed on the CSI-RS and the DL channel, the UE assumes that the same precoding has been performed on the CSI-RS and the DL channel. In this case, the UE may use the measurement result of CSI-RS for demodulation of DL data. This allows the UE to improve the accuracy of demodulation.
  • demodulation of DL data may include channel estimation.
  • the base station does not do the same precoding on the CSI-RS and DL channels. In this case, the base station notifies the UE that the same precoding has not been performed on the CSI-RS and the DL channel. Alternatively, the base station does not have to notify the UE whether or not the same precoding has been performed on the CSI-RS and the DL channel.
  • the base station When the base station notifies that the UE has not performed the same precoding on the CSI-RS and the DL channel, or whether the UE has performed the same precoding on the CSI-RS and the DL channel from the base station. If not notified, it is assumed that the same precoding was not performed on the CSI-RS and the DL channel. In this case, the UE assumes that a predetermined transmission signal sequence is transmitted as CSI-RS, and decides not to use the measurement result of CSI-RS for demodulation of DL data. This allows the UE to prevent the demodulation accuracy from being reduced by using improper CSI-RS measurement results.
  • the base station does not precode the CSI-RS.
  • a predetermined transmission signal sequence is used for the transmission signal of the CSI-RS.
  • the CSI-RS and the DL channel may be regarded as not having a QCL relationship. Further, in this case, CSI-RS may not be set in the TCIstate of the DL channel.
  • the base station may notify the DL channel that the precoding has been performed.
  • the UE is a precoder applied to the DL channel based on downlink control information (DCI) from a predetermined set of precoders (candidates) or a set of precoders notified by higher layer signaling. May be identified.
  • DCI downlink control information
  • the base station may not expect that the TCI state set or indicated for the DL channel will include a CSI-RS as an RS (DL-RS) that has a QCL relationship with the DL channel.
  • DL-RS RS
  • the base station precodes the CSI-RS differently from the DL channel.
  • the base station may apply, for example, a precoder different from the DL channel to the CSI-RS.
  • the CSI-RS precoder set and the DL channel precoder set are in at least one of the precoder set (candidate) defined in advance by the specification and the precoder set notified by the upper layer signaling, respectively. It may be applicable.
  • the UE may identify the precoder applied to the CSI-RS from the above set of CSI-RS precoders based on the first DCI (eg, a predetermined field of the first DCI). .. Also, the UE applies to the DL channel from the set of precoders of the DL channel described above based on a second DCI different from the first DCI (eg, a predetermined field of the second DCI).
  • the precoder to be used may be identified.
  • the UE may identify the precoder applied to the CSI-RS from the above-mentioned set of CSI-RS precoders based on the first field included in one DCI.
  • the UE may identify the precoder applied to the DL channel from the above-mentioned set of DL channel precoders based on a field different from the first field included in the one DCI.
  • the setting or instruction information may include information on which CSI-RS and which channel the same precoding is applied to.
  • the information may include an ID for identifying CSI-RS (CSI-RS ID), information for identifying a channel or a reference signal, and the like.
  • CSI measurement CSI-RS with precoding applied (for example, it may be called precoded CSI-RS) and CSI-RS without precoding (for example, it may be called non-precoded CSI-RS).
  • precoded CSI-RS CSI-RS with precoding applied
  • non-precoded CSI-RS CSI-RS without precoding
  • the UE may perform CSI measurement on either CSI-RS to which precoding is applied or CSI-RS to which precoding is not applied.
  • the UE may preferentially perform CSI measurement on CSI-RS to which precoding is applied. For example, when the CSI-RS to which the precoding is applied exists, the UE performs the CSI measurement on the CSI-RS to which the precoding is applied, and when the CSI-RS to which the precoding is applied does not exist, the UE performs the precoding. CSI measurement is performed for CSI-RS that has not been applied.
  • the UE may preferentially perform CSI measurement on CSI-RS to which precoding is not applied. For example, when the CSI-RS to which the precoding is not applied exists, the UE performs CSI measurement on the CSI-RS to which the precoding is not applied, and the CSI-RS to which the precoding is not applied exists. If not, CSI measurement is performed for CSI-RS to which precoding is applied.
  • the UE does not assume that both the precoded CSI-RS resource and the precoded CSI-RS resource are set in one CSI-RS resource set or CSI-RS resource unit. In this case, for example, since the presence or absence of precoding of CSI-RS is unified for each CSI-RS resource set, it is possible to easily obtain the CSI measurement result of only CSI-RS to which the precoding is applied.
  • Whether or not to apply precoding to CSI-RS may be set for each CSI-RS resource, or may be set for at least one unit such as a UE unit, a UE group unit, and a cell unit.
  • the UE may perform CSI measurement for each of CSI-RS to which precoding is applied and CSI-RS to which precoding is not applied, and report the CSI measurement result of one or both.
  • the base station may use upper layer signaling, physical layer signaling, or a combination thereof for notification of whether or not precoding has been performed on CSI-RS (which may be referred to as information on whether or not precoding is applied).
  • the base station may notify the presence or absence of precoding application by including it in the CSI-RS resource setting information, and may notify, for example, information on whether or not precoding is applied to some CSI-RS resources.
  • the base station may add a new bit field regarding whether or not precoding is applied to DCI and notify whether or not precoding is applied by using the bit field.
  • the bit field may be notified, for example, with respect to the aperiodic CSI-RS (Aperiodic CSI-RS (A-CSI-RS)).
  • the UE may determine whether or not precoding has been applied to a specific CSI-RS based on the above information on whether or not precoding has been applied.
  • the number of CSI-RS ports can change depending on whether or not precoding is performed. Therefore, the base station may notify the UE of the number of CSI-RS ports. Then, the UE may determine whether the CSI-RS has been precoded based on the number of CSI-RS ports.
  • the base station may use, for example, DCI, a higher layer, or MAC to notify the number of CSI-RS ports. Further, the base station may notify the candidate of the number of ports by using the upper layer or MAC, and the UE may determine the number of any port from the candidates by using DCI.
  • the number of CSI-RS ports changes depending on whether or not precoding is performed.
  • the number of CSI-RS ports is the same as the number of antennas when precoding is not performed, and is equal to or less than the number of antennas when precoding is performed.
  • x Ps
  • x [x 0 x 1 x 2 x 3 ] T (T indicates a transposed matrix; the same applies hereinafter)
  • x 0 to x 3 indicate transmission signals from each antenna.
  • P corresponds to the identity matrix, which is a fourth-order identity matrix in equation (1).
  • s [s 0 s 1 s 2 s 3 ] T
  • s 0 to s 3 indicate the CSI-RS signal sequence to be transmitted. That is, CSI-RS is transmitted on 4 ports.
  • the CSI-RS signal sequences to be transmitted are represented as the following sequences 1 to 4.
  • n indicates the number of subcarriers. Focusing on the subcarrier 1, for example, the signals to be transmitted are M1 (1), M2 (1), M3 (1), and M4 (1).
  • M1 (1), M2 (1), M3 (1), and M4 (1) correspond to s 0 to s 3 and are transmitted from each antenna.
  • Series 1 [M1 (0), M1 (1) ,. .. . , M1 (n-1)]
  • Series 2 [M2 (0), M2 (1) ,. .. ..
  • the precoded CSI-RS signal is expressed by the following equation (2).
  • x 0 to x 3 represent transmission signals from each antenna.
  • s 0 and s 1 indicate the CSI-RS signal sequence to be transmitted.
  • two beams, Beam1 and Beam2 are applied.
  • p 00 to p 30 are precoders of Beam 1
  • p 01 to p 31 are precoders of Beam 2.
  • P is a matrix of the number of physical antennas ⁇ CSI-RS port.
  • the signal to be transmitted is represented as the following series 1 and series 2.
  • n indicates the number of subcarriers. Focusing on the subcarrier 1, for example, M1 (1) and M2 (1) correspond to s 0 and s 1 .
  • the base station transmits these signals orthogonally by a precoder (beam).
  • Series 1 [M1 (0), M1 (1) ,. .. .. , M1 (n-1)]
  • Series 2 [M2 (0), M2 (1) ,. .. . , M2 (n-1)]
  • the UE may determine the number of antenna ports of a specific CSI-RS based on the information on whether or not the precoding is applied. For example, when the UE receives information indicating that the precoding is applied to the CSI-RS, the UE may assume that the number of ports of the CSI-RS is a predetermined value.
  • the predetermined value may be set in the UE by higher layer signaling or the like, or may be predetermined by specifications.
  • the UE may assume that the number of CSI-RS ports is equal to the number of physical antennas.
  • the UE determines whether each precoding applied to the plurality of signals is equal or each precoding applied to the plurality of channels as information about at least one of the precoded signal and the channel. Receives information about the QCL that indicates whether they are equal or whether each precoding applied to the signal and channel is equal. Information about the QCL is transmitted from the base station to the UE using, for example, RRC signaling. Then, the UE executes processing for at least one of the signal and the channel based on the information.
  • -E (which may be referred to as QCL-E) may be specified.
  • "precoding” may be read as a spatial reception parameter ("Spatial Rx parameter") or a spatial transmission parameter ("Spatial Tx parameter").
  • This Spatial Rx parameter is 3GPP Rel. In order to distinguish it from the Spatial Rx parameter of QCL-D in 15, for example, Spatial Rx parameter II and Spatial Tx parameter II may be specified.
  • the base station notifies the UE of the RS corresponding to the QCL type-E (for example, CSI-RS) as the TCI-state of a predetermined channel (for example, at least one of PDCCH, PDSCH, PUCCH and PUSCH). Good.
  • the UE notified of the TCI status indicating the RS corresponding to the QCL type-E may assume that the precoding applied to the predetermined channel and the precoding applied to the RS are equal.
  • the UE may use the measurement result of the RS designated as QCL-E for demodulation of the DL channel (PDSCH, PDCCH, etc.).
  • the UE assumes that the same precoding was not performed on the RS and the DL channel. In this case, the UE may assume that precoding is not applied to the RS and a predetermined transmission signal sequence is transmitted. Further, in this case, the UE does not have to use the measurement result of the RS for demodulation of the DL channel (PDSCH, PDCCH, etc.).
  • the UE is an interference canceller that applies to at least one of the signals and channels to another UE (which may be referred to as an interfering UE) as information about at least one of the precoded signals and channels. Receive the information to be used. Then, the UE executes processing (for example, interference cancellation) for at least one of the signal and the channel based on the information.
  • processing for example, interference cancellation
  • RS in the third embodiment may be read as "at least one of a signal and a channel”.
  • the "information used for the interference canceller" transmitted from the base station to the UE may be simply described as "information”.
  • FIG. 4 is a diagram showing an example in which beams for other UEs interfere with each other.
  • the beam # 2 transmitted to the UE 2 also reaches the UE 1, and the UE # 1 is interfered with by the beam # 2. If the beam is not applied properly (eg, the beam is not perfectly orthogonal), interference between UEs will increase.
  • the base station transmits to the UE the information necessary for the interference canceller applied to RS to other UEs.
  • the UE uses the information to cancel the RS interference with other UEs.
  • the information used for the interference canceller may be information about RS for other UEs.
  • the information used for the interference canceller may include information indicating the resource of the RS.
  • the information required for the interference canceller is the transmission signal sequence number, cyclic shift index, time domain OCC index, frequency domain OCC index, etc. for the RS.
  • the information indicating at least one of the information used for specifying the transmission signal sequence may be included.
  • the information used for the interference canceller may include information indicating the number of ports in the transmission signal sequence, the antenna port number, the UE identifier (UE-ID (Identifier)), and RNTI (Radio Network Temporary Identifier).
  • the UE identifies the transmission signal sequence of another UE by using the above information transmitted from the base station, and cancels (subtracts) the transmission signal of the other UE from the received signal. Then, the UE may measure the RS (which may be called a desired signal) addressed to its own UE after the cancellation. Thereby, the RS measurement accuracy can be improved.
  • the UE may receive information indicating the UE to be canceled from the base station. The UE may identify the UE to be canceled based on the notified information, and cancel the transmission signal for the UE to be canceled from the reception signal.
  • the base station may transmit the number of DMRS Code Division Multiplexing (CDM) groups (Number of DM-RS CDM groups without data) to the UE as information used for the interference canceller.
  • CDM Code Division Multiplexing
  • the UE may cancel the interference based on the number of CDM groups of the DMRS without transmitted data.
  • Rel Rel.
  • the number of CDM groups for DMRS without data was specified for UL / DL data rate matching (clarification of the number of data bits), determination of DMRS Energy Per Resource Element (EPRE), etc.
  • the UE may assume that the number of CDM groups of DMRS without data thus identified by DCI is used for interference cancellation.
  • the UE identifies resources that do not contain data according to the number of CDM groups of DMRS without data.
  • the UE may use a resource that does not contain data to estimate the interference of another UE and cancel the interference.
  • the resource is a resource containing DMRS (for example, RE)
  • the UE estimates interference by subtracting the DMRS information of its own UE (DMRS signal of its own UE) from the received signal of the resource. You may cancel.
  • the UE may presume that the received signal of the resource is interference and use it for interference cancellation.
  • the UE may specify the resource containing the data according to the number of CDM groups of the DMRS without data. Then, the UE may estimate the interference of other UEs based on the identified resource and cancel the interference. Specifically, the UE demodulates and decodes the data, performs a cyclic redundancy check (Cyclic Redundancy Check (CRC)) check, and performs error determination / correction. Then, the UE generates a transmission signal replica and generates a transmission signal waveform / series replica. Then, the UE can estimate the interference by subtracting (cancelling) the generated transmission signal waveform / series replica from the received signal.
  • CRC Cyclic Redundancy Check
  • the UE may cancel the interference by using the DM-RS of another UE. Further, the UE may cancel the interference by using the CSI-RS of another UE.
  • the CSI-RS of the other UE may correspond to the CSI-RS transmitted with the same beam (same QCL) as the DM-RS of the other UE.
  • the UE may receive CSI-RS related information of other UEs by DCI.
  • the UE receives at least one of the DMRS-related information of the other UE and the CSI-RS-related information of the other UE from the base station in the DCI, and cancels the interference using the received information.
  • the DMRS-related information received may include information that identifies resources, sequences, cyclic shifts, combs / FDM indexes (in other words, CDM groups), and the like.
  • the UE may receive at least one of the DMRS-related information of the other UE and the CSI-RS-related information of the other UE in the upper layer / MAC CE.
  • the UE receives DMRS-related information of other UEs and at least one of a plurality of candidates of CSI-RS-related information of other UEs in the upper layer / MAC CE, and receives information indicating which candidate is selected. It may be received by DCI.
  • the UE may receive the information for identifying the DMRS resource and the transmission signal sequence, and cancel the DMRS based on the information.
  • the information for identifying the DMRS resource is set, for example, in the DMRS type of other UEs, the presence or absence of additional DMRS, the number of CDM groups of DMRS without data, the CDM group (comb index), the number of DMRS ports, and the upper layer. Parameters corresponding to the cell ID / scramble ID and the like may be included.
  • DCI may notify which value to use.
  • the UE may receive the value of the scramble ID by the DCI that scheduled the PDSCH at the time of scheduling the PDSCH of its own UE. In this case, the UE may receive the value of the above-mentioned information identifying the DMRS resource such as the scramble ID by the new DCI field or the combination of the existing DCI fields.
  • Information for specifying the transmission signal sequence is, for example, DMRS sequence length (number of PDSCH allocated PRBs), sequence index, cyclic shift index, time domain OCC index (time domain OCC index), frequency domain OCC index (frequency domain OCC index). Etc. may be included.
  • the UE When canceling the interference of CSI-RS of another UE, the UE receives information for identifying the resource and transmission signal sequence of CSI-RS of another UE, and cancels the interference of CSI-RS based on the information. May be done.
  • the information that identifies the CSI-RS resources of other UEs is, for example, the CSI-RS type of CSI-RS of other UEs (for example, row index of the table such as the number of ports), and all PRBs are only even or odd PRBs.
  • the information that identifies the transmission signal sequence of another UE may include the CSI-RS sequence length (the number of PRBs allocated to CSI-RS), the parameters corresponding to the cell ID / scramble ID set in the upper layer, and the like.
  • the information for specifying the transmission signal sequence of the other UE may be the information for specifying the value (c init ) for initializing the data scramble.
  • the base station may determine the UE to be canceled by interference, and the UE may receive information indicating the determined UE to be canceled by interference. Further, the UE may determine the UE to be subject to interference cancellation. The processing in each case will be described below.
  • the UE receives setting information indicating the RS resource to be measured by the other UE from the base station. Then, the UE measures the interference power of the RS resource shown in the setting information. The UE may transmit, for example, each of the interference powers measured for each RS resource to the base station. The UE may transmit, for example, a part of the measured interference power for each RS resource (for example, at least one of the maximum interference power and the minimum interference power) and the resource number of the measured RS resource to the base station. Further, the UE transmits the resource number of the RS resource, the UE index, etc. to the base station where the interference power satisfies a predetermined condition (for example, the interference power has the maximum interference power, the interference power is equal to or higher than a predetermined threshold value, etc.). May be good.
  • a predetermined condition for example, the interference power has the maximum interference power, the interference power is equal to or higher than a predetermined threshold value, etc.
  • the UE determines another UE for interference cancellation
  • the UE receives setting information indicating the RS resource to be measured by the other UE from the base station. Then, the UE measures the interference power of the RS resource shown in the setting information.
  • the UE receives information on the correspondence between each RS resource and the information required for the interference canceller of each RS resource from the base station. The UE may cancel the interference based on the interference power measured for the RS resource.
  • the UE receives information about a precoder (eg, a precoder for DL data) applied to the CSI-RS / DL channel of another UE.
  • a precoder eg, a precoder for DL data
  • the UE was applied to the CSI-RS / DL channel of another UE based on DCI from a predetermined set of precoders (candidates) or a set of precoders notified by higher layer signaling.
  • the precoder may be specified.
  • the UE uses the identified precoder to cancel the interference.
  • the UE may receive configuration information indicating the precoded RS resource for the other UE. Then, the UE can estimate the precoder (precoding) for the CSI-RS / DL channel of another UE by measuring the RS resource indicated in the setting information.
  • the UE may be notified of the setting information indicating the precoded RS resource using the QCL-E. For example, a UE notified that an RS resource for another UE is a predetermined RS resource and a QCL-E has a precoder applied to the RS for the other UE applied to the predetermined RS resource. It may be assumed that it is the same as the precoder.
  • the UE cancels the interference by using the estimated precoder for the other UE.
  • the UE may receive information on the data schedule of another UE, identify the resource for the CSI-RS / DL channel of the other UE based on the information, and use it for interference cancellation or the like.
  • the UE may receive data schedule information of other UEs (for example, information regarding resource allocation such as PDSCH and PUSCH) from the base station. For example, a new DCI format may be specified for notification of schedule information to other UEs. Further, the UE may determine whether the schedule information is addressed to the own UE or the schedule information addressed to another UE based on the bit field added to the existing DCI format.
  • data schedule information of other UEs for example, information regarding resource allocation such as PDSCH and PUSCH
  • the UE may be notified of the RNTI of another UE in a higher layer. Then, the UE may acquire schedule information to the other UE by blindly detecting (may be read by the monitor) DCI using the RNTI of the other UE that has been notified. When the number of blind detections exceeds a predetermined number, the UE may prioritize blind detection of DCI addressed to its own UE and drop some blind detection of DCI addressed to other UEs. The UE may perform blind detection of DCI on the assumption that the CORESET / search space between the own UE and another UE is equal.
  • the UE may be notified of the CORESET / search space information of another UE by upper layer signaling.
  • the UE gives priority to the CORESET / search space of the own UE and CORESET of the other UE.
  • DCI detection in the search space may be ignored / dropped (may not be performed).
  • the UE appropriately processes the precoded signal / channel by executing processing on the signal / channel based on the information about the digitally precoded signal / channel. it can.
  • the RS in the present disclosure includes CSI-RS, Tracking Reference Signal (TRS), Phase Tracking Reference Signal (PTRS), demodulation reference signal (DMRS), cell-specific reference signal (CRS), and synchronization signal. It is read as at least one of a block (Synchronization Signal Block (SSB)), a DMRS applied as an uplink reference signal (UL-RS), and a measurement reference signal (SRS). May be good.
  • TRS Tracking Reference Signal
  • PTRS Phase Tracking Reference Signal
  • DMRS demodulation reference signal
  • CRS cell-specific reference signal
  • the CSI-RS in the present disclosure may be zero power CSI-RS (Zero-Power (ZP) CSI-RS) or non-zero power CSI-RS (Non-Zero-Power (NZP) CSI-RS). Good.
  • ZP Zero power CSI-RS
  • NZP Non-Zero-Power
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is the Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is the IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for detecting PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may transmit information related to at least one of the digitally precoded signal and the channel to the UE.
  • “notification” may be read as “instruction”, "setting", and “sending”.
  • the relevant information may be information regarding the application of digital precoding to at least one of a signal and a channel. Also, the relevant information is whether each precoding applied to multiple signals is equal, each precoding applied to multiple channels is equal, or each precoding applied to signals and channels is It may include information about the QCL indicating whether they are equal.
  • the related information may include information used for an interference canceller applied to at least one of a signal and a channel to another UE (a UE other than the UE to which the information is transmitted).
  • the relevant information may also include information about digital precoding applied to at least one of a signal and a channel to another UE (a UE other than the UE to which the information is transmitted).
  • the control unit 110 may digitally precode at least one of the signal and the channel to generate the above-mentioned related information transmitted by the transmission / reception unit 120 to the UE.
  • FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmitter / receiver 220 may receive information related to at least one of the digitally precoded signal and channel.
  • the related information may be information regarding the application of digital precoding to at least one of a signal and a channel. Also, the relevant information is whether each precoding applied to multiple signals is equal, each precoding applied to multiple channels is equal, or each precoding applied to signals and channels is It may include information about the QCL indicating whether they are equal.
  • the related information may include information used for an interference canceller applied to at least one of a signal and a channel to another UE. The relevant information may also include information about digital precoding applied to at least one of the signals and channels to other UEs.
  • the control unit 210 may execute processing for at least one of the signal and the channel based on the above-mentioned related information received by the transmission / reception unit 220.
  • the control unit 210 may cancel the interference based on the related information received by the transmission / reception unit 220, for example.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block that functions transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. d is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Pneumerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executables, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to an aspect of the present disclosure is characterized by comprising: a reception unit that receives relevant information of at least one of digital pre-coded signal and channel; and a control unit that, on the basis of the relevant information, executes a processing of at least one of the signal and channel. According to an aspect of the present disclosure, signal/ channel to which pre-coding has been applied can be appropriately processed.

Description

端末及び無線通信方法Terminal and wireless communication method
 本開示は、次世代移動通信システムにおける端末及び無線通信方法に関する。 The present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 将来の無線通信システム(例えば、NR)では、ビーム管理(beam management)の手法が導入されている。例えば、NRでは、基地局及びユーザ端末(user terminal、User Equipment(UE))の少なくとも一方において、ビームを形成(又は利用)することが検討されている。 In future wireless communication systems (for example, NR), a beam management method has been introduced. For example, in NR, it is considered to form (or use) a beam at at least one of a base station and a user terminal (user terminal, User Equipment (UE)).
 ビームは、大別すると、同時に複数のビームを形成できるデジタルビーム(デジタルプリコーディング)と、同時に1つまでのビームを形成できるアナログビーム(アナログプリコーディング)と、がある。 Beams can be broadly divided into digital beams (digital precoding) that can form multiple beams at the same time and analog beams (analog precoding) that can form up to one beam at the same time.
 将来の無線通信システム(例えば、Rel-17以降のNR)では、高周波であっても、アナログビームを使わずにデジタルビームのみの運用(フルデジタル運用と呼ばれてもよい)が利用されたり、デジタルビームを支配的に用いる運用が利用されたりすることが想定される。 In future wireless communication systems (for example, NR after Rel-17), even if the frequency is high, the operation of only the digital beam without using the analog beam (which may be called full digital operation) may be used. It is expected that operations that predominantly use digital beams will be used.
 プリコーディング(ビーム)が適用された信号/チャネルに関して、UEが有する情報が不足していた場合、UEが信号/チャネルを適切に処理できないおそれがある。プリコーディング(ビーム)が適用された信号/チャネルをUEが適切に処理できない場合、通信スループットの増大が抑制されるおそれがある。 If the information held by the UE is insufficient for the signal / channel to which the precoding (beam) is applied, the UE may not be able to process the signal / channel properly. If the UE cannot properly process the signal / channel to which the precoding (beam) is applied, the increase in communication throughput may be suppressed.
 そこで、本開示は、プリコーディングが適用された信号/チャネルを適切に処理できる端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately processing a signal / channel to which precoding is applied.
 本開示の一態様に係る端末は、デジタルプリコーディングされた信号及びチャネルの少なくとも一方の関連情報を受信する受信部と、前記関連情報に基づいて、前記信号及びチャネルの少なくとも一方に対する処理を実行する制御部と、を有することを特徴とする。 The terminal according to one aspect of the present disclosure executes processing for at least one of the signal and the channel based on the receiving unit that receives the related information of at least one of the digitally precoded signal and the channel and the related information. It is characterized by having a control unit.
 本開示の一態様によれば、プリコーディングが適用された信号/チャネルを適切に処理できる。 According to one aspect of the present disclosure, signals / channels to which precoding has been applied can be appropriately processed.
図1A及び1Bは、ビーム管理が利用される送受信構成の一例を示す図である。1A and 1B are diagrams showing an example of a transmission / reception configuration in which beam management is used. 図2は、MIMO技術の進展の予想を示す図である。FIG. 2 is a diagram showing a forecast of progress in MIMO technology. 図3A及び3Bは、ビームの運用の一例を示す図である。3A and 3B are diagrams showing an example of beam operation. 図4は、他のUEに対するビームが干渉する例を示す図である。FIG. 4 is a diagram showing an example in which beams interfere with other UEs. 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図6は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment. 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 8 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
(ビーム管理)
 NRでは、ビーム管理(beam management)の手法が導入されている。例えば、NRでは、基地局及びUEの少なくとも一方において、ビームを形成(又は利用)することが検討されている。
(Beam management)
In NR, a beam management method has been introduced. For example, in NR, it is considered to form (or utilize) a beam in at least one of a base station and a UE.
 ビーム形成(ビームフォーミング(Beam Forming(BF)))を適用することによって、キャリア周波数の増大に伴うカバレッジ確保の困難さを軽減し、電波伝播損失を低減することが期待される。 By applying beam forming (Beam Forming (BF)), it is expected to reduce the difficulty of ensuring coverage due to the increase in carrier frequency and reduce radio wave propagation loss.
 BFは、例えば、超多素子アンテナを用いて、各素子から送信又は受信される信号の振幅/位相を制御(プリコーディングとも呼ばれる)することによって、ビーム(アンテナ指向性)を形成する技術である。なお、このような超多素子アンテナを用いるMultiple Input Multiple Output(MIMO)は、大規模MIMO(massive MIMO)とも呼ばれる。 BF is a technique for forming a beam (antenna directivity) by controlling the amplitude / phase of a signal transmitted or received from each element (also called precoding) using, for example, a super multi-element antenna. .. Multiple Input Multiple Output (MIMO) using such a super multi-element antenna is also called large-scale MIMO (massive MIMO).
 図1A及び1Bは、ビーム管理が利用される送受信構成の一例を示す図である。本例では、送信(Tx)側が4つのビーム(送信ビーム#1-#4)を形成することが可能であり、受信(Rx)側が2つのビーム(受信ビーム#1-#2)を形成することが可能であるシステムを想定する。 1A and 1B are diagrams showing an example of a transmission / reception configuration in which beam management is used. In this example, the transmitting (Tx) side can form four beams (transmitting beams # 1- # 4), and the receiving (Rx) side forms two beams (receiving beams # 1- # 2). Imagine a system where it is possible.
 このようなシステムでは、図1Aに示すように、送受信双方でビームのスイーピングを行って、図1Bに示す全8パターンの送受信ビームペアの候補から適切な組を選択するように制御されることが好ましい。 In such a system, as shown in FIG. 1A, it is preferable to perform beam sweeping in both transmission and reception, and to control so as to select an appropriate pair from all eight patterns of transmission / reception beam pair candidates shown in FIG. 1B. ..
 送信ビーム及び受信ビームのペアはビームペアと呼ばれてもよく、例えば図1Aに示すような送信ビーム#3及び受信ビーム#2は、図1Bのビームペア候補インデックス=6として識別されてもよい。 The pair of the transmitting beam and the receiving beam may be called a beam pair. For example, the transmitting beam # 3 and the receiving beam # 2 as shown in FIG. 1A may be identified as the beam pair candidate index = 6 in FIG. 1B.
 なお、ビーム管理において、単一のビームが用いられるのではなく、太いビーム(rough beam)、細いビーム(fine beam)などの複数のレベルのビーム制御が行われてもよい。 Note that, in beam management, instead of using a single beam, multiple levels of beam control such as a thick beam (rough beam) and a thin beam (fine beam) may be performed.
 BFは、デジタルBF及びアナログBFに分類できる。デジタルBF及びアナログBFは、それぞれデジタルプリコーディング及びアナログプリコーディングと呼ばれてもよい。 BF can be classified into digital BF and analog BF. Digital BF and analog BF may be referred to as digital precoding and analog precoding, respectively.
 デジタルBFは、例えば、ベースバンド上で(デジタル信号に対して)プリコーディング信号処理を行う方法である。この場合、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))、デジタル-アナログ変換(Digital to Analog Converter(DAC))、Radio Frequency(RF)などの並列処理が、アンテナポート(又はRFチェーン(RF chain))の個数だけ必要となる。一方で、任意のタイミングで、RFチェーン数に応じた数だけビームを形成できる。 Digital BF is, for example, a method of performing precoding signal processing (for a digital signal) on the baseband. In this case, parallel processing such as inverse fast Fourier transform (IFFT), digital-to-analog converter (DAC), and radio frequency (RF) is performed by the antenna port (or RF chain (RF)). Only the number of chain)) is required. On the other hand, as many beams as the number of RF chains can be formed at any timing.
 アナログBFは、例えば、RF上で位相シフト器を用いる方法である。アナログBFは、同じタイミングで複数のビームを形成することができないが、RF信号の位相を回転させるだけなので、構成が容易で安価に実現できる。 Analog BF is, for example, a method of using a phase shifter on RF. Although the analog BF cannot form a plurality of beams at the same timing, it can be easily configured and inexpensively realized because it only rotates the phase of the RF signal.
 なお、デジタルBFとアナログBFとを組み合わせたハイブリッドBF構成も実現可能である。NRでは大規模MIMOの導入が検討されているが、膨大な数のビーム形成をデジタルBFだけで行うとすると、回路構成が高価になってしまうため、ハイブリッドBF構成の利用も想定される。 A hybrid BF configuration that combines a digital BF and an analog BF is also feasible. In NR, the introduction of large-scale MIMO is being considered, but if a huge number of beams are formed only by digital BF, the circuit configuration becomes expensive, so the use of hybrid BF configuration is also expected.
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表記されてもよい。以下、「A/B」は同様に、「A及びBの少なくとも一方」で読み替えられてもよい)の受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
(TCI, spatial relationship, QCL)
In the NR, at least one of the signal and the channel (may be expressed as a signal / channel. Hereinafter, “A / B” is similarly referred to as “A / B” based on the transmission configuration indication state (TCI state)). Receive processing (eg, at least one of reception, demapping, demodulation, decoding), transmission processing (eg, transmission, mapping, precoding, modulation, coding) of "at least one of A and B") At least one of) is being considered for control.
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。 The TCI state may represent what applies to the downlink signal / channel. The equivalent of the TCI state applied to the uplink signal / channel may be expressed as a spatial relation.
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information(SRI))などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。 The TCI state is information related to signal / channel pseudo colocation (Quasi-Co-Location (QCL)), and may be called spatial reception parameters, spatial relation information (SRI), or the like. The TCI state may be set in the UE per channel or per signal.
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。 QCL is an index showing the statistical properties of signals / channels. For example, when one signal / channel and another signal / channel have a QCL relationship, a Doppler shift, a Doppler spread, and an average delay are performed between these different signals / channels. ), Delay spread, and spatial parameter (for example, spatial Rx parameter) can be assumed to be the same (QCL for at least one of these). You may.
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。 The spatial reception parameter may correspond to the received beam of the UE (for example, the received analog beam), or the beam may be specified based on the spatial QCL. The QCL (or at least one element of the QCL) in the present disclosure may be read as sQCL (spatial QCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータについて示す:
 ・QCLタイプA:ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB:ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC:ドップラーシフト及び平均遅延、
 ・QCLタイプD:空間受信パラメータ。
A plurality of types (QCL types) may be specified for the QCL. For example, four QCL types AD with different parameters (or parameter sets) that can be assumed to be the same may be provided, and the parameters are shown below:
QCL Type A: Doppler shift, Doppler spread, average delay and delay spread,
・ QCL type B: Doppler shift and Doppler spread,
-QCL type C: Doppler shift and average delay,
-QCL type D: Spatial reception parameter.
 タイプAからCは、時間及び周波数の少なくとも一方の同期処理に関連するQCL情報に該当してもよく、タイプDは、ビーム制御に関するQCL情報に該当してもよい。 Types A to C may correspond to QCL information related to synchronization processing of at least one of time and frequency, and type D may correspond to QCL information related to beam control.
 所定の制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。 The UE may assume that a given control resource set (Control Resource Set (CORESET)) has a specific QCL (eg, QCL type D) relationship with another CORESET, channel or reference signal. , QCL assumption (QCL assumption) may be called.
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。 The UE may determine at least one of the transmission beam (Tx beam) and the reception beam (Rx beam) of the signal / channel based on the TCI state of the signal / channel or the QCL assumption.
 TCI状態は、例えば、対象となるチャネル(又は当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別の下り参照信号(Downlink Reference Signal(DL-RS)))とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。 The TCI state is, for example, a target channel (or a reference signal (Reference Signal (RS)) for the channel) and another signal (for example, another downlink reference signal (Downlink Reference Signal (DL-RS))). It may be information about QCL with. The TCI state may be set (instructed) by higher layer signaling, physical layer signaling, or a combination thereof.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 For MAC signaling, for example, a MAC control element (MAC Control Element (MAC CE)), a MAC Protocol Data Unit (PDU), or the like may be used. The broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。 The physical layer signaling may be, for example, downlink control information (DCI).
 TCI状態が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。 The channels for which the TCI state is set (designated) are, for example, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)), and an uplink shared channel (Physical Uplink Shared Channel (PUSCH)). )), It may be at least one of the uplink control channel (Physical Uplink Control Channel (PUCCH)).
 また、当該チャネルとQCL関係となるRS(DL-RS)は、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))の少なくとも1つであってもよい。あるいはDL-RSは、トラッキング用に利用されるCSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、又はQCL検出用に利用される参照信号(QRSとも呼ぶ)であってもよい。 Further, RS (DL-RS) having a QCL relationship with the channel is, for example, a synchronization signal block (Synchronization Signal Block (SSB)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and measurement. It may be at least one of the reference signal (Sounding Reference Signal (SRS)). Alternatively, the DL-RS may be a CSI-RS (also referred to as a Tracking Reference Signal (TRS)) used for tracking or a reference signal (also referred to as a QRS) used for QCL detection.
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。 The SSB is a signal block including at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)), a secondary synchronization signal (Secondary Synchronization Signal (SSS)), and a broadcast channel (Physical Broadcast Channel (PBCH)). The SSB may be referred to as an SS / PBCH block.
 上位レイヤシグナリングによって設定されるTCI状態の情報要素(RRCの「TCI-state IE」)は、1つ又は複数のQCL情報(「QCL-Info」)を含んでもよい。QCL情報は、QCL関係となるDL-RSに関する情報(DL-RS関係情報)及びQCLタイプを示す情報(QCLタイプ情報)の少なくとも1つを含んでもよい。DL-RS関係情報は、DL-RSのインデックス(例えば、SSBインデックス、ノンゼロパワーCSI-RS(Non-Zero-Power(NZP) CSI-RS)リソースID(Identifier))、RSが位置するセルのインデックス、RSが位置するBandwidth Part(BWP)のインデックスなどの情報を含んでもよい。 The information element of the TCI state (“TCI-state IE” of RRC) set by the upper layer signaling may include one or more QCL information (“QCL-Info”). The QCL information may include at least one of information related to DL-RS having a QCL relationship (DL-RS related information) and information indicating a QCL type (QCL type information). The DL-RS related information includes the DL-RS index (for example, SSB index, non-zero power CSI-RS (Non-Zero-Power (NZP) CSI-RS) resource ID (Identifier)), and the index of the cell in which the RS is located. , Information such as the index of Bandwidth Part (BWP) where RS is located may be included.
(MIMO技術の進展とビーム)
 ところで、MIMO技術はこれまで6GHzよりも低い周波数帯域(又は周波数バンド)で利用されてきたが、将来的には6GHzよりも高い周波数バンドにも適用されることが検討されている。
(Progress in MIMO technology and beam)
By the way, MIMO technology has been used in a frequency band (or frequency band) lower than 6 GHz, but it is being studied to apply it to a frequency band higher than 6 GHz in the future.
 なお、6GHzよりも低い周波数バンドは、sub-6、周波数レンジ(Frequency Range(FR))1などと呼ばれてもよい。6GHzよりも高い周波数バンドは、above-6、FR2、ミリ波(millimeter Wave(mmW))、FR4などと呼ばれてもよい。 A frequency band lower than 6 GHz may be referred to as sub-6, frequency range (FR) 1, or the like. Frequency bands higher than 6 GHz may be referred to as above-6, FR2, millimeter wave (mmW), FR4 and the like.
 図2は、MIMO技術の進展の予想を示す図である。図2には、横軸に周波数、縦軸にMIMOレイヤ数をとり、年代ごと(例えば、2020、2030、2040年代)に、各周波数でどれくらいのMIMOレイヤ数が実現可能かという一例が示されている。最大のMIMOレイヤ数は、アンテナサイズによって制限されると想定される。 FIG. 2 is a diagram showing a forecast of progress in MIMO technology. FIG. 2 shows an example of how many MIMO layers can be realized at each frequency for each age group (for example, 2020, 2030, 2040s), with frequency on the horizontal axis and the number of MIMO layers on the vertical axis. ing. The maximum number of MIMO layers is assumed to be limited by antenna size.
 例えば、2020年代の線を見ると、サブ6GHzくらいの周波数帯におけるレイヤ数が最も大きく、28GHzなどの高周波数帯ではレイヤ数はかなり小さいことが分かる。また、これらの周波数帯の中間あたりにデジタルプリコーディング及びアナログプリコーディングの適用境界がある。この年代では、デジタルプリコーディングを用いてサブ6GHzの通信は実現できるが、28GHzくらいの通信は実現できないと想定される。なお、アナログプリコーディングは周波数帯に関わらず適用可能であってもよい。 For example, looking at the lines of the 2020s, it can be seen that the number of layers is the largest in the frequency band of about sub 6 GHz, and the number of layers is quite small in the high frequency band such as 28 GHz. In addition, there is an application boundary of digital precoding and analog precoding around the middle of these frequency bands. In this age group, it is assumed that sub 6 GHz communication can be realized by using digital precoding, but communication of about 28 GHz cannot be realized. Note that analog precoding may be applicable regardless of the frequency band.
 2030年代くらいになると、非線型プリコーディングなどの進んだ技術を採用することによって、MIMOレイヤ数は全体的に増大し、さらに、より高周波数帯であってもプリコーディングが適用可能になると想定される。このため、2020年代の線を図面右上方向に拡大したような線が2030年代の線になると期待される。 By the 2030s, it is expected that the number of MIMO layers will increase overall by adopting advanced technologies such as non-linear precoding, and that precoding will be applicable even in higher frequency bands. To. Therefore, it is expected that a line obtained by expanding the line of the 2020s toward the upper right of the drawing will be the line of the 2030s.
 2040年代の線は、2030年代の線をさらに図面右上方向に拡大したような線になると期待される。この時代では、28GHzより高い周波数帯でも、デジタルプリコーディングを用いてサブ6GHzの通信を実現できると期待される。デジタルプリコーディングの適用境界は、2020年代よりかなり高い周波数帯にシフトすると想定される。 The line of the 2040s is expected to be a line that is a further expansion of the line of the 2030s toward the upper right of the drawing. In this era, it is expected that sub 6 GHz communication can be realized by using digital precoding even in a frequency band higher than 28 GHz. The boundaries of digital precoding are expected to shift to frequency bands much higher than in the 2020s.
 mmWであっても、高次のMIMOを利用し、また複数のUEが協調することによって、MIMO多重の自由度及びダイバーシティが向上し、ひいてはスループットの向上が期待される。 Even with mmW, it is expected that the degree of freedom and diversity of MIMO multiplexing will be improved and the throughput will be improved by using higher-order MIMO and cooperating with a plurality of UEs.
 このように、将来の無線通信システム(例えば、Rel-17以降のNR)では、高周波(例えば、FR2)であっても、アナログビームを使わずにデジタルビームのみの運用(フルデジタル運用と呼ばれてもよい)が利用されたり、デジタルビームを支配的に用いる運用が利用されたりすることが想定される。 In this way, in future wireless communication systems (for example, NR after Rel-17), even if the frequency is high (for example, FR2), only the digital beam is operated without using the analog beam (called full digital operation). It is assumed that (may) will be used, or operations that predominantly use digital beams will be used.
 例えばフルデジタル運用の場合、同時に複数のUEに直交プリコーディング(又は直交ビーム、デジタルビーム)をかけることによって、周波数利用効率の改善が期待できる。デジタルビームを適切にかけられない場合、UE間の干渉が増大し、通信品質の劣化(又はセル容量の低下)につながる。なお、本開示の直交は、準直交で読み替えられてもよい。 For example, in the case of full digital operation, improvement of frequency utilization efficiency can be expected by applying orthogonal precoding (or orthogonal beam, digital beam) to a plurality of UEs at the same time. If the digital beam is not applied properly, interference between UEs will increase, leading to deterioration of communication quality (or decrease in cell capacity). The orthogonality of the present disclosure may be read as quasi-orthogonal.
 図3A及び3Bは、ビームの運用の一例を示す図である。本例では、FR2を想定するが、本開示の周波数レンジはこれに限られない。図3Aは、Rel-15でも用いられるようなアナログビームの運用を示し、図3Bは、Rel-17以降で用いられるようなデジタルビームの運用を示す。 FIGS. 3A and 3B are diagrams showing an example of beam operation. In this example, FR2 is assumed, but the frequency range of the present disclosure is not limited to this. FIG. 3A shows the operation of the analog beam as used in Rel-15, and FIG. 3B shows the operation of the digital beam as used in Rel-17 and later.
 図3Aでは、基地局(送受信ポイント(Transmission/Reception Point(TRP))、パネルなどで読み替えられてもよい)は、ある時間において1つのビーム(図3Aではビーム#2)しか送信できない。このため、基地局はUEに対するビームを切り替えて送受信する。 In FIG. 3A, a base station (transmission / reception point (TRP), which may be read as a panel, etc.) can transmit only one beam (beam # 2 in FIG. 3A) at a certain time. Therefore, the base station switches the beam to the UE to transmit and receive.
 図3Bでは、基地局は、ある時間において複数のビーム(図3Bではビーム#1-#4)を送信できる。このため、基地局は同時に異なるビームを用いて複数のUEと送受信できる。 In FIG. 3B, the base station can transmit a plurality of beams (beams # 1 to # 4 in FIG. 3B) at a certain time. Therefore, the base station can transmit and receive to and from a plurality of UEs using different beams at the same time.
 プリコーディング(ビーム)が適用された信号/チャネルに関して、UEが有する情報が不足していた場合、UEが信号/チャネルを適切に処理できないおそれがある。プリコーディング(ビーム)が適用された信号/チャネルをUEが適切に処理できない場合、通信スループットの増大が抑制されるおそれがある。 If the information held by the UE is insufficient for the signal / channel to which the precoding (beam) is applied, the UE may not be able to process the signal / channel properly. If the UE cannot properly process the signal / channel to which the precoding (beam) is applied, the increase in communication throughput may be suppressed.
 そこで、本発明者らは、プリコーディング(例えば、デジタルビーム)が適用された信号/チャネルをUEが適切に処理するための方法を着想した。 Therefore, the present inventors have conceived a method for the UE to appropriately process a signal / channel to which precoding (for example, a digital beam) is applied.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied individually or in combination.
 本開示において、「プリコーディング」は、「デジタルプリコーディング」に読み替えられてもよい。また、「DLチャネル」は、「DLチャネル/RS」、「DLチャネル/当該DLチャネルと対応するRS」、「DLチャネルのDMRS」などと互いに読み替えられてもよい。 In the present disclosure, "precoding" may be read as "digital precoding". Further, "DL channel" may be read as "DL channel / RS", "DL channel / RS corresponding to the DL channel", "DMRS of DL channel" and the like.
(無線通信方法)
<第1の実施形態>
 第1の実施形態では、UEは、プリコーディングされた信号及びチャネルの少なくとも一方に対するプリコーディングの適用に関する情報を受信し、その情報に基づいて、信号及びチャネルの少なくとも一方に対する処理を実行する。当該情報は、プリコーディング関連情報などと呼ばれてもよい。また、UEは、プリコーディング関連情報を受信しない場合には、所定の想定に基づいて、上記処理を実行してもよい。
(Wireless communication method)
<First Embodiment>
In the first embodiment, the UE receives information regarding the application of precoding to at least one of the precoded signals and channels, and based on that information, performs processing on at least one of the signals and channels. The information may be referred to as precoding-related information or the like. Further, when the UE does not receive the precoding related information, the UE may execute the above processing based on a predetermined assumption.
(方法1)
 基地局は、CSI-RSに、DLチャネルと同じプリコーディングを行い、同じプリコーディングを行ったことをUEに通知する。この場合、当該CSI-RSと当該DLチャネルとが、QCL関係にあるとみなされてもよい。また、この場合、UEは、当該DLチャネルについて設定又は指示されるTCI状態(TCI state)が、当該DLチャネルとQCL関係となるRS(DL-RS)として当該CSI-RSを含むと想定してもよい。
(Method 1)
The base station performs the same precoding on the CSI-RS as the DL channel, and notifies the UE that the same precoding has been performed. In this case, the CSI-RS and the DL channel may be considered to have a QCL relationship. Further, in this case, the UE assumes that the TCI state (TCI state) set or instructed for the DL channel includes the CSI-RS as an RS (DL-RS) having a QCL relationship with the DL channel. May be good.
 UEは、CSI-RSとDLチャネルに同じプリコーディングを行ったことが基地局から通知された場合、当該CSI-RSと当該DLチャネルに同じプリコーディングを行われたと想定する。この場合、UEは、CSI-RSの測定結果をDLデータの復調に用いてもよい。これにより、UEは、復調の精度を向上することができる。本開示において、DLデータの復調には、チャネル推定が含まれてもよい。 When the base station notifies that the same precoding has been performed on the CSI-RS and the DL channel, the UE assumes that the same precoding has been performed on the CSI-RS and the DL channel. In this case, the UE may use the measurement result of CSI-RS for demodulation of DL data. This allows the UE to improve the accuracy of demodulation. In the present disclosure, demodulation of DL data may include channel estimation.
(方法2)
 基地局は、CSI-RSとDLチャネルとに同じプリコーディングを行わない。この場合、基地局は、当該CSI-RSと当該DLチャネルとに同じプリコーディングを行わなかったことをUEに通知する。または、基地局は、CSI-RSとDLチャネルとに同じプリコーディングを行ったか否かをUEに通知しなくてもよい。
(Method 2)
The base station does not do the same precoding on the CSI-RS and DL channels. In this case, the base station notifies the UE that the same precoding has not been performed on the CSI-RS and the DL channel. Alternatively, the base station does not have to notify the UE whether or not the same precoding has been performed on the CSI-RS and the DL channel.
 UEは、CSI-RSとDLチャネルとに同じプリコーディングを行わなかったことが基地局から通知された場合、又は、CSI-RSとDLチャネルとに同じプリコーディングを行ったか否かが基地局から通知されなかった場合、当該CSI-RSと当該DLチャネルとに同じプリコーディングが行われなかったと想定する。この場合、UEは、CSI-RSとして所定の送信信号系列が送信されると想定し、CSI-RSの測定結果をDLデータの復調に用いないことを決定する。これにより、UEは、不適切なCSI-RSの測定結果を使用して復調精度が低下することを防ぐことができる。 When the base station notifies that the UE has not performed the same precoding on the CSI-RS and the DL channel, or whether the UE has performed the same precoding on the CSI-RS and the DL channel from the base station. If not notified, it is assumed that the same precoding was not performed on the CSI-RS and the DL channel. In this case, the UE assumes that a predetermined transmission signal sequence is transmitted as CSI-RS, and decides not to use the measurement result of CSI-RS for demodulation of DL data. This allows the UE to prevent the demodulation accuracy from being reduced by using improper CSI-RS measurement results.
 基地局が、CSI-RSとDLチャネルとに同じプリコーディングを行わない場合、CSI-RSにプリコーディングを行わない例(方法2-1)と、CSI-RSとDLチャネルとに異なるプリコーディングを行う例(方法2-2)とが考えられる。以下、方法2-1と方法2-2について説明する。 When the base station does not perform the same precoding on the CSI-RS and the DL channel, an example in which the CSI-RS is not precoded (method 2-1) and a different precoding on the CSI-RS and the DL channel are applied. An example of this (method 2-2) can be considered. Hereinafter, Method 2-1 and Method 2-2 will be described.
(方法2-1)
 基地局は、CSI-RSにプリコーディングを行わない。この場合、当該CSI-RSの送信信号には、所定の送信信号系列が用いられる。また、この場合、CSI-RSとDLチャネルとが、QCL関係ではないとみなされてもよい。また、この場合、DLチャネルのTCIstateにCSI-RSが設定されなくてもよい。
(Method 2-1)
The base station does not precode the CSI-RS. In this case, a predetermined transmission signal sequence is used for the transmission signal of the CSI-RS. Further, in this case, the CSI-RS and the DL channel may be regarded as not having a QCL relationship. Further, in this case, CSI-RS may not be set in the TCIstate of the DL channel.
 基地局は、CSI-RSにプリコーディングを行わなかった場合、DLチャネルにプリコーディングを行ったことを通知してもよい。この場合、UEは、予め仕様によって定められたプリコーダのセット(候補)又は上位レイヤシグナリングによって通知されたプリコーダのセットから、下りリンク制御情報(DCI)に基づいて、当該DLチャネルに適用されたプリコーダを識別してもよい。 If the base station does not precode the CSI-RS, it may notify the DL channel that the precoding has been performed. In this case, the UE is a precoder applied to the DL channel based on downlink control information (DCI) from a predetermined set of precoders (candidates) or a set of precoders notified by higher layer signaling. May be identified.
 また、基地局は、CSI-RSにプリコーディングを行わなかった場合、DLチャネルにプリコーディングを行ったことを通知しなくてもよい。この場合、UEは、当該DLチャネルについて設定又は指示されるTCI状態が、当該DLチャネルとQCL関係となるRS(DL-RS)としてCSI-RSを含むことを予期しなくてもよい。 Further, if the base station does not precode the CSI-RS, it does not have to notify the DL channel that the precoding has been performed. In this case, the UE may not expect that the TCI state set or indicated for the DL channel will include a CSI-RS as an RS (DL-RS) that has a QCL relationship with the DL channel.
(方法2-2)
 基地局は、CSI-RSにDLチャネルと異なるプリコーディングを行う。基地局は、例えば、CSI-RSにDLチャネルと異なるプリコーダを適用してもよい。この場合、CSI-RSのプリコーダのセットと、DLチャネルのプリコーダのセットと、がそれぞれ、予め仕様によって定められたプリコーダのセット(候補)及び上位レイヤシグナリングによって通知されたプリコーダのセットの少なくとも一方に該当してもよい。
(Method 2-2)
The base station precodes the CSI-RS differently from the DL channel. The base station may apply, for example, a precoder different from the DL channel to the CSI-RS. In this case, the CSI-RS precoder set and the DL channel precoder set are in at least one of the precoder set (candidate) defined in advance by the specification and the precoder set notified by the upper layer signaling, respectively. It may be applicable.
 UEは、第1のDCI(例えば、当該第1のDCIの所定のフィールド)に基づいて、上述のCSI-RSのプリコーダのセットから、当該CSI-RSに適用されるプリコーダを識別してもよい。また、UEは、当該第1のDCIとは別の第2のDCI(例えば、当該第2のDCIの所定のフィールド)に基づいて、上述のDLチャネルのプリコーダのセットから、当該DLチャネルに適用されるプリコーダを識別してもよい。 The UE may identify the precoder applied to the CSI-RS from the above set of CSI-RS precoders based on the first DCI (eg, a predetermined field of the first DCI). .. Also, the UE applies to the DL channel from the set of precoders of the DL channel described above based on a second DCI different from the first DCI (eg, a predetermined field of the second DCI). The precoder to be used may be identified.
 UEは、1つのDCIに含まれる第1のフィールドに基づいて、上述のCSI-RSのプリコーダのセットから、当該CSI-RSに適用されるプリコーダを識別してもよい。また、UEは、当該1つのDCIに含まれる当該第1のフィールドとは異なるフィールドに基づいて、上述のDLチャネルのプリコーダのセットから、当該DLチャネルに適用されるプリコーダを識別してもよい。 The UE may identify the precoder applied to the CSI-RS from the above-mentioned set of CSI-RS precoders based on the first field included in one DCI. In addition, the UE may identify the precoder applied to the DL channel from the above-mentioned set of DL channel precoders based on a field different from the first field included in the one DCI.
 当該設定又は指示情報は、どのCSI-RSとどのチャネルに同じプリコーディングが適用されるかの情報を含んでもよい。当該情報は、CSI-RSを識別するためのID(CSI-RS ID)、チャネル又は参照信号を識別するための情報などを含んでもよい。 The setting or instruction information may include information on which CSI-RS and which channel the same precoding is applied to. The information may include an ID for identifying CSI-RS (CSI-RS ID), information for identifying a channel or a reference signal, and the like.
(CSI測定)
 プリコーディングを適用したCSI-RS(例えば、プリコーデッドCSI-RSと呼ばれてもよい)と、プリコーディングを適用していないCSI-RS(例えば、ノンプリコーデッドCSI-RSと呼ばれてもよい)を、両方用いてCSI測定を行うとCSI報告の精度が劣化する。例えば、前者のCSI-RSの測定結果と後者のCSI-RSの測定結果とを平均化してCSI測定を行うと、適切なチャネル測定結果が得られない。よって、UEは、プリコーディングを適用したCSI-RSと、プリコーディングを適用していないCSI-RSのいずれか一方に対して、CSI測定を行ってもよい。
(CSI measurement)
CSI-RS with precoding applied (for example, it may be called precoded CSI-RS) and CSI-RS without precoding (for example, it may be called non-precoded CSI-RS). If CSI measurement is performed using both, the accuracy of CSI reporting deteriorates. For example, if the CSI measurement result of the former and the CSI-RS measurement result of the latter are averaged and the CSI measurement is performed, an appropriate channel measurement result cannot be obtained. Therefore, the UE may perform CSI measurement on either CSI-RS to which precoding is applied or CSI-RS to which precoding is not applied.
 UEは、プリコーディングを適用したCSI-RSに対して優先的にCSI測定を行ってもよい。UEは、例えば、プリコーディングを適用したCSI-RSが存在する場合、プリコーディングを適用したCSI-RSに対してCSI測定を行い、プリコーディングを適用したCSI-RSが存在しない場合、プリコーディングを適用していないCSI-RSに対してCSI測定を行う。 The UE may preferentially perform CSI measurement on CSI-RS to which precoding is applied. For example, when the CSI-RS to which the precoding is applied exists, the UE performs the CSI measurement on the CSI-RS to which the precoding is applied, and when the CSI-RS to which the precoding is applied does not exist, the UE performs the precoding. CSI measurement is performed for CSI-RS that has not been applied.
 UEは、プリコーディングを適用していないCSI-RSに対して優先的にCSI測定を行ってもよい。UEは、例えば、プリコーディングを適用していないCSI-RSが存在する場合、プリコーディングを適用していないCSI-RSに対してCSI測定を行い、プリコーディングを適用していないCSI-RSが存在しない場合、プリコーディングを適用したCSI-RSに対してCSI測定を行う。 The UE may preferentially perform CSI measurement on CSI-RS to which precoding is not applied. For example, when the CSI-RS to which the precoding is not applied exists, the UE performs CSI measurement on the CSI-RS to which the precoding is not applied, and the CSI-RS to which the precoding is not applied exists. If not, CSI measurement is performed for CSI-RS to which precoding is applied.
 UEは、1つのCSI-RSリソースセットまたはCSI-RSリソースユニットに、プリコーディングを適用したCSI-RSリソースとプリコーディングを適用していないCSI-RSリソースの両方が設定されることを想定しない。この場合、例えばCSI-RSリソースセットごとに、CSI-RSのプリコーディングの有無が統一されるため、プリコーディングを適用したCSI-RSだけのCSI測定結果を得るなどということが容易に実現できる。 The UE does not assume that both the precoded CSI-RS resource and the precoded CSI-RS resource are set in one CSI-RS resource set or CSI-RS resource unit. In this case, for example, since the presence or absence of precoding of CSI-RS is unified for each CSI-RS resource set, it is possible to easily obtain the CSI measurement result of only CSI-RS to which the precoding is applied.
 CSI-RSへプリコーディングを適用するかどうかは、CSI-RSリソース単位で設定されてもよいし、UE単位、UEグループ単位、セル単位などの少なくとも1つの単位で設定されてもよい。 Whether or not to apply precoding to CSI-RS may be set for each CSI-RS resource, or may be set for at least one unit such as a UE unit, a UE group unit, and a cell unit.
 UEは、プリコーディングを適用したCSI-RS、および、プリコーディングを適用していないCSI-RSのそれぞれに対してCSI測定を行い、一方又は両方のCSI測定結果を報告してもよい。 The UE may perform CSI measurement for each of CSI-RS to which precoding is applied and CSI-RS to which precoding is not applied, and report the CSI measurement result of one or both.
(方法4)
 基地局は、CSI-RSにプリコーディングを行ったかどうかの通知(プリコーディング適用有無の情報と呼ばれてもよい)に、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いてもよい。基地局は、プリコーディング適用有無を、CSI-RSリソース設定情報に含めて通知してもよく、例えば一部のCSI-RSリソースについてプリコーディング適用有無の情報を通知してもよい。また、基地局は、DCIに新しくプリコーディング適用有無に関するビットフィールドを追加し、そのビットフィールドを用いてプリコーディング適用有無を通知してもよい。当該ビットフィールドは、例えば、非周期的なCSI-RS(Aperiodic CSI-RS(A-CSI-RS))に関して通知されてもよい。
(Method 4)
The base station may use upper layer signaling, physical layer signaling, or a combination thereof for notification of whether or not precoding has been performed on CSI-RS (which may be referred to as information on whether or not precoding is applied). The base station may notify the presence or absence of precoding application by including it in the CSI-RS resource setting information, and may notify, for example, information on whether or not precoding is applied to some CSI-RS resources. Further, the base station may add a new bit field regarding whether or not precoding is applied to DCI and notify whether or not precoding is applied by using the bit field. The bit field may be notified, for example, with respect to the aperiodic CSI-RS (Aperiodic CSI-RS (A-CSI-RS)).
 UEは、上記プリコーディング適用有無の情報に基づいて、特定のCSI-RSにプリコーディングが適用されたか否かを判断してもよい。 The UE may determine whether or not precoding has been applied to a specific CSI-RS based on the above information on whether or not precoding has been applied.
 プリコーディングを行ったか否かに応じて、CSI-RSポート数が変化し得る。よって、基地局は、CSI-RSポート数をUEに通知してもよい。そして、UEは、CSI-RSポート数に基づいて、CSI-RSにプリコーディングが行われたかを判定してもよい。基地局は、CSI-RSポート数の通知に、例えば、DCI、上位レイヤ、またはMACを用いてもよい。また、基地局は、上位レイヤまたはMACを用いて、ポート数の候補を通知し、UEは、DCIを用いて、候補の中からいずれかのポート数を決定してもよい。 The number of CSI-RS ports can change depending on whether or not precoding is performed. Therefore, the base station may notify the UE of the number of CSI-RS ports. Then, the UE may determine whether the CSI-RS has been precoded based on the number of CSI-RS ports. The base station may use, for example, DCI, a higher layer, or MAC to notify the number of CSI-RS ports. Further, the base station may notify the candidate of the number of ports by using the upper layer or MAC, and the UE may determine the number of any port from the candidates by using DCI.
 プリコーディングを行ったか否かに応じて、CSI-RSポート数が変化することについて説明する。CSI-RSポート数は、プリコーディングが行われていない場合、アンテナ数と同数となり、プリコーディングが行われている場合、アンテナ数以下となる。プリコーディングが行われていないCSI-RSの信号xをx=Psとおくと、以下の式(1)のように表される。式(1)において、x=[x0 1 2 (Tは転置行列を示す。以下同様)であり、x~xは、各アンテナからの送信信号を示す。式(1)の例では、4つの物理アンテナが存在することを想定している。プリコーディングが適用されない場合、Pは単位行列に該当し、式(1)では4次の単位行列である。s=[s0 1 2 であり、s~sは、送信対象のCSI-RS信号系列を示す。すなわち、CSI-RSは、4ポートで送信される。 It will be described that the number of CSI-RS ports changes depending on whether or not precoding is performed. The number of CSI-RS ports is the same as the number of antennas when precoding is not performed, and is equal to or less than the number of antennas when precoding is performed. Assuming that the CSI-RS signal x that has not been precoded is x = Ps, it is expressed by the following equation (1). In equation (1), x = [x 0 x 1 x 2 x 3 ] T (T indicates a transposed matrix; the same applies hereinafter), and x 0 to x 3 indicate transmission signals from each antenna. In the example of equation (1), it is assumed that there are four physical antennas. When precoding is not applied, P corresponds to the identity matrix, which is a fourth-order identity matrix in equation (1). s = [s 0 s 1 s 2 s 3 ] T , and s 0 to s 3 indicate the CSI-RS signal sequence to be transmitted. That is, CSI-RS is transmitted on 4 ports.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 送信対象の信号を直交系列で分離する場合、送信対象のCSI-RS信号系列は、下記系列1~系列4のように表される。nはサブキャリア数を示す。例えばサブキャリア1に着目すると、送信対象の信号は、M1(1),M2(1),M3(1),M4(1)である。この場合、M1(1),M2(1),M3(1),M4(1)が、s~sに対応し、各アンテナから送信される。
系列1=[M1(0),M1(1),...,M1(n-1)]
系列2=[M2(0),M2(1),...,M2(n-1)]
系列3=[M3(0),M3(1),...,M3(n-1)]
系列4=[M4(0),M4(1),...,M4(n-1)]
When the signals to be transmitted are separated by orthogonal sequences, the CSI-RS signal sequences to be transmitted are represented as the following sequences 1 to 4. n indicates the number of subcarriers. Focusing on the subcarrier 1, for example, the signals to be transmitted are M1 (1), M2 (1), M3 (1), and M4 (1). In this case, M1 (1), M2 (1), M3 (1), and M4 (1) correspond to s 0 to s 3 and are transmitted from each antenna.
Series 1 = [M1 (0), M1 (1) ,. .. .. , M1 (n-1)]
Series 2 = [M2 (0), M2 (1) ,. .. .. , M2 (n-1)]
Series 3 = [M3 (0), M3 (1) ,. .. .. , M3 (n-1)]
Series 4 = [M4 (0), M4 (1) ,. .. .. , M4 (n-1)]
 プリコーディングが行われたCSI-RSの信号は、以下の式(2)のように表される。式(2)において、x~xは、各アンテナからの送信信号を示す。式(2)の例では、式(1)と同様に、4つの物理アンテナが存在することを想定している。s,sは、送信対象のCSI-RS信号系列を示す。また、Beam1およびBeam2という2つのビームが適用される。p00~p30は、Beam1のプリコーダであり、p01~p31は、Beam2のプリコーダであるとする。Pは、物理アンテナ数×CSI-RSポートの行列となる。 The precoded CSI-RS signal is expressed by the following equation (2). In the formula (2), x 0 to x 3 represent transmission signals from each antenna. In the example of the equation (2), it is assumed that there are four physical antennas as in the equation (1). s 0 and s 1 indicate the CSI-RS signal sequence to be transmitted. In addition, two beams, Beam1 and Beam2, are applied. It is assumed that p 00 to p 30 are precoders of Beam 1 and p 01 to p 31 are precoders of Beam 2. P is a matrix of the number of physical antennas × CSI-RS port.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 送信対象の信号をプリコーダ(ビーム)で分離する場合、送信対象の信号は、下記系列1、系列2のように表される。nはサブキャリア数を示す。例えばサブキャリア1に着目すると、M1(1),M2(1)が、s,sに対応する。基地局は、これらの信号を、プリコーダ(ビーム)で直交して送信する。
系列1=[M1(0),M1(1),...,M1(n-1)]
系列2=[M2(0),M2(1),...,M2(n-1)]
When the signal to be transmitted is separated by the precoder (beam), the signal to be transmitted is represented as the following series 1 and series 2. n indicates the number of subcarriers. Focusing on the subcarrier 1, for example, M1 (1) and M2 (1) correspond to s 0 and s 1 . The base station transmits these signals orthogonally by a precoder (beam).
Series 1 = [M1 (0), M1 (1) ,. .. .. , M1 (n-1)]
Series 2 = [M2 (0), M2 (1) ,. .. .. , M2 (n-1)]
 UEは、上記プリコーディング適用有無の情報に基づいて、特定のCSI-RSのアンテナポート数を判断してもよい。例えば、UEは、CSI-RSにプリコーディングを適用することを示す情報を受信した場合、当該CSI-RSのポート数が所定の値であると想定してもよい。当該所定の値は、上位レイヤシグナリングなどによってUEに設定されてもよいし、予め仕様によって定められてもよい。 The UE may determine the number of antenna ports of a specific CSI-RS based on the information on whether or not the precoding is applied. For example, when the UE receives information indicating that the precoding is applied to the CSI-RS, the UE may assume that the number of ports of the CSI-RS is a predetermined value. The predetermined value may be set in the UE by higher layer signaling or the like, or may be predetermined by specifications.
 UEは、CSI-RSにプリコーディングを適用しないことを示す情報を受信した場合、当該CSI-RSポート数が物理アンテナの数に等しいと想定してもよい。 When the UE receives information indicating that precoding is not applied to CSI-RS, the UE may assume that the number of CSI-RS ports is equal to the number of physical antennas.
<第2の実施形態>
 第2の実施形態では、UEは、プリコーディングされた信号及びチャネルの少なくとも一方に関する情報として、複数の信号に適用された各プリコーディングが等しいかどうか、複数のチャネルに適用された各プリコーディングが等しいかどうか、又は、信号およびチャネルに適用された各プリコーディングが等しいかどうかを示すQCLに関する情報を受信する。QCLに関する情報は、例えば、RRCシグナリングを用いて、基地局からUEに送信される。そして、UEは、その情報に基づいて、信号及びチャネルの少なくとも一方に対する処理を実行する。
<Second embodiment>
In the second embodiment, the UE determines whether each precoding applied to the plurality of signals is equal or each precoding applied to the plurality of channels as information about at least one of the precoded signal and the channel. Receives information about the QCL that indicates whether they are equal or whether each precoding applied to the signal and channel is equal. Information about the QCL is transmitted from the base station to the UE using, for example, RRC signaling. Then, the UE executes processing for at least one of the signal and the channel based on the information.
 複数の信号に適用された各プリコーディングが等しいこと、複数のチャネルに適用された各プリコーディングが等しいこと、又は、信号およびチャネルに適用された各プリコーディングが等しいことを示すQCLとして、QCL type-E(QCL-Eと呼ばれてもよい)が規定されていてもよい。なお、QCL type-Eにおいて、「プリコーディング」を空間受信パラメータ(「Spatial Rx parameter」)又は空間送信パラメータ(「Spatial Tx parameter」)と読み替えてもよい。このSpatial Rx parameterは、3GPP Rel.15におけるQCL-DのSpatial Rx parameterと区別するために、例えば、Spatial Rx parameter II、Spatial Tx parameter IIのように規定されてもよい。 A QCL type as a QCL indicating that each precoding applied to a plurality of signals is equal, each precoding applied to a plurality of channels is equal, or each precoding applied to a signal and a channel is equal. -E (which may be referred to as QCL-E) may be specified. In QCL type-E, "precoding" may be read as a spatial reception parameter ("Spatial Rx parameter") or a spatial transmission parameter ("Spatial Tx parameter"). This Spatial Rx parameter is 3GPP Rel. In order to distinguish it from the Spatial Rx parameter of QCL-D in 15, for example, Spatial Rx parameter II and Spatial Tx parameter II may be specified.
 基地局は、所定のチャネル(例えば、PDCCH、PDSCH、PUCCH及びPUSCHの少なくとも1つ)のTCI-stateとして、QCL type-Eに該当するRS(例えば、CSI-RS)をUEに通知してもよい。QCL type-Eに該当するRS示すTCI状態を通知されたUEは、上記所定のチャネルに適用されるプリコーディングとRSに適用されるプリコーディングとが等しいと想定してもよい。例えば、UEは、QCL-Eと指定されたRSの測定結果をDLチャネル(PDSCH、PDCCHなど)の復調に用いてもよい。 Even if the base station notifies the UE of the RS corresponding to the QCL type-E (for example, CSI-RS) as the TCI-state of a predetermined channel (for example, at least one of PDCCH, PDSCH, PUCCH and PUSCH). Good. The UE notified of the TCI status indicating the RS corresponding to the QCL type-E may assume that the precoding applied to the predetermined channel and the precoding applied to the RS are equal. For example, the UE may use the measurement result of the RS designated as QCL-E for demodulation of the DL channel (PDSCH, PDCCH, etc.).
 上記所定のチャネルのTCI-stateとして、QCL type-Eに該当するRSを通知されない場合、UEは、当該RSとDLチャネルとに同じプリコーディングが行われなかったと想定する。この場合、UEは、当該RSについてはプリコ―ディングが適用されず、所定の送信信号系列が送信されると想定してもよい。また、この場合、UEは、当該RSの測定結果をDLチャネル(PDSCH、PDCCHなど)の復調に用いなくてもよい。 If the RS corresponding to the QCL type-E is not notified as the TCI-state of the predetermined channel, the UE assumes that the same precoding was not performed on the RS and the DL channel. In this case, the UE may assume that precoding is not applied to the RS and a predetermined transmission signal sequence is transmitted. Further, in this case, the UE does not have to use the measurement result of the RS for demodulation of the DL channel (PDSCH, PDCCH, etc.).
 なお、「RS1とRS2間のプリコーディングが等しい」は、「RS1とRS2の間がQCLである」と互いに読み替えられてもよい。 Note that "equal precoding between RS1 and RS2" may be read as "QCL between RS1 and RS2".
<第3の実施形態>
 第3の実施形態では、UEは、プリコーディングされた信号及びチャネルの少なくとも一方に関する情報として、他のUE(干渉UEと呼ばれてもよい)に対する信号及びチャネルの少なくとも一方に適用する干渉キャンセラに用いる情報を受信する。そして、UEは、その情報に基づいて、信号及びチャネルの少なくとも一方に対する処理(例えば、干渉キャンセル)を実行する。なお、第3の実施形態における「RS」は、「信号及びチャネルの少なくとも一方」に読み替えられてもよい。また、第3の実施形態において、基地局からUEに送信される、「干渉キャンセラに用いる情報」を単に「情報」と記載することがある。
<Third embodiment>
In a third embodiment, the UE is an interference canceller that applies to at least one of the signals and channels to another UE (which may be referred to as an interfering UE) as information about at least one of the precoded signals and channels. Receive the information to be used. Then, the UE executes processing (for example, interference cancellation) for at least one of the signal and the channel based on the information. In addition, "RS" in the third embodiment may be read as "at least one of a signal and a channel". Further, in the third embodiment, the "information used for the interference canceller" transmitted from the base station to the UE may be simply described as "information".
 図4は、他のUEに対するビームが干渉する例を示す図である。図4に示す例では、UE2に対して送信されたビーム#2が、UE1にも到達し、UE#1はビーム#2から干渉を受ける。ビームを適切にかけられない(例えば、ビームが完全直交でない)場合、UE間の干渉が増大してしまう。 FIG. 4 is a diagram showing an example in which beams for other UEs interfere with each other. In the example shown in FIG. 4, the beam # 2 transmitted to the UE 2 also reaches the UE 1, and the UE # 1 is interfered with by the beam # 2. If the beam is not applied properly (eg, the beam is not perfectly orthogonal), interference between UEs will increase.
 基地局は、UEに、他のUEに対するRSに適用する干渉キャンセラに必要な情報を送信する。UEは、その情報を用いて、他のUEに対するRSの干渉キャンセルを行う。干渉キャンセラに用いる情報は、他のUEに対するRSに関する情報であってもよい。例えば、干渉キャンセラに用いる情報は、当該RSのリソースを示す情報を含んでもよい。 The base station transmits to the UE the information necessary for the interference canceller applied to RS to other UEs. The UE uses the information to cancel the RS interference with other UEs. The information used for the interference canceller may be information about RS for other UEs. For example, the information used for the interference canceller may include information indicating the resource of the RS.
 干渉キャンセラに必要な情報は、当該RSのための、送信信号系列番号、巡回シフトインデックス(cyclic shift index),時間領域OCCインデックス(time domain OCC index)、周波数領域OCCインデックス(frequency domain OCC index)等のように、送信信号系列の特定に用いられる情報の少なくとも1つを示す情報を含んでもよい。干渉キャンセラに用いる情報は、送信信号系列のポート数、アンテナポート番号、UE識別子(UE-ID(Identifier))、RNTI(Radio Network Temporary Identifier)を示す情報を含んでもよい。 The information required for the interference canceller is the transmission signal sequence number, cyclic shift index, time domain OCC index, frequency domain OCC index, etc. for the RS. The information indicating at least one of the information used for specifying the transmission signal sequence may be included. The information used for the interference canceller may include information indicating the number of ports in the transmission signal sequence, the antenna port number, the UE identifier (UE-ID (Identifier)), and RNTI (Radio Network Temporary Identifier).
 UEは、基地局から送信された上記情報を用いて、他のUEの送信信号系列を特定し、受信信号から他のUEの送信信号をキャンセル(減算)する。そして、UEは、キャンセル後に自UE宛のRS(希望信号(desired signal)と呼ばれてもよい)の測定を行ってもよい。これにより、RS測定精度を向上させることができる。UEは、キャンセル対象のUEを示す情報を、基地局から受信してもよい。UEは、通知された当該情報に基づいて、キャンセル対象のUEを識別し、当該キャンセル対象のUE向けの送信信号を、受信信号からキャンセルしてもよい。 The UE identifies the transmission signal sequence of another UE by using the above information transmitted from the base station, and cancels (subtracts) the transmission signal of the other UE from the received signal. Then, the UE may measure the RS (which may be called a desired signal) addressed to its own UE after the cancellation. Thereby, the RS measurement accuracy can be improved. The UE may receive information indicating the UE to be canceled from the base station. The UE may identify the UE to be canceled based on the notified information, and cancel the transmission signal for the UE to be canceled from the reception signal.
 基地局は、干渉キャンセラに用いる情報として、データなしのDMRSのCode Division Multiplexing(CDM)グループ数(Number of DM-RS CDM groups without data)をUEに送信してもよい。UEは、送信されたデータなしのDMRSのCDMグループ数に基づいて、干渉キャンセルを行ってもよい。なお、Rel.15仕様では、データなしのDMRSのCDMグループ数は、UL/DLデータのレートマッチング(データビット数の明確化)、DMRSのEnergy Per Resource Element(EPRE)の決定、などのために規定されたが、UEは、このようにDCIによって特定されるデータなしのDMRSのCDMグループ数を干渉キャンセルのために利用すると想定してもよい。 The base station may transmit the number of DMRS Code Division Multiplexing (CDM) groups (Number of DM-RS CDM groups without data) to the UE as information used for the interference canceller. The UE may cancel the interference based on the number of CDM groups of the DMRS without transmitted data. In addition, Rel. In the 15 specifications, the number of CDM groups for DMRS without data was specified for UL / DL data rate matching (clarification of the number of data bits), determination of DMRS Energy Per Resource Element (EPRE), etc. , The UE may assume that the number of CDM groups of DMRS without data thus identified by DCI is used for interference cancellation.
 UEは、データなしのDMRSのCDMグループ数に応じて、データを含まないリソースを特定する。UEは、データを含まないリソースを用いて、他のUEの干渉を推定し、干渉キャンセルを行ってもよい。例えば、リソースがDMRSを含むリソース(例えばRE)である場合、UEは、当該リソースの受信信号から自UEのDMRSの情報(自UEのDMRSの信号)を減算することにより、干渉を推定し、キャンセルしてもよい。また、例えば、リソースがデータを含まない(又は何も送られない)場合、UEは、当該リソースの受信信号が干渉であると推定し、干渉キャンセルに利用してもよい。 The UE identifies resources that do not contain data according to the number of CDM groups of DMRS without data. The UE may use a resource that does not contain data to estimate the interference of another UE and cancel the interference. For example, when the resource is a resource containing DMRS (for example, RE), the UE estimates interference by subtracting the DMRS information of its own UE (DMRS signal of its own UE) from the received signal of the resource. You may cancel. Further, for example, when the resource does not contain data (or nothing is sent), the UE may presume that the received signal of the resource is interference and use it for interference cancellation.
 UEは、データなしのDMRSのCDMグループ数に応じて、データを含むリソースを特定してもよい。そして、UEは、特定したリソースに基づいて、他のUEの干渉を推定し、干渉をキャンセルしてもよい。具体的には、UEは、データを復調、復号し、巡回冗長検査(Cyclic Redundancy Check(CRC))チェックを行い誤り判定/訂正を行う。そして、UEは、送信信号レプリカを生成し、送信信号波形/系列レプリカを生成する。そして、UEは、受信信号から、生成した送信信号波形/系列レプリカを減算(キャンセル)することにより、干渉を推定することができる。 The UE may specify the resource containing the data according to the number of CDM groups of the DMRS without data. Then, the UE may estimate the interference of other UEs based on the identified resource and cancel the interference. Specifically, the UE demodulates and decodes the data, performs a cyclic redundancy check (Cyclic Redundancy Check (CRC)) check, and performs error determination / correction. Then, the UE generates a transmission signal replica and generates a transmission signal waveform / series replica. Then, the UE can estimate the interference by subtracting (cancelling) the generated transmission signal waveform / series replica from the received signal.
 UEは、他のUEのDM-RSを用いて、干渉キャンセルを行ってもよい。また、UEは、他のUEのCSI-RSを用いて、干渉キャンセルを行ってもよい。この他のUEのCSI-RSは、当該他のUEのDM-RSと同じビーム(同じQCL)で送信されたCSI-RSに該当してもよい。UEは、DCIにより他のUEのCSI-RS関連情報を受信してもよい。 The UE may cancel the interference by using the DM-RS of another UE. Further, the UE may cancel the interference by using the CSI-RS of another UE. The CSI-RS of the other UE may correspond to the CSI-RS transmitted with the same beam (same QCL) as the DM-RS of the other UE. The UE may receive CSI-RS related information of other UEs by DCI.
 具体的には、UEは、DCIにおいて、他のUEのDMRS関連情報、および他のUEのCSI-RS関連情報のうちの少なくとも一方を基地局から受信し、受信した情報を用いて干渉キャンセルを行う。受信するDMRS関連情報は、リソース、系列、巡回シフト, コム(comb)/FDMインデックス(言い換えると、CDMグループ)などを特定する情報を含んでもよい。また、受信するCSI-RS関連情報は、例えば、リソース、系列、巡回シフト、密度(例えば、PRBレベルのコム(comb)={even, odd})などを特定する情報を含んでもよい。UEは、他のUEのDMRS関連情報、および他のUEのCSI-RS関連情報のうちの少なくとも一方を上位レイヤ/MAC CEで受信してもよい。UEは、他のUEのDMRS関連情報、および他のUEのCSI-RS関連情報のうちの少なくとも一方の複数の候補を上位レイヤ/MAC CEで受信し、どの候補を選択するかを示す情報をDCIにより受信してもよい。 Specifically, the UE receives at least one of the DMRS-related information of the other UE and the CSI-RS-related information of the other UE from the base station in the DCI, and cancels the interference using the received information. Do. The DMRS-related information received may include information that identifies resources, sequences, cyclic shifts, combs / FDM indexes (in other words, CDM groups), and the like. Further, the received CSI-RS related information may include, for example, information specifying resources, sequences, cyclic shifts, densities (for example, PRB level comb = {even, odd}) and the like. The UE may receive at least one of the DMRS-related information of the other UE and the CSI-RS-related information of the other UE in the upper layer / MAC CE. The UE receives DMRS-related information of other UEs and at least one of a plurality of candidates of CSI-RS-related information of other UEs in the upper layer / MAC CE, and receives information indicating which candidate is selected. It may be received by DCI.
(DMRSの干渉キャンセル)
 UEは、DMRSのリソース、送信信号系列を特定する情報を受信し、その情報に基づいて、DMRSをキャンセルしてもよい。
(DMRS interference cancellation)
The UE may receive the information for identifying the DMRS resource and the transmission signal sequence, and cancel the DMRS based on the information.
 DMRSリソースを特定する情報は、例えば、他のUEのDMRSの、DMRSタイプ、additional DMRS有無、データなしのDMRSのCDMグループ数、CDMグループ(comb index)、DMRSポート数、上位レイヤで設定されるセルID/スクランブルIDに相当するパラメータなどを含んでもよい。DMRSについては、スクランブルIDが2つ設定された場合、どちらの値を使うかがDCIで通知されてもよい。UEは、スクランブルIDの値を、自UEのPDSCHのスケジュール時に、そのPDSCHをスケジューリングしたDCIにより受信してもよい。この場合、UEは、スクランブルIDなど上述のDMRSリソースを特定する情報の値を、新しいDCIフィールド、または既存のDCIフィールドの組み合わせにより受信してもよい。 The information for identifying the DMRS resource is set, for example, in the DMRS type of other UEs, the presence or absence of additional DMRS, the number of CDM groups of DMRS without data, the CDM group (comb index), the number of DMRS ports, and the upper layer. Parameters corresponding to the cell ID / scramble ID and the like may be included. For DMRS, when two scramble IDs are set, DCI may notify which value to use. The UE may receive the value of the scramble ID by the DCI that scheduled the PDSCH at the time of scheduling the PDSCH of its own UE. In this case, the UE may receive the value of the above-mentioned information identifying the DMRS resource such as the scramble ID by the new DCI field or the combination of the existing DCI fields.
 送信信号系列を特定する情報は、例えば、DMRS系列長(PDSCHの割り当てPRB数)、系列index、cyclic shift index、時間領域OCCインデックス(time domain OCC index)、周波数領域OCCインデックス(frequency domain OCC index)等を含んでもよい。 Information for specifying the transmission signal sequence is, for example, DMRS sequence length (number of PDSCH allocated PRBs), sequence index, cyclic shift index, time domain OCC index (time domain OCC index), frequency domain OCC index (frequency domain OCC index). Etc. may be included.
(CSI-RSの干渉キャンセル)
 UEは、他のUEのCSI-RSの干渉をキャンセルする場合、他のUEのCSI-RSのリソース、送信信号系列を特定する情報を受信し、その情報に基づいて、CSI-RSの干渉キャンセルを行ってもよい。
(CSI-RS interference cancellation)
When canceling the interference of CSI-RS of another UE, the UE receives information for identifying the resource and transmission signal sequence of CSI-RS of another UE, and cancels the interference of CSI-RS based on the information. May be done.
 他のUEのCSI-RSのリソースを特定する情報は、例えば、他のUEのCSI-RSのCSI-RSタイプ(例えば、ポート数などのテーブルのrow index)、全PRBがeven or odd PRBのみであるかを示す情報、CSI-RSポート数、時間領域OCCインデックス(time domain OCC index)、周波数領域OCCインデックス(frequency domain OCC index)等である。 The information that identifies the CSI-RS resources of other UEs is, for example, the CSI-RS type of CSI-RS of other UEs (for example, row index of the table such as the number of ports), and all PRBs are only even or odd PRBs. Information indicating whether or not it is, the number of CSI-RS ports, the time domain OCC index (time domain OCC index), the frequency domain OCC index (frequency domain OCC index), and the like.
 他のUEの送信信号系列を特定する情報は、CSI-RS系列長(CSI-RSの割り当てPRB数)、上位レイヤで設定されるセルID/スクランブルIDに相当するパラメータなどを含んでもよい。なお、他のUEの送信信号系列を特定する情報は、データスクランブルの初期化のための値(cinit)を特定するための情報であってもよい。 The information that identifies the transmission signal sequence of another UE may include the CSI-RS sequence length (the number of PRBs allocated to CSI-RS), the parameters corresponding to the cell ID / scramble ID set in the upper layer, and the like. The information for specifying the transmission signal sequence of the other UE may be the information for specifying the value (c init ) for initializing the data scramble.
 干渉キャンセル対象のUEを基地局が決定し、UEが、決定された干渉キャンセル対象のUEを示す情報を受信してもよい。また、UEが、干渉キャンセル対象のUEを決定してもよい。以下、それぞれの場合の処理について説明する。 The base station may determine the UE to be canceled by interference, and the UE may receive information indicating the determined UE to be canceled by interference. Further, the UE may determine the UE to be subject to interference cancellation. The processing in each case will be described below.
(1)干渉キャンセル対象の他のUEを基地局が決定する場合
 UEは、他のUEの測定対象のRSリソースを示す設定情報を、基地局から受信する。そして、UEは、設定情報に示されるRSリソースの干渉電力を測定する。UEは、例えば、各RSリソースについて測定した干渉電力のそれぞれを、基地局に送信してもよい。UEは、例えば、各RSリソースについて測定した干渉電力の一部(例えば、最大干渉電力、及び最小干渉電力の少なくとも一方)、測定したRSリソースのリソース番号を基地局に送信してもよい。また、UEは、干渉電力が所定の条件を満たす(例えば、最大の干渉電力を有する、干渉電力が所定の閾値以上である、など)RSリソースのリソース番号、UEindexなどを基地局に送信してもよい。
(1) When the base station determines another UE for interference cancellation The UE receives setting information indicating the RS resource to be measured by the other UE from the base station. Then, the UE measures the interference power of the RS resource shown in the setting information. The UE may transmit, for example, each of the interference powers measured for each RS resource to the base station. The UE may transmit, for example, a part of the measured interference power for each RS resource (for example, at least one of the maximum interference power and the minimum interference power) and the resource number of the measured RS resource to the base station. Further, the UE transmits the resource number of the RS resource, the UE index, etc. to the base station where the interference power satisfies a predetermined condition (for example, the interference power has the maximum interference power, the interference power is equal to or higher than a predetermined threshold value, etc.). May be good.
(2)干渉キャンセル対象の他のUEをUEが決定する場合
 UEは、他のUEの測定対象のRSリソースを示す設定情報を、基地局から受信する。そして、UEは、設定情報に示されるRSリソースの干渉電力を測定する。UEは、各RSリソースと各RSリソースの干渉キャンセラに必要な情報との対応関係の情報を基地局から受信する。UEは、RSリソースについて測定した干渉電力に基づいて、干渉キャンセルを行ってもよい。
(2) When the UE determines another UE for interference cancellation The UE receives setting information indicating the RS resource to be measured by the other UE from the base station. Then, the UE measures the interference power of the RS resource shown in the setting information. The UE receives information on the correspondence between each RS resource and the information required for the interference canceller of each RS resource from the base station. The UE may cancel the interference based on the interference power measured for the RS resource.
<第4の実施形態>
(プリコーダに関する情報を受信する場合)
 UEは、他のUEのCSI-RS/DLチャネルに適用されたプリコーダ(例えば、DLデータ用のプリコーダ)に関する情報を受信する。この場合、UEは、予め仕様によって定められたプリコーダのセット(候補)又は上位レイヤシグナリングによって通知されたプリコーダのセットから、DCIに基づいて、他のUEのCSI-RS/DLチャネルに適用されたプリコーダを特定してもよい。UEは、他のUEのCSI-RS/DLチャネルのリソースの少なくとも一部が重複する場合に、特定したプリコーダを用いて、干渉キャンセルを行う。
<Fourth Embodiment>
(When receiving information about the precoder)
The UE receives information about a precoder (eg, a precoder for DL data) applied to the CSI-RS / DL channel of another UE. In this case, the UE was applied to the CSI-RS / DL channel of another UE based on DCI from a predetermined set of precoders (candidates) or a set of precoders notified by higher layer signaling. The precoder may be specified. When at least a part of the resources of the CSI-RS / DL channel of another UE overlaps, the UE uses the identified precoder to cancel the interference.
(プリコーダに関する情報を受信しない場合)
 UEは、他のUEのCSI-RS/DLチャネルに適用されたプリコーダに関する情報を受信しない場合は、他のUEに対する、プリコーディングがかけられたRSリソースを示す設定情報を受信してもよい。そして、UEは、設定情報に示されたRSリソースを測定することにより、他のUEのCSI-RS/DLチャネルに対するプリコーダ(プリコーディング)を推定することができる。
(If you do not receive information about the precoder)
If the UE does not receive information about the precoder applied to the CSI-RS / DL channel of another UE, it may receive configuration information indicating the precoded RS resource for the other UE. Then, the UE can estimate the precoder (precoding) for the CSI-RS / DL channel of another UE by measuring the RS resource indicated in the setting information.
 UEは、QCL-Eを用いてプリコーディングがかけられたRSリソースを示す設定情報を通知されてもよい。例えば、他のUE向けのRSリソースが所定のRSリソースとQCL-Eであることを通知されたUEは、当該他のUE向けのRSに適用されるプリコーダが当該所定のRSリソースに適用されるプリコーダと同一であると想定してもよい。 The UE may be notified of the setting information indicating the precoded RS resource using the QCL-E. For example, a UE notified that an RS resource for another UE is a predetermined RS resource and a QCL-E has a precoder applied to the RS for the other UE applied to the predetermined RS resource. It may be assumed that it is the same as the precoder.
 UEは、他のUEのCSI-RS/DLチャネルのリソースの少なくとも一部が重複する場合に、推定した他のUE向けのプリコーダを用いて、干渉キャンセルを行う。 When at least a part of the resources of the CSI-RS / DL channel of another UE overlaps, the UE cancels the interference by using the estimated precoder for the other UE.
 UEは、他のUEのデータスケジュールに関する情報を受信し、その情報に基づいて、他のUEのCSI-RS/DLチャネルのためのリソースを識別し、干渉キャンセルなどに利用してもよい。 The UE may receive information on the data schedule of another UE, identify the resource for the CSI-RS / DL channel of the other UE based on the information, and use it for interference cancellation or the like.
 UEは、他のUEのデータスケジュール情報(例えば、PDSCH、PUSCHなどのリソース割り当てに関する情報)を、基地局から受信してもよい。例えば、他のUE宛のスケジュール情報の通知に用いる新しいDCIフォーマットが規定されてもよい。また、UEは、既存のDCIフォーマットに追加されたビットフィールドに基づいて、自UE宛のスケジュール情報か他のUE宛のスケジュール情報かを判定してもよい。 The UE may receive data schedule information of other UEs (for example, information regarding resource allocation such as PDSCH and PUSCH) from the base station. For example, a new DCI format may be specified for notification of schedule information to other UEs. Further, the UE may determine whether the schedule information is addressed to the own UE or the schedule information addressed to another UE based on the bit field added to the existing DCI format.
 UEは、他のUEのRNTIを上位レイヤで通知されてもよい。そして、UEは、通知された他のUEのRNTIを用いて、DCIをブラインド検出(モニタで読み替えられてもよい)することにより、他のUEへのスケジュール情報を取得してもよい。ブラインド検出回数が所定の回数を超えた場合、UEは、自UE宛のDCIのブラインド検出を優先させ、他のUE宛のDCIの一部のブラインド検出をドロップしてもいい。UEは、自UEと他のUEとのCORESET/サーチスペースは等しいと想定してDCIのブラインド検出を行ってもいい。 The UE may be notified of the RNTI of another UE in a higher layer. Then, the UE may acquire schedule information to the other UE by blindly detecting (may be read by the monitor) DCI using the RNTI of the other UE that has been notified. When the number of blind detections exceeds a predetermined number, the UE may prioritize blind detection of DCI addressed to its own UE and drop some blind detection of DCI addressed to other UEs. The UE may perform blind detection of DCI on the assumption that the CORESET / search space between the own UE and another UE is equal.
 UEは、他のUEのCORESET/サーチスペースの情報を上位レイヤシグナリングによって通知されてもよい。UEは、自UEのCORESET/サーチスペースと他のUEのCORESET/サーチスペースが重複した(例えば、時間周波数リソースが重複した)場合、自UEのCORESET/サーチスペースを優先させ、他のUEのCORESET/サーチスペースのDCI検出を無視/ドロップしてもよい(行わなくてもよい)。 The UE may be notified of the CORESET / search space information of another UE by upper layer signaling. When the CORESET / search space of the own UE and the CORESET / search space of another UE overlap (for example, the time frequency resources overlap), the UE gives priority to the CORESET / search space of the own UE and CORESET of the other UE. / DCI detection in the search space may be ignored / dropped (may not be performed).
 以上説明した実施形態によれば、UEが、デジタルプリコーディングされた信号/チャネルに関する情報に基づいて、信号/チャネルに対する処理を実行することにより、プリコーディングが適用された信号/チャネルを適切に処理できる。 According to the above-described embodiment, the UE appropriately processes the precoded signal / channel by executing processing on the signal / channel based on the information about the digitally precoded signal / channel. it can.
<その他>
 本開示におけるRSは、CSI-RS、Tracking Reference Signal(TRS)、Phase Tracking Reference Signal(PTRS)、復調用参照信号(DMRS)、セル固有参照信号(Cell-specific Reference Signal(CRS))、同期信号ブロック(Synchronization Signal Block(SSB))、上りリンク参照信号(Uplink Reference Signal(UL-RS))として適用されるDMRS、測定用参照信号(Sounding Reference Signal(SRS))の少なくとも一つに読み替えられてもよい。
<Others>
The RS in the present disclosure includes CSI-RS, Tracking Reference Signal (TRS), Phase Tracking Reference Signal (PTRS), demodulation reference signal (DMRS), cell-specific reference signal (CRS), and synchronization signal. It is read as at least one of a block (Synchronization Signal Block (SSB)), a DMRS applied as an uplink reference signal (UL-RS), and a measurement reference signal (SRS). May be good.
 また、本開示におけるCSI-RSは、ゼロパワーCSI-RS(Zero-Power(ZP) CSI-RS)、またはノンゼロパワーCSI-RS(Non-Zero-Power(NZP) CSI-RS)であってもよい。 Further, the CSI-RS in the present disclosure may be zero power CSI-RS (Zero-Power (ZP) CSI-RS) or non-zero power CSI-RS (Non-Zero-Power (NZP) CSI-RS). Good.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is MN, and the LTE (E-UTRA) base station (eNB) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is the Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is the IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for detecting PDCCH. CORESET corresponds to a resource that searches for DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble for establishing a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図6は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110. RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
 なお、送受信部120は、デジタルプリコーディングされた信号及びチャネルの少なくとも一方の関連情報をUEに送信してもよい。なお、「通知」は、「指示」、「設定」、「送信」に読み替えられてもよい。当該関連情報は、信号及びチャネルの少なくとも一方に対するデジタルプリコーディングの適用に関する情報であってもよい。また、当該関連情報は、複数の信号に適用された各プリコーディングが等しいかどうか、複数のチャネルに適用された各プリコーディングが等しいかどうか、又は、信号およびチャネルに適用された各プリコーディングが等しいかどうかを示すQCLに関する情報を含んでいてもよい。また、当該関連情報は、他のUE(情報の送信先のUE以外のUE)に対する信号及びチャネルの少なくとも一方に適用する干渉キャンセラに用いる情報を含んでいてもよい。また、当該関連情報は、他のUE(情報の送信先のUE以外のUE)に対する信号及びチャネルの少なくとも一方に適用されたデジタルプリコーディングに関する情報を含んでいてもよい。 Note that the transmission / reception unit 120 may transmit information related to at least one of the digitally precoded signal and the channel to the UE. Note that "notification" may be read as "instruction", "setting", and "sending". The relevant information may be information regarding the application of digital precoding to at least one of a signal and a channel. Also, the relevant information is whether each precoding applied to multiple signals is equal, each precoding applied to multiple channels is equal, or each precoding applied to signals and channels is It may include information about the QCL indicating whether they are equal. In addition, the related information may include information used for an interference canceller applied to at least one of a signal and a channel to another UE (a UE other than the UE to which the information is transmitted). The relevant information may also include information about digital precoding applied to at least one of a signal and a channel to another UE (a UE other than the UE to which the information is transmitted).
 制御部110は、信号及びチャネルの少なくとも一方に対してデジタルプリコーディングを行い、送受信部120がUEに送信する上記関連情報を生成してもよい。 The control unit 110 may digitally precode at least one of the signal and the channel to generate the above-mentioned related information transmitted by the transmission / reception unit 120 to the UE.
(ユーザ端末)
 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) processes, for example, PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. The transmission / reception unit 220 (transmission processing unit 2211) described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 The transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
 なお、送受信部220は、デジタルプリコーディングされた信号及びチャネルの少なくとも一方の関連情報を受信してもよい。なお、当該関連情報は、信号及びチャネルの少なくとも一方に対するデジタルプリコーディングの適用に関する情報であってもよい。また、当該関連情報は、複数の信号に適用された各プリコーディングが等しいかどうか、複数のチャネルに適用された各プリコーディングが等しいかどうか、又は、信号およびチャネルに適用された各プリコーディングが等しいかどうかを示すQCLに関する情報を含んでいてもよい。また、当該関連情報は、他のUEに対する信号及びチャネルの少なくとも一方に適用する干渉キャンセラに用いる情報を含んでいてもよい。また、当該関連情報は、他のUEに対する信号及びチャネルの少なくとも一方に適用されたデジタルプリコーディングに関する情報を含んでいてもよい。 Note that the transmitter / receiver 220 may receive information related to at least one of the digitally precoded signal and channel. The related information may be information regarding the application of digital precoding to at least one of a signal and a channel. Also, the relevant information is whether each precoding applied to multiple signals is equal, each precoding applied to multiple channels is equal, or each precoding applied to signals and channels is It may include information about the QCL indicating whether they are equal. In addition, the related information may include information used for an interference canceller applied to at least one of a signal and a channel to another UE. The relevant information may also include information about digital precoding applied to at least one of the signals and channels to other UEs.
 制御部210は、送受信部220が受信した上記関連情報に基づいて、信号及びチャネルの少なくとも一方に対する処理を実行してもよい。制御部210は、例えば、送受信部220が受信した上記関連情報に基づいて、干渉キャンセルを行ってもよい。 The control unit 210 may execute processing for at least one of the signal and the channel based on the above-mentioned related information received by the transmission / reception unit 220. The control unit 210 may cancel the interference based on the related information received by the transmission / reception unit 220, for example.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) that functions transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図dは、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. d is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In this disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Pneumerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth, etc.) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executables, execution threads, procedures, features, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. In addition, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), LTE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as "judgment (decision)" of "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used herein, are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as a modified or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  デジタルプリコーディングされた信号及びチャネルの少なくとも一方の関連情報を受信する受信部と、
     前記関連情報に基づいて、前記信号及びチャネルの少なくとも一方に対する処理を実行する制御部と、を有することを特徴とする端末。
    A receiver that receives relevant information on at least one of a digitally precoded signal and channel,
    A terminal comprising a control unit that executes processing for at least one of the signal and the channel based on the related information.
  2.  前記関連情報は、前記信号及びチャネルの少なくとも一方に対するデジタルプリコーディングの適用に関する情報を含むことを特徴とする請求項1に記載の端末。 The terminal according to claim 1, wherein the related information includes information regarding application of digital precoding to at least one of the signal and the channel.
  3.  前記関連情報は、複数の信号に適用された各プリコーディングが等しいかどうか、複数のチャネルに適用された各プリコーディングが等しいかどうか、又は、信号およびチャネルに適用された各プリコーディングが等しいかどうかを示す疑似コロケーション(Quasi-Co-Location(QCL))に関する情報を含むことを特徴とする請求項1又は請求項2に記載の端末。 The relevant information is whether each precoding applied to multiple signals is equal, each precoding applied to multiple channels is equal, or each precoding applied to signals and channels is equal. The terminal according to claim 1 or 2, wherein the terminal includes information on a pseudo collocation (Quasi-Co-Location (QCL)) indicating whether or not.
  4.  前記関連情報は、他の端末に対する信号及びチャネルの少なくとも一方に適用する干渉キャンセラに用いる情報を含むことを特徴とする請求項1から請求項3のいずれかに記載の端末。 The terminal according to any one of claims 1 to 3, wherein the related information includes information used for an interference canceller applied to at least one of a signal and a channel to another terminal.
  5.  前記関連情報は、他の端末に対する信号及びチャネルの少なくとも一方に適用されたデジタルプリコーディングに関する情報を含むことを特徴とする請求項1から請求項4のいずれかに記載の端末。 The terminal according to any one of claims 1 to 4, wherein the related information includes information regarding digital precoding applied to at least one of a signal and a channel for another terminal.
  6.  デジタルプリコーディングされた信号及びチャネルの少なくとも一方の関連情報を受信するステップと、
     前記関連情報に基づいて、前記信号及びチャネルの少なくとも一方に対する処理を実行するステップと、を有することを特徴とする端末の無線通信方法。
    The step of receiving the relevant information of at least one of the digitally precoded signals and channels,
    A method of wireless communication of a terminal, comprising: a step of performing processing on at least one of the signals and channels based on the relevant information.
PCT/JP2019/028466 2019-07-19 2019-07-19 Terminal and wireless communication method WO2021014493A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980098602.6A CN114175710B (en) 2019-07-19 2019-07-19 Terminal and wireless communication method
PCT/JP2019/028466 WO2021014493A1 (en) 2019-07-19 2019-07-19 Terminal and wireless communication method
CN202410078226.7A CN117880838A (en) 2019-07-19 2019-07-19 Terminal, wireless communication method, base station and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028466 WO2021014493A1 (en) 2019-07-19 2019-07-19 Terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2021014493A1 true WO2021014493A1 (en) 2021-01-28

Family

ID=74193143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028466 WO2021014493A1 (en) 2019-07-19 2019-07-19 Terminal and wireless communication method

Country Status (2)

Country Link
CN (2) CN114175710B (en)
WO (1) WO2021014493A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509430A (en) * 2013-03-27 2016-03-24 エルジー エレクトロニクス インコーポレイティド Method and apparatus for interference cancellation in a wireless communication system
US20170288743A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving reference signals in wireless communication
US20180242327A1 (en) * 2017-02-06 2018-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Systems And Methods Of Reducing Interference In A Wireless Communications System
JP2019508934A (en) * 2016-01-21 2019-03-28 株式会社Nttドコモ Mixed beamforming method, base station, and user terminal

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143606A (en) * 2013-01-24 2014-08-07 Ntt Docomo Inc Radio communication system, radio communication method, radio base station, and user equipment
CN109792735A (en) * 2016-09-29 2019-05-21 株式会社Ntt都科摩 User terminal and wireless communications method
CN110958628B (en) * 2016-11-04 2021-06-29 华为技术有限公司 Wireless communication method, device, system and computer readable storage medium
KR20190129919A (en) * 2017-03-23 2019-11-20 가부시키가이샤 엔티티 도코모 User terminal and wireless communication method
US10986665B2 (en) * 2017-09-15 2021-04-20 Qualcomm Incorporated Quasi-colocation for LBT
US10687291B2 (en) * 2017-10-02 2020-06-16 Qualcomm Incorporated Carrier sharing between multiple radio access technologies

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016509430A (en) * 2013-03-27 2016-03-24 エルジー エレクトロニクス インコーポレイティド Method and apparatus for interference cancellation in a wireless communication system
JP2019508934A (en) * 2016-01-21 2019-03-28 株式会社Nttドコモ Mixed beamforming method, base station, and user terminal
US20170288743A1 (en) * 2016-03-31 2017-10-05 Samsung Electronics Co., Ltd Method and apparatus for transmitting and receiving reference signals in wireless communication
US20180242327A1 (en) * 2017-02-06 2018-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Systems And Methods Of Reducing Interference In A Wireless Communications System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Consideration on beam management", 3GPP TSG RAN WG1 MEETING #90BIS, R1-1717812, 3 October 2017 (2017-10-03), XP051340997, Retrieved from the Internet <URL:https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_90b/Docs/R1-1> [retrieved on 20191119] *

Also Published As

Publication number Publication date
CN114175710B (en) 2024-02-06
CN117880838A (en) 2024-04-12
CN114175710A (en) 2022-03-11

Similar Documents

Publication Publication Date Title
WO2021024494A1 (en) Terminal and wireless communication method
WO2020222279A1 (en) User terminal and wireless communication method
WO2020090059A1 (en) User terminal and wireless communications method
JP7177168B2 (en) Terminal, wireless communication method, base station and system
WO2021065015A1 (en) Terminal and wireless communication method
WO2021002018A1 (en) Terminal and wireless communication method
WO2021064962A1 (en) Terminal and wireless communication method
WO2020144774A1 (en) User terminal and wireless communication method
JPWO2020066021A1 (en) Terminals, wireless communication methods, base stations and systems
WO2022153395A1 (en) Terminal, wireless communication method, and base station
WO2020222274A1 (en) User terminal and wireless communication method
WO2020144773A1 (en) User terminal and wireless communication method
WO2021186700A1 (en) Terminal, wireless communication method, and base station
WO2021009916A1 (en) Terminal and wireless communication method
EP3876432A1 (en) User equipment
WO2021014509A1 (en) Terminal and wireless communication method
WO2020202394A1 (en) User terminal and wireless communication method
WO2020144775A1 (en) User terminal and wireless communication method
JP7487315B2 (en) Terminal, wireless communication method, base station and system
EP4161154A1 (en) Terminal, radio communication method, and base station
WO2021241210A1 (en) Terminal, wireless communication method, and base station
WO2022044290A1 (en) Terminal, wirless communication method, and base station
CN114556999B (en) Terminal and wireless communication method
EP4114114A1 (en) Terminal, radio communication method, and base station
WO2021156951A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19938897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19938897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP