WO2021013992A1 - Injectable polymer compositions with hyaluronic acid cross-linked by boronate esters and functionalised by rgd peptides for cell and tissue engineering - Google Patents

Injectable polymer compositions with hyaluronic acid cross-linked by boronate esters and functionalised by rgd peptides for cell and tissue engineering Download PDF

Info

Publication number
WO2021013992A1
WO2021013992A1 PCT/EP2020/070958 EP2020070958W WO2021013992A1 WO 2021013992 A1 WO2021013992 A1 WO 2021013992A1 EP 2020070958 W EP2020070958 W EP 2020070958W WO 2021013992 A1 WO2021013992 A1 WO 2021013992A1
Authority
WO
WIPO (PCT)
Prior art keywords
hyaluronic acid
polymer
grafted
gluconamide
fructose
Prior art date
Application number
PCT/EP2020/070958
Other languages
French (fr)
Inventor
Rachel Auzely-Velty
Tamiris VILAS BOAS FIGUEIREDO
Marlène RIPPE
Original Assignee
Centre National De La Recherche Scientifique
Universite Grenoble Alpes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique, Universite Grenoble Alpes filed Critical Centre National De La Recherche Scientifique
Publication of WO2021013992A1 publication Critical patent/WO2021013992A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/26Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0018Culture media for cell or tissue culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0062General methods for three-dimensional culture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/25Peptides having up to 20 amino acids in a defined sequence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/905Hyaluronic acid

Definitions

  • TITLE Injectable polymeric compositions of hyaluronic acid crosslinked by boronate esters and functionalized by RGD peptides for cell and tissue engineering
  • the present invention relates to injectable polymeric compositions of hyaluronic acid crosslinked by boronate esters and functionalized by RGD peptides for cell and tissue engineering.
  • a hyaluronic acid polymer at least one hydroxyl function of which is grafted with the hydroxyl of a group comprising a cis-diol, preferably maltose.
  • hyaluronic acid polymer at least one carboxylate function of which is grafted with the amine function of a compound comprising a diol.
  • the inventors of the present application have however observed that the high affinity of the boronate hemiester towards the diols has drawbacks: the gels according to WO 2018/024793 can be difficult to sterilize because the hyaluronic acid polymer of which at least one carboxylate function is grafted by a group comprising a boroxole is not stable under autoclaving conditions (probable degradation of the polymer), so that it no longer allows the formation of a gel when mixed with the acidic polymer hyaluronic grafted with a diol compound.
  • these polymeric compositions comprise an aqueous phase, they form hydrogels. These resemble the natural extracellular matrix, and therefore have the advantage of being usable in biomedical applications. However, the spreading and viability of the cells incorporated into these hydrogels are not sufficient.
  • the invention relates to a polymeric composition
  • a polymeric composition comprising a mixture of:
  • a hyaluronic acid polymer of which at least one carboxylate function is grafted with 3-aminophenylboronic acid (“HA-PBA-xRGD” below)
  • a hyaluronic acid polymer at least one carboxylate function of which is grafted with 1 -amino-1 -deoxy-D-fructose (“HA-fructose-yRGD” below) or with gluconamide (“HA-gluconamide-zRGD ”Below),
  • the HA-PBA-xRGD polymer and the HA-fructose-yRGD polymer, or the HA-PBA-xRGD polymer and the HA-gluconamide-zRGD polymer are linked to each other by boronate ester functions between the boronic acid of the HA-PBA-xRGD polymer and the saccharide unit either fructosamine (1 -amino-1 -deoxy-D- fructose) of the HA-fructose-yRGD polymer, or gluconamide (glucose in its open form ) HA-gluconamide-zRGD polymer.
  • hyaluronic acid or "HA” is meant hyaluronic acid in neutral or salt (hyaluronate) form, regardless of its charge and the nature of its counterion (s). It can, for example, be sodium hyaluronate.
  • Hyaluronic acid can be of animal or non-animal origin. Sources of non-animal origin include yeasts and preferably bacteria which are used to produce hyaluronic acid biotechnologically.
  • the mass average molar mass (Mw) of hyaluronic acid is typically in the range of 1 to 3000 kg / mol, but other mass average molar masses are possible.
  • the polymeric composition comprises a hyaluronic acid polymer, at least one carboxylate function of which is grafted with 3-aminophenylboronic acid, called the HA-PBA-xRGD polymer.
  • 3-Aminophenylboronic acid is grafted to the acid hyaluronic by an amide bond formed between the amine of 3-aminophenylboronic acid and a carboxylate function of hyaluronic acid.
  • the polymeric composition also comprises a hyaluronic acid polymer of which at least one carboxylate function is grafted either by 1 -amino-1 -deoxy-D-fructose (HA-fructose-yRGD polymer), or by gluconamide (HA-gluconamide polymer). zRGD).
  • Gluconamide is grafted to hyaluronic acid via a spacer arm which links a carboxylate function of hyaluronic acid to the amine function of gluconamide, preferably via amide bonds.
  • this spacer arm has the formula -NH-L- in which:
  • the terminal group -NH forms, with a carboxyl function of hyaluronic acid, an amide bond (formed by reaction of a carboxylate function of HA and amine),
  • L represents a carbon chain comprising from 2 to 10 carbon atoms and optionally interrupted by one or more oxygen atoms (typically from 1 to 5 oxygen atoms).
  • L represents in particular a group - (CH 2 ) n - in which n represents an integer from 1 to 10, preferably from 1 to 4, or a group - (CX-CX-OJ m -CX-CX- in which m represents an integer of 1 to 4, preferably 1 or 2.
  • the spacer arm has the formula -NH- (CH 2 -CH 2 -0) 2 -CH 2 -CH 2 -, the terminal group -NH forming, with a carboxyl function of hyaluronic acid, an amide bond (formed by reaction of a carboxylate function of HA and of the amine), and the -ex terminal group being linked to the -NH- terminal group of the gluconamide.
  • 1 -amino-1 -deoxy-D- fructose is grafted to hyaluronic acid by an amide bond formed from the amine of 1 -amino-1 -deoxy-D-fructose and the carboxylate function of hyaluronic acid.
  • the polymeric composition comprises an HA-PBA-xRGD polymer and an HA-fructose-yRGD polymer, the HA-PBA-xRGD polymer and / or the HA-fructose-yRGD polymer being grafted with a peptide RGD.
  • a polymer composition is also called “HA-PBA-xRGD / HA-fructose-yRGD” below.
  • the bonds between HA-PBA-xRGD and HA-fructose-yRGD are very strong, which could be explained by the fact that the boronic acid of the polymer HA-PBA-xRGD becomes complex in three dots on the 1 -amino-1 -deoxy-D-fructose saccharide unit, whereas in most of the polymeric compositions described in the prior art, the boronic acid grafted onto the first hyaluronic acid only becomes complex in two dots on the cis-diol group grafted onto the second hyaluronic acid.
  • the polymeric composition is generally free of HA-gluconamide-zRGD polymer.
  • the polymeric composition comprises an HA-PBA-xRGD polymer and an HA-gluconamide-zRGD polymer, the HA-PBA-xRGD polymer and / or the HA-gluconamide-zRGD polymer being grafted with a peptide RGD.
  • a polymeric composition is also called “HA-PBA-xRGD / HA-gluconamide-zRGD” below.
  • the polymeric composition is generally free of HA-fructose-yRGD polymer.
  • the inventors have observed that the polymeric compositions comprising an HA-PBA polymer and either an HA-fructose polymer, or an HA-gluconamide polymer make it possible to obtain more stable gels than those obtained with compositions.
  • Figure 4 shows that a polymer composition comprising
  • HA-PBA 3-aminophenylboronic acid
  • the degree of substitution is the average mole number of substituting for every 100 disaccharide repeating units of hyaluronic acid, this substituent being phenylboronic acid (hereinafter “PBA”) for the HA-PBA- polymer.
  • PBA phenylboronic acid
  • the degree of substitution is generally from 5 to 70 mol%, preferably from 10 to 50 mol%.
  • the number of moles of PBA grafted onto the HA-PBA-xRGD is preferably as close as possible either to the number of moles of fructose of HA-fructose-yRGD, or to the number of moles of gluconamide of HA-gluconamide-zRGD, in order to 'optimizing the formation of ester boronate bonds and obtaining optimum complexation by mixing solutions of HA-PBA-xRGD and either HA-fructose-yRGD or HA-gluconamide-zRGD in equal volume.
  • grafted with an RGD peptide is meant that the hyaluronic acid polymer is grafted with at least one group carrying a peptide comprising the arginine-glycine-aspartic acid (RGD) sequence.
  • RGD arginine-glycine-aspartic acid
  • the peptide can include other amino acids.
  • the "RGD peptide” typically comprises 3 to 20 amino acids, especially 4 to 15 amino acids, preferably 5 to 15 amino acids, with the proviso that at least three of them together constitute the RGD sequence.
  • the amino acids contiguous to the RGD sequence are chosen independently of one another from natural amino acids. Preferably, at least 50% of the amino acids contiguous to the RGD sequence are polar residues chosen from Gly, Ser, Thr and Tyr.
  • hyaluronic acid can be grafted with a GRGDY or GRGDS peptide.
  • At least one of the polymers of the polymeric composition is grafted with an RGD peptide.
  • the HA-PBA-xRGD polymer comprises an average number of moles "x" of RGD peptides per 100 disaccharide repeat units of hyaluronic acid.
  • the HA-fructose-yRGD polymer comprises an average number of moles "y” of RGD peptides per 100 disaccharide units of hyaluronic acid.
  • the HA-gluconamide-zRGD polymer comprises an average number of moles “z” of RGD peptides per 100 disaccharide units of hyaluronic acid x, y and z are also called “RGD peptide density”.
  • x, y and z are, independently of one another, a number generally comprised from 0 to 50 mol%, in particular from 0 to 40 mol%, typically from 0 to 30 mol%, preferably from 0 to 20 mol%. Since at least one of the polymers of the polymeric composition is grafted with an RGD peptide:
  • the average number of moles "c" of RGD peptides per 100 disaccharide repeat units of hyaluronic acid of the polymeric composition is equal to:
  • the HA-PBA-xRGD polymer is grafted with an RGD peptide, and either the HA-fructose-yRGD polymer or the HA-gluconamide-zRGD polymer is free of RGD peptide.
  • x is different from 0 and either y is 0 or z is 0.
  • c is then equal to x / 2.
  • either the HA-fructose-yRGD polymer or the HA-gluconamide-zRGD polymer is grafted with an RGD peptide, and the HA-PBA-xRGD polymer is free of RGD peptide.
  • either y or z is different from 0 and x is 0.
  • c is then equal to y / 2 when the polymer b) is the HA-fructose-yRGD polymer, or c is equal to z / 2 when the polymer b) is the HA-gluconamide-zRGD polymer.
  • the HA-PBA-xRGD polymer is grafted with an RGD peptide, and either the HA-fructose-yRGD polymer or the HA-gluconamide-zRGD polymer is grafted with an RGD peptide.
  • x and either y or z are different from 0.
  • c is then equal to (x + y) / 2 when the polymer b) is the HA-fructose-yRGD polymer, or c is equal to (x + z) / 2 when the polymer b) is the HA-gluconamide-zRGD polymer.
  • the polymeric composition comprises an aqueous solution. It is then in the form of a hydrogel.
  • the sum of the concentrations of HA-PBA-xRGD and HA-fructose-yRGD polymers in the aqueous solution, or the sum of the concentrations of HA-PBA-xRGD and HA-gluconamide-zRGD polymers in the aqueous solution generally ranges from 1 to 100 mg / ml, in particular 2 to 50 mg / ml, preferably 5 to 30 mg / ml, particularly preferably 10 to 30 mg / ml.
  • the pH of the aqueous solution of the polymeric composition is generally from 7.0 to 10.0, especially from 7.0 to 9.0, preferably from 7.0 to 8.0, particularly preferably from 7.0 to 7.5.
  • the aqueous solution is typically a buffer solution, for example, phosphate buffered saline (0.15 M NaCl) (whose pH is 7.4), DPBS (Dulbecco's phosphate buffer), or cell culture medium, which is adapted depending on the cell type of the polymeric composition, for example DMEM (Eagle's minimum essential medium) culture medium for fibroblasts.
  • a buffer solution for example, phosphate buffered saline (0.15 M NaCl) (whose pH is 7.4), DPBS (Dulbecco's phosphate buffer), or cell culture medium, which is adapted depending on the cell type of the polymeric composition, for example DMEM (Eagle's minimum essential medium) culture medium for fibroblasts.
  • the high affinity of the saccharide units of the HA-fructose-yRGD polymer or of the HA-gluconamide-zRGD polymer for the PBA of the HA-PBA-xRGD polymer makes it possible to obtain a “gel” type behavior of the HA-PBA polymer composition.
  • - xRGD / HA-fructose-yRGD or HA-PBA-xRGD / HA-gluconamide-zRGD makes it possible to obtain a “gel” type behavior of the HA-PBA polymer composition.
  • the “gel” type behavior is deduced from rheological measurements in dynamic mode and is defined by the fact that the storage modulus (G ') is greater than the loss modulus (G ”) on all frequencies from 0.01 to 10 Hz
  • the rheological properties of the polymer composition are little impacted by the functionalization with an RGD peptide, and therefore by the values of x, y, z and c.
  • the hydrogels can be injected through a needle of small diameter (typically with a diameter of 0.1 to 0.4 mm) and rapidly recover its mechanical properties after injection.
  • the reversible bonds formed between the PBA of the HA-PBA-xRGD polymer and the saccharide units of the HA-fructose-yRGD or HA-gluconamide-zRGD polymer break down and then break down. reform once the polymer is ejected from the needle.
  • the polymer is advantageously malleable until the bonds reform.
  • the kinetics of the reactions initiated are sufficiently slow to allow the polymeric composition to be shaped in a reproducible manner, and sufficiently fast to maintain this shape.
  • the polymeric composition can comprise cells, in particular fibroblasts, for example human fibroblasts. Usually cells are present at its surface and / or are dispersed within the polymeric composition.
  • RGD peptide density i.e. c, and therefore x and either y or z
  • the polymeric composition can comprise one or more therapeutic agent (s).
  • the polymeric composition may further comprise a sodium alginate, which is a polysaccharide capable of gelling in the presence of calcium ions. It then comprises a mixture of three polymers: HA-PBA-xRGD / HA-fructose-yRGD / sodium alginate or HA-PBA-xRGD / HA-gluconamide-zRGD / sodium alginate.
  • the concentration of sodium alginate in the polymer composition is generally 0.01 to 5.0% (w / v), preferably 0.1 to 2.0% (w / v)).
  • the presence of sodium alginate has little impact on the rheological properties of the polymer composition.
  • Such a polymer composition is particularly suitable as a bio-ink for printing, as explained below.
  • Such polymeric compositions can be shaped together with cells.
  • the invention relates to a process for preparing the polymer composition defined above comprising the mixture:
  • At least one of said polymers is grafted with an RGD peptide, in an aqueous solution the pH of which is from 7.0 to 10.0, in particular from 7.0 to 9.0, preferably from 7.0 to 8.0, particularly preferably 7.0 to 7.5.
  • the mixing is therefore carried out at a pH close to physiological pH.
  • an aqueous solution of the HA-PBA-xRGD polymer and either an aqueous solution of HA-fructose-yRGD or an aqueous solution of HA-gluconamide-zRGD are mixed.
  • the polymeric composition to be prepared contains cells
  • these can be introduced into the aqueous solution of the HA-PBA-xRGD polymer and / or either into the aqueous solution of HA-fructose-yRGD, or into the aqueous solution of HA- gluconamide-zRGD before their mixtures.
  • the almost instantaneous preparation process for polymeric compositions by simply mixing HA-PBA-xRGD polymers and either HA-fructose-yRGD or HA-gluconamide-zRGD, allows cells to be easily encapsulated without damaging them and without them having time to settle.
  • the cell adhesion properties of the polymeric compositions can easily be modulated as a function of the RGD peptide density of the polymeric composition (therefore as a function of c), which depends on the RGD peptide densities (x, y and z) of the HA polymers.
  • -PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD it contains.
  • the invention relates to a kit comprising:
  • a) a first container comprising a hyaluronic acid polymer, at least one carboxylate function of which is grafted with 3-aminophenylboronic acid, and
  • a second container comprising a hyaluronic acid polymer, at least one carboxylate function of which is grafted with 1 -amino-1 -deoxy-D-fructose or with gluconamide, provided that at least one of said polymers is grafted with a peptide RGD.
  • This kit is suitable for preparing the polymeric composition defined above by mixing the two polymers.
  • the embodiments described above are applicable.
  • the first container can further comprise an aqueous solution.
  • the second container may further comprise an aqueous solution.
  • the invention relates to the use of the polymeric composition defined above, for cell culture, cell transplantation or cell therapy.
  • HA-PBA-xRGD / HA-fructose-yRGD or HA-PBA-xRGD / HA-gluconamide-zRGD compositions may be more suitable than the other.
  • the cellular response of the cells of the polymeric compositions according to the invention is improved compared to that of cells of the polymeric compositions obtained from polymeric compositions comprising identical polymers except that they are not grafted with an RGD peptide.
  • the optimum density of RGD peptide (“c” defined above, which depends on x and either on y or on z) of the polymeric composition depends on the type of cells used. This is because the optimum density of RGD peptide in a hydrogel varies depending on the cell type. It is therefore particularly advantageous to have hydrogels with peptide densities Modular RGDs.
  • the RGD “c” peptide density of the polymeric composition can be adapted on a case-by-case basis, by simply adjusting x and / or either y or z, to optimize cell behavior as a function of specific cells used.
  • the invention relates to the use of the polymeric composition defined above, in the embodiment in which it comprises a sodium alginate, as ink, in particular as bio-ink, for printing, in particular 3D printing, in particular 3D bioprinting, or for tissue engineering.
  • hyaluronic acid As an essential component of the extracellular matrix, hyaluronic acid is a biopolymer of choice for the development of models of biological objects, such as tissues, by bioprinting.
  • its use in the gel state involves its crosslinking.
  • the crosslinking method conventionally used in tissue engineering consists in modifying the hyaluronic acid with methacrylate groups allowing its gelation by UV irradiation.
  • UV light can be damaging to cell survival.
  • the use of the polymeric composition according to the invention as a bio-ink does not require UV irradiation.
  • the invention relates to a method of preparing an object comprising the steps of:
  • the method makes it possible in particular to prepare an object having a defined geometric shape using a 3D printer.
  • 3D printer is meant a system for programmatically depositing a quantity of polymeric composition at a point defined by its coordinates in the three dimensions of space.
  • the 3D printer can print by extrusion, laser or inkjet.
  • bioprinting There is a strong demand in the field of bioprinting for printable biocompatible and biodegradable hydrogels, and also compatible with several printing methods (extrusion, laser, inkjet, stereolithography). Being able to 3D print a hydrogel-based object having a geometric shape defined automatically using a printer is now a challenge. This is called “bioprinting”.
  • bioprinting The hydrogel is a key element in bioprinting technologies, not only playing a structural role in the fabrication of the object but also biological, by transmitting biochemical signals to cells so that they survive and develop in the object formed.
  • bioprinting While there are currently several types of bioprinters available on the market, the development of bioprinting is nevertheless limited by the lack of biocompatible hydrogels, customizable and modifiable according to the tissues / organs targeted and suitable for production at large scale.
  • the polymeric compositions according to the invention advantageously make it possible to carry out bioprinting and have all the desired advantages.
  • the step of shaping by a 3D printer typically comprises the deposition, layer by layer, of the polymeric composition (preferably containing cells).
  • step ii) is generally carried out by immersing the shaped object in an aqueous solution comprising calcium ions.
  • Step ii) obtains the object.
  • Step ii) leads to the formation of an interpenetrating network doubly crosslinked by boronate ester bonds between the HA-PBA-xRGD and HA-fructose-yRGD polymers or else HA-PBA-xRGD and HA-gluconamide-zRGD, and by ionic crosslinks of calcium alginate.
  • HA-PBA-xRGD polymers and either HA-fructose-yRGD or HA-gluconamide-zRGD provide high print fidelity, while sodium alginate is used as a structural component, ensuring the object in form good mechanical stability.
  • the invention relates to an object capable of being obtained by the method defined above.
  • the invention also relates to an object comprising: a) a hyaluronic acid polymer of which at least one carboxylate function is grafted with 3-aminophenylboronic acid,
  • At least one of said polymers a) and b) is grafted with an RGD peptide, c) a calcium alginate, and
  • This object can in particular be a tissue, for example a dermal tissue, or an organ.
  • the object contains cells, advantageously, their cell viability is high, cell proliferation is high, and the degree of cell spreading is high.
  • Figure 1 represents the elastic modulus (G ') (solid symbols) and the viscous modulus (G ”) (empty symbols) (in dynamic mode - in Pa) of three HA-PBA-xRGD / HA polymer compositions -fructose-yRGD in the form of hydrogels depending on the frequency (in Hz).
  • the three HA-PBA-xRGD / HA-fructose-yRGD polymeric compositions have different densities c of RGD peptides:
  • Figure 2 represents the elastic modulus (G ’) (solid symbols) and the viscous modulus (G”) (empty symbols) (in dynamic mode and in Pa) of two polymeric compositions in the form of hydrogels:
  • FIG 3 Figure 3 provides three photographs of HA-PBA-xRGD / HA-fructose-yRGD / sodium alginate polymeric compositions in PBS shaped by extrusion:
  • Figure 4 represents the elastic modulus (G ’) (solid symbols) and the viscous modulus (G”) (empty symbols) (in dynamic mode and in Pa):
  • Removal of the Boc protecting group is then carried out by acid treatment of Boc-1 -amino-DOOA-gluconamide (0.055 g, 0.13 mmol) in TFA (0.6 mL, 7.77 mmol) for 5 min at ambient temperature.
  • the reaction medium is neutralized by adding 1M NaOH dropwise, at a temperature between 0-4 ° C., and the solvent is then removed under reduced pressure.
  • Complete deprotection of the amine group making it possible to obtain 1 -amino-DOOA-gluconamide is confirmed by 1 H NMR analysis.
  • the reaction consists in adding the DMTMM to a solution of HA in a water / DMF mixture (3/2, v / v).
  • GARBA or fructosamine are added to a water / DMF (3/2, v / v) mixture containing DMTMM and HA according to the conditions in Table 1, and the pH is adjusted to 6.5 with a solution of 0.5 M NaOH.
  • Table 1 Reaction conditions and DS for HA-PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD polymers.
  • 1.3 Synthesis of HA-PBA-xRGD polymers with x 1 0, HA-fructose-yRGD with y 1 0 and HA-gluconamide-zRGD with z 1 0
  • the HA-PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD polymers are synthesized by peptide coupling from RGD peptides (containing a primary amine function) using the DMTMM coupling agent (Scheme 3 ).
  • the pH of the reaction medium is adjusted to 6.5 by adding 0.5 M NaOH solution and the reaction is left under stirring at room temperature for 24-30 hours.
  • the HA-PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD polymers are purified by diafiltration and the polymers are recovered by lyophilization.
  • the method described above makes it possible to control the rate of grafting of RGD peptides on the polymers, so as to obtain values of x, y and z of between 1 and 30 mol% determined by 1 H NMR and also from the reaction kinetics using TNBS (Table 2).
  • Scheme 3 Reaction scheme illustrating the synthesis of HA-PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD polymers by grafting of GRGDS peptide.
  • Table 2 Reaction conditions for the syntheses of HA-PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD polymers.
  • HA-PBA-xRGD, HA-fructose-yRGD or HA-gluconamide-zRGD polymers are solubilized at 15 g / L in DPBS (Dulbecco's Phosphate-Buffered Saline) with stirring for 2-4 hours.
  • DPBS Dulbecco's Phosphate-Buffered Saline
  • Polymeric compositions useful for cell culture are prepared as follows. The aqueous solution of HA-PBA-xRGD is first deposited in inserts placed in 24-well culture plates.
  • An aqueous solution of HA-fructose-yRGD seeded with cells is prepared.
  • An aqueous solution of HA-gluconamide-zRGD seeded with cells is prepared.
  • the mixture of HA-PBA-xRGD and HA-fructose-yRGD polymers, or else of HA-PBA-xRGD and HA-gluconamide-zRGD polymers within each well results in the formation of the polymeric composition in hydrogel form.
  • the alginate comes from Alfa Aesar (A18565).
  • the rheological behavior of the various polymeric compositions in the form of hydrogels was studied with a conical plate rheometer (AR2000EX from TA Instruments). All rheological measurements in dynamic mode were checked against strain to ensure that experiments were performed in the linear viscoelastic region. A cone having a diameter of 2 cm and an angle of 4 ° was used for the viscoelastic samples. To prevent water evaporation, the measuring system was surrounded by low viscosity silicone oil (50 mPa.s) carefully added to the edges of the cone.
  • Figure 1 provides the elastic modulus (G ') and viscous modulus (G ”) of three HA-PBA-xRGD / HA-fructose-yRGD polymeric compositions in hydrogel form, with average mole numbers of RGD peptides per 100 disaccharide repeat units of hyaluronic acid:
  • FIG. 1 shows that the RGD peptide densities (therefore c, x, y and z) have very little impact on the rheological behavior of the polymer composition.
  • the measurement method is identical to that of the previous paragraph.
  • Figure 2 provides the elastic modulus (G ’) and viscous modulus (G”) of two polymeric compositions in hydrogel form:
  • alginate has little impact on the rheological properties of polymeric compositions in hydrogel form.
  • fibroblasts The spreading of fibroblasts (MEF) was determined by carrying out microscopic images of fibroblasts seeded in the HA-PBA-xRGD / HA-fructose-yRGD hydrogels after 7 days of cell culture at 37 ° C (labeling of the living cells with the calcein).
  • Example 3 Printing using the polymeric composition as ink by the extrusion technique
  • Example 1 .4 formed in cartridges for extrusion was extruded through a 0.2mm diameter needle to form extruded objects ([Fig 3] Fig 3, images A and B).
  • the extruded objects were immersed in an aqueous solution containing 0.5% (m / v) CaCh ([Fig 3] Figure 3, Image C)
  • Table 3 Cell viability (%) of fibroblasts (NIH-3T3 eGFP) on D7 in the polymeric composition in hydrogel form before printing and in the shaped object 5.3. Adhesion / spreading of fibroblasts in printed objects
  • the spread of human fibroblasts was determined by taking epi-fluorescence microscopic images of human fibroblasts in the printed objects HA-PBA-xRGD / HA-fructose-yRGD / calcium alginate obtained from the polymeric compositions in the form of HA-PBA-xRGD / HA-fructose-yRGD / sodium alginate hydrogels in which the fibroblasts were seeded after 7 days of cell culture at 37 ° C (labeling of living cells with calcein).
  • the images showed the adhesion and spreading of the fibroblasts in 3D.

Abstract

The application relates to a polymer composition comprising a mixture of: a) a hyaluronic acid polymer at least one carboxylate function of which is grafted with 3-aminophenylboronic acid, and b) a hyaluronic acid polymer at least one carboxylate function of which is grafted with 1-amino-1-deoxy-D-fructose or with gluconamide, on the condition that at least one of the aforementioned polymers is grafted with an RGD peptide, and the uses of said polymer composition for cell culture, cell transplantation, cell therapy, as printing ink or for tissue engineering.

Description

TITRE : Compositions polymériques injectables d’acide hyaluronique réticulé par des esters de boronate et fonctionnalisé par des peptides RGD pour l’ingénierie cellulaire et tissulaire TITLE: Injectable polymeric compositions of hyaluronic acid crosslinked by boronate esters and functionalized by RGD peptides for cell and tissue engineering
La présente invention concerne des compositions polymériques injectables d’acide hyaluronique réticulé par des esters de boronate et fonctionnalisé par des peptides RGD pour l’ingénierie cellulaire et tissulaire. The present invention relates to injectable polymeric compositions of hyaluronic acid crosslinked by boronate esters and functionalized by RGD peptides for cell and tissue engineering.
La demande WO 2014/072330 décrit une composition polymérique comprenant : Application WO 2014/072330 describes a polymer composition comprising:
- un polymère acide hyaluronique dont au moins une fonction hydroxyle est greffée par de l’acide phénylboronique, et - a hyaluronic acid polymer of which at least one hydroxyl function is grafted with phenylboronic acid, and
- un polymère acide hyaluronique dont au moins une fonction hydroxyle est greffée avec l’hydroxyle d’un groupe comprenant un cis-diol, de préférence le maltose. - A hyaluronic acid polymer, at least one hydroxyl function of which is grafted with the hydroxyl of a group comprising a cis-diol, preferably maltose.
Ce sont les fonctions hydroxyle de l’acide hyaluronique qui sont greffées. La préparation de ces polymères nécessite le greffage de bras espaceurs (« linkers » en anglais) porteurs de groupe thiol sur l’acide phénylboronique et sur le maltose, et le greffage de groupes porteurs d’une fonction alcène sur l’acide hyaluronique. Ces greffages complexifient le procédé de préparation des polymères. It is the hydroxyl functions of hyaluronic acid that are grafted. The preparation of these polymers requires the grafting of spacer arms ("linkers" in English) carrying a thiol group on phenylboronic acid and on maltose, and the grafting of groups carrying an alkene function on hyaluronic acid. These grafts complicate the process for preparing the polymers.
La demande WO 2018/024793 décrit une composition polymérique comprenant : Application WO 2018/024793 describes a polymer composition comprising:
- un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par un groupe comprenant un boroxole et - a hyaluronic acid polymer of which at least one carboxylate function is grafted with a group comprising a boroxole and
- un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée avec la fonction amine d’un composé comprenant un diol. - a hyaluronic acid polymer, at least one carboxylate function of which is grafted with the amine function of a compound comprising a diol.
Cette demande éloigne l’homme du métier d’utiliser un polymère acide hyaluronique greffé par de l'acide phénylboronique. En effet, elle enseigne qu’un hémiester boronate a une plus grande affinité envers les diols que l'acide phénylboronique, et que les gels obtenus à partir d’un hémiester boronate ont un module de conservation G’ plus élevé, et des propriétés de gel améliorées. La composition polymérique décrite a ainsi un pouvoir auto-réparant exacerbé par rapport aux compositions polymériques dans lesquels le polymère acide hyaluronique est greffé avec de l’acide phénylboronique au lieu du boroxole. Les inventeurs de la présente demande ont toutefois observé que l’affinité élevée de l’hémiester boronate envers les diols a des inconvénients : les gels selon WO 2018/024793 peuvent être difficiles à stériliser car le polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par groupe comprenant un boroxole n’est pas stable dans les conditions de stérilisation à l’autoclave (dégradation probable du polymère), si bien qu’il ne permet plus la formation d’un gel lorsqu’il est mélangé avec le polymère acide hyaluronique greffé par un composé diol. Lorsque ces compositions polymériques comprennent une phase aqueuse, elles forment des hydrogels. Ceux-ci ressemblent à la matrice extra-cellulaire naturelle, et ont de ce fait l’avantage d’être utilisables dans des applications biomédicales. Cela étant, l’étalement et la viabilité des cellules incorporées dans ces hydrogels ne sont pas suffisantes. This application distances the person skilled in the art from using a hyaluronic acid polymer grafted with phenylboronic acid. Indeed, it teaches that a boronate hemiester has a greater affinity towards the diols than phenylboronic acid, and that the gels obtained from a boronate hemiester have a higher modulus of conservation G ', and properties of improved gel. The polymeric composition described thus has an exacerbated self-repairing power compared to the polymeric compositions in which the hyaluronic acid polymer is grafted with phenylboronic acid instead of boroxole. The inventors of the present application have however observed that the high affinity of the boronate hemiester towards the diols has drawbacks: the gels according to WO 2018/024793 can be difficult to sterilize because the hyaluronic acid polymer of which at least one carboxylate function is grafted by a group comprising a boroxole is not stable under autoclaving conditions (probable degradation of the polymer), so that it no longer allows the formation of a gel when mixed with the acidic polymer hyaluronic grafted with a diol compound. When these polymeric compositions comprise an aqueous phase, they form hydrogels. These resemble the natural extracellular matrix, and therefore have the advantage of being usable in biomedical applications. However, the spreading and viability of the cells incorporated into these hydrogels are not sufficient.
Il existe un besoin de fournir des compositions polymériques capables de contenir des cellules, permettant un contrôle du comportement des cellules, notamment de leur étalement et de leur prolifération, et adaptables en fonction du type de cellules utilisées, tout en maintenant le caractère injectable et auto-réparant des compositions polymériques décrites ci-dessus. There is a need to provide polymeric compositions capable of containing cells, allowing control of the behavior of cells, in particular their spreading and their proliferation, and adaptable according to the type of cells used, while maintaining the injectable and self-contained nature. -reparing polymeric compositions described above.
A cet effet, selon un premier objet, l’invention concerne une composition polymérique comprenant un mélange de : To this end, according to a first object, the invention relates to a polymeric composition comprising a mixture of:
a) un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par de l’acide 3-aminophénylboronique (« HA-PBA-xRGD » ci-après), et a) a hyaluronic acid polymer of which at least one carboxylate function is grafted with 3-aminophenylboronic acid ("HA-PBA-xRGD" below), and
b) un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par du 1 -amino-1 -deoxy-D-fructose (« HA-fructose-yRGD » ci-après) ou par du gluconamide (« HA-gluconamide-zRGD » ci-après), b) a hyaluronic acid polymer, at least one carboxylate function of which is grafted with 1 -amino-1 -deoxy-D-fructose (“HA-fructose-yRGD” below) or with gluconamide (“HA-gluconamide-zRGD ”Below),
sous réserve qu’au moins un desdits polymères soit greffé par un peptide RGD. with the proviso that at least one of said polymers is grafted with an RGD peptide.
Dans la composition polymérique, le polymère HA-PBA-xRGD et le polymère HA- fructose-yRGD, ou bien le polymère HA-PBA-xRGD et le polymère HA-gluconamide- zRGD, sont liés l’un à l’autre par des fonctions ester boronate entre l’acide boronique du polymère HA-PBA-xRGD et le motif saccharidique soit fructosamine (1 -amino-1 -deoxy-D- fructose) du polymère HA-fructose-yRGD, soit gluconamide (glucose sous sa forme ouverte) du polymère HA-gluconamide-zRGD. In the polymeric composition, the HA-PBA-xRGD polymer and the HA-fructose-yRGD polymer, or the HA-PBA-xRGD polymer and the HA-gluconamide-zRGD polymer, are linked to each other by boronate ester functions between the boronic acid of the HA-PBA-xRGD polymer and the saccharide unit either fructosamine (1 -amino-1 -deoxy-D- fructose) of the HA-fructose-yRGD polymer, or gluconamide (glucose in its open form ) HA-gluconamide-zRGD polymer.
Par « acide hyaluronique » ou « HA », on entend de l’acide hyaluronique sous forme neutre ou de sel (hyaluronate), et ce, quelle que soit sa charge et la nature de son(ses) contre-ion(s). Il peut par exemple s’agir de hyaluronate de sodium. L’acide hyaluronique peut être d’origine animale ou non animale. Les sources d'origine non animale comprennent les levures et de préférence les bactéries qui permettent de produire l’acide hyaluronique par voie biotechnologique. La masse molaire moyenne en masse (Mw) de l’acide hyaluronique est typiquement dans la gamme de 1 à 3000 kg/mol, mais d’autres masses molaires moyennes en masses sont possibles. By "hyaluronic acid" or "HA" is meant hyaluronic acid in neutral or salt (hyaluronate) form, regardless of its charge and the nature of its counterion (s). It can, for example, be sodium hyaluronate. Hyaluronic acid can be of animal or non-animal origin. Sources of non-animal origin include yeasts and preferably bacteria which are used to produce hyaluronic acid biotechnologically. The mass average molar mass (Mw) of hyaluronic acid is typically in the range of 1 to 3000 kg / mol, but other mass average molar masses are possible.
La composition polymérique comprend un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par de l’acide 3-aminophénylboronique, dit polymère HA-PBA-xRGD. L’acide 3-aminophénylboronique est greffé à l’acide hyaluronique par une liaison amide formée entre l’amine de l’acide 3- aminophénylboronique et une fonction carboxylate de l’acide hyaluronique. The polymeric composition comprises a hyaluronic acid polymer, at least one carboxylate function of which is grafted with 3-aminophenylboronic acid, called the HA-PBA-xRGD polymer. 3-Aminophenylboronic acid is grafted to the acid hyaluronic by an amide bond formed between the amine of 3-aminophenylboronic acid and a carboxylate function of hyaluronic acid.
La composition polymérique comprend également un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée soit par du 1 -amino-1 -deoxy-D-fructose (polymère HA-fructose-yRGD), soit par du gluconamide (polymère HA-gluconamide- zRGD). The polymeric composition also comprises a hyaluronic acid polymer of which at least one carboxylate function is grafted either by 1 -amino-1 -deoxy-D-fructose (HA-fructose-yRGD polymer), or by gluconamide (HA-gluconamide polymer). zRGD).
Le gluconamide est greffé à l’acide hyaluronique par l’intermédiaire d’un bras espaceur qui lie une fonction carboxylate de l’acide hyaluronique à la fonction amine du gluconamide, de préférence par des liaisons amides. De préférence, ce bras espaceur a la formule -NH-L- dans laquelle : Gluconamide is grafted to hyaluronic acid via a spacer arm which links a carboxylate function of hyaluronic acid to the amine function of gluconamide, preferably via amide bonds. Preferably, this spacer arm has the formula -NH-L- in which:
- le groupe terminal -NH forme, avec une fonction carboxyle de l’acide hyaluronique, une liaison amide (formée par réaction d’une fonction carboxylate du HA et de l’amine), - the terminal group -NH forms, with a carboxyl function of hyaluronic acid, an amide bond (formed by reaction of a carboxylate function of HA and amine),
- L représente une chaîne carbonée comprenant de 2 à 10 atomes de carbones et éventuellement interrompue par un ou plusieurs atomes d’oxygène (typiquement de 1 à 5 atomes d’oxygène). L représente notamment un groupe -(CH2)n- dans lequel n représente un nombre entier de 1 à 10, de préférence de 1 à 4, ou un groupe -(CX-CX-OJm-CX-CX- dans lequel m représente un nombre entier de 1 à 4, de préférence 1 ou 2. - L represents a carbon chain comprising from 2 to 10 carbon atoms and optionally interrupted by one or more oxygen atoms (typically from 1 to 5 oxygen atoms). L represents in particular a group - (CH 2 ) n - in which n represents an integer from 1 to 10, preferably from 1 to 4, or a group - (CX-CX-OJ m -CX-CX- in which m represents an integer of 1 to 4, preferably 1 or 2.
Par exemple, le bras espaceur a la formule -NH-(CH2-CH2-0)2-CH2-CH2-, le groupe terminal -NH formant, avec une fonction carboxyle de l’acide hyaluronique, une liaison amide (formée par réaction d’une fonction carboxylate du HA et de l’amine), et le groupe -ex terminai étant relié au groupe -NH- terminal du gluconamide. Le 1 -amino-1 -deoxy-D- fructose est greffé à l’acide hyaluronique par une liaison amide formée à partir de l’amine du 1 -amino-1 -deoxy-D-fructose et de la fonction carboxylate de l’acide hyaluronique. For example, the spacer arm has the formula -NH- (CH 2 -CH 2 -0) 2 -CH 2 -CH 2 -, the terminal group -NH forming, with a carboxyl function of hyaluronic acid, an amide bond (formed by reaction of a carboxylate function of HA and of the amine), and the -ex terminal group being linked to the -NH- terminal group of the gluconamide. 1 -amino-1 -deoxy-D- fructose is grafted to hyaluronic acid by an amide bond formed from the amine of 1 -amino-1 -deoxy-D-fructose and the carboxylate function of hyaluronic acid.
Selon une première alternative, la composition polymérique comprend un polymère HA-PBA-xRGD et un polymère HA-fructose-yRGD, le polymère HA-PBA-xRGD et/ou le polymère HA-fructose-yRGD étant greffé(s) par un peptide RGD. Une telle composition polymérique est également nommée « HA-PBA-xRGD / HA-fructose-yRGD » ci-après. Cette alternative est particulièrement préférée car les liaisons entre le HA-PBA-xRGD et le HA-fructose-yRGD sont très fortes, ce qui pourraient s’expliquer par le fait que l’acide boronique du polymère HA-PBA-xRGD se complexe en trois points sur le motif saccharidique 1 -amino-1 -deoxy-D-fructose, alors que dans la plupart des compositions polymériques décrites dans l’art antérieur, l’acide boronique greffé sur le premier acide hyaluronique ne se complexe qu’en deux points sur le groupe cis-diol greffé sur le second acide hyaluronique. Dans cette première alternative, la composition polymérique est généralement exempte de polymère HA-gluconamide-zRGD. Selon une seconde alternative, la composition polymérique comprend un polymère HA-PBA-xRGD et un polymère HA-gluconamide-zRGD, le polymère HA-PBA-xRGD et/ou le polymère HA-gluconamide-zRGD étant greffé(s) par un peptide RGD. Une telle composition polymérique est également nommée « HA-PBA-xRGD / HA-gluconamide- zRGD » ci-après. Dans cette seconde alternative, la composition polymérique est généralement exempte de polymère HA-fructose-yRGD. According to a first alternative, the polymeric composition comprises an HA-PBA-xRGD polymer and an HA-fructose-yRGD polymer, the HA-PBA-xRGD polymer and / or the HA-fructose-yRGD polymer being grafted with a peptide RGD. Such a polymer composition is also called “HA-PBA-xRGD / HA-fructose-yRGD” below. This alternative is particularly preferred because the bonds between HA-PBA-xRGD and HA-fructose-yRGD are very strong, which could be explained by the fact that the boronic acid of the polymer HA-PBA-xRGD becomes complex in three dots on the 1 -amino-1 -deoxy-D-fructose saccharide unit, whereas in most of the polymeric compositions described in the prior art, the boronic acid grafted onto the first hyaluronic acid only becomes complex in two dots on the cis-diol group grafted onto the second hyaluronic acid. In this first alternative, the polymeric composition is generally free of HA-gluconamide-zRGD polymer. According to a second alternative, the polymeric composition comprises an HA-PBA-xRGD polymer and an HA-gluconamide-zRGD polymer, the HA-PBA-xRGD polymer and / or the HA-gluconamide-zRGD polymer being grafted with a peptide RGD. Such a polymeric composition is also called “HA-PBA-xRGD / HA-gluconamide-zRGD” below. In this second alternative, the polymeric composition is generally free of HA-fructose-yRGD polymer.
Quelle que soit l’alternative considérée, les inventeurs ont observé que les compositions polymériques comprenant un polymère HA-PBA et soit un polymère HA- fructose, soit un polymère HA-gluconamide permettent d’obtenir des gels plus stables que ceux obtenus avec des compositions polymériques comprenant un polymère HA-PBA et un polymère HA-[dérivé de saccharide autre que la fructosamine ou le gluconamide]. Whatever the alternative considered, the inventors have observed that the polymeric compositions comprising an HA-PBA polymer and either an HA-fructose polymer, or an HA-gluconamide polymer make it possible to obtain more stable gels than those obtained with compositions. Polymers comprising an HA-PBA polymer and an HA- [saccharide derivative other than fructosamine or gluconamide] polymer.
A titre illustratif, [Fig 4] la figure 4 montre qu’une composition polymérique comprenant By way of illustration, [Fig 4] Figure 4 shows that a polymer composition comprising
- un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par de l’acide 3-aminophénylboronique (« HA-PBA »), et - a hyaluronic acid polymer of which at least one carboxylate function is grafted with 3-aminophenylboronic acid ("HA-PBA"), and
- un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par du glucose bloqué dans sa forme cyclique, - a hyaluronic acid polymer of which at least one carboxylate function is grafted with glucose blocked in its cyclic form,
n’est pas un gel (G”>G’). is not a gel (G "> G").
Cette stabilité améliorée et/ou cette possibilité d’obtenir un gel s’expliqueraient par l’existence de liaisons ester boronate particulièrement fortes entre l’acide boronique du polymère HA-PBA-xRGD et le motif saccharidique soit fructosamine (1 -amino-1 -deoxy-D- fructose) du polymère HA-fructose-yRGD, soit gluconamide (glucose sous sa forme ouverte) du polymère HA-gluconamide-zRGD. Sans vouloir être liés par une théorie particulière, les inventeurs supposent que ces deux dérivés saccharidiques spécifiques sont susceptibles de se complexer avec l’acide boronique en trois points grâce à la forme « ouverte » non cyclique du saccharide qui présente une très grande flexibilité, avec formation d’un ester boronate tricovalent, alors que les autres dérivés saccharidiques forment généralement un ester boronate bicovalent avec l’acide boronique, donc moins stable. This improved stability and / or this possibility of obtaining a gel could be explained by the existence of particularly strong ester boronate bonds between the boronic acid of the HA-PBA-xRGD polymer and the saccharide unit, namely fructosamine (1 -amino-1 -deoxy-D-fructose) of the HA-fructose-yRGD polymer, or gluconamide (glucose in its open form) of the HA-gluconamide-zRGD polymer. Without wishing to be bound by a particular theory, the inventors assume that these two specific saccharide derivatives are capable of complexing with boronic acid at three points thanks to the non-cyclic “open” form of the saccharide which exhibits very great flexibility, with formation of a tricovalent boronate ester, while the other saccharide derivatives generally form a bicovalent boronate ester with boronic acid, therefore less stable.
Le degré de substitution (DS) est le nombre de mole moyen de substituant toutes les 100 unités disaccharide de répétition de l’acide hyaluronique, ce substituant étant l’acide phénylboronique (ci-après « PBA ») pour le polymère HA-PBA-xRGD, la fructosamine pour le polymère HA-fructose-yRGD, et le gluconamide pour le polymère HA-gluconamide- zRGD. Pour chacun des trois polymères (indépendamment les uns des autres), le degré de substitution est généralement de 5 à 70 mol%, préférentiellement de 10 à 50 mol%. Il a été observé expérimentalement que ces gammes de DS permettent d’obtenir un comportement de type « gel » par analyse des propriétés rhéologiques en mode dynamique (module de stockage (G’) > au module de perte (G”) sur toute la gamme de fréquence explorée (0,01 -10 Hz)). Le degré de substitution peut être mesuré par RMN. The degree of substitution (DS) is the average mole number of substituting for every 100 disaccharide repeating units of hyaluronic acid, this substituent being phenylboronic acid (hereinafter “PBA”) for the HA-PBA- polymer. xRGD, fructosamine for HA-fructose-yRGD polymer, and gluconamide for HA-gluconamide-zRGD polymer. For each of the three polymers (independently of one another), the degree of substitution is generally from 5 to 70 mol%, preferably from 10 to 50 mol%. It has been observed experimentally that these DS ranges make it possible to obtain a “gel” type behavior by analysis of the rheological properties in dynamic mode (storage modulus (G ')> loss modulus (G ”) over the entire frequency range explored (0.01 -10 Hz)). The degree of substitution can be measured by NMR.
Dans la composition polymérique, le rapport molaire : In the polymeric composition, the molar ratio:
- des groupes PBA du polymère HA-PBA-xRGD par rapport à la fructosamine du polymère HA-fructose-yRGD, ou bien - PBA groups of the HA-PBA-xRGD polymer relative to the fructosamine of the HA-fructose-yRGD polymer, or else
- des groupes PBA du polymère HA-PBA-xRGD par rapport au groupe gluconamide du polymère HA-gluconamide-zRGD, - PBA groups of the HA-PBA-xRGD polymer relative to the gluconamide group of the HA-gluconamide-zRGD polymer,
est généralement de 10/1 à 1/10, notamment de 5/1 à 1/5, de préférence de 1/3 à 3/1 , de manière particulièrement préférée de 1/2 à 2/1 , idéalement de 0,8 à 1 ,2. Le nombre de moles de PBA greffé sur le HA-PBA-xRGD est préférentiellement le plus proche possible soit du nombre de mole de fructose du HA-fructose-yRGD, soit du nombre de mole de gluconamide du HA-gluconamide-zRGD, afin d’optimiser la formation de liaisons ester boronate et obtenir une complexation optimale par mélange des solutions de HA-PBA- xRGD et soit HA-fructose-yRGD soit HA-gluconamide-zRGD à volume égal. is generally from 10/1 to 1/10, in particular from 5/1 to 1/5, preferably from 1/3 to 3/1, particularly preferably from 1/2 to 2/1, ideally from 0.8 at 12. The number of moles of PBA grafted onto the HA-PBA-xRGD is preferably as close as possible either to the number of moles of fructose of HA-fructose-yRGD, or to the number of moles of gluconamide of HA-gluconamide-zRGD, in order to 'optimizing the formation of ester boronate bonds and obtaining optimum complexation by mixing solutions of HA-PBA-xRGD and either HA-fructose-yRGD or HA-gluconamide-zRGD in equal volume.
Par « greffé par un peptide RGD », on entend que le polymère acide hyaluronique est greffé par un moins un groupe porteur d’un peptide comprenant la séquence arginine- glycine-acide aspartique (RGD). Ce peptide permet de promouvoir l’adhésion cellulaire. Le peptide peut comprendre d’autres aminoacides. Le « peptide RGD » comprend typiquement 3 à 20 aminoacides, notamment 4 à 15 aminoacides, de préférence 5 à 15 aminoacides, sous réserve qu’au moins trois d’entre eux constituent ensemble la séquence RGD. Les acides aminés contigus à la séquence RGD sont choisis indépendamment les uns des autres parmi les acides aminés naturels. De préférence, au moins 50% des acides aminés contigus à la séquence RGD sont des résidus polaires choisis parmi Gly, Ser, Thr et Tyr. Par exemple, l’acide hyaluronique peut être greffé par un peptide GRGDY ou GRGDS. By "grafted with an RGD peptide" is meant that the hyaluronic acid polymer is grafted with at least one group carrying a peptide comprising the arginine-glycine-aspartic acid (RGD) sequence. This peptide helps promote cell adhesion. The peptide can include other amino acids. The "RGD peptide" typically comprises 3 to 20 amino acids, especially 4 to 15 amino acids, preferably 5 to 15 amino acids, with the proviso that at least three of them together constitute the RGD sequence. The amino acids contiguous to the RGD sequence are chosen independently of one another from natural amino acids. Preferably, at least 50% of the amino acids contiguous to the RGD sequence are polar residues chosen from Gly, Ser, Thr and Tyr. For example, hyaluronic acid can be grafted with a GRGDY or GRGDS peptide.
Au moins un des polymères de la composition polymérique est greffé par un peptide RGD. Le polymère HA-PBA-xRGD comprend un nombre de moles moyen « x » de peptides RGD pour 100 unités disaccharide de répétition de l’acide hyaluronique. Le polymère HA- fructose-yRGD comprend un nombre de moles moyen « y » de peptides RGD pour 100 unités disaccharide de l’acide hyaluronique. Le polymère HA-gluconamide-zRGD comprend un nombre de moles moyen « z » de peptides RGD pour 100 unités disaccharide de l’acide hyaluronique x, y et z sont également nommés « densité de peptide RGD ». x, y et z sont indépendamment les uns des autres un nombre généralement compris de 0 à 50 mol%, notamment de 0 à 40 mol%, typiquement de 0 à 30 mol%, de préférence de 0 à 20 mol%. Comme au moins un des polymères de la composition polymérique est greffé par un peptide RGD : At least one of the polymers of the polymeric composition is grafted with an RGD peptide. The HA-PBA-xRGD polymer comprises an average number of moles "x" of RGD peptides per 100 disaccharide repeat units of hyaluronic acid. The HA-fructose-yRGD polymer comprises an average number of moles "y" of RGD peptides per 100 disaccharide units of hyaluronic acid. The HA-gluconamide-zRGD polymer comprises an average number of moles “z” of RGD peptides per 100 disaccharide units of hyaluronic acid x, y and z are also called “RGD peptide density”. x, y and z are, independently of one another, a number generally comprised from 0 to 50 mol%, in particular from 0 to 40 mol%, typically from 0 to 30 mol%, preferably from 0 to 20 mol%. Since at least one of the polymers of the polymeric composition is grafted with an RGD peptide:
- lorsque le polymère b) est le polymère HA-fructose-yRGD, x et y ne représentent pas tous les deux 0, - when the polymer b) is the HA-fructose-yRGD polymer, x and y do not both represent 0,
- lorsque le polymère b) est le polymère HA-gluconamide-zRGD, x et z ne représentent pas tous les deux 0. - when the polymer b) is the HA-gluconamide-zRGD polymer, x and z do not both represent 0.
Lorsque les polymères HA-PBA-xRGD et soit HA-fructose-yRGD, soit HA- gluconamide-zRGD sont mélangés en quantités égales, le nombre de moles moyen « c » de peptides RGD pour 100 unités disaccharide de répétition de l’acide hyaluronique de la composition polymérique est égal à : When the HA-PBA-xRGD polymers and either HA-fructose-yRGD or HA-gluconamide-zRGD are mixed in equal amounts, the average number of moles "c" of RGD peptides per 100 disaccharide repeat units of hyaluronic acid of the polymeric composition is equal to:
(x+y)/2 lorsque le polymère b) est le HA-fructose-yRGD, ou (x + y) / 2 when the polymer b) is HA-fructose-yRGD, or
(x+z)/2 lorsque le polymère b) est le HA-gluconamide-zRGD. (x + z) / 2 when the polymer b) is HA-gluconamide-zRGD.
Il est donc aisé de moduler le nombre de moles moyen « c » de peptides RGD pour 100 unités disaccharide de répétition de l’acide hyaluronique de la composition polymérique selon l’invention en ajustant celui de chacun des polymères qu’elle contient (en ajustant x et soit y soit z). It is therefore easy to modulate the number of average moles "c" of RGD peptides per 100 disaccharide repeating units of hyaluronic acid of the polymeric composition according to the invention by adjusting that of each of the polymers which it contains (by adjusting x and either y or z).
Dans un premier mode de réalisation, le polymère HA-PBA-xRGD est greffé par un peptide RGD, et soit le polymère HA-fructose-yRGD, soit le polymère HA-gluconamide- zRGD est exempt de peptide RGD. Dans ce mode de réalisation, x est différent de 0 et soit y est 0, soit z est 0. c est alors égal à x/2. In a first embodiment, the HA-PBA-xRGD polymer is grafted with an RGD peptide, and either the HA-fructose-yRGD polymer or the HA-gluconamide-zRGD polymer is free of RGD peptide. In this embodiment, x is different from 0 and either y is 0 or z is 0. c is then equal to x / 2.
Dans un deuxième mode de réalisation, soit le polymère HA-fructose-yRGD, soit le polymère HA-gluconamide-zRGD est greffé par un peptide RGD, et le polymère HA-PBA- xRGD est exempt de peptide RGD. Dans ce mode de réalisation, soit y, soit z est différent de 0 et x est 0. c est alors égal à y/2 lorsque le polymère b) est le polymère HA-fructose- yRGD, ou c est égal à z/2 lorsque le polymère b) est le polymère HA-gluconamide-zRGD. In a second embodiment, either the HA-fructose-yRGD polymer or the HA-gluconamide-zRGD polymer is grafted with an RGD peptide, and the HA-PBA-xRGD polymer is free of RGD peptide. In this embodiment, either y or z is different from 0 and x is 0. c is then equal to y / 2 when the polymer b) is the HA-fructose-yRGD polymer, or c is equal to z / 2 when the polymer b) is the HA-gluconamide-zRGD polymer.
Dans un troisième mode de réalisation, le polymère HA-PBA-xRGD est greffé par un peptide RGD, et soit le polymère HA-fructose-yRGD, soit le polymère HA-gluconamide- zRGD est greffé par un peptide RGD. Dans ce mode de réalisation, x et soit y soit z sont différents de 0. c est alors égal à (x+y)/2 lorsque le polymère b) est le polymère HA-fructose- yRGD, ou c est égal à (x+z)/2 lorsque le polymère b) est le polymère HA-gluconamide- zRGD. In a third embodiment, the HA-PBA-xRGD polymer is grafted with an RGD peptide, and either the HA-fructose-yRGD polymer or the HA-gluconamide-zRGD polymer is grafted with an RGD peptide. In this embodiment, x and either y or z are different from 0. c is then equal to (x + y) / 2 when the polymer b) is the HA-fructose-yRGD polymer, or c is equal to (x + z) / 2 when the polymer b) is the HA-gluconamide-zRGD polymer.
Le plus souvent, la composition polymérique comprend une solution aqueuse. Elle se présente alors sous forme d’hydrogel. Most often, the polymeric composition comprises an aqueous solution. It is then in the form of a hydrogel.
La somme des concentrations de polymères HA-PBA-xRGD et HA-fructose-yRGD dans la solution aqueuse, ou bien la somme des concentrations de polymères HA-PBA- xRGD et HA-gluconamide-zRGD dans la solution aqueuse, est généralement comprise de 1 à 100 mg/mL, notamment de 2 à 50 mg/ml_, de préférence de 5 à 30 mg/ml_, de manière particulièrement préférée de 10 à 30 mg/mL. The sum of the concentrations of HA-PBA-xRGD and HA-fructose-yRGD polymers in the aqueous solution, or the sum of the concentrations of HA-PBA-xRGD and HA-gluconamide-zRGD polymers in the aqueous solution, generally ranges from 1 to 100 mg / ml, in particular 2 to 50 mg / ml, preferably 5 to 30 mg / ml, particularly preferably 10 to 30 mg / ml.
Le pH de la solution aqueuse de la composition polymérique est généralement de 7,0 à 10,0, notamment de 7,0 à 9,0, de préférence de 7,0 à 8,0, de manière particulièrement préférée de 7,0 à 7,5. The pH of the aqueous solution of the polymeric composition is generally from 7.0 to 10.0, especially from 7.0 to 9.0, preferably from 7.0 to 8.0, particularly preferably from 7.0 to 7.5.
La solution aqueuse est typiquement une solution tampon, par exemple un tampon phosphate salin (0,15 M NaCI) (dont le pH est de 7,4), du DPBS (tampon phosphate de Dulbecco), ou un milieu de culture cellulaire, qui est adapté en fonction du type de cellules de la composition polymérique, par exemple du milieu de culture DMEM (milieu minimum essentiel de Eagle) pour des fibroblastes. The aqueous solution is typically a buffer solution, for example, phosphate buffered saline (0.15 M NaCl) (whose pH is 7.4), DPBS (Dulbecco's phosphate buffer), or cell culture medium, which is adapted depending on the cell type of the polymeric composition, for example DMEM (Eagle's minimum essential medium) culture medium for fibroblasts.
L’affinité élevée des motifs saccharidiques du polymère HA-fructose-yRGD ou du polymère HA-gluconamide-zRGD pour le PBA du polymère HA-PBA-xRGD permet d’obtenir un comportement de type « gel » de la composition polymérique HA-PBA- xRGD/HA-fructose-yRGD ou HA-PBA-xRGD/HA-gluconamide-zRGD. Le comportement de type « gel » est déduit de mesures rhéologiques en mode dynamique et est défini par le fait que module de stockage (G’) est supérieur au module de perte (G”) sur toutes les fréquences de 0,01 à 10 Hz. Les propriétés rhéologiques de la composition polymérique sont peu impactées par la fonctionnalisation par un peptide RGD, et donc par les valeurs de x, y, z et c. The high affinity of the saccharide units of the HA-fructose-yRGD polymer or of the HA-gluconamide-zRGD polymer for the PBA of the HA-PBA-xRGD polymer makes it possible to obtain a “gel” type behavior of the HA-PBA polymer composition. - xRGD / HA-fructose-yRGD or HA-PBA-xRGD / HA-gluconamide-zRGD. The “gel” type behavior is deduced from rheological measurements in dynamic mode and is defined by the fact that the storage modulus (G ') is greater than the loss modulus (G ”) on all frequencies from 0.01 to 10 Hz The rheological properties of the polymer composition are little impacted by the functionalization with an RGD peptide, and therefore by the values of x, y, z and c.
Le caractère dynamique des liaisons esters boronate entre les chaînes d’acide hyaluronique du polymère HA-PBA-xRGD et du polymère HA-fructose-yRGD ou HA- gluconamide-zRGD confère aux hydrogels un caractère auto-réparant. A titre illustratif, les hydrogels peuvent être injectés à travers une aiguille de petit diamètre (typiquement de diamètre de 0,1 à 0,4 mm) et récupérer rapidement ses propriétés mécaniques après l'injection. Lorsque le polymère est poussé dans l’aiguille d’une seringue, les liaisons réversibles formées entre le PBA du polymère HA-PBA-xRGD et les unités saccharide du polymère HA-fructose-yRGD ou HA-gluconamide-zRGD se cassent, puis se reforment une fois que le polymère est éjecté hors de l’aiguille. Le polymère est avantageusement malléable jusqu’à ce que les liaisons se reforment. En l’occurrence, avantageusement, la cinétique des réactions engagées est suffisamment lente pour permettre une mise en forme de la composition polymérique, et ce, de façon reproductible, et suffisamment rapide pour maintenir cette forme. Ceci rend la composition polymérique particulièrement adaptée pour des utilisations comme encre, notamment comme bio-encre, pour l’impression, notamment l’impression 3D, en particulier la bio-impression 3D, comme détaillé ci-après. The dynamic nature of the boronate ester bonds between the hyaluronic acid chains of the HA-PBA-xRGD polymer and the HA-fructose-yRGD or HA-gluconamide-zRGD polymer gives the hydrogels a self-repairing character. By way of illustration, the hydrogels can be injected through a needle of small diameter (typically with a diameter of 0.1 to 0.4 mm) and rapidly recover its mechanical properties after injection. When the polymer is pushed into the needle of a syringe, the reversible bonds formed between the PBA of the HA-PBA-xRGD polymer and the saccharide units of the HA-fructose-yRGD or HA-gluconamide-zRGD polymer break down and then break down. reform once the polymer is ejected from the needle. The polymer is advantageously malleable until the bonds reform. In this case, advantageously, the kinetics of the reactions initiated are sufficiently slow to allow the polymeric composition to be shaped in a reproducible manner, and sufficiently fast to maintain this shape. This makes the polymeric composition particularly suitable for uses as ink, in particular as a bio-ink, for printing, in particular 3D printing, in particular 3D bioprinting, as detailed below.
La composition polymérique peut comprendre des cellules, notamment des fibroblastes, par exemple des fibroblastes humains. Généralement, les cellules sont présentes à sa surface et/ou sont dispersées au sein de la composition polymérique. En ajustant la densité de peptide RGD (à savoir c, et donc x et soit y soit z), il est avantageusement possible de contrôler le comportement des cellules, en particulier le degré d’étalement et de prolifération des cellules dans la composition polymérique. The polymeric composition can comprise cells, in particular fibroblasts, for example human fibroblasts. Usually cells are present at its surface and / or are dispersed within the polymeric composition. By adjusting the RGD peptide density (i.e. c, and therefore x and either y or z), it is advantageously possible to control the behavior of the cells, in particular the degree of cell spreading and proliferation in the polymer composition.
La composition polymérique peut comprendre un ou plusieurs agent(s) thérapeutique(s). The polymeric composition can comprise one or more therapeutic agent (s).
La composition polymérique peut comprendre en outre un alginate de sodium, qui est un polysaccharide capable de gélifier en présence d’ions calcium. Elle comprend alors un mélange de trois polymères : HA-PBA-xRGD/HA-fructose-yRGD/alginate de sodium ou HA-PBA-xRGD/HA-gluconamide-zRGD/alginate de sodium. La concentration en alginate de sodium dans la composition polymérique est généralement de 0,01 à 5,0% (m/v), de préférence de 0,1 à 2,0 % (m/v)). La présence d’alginate de sodium impacte peu les propriétés rhéologiques de la composition polymérique. Une telle composition polymérique est particulièrement adaptée comme bio-encre pour faire de l’impression, comme explicité ci-après. De telles compositions polymériques peuvent être mises en forme conjointement avec des cellules. The polymeric composition may further comprise a sodium alginate, which is a polysaccharide capable of gelling in the presence of calcium ions. It then comprises a mixture of three polymers: HA-PBA-xRGD / HA-fructose-yRGD / sodium alginate or HA-PBA-xRGD / HA-gluconamide-zRGD / sodium alginate. The concentration of sodium alginate in the polymer composition is generally 0.01 to 5.0% (w / v), preferably 0.1 to 2.0% (w / v)). The presence of sodium alginate has little impact on the rheological properties of the polymer composition. Such a polymer composition is particularly suitable as a bio-ink for printing, as explained below. Such polymeric compositions can be shaped together with cells.
Selon un deuxième objet, l’invention concerne un procédé de préparation de la composition polymérique définie ci-dessus comprenant le mélange : According to a second object, the invention relates to a process for preparing the polymer composition defined above comprising the mixture:
a) d’un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par de l’acide 3-aminophénylboronique, et a) a hyaluronic acid polymer of which at least one carboxylate function is grafted with 3-aminophenylboronic acid, and
b) d’un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par du 1 -amino-1 -deoxy-D-fructose ou par le gluconamide b) of a hyaluronic acid polymer of which at least one carboxylate function is grafted with 1 -amino-1 -deoxy-D-fructose or with gluconamide
sous réserve qu’au moins un desdits polymères soit greffé par un peptide RGD, dans une solution aqueuse dont le pH est de 7,0 à 10,0, notamment de 7,0 à 9,0, de préférence de 7,0 à 8,0, de manière particulièrement préférée de 7,0 à 7,5. with the proviso that at least one of said polymers is grafted with an RGD peptide, in an aqueous solution the pH of which is from 7.0 to 10.0, in particular from 7.0 to 9.0, preferably from 7.0 to 8.0, particularly preferably 7.0 to 7.5.
Le mélange est donc effectué à un pH proche du pH physiologique. The mixing is therefore carried out at a pH close to physiological pH.
Généralement, on mélange une solution aqueuse du polymère HA-PBA-xRGD et soit une solution aqueuse de HA-fructose-yRGD, soit une solution aqueuse de HA- gluconamide-zRGD. Usually, an aqueous solution of the HA-PBA-xRGD polymer and either an aqueous solution of HA-fructose-yRGD or an aqueous solution of HA-gluconamide-zRGD are mixed.
Lorsque la composition polymérique à préparer contient des cellules, celles-ci peuvent être introduites dans la solution aqueuse du polymère HA-PBA-xRGD et/ou soit dans la solution aqueuse de HA-fructose-yRGD, soit dans la solution aqueuse de HA- gluconamide-zRGD avant leurs mélanges. When the polymeric composition to be prepared contains cells, these can be introduced into the aqueous solution of the HA-PBA-xRGD polymer and / or either into the aqueous solution of HA-fructose-yRGD, or into the aqueous solution of HA- gluconamide-zRGD before their mixtures.
Le procédé de préparation quasi-instantané des compositions polymériques par simple mélange de polymères HA-PBA-xRGD et soit HA-fructose-yRGD, soit HA- gluconamide-zRGD, permet d’encapsuler facilement des cellules sans les endommager et sans qu’elles n’aient le temps de sédimenter. Les propriétés d’adhésion cellulaire des compositions polymériques peuvent facilement être modulées en fonction de la densité de peptide RGD de la composition polymérique (donc en fonction de c), qui dépend des densités de peptide RGD (x, y et z) des polymères HA-PBA-xRGD, HA-fructose-yRGD et HA-gluconamide-zRGD qu’elle contient. Il est ainsi possible de faire varier aisément la densité de peptide RGD dans la composition polymérique en adaptant x du HA-PBA-xRGD et soit y, soit z du HA-fructose-yRGD ou du HA-gluconamide-zRGD, ce qui est primordial pour contrôler le comportement des cellules de la composition polymérique. The almost instantaneous preparation process for polymeric compositions by simply mixing HA-PBA-xRGD polymers and either HA-fructose-yRGD or HA-gluconamide-zRGD, allows cells to be easily encapsulated without damaging them and without them having time to settle. The cell adhesion properties of the polymeric compositions can easily be modulated as a function of the RGD peptide density of the polymeric composition (therefore as a function of c), which depends on the RGD peptide densities (x, y and z) of the HA polymers. -PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD it contains. It is thus possible to easily vary the density of RGD peptide in the polymeric composition by adapting x of HA-PBA-xRGD and either y or z of HA-fructose-yRGD or of HA-gluconamide-zRGD, which is essential to control the behavior of cells of the polymeric composition.
Selon un troisième objet, l’invention concerne un kit comprenant : According to a third object, the invention relates to a kit comprising:
a) un premier contenant comprenant un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par de l’acide 3-aminophénylboronique, et a) a first container comprising a hyaluronic acid polymer, at least one carboxylate function of which is grafted with 3-aminophenylboronic acid, and
b) un second contenant comprenant un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par du 1 -amino-1 -deoxy-D-fructose ou par le gluconamide, sous réserve qu’au moins un desdits polymères soit greffé par un peptide RGD. b) a second container comprising a hyaluronic acid polymer, at least one carboxylate function of which is grafted with 1 -amino-1 -deoxy-D-fructose or with gluconamide, provided that at least one of said polymers is grafted with a peptide RGD.
Ce kit est adapté pour préparer la composition polymérique définie ci-dessus par mélange des deux polymères. Les modes de réalisations décrits ci-dessus sont applicables. Par exemple, le premier contenant peut comprendre en outre une solution aqueuse. De même, le second contenant peut comprendre en outre une solution aqueuse. This kit is suitable for preparing the polymeric composition defined above by mixing the two polymers. The embodiments described above are applicable. For example, the first container can further comprise an aqueous solution. Likewise, the second container may further comprise an aqueous solution.
Selon un quatrième objet, l’invention concerne l’utilisation de la composition polymérique définie ci-dessus, pour la culture cellulaire, la transplantation de cellules ou la thérapie cellulaire. According to a fourth object, the invention relates to the use of the polymeric composition defined above, for cell culture, cell transplantation or cell therapy.
Ces applications nécessitent que la composition polymérique contiennent des cellules ou qu’on en ajoute à celle-ci. Selon les cellules utilisées, l’une des compositions HA-PBA-xRGD/HA-fructose-yRGD ou HA-PBA-xRGD/HA-gluconamide-zRGD peut être plus adaptée que l’autre. These applications require the polymeric composition to contain or be added to cells. Depending on the cells used, one of the HA-PBA-xRGD / HA-fructose-yRGD or HA-PBA-xRGD / HA-gluconamide-zRGD compositions may be more suitable than the other.
La réponse cellulaire des cellules des compositions polymériques selon l’invention est améliorée par rapport à celle de cellules de compositions polymériques obtenues à partir de compositions polymériques comprenant des polymères identiques excepté qu’ils ne sont pas greffés par un peptide RGD. Par exemple, les cellules s’étalent dans les compositions polymériques selon l’invention, alors qu’elles restent rondes dans des compositions polymériques comprenant des polymères identiques excepté qu’ils ne sont pas greffés par un peptide RGD. The cellular response of the cells of the polymeric compositions according to the invention is improved compared to that of cells of the polymeric compositions obtained from polymeric compositions comprising identical polymers except that they are not grafted with an RGD peptide. For example, the cells spread out in the polymeric compositions according to the invention, while they remain round in the polymeric compositions comprising identical polymers except that they are not grafted with an RGD peptide.
La densité optimale en peptide RGD ( « c » défini ci-dessus, qui dépend de x et soit de y soit de z) de la composition polymérique dépend du type de cellules utilisées. En effet, la densité optimale de peptide RGD dans un hydrogel varie selon le type cellulaire. Il est donc particulièrement intéressant de disposer d’hydrogels avec des densités de peptide RGD modulables. Avantageusement, selon le type de cellules utilisées, la densité en peptide RGD « c » de la composition polymérique peut être adaptée au cas par cas, en ajustant simplement x et/ou soit y, soit z, pour optimiser le comportement cellulaire en fonction des cellules spécifiques utilisées. The optimum density of RGD peptide (“c” defined above, which depends on x and either on y or on z) of the polymeric composition depends on the type of cells used. This is because the optimum density of RGD peptide in a hydrogel varies depending on the cell type. It is therefore particularly advantageous to have hydrogels with peptide densities Modular RGDs. Advantageously, depending on the type of cells used, the RGD “c” peptide density of the polymeric composition can be adapted on a case-by-case basis, by simply adjusting x and / or either y or z, to optimize cell behavior as a function of specific cells used.
Selon un cinquième objet, l’invention concerne l’utilisation de la composition polymérique définie ci-dessus, dans le mode de réalisation dans lequel elle comprend un alginate de sodium, comme encre, notamment comme bio-encre, pour l’impression, notamment l’impression 3D, en particulier la bio-impression 3D, ou pour l’ingénierie tissulaire. According to a fifth object, the invention relates to the use of the polymeric composition defined above, in the embodiment in which it comprises a sodium alginate, as ink, in particular as bio-ink, for printing, in particular 3D printing, in particular 3D bioprinting, or for tissue engineering.
En tant que constituant essentiel de la matrice extracellulaire, l'acide hyaluronique est un biopolymère de choix pour l’élaboration de modèles d’objets biologiques, comme des tissus, par bio-impression. Néanmoins, son utilisation à l’état de gel passe par sa réticulation. La méthode de réticulation classiquement utilisée en ingénierie tissulaire consiste à modifier l'acide hyaluronique par des groupements méthacrylates permettant sa gélification par irradiation UV. Toutefois, l'utilisation de la lumière UV peut être dommageable à la survie cellulaire. Au contraire, l’utilisation de la composition polymérique selon l’invention comme bio-encre ne requiert pas d’irradiation UV. As an essential component of the extracellular matrix, hyaluronic acid is a biopolymer of choice for the development of models of biological objects, such as tissues, by bioprinting. However, its use in the gel state involves its crosslinking. The crosslinking method conventionally used in tissue engineering consists in modifying the hyaluronic acid with methacrylate groups allowing its gelation by UV irradiation. However, the use of UV light can be damaging to cell survival. On the contrary, the use of the polymeric composition according to the invention as a bio-ink does not require UV irradiation.
Selon un sixième objet, l’invention concerne une méthode de préparation d’un objet comprenant les étapes consistant à : According to a sixth object, the invention relates to a method of preparing an object comprising the steps of:
i) mettre en forme la composition polymérique telle que définie ci-dessus, notamment par extrusion, de préférence par une imprimante 3D, i) shaping the polymeric composition as defined above, in particular by extrusion, preferably by a 3D printer,
ii) mettre en contact la composition polymérique mise en forme avec une solution aqueuse comprenant des ions calcium. ii) bringing the shaped polymeric composition into contact with an aqueous solution comprising calcium ions.
La méthode permet en particulier de préparer un objet ayant une forme géométrique définie grâce à une imprimante 3D. The method makes it possible in particular to prepare an object having a defined geometric shape using a 3D printer.
Par « imprimante 3D », on entend un système permettant de déposer de manière programmée une quantité de composition polymérique en un point défini par ses coordonnées dans les trois dimensions de l’espace. L’imprimante 3D peut imprimer par extrusion, laser ou jet d’encre. By "3D printer" is meant a system for programmatically depositing a quantity of polymeric composition at a point defined by its coordinates in the three dimensions of space. The 3D printer can print by extrusion, laser or inkjet.
Une forte demande existe dans le domaine de la bio-impression pour des hydrogels imprimables biocompatibles et biodégradables, et également compatibles avec plusieurs modalités d’impression (extrusion, laser, jet d’encre, stéréolithographie). Pouvoir imprimer en 3D un objet à base d’hydrogel ayant une forme géométrique définie de manière automatisée à l’aide d’une imprimante est aujourd’hui un défi. C’est ce que l’on appelle la « bio-impression ». L’hydrogel est un élément clé dans les technologies de bio-impression, jouant non seulement un rôle structural dans la fabrication de l’objet mais également biologique, en transmettant des signaux biochimiques aux cellules afin qu’elles survivent et se développent dans l’objet formé. S’il existe actuellement plusieurs types de bio imprimantes disponibles sur le marché, le développement de la bio-impression se trouve néanmoins limité par le manque d’hydrogels biocompatibles, personnalisables et modifiables en fonction des tissus/organes visés et adaptés à la production à grande échelle. Les compositions polymériques selon l’invention permettent avantageusement de réaliser de la bio-impression et présentent tous les avantages recherchés. There is a strong demand in the field of bioprinting for printable biocompatible and biodegradable hydrogels, and also compatible with several printing methods (extrusion, laser, inkjet, stereolithography). Being able to 3D print a hydrogel-based object having a geometric shape defined automatically using a printer is now a challenge. This is called “bioprinting”. The hydrogel is a key element in bioprinting technologies, not only playing a structural role in the fabrication of the object but also biological, by transmitting biochemical signals to cells so that they survive and develop in the object formed. While there are currently several types of bioprinters available on the market, the development of bioprinting is nevertheless limited by the lack of biocompatible hydrogels, customizable and modifiable according to the tissues / organs targeted and suitable for production at large scale. The polymeric compositions according to the invention advantageously make it possible to carry out bioprinting and have all the desired advantages.
L’étape de mise en forme par une imprimante 3D comprend typiquement le dépôt, couche par couche, de la composition polymérique (contenant de préférence des cellules). The step of shaping by a 3D printer typically comprises the deposition, layer by layer, of the polymeric composition (preferably containing cells).
La mise en contact de l’étape ii) est généralement effectuée par immersion de l’objet mis en forme dans une solution aqueuse comprenant des ions calcium. L’étape ii) permet d’obtenir l’objet. L’étape ii) conduit à la formation d’un réseau interpénétré doublement réticulé par des liaisons esters boronate entre les polymères HA-PBA-xRGD et HA- fructose-yRGD ou bien HA-PBA-xRGD et HA-gluconamide-zRGD, et par des réticulations ioniques de l’alginate de calcium. Les polymères HA-PBA-xRGD et soit HA-fructose-yRGD soit HA-gluconamide-zRGD permettent d'obtenir une haute fidélité d'impression, tandis que l’alginate de sodium est utilisé comme composant structurel, assurant à l’objet mis en forme une bonne stabilité mécanique. The contacting in step ii) is generally carried out by immersing the shaped object in an aqueous solution comprising calcium ions. Step ii) obtains the object. Step ii) leads to the formation of an interpenetrating network doubly crosslinked by boronate ester bonds between the HA-PBA-xRGD and HA-fructose-yRGD polymers or else HA-PBA-xRGD and HA-gluconamide-zRGD, and by ionic crosslinks of calcium alginate. HA-PBA-xRGD polymers and either HA-fructose-yRGD or HA-gluconamide-zRGD provide high print fidelity, while sodium alginate is used as a structural component, ensuring the object in form good mechanical stability.
Selon un septième objet, l’invention concerne un objet susceptible d’être obtenu par la méthode définie ci-dessus. L’invention concerne également un objet comprenant : a) un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par de l’acide 3-aminophénylboronique, According to a seventh object, the invention relates to an object capable of being obtained by the method defined above. The invention also relates to an object comprising: a) a hyaluronic acid polymer of which at least one carboxylate function is grafted with 3-aminophenylboronic acid,
b) un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par du 1 -amino-1 -deoxy-D-fructose ou par du gluconamide, b) a hyaluronic acid polymer of which at least one carboxylate function is grafted with 1 -amino-1 -deoxy-D-fructose or with gluconamide,
sous réserve qu’au moins un desdits polymères a) et b) soit greffé par un peptide RGD, c) un alginate de calcium, et provided that at least one of said polymers a) and b) is grafted with an RGD peptide, c) a calcium alginate, and
d) éventuellement des cellules. d) optionally cells.
Cet objet peut notamment être un tissu, par exemple un tissu dermique, ou un organe. This object can in particular be a tissue, for example a dermal tissue, or an organ.
Lorsque l’objet contient des cellules, avantageusement, leur viabilité cellulaire est élevée, la prolifération cellulaire est élevée et le degré d'étalement des cellules est élevé. When the object contains cells, advantageously, their cell viability is high, cell proliferation is high, and the degree of cell spreading is high.
FIGURES FIGURES
[Fig 1 ] La figure 1 représente le module élastique (G’) (symboles pleins) et le module visqueux (G”) (symboles vides) (en mode dynamique - en Pa) de trois compositions polymériques HA-PBA-xRGD/HA-fructose-yRGD sous forme d’hydrogels en fonction de la fréquence (en Hz). Les trois compositions polymériques HA-PBA-xRGD/HA-fructose-yRGD ont différentes densités c de peptides RGD : [Fig 1] Figure 1 represents the elastic modulus (G ') (solid symbols) and the viscous modulus (G ”) (empty symbols) (in dynamic mode - in Pa) of three HA-PBA-xRGD / HA polymer compositions -fructose-yRGD in the form of hydrogels depending on the frequency (in Hz). The three HA-PBA-xRGD / HA-fructose-yRGD polymeric compositions have different densities c of RGD peptides:
- c = 0 mol%, x = 0 mol%, y = 0 mol% (polymères non greffés par des peptides RGD - comparatif) (ronds), - c = 0 mol%, x = 0 mol%, y = 0 mol% (polymers not grafted by RGD peptides - comparative) (round),
- c = 5 mol%, x = 5 mol%, y = 5 mol% (carrés), - c = 5 mol%, x = 5 mol%, y = 5 mol% (squares),
- c = 12,5 mol%, x = 10 mol%, y = 15 mol% (triangles). - c = 12.5 mol%, x = 10 mol%, y = 15 mol% (triangles).
[Fig 2] La figure 2 représente le module élastique (G’) (symboles pleins) et le module visqueux (G”) (symboles vides) (en mode dynamique et en Pa) de deux compositions polymériques sous forme d’hydrogels : [Fig 2] Figure 2 represents the elastic modulus (G ’) (solid symbols) and the viscous modulus (G”) (empty symbols) (in dynamic mode and in Pa) of two polymeric compositions in the form of hydrogels:
- HA-PBA-xRGD/HA-fructose-yRGD (exempt d’alginate - triangles), - HA-PBA-xRGD / HA-fructose-yRGD (free of alginate - triangles),
- HA-PBA-xRGD/HA-fructose-yRGD/alginate de sodium (étoiles), - HA-PBA-xRGD / HA-fructose-yRGD / sodium alginate (stars),
chacune avec une densité de peptide RGD c = 12,5 mol%, x = 10 mol%, y = 15 mol%, en fonction de la fréquence (en Hz). each with a RGD peptide density c = 12.5 mol%, x = 10 mol%, y = 15 mol%, as a function of frequency (in Hz).
[Fig 3] La figure 3 fournit trois photographies de compositions polymériques HA- PBA-xRGD/HA-fructose-yRGD/alginate de sodium dans du PBS mise en forme par extrusion : [Fig 3] Figure 3 provides three photographs of HA-PBA-xRGD / HA-fructose-yRGD / sodium alginate polymeric compositions in PBS shaped by extrusion:
- à la fin de l’étape de mise en forme par extrusion et avant l’étape d’immersion dans une solution aqueuse de CaCh (images A et B), et - at the end of the extrusion forming step and before the immersion step in an aqueous solution of CaCh (images A and B), and
- lors de la mise en contact avec une solution aqueuse de CaCh (image C). - when coming into contact with an aqueous solution of CaCh (image C).
[Fig 4] La figure 4 représente le module élastique (G’) (symboles pleins) et le module visqueux (G”) (symboles vides) (en mode dynamique et en Pa) : [Fig 4] Figure 4 represents the elastic modulus (G ’) (solid symbols) and the viscous modulus (G”) (empty symbols) (in dynamic mode and in Pa):
- d’une composition polymérique HA-PBA/HA-glucose (exempt de groupes RGD et exempt d’alginate - symboles gris), - of an HA-PBA / HA-glucose polymeric composition (free of RGD groups and free of alginate - gray symbols),
- de l’acide hyaluronique (non modifié) (symboles noirs), - hyaluronic acid (unmodified) (black symbols),
en fonction de la fréquence (en Hz). as a function of frequency (in Hz).
EXEMPLES EXAMPLES
Exemple 1 : Préparation de composition polymériques Example 1: Preparation of polymeric compositions
1 .1 . Synthèse du polymère HA-gluconamide-zRGD (avec z = 0) 1 .1. Synthesis of HA-gluconamide-zRGD polymer (with z = 0)
A une solution de Boc-1 -amino-DOOA (0,1 13 g, 0,45 mmol) dans du DMF (25 mL), une solution de D-glucono-1 ,5-lactone (0,081 g, 0,45 mmol) dans du DMF (20 mL) est ajoutée goutte à goutte pendant environ 3 h. Après agitation pendant une nuit à température ambiante, le solvant est évaporé sous pression réduite et le sirop transparent résultant est séché dans une étuve sous vide (60 mbars, 40 °C) afin d’obtenir le Boc-1 -amino-DOOA- gluconamide (0,178 g, 92 %). Has a solution of Boc-1 -amino-DOOA (0.113 g, 0.45 mmol) in DMF (25 mL), a solution of D-glucono-1, 5-lactone (0.081 g, 0.45 mmol) in DMF (20 mL) is added dropwise over about 3 h. After stirring overnight at room temperature, the solvent is evaporated off under reduced pressure and the resulting transparent syrup is dried in a vacuum oven (60 mbar, 40 ° C) in order to obtain Boc-1 -amino-DOOA-gluconamide (0.178 g, 92%).
RMN 1 H (400 MHz, D20, 25 °C) du Boc-1 -amino-DOOA-gluconamide: 5H (ppm) 4,35 (1 H, H2), 4,15 (1 H, H3), 3,88 à 3,72 (10H, H4-H6 et Hb-Hd), 3,65 (2H, He), 3,55 (2H, Ha), 3,32 (2H, Ht), 1 ,5 (9H, Hg). 1 H NMR (400 MHz, D20, 25 ° C) of Boc-1 -amino-DOOA-gluconamide: 5H (ppm) 4.35 (1H, H2), 4.15 (1H, H3), 3, 88 to 3.72 (10H, H4-H6 and Hb-Hd), 3.65 (2H, He), 3.55 (2H, Ha), 3.32 (2H, Ht), 1.5 (9H, Hg).
L'élimination du groupe protecteur Boc est ensuite réalisée par traitement acide du Boc-1 -amino-DOOA-gluconamide (0,055 g, 0,13 mmol) dans du TFA (0,6 mL, 7,77 mmol) pendant 5 min à température ambiante. Le milieu réactionnel est neutralisé par addition de NaOH 1 M goutte à goutte, à une température entre 0-4 °C, et le solvant est ensuite éliminé sous pression réduite. La déprotection complète du groupe amine permettant d’obtenir le 1 -amino-DOOA-gluconamide est confirmée par analyse RMN 1 H. Removal of the Boc protecting group is then carried out by acid treatment of Boc-1 -amino-DOOA-gluconamide (0.055 g, 0.13 mmol) in TFA (0.6 mL, 7.77 mmol) for 5 min at ambient temperature. The reaction medium is neutralized by adding 1M NaOH dropwise, at a temperature between 0-4 ° C., and the solvent is then removed under reduced pressure. Complete deprotection of the amine group making it possible to obtain 1 -amino-DOOA-gluconamide is confirmed by 1 H NMR analysis.
Le HA-gluconamide-zRGD est ensuite synthétisé par une réaction d’amidation entre le HA (grade pharmaceutique, d’origine non-animale, fourni par CONTIPRO, Mw = 400-500 kg/mol) et le 1 -amino-DOOA-gluconamide, en utilisant le DMTMM (chlorure de 4-(4,6- Dimethoxy-1 ,3,5-triazin-2-yl)-4-methylmorpholinium) comme un agent de couplage. La réaction consiste à ajouter le DMTMM à une solution de HA dans un mélange eau/DMF (3/2, v/v). Après 15 min d'agitation à température ambiante, le 1 -amino-DOOA-gluconamide est ajouté, le pH du milieu réactionnel est ajusté à 6,5 avec une solution de NaOH 0,5 M et la réaction est laissée sous agitation pendant 65 h à température ambiante. Une fois la réaction terminée, le conjugué HA-gluconamide-zRGD (avec z = 0) est purifié par diafiltration et le produit est récupéré par lyophilisation. HA-gluconamide-zRGD is then synthesized by an amidation reaction between HA (pharmaceutical grade, of non-animal origin, supplied by CONTIPRO, M w = 400-500 kg / mol) and 1 -amino-DOOA -gluconamide, using DMTMM (4- (4,6-Dimethoxy-1, 3,5-triazin-2-yl) -4-methylmorpholinium chloride) as a coupling agent. The reaction consists in adding the DMTMM to a solution of HA in a water / DMF mixture (3/2, v / v). After 15 min of stirring at room temperature, 1 -amino-DOOA-gluconamide is added, the pH of the reaction medium is adjusted to 6.5 with a 0.5 M NaOH solution and the reaction is left under stirring for 65 h at room temperature. Once the reaction is complete, the HA-gluconamide-zRGD conjugate (with z = 0) is purified by diafiltration and the product is recovered by lyophilization.
Selon ces conditions, le HA-gluconamide-zRGD (avec z = 0) est obtenu avec un Degré de Substitution (DS) de 10 mol% déterminé par analyse RMN 13C et à partir de la cinétique de réaction (Tableau 1 ). Cette méthode consiste à quantifier le taux d’amines primaires libres dans le milieu réactionnel en fonction du temps en utilisant le réactif TNBS (acide 2,4,6-trinitrobenzenesulfonique). [Chem 1 ] Under these conditions, the HA-gluconamide-zRGD (with z = 0) is obtained with a Degree of Substitution (DS) of 10 mol% determined by 13 C NMR analysis and from the reaction kinetics (Table 1). This method consists in quantifying the level of free primary amines in the reaction medium as a function of time using the TNBS reagent (2,4,6-trinitrobenzenesulfonic acid). [Chem 1]
HO H
Figure imgf000016_0001
oc- -am no- Goutte à goutte HO, in7
HO H
Figure imgf000016_0001
oc- -am no- Drip HO, in 7
(3 h + 1 nuit) (3 hrs + 1 night)
DMF, t.a. Boc-1 -amino-DOOA-gluconamide DMF, t.a. Boc-1 -amino-DOOA-gluconamide
Figure imgf000016_0002
Figure imgf000016_0002
HA-gluconamide HA-gluconamide
Schéma 1 : Schéma réactionnel illustrant la synthèse du polymère HA-gluconamide-zRGD (avec z = 0). Scheme 1: Reaction scheme illustrating the synthesis of the HA-gluconamide-zRGD polymer (with z = 0).
1.2. Synthèses des polymères HA-PBA-xRGD (avec x = 0) et HA-fructose-yRGD (avec y = 0) 1.2. Synthesis of HA-PBA-xRGD (with x = 0) and HA-fructose-yRGD (with y = 0) polymers
Les polymères HA-PBA-xRGD (avec x = 0) et HA-fructose-yRGD (avec y = 0) (Schéma 2) sont respectivement synthétisés par une réaction de couplage peptidique entre le HA et GARBA (acide 3-aminophénylboronique) ou la fructosamine (1 -amino-1 -deoxy-D- fructose), contenant des groupements amines primaires libres. Pour cela, GARBA ou la fructosamine sont ajoutés à un mélange eau/DMF (3/2, v/v) contenant du DMTMM et du HA selon les conditions du tableau 1 , et le pH est ajusté à 6,5 avec une solution de NaOH 0,5 M. Après agitation pendant 24 h à température ambiante, les polymères sont purifiés par diafiltration et les produits sont récupérés par lyophilisation. Cette procédure permet de synthétiser des HA-PBA-xRGD (avec x = 0) et HA-fructose-yRGD (avec y = 0) avec un DS de 15 mol% déterminé par analyse RMN 1H ou à partir de la cinétique de réaction en utilisant le TNBS (Tableau 1 ). The HA-PBA-xRGD (with x = 0) and HA-fructose-yRGD (with y = 0) polymers (Scheme 2) are respectively synthesized by a peptide coupling reaction between HA and GARBA (3-aminophenylboronic acid) or fructosamine (1 -amino-1 -deoxy-D-fructose), containing free primary amine groups. For this, GARBA or fructosamine are added to a water / DMF (3/2, v / v) mixture containing DMTMM and HA according to the conditions in Table 1, and the pH is adjusted to 6.5 with a solution of 0.5 M NaOH. After stirring for 24 h at room temperature, the polymers are purified by diafiltration and the products are recovered by lyophilization. This procedure makes it possible to synthesize HA-PBA-xRGD (with x = 0) and HA-fructose-yRGD (with y = 0) with a DS of 15 mol% determined by 1 H NMR analysis or from the reaction kinetics. using TNBS (Table 1).
[Chem 2] [Chem 2]
Figure imgf000017_0001
Figure imgf000017_0001
HA-PBA HA-fructose HA-PBA HA-fructose
Schéma 2 : Structures chimiques des polymères HA-PBA-xRGD avec x = 0 et HA- fructoseyRGD avec y = 0. Diagram 2: Chemical structures of HA-PBA-xRGD polymers with x = 0 and HA-fructoseyRGD with y = 0.
[Tableau 1] [Table 1]
Figure imgf000017_0002
Figure imgf000017_0002
aDS déterminé par RMN 1H (10 mol% de précision). aDS determined by 1 H NMR (10 mol% accuracy).
bDS estimé à partir de la cinétique de réaction en utilisant le TNBS. bDS estimated from reaction kinetics using TNBS.
CDS déterminé par RMN 13C (20 mol% de précision). C DS determined by 13 C NMR (20 mol% accuracy).
Tableau 1 : Conditions de réaction et DS pour les polymères HA-PBA-xRGD, HA-fructose- yRGD et HA-gluconamide-zRGD. 1.3. Synthèse des polymères HA-PBA-xRGD avec x ¹ 0, HA-fructose-yRGD avec y ¹ 0 et HA-gluconamide-zRGD avec z ¹ 0 Table 1: Reaction conditions and DS for HA-PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD polymers. 1.3. Synthesis of HA-PBA-xRGD polymers with x ¹ 0, HA-fructose-yRGD with y ¹ 0 and HA-gluconamide-zRGD with z ¹ 0
Les polymères HA-PBA-xRGD, HA-fructose-yRGD et HA-gluconamide-zRGD sont synthétisés par couplage peptidique à partir de peptides RGD (contenant une fonction amine primaire) à l’aide de l’agent de couplage DMTMM (Schéma 3). Pour cela, le peptide GRGDS utilisé comme exemple est ajouté dans une solution d’eau/DMF (3/2, v/v) contenant le DMTMM et le polymère HA-PBA-xRGD avec x = 0, le polymère HA-fructose- yRGD avec y = 0 ou le polymère HA-gluconamide-zRGD avec z = 0 préalablement solubilisé (tableau 2). Le pH du milieu réactionnel est ajusté à 6,5 par l’ajout d’une solution de NaOH 0,5 M et la réaction est laissée sous agitation à température ambiante pendant 24-30h. Une fois la réaction terminée, les polymères HA-PBA-xRGD, HA-fructose-yRGD et HA-gluconamide-zRGD sont purifiés par diafiltration et les polymères sont récupérés par lyophilisation. The HA-PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD polymers are synthesized by peptide coupling from RGD peptides (containing a primary amine function) using the DMTMM coupling agent (Scheme 3 ). For this, the GRGDS peptide used as an example is added in a solution of water / DMF (3/2, v / v) containing the DMTMM and the polymer HA-PBA-xRGD with x = 0, the polymer HA-fructose- yRGD with y = 0 or the HA-gluconamide-zRGD polymer with z = 0 previously solubilized (Table 2). The pH of the reaction medium is adjusted to 6.5 by adding 0.5 M NaOH solution and the reaction is left under stirring at room temperature for 24-30 hours. Once the reaction is complete, the HA-PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD polymers are purified by diafiltration and the polymers are recovered by lyophilization.
La méthode décrite ci-dessus permet de contrôler le taux de greffage de peptides RGD sur les polymères, de manière à obtenir des valeurs de x, y et z compris entre 1 et 30 mol% déterminés par RMN 1H et également à partir de la cinétique de réaction en utilisant le TNBS (Tableau 2). The method described above makes it possible to control the rate of grafting of RGD peptides on the polymers, so as to obtain values of x, y and z of between 1 and 30 mol% determined by 1 H NMR and also from the reaction kinetics using TNBS (Table 2).
[Chem 3] [Chem 3]
Figure imgf000019_0001
-g uconam e-
Figure imgf000019_0001
-g uconam e-
Schéma 3 : Schéma réactionnel illustrant la synthèse des polymères HA-PBA-xRGD, HA- fructose-yRGD et HA-gluconamide-zRGD par greffage du peptide GRGDS. Scheme 3: Reaction scheme illustrating the synthesis of HA-PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD polymers by grafting of GRGDS peptide.
[Tableau 2] [Table 2]
Rapport Rapport molaire Ratio Molar ratio
molaire DMTMM/HA molar DMTMM / HA
x, y ou z Couplage Rendement x, y or z Coupling Efficiency
Polymère RGD- (mol%) (%) (%)RGD- polymer (mol%) (%) (%)
NH2/ NH2 /
DMTMM DMTMM
HA-PBA-xRGD, HA-PBA-xRGD,
HA-fructose- yRGD ou HA-fructose- yRGD or
0,5 0,02-0,06 1 -30a b 50-70 >800.5 0.02-0.06 1 -30 ab 50-70> 80
HA- gluconamide- zRGD ax, y ou z déterminé par RMN 1 H (10 mol% de précision). HA- gluconamide- zRGD a x, y or z determined by 1 H NMR (10 mol% precision).
b x, y ou z estimé à partir de la cinétique de réaction en utilisant le TNBS. b x, y or z estimated from reaction kinetics using TNBS.
Tableau 2 : Conditions de réaction pour les synthèses des polymères HA-PBA-xRGD, HA- fructose-yRGD et HA-gluconamide-zRGD. Table 2: Reaction conditions for the syntheses of HA-PBA-xRGD, HA-fructose-yRGD and HA-gluconamide-zRGD polymers.
1 .4. Préparation d’une composition polymérique comprenant des cellules pour la culture cellulaire 1 .4. Preparation of a polymeric composition comprising cells for cell culture
Les polymères HA-PBA-xRGD, HA-fructose-yRGD ou HA-gluconamide-zRGD sont solubilisés à 15 g/L dans du DPBS (Dulbecco’s Phosphate-Buffered Saline) sous agitation pendant 2-4h. The HA-PBA-xRGD, HA-fructose-yRGD or HA-gluconamide-zRGD polymers are solubilized at 15 g / L in DPBS (Dulbecco's Phosphate-Buffered Saline) with stirring for 2-4 hours.
Les compositions polymériques utiles pour la culture cellulaire sont préparées comme suit. La solution aqueuse de HA-PBA-xRGD est d’abord déposée dans des inserts placés dans des plaques de culture 24 puits. Polymeric compositions useful for cell culture are prepared as follows. The aqueous solution of HA-PBA-xRGD is first deposited in inserts placed in 24-well culture plates.
Une solution aqueuse de HA-fructose-yRGD ensemencée avec des cellules est préparée. Une solution aqueuse de HA-gluconamide-zRGD ensemencée avec des cellules est préparée. An aqueous solution of HA-fructose-yRGD seeded with cells is prepared. An aqueous solution of HA-gluconamide-zRGD seeded with cells is prepared.
Ensuite, les compositions polymériques comprenant des cellules (concentration totale de polysaccharide = 15 g/L; rapport molaire PBA/saccharide = 1/1 ) sont directement formées dans chaque puits par l’ajout d’une solution aqueuse de HA-fructose-yRGD ou de HA-gluconamide-zRGD ensemencée avec des cellules. Le mélange des polymères HA- PBA-xRGD et HA-fructose-yRGD, ou bien des polymères HA-PBA-xRGD et HA- gluconamide-zRGD au sein de chaque puits conduit à la formation de la composition polymérique sous forme d’hydrogel. Next, the polymeric compositions comprising cells (total polysaccharide concentration = 15 g / L; PBA / saccharide molar ratio = 1/1) are directly formed in each well by adding an aqueous solution of HA-fructose-yRGD or HA-gluconamide-zRGD seeded with cells. The mixture of HA-PBA-xRGD and HA-fructose-yRGD polymers, or else of HA-PBA-xRGD and HA-gluconamide-zRGD polymers within each well results in the formation of the polymeric composition in hydrogel form.
1 .5. Préparation d’une composition polymérique comprenant de l’alginate de sodium et des cellules pour la bio-impression 1 .5. Preparation of a polymeric composition comprising sodium alginate and cells for bioprinting
L’alginate provient de Alfa Aesar (A18565). The alginate comes from Alfa Aesar (A18565).
Des solutions : Solutions :
- de polymère HA-PBA-xRGD contenant de l’alginate de sodium, - HA-PBA-xRGD polymer containing sodium alginate,
- de polymère HA-fructose-yRGD contenant de l’alginate de sodium, - HA-fructose-yRGD polymer containing sodium alginate,
- de polymère HA-gluconamide-zRGD contenant de l’alginate de sodium, - HA-gluconamide-zRGD polymer containing sodium alginate,
ont été préparées par agitation pendant 2-4h dans du DPBS (Dulbecco’s Phosphate- Buffered Saline) ou dans du milieu de culture DMEM (concentration de polysaccharide entre 10-30 g/L). Les solutions ont une concentration finale en alginate de sodium entre 0,1 et 2,0 % (m/v)). Une fois les cellules ensemencées dans la solution du polymère HA-fructose-yRGD ou dans la solution du polymère HA-gluconamide-zRGD, les compositions polymériques HA-PBA-xRGD/ HA-fructose-yRGD / alginate de sodium ou bien HA-PBA-xRGD/ HA- gluconamide-zRGD / alginate de sodium (concentration totale de polysaccharide = 10-30 g/L; rapport molaire PBA/fructosamine ou rapport molaire PBA/ gluconamide = 1 /1 ou 1 /2 ou 2/1 ) utiles comme bioencres sont directement formées dans des cartouches pour l’extrusion. were prepared by stirring for 2-4 h in DPBS (Dulbecco's Phosphate-Buffered Saline) or in DMEM culture medium (polysaccharide concentration between 10-30 g / L). The solutions have a final sodium alginate concentration between 0.1 and 2.0% (w / v)). Once the cells are seeded in the solution of the HA-fructose-yRGD polymer or in the solution of the HA-gluconamide-zRGD polymer, the HA-PBA-xRGD / HA-fructose-yRGD / sodium alginate or HA-PBA polymer compositions -xRGD / HA- gluconamide-zRGD / sodium alginate (total polysaccharide concentration = 10-30 g / L; PBA / fructosamine molar ratio or PBA / gluconamide molar ratio = 1/1 or 1/2 or 2/1) useful as bioinks are directly formed in cartridges for extrusion.
1 .6. Comportement rhéologique en mode dynamique selon les densités de peptide RGD c, x, y et z. 1 .6. Rheological behavior in dynamic mode according to the densities of RGD peptide c, x, y and z.
Le comportement rhéologique des différentes compositions polymériques sous forme d’hydrogels a été étudié avec un rhéomètre à plateaux coniques (AR2000EX de TA Instruments). Toutes les mesures rhéologiques en mode dynamique ont été vérifiées en fonction de la déformation pour s'assurer que les expériences ont été effectuées dans la région viscoélastique linéaire. Un cône possédant un diamètre de 2 cm et un angle de 4° a été utilisé pour les échantillons viscoélastiques. Pour éviter l’évaporation de l’eau, le système de mesure a été entouré d’une huile silicone à faible viscosité (50 mPa.s) soigneusement ajoutée aux bords du cône. The rheological behavior of the various polymeric compositions in the form of hydrogels was studied with a conical plate rheometer (AR2000EX from TA Instruments). All rheological measurements in dynamic mode were checked against strain to ensure that experiments were performed in the linear viscoelastic region. A cone having a diameter of 2 cm and an angle of 4 ° was used for the viscoelastic samples. To prevent water evaporation, the measuring system was surrounded by low viscosity silicone oil (50 mPa.s) carefully added to the edges of the cone.
[Fig 1 ] La figure 1 fournit les module élastique (G’) et module visqueux (G”) de trois compositions polymériques HA-PBA-xRGD/HA-fructose-yRGD sous forme d’hydrogel, avec des nombres de moles moyen de peptides RGD pour 100 unités disaccharide de répétition de l’acide hyaluronique : [Fig 1] Figure 1 provides the elastic modulus (G ') and viscous modulus (G ”) of three HA-PBA-xRGD / HA-fructose-yRGD polymeric compositions in hydrogel form, with average mole numbers of RGD peptides per 100 disaccharide repeat units of hyaluronic acid:
- c = 0 mol%, x = 0 mol% et y = 0 mol% (comparatif, composition polymérique dont les deux polymères sont exempts de RGD) - c = 0 mol%, x = 0 mol% and y = 0 mol% (comparative, polymeric composition in which the two polymers are free from RGD)
- c = 5 mol%, x = 5 mol%, y = 5 mol%, ou - c = 5 mol%, x = 5 mol%, y = 5 mol%, or
- c = 12,5 mol%, x = 10 mol%, y = 15 mol%. - c = 12.5 mol%, x = 10 mol%, y = 15 mol%.
[Fig 1 ] La figure 1 montre que les densités de peptide RGD (donc c, x, y et z) impactent très peu le comportement rhéologique de la composition polymérique. [Fig 1] FIG. 1 shows that the RGD peptide densities (therefore c, x, y and z) have very little impact on the rheological behavior of the polymer composition.
1 .7. Comportement rhéologique en mode dynamique en l’absence et en présence d’alginate de sodium 1 .7. Rheological behavior in dynamic mode in the absence and presence of sodium alginate
La méthode de mesure est identique à celle du paragraphe précédent. The measurement method is identical to that of the previous paragraph.
[Fig 2] La figure 2 fournit les module élastique (G’) et module visqueux (G”) de deux compositions polymériques sous forme d’hydrogel : [Fig 2] Figure 2 provides the elastic modulus (G ’) and viscous modulus (G”) of two polymeric compositions in hydrogel form:
- HA-PBA-xRGD/HA-fructose-yRGD/alginate de sodium, - HA-PBA-xRGD / HA-fructose-yRGD / sodium alginate,
- HA-PBA-xRGD/HA-fructose-yRGD, avec dans les deux cas c = 12,5 mol%, x = 10 mol% et y = 15 mol%. - HA-PBA-xRGD / HA-fructose-yRGD, with in both cases c = 12.5 mol%, x = 10 mol% and y = 15 mol%.
La présence d’alginate impacte peu les propriétés rhéologiques des compositions polymériques sous forme d’hydrogel. The presence of alginate has little impact on the rheological properties of polymeric compositions in hydrogel form.
Exemple 2 : Etalement de fibroblastes (MEF) dans des hydrogels possédant différentes densités de peptides RGD (c= 0 mol%, 5,0 mol% ou 12,5 mol%) Example 2: Spreading of fibroblasts (MEF) in hydrogels having different densities of RGD peptides (c = 0 mol%, 5.0 mol% or 12.5 mol%)
L’étalement de fibroblastes (MEF) a été déterminé en réalisant des images microscopiques de fibroblastes ensemencés dans les hydrogels HA-PBA-xRGD/HA- fructose-yRGD après 7 jours de culture cellulaire à 37 °C (marquage des cellules vivantes à la calcéine). The spreading of fibroblasts (MEF) was determined by carrying out microscopic images of fibroblasts seeded in the HA-PBA-xRGD / HA-fructose-yRGD hydrogels after 7 days of cell culture at 37 ° C (labeling of the living cells with the calcein).
Dans la composition polymérique comparative exempte de RGD (c = x = y = 0, ou bien c = x = z = 0), les cellules observées par microscopie confocale étaient rondes. Au contraire, dans la composition polymérique selon l’invention (avec une composition polymérique dans laquelle c= 5 mol%, x = 5 mol% et y = 5 mol% et une composition polymérique dans laquelle c = 12,5 mol%, x = 10 mol% et y = 15 mol%, les images de microscopie confocale ont montré que les cellules ont proliféré et s’allongent, ce qui démontre l’adhésion et l’étalement des fibroblastes en 3D. In the comparative RGD-free polymeric composition (c = x = y = 0, or c = x = z = 0), cells observed by confocal microscopy were round. On the contrary, in the polymeric composition according to the invention (with a polymeric composition in which c = 5 mol%, x = 5 mol% and y = 5 mol% and a polymeric composition in which c = 12.5 mol%, x = 10 mol% and y = 15 mol%, confocal microscopy images showed that the cells have proliferated and are elongating, demonstrating the adhesion and spreading of fibroblasts in 3D.
Exemple 3 : Impression en utilisant la composition polymérique comme encre par la technique d’extrusion Example 3: Printing using the polymeric composition as ink by the extrusion technique
3.1 . Préparation d’objets imprimés 3.1. Preparation of printed objects
La composition polymérique sous forme d’hydrogel de l’exemple 1 .4 formée dans des cartouches pour l’extrusion a été extrudée à travers une aiguille de diamètre de 0,2 mm pour former des objets extrudés ([Fig 3] figure 3, images A et B). Les objets extrudés ont été immergés dans une solution aqueuse contenant du CaCh à 0,5 %(m/v) ([Fig 3] figure 3, image C) The polymeric hydrogel composition of Example 1 .4 formed in cartridges for extrusion was extruded through a 0.2mm diameter needle to form extruded objects ([Fig 3] Fig 3, images A and B). The extruded objects were immersed in an aqueous solution containing 0.5% (m / v) CaCh ([Fig 3] Figure 3, Image C)
3.2. Viabilité cellulaire dans les objets imprimés 3.2. Cell viability in printed objects
La viabilité cellulaire avant et après impression de fibroblastes (NIH-3T3 eGFP) ensemencés dans les compositions polymériques sous forme d’hydrogels (bio-encres) après 7 jours de culture cellulaire à 37 °C a été testée avant et après impression (test Live- Dead réalisé à l’aide d’un microscope d’épi-fluorescence pour le comptage des cellules : marquage des cellules vivantes à la calcéine et des cellules mortes à l’iodure de propidium). [Tableau 3] The cell viability before and after printing of fibroblasts (NIH-3T3 eGFP) seeded in the polymeric compositions in the form of hydrogels (bio-inks) after 7 days of cell culture at 37 ° C was tested before and after printing (Live test - Dead carried out using an epi-fluorescence microscope for cell counting: labeling of living cells with calcein and dead cells with propidium iodide). [Table 3]
Figure imgf000023_0001
Figure imgf000023_0001
Tableau 3 : Viabilité cellulaire (%) de fibroblastes (NIH-3T3 eGFP) à J7 dans la composition polymérique sous forme d’hydrogel avant impression et dans l’objet mis en forme 5.3. Adhésion/étalement des fibroblastes dans les objets imprimés Table 3: Cell viability (%) of fibroblasts (NIH-3T3 eGFP) on D7 in the polymeric composition in hydrogel form before printing and in the shaped object 5.3. Adhesion / spreading of fibroblasts in printed objects
L’étalement de fibroblastes humains a été déterminé en réalisant des images microscopiques en épi-fluorescence de fibroblastes humains dans les objets imprimés HA- PBA-xRGD/HA-fructose-yRGD/alginate de calcium obtenus à partir des compositions polymériques sous forme d’hydrogels HA-PBA-xRGD/HA-fructose-yRGD/alginate de sodium dans lesquelles les fibroblastes ont été ensemencés après 7 jours de culture cellulaire à 37 °C (marquage des cellules vivantes à la calcéine). The spread of human fibroblasts was determined by taking epi-fluorescence microscopic images of human fibroblasts in the printed objects HA-PBA-xRGD / HA-fructose-yRGD / calcium alginate obtained from the polymeric compositions in the form of HA-PBA-xRGD / HA-fructose-yRGD / sodium alginate hydrogels in which the fibroblasts were seeded after 7 days of cell culture at 37 ° C (labeling of living cells with calcein).
Dans l’objet obtenu à partir de la composition polymérique comparative exempte de RGD (HA-PBA-xRGD/HA-fructose-yRGD/alginate de calcium avec c = x = y = 0, ou bien HA-PBA-xRGD/HA-gluconamide-zRGD/alginate de calcium avec c = x = z = 0), les cellules observées par microscopie en épi-fluorescence étaient rondes. In the object obtained from the comparative polymeric composition free of RGD (HA-PBA-xRGD / HA-fructose-yRGD / calcium alginate with c = x = y = 0, or else HA-PBA-xRGD / HA- gluconamide-zRGD / calcium alginate with c = x = z = 0), cells observed by epi-fluorescence microscopy were round.
Au contraire, dans l’objet obtenu à partir de la composition polymérique selon l’invention (à partir d’une composition polymérique dans laquelle c= 5 mol%, x = 5 % et y = 5 mol% et à partir d’une composition polymérique dans laquelle c = 12,5 mol%, x = 10 mol% et y = 15 mol%), les images ont montré l’adhésion et l’étalement les fibroblastes en 3D. On the contrary, in the object obtained from the polymeric composition according to the invention (from a polymeric composition in which c = 5 mol%, x = 5% and y = 5 mol% and from a polymer composition in which c = 12.5 mol%, x = 10 mol% and y = 15 mol%), the images showed the adhesion and spreading of the fibroblasts in 3D.

Claims

REVENDICATIONS
1. Composition polymérique comprenant un mélange de : 1. Polymeric composition comprising a mixture of:
a) un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par de l’acide 3-aminophénylboronique, et a) a hyaluronic acid polymer of which at least one carboxylate function is grafted with 3-aminophenylboronic acid, and
b) un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par du 1 -amino-1 -deoxy-D-fructose ou par du gluconamide, b) a hyaluronic acid polymer of which at least one carboxylate function is grafted with 1 -amino-1 -deoxy-D-fructose or with gluconamide,
sous réserve qu’au moins un desdits polymères soit greffé par un peptide RGD. with the proviso that at least one of said polymers is grafted with an RGD peptide.
2. Composition polymérique selon la revendication 1 , dans laquelle :2. Polymeric composition according to claim 1, in which:
- le polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par de l’acide 3-aminophénylboronique comprend un nombre de moles moyen x de peptides RGD pour 100 unités disaccharide de répétition de l’acide hyaluronique, - the hyaluronic acid polymer of which at least one carboxylate function is grafted with 3-aminophenylboronic acid comprises an average number of moles x of RGD peptides per 100 disaccharide repeating units of hyaluronic acid,
- le polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par du 1 -amino-1 -deoxy-D-fructose comprend un nombre de moles moyen y de peptides RGD pour 100 unités disaccharide de répétition de l’acide hyaluronique, - the hyaluronic acid polymer of which at least one carboxylate function is grafted with 1-amino-1 -deoxy-D-fructose comprises an average number of moles y of RGD peptides per 100 disaccharide repeating units of hyaluronic acid,
- le polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par du gluconamide comprend un nombre de moles moyen z de peptides RGD pour 100 unités disaccharide de répétition de l’acide hyaluronique, - the hyaluronic acid polymer of which at least one carboxylate function is grafted with gluconamide comprises an average number of moles z of RGD peptides per 100 disaccharide repeating units of hyaluronic acid,
où x, y et z sont indépendamment les uns des autres de 0 à 50 mol%, notamment de 0 à 40 mol%, typiquement de 0 à 30 mol%, de préférence de 0 à 20 mol%, where x, y and z are independently of each other from 0 to 50 mol%, in particular from 0 to 40 mol%, typically from 0 to 30 mol%, preferably from 0 to 20 mol%,
sous réserve que x et y ne représentent pas tous les deux 0, ou que x et z ne représentent pas tous les deux 0. with the proviso that x and y do not both represent 0, or that x and z do not both represent 0.
3. Composition polymérique selon la revendication 2, dans laquelle :3. Polymeric composition according to claim 2, in which:
- x est différent de 0 et soit y est 0, soit z est 0, ou - x is different from 0 and either y is 0, or z is 0, or
- x est 0 et soit y est différent de 0, soit z est différent de 0, ou - x is 0 and either y is different from 0, or z is different from 0, or
- x est différent de 0 et soit y est différent de 0, soit z est différent de 0. - x is different from 0 and either y is different from 0, or z is different from 0.
4. Composition polymérique selon l’une quelconque des revendications 1 à 3, comprenant des cellules. 4. A polymeric composition according to any one of claims 1 to 3, comprising cells.
5. Composition polymérique selon l’une quelconque des revendications 1 à 4, comprenant de l’alginate de sodium. 5. A polymeric composition according to any one of claims 1 to 4, comprising sodium alginate.
6. Kit comprenant : a) un premier contenant comprenant un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par de l’acide 3-aminophénylboronique, et 6. Kit including: a) a first container comprising a hyaluronic acid polymer of which at least one carboxylate function is grafted with 3-aminophenylboronic acid, and
b) un second contenant comprenant un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par du 1 -amino-1 -deoxy-D-fructose ou par le gluconamide, sous réserve qu’au moins un desdits polymères soit greffé par un peptide RGD. b) a second container comprising a hyaluronic acid polymer, at least one carboxylate function of which is grafted with 1 -amino-1 -deoxy-D-fructose or with gluconamide, provided that at least one of said polymers is grafted with a peptide RGD.
7. Utilisation de la composition polymérique selon l’une quelconque des revendications 1 à 5, pour la culture cellulaire, la transplantation de cellules ou la thérapie cellulaire. 7. Use of the polymeric composition according to any one of claims 1 to 5, for cell culture, cell transplantation or cell therapy.
8. Utilisation de la composition polymérique selon la revendication 5, comme encre pour l’impression, notamment l’impression 3D, en particulier la bio impression 3D, ou pour l’ingénierie tissulaire. 8. Use of the polymeric composition according to claim 5, as ink for printing, in particular 3D printing, in particular 3D bioprinting, or for tissue engineering.
9. Méthode de préparation d’un objet comprenant les étapes consistant à : i) mettre en forme la composition polymérique selon la revendication 5, notamment par extrusion, de préférence par une imprimante 3D, 9. Method for preparing an object comprising the steps of: i) shaping the polymeric composition according to claim 5, in particular by extrusion, preferably by a 3D printer,
ii) mettre en contact la composition polymérique mise en forme avec une solution aqueuse comprenant des ions calcium. ii) bringing the shaped polymeric composition into contact with an aqueous solution comprising calcium ions.
10. Objet comprenant : 10. Object comprising:
a) un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par de l’acide 3-aminophénylboronique, a) a hyaluronic acid polymer of which at least one carboxylate function is grafted with 3-aminophenylboronic acid,
b) un polymère acide hyaluronique dont au moins une fonction carboxylate est greffée par du 1 -amino-1 -deoxy-D-fructose ou par du gluconamide, b) a hyaluronic acid polymer of which at least one carboxylate function is grafted with 1 -amino-1 -deoxy-D-fructose or with gluconamide,
sous réserve qu’au moins un desdits polymères a) et b) soit greffé par un peptide RGD, c) un alginate de calcium, et provided that at least one of said polymers a) and b) is grafted with an RGD peptide, c) a calcium alginate, and
d) éventuellement des cellules. d) optionally cells.
PCT/EP2020/070958 2019-07-24 2020-07-24 Injectable polymer compositions with hyaluronic acid cross-linked by boronate esters and functionalised by rgd peptides for cell and tissue engineering WO2021013992A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908411A FR3099163A1 (en) 2019-07-24 2019-07-24 Injectable polymeric compositions of hyaluronic acid crosslinked by boronate esters and functionalized by RGD peptides for cell and tissue engineering
FRFR1908411 2019-07-24

Publications (1)

Publication Number Publication Date
WO2021013992A1 true WO2021013992A1 (en) 2021-01-28

Family

ID=69104538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/070958 WO2021013992A1 (en) 2019-07-24 2020-07-24 Injectable polymer compositions with hyaluronic acid cross-linked by boronate esters and functionalised by rgd peptides for cell and tissue engineering

Country Status (2)

Country Link
FR (1) FR3099163A1 (en)
WO (1) WO2021013992A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004579A (en) * 2021-04-23 2021-06-22 南京工业大学 Biological ink based on phenylboronic acid copolymer fixed particle gel, application and preparation method
CN114748433A (en) * 2022-05-12 2022-07-15 苏州大学 Anti-inflammatory and antioxidant pharmaceutical composition as well as preparation method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014072330A1 (en) 2012-11-06 2014-05-15 Centre National De La Recherche Scientifique (Cnrs) Glucose responsive hydrogel comprising pba-grafted hyaluronic acid (ha)
WO2016166479A1 (en) * 2015-04-15 2016-10-20 Celenys Method for producing hydrogel from modified hyaluronic acid and type 1 collagen
WO2018024793A1 (en) 2016-08-03 2018-02-08 Galderma Research & Development Method of crosslinking glycosaminoglycans

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014072330A1 (en) 2012-11-06 2014-05-15 Centre National De La Recherche Scientifique (Cnrs) Glucose responsive hydrogel comprising pba-grafted hyaluronic acid (ha)
WO2016166479A1 (en) * 2015-04-15 2016-10-20 Celenys Method for producing hydrogel from modified hyaluronic acid and type 1 collagen
WO2018024793A1 (en) 2016-08-03 2018-02-08 Galderma Research & Development Method of crosslinking glycosaminoglycans
US20190169375A1 (en) * 2016-08-03 2019-06-06 Galderma Research & Development Method of crosslinking glycosaminoglycans

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004579A (en) * 2021-04-23 2021-06-22 南京工业大学 Biological ink based on phenylboronic acid copolymer fixed particle gel, application and preparation method
CN114748433A (en) * 2022-05-12 2022-07-15 苏州大学 Anti-inflammatory and antioxidant pharmaceutical composition as well as preparation method and application thereof
CN114748433B (en) * 2022-05-12 2023-09-29 苏州大学 Anti-inflammatory and antioxidant pharmaceutical composition and preparation method and application thereof

Also Published As

Publication number Publication date
FR3099163A1 (en) 2021-01-29

Similar Documents

Publication Publication Date Title
Li et al. Self-crosslinking and injectable chondroitin sulfate/pullulan hydrogel for cartilage tissue engineering
Kang et al. Photocrosslinked methacrylated carboxymethyl chitin hydrogels with tunable degradation and mechanical behavior
Borsagli et al. Amino acid-grafted and N-acylated chitosan thiomers: Construction of 3D bio-scaffolds for potential cartilage repair applications
Echalier et al. Chemical cross-linking methods for cell encapsulation in hydrogels
Yan et al. Injectable in situ self-cross-linking hydrogels based on poly (L-glutamic acid) and alginate for cartilage tissue engineering
Xu et al. Click chemistry and material selection for in situ fabrication of hydrogels in tissue engineering applications
Jin et al. Enzymatically-crosslinked injectable hydrogels based on biomimetic dextran–hyaluronic acid conjugates for cartilage tissue engineering
Ren et al. Injectable glycopolypeptide hydrogels as biomimetic scaffolds for cartilage tissue engineering
Jin et al. Injectable chitosan-based hydrogels for cartilage tissue engineering
Farris et al. Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde
Yu et al. Novel injectable biodegradable glycol chitosan‐based hydrogels crosslinked by Michael‐type addition reaction with oligo (acryloyl carbonate)‐b‐poly (ethylene glycol)‐b‐oligo (acryloyl carbonate) copolymers
CZ304072B6 (en) Amphoteric material based on crosslinked hyaluronic acid, process for its preparation, materials containing active agents enclosed in hyaluronate network, process for their preparation and their use
Coimbra et al. Sodium hyaluronate/chitosan polyelectrolyte complex scaffolds for dental pulp regeneration: synthesis and characterization
EP3226923B1 (en) Cartilage gel for cartilage repair, comprising chitosan and chondrocytes
WO2021013992A1 (en) Injectable polymer compositions with hyaluronic acid cross-linked by boronate esters and functionalised by rgd peptides for cell and tissue engineering
WO2006021644A1 (en) Water-soluble crosslinked hyaluronic acid, a method for the preparation thereof, implant containing said crosslinked hyaluronic acid and the use thereof
US20040236095A1 (en) Chitosan-thio-amidine conjugates and their cosmetic as well as pharmeceutic use
KR20110106440A (en) Preparing biodegradable hydrogel for biomedical application
Asim et al. S-protected thiolated hyaluronic acid: In-situ crosslinking hydrogels for 3D cell culture scaffold
Cheng et al. An enzyme-mediated in situ hydrogel based on polyaspartamide derivatives for localized drug delivery and 3D scaffolds
Ustürk et al. Pullulan/polyHEMA cryogels: Synthesis, physicochemical properties, and cell viability
EP3619242A1 (en) Method for producing hydrogel from modified hyaluronic acid and type 1 collagen
EP1855792B1 (en) Multiple-membrane polysaccharide capsules and in particular of chitosan and method for preparing same
CN108164713B (en) Hydrolyzable degradable POSS-PEG hybrid hydrogel and preparation method and application thereof
Ehrenfreund-Kleinman et al. Polysaccharide scaffolds prepared by crosslinking of polysaccharides with chitosan or proteins for cell growth

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744042

Country of ref document: EP

Kind code of ref document: A1