WO2021013205A1 - 丢包定位方法、装置及系统、计算机存储介质 - Google Patents

丢包定位方法、装置及系统、计算机存储介质 Download PDF

Info

Publication number
WO2021013205A1
WO2021013205A1 PCT/CN2020/103614 CN2020103614W WO2021013205A1 WO 2021013205 A1 WO2021013205 A1 WO 2021013205A1 CN 2020103614 W CN2020103614 W CN 2020103614W WO 2021013205 A1 WO2021013205 A1 WO 2021013205A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet loss
target data
data stream
network device
information
Prior art date
Application number
PCT/CN2020/103614
Other languages
English (en)
French (fr)
Inventor
张震伟
吴吕宪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20843507.3A priority Critical patent/EP3985927A4/en
Publication of WO2021013205A1 publication Critical patent/WO2021013205A1/zh
Priority to US17/581,012 priority patent/US20220150107A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • H04L43/0829Packet loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/026Capturing of monitoring data using flow identification

Definitions

  • This application relates to the field of network technology, and in particular to a method, device and system for locating packet loss, and computer storage media.
  • IP Internet Protocol
  • a network packet conservation algorithm packet conservation algorithm for internet, iPCA
  • the analysis device periodically obtains the number of packets received and the number of packets sent by each network device in the network during the statistical period. When the number of packets sent by a certain network device in the statistical period is less than the number of packets received, the network device is determined as the packet loss device in the statistical period.
  • the current packet loss location method can only determine whether packet loss occurs on the network device, and the accuracy of packet loss location is low.
  • This application provides a method, device, system, and computer storage medium for locating packet loss, which can solve the current problem of low packet loss locating accuracy.
  • a method for locating packet loss obtains the identification of the target data flow, which is the data flow in which packet loss occurs in the network device; the network device generates packet loss information of the target data flow, and the packet loss information includes the identification of the target data flow and the identification of the network device ; The network device sends packet loss information to the analysis device for the analysis device to determine the packet loss location of the target data stream.
  • the analysis device can determine the network device based on the packet loss information
  • the specific data flow where the packet loss occurs on the network device can be determined.
  • the packet loss location accuracy is improved.
  • the analysis device can determine the packet loss location of the data flow according to the historical packet loss information of the data flow, so as to realize rapid packet loss location.
  • the packet loss information further includes one or more of the statistical time, the number of lost packets of the target data stream in the statistical period, and the information of the ingress port of the target data stream on the network device.
  • the analysis device can also determine the period of time when the target data stream is lost, the number of lost packets, and the ingress port of the target data stream on the packet loss device, further improving the accuracy of packet loss positioning.
  • the network device may also periodically count data flows that have lost packets in the network device.
  • the identifier of the target data stream includes 5-tuple information of the target data stream.
  • the analysis device receives the packet loss information of the target data stream sent by the network device.
  • the packet loss information includes the identifier of the target data stream and the identifier of the network device.
  • the target data stream is the data stream in the network device that has lost packets; the analysis device is based on the packet loss information , To determine the packet loss location of the target data stream.
  • the packet loss information further includes one or more of the statistical time, the number of lost packets of the target data stream in the statistical period, and the information of the ingress port of the target data stream on the network device.
  • the analysis device may store the packet loss information in the database after receiving the packet loss information sent by the network device; then the analysis device determines the packet loss location of the target data stream based on the packet loss information, including: When the device receives the query instruction for the target data stream, it determines the packet loss location of the target data stream based on the database, and the query instruction carries the identifier of the target data stream.
  • the analysis device can store the received packet loss information in a database.
  • the analysis device can query the historical packet loss information of the data stream based on the database to determine the packet loss location. Realize fast packet loss positioning.
  • a device for locating packet loss for network equipment.
  • the device includes a plurality of functional modules, and the plurality of functional modules interact to implement the above-mentioned first aspect and the methods in various embodiments thereof.
  • the multiple functional modules may be implemented based on software, hardware, or a combination of software and hardware, and the multiple functional modules may be combined or divided arbitrarily based on specific implementations.
  • another packet loss location device for analyzing equipment.
  • the device includes a plurality of functional modules, and the plurality of functional modules interact with each other to implement the above-mentioned second aspect and the methods in various embodiments thereof.
  • the multiple functional modules may be implemented based on software, hardware, or a combination of software and hardware, and the multiple functional modules may be combined or divided arbitrarily based on specific implementations.
  • a network device including: a processor and a memory;
  • the memory is used to store a computer program, and the computer program includes program instructions
  • the processor is configured to call the computer program to implement the packet loss location method according to any one of the first aspect.
  • an analysis device including: a processor and a memory;
  • the memory is used to store a computer program, and the computer program includes program instructions
  • the processor is configured to call the computer program to implement the packet loss location method according to any one of the second aspect.
  • a packet loss location system in a seventh aspect, includes: a network device and an analysis device, the network device includes the packet loss location device according to the third aspect, and the analysis device includes the packet loss location device according to the fourth aspect Said packet loss positioning device.
  • a computer storage medium is provided, and instructions are stored on the computer storage medium, and when the instructions are executed by a processor of a network device, the packet loss location method according to any one of the first aspects is implemented; Or, when the instruction is executed by the processor of the analysis device, the packet loss location method according to any one of the second aspect is implemented.
  • the network device can obtain the identifier of the target data flow where the packet loss occurs, and generate packet loss information including the identifier of the target data flow and the identifier of the network device, and then send the packet loss to the analysis device Information, the analysis device can determine the packet loss location of the target data flow based on the packet loss information. Since the packet loss information reported by the network device to the analysis device includes the identification of the data flow that has lost packets on the network device and the identification of the network device, the analysis device can determine that loss has occurred on the network device based on the packet loss information. The packet can also determine the specific data flow where the packet loss occurs on the network device. Compared with the existing packet loss location method, the packet loss location accuracy is improved.
  • the packet loss information can also include the statistical time, the number of lost packets of the target data stream in the statistical period, and the ingress port of the target data stream on the network device.
  • the analysis device can also determine the target data stream based on the packet loss information. The time period during which packet loss occurs, the number of packets lost, and the ingress port of the target data stream on the packet loss device, further improve the accuracy of packet loss positioning.
  • each network device in the communication network can report the packet loss information of the data stream in which packet loss occurs to the analysis device in real time, the analysis device can realize real-time packet loss location of the data stream of the entire network.
  • the analysis device can also store the received packet loss information in the database. When the service of a certain data stream fails, the analysis device can query the historical packet loss information of the data stream based on the database to determine the location of the packet loss. Fast packet loss positioning.
  • FIG. 1 is a schematic structural diagram of a packet loss location system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a communication network provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another communication network provided by an embodiment of the present application.
  • FIG. 4 is a flowchart of a method for locating packet loss according to an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a scenario in which a network device sends packet loss information to an analysis device according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of a device for locating packet loss according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another device for locating packet loss according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a packet loss location device provided by another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another device for locating packet loss according to another embodiment of the present application.
  • FIG. 11 is a block diagram of a network device provided by an embodiment of the present application.
  • Fig. 12 is a block diagram of an analysis device provided by an embodiment of the present application.
  • the analysis device can only obtain the total number of packets received and the total number of packets sent by the network device in the statistical period, the analysis device can only determine whether packet loss has occurred on the network device during the statistical period. That is, it can only determine which network device has packet loss, but cannot locate which data stream has packet loss on the network device.
  • a service fails, if there are multiple network devices that have lost packets, based on the current packet loss location method, it is impossible to determine which network device or devices the data flow of the failed service is on. Packet loss occurs, so the current packet loss positioning accuracy is low.
  • Fig. 1 is a schematic structural diagram of a packet loss location system provided by an embodiment of the present application.
  • the packet loss location system includes an analysis device 101 and a network device 102 in a communication network.
  • the number of network devices in FIG. 1 is only for illustration, and not as a limitation on the communication network provided in the embodiment of the present application.
  • the analysis device 101 may be a gateway device in a communication network.
  • the analysis device 101 may be a server, or a server cluster composed of several servers, or a cloud computing service center.
  • the network device 102 may be a switch, a router, or the like.
  • the analysis device 101 is connected to each network device 102 in the communication network through a wired network or a wireless network.
  • the communication network provided in the embodiment of the present application may be a data center network (DCN), a metropolitan area network, a wide area network, or a campus network, etc.
  • DCN data center network
  • the embodiment of the present application does not limit the type of the communication network.
  • the communication network provided in the embodiment of the present application may be a two-layer network or a three-layer network.
  • FIG. 2 is a schematic structural diagram of a communication network provided by an embodiment of the present application.
  • the communication network is a two-layer network, including the convergence layer and the access layer.
  • the convergence layer is the high-speed switching backbone of the communication network
  • the access layer is used to connect workstations (including terminals or servers, etc.) to the communication network.
  • the convergence layer includes two convergence layer network devices 102a1 and 102a2
  • the access layer includes four access layer network devices 102b1-102b4.
  • the aggregation layer network devices 102a1 and 102a2 are spine switches
  • the access layer network devices 102b1-102b4 are leaf switches.
  • the number of uplinks for each leaf switch is equal to the number of spine switches
  • the number of downlinks for each spine switch is equal to the number of leaf switches.
  • FIG. 3 is a schematic structural diagram of another communication network provided by an embodiment of the present application.
  • the communication network is a three-layer network, including a core layer, an aggregation layer, and an access layer.
  • the core layer is the high-speed switching backbone of the communication network
  • the convergence layer is used to provide convergence connections (connecting the access layer and the core layer)
  • the access layer is used to connect workstations to the communication network.
  • the core layer includes two core network devices 102c1 and 102c2; the convergence layer includes four convergence layer network devices 102d1-102d4, where the convergence layer network devices 102d1 and 102d2 are divided into the first group, the convergence layer network Devices 102d3 and 102d4 are divided into a second group; the access layer includes 8 access layer network devices 102e1-102e8, of which 4 access layer network devices 102e1-102e4 are connected to the first group of aggregation layer network devices 102d1-102d2, and The four access layer network devices 102e5-102e8 are connected to the second group of aggregation layer network devices 102d3-102d4.
  • the convergence layer and the access layer of the communication network may form a fat tree topology network, and the convergence layer network devices 102d1-102d4 are spine switches, and the access layer network devices 102e1-102e8 are leaf switches.
  • the network device 102 in the packet loss location system shown in FIG. 1 may be any network device in the communication network shown in FIG. 2 or FIG. 3.
  • FIG. 4 is a flowchart of a method for locating packet loss according to an embodiment of the present application. This method can be applied to the packet loss location system shown in FIG. 1. As shown in FIG. 1, the method includes:
  • Step 401 The network device periodically counts data flows in which packet loss occurs in the network device.
  • FIG. 5 is a schematic structural diagram of a network device provided in an embodiment of the present application.
  • the network device includes a control chip 501 and a forwarding chip 502.
  • the control chip 501 and the forwarding chip 502 are connected by a physical connection.
  • the control chip may be a central processing unit (CPU) or a field programmable gate array (FPGA) chip; the forwarding chip may be a network processor (NP).
  • the control chip and the forwarding chip in the network device may also be integrated, that is, the control function and the forwarding function are integrated on one chip, which is not limited in the embodiment of the present application.
  • the forwarding chip has multiple network interfaces (interfaces), and the network interface used to receive the data stream is the ingress port of the data stream on the network device, and the ingress ports of all packets in the same data stream are the same.
  • the packets in the data stream enter the forwarding chip from a certain network interface of the forwarding chip, they can be processed by the forwarding chip, or transmitted from the forwarding chip to the control chip and processed by the control chip.
  • the processing action of the forwarding chip and/or the control chip on the message includes drop.
  • the forwarding chip and/or the control chip may record the information of the discarded message.
  • the message information includes the quintuple information of the message and the information of the ingress port of the message on the network device.
  • the five-tuple information of the message includes the source IP address, destination IP address, source port, destination port, and transport layer protocol of the message.
  • the information of the ingress port of the message on the network device includes the port number of the ingress port of the message on the network device.
  • the transport layer protocol includes Transmission Control Protocol (TCP) and User Datagram Protocol (UDP).
  • the network device can periodically count the data flow and the number of lost packets in the network device. For example, at the end of each statistical period, the network device obtains all data streams in which packet loss occurs and the number of lost packets for each data stream in which packet loss occurs.
  • Step 402 The network device obtains an identifier of a target data flow, where the target data flow is a data flow in which packet loss occurs in the network device.
  • the identifier of the target data stream includes 5-tuple information of the target data stream. Since the quintuple information of all messages in the same data stream is the same, the quintuple information of the data stream is the quintuple information of the message in the data stream.
  • the identifier of the target data stream can be: "SIP: 192.168.0.93; DIP: 192.168.92.10; SPORT: 23; DPORT: 16300; TCP", indicating that the packets in the target data stream are based on TCP transmission, and the target data stream
  • the source IP address of the middle packet is 192.168.0.93, the destination IP address is 192.168.92.10, the source port is 23, and the destination port is 16300.
  • Step 403 The network device generates packet loss information of the target data stream.
  • the packet loss information includes the identification of the target data flow and the identification of the network device.
  • the identifier of the network device is used to uniquely identify the network device in the communication network.
  • the identifier of the network device includes the IP address of the network device.
  • the packet loss information further includes one or more of the statistical time, the number of lost packets of the target data stream in the statistical period, and the information of the ingress port of the target data stream on the network device.
  • the statistical time includes the start time and end time of the statistical period, for example, the statistical time is "start: 2019-3-3 12:22:33; end: 2019-3-3 12:28:33"; or ,
  • the statistical time includes the generation time of packet loss information or the end time of the statistical period.
  • the statistical time is "2019-6-2520:35:16.635".
  • the statistical period of all network devices in the communication network may be the same or different, which is not limited in the embodiment of the present application.
  • a statistical period is a statistical period.
  • Step 404 The network device sends packet loss information to the analysis device.
  • the network device sends packet loss information to the analysis device in the form of a message.
  • the packet loss information may include the identifier of the target data stream, the identifier of the network device, the statistical time, the number of lost packets of the target data stream in the statistical period, and the ingress port information of the target data stream.
  • the identification of the target data stream, the statistical time, the number of lost packets of the target data stream during the statistical period, and the information of the ingress port of the target data stream on the network device can be carried in the load field of the packet for transmission, and the network device identity can be It is carried in the transmission of the message header or carried in the load field of the message.
  • FIG. 6 is a schematic diagram of a scenario in which a network device sends packet loss information to an analysis device according to an embodiment of the present application.
  • the communication network includes two network devices (dev1 and dev2), dev1 and dev2 have a network interface "10GE1/0/6" and a network interface "10GE/1/0/8".
  • 100 packets (packets, Pkts) in the first data stream enter dev1 from the network interface "10GE1/0/6", and 6 packets are discarded when passing through dev1, then dev1 Send the packet loss information D1 of the first data stream to the analysis device; the remaining 94 packets in the first data stream enter dev2 from the network interface "10GE1/0/6", and the first data stream has no packet loss when passing through dev2 , Dev2 continues to transmit the 94 packets to the downstream device.
  • 100 packets in the second data stream enter dev1 from the network interface "10GE1/0/8", and no packet loss occurs when passing through dev1.
  • Dev1 transmits 100 packets in the second data stream to dev2.
  • Packets 100 packets in the second data stream enter dev2 from the network interface "10GE1/0/8", and 40 packets are discarded when passing through dev2, then dev2 sends the second data stream to the analysis device
  • the packet loss information D2; dev2 continues to transmit the remaining 60 packets in the second data stream to the downstream device.
  • the source IP address (SIP) of the first data stream is 192.168.0.93, the destination IP address (DIP) is 192.168.92.10, the source port (SPORT) is 23, and the destination port (DPORT) is 16300; the second data
  • the source IP address of the flow is 192.168.3.10, the destination IP address is 192.168.62.10, the source port is 66, and the destination port is 16680.
  • the packet loss information D1 and packet loss information D2 sent by the network device to the analysis device include the source IP address, destination IP address, source port, destination port of the corresponding data flow, the data flow's incoming port (RXPORT) on the network device, and the loss information.
  • the statistical time may be the time when the packet loss information is generated.
  • Step 405 The analysis device determines the packet loss position of the target data flow based on the packet loss information.
  • the analysis device may store the packet loss information in the database.
  • the analysis device determines the packet loss location of the target data stream based on the database.
  • the packet loss position of the data stream refers to the network device where the packet loss of the data stream occurs.
  • the query instruction for the target data stream carries the identifier of the target data stream, and the query instruction may be triggered after the service of the target data stream fails.
  • the packet loss information of the target data stream in the database is stored in the form of a table, and the packet loss information received by the analysis device includes the five-tuple information of the target data stream, the identification of the network device, and the statistical time (the start time of the statistical period and the End time), information about the ingress port of the target data stream on the network device, and the number of lost packets of the target data stream during the statistical period.
  • the storage form of the packet loss information of the target data stream in the database can be as shown in Table 1.
  • the analysis device when the analysis device receives data that carries five-tuple information: "The source IP address is 1.1.1.1, the destination IP address is 2.2.2.2, the source port is 1000, the destination port is 80, and the transport layer protocol is UDP"
  • the analysis device can determine that the packet loss position of the data stream is Dev1 and the number of packets is 7 by querying Table 1.
  • the analysis device can also obtain the period of packet loss and the data flow on the packet loss device. Incoming port to achieve precise positioning of packet loss in the network.
  • the network device can obtain the identifier of the target data flow where the packet loss occurs, and generate packet loss information including the identifier of the target data flow and the identifier of the network device, and then Send the packet loss information to the analysis device, and the analysis device can determine the packet loss position of the target data stream based on the packet loss information. Since the packet loss information reported by the network device to the analysis device includes the identification of the data flow that has lost packets on the network device and the identification of the network device, the analysis device can determine that loss has occurred on the network device based on the packet loss information. The packet can also determine the specific data flow where the packet loss occurs on the network device.
  • the packet loss information can also include the statistical time, the number of lost packets of the target data stream in the statistical period, and the ingress port of the target data stream on the network device.
  • the analysis device can also determine the target data stream based on the packet loss information. The time period during which packet loss occurs, the number of packets lost, and the ingress port of the target data stream on the packet loss device, further improve the accuracy of packet loss positioning.
  • each network device in the communication network can report the packet loss information of the data stream in which packet loss occurs to the analysis device in real time, the analysis device can realize real-time packet loss location of the data stream of the entire network.
  • the analysis device can also store the received packet loss information in the database. When the service of a certain data stream fails, the analysis device can query the historical packet loss information of the data stream based on the database to determine the location of the packet loss. Fast packet loss positioning.
  • FIG. 7 is a schematic structural diagram of an apparatus for locating packet loss provided by an embodiment of the present application.
  • the device can be applied to the network equipment 102 in the packet loss location system shown in FIG. 1.
  • the device 70 includes:
  • the obtaining module 701 is configured to obtain an identifier of a target data flow, where the target data flow is a data flow in a network device where packet loss occurs.
  • the generating module 702 is configured to generate packet loss information of the target data stream, and the packet loss information includes the identifier of the target data stream and the identifier of the network device.
  • the sending module 703 is configured to send packet loss information to the analysis device for the analysis device to determine the packet loss position of the target data stream.
  • the packet loss information further includes one or more of the statistical time, the number of lost packets of the target data stream in the statistical period, and the information of the ingress port of the target data stream on the network device.
  • the apparatus 70 further includes:
  • the statistics module 704 is used to periodically count the data streams that have lost packets in the network device.
  • the identifier of the target data stream includes 5-tuple information of the target data stream.
  • the network device obtains the identifier of the target data flow in which packet loss occurs through the acquisition module, and generates the identifier of the target data flow and the identifier of the network device through the generation module.
  • the packet loss information is then sent to the analysis device through the sending module. Since the packet loss information reported by the network device to the analysis device includes the identification of the data flow that has lost packets on the network device and the identification of the network device, the analysis device can determine that loss has occurred on the network device based on the packet loss information.
  • the packet can also determine the specific data flow where the packet loss occurs on the network device. Compared with the existing packet loss location method, the packet loss location accuracy is improved.
  • FIG. 9 is a schematic structural diagram of a packet loss location device provided by another embodiment of the present application.
  • the device can be applied to the analysis device 101 in the packet loss location system shown in FIG. 1.
  • the device 90 includes:
  • the receiving module 901 is configured to receive packet loss information of a target data stream sent by a network device, where the packet loss information includes an identifier of the target data stream and an identifier of the network device, and the target data stream is a data stream in the network device where packet loss occurs.
  • the determining module 902 is configured to determine the packet loss position of the target data flow based on the packet loss information.
  • the packet loss information further includes one or more of the statistical time, the number of lost packets of the target data stream in the statistical period, and the information of the ingress port of the target data stream on the network device.
  • the device 90 further includes:
  • the storage module 903 is used to store the packet loss information in the database.
  • the determining module 902 is configured to: when a query instruction for the target data stream is received, determine the packet loss location of the target data stream based on the database, and the query instruction carries an identifier of the target data stream.
  • the analysis device receives the packet loss information of the target data stream sent by the network device through the receiving module, because the packet loss information reported by the network device to the analysis device is included in the network The identification of the data flow where the packet loss occurred on the device and the identification of the network device, so the analysis device can determine that the packet loss has occurred on the network device based on the packet loss information, and can also determine the specific data of the packet loss on the network device Compared with the existing packet loss location method, flow improves the accuracy of packet loss location.
  • Fig. 11 is a block diagram of a network device provided by an embodiment of the present application.
  • the network device 110 includes: a processor 1101 and a memory 1102.
  • the memory 1101 is used to store a computer program, and the computer program includes program instructions;
  • the processor 1102 is configured to call a computer program to implement the steps performed by the network device in the packet loss location method shown in FIG. 4.
  • the network device 110 further includes a communication bus 1103 and a communication interface 1104.
  • the processor 1101 includes one or more processing cores, and the processor 1101 executes various functional applications and data processing by running a computer program.
  • the memory 1102 may be used to store computer programs.
  • the memory may store an operating system and at least one application program unit required by the function.
  • the operating system can be a real-time operating system (Real Time eXecutive, RTX), LINUX, UNIX, WINDOWS, or OS X.
  • the communication interfaces 1104 may be multiple communication interfaces 1104, and the communication interfaces 1104 are used to communicate with other devices. For example, communicating with analysis equipment.
  • the memory 1102 and the communication interface 1104 are respectively connected to the processor 1101 through a communication bus 1103.
  • Fig. 12 is a block diagram of an analysis device provided by an embodiment of the present application. As shown in FIG. 12, the analysis device 120 includes a processor 1201 and a memory 1202.
  • the memory 1201 is configured to store a computer program, and the computer program includes program instructions;
  • the processor 1202 is configured to call a computer program to implement the steps executed by the analysis device in the packet loss location method shown in FIG. 4.
  • the analysis device 120 further includes a communication bus 1203 and a communication interface 1204.
  • the processor 1201 includes one or more processing cores, and the processor 1201 executes various functional applications and data processing by running a computer program.
  • the memory 1202 may be used to store computer programs.
  • the memory may store an operating system and at least one application program unit required by the function.
  • the operating system can be a real-time operating system (Real Time eXecutive, RTX), LINUX, UNIX, WINDOWS, or OS X.
  • the communication interface 1204 may be multiple communication interfaces 1204, and the communication interface 1204 is used to communicate with other devices. For example, communicating with network devices.
  • the memory 1202 and the communication interface 1204 are respectively connected to the processor 1201 through a communication bus 1203.
  • the embodiment of the present application also provides a computer storage medium with instructions stored on the computer storage medium.
  • the instructions are executed by the processor of the network device, the network device in the packet loss location method shown in FIG. 4 is implemented.
  • the steps executed; or, when the instructions are executed by the processor of the analysis device, the steps executed by the analysis device in the packet loss location method shown in FIG. 4 are implemented.
  • the terms “first”, “second” and “third” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • the term “at least one” refers to one or more, and the term “plurality” refers to two or more, unless specifically defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种丢包定位方法、装置及系统、计算机存储介质,属于网络技术领域。网络设备获取目标数据流的标识,该目标数据流为网络设备中发生丢包的数据流;网络设备生成目标数据流的丢包信息,该丢包信息包括目标数据流的标识以及网络设备的标识;网络设备向分析设备发送丢包信息,供分析设备确定目标数据流的丢包位置。由于网络设备向分析设备发送的丢包信息中包括在该网络设备上发生丢包的数据流的标识以及该网络设备的标识,因此分析设备基于丢包信息既可以确定该网络设备上发生了丢包,又可以确定在该网络设备上发生丢包的具体数据流,提高了丢包定位精度。

Description

丢包定位方法、装置及系统、计算机存储介质 技术领域
本申请涉及网络技术领域,特别涉及一种丢包定位方法、装置及系统、计算机存储介质。
背景技术
随着互联网协议(Internet Protocol,IP)技术的迅猛发展,越来越多的业务通过IP网络实现传输,即发送端和接收端之间通过网络设备转发数据流实现通信。目前大部分业务对丢包敏感,尤其是视频点播或视频会议等实时业务对丢包极为敏感。
目前通常采用网络包守恒算法(packet conservation algorithm for internet,iPCA)进行丢包定位。分析设备周期性地获取网络中各个网络设备在统计周期内的收包数量以及发包数量。当某个网络设备在统计周期内的发包数量少于收包数量时,该网络设备被确定为该统计周期内的丢包设备。
但是,采用目前的丢包定位方法仅能确定网络设备上是否发生丢包,丢包定位精度较低。
发明内容
本申请提供了一种丢包定位方法、装置及系统、计算机存储介质,可以解决目前的丢包定位精度较低的问题。
第一方面,提供了一种丢包定位方法。网络设备获取目标数据流的标识,该目标数据流为网络设备中发生丢包的数据流;网络设备生成目标数据流的丢包信息,该丢包信息包括目标数据流的标识以及网络设备的标识;网络设备向分析设备发送丢包信息,供分析设备确定目标数据流的丢包位置。
本申请中,由于网络设备向分析设备上报的丢包信息中包括在该网络设备上发生丢包的数据流的标识以及该网络设备的标识,因此分析设备基于丢包信息既可以确定该网络设备上发生了丢包,又可以确定在该网络设备上发生丢包的具体数据流,与现有的丢包定位方法相比,提高了丢包定位精度。当某条数据流的业务发生故障时,分析设备可以根据该数据流的历史丢包信息确定该数据流的丢包位置,实现快速丢包定位。
可选地,丢包信息还包括统计时刻、目标数据流在统计时段内的丢包数量以及目标数据流在网络设备上的入端口的信息中的一个或多个。
分析设备基于丢包信息还可以确定目标数据流发生丢包的时段、丢包数量以及目标数据流在丢包设备上的入端口,进一步提高丢包定位精度。
可选地,网络设备还可以周期性地统计网络设备中发生丢包的数据流。
可选地,目标数据流的标识包括目标数据流的五元组信息。
第二方面,提供了另一种丢包定位方法。分析设备接收网络设备发送的目标数据流的丢包信息,丢包信息包括目标数据流的标识以及网络设备的标识,目标数据流为网络设备中发生丢包的数据流;分析设备基于丢包信息,确定目标数据流的丢包位置。
可选地,丢包信息还包括统计时刻、目标数据流在统计时段内的丢包数量以及目标数据流在网络设备上的入端口的信息中的一个或多个。
可选地,分析设备在接收网络设备发送的丢包信息之后,可以将丢包信息存储在数据库 中;则分析设备基于丢包信息,确定目标数据流的丢包位置的过程,包括:当分析设备接收到针对目标数据流的查询指令时,基于数据库确定目标数据流的丢包位置,查询指令中携带有目标数据流的标识。
本申请中,分析设备可以将接收到的丢包信息存储至数据库中,当某条数据流的业务发生故障时,分析设备可以基于数据库查询该数据流的历史丢包信息以确定丢包位置,实现快速丢包定位。
第三方面,提供了一种丢包定位装置,用于网络设备。所述装置包括多个功能模块,所述多个功能模块相互作用,实现上述第一方面及其各实施方式中的方法。所述多个功能模块可以基于软件、硬件或软件和硬件的结合实现,且所述多个功能模块可以基于具体实现进行任意组合或分割。
第四方面,提供了另一种丢包定位装置,用于分析设备。所述装置包括多个功能模块,所述多个功能模块相互作用,实现上述第二方面及其各实施方式中的方法。所述多个功能模块可以基于软件、硬件或软件和硬件的结合实现,且所述多个功能模块可以基于具体实现进行任意组合或分割。
第五方面,提供了一种网络设备,所述网络设备包括:处理器和存储器;
所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
所述处理器,用于调用所述计算机程序,实现如第一方面任一所述的丢包定位方法。
第六方面,提供了一种分析设备,所述分析设备包括:处理器和存储器;
所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
所述处理器,用于调用所述计算机程序,实现如第二方面任一所述的丢包定位方法。
第七方面,提供了一种丢包定位系统,所述系统包括:网络设备和分析设备,所述网络设备包括如第三方面所述的丢包定位装置,所述分析设备包括如第四方面所述的丢包定位装置。
第八方面,提供了一种计算机存储介质,所述计算机存储介质上存储有指令,当所述指令被网络设备的处理器执行时,实现如第一方面任一所述的丢包定位方法;或者,当所述指令被分析设备的处理器执行时,实现如第二方面任一所述的丢包定位方法。
本申请提供的技术方案带来的有益效果至少包括:
本申请提供的丢包定位方法,网络设备可以获取发生丢包的目标数据流的标识,并生成包括目标数据流的标识以及该网络设备的标识的丢包信息,然后向分析设备发送该丢包信息,分析设备可以基于该丢包信息,确定目标数据流的丢包位置。由于网络设备向分析设备上报的丢包信息中包括在该网络设备上发生丢包的数据流的标识以及该网络设备的标识,因此分析设备基于丢包信息既可以确定该网络设备上发生了丢包,又可以确定在该网络设备上发生丢包的具体数据流,与现有的丢包定位方法相比,提高了丢包定位精度。另外,丢包信息中还可以包括统计时刻、目标数据流在统计时段内的丢包数量以及目标数据流在网络设备上的入端口的信息,则分析设备基于丢包信息还可以确定目标数据流发生丢包的时段、丢包数量以及目标数据流在丢包设备上的入端口,进一步提高丢包定位精度。
另外,由于通信网络中的每个网络设备均可以向分析设备实时上报发生丢包的数据流的丢包信息,因此可以通过分析设备实现对全网数据流的实时丢包定位。此外,分析设备还可以将接收到的丢包信息存储至数据库中,当某条数据流的业务发生故障时,分析设备可以基于数据库查询该数据流的历史丢包信息以确定丢包位置,实现快速丢包定位。
附图说明
图1是本申请实施例提供的一种丢包定位系统的结构示意图;
图2是本申请实施例提供的一种通信网络的结构示意图;
图3是本申请实施例提供的另一种通信网络的结构示意图;
图4是本申请实施例提供的一种丢包定位方法的流程图;
图5是本申请实施例提供的一种网络设备的结构示意图;
图6是本申请实施例提供的一种网络设备向分析设备发送丢包信息的场景示意图;
图7是本申请实施例提供的一种丢包定位装置的结构示意图;
图8是本申请实施例提供的另一种丢包定位装置的结构示意图;
图9是本申请另一实施例提供的一种丢包定位装置的结构示意图;
图10是本申请另一实施例提供的另一种丢包定位装置的结构示意图;
图11是本申请实施例提供的一种网络设备的框图;
图12是本申请实施例提供的一种分析设备的框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
由于目前的丢包定位方法中,分析设备仅能获取网络设备在统计周期内总的收包数量以及总的发包数量,因此分析设备仅能判断在统计周期内网络设备上是否发生过丢包,即仅能确定哪个网络设备上发生过丢包,而无法定位到哪一条数据流在网络设备上发生丢包。另外,当某个业务发生故障时,若网络中存在多个发生丢包的网络设备,基于目前的丢包定位方法也无法确定该发生故障的业务的数据流具体是在哪个或哪些网络设备上发生丢包的,因此目前的丢包定位精度较低。
图1是本申请实施例提供的一种丢包定位系统的结构示意图。如图1所示,该丢包定位系统中包括分析设备101以及通信网络中的网络设备102。图1中网络设备的数量仅用作示意,不作为对本申请实施例提供的通信网络的限制。分析设备101可以是通信网络中的网关设备。
可选地,分析设备101可以是一台服务器,或者由若干台服务器组成的服务器集群,或者是一个云计算服务中心。网络设备102可以是交换机或路由器等。分析设备101与通信网络中的每个网络设备102通过有线网络或无线网络连接。
本申请实施例提供的通信网络可以是数据中心网络(data center network,DCN)、城域网络、广域网络或园区网络等,本申请实施例对通信网络的类型不做限定。可选地,本申请实施例提供的通信网络可以是两层网络或三层网络。
示例地,图2是本申请实施例提供的一种通信网络的结构示意图。如图2所示,该通信网络为两层网络,包括汇聚层和接入层。汇聚层是通信网络的高速交换主干,接入层用于将工作站(包括终端或服务器等)接入通信网络。可选地,参见图2,汇聚层包括2个汇聚层网络设备102a1和102a2,接入层包括4个接入层网络设备102b1-102b4。如图2所示的通信网络可以为胖树(fat tree or leaf-spine)拓扑网络,则汇聚层网络设备102a1和102a2为spine交换机,接入层网络设备102b1-102b4为leaf交换机。每个leaf交换机的上行链路数等于spine交换机的数量,每个spine交换机的下行链路数等于leaf交换机的数量。
示例地,图3是本申请实施例提供的另一种通信网络的结构示意图。如图3所示,该通信网络为三层网络,包括核心层、汇聚层和接入层。核心层是通信网络的高速交换主干,汇聚层用于提供汇聚连接(连接接入层和核心层),接入层用于将工作站接入通信网络。可选地,参见图3,核心层包括2个核心网络设备102c1和102c2;汇聚层包括4个汇聚层网络设备102d1-102d4,其中汇聚层网络设备102d1和102d2分为第一组,汇聚层网络设备102d3和102d4分为第二组;接入层包括8个接入层网络设备102e1-102e8,其中4个接入层网络设备102e1-102e4与第一组汇聚层网络设备102d1-102d2连接,另外4个接入层网络设备102e5-102e8与第二组汇聚层网络设备102d3-102d4连接。可选地,该通信网络的汇聚层和接入层可以组成胖树拓扑网络,则汇聚层网络设备102d1-102d4为spine交换机,接入层网络设备102e1-102e8为leaf交换机。
本申请实施例中,如图1所示的丢包定位系统中的网络设备102可以是如图2或如图3所示的通信网络中的任一网络设备。
图4是本申请实施例提供的一种丢包定位方法的流程图。该方法可以应用于如图1所示的丢包定位系统中,如图1所示,该方法包括:
步骤401、网络设备周期性地统计网络设备中发生丢包的数据流。
可选地,图5是本申请实施例提供的一种网络设备的结构示意图。如图5所示,该网络设备包括控制芯片501和转发芯片502。控制芯片501与转发芯片502通过物理连线连接。其中,控制芯片可以是中央处理器(central processing unit,CPU)或现场可编程门阵列(field programmable gate array,FPGA)芯片;转发芯片可以是网络处理器(network processor,NP)。可选地,网络设备中的控制芯片和转发芯片也可以集成,即控制功能和转发功能集成在一个芯片上,本申请实施例对此不做限定。
可选地,转发芯片具有多个网络接口(interface),用于接收数据流的网络接口为该数据流在网络设备上的入端口,同一条数据流中所有报文的入端口相同。数据流中的报文从转发芯片的某个网络接口进入转发芯片后,可以由转发芯片处理,或者由转发芯片传输至控制芯片并由控制芯片处理。其中,转发芯片和/或控制芯片对报文的处理动作包括丢弃(drop)。本申请实施例中,转发芯片和/或控制芯片可以记录丢弃的报文的信息,报文的信息包括报文的五元组信息以及报文在网络设备上的入端口的信息。报文的五元组信息包括报文的源IP地址、目的IP地址、源端口、目的端口和传输层协议。报文在网络设备上的入端口的信息包括报文在网络设备上的入端口的端口号。其中,传输层协议包括传输控制协议(Transmission Control Protocol,TCP)和用户数据报协议(User Datagram Protocol,UDP)。
网络设备可以周期性地统计网络设备中发生丢包的数据流以及丢包数量。例如,在每个统计时段的结束时刻,网络设备获取在该统计时段内发生丢包的所有数据流以及发生丢包的每条数据流的丢包数量。
步骤402、网络设备获取目标数据流的标识,该目标数据流为网络设备中发生丢包的数据流。
可选地,目标数据流的标识包括目标数据流的五元组信息。由于同一条数据流中所有报文的五元组信息均相同,因此数据流的五元组信息即为数据流中报文的五元组信息。
示例地,目标数据流的标识可以为:“SIP:192.168.0.93;DIP:192.168.92.10;SPORT:23;DPORT:16300;TCP”,表示目标数据流中的报文基于TCP传输,目标数据流中报文的源IP地址为192.168.0.93,目的IP地址为192.168.92.10,源端口为23,目的端口为16300。
步骤403、网络设备生成目标数据流的丢包信息。
其中,丢包信息包括目标数据流的标识以及网络设备的标识。网络设备的标识用于在通信网络中唯一标识该网络设备。可选地,网络设备的标识包括网络设备的IP地址。
可选地,丢包信息还包括统计时刻、目标数据流在统计时段内的丢包数量以及目标数据流在网络设备上的入端口的信息中的一个或多个。可选地,统计时刻包括统计时段的开始时刻和结束时刻,例如,统计时刻为“start:2019-3-3 12:22:33;end:2019-3-3 12:28:33”;或者,统计时刻包括丢包信息的生成时刻或统计时段的结束时刻,例如,统计时刻为“2019-6-2520:35:16.635”。通信网络中所有网络设备的统计时段可以相同,也可以不同,本申请实施例对此不做限定。当网络设备周期性地统计网络设备中发生丢包的数据流时,一个统计时段即一个统计周期。
步骤404、网络设备向分析设备发送丢包信息。
在本申请实施例中,网络设备以报文的形式向分析设备发送丢包信息。该丢包信息可以包括目标数据流的标识、网络设备的标识、统计时刻、目标数据流在统计时段内的丢包数量以及目标数据流的入端口信息。其中,目标数据流的标识、统计时刻、目标数据流在统计时段内的丢包数量以及目标数据流在网络设备上的入端口的信息可以承载于报文的负载字段传输,网络设备的标识可以承载于报文头传输或者承载于报文的负载字段传输。
示例地,图6是本申请实施例提供的一种网络设备向分析设备发送丢包信息的场景示意图。如图6所示,通信网络中包括两个网络设备(dev1和dev2),dev1和dev2具有网络接口“10GE1/0/6”和网络接口“10GE/1/0/8”。在某个统计时段内,第一数据流中的100个报文(packets,Pkts)从网络接口“10GE1/0/6”进入dev1,并在经过dev1时被丢弃了6个报文,则dev1向分析设备发送第一数据流的丢包信息D1;第一数据流中剩余的94个报文从网络接口“10GE1/0/6”进入dev2,第一数据流在经过dev2时没有发生丢包,dev2继续向下游设备传输该94个报文。在该统计时段内,第二数据流中的100个报文从网络接口“10GE1/0/8”进入dev1,并在经过dev1时没有发生丢包,dev1向dev2传输第二数据流中的100个报文;第二数据流中的100个报文从网络接口“10GE1/0/8”进入dev2,并在经过dev2时被丢弃了40个报文,则dev2向分析设备发送第二数据流的丢包信息D2;dev2继续向下游设备传输第二数据流中剩余的60个报文。参见图6,第一数据流的源IP地址(SIP)为192.168.0.93,目的IP地址(DIP)为192.168.92.10,源端口(SPORT)为23,目的端口(DPORT)为16300;第二数据流的源IP地址为192.168.3.10,目的IP地址为192.168.62.10,源端口为66,目的端口为16680。网络设备向分析设备发送的丢包信息D1和丢包信息D2包括对应的数据流的源IP地址、目的IP地址、源端口、目的端口、数据流在网络设备上的入端口(RXPORT)、丢包数量(DROP)、网络设备的标识(HOST)以及统计时刻(DATA),该统计时刻可以是丢包信息的生成时刻。
步骤405、分析设备基于丢包信息,确定目标数据流的丢包位置。
可选地,分析设备在接收到网络设备发送的丢包信息后,可以将丢包信息存储在数据库中。当接收到针对目标数据流的查询指令时,分析设备基于数据库确定目标数据流的丢包位置。数据流的丢包位置指数据流发生丢包所在的网络设备。其中,针对目标数据流的查询指令中携带有目标数据流的标识,该查询指令可以是目标数据流的业务发生故障后触发的。
示例地,数据库中目标数据流的丢包信息以表的形式存储,分析设备接收到的丢包信息包括目标数据流的五元组信息、网络设备的标识、统计时刻(统计时段的开始时刻和结束时刻)、目标数据流在网络设备上的入端口的信息以及目标数据流在统计时段内的丢包数量。则数据库中目标数据流的丢包信息的存储形式可以如表1所示。
表1
Figure PCTCN2020103614-appb-000001
示例地,当分析设备接收到携带有五元组信息:“源IP地址为1.1.1.1、目的IP地址为2.2.2.2、源端口为1000、目的端口为80、传输层协议为UDP”的数据流的查询指令时,分析设备通过查询表1,可以确定该数据流的丢包位置为Dev1,丢包数量为7,分析设备还可以获取发生丢包的时段以及数据流在丢包设备上的入端口,实现网络中丢包的精准定位。
本申请实施例提供的丢包定位方法的步骤先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减。任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
综上所述,本申请实施例提供的丢包定位方法,网络设备可以获取发生丢包的目标数据流的标识,并生成包括目标数据流的标识以及该网络设备的标识的丢包信息,然后向分析设备发送该丢包信息,分析设备可以基于该丢包信息,确定目标数据流的丢包位置。由于网络设备向分析设备上报的丢包信息中包括在该网络设备上发生丢包的数据流的标识以及该网络设备的标识,因此分析设备基于丢包信息既可以确定该网络设备上发生了丢包,又可以确定在该网络设备上发生丢包的具体数据流,与现有的丢包定位方法相比,提高了丢包定位精度。另外,丢包信息中还可以包括统计时刻、目标数据流在统计时段内的丢包数量以及目标数据流在网络设备上的入端口的信息,则分析设备基于丢包信息还可以确定目标数据流发生丢包的时段、丢包数量以及目标数据流在丢包设备上的入端口,进一步提高丢包定位精度。
另外,由于通信网络中的每个网络设备均可以向分析设备实时上报发生丢包的数据流的丢包信息,因此可以通过分析设备实现对全网数据流的实时丢包定位。此外,分析设备还可以将接收到的丢包信息存储至数据库中,当某条数据流的业务发生故障时,分析设备可以基于数据库查询该数据流的历史丢包信息以确定丢包位置,实现快速丢包定位。
图7是本申请实施例提供的一种丢包定位装置的结构示意图。该装置可以应用于如图1所示的丢包定位系统中的网络设备102,如图7所示,装置70包括:
获取模块701,用于获取目标数据流的标识,该目标数据流为网络设备中发生丢包的数据流。
生成模块702,用于生成目标数据流的丢包信息,丢包信息包括目标数据流的标识以及网络设备的标识。
发送模块703,用于向分析设备发送丢包信息,供分析设备确定目标数据流的丢包位置。
可选地,丢包信息还包括统计时刻、目标数据流在统计时段内的丢包数量以及目标数据流在网络设备上的入端口的信息中的一个或多个。
可选地,如图8所示,装置70还包括:
统计模块704,用于周期性地统计网络设备中发生丢包的数据流。
可选地,目标数据流的标识包括目标数据流的五元组信息。
综上所述,本申请实施例提供的丢包定位装置,网络设备通过获取模块获取发生丢包的 目标数据流的标识,并通过生成模块生成包括目标数据流的标识以及该网络设备的标识的丢包信息,然后通过发送模块向分析设备发送该丢包信息。由于网络设备向分析设备上报的丢包信息中包括在该网络设备上发生丢包的数据流的标识以及该网络设备的标识,因此分析设备基于丢包信息既可以确定该网络设备上发生了丢包,又可以确定在该网络设备上发生丢包的具体数据流,与现有的丢包定位方法相比,提高了丢包定位精度。
图9是本申请另一实施例提供的一种丢包定位装置的结构示意图。该装置可以应用于如图1所示的丢包定位系统中的分析设备101,如图9所示,装置90包括:
接收模块901,用于接收网络设备发送的目标数据流的丢包信息,该丢包信息包括目标数据流的标识以及网络设备的标识,目标数据流为网络设备中发生丢包的数据流。
确定模块902,用于基于丢包信息,确定目标数据流的丢包位置。
可选地,丢包信息还包括统计时刻、目标数据流在统计时段内的丢包数量以及目标数据流在网络设备上的入端口的信息中的一个或多个。
可选地,如图10所示,装置90还包括:
存储模块903,用于将丢包信息存储在数据库中。则确定模块902,用于:当接收到针对目标数据流的查询指令时,基于数据库确定目标数据流的丢包位置,查询指令中携带有目标数据流的标识。
综上所述,本申请实施例提供的丢包定位装置,分析设备通过接收模块接收网络设备发送的目标数据流的丢包信息,由于网络设备向分析设备上报的丢包信息中包括在该网络设备上发生丢包的数据流的标识以及该网络设备的标识,因此分析设备基于丢包信息既可以确定该网络设备上发生了丢包,又可以确定在该网络设备上发生丢包的具体数据流,与现有的丢包定位方法相比,提高了丢包定位精度。
图11是本申请实施例提供的一种网络设备的框图。如图11所示,该网络设备110包括:处理器1101和存储器1102。
存储器1101,用于存储计算机程序,该计算机程序包括程序指令;
处理器1102,用于调用计算机程序,实现如图4所示的丢包定位方法中网络设备执行的步骤。
可选地,该网络设备110还包括通信总线1103和通信接口1104。
其中,处理器1101包括一个或者一个以上处理核心,处理器1101通过运行计算机程序执行各种功能应用以及数据处理。
存储器1102可用于存储计算机程序。可选地,存储器可存储操作系统和至少一个功能所需的应用程序单元。操作系统可以是实时操作系统(Real Time eXecutive,RTX)、LINUX、UNIX、WINDOWS或OS X之类的操作系统。
通信接口1104可以为多个,通信接口1104用于与其它设备进行通信。例如与分析设备进行通信。
存储器1102与通信接口1104分别通过通信总线1103与处理器1101连接。
图12是本申请实施例提供的一种分析设备的框图。如图12所示,该分析设备120包括:处理器1201和存储器1202。
存储器1201,用于存储计算机程序,该计算机程序包括程序指令;
处理器1202,用于调用计算机程序,实现如图4所示的丢包定位方法中分析设备执行的步骤。
可选地,该分析设备120还包括通信总线1203和通信接口1204。
其中,处理器1201包括一个或者一个以上处理核心,处理器1201通过运行计算机程序执行各种功能应用以及数据处理。
存储器1202可用于存储计算机程序。可选地,存储器可存储操作系统和至少一个功能所需的应用程序单元。操作系统可以是实时操作系统(Real Time eXecutive,RTX)、LINUX、UNIX、WINDOWS或OS X之类的操作系统。
通信接口1204可以为多个,通信接口1204用于与其它设备进行通信。例如与网络设备进行通信。
存储器1202与通信接口1204分别通过通信总线1203与处理器1201连接。
本申请实施例还提供了一种计算机存储介质,所述计算机存储介质上存储有指令,当所述指令被网络设备的处理器执行时,实现如图4所示的丢包定位方法中网络设备执行的步骤;或者,当所述指令被分析设备的处理器执行时,实现如图4所示的丢包定位方法中分析设备执行的步骤。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本申请实施例中,术语“第一”、“第二”和“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“至少一个”是指一个或多个,术语“多个”指两个或两个以上,除非另有明确的限定。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的构思和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (18)

  1. 一种丢包定位方法,其特征在于,用于网络设备,所述方法包括:
    获取目标数据流的标识,所述目标数据流为所述网络设备中发生丢包的数据流;
    生成所述目标数据流的丢包信息,所述丢包信息包括所述目标数据流的标识以及所述网络设备的标识;
    向分析设备发送所述丢包信息,供所述分析设备确定所述目标数据流的丢包位置。
  2. 根据权利要求1所述的方法,其特征在于,所述丢包信息还包括统计时刻、所述目标数据流在统计时段内的丢包数量以及所述目标数据流在所述网络设备上的入端口的信息中的一个或多个。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    周期性地统计所述网络设备中发生丢包的数据流。
  4. 根据权利要求1至3任一所述的方法,其特征在于,所述目标数据流的标识包括所述目标数据流的五元组信息。
  5. 一种丢包定位方法,其特征在于,用于分析设备,所述方法包括:
    接收网络设备发送的目标数据流的丢包信息,所述丢包信息包括所述目标数据流的标识以及所述网络设备的标识,所述目标数据流为所述网络设备中发生丢包的数据流;
    基于所述丢包信息,确定所述目标数据流的丢包位置。
  6. 根据权利要求5所述的方法,其特征在于,所述丢包信息还包括统计时刻、所述目标数据流在统计时段内的丢包数量以及所述目标数据流在所述网络设备上的入端口的信息中的一个或多个。
  7. 根据权利要求5或6所述的方法,其特征在于,在所述接收网络设备发送的丢包信息之后,所述方法还包括:
    将所述丢包信息存储在数据库中;
    所述基于所述丢包信息,确定所述目标数据流的丢包位置,包括:
    当接收到针对所述目标数据流的查询指令时,基于所述数据库确定所述目标数据流的丢包位置,所述查询指令中携带有所述目标数据流的标识。
  8. 一种丢包定位装置,其特征在于,用于网络设备,所述装置包括:
    获取模块,用于获取目标数据流的标识,所述目标数据流为所述网络设备中发生丢包的数据流;
    生成模块,用于生成所述目标数据流的丢包信息,所述丢包信息包括所述目标数据流的标识以及所述网络设备的标识;
    发送模块,用于向分析设备发送所述丢包信息,供所述分析设备确定所述目标数据流的丢包位置。
  9. 根据权利要求8所述的装置,其特征在于,所述丢包信息还包括统计时刻、所述目标数据流在统计时段内的丢包数量以及所述目标数据流在所述网络设备上的入端口的信息中的一个或多个。
  10. 根据权利要求8或9所述的装置,其特征在于,所述装置还包括:
    统计模块,用于周期性地统计所述网络设备中发生丢包的数据流。
  11. 根据权利要求8至10任一所述的装置,其特征在于,所述目标数据流的标识包括所述目标数据流的五元组信息。
  12. 一种丢包定位装置,其特征在于,用于分析设备,所述装置包括:
    接收模块,用于接收网络设备发送的目标数据流的丢包信息,所述丢包信息包括所述目标数据流的标识以及所述网络设备的标识,所述目标数据流为所述网络设备中发生丢包的数据流;
    确定模块,用于基于所述丢包信息,确定所述目标数据流的丢包位置。
  13. 根据权利要求12所述的装置,其特征在于,所述丢包信息还包括统计时刻、所述目标数据流在统计时段内的丢包数量以及所述目标数据流在所述网络设备上的入端口的信息中的一个或多个。
  14. 根据权利要求12或13所述的装置,其特征在于,所述装置还包括:
    存储模块,用于将所述丢包信息存储在数据库中;
    所述确定模块,用于:
    当接收到针对所述目标数据流的查询指令时,基于所述数据库确定所述目标数据流的丢包位置,所述查询指令中携带有所述目标数据流的标识。
  15. 一种网络设备,其特征在于,所述网络设备包括:处理器和存储器;
    所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
    所述处理器,用于调用所述计算机程序,实现如权利要求1至4任一所述的丢包定位方法。
  16. 一种分析设备,其特征在于,所述分析设备包括:处理器和存储器;
    所述存储器,用于存储计算机程序,所述计算机程序包括程序指令;
    所述处理器,用于调用所述计算机程序,实现如权利要求5至7任一所述的丢包定位方法。
  17. 一种丢包定位系统,其特征在于,所述系统包括:网络设备和分析设备,所述网络设备包括如权利要求8至11任一所述的丢包定位装置,所述分析设备包括如权利要求12至14任一所述的丢包定位装置。
  18. 一种计算机存储介质,其特征在于,所述计算机存储介质上存储有指令,当所述指 令被网络设备的处理器执行时,实现如权利要求1至4任一所述的丢包定位方法;或者,当所述指令被分析设备的处理器执行时,实现如权利要求5至7任一所述的丢包定位方法。
PCT/CN2020/103614 2019-07-25 2020-07-22 丢包定位方法、装置及系统、计算机存储介质 WO2021013205A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20843507.3A EP3985927A4 (en) 2019-07-25 2020-07-22 METHOD, APPARATUS AND SYSTEM FOR POSITIONING PACKET LOSS, AND COMPUTER STORAGE MEDIUM
US17/581,012 US20220150107A1 (en) 2019-07-25 2022-01-21 Packet loss positioning method, apparatus, and system, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910678152.X 2019-07-25
CN201910678152.XA CN112291076A (zh) 2019-07-25 2019-07-25 丢包定位方法、装置及系统、计算机存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/581,012 Continuation US20220150107A1 (en) 2019-07-25 2022-01-21 Packet loss positioning method, apparatus, and system, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2021013205A1 true WO2021013205A1 (zh) 2021-01-28

Family

ID=74193266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103614 WO2021013205A1 (zh) 2019-07-25 2020-07-22 丢包定位方法、装置及系统、计算机存储介质

Country Status (4)

Country Link
US (1) US20220150107A1 (zh)
EP (1) EP3985927A4 (zh)
CN (1) CN112291076A (zh)
WO (1) WO2021013205A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109248A1 (zh) * 2021-12-13 2023-06-22 成都拟合未来科技有限公司 一种多imu数据对齐、丢包补全方法、系统和介质
CN114629824B (zh) * 2022-03-24 2024-03-19 阿里巴巴(中国)有限公司 丢包定位方法、装置、计算设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100157788A1 (en) * 2008-12-19 2010-06-24 Cisco Technology, Inc. Determination of packet loss locations
CN104506369A (zh) * 2014-12-31 2015-04-08 北京华为数字技术有限公司 一种丢包位置的检测方法和设备
CN106341333A (zh) * 2015-07-10 2017-01-18 杭州华三通信技术有限公司 应用于vxlan中的丢包定位方法和装置
CN107645398A (zh) * 2016-07-22 2018-01-30 北京金山云网络技术有限公司 一种诊断网络性能和故障的方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008014981B4 (de) * 2008-03-19 2013-11-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zum Erzeugen eines Datenstroms basierend auf mit Paketfolgemarkierungen versehenen Datenpaketen und Satellitenempfänger zum Bereitstellen des Datenstroms
FR2931021A1 (fr) * 2008-05-09 2009-11-13 Canon Kk Procede de synchronisation d'un flux de donnees transmis sur un reseau de communication synchrone, produit programme d'ordinateur, moyen de stockage et dispositif recepteur correspondants.
CN101877659B (zh) * 2010-06-30 2014-07-16 中兴通讯股份有限公司 一种丢包监控的方法、设备和系统
WO2011144068A2 (zh) * 2011-05-24 2011-11-24 华为技术有限公司 网络丢包信息报告方法及装置
CN103560923B (zh) * 2013-11-20 2016-08-17 烽火通信科技股份有限公司 分组传送网的网络故障快速定位方法
CN105791008B (zh) * 2016-03-02 2019-10-22 华为技术有限公司 确定丢包位置和原因的方法和装置
CN109743340B (zh) * 2019-04-04 2019-07-30 华为技术有限公司 报文处理的方法和网络装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100157788A1 (en) * 2008-12-19 2010-06-24 Cisco Technology, Inc. Determination of packet loss locations
CN104506369A (zh) * 2014-12-31 2015-04-08 北京华为数字技术有限公司 一种丢包位置的检测方法和设备
CN106341333A (zh) * 2015-07-10 2017-01-18 杭州华三通信技术有限公司 应用于vxlan中的丢包定位方法和装置
CN107645398A (zh) * 2016-07-22 2018-01-30 北京金山云网络技术有限公司 一种诊断网络性能和故障的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3985927A4 *

Also Published As

Publication number Publication date
US20220150107A1 (en) 2022-05-12
CN112291076A (zh) 2021-01-29
EP3985927A4 (en) 2022-07-27
EP3985927A1 (en) 2022-04-20

Similar Documents

Publication Publication Date Title
US10291497B2 (en) Session-based traffic statistics logging for virtual routers
CN109391560B (zh) 网络拥塞的通告方法、代理节点及计算机设备
US9571382B2 (en) Method, controller, and system for processing data packet
US8879396B2 (en) System and method for using dynamic allocation of virtual lanes to alleviate congestion in a fat-tree topology
CN107948076B (zh) 一种转发报文的方法及装置
US9071529B2 (en) Method and apparatus for accelerating forwarding in software-defined networks
US9197568B2 (en) Method for providing quality of service in software-defined networking based network and apparatus using the same
EP3142310A1 (en) Method, device, and system for configuring flow entries
EP2055052B1 (en) Triggering bandwidth reservation and priority remarking
US8229705B1 (en) Performance monitoring in computer networks
EP2773073B1 (en) Entry generation method, message receiving method, and corresponding device and system
US11870641B2 (en) Enabling enterprise segmentation with 5G slices in a service provider network
JP7313480B2 (ja) スライスベースネットワークにおける輻輳回避
US11102273B2 (en) Uplink performance management
CN104579894B (zh) 分布式虚拟交换机系统的IGMP Snooping实现方法及装置
WO2021013205A1 (zh) 丢包定位方法、装置及系统、计算机存储介质
US9787567B1 (en) Systems and methods for network traffic monitoring
WO2021128927A1 (zh) 报文的处理方法及装置、存储介质和电子装置
WO2016029345A1 (zh) 网络流的信息统计方法和装置
KR20180040356A (ko) 소프트웨어 정의 네트워킹에서의 목적지 기반 패킷 전송 제어 방법 및 장치
US20220210036A1 (en) Network Measurement System And Method, Device, And Storage Medium
US10574579B2 (en) End to end quality of service in storage area networks
WO2022160876A1 (zh) 一种接入用户设备的接口管理方法及接入用户设备
CN109756412A (zh) 一种数据报文转发方法以及设备
EP4030694A1 (en) A method and system for packet data network service slicing over a network infrastructure for real-time ip services

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20843507

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020843507

Country of ref document: EP

Effective date: 20220111

NENP Non-entry into the national phase

Ref country code: DE