WO2021012253A1 - 集群通信系统信号中转方法、装置、终端、中转设备及集群通信系统 - Google Patents
集群通信系统信号中转方法、装置、终端、中转设备及集群通信系统 Download PDFInfo
- Publication number
- WO2021012253A1 WO2021012253A1 PCT/CN2019/097664 CN2019097664W WO2021012253A1 WO 2021012253 A1 WO2021012253 A1 WO 2021012253A1 CN 2019097664 W CN2019097664 W CN 2019097664W WO 2021012253 A1 WO2021012253 A1 WO 2021012253A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time slot
- preset time
- service data
- transfer device
- transfer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
Definitions
- the present invention relates to cluster communication, and more specifically, to a method, terminal, device, transfer equipment and cluster communication system of a cluster communication system signal transfer.
- TETRA Terrestrial Trunked Radio
- DMO Direct Mode Operation
- TETRA DMO is based on the repeater DM-REP (Direct Mode Repeater), which can realize a link extension on the same frequency point.
- DM-REP Direct Mode Repeater
- it cannot be extended to the second level DM-REP and above.
- it will interfere with the upper level DM-REP. Therefore, the number of link nodes is limited, that is, long-distance coverage cannot be achieved through multi-level links.
- the existing TETRA DMO Type1A DM-REP channel has a fixed transmission frequency, and is at the same frequency point F1 as DM-MS (Direct Mode Mobile Station).
- DM-MS1 signal transmission occupies time slot 1 and time slot 3.
- DM-REP1 uses time slot 1 and time slot 3 to receive, and uses time slot 2 and time slot 4 to send signals to DM-MS2 to realize a signal transfer.
- Use two or two time slots to stagger to complete a link extension to extend coverage.
- DM-REP1 sends signals to DM-REP2 through time slot 2 and time slot 4, and DM_REP2 uses its time slot 1 and time slot 3 to receive signals and uses its own The time slot 2 and time slot 4 send signals.
- time slot diagram in Figure 3 it can be known that time slot 2 and time slot 4 of DM-REP2 are actually time slot 1 and time slot 3 of DM-MS1.
- DM-REP1 or DM-MS1 is used as the reference (reference time slot), and the transmission time slot of DM-REP2 (referred to here as the reference time slot) is time slot 1, time slot 3, and DM-MS1 transmission
- the time slots overlap, so that the transmission signal of DM-REP2 interferes with the transmission signal of DM-MS1, and it is difficult to form a secondary link.
- the technical problem to be solved by the present invention is to provide a trunking communication system signal transfer method, device, terminal, transfer equipment and trunking communication system in view of the above-mentioned limitation of link extension stages in the prior art.
- the technical solution adopted by the present invention to solve its technical problem is to construct a signal relay method of a trunking communication system, and the method includes:
- the transfer device receives the service data sent by the upper level device of the transfer device through the first preset time slot of the transfer device;
- the time slot number of the synchronization message in the service data is the preset time slot number
- the time slot number of the first preset time slot is the same as the preset time slot number.
- the transfer device receiving the service data sent by the upper level device of the transfer device through the first preset time slot of the transfer device includes:
- the relay device receives the service data sent by the third preset time slot of the calling terminal through the first preset time slot of the relay device, wherein the time slot number of the first preset time slot is the same as that of the third preset time slot.
- the time slot numbers of the preset time slots are the same; or
- the transfer device receives the service data sent by the second preset time slot of the upper level transfer device through the first preset time slot of the transfer device.
- the first preset time slot is the first time slot of the working frequency of the transfer device
- the second preset time slot is the last time slot of the working frequency of the transfer device.
- the sending of the service data to the next level device of the transfer device through a second preset time slot of the transfer device that is different from the first preset time slot includes:
- the transfer device modifies the time slot number of the synchronization information in the service data sent by the second preset time slot to the preset time slot number, and then sends the service data to the called terminal and/or the next-level relay equipment.
- the present invention also constructs a trunking communication system signal relay device, including:
- a receiving unit configured to receive service data sent by an upper level device of the transfer device through the first preset time slot of the transfer device
- a sending unit configured to send the service data to the next-level device of the transfer device through a second preset time slot different from the first preset time slot;
- the setting unit is configured to set the time slot number of the synchronization message in the service data to the preset time slot number when sending the service data in the second preset time slot; wherein the time slot number of the first preset time slot The time slot number is the same as the preset time slot number.
- the receiving unit includes a first receiving unit or a second receiving unit;
- the first receiving unit is configured to receive the service data sent by the third preset time slot of the calling terminal through the first preset time slot, wherein the time slot number of the first preset time slot is the same as that of the first preset time slot.
- the time slot numbers of the three preset time slots are the same;
- the second receiving unit is configured to receive the service data sent by the second preset time slot of the upper-level transit device through the first preset time slot.
- the setting unit includes a modification unit
- the modification unit is configured to modify the time slot number of the synchronization information in the service data sent by the second preset time slot to the preset time slot number.
- the present invention also constructs a terminal, including a processor and a memory,
- the memory is used to store program instructions
- the processor is configured to execute the following steps according to program instructions stored in the memory:
- the service data is sent to the transit device through the preset time slot of the terminal, and/or the service data is received through the preset time slot of the terminal.
- the preset time slot of the terminal is time slot 1 of the terminal or time slot 2 of the terminal.
- the present invention also constructs a transit device, including: a processor and a memory,
- the memory is used to store program instructions
- the processor is configured to execute the following steps according to program instructions stored in the memory:
- the receiving the service data sent by the upper-level device through the first preset time slot of the transfer device includes:
- the transfer device receives the service data sent by the upper level device through the first time slot of the working frequency point of the transfer device, and the second preset time slot of the transfer device includes the working frequency of the transfer device Point the last time slot.
- the present invention also constructs a trunking communication system, which includes a calling terminal and a called terminal, and at least one relay device on the communication link between the calling terminal and the called terminal,
- the calling terminal is used to send service data to the transit device through the calling terminal preset time slot;
- the transfer device is configured to receive the service data through its first preset time slot, and transfer the service data of the transfer device in a second preset time slot that is different from the first preset time slot Sending the service data after modifying the time slot number of the synchronization information in the synchronization information to a preset time slot number, wherein the preset time slot number is the same as the time slot number of the first preset time slot;
- the called terminal is configured to receive the service data and perform final processing through a preset time slot of the called terminal.
- the at least one transfer device includes a plurality of cascaded transfer devices, and the first stage of the plurality of cascaded transfer devices is used to receive service data sent by the calling device, and pass through subsequent Each level of transit device sends the service data, and finally sends the service data to the called terminal.
- TETRA DMO self-organization can be constructed by realizing mutual non-interference time slot multiplexing Network, to achieve multi-level link extension to achieve long-distance coverage.
- Figure 1 is a schematic diagram of the working principle of a transfer device in the prior art
- FIG. 2 is a schematic diagram of the working principle of cascading transfer equipment in the prior art
- Fig. 3 is a schematic diagram of time slots of cascaded transfer equipment in the prior art
- Fig. 5 is a schematic diagram of a time slot corresponding to Fig. 4;
- Fig. 6 is a schematic diagram of the time slot extension rule corresponding to Fig. 4.
- Fig. 7 is a time slot schematic diagram of the second embodiment of the relay method of the trunking communication system of the present invention.
- the transfer method of a trunking communication system of the present invention includes: the transfer device receives the business data sent by the upper level device of the transfer device through the first preset time slot of the transfer device; A second preset time slot with a different preset time slot sends service data to the next-level device of the transfer device; when the transfer device sends service data in the second preset time slot, the slot number of the synchronization message in the service data is the preset Set the time slot number; where the time slot number of the first preset time slot is the same as the preset time slot number.
- the next-level device uses the same first preset time slot as the upper-level device to receive the service data.
- the time slot number of its synchronization message is changed. It is the preset time slot number that is the same as the time slot number of the first preset time slot, and the transfer process can be cascaded for multiple times as needed.
- the current time slot to receive adjacent time slots to send realize the interval of sending and receiving, stagger the sending and receiving time slots, realize the extension of sending and receiving, and realize the area multiplexing to expand the coverage effect as much as possible.
- the 4 time slot numbers are arranged and multiplexed in a prescribed order, and the time slot occupancy sequence is applied to the E-PACK wireless service transmission process of the relay station equipment; Reduce the DMO terminal data transmission channel to a single time slot, in order to cooperate with E-PACK to build a TETRA DMO multi-level extended coverage self-organizing network.
- DM-MS uses time slot 1 for receiving and sending, cancels time slot 3 to send, and gives up the functions of speech right exchange and pre-emption.
- E-PACK receives and uses its time slot 1, and then uses other arbitrary time slots to send service data, for example, it can be delayed to time slot 2, time slot 3 or time slot 4 to send service data.
- both E-PACK transceivers use a single time slot, and time slot occupancy rules are set to avoid time slot collisions during link extension, avoid interference, and maximize link extension.
- the transit device before receiving the service data, the transit device performs frame time slot synchronization according to the synchronization message of the upper level device. For other multi-slot service transmission equipment, the same technical solution can also be used for service transmission, so as to achieve the largest possible coverage of service transmission.
- the transfer device receiving the service data sent by the superior device of the transfer device through the first preset time slot of the transfer device includes: the transfer device receives the third preset of the calling terminal through the first preset time slot of the transfer device The service data sent by the time slot, where the time slot number of the first preset time slot is the same as the time slot number of the third preset time slot; or the transfer device receives the transfer of the upper level through the first preset time slot of the transfer device Service data sent by the second preset time slot of the device.
- the upper-level device of the transfer device may be the calling terminal.
- the calling terminal here needs to modify the way of data transmission in DMO mode based on the prior art, and reserve the time slot 1 for transmission.
- the upper-level device of the transfer device may also be another transfer device, which constitutes the upper-level transfer device of the transfer device, and the upper-level transfer device operates with the transfer device Similarly, the second preset time slot of the upper-level transit device may be the same as or different from the current transit device.
- E-PACK is the synchronization message of the business data received by the upper-level transit device, and after channel synchronization is completed, it is forwarded on any other time slot of the channel.
- the next-level E-PACK Before forwarding the synchronization message, modify the time slot number in the synchronization message to Time slot 1, the next-level E-PACK receives the synchronization message. After the synchronization channel, it is received in time slot 1, and the reception follows the transmitted time slot for synchronization.
- the first preset time slot is the first time slot of the working frequency of the relay device
- the second preset time slot is the last time slot of the working frequency of the relay device.
- the transit device can have multiple solutions for receiving and transmitting time slots, as long as it meets the requirements of receiving and transmitting adjacent time slots in the current time slot.
- the signal start sending device sends in time slot 1, in order to expand the extended distance while ensuring the quality of the information transfer process, that is, to reduce the interference between adjacent time slots, it can be sent at least one time slot interval apart.
- the transit device receives service data through the first time slot of its working frequency, namely time slot 1, and transmits service data through the last time slot of its working frequency, namely time slot 4, through its time slot
- the 4 ways of sending business data can realize unlimited extension of the link and ensure that it is not interfered.
- other time slot combinations can also be used for service data transmission.
- sending service data to the next-level device of the relay device through a second preset time slot of the relay device that is different from the first preset time slot includes: the relay device includes the service data sent by the second preset time slot After the time slot number of the synchronization information is modified to the preset time slot number, the service data is sent to the called terminal and/or the next-level transit device.
- the relay device here can be the same as the upper-level relay device. After receiving service data through time slot 1, the first preset time slot, the service data is sent out through other time slots, that is, the first preset time slot.
- the relay When the device sends the service data through other time slots, it also needs to modify the time slot number in its synchronization information to time slot 1, that is, the preset time slot number.
- time slot 1 that is, the preset time slot number.
- other time slots are disguised as pseudo time slot 1 Send business data.
- the transfer device can directly communicate with the called device to send service data to the called device, or it can connect to the next-level transfer device, and finally send it to the called device after the transfer.
- the first-level transit device E-PACK1 receives the service data sent by the DM-MS through its time slot 1, and then sends the received service through its time slot 4.
- Data here the first-level transit equipment E-PACK1 modifies its synchronization information slot number in time slot 4 to time slot 1, and disguises its 4 time slots as pseudo time slot 1 to send service data to the next-level transit equipment.
- the second-level transfer equipment E-PACK2 is the same as the upper-level equipment, and it also receives the service data through its time slot 1, and transmits the service data by disguising its time slot 4 as a pseudo time slot 1, and then cascades sequentially.
- the first-level transit device E-PACK1 receives the service data sent by the DM-MS through time slot 1 through its time slot 1, and sends the service data to the next through its time slot 3.
- the first-level transit equipment E-PACK where the first-level transit equipment E-PACK1 modifies the synchronization information time slot number in time slot 3 to time slot 1, and disguises time slot 3 as pseudo time slot 1 to send service data to the next First-level transfer equipment.
- the second-level relay device E-PACK2 receives the service data through its time slot 1 and sends the service data through its time slot 4.
- the second-level relay device E-PACK2 modifies the synchronization information time slot number in its time slot 4 It is time slot 1, and its time slot 4 is disguised as pseudo time slot 1 to send service data to the next-level transit equipment E-PACK.
- the third-level transit equipment E-PACK3 receives the service data and performs the same operations as the first transit equipment E-PACK1, and the fourth-level transit equipment E-PACK4 performs the same operations as the second-level transit equipment E-PACK2.
- the transfer equipment E-PACK at all levels adopts the rule of sending service data described above to transfer the service data in turn, according to the time of the call initiator terminal as the standard (called standard time slot), and the transfer equipment E-PACK at all levels
- the time slots (standard time slots) of the single frequency point F1 used to transmit service data are F1S1, F1S3, F1S2, F1S4, F1S3, F1S1. It can be understood that they will not interfere with the neighboring transfer equipment E-PACK.
- time slot (standard) multiplexing occurs, the multiplexed time slot has different coverage areas through the E-PACK multi-stage relay, and no cross coverage occurs, so signal interference can be easily avoided. It can be understood here that when it extends infinitely, the time slot (standard) multiplexing can exhibit a certain multiplexing law.
- a signal relay device of a trunking communication system of the present invention includes:
- a receiving unit configured to receive service data sent by an upper level device of the transfer device through the first preset time slot of the transfer device
- a sending unit configured to send service data to the next-level equipment of the relay device through a second preset time slot different from the first preset time slot;
- the setting unit is used to set the time slot number of the synchronization message in the service data to the preset time slot number when sending the service data in the second preset time slot; wherein the time slot number of the first preset time slot and the preset time slot The same number.
- the receiving unit includes a first receiving unit or a second receiving unit;
- the first receiving unit is configured to receive the service data sent by the third preset time slot of the calling terminal through the first preset time slot, wherein the time slot number of the first preset time slot and the time slot of the third preset time slot Same number
- the second receiving unit is configured to receive the service data sent by the second preset time slot of the upper-level transit device through the first preset time slot.
- the setting unit includes a modification unit
- the modifying unit is used to modify the time slot number of the synchronization information in the service data sent by the second preset time slot to the preset time slot number.
- a terminal of the present invention includes a processor and a memory.
- the memory is used to store program instructions, and the processor is used to execute the following steps according to the program instructions stored in the memory: Send service data, and/or receive service data through a preset time slot of the terminal, and the preset time slot is a single time slot.
- the terminal here may include the calling terminal and the called terminal.
- the terminal modifies the way of sending voice data in DMO mode, cancels the dual-slot transmission of data, and transmits data through a single time slot, that is, optional, the terminal’s
- the preset time slot is time slot 1 of the terminal or time slot 2 of the terminal.
- the calling terminal sends service data through its time slot 1 and transfers the service data through the relay device.
- the called terminal receives the service data through its time slot 1 and receives the service data sent by the relay device.
- data can be sent and received through time slot 2 of the terminal, and the principle is the same as above.
- the present invention also constructs a transfer device, including: a processor and a memory, the memory is used to store program instructions, and the processor is used to execute the following steps according to the program instructions stored in the memory: pass the first preset of the transfer device
- the time slot receives the service data sent by the upper-level device, and modifies the time slot number of the synchronization information in the service data of the second preset time slot different from the first preset time slot of the relay device to the preset time slot number Then, the service data is sent to the next-level device, and the preset time slot number is the same as that of the first preset time slot.
- the transit device can be any E-PACK as shown in Figure 4, Figure 5, and Figure 7.
- E-PACK transceivers use a single time slot, and the time slot occupancy rule is set to avoid link extension. A time slot collision occurs, which maximizes link extension.
- the transit device Before receiving the service data, the transit device performs time slot synchronization according to the synchronization message of the upper level device, and then receives the service data sent by the upper level device in the first preset time slot of the transit device, namely E- The PACK receives the synchronization message sent by the upper-level device for time slot synchronization, and receives the service data sent by the upper-level device in time slot 1 of the E-PACK, that is, the first preset time slot, and passes the other E-PACK Any time slot, that is, the second preset time slot, sends service data to the next-level equipment of the E-PACK, and modifies the time slot number in the synchronization message to time slot 1 that is the preset time slot before forwarding the synchronization message of the service data After the next-level device receives the synchronization message of the service data,
- the time slot of the first sending device (which can be understood as the call initiator terminal device) can be realized as the standard, and the standard time slot is located here. Realize the time slot (standard) multiplexing on the entire transmission link, where the time slot (standard time slot) multiplexing can meet the required rules. For example, the use of time slots (ie, standard time slots) in adjacent transit devices does not interfere with each other.
- the first preset time slot may also be another time slot number, and the corresponding second preset time slot is adjusted accordingly.
- receiving the service data sent by the upper-level device through the first preset time slot of the relay device includes: the relay device receives the upper-level device through the first time slot of the working frequency of the relay device
- the second preset time slot of the relay device includes the last time slot of the working frequency of the relay device.
- the transit device can have multiple solutions for receiving and transmitting time slots, as long as it meets the requirements of receiving and transmitting adjacent time slots in the current time slot.
- the signal start sending device transmits in the first time slot time slot 1, in order to expand the extension distance while ensuring the quality of the information transmission process, that is, to reduce the interference between adjacent time slots, it can be transmitted at least one time slot interval apart.
- the best time slot can be the last time slot that is time slot 4 to send service data.
- using time slot 4 for transmission or using time slot 4 for service data transmission can realize a certain regular time slot (standard time slot) occupancy rule for data when multi-level transit equipment is connected. Transmission to maximize the extension of the link.
- other time slot combinations can also be used for service data transmission. For details, please refer to the above description.
- a trunking communication system of the present invention includes a calling terminal and a called terminal, and at least one relay device on the communication link between the calling terminal and the called terminal. It is assumed that the time slot sends service data to the transfer device; the transfer device is used to receive the service data through its first preset time slot, and to transfer the service data of the transfer device to the second preset time slot that is different from the first preset time slot. The time slot number of the synchronization information is modified to the preset time slot number and then the service data is sent.
- the preset time slot number is the same as the time slot number of the first preset time slot; the called terminal is used to preset through the called terminal The time slot receives service data and performs final processing.
- the relay device before receiving service data, performs time slot synchronization according to the synchronization information of the transmitting terminal or the upper-level relay device.
- the entire trunking communication system can use the TETRA single frequency 4 time slot as shown in FIG.
- the physical layer structure of the communication system includes the multi-level transfer equipment E-PACK, and the method described above can be used to transfer business data, which will not be repeated here.
- the at least one transfer device includes a plurality of cascaded transfer devices, and the first stage of the multiple cascaded transfer devices is used to receive service data sent by the calling device and send it through each subsequent transfer device in turn The service data is finally sent to the called terminal.
- the E-PACK of each level of transit equipment sends service data in time slot 3 or time slot 4, that is, the middle equipment can be the same transit device or different Middle-installed equipment cooperates with each other.
- one transit device uses time slot 4 for transmission, and the adjacent transit device uses time slot 3 for transmission, which realizes the alternation of multi-level transit equipment, that is, realizes the combination of multi-level transit equipment for service data
- the transmission can realize that the time slot (standard time slot) presents a specific regular division multiplexing without interference from the time slot (standard time slot) of the adjacent coverage area, and realizes the maximum extension of the link.
- the transfer device modifies the synchronization information time slot number in time slot 3 or time slot 4 to time slot 1. For details, please refer to the above description, which will not be repeated here.
- the communication system is not limited to the above-mentioned networking modes, and can also be a variety of chain, star and hybrid networking.
- the wireless data transmission does not rely on neighbor information and does not need to be synchronized across the entire network. It adopts the strategy of receiving and following the transmitted time slot for synchronization, and forwarding in turn according to the rules. Establish a wireless connection between the current link transfer device and the adjacent link transfer device, and finally complete the information transmission of the entire wireless link system.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明涉及一种集群通信系统信号中转方法、装置、终端、中转设备及集群通信系统,本发明的一种集群通信系统信号中转方法,该方法包括:中转设备通过中转设备的第一预设时隙接收中转设备的上一级设备发送的业务数据;中转设备通过中转设备的、与第一预设时隙不同的第二预设时隙发送业务数据至中转设备的下一级设备;中转设备在第二预设时隙发送业务数据时、业务数据中同步消息的时隙号为预设时隙号;其中,第一预设时隙的时隙号与预设时隙号均相同。实施本发明能够在TETRA DMO信号传输时,可以通过实现互不干扰的时隙复用来构建TETRA DMO自组网络,实现多级链路延伸以实现远距离覆盖范围。
Description
本发明涉及集群通信,更具体地说,涉及一种集群通信系统信号中转方法、终端、装置、中转设备及集群通信系统。
TETRA(Terrestrial Trunked Radio即陆地集群无线电)作为欧洲主流的数字集群通信标准,集TMO(Trunked Mode Operation即集群模式)\DMO(Direct Mode Operation即直通模式)于一体,可以在同一技术平台上提供指挥调度、数据传输及电话服务,其使用已遍布至全球各个行业。在反恐、赈灾以及林业、高速公路等地理环境较复杂,普通无线覆盖很容易出现各种盲区下需构建自组链路延伸覆盖系统,实现完善的应急解决方案。
目前TETRA DMO基于中继器DM-REP(Direct Mode Repeater即直通模式中继器)可实现同频点上的一次链路延伸。但是无法延伸扩展到第二级DM-REP及以上,在扩展到第二级DM-REP时,会对上一级DM-REP产生干扰。因此链路节点数量受限,即无法通过多级链路实现远距离覆盖范围。
根据图1所示,现有TETRA DMO Type1A型DM-REP信道发射频率固定,与DM-MS(Direct Mode Mobile Station即直通模式终端)在同频点F1。DM-MS1信号发射占用时隙1、时隙3,DM-REP1采用时隙1、时隙3接收,用时隙2、时隙4发送信号至DM-MS2,实现一次信号中转。利用两两时隙错开完成一次链路延伸扩展覆盖。如2所示,如果采用两级DM-REP进行中转,在DM-REP1通过时隙2、时隙4发送信号至DM-REP2,DM_REP2利用其时隙1、时隙3接收信号,利用其自己的时隙2、时隙4发送信号,根据图3的时隙示意图可以得知,DM-REP2的时隙2、时隙4实际上即DM-MS1时隙1、时隙3。即图2中利用DM-REP1或者DM-MS1做基准( 为基准时隙),DM-REP2的发送时隙(这里指基准时隙)为时隙1、时隙3,与DM-MS1的发送时隙重合了,这样DM-REP2的发送信号对DM-MS1的发送信号形成了干扰,难以形成二级链路。
本发明要解决的技术问题在于,针对现有技术的上述链路延伸级数受限的缺陷,提供一种集群通信系统信号中转方法、装置、终端、中转设备及集群通信系统。
问题的解决方案
本发明解决其技术问题所采用的技术方案是:构造一种集群通信系统信号中转方法,所述方法包括:
中转设备通过所述中转设备的第一预设时隙接收所述中转设备的上一级设备发送的业务数据;
所述中转设备通过所述中转设备的、与所述第一预设时隙不同的第二预设时隙发送所述业务数据至所述中转设备的下一级设备;
所述中转设备在所述第二预设时隙发送所述业务数据时、所述业务数据中同步消息的时隙号为预设时隙号;
其中,所述第一预设时隙的时隙号与所述预设时隙号均相同。
优选地,所述中转设备通过所述中转设备的第一预设时隙接收所述中转设备的上一级设备发送的业务数据包括:
所述中转设备通过所述中转设备的第一预设时隙接收主叫终端的第三预设时隙发送的业务数据,其中所述第一预设时隙的时隙号与所述第三预设时隙的时隙号相同;或
所述中转设备通过所述中转设备的第一预设时隙接收上一级的中转设备的第二预设时隙发送的业务数据。
优选地,所述第一预设时隙为所述中转设备的工作频点的第一个时隙,所述第二预设时隙为所述中转设备的工作频点的最后一个时隙。
优选地,所述通过所述中转设备的、与所述第一预设时隙不同的第二预设时隙 发送所述业务数据至所述中转设备的下一级设备包括:
所述中转设备将所述第二预设时隙发送的业务数据中同步信息的时隙号修改为所述预设时隙号后发送所述业务数据至被叫终端和/或下一级中转设备。
本发明还构造一种集群通信系统信号中转装置,包括:
接收单元,用于接收通过所述中转设备的第一预设时隙接收所述中转装置的上一级设备发送的业务数据;
发送单元,用于通过与所述第一预设时隙不同的第二预设时隙发送所述业务数据至所述中转装置的下一级设备;
设置单元,用于在所述第二预设时隙发送所述业务数据时、设置所述业务数据中同步消息的时隙号为预设时隙号;其中所述第一预设时隙的时隙号与所述预设时隙号相同。
优选地,所述接收单元包括第一接收单元或第二接收单元;
所述第一接收单元用于通过所述第一预设时隙接收主叫终端的第三预设时隙发送的业务数据,其中所述第一预设时隙的时隙号与所述第三预设时隙的时隙号相同;
所述第二接收单元用于通过所述第一预设时隙接收上一级的中转装置的第二预设时隙发送的业务数据。
优选地,所述设置单元包括修改单元,
所述修改单元用于将所述第二预设时隙发送的业务数据中同步信息的时隙号修改为所述预设时隙号。
本发明还构造一种终端,包括:处理器和存储器,
所述存储器,用于存储程序指令,
所述处理器,用于根据所述存储器所存储的程序指令执行以下步骤:
通过所述终端的预设时隙向中转设备发送业务数据,和/或,通过所述终端的预设时隙接收所述业务数据。
优选地,所述终端的预设时隙为所述终端的时隙1或所述终端的时隙2。
本发明还构造一种中转设备,包括:处理器和存储器,
所述存储器,用于存储程序指令,
所述处理器,用于根据所述存储器所存储的程序指令执行以下步骤:
通过所述中转设备的第一预设时隙接收上一级设备发送的业务数据,并将所述中转设备的、与所述第一预设时隙不同的第二预设时隙的业务数据中同步信息的时隙号修改为预设时隙号后,发送所述业务数据至下一级设备,所述预设时隙号与所述第一预设时隙的时隙号相同。
优选地,所述通过中转设备的第一预设时隙接收上一级设备发送的业务数据包括:
所述中转设备通过所述中转设备的工作频点的第一个时隙接收所述上一级设备发送的业务数据,所述中转设备的第二预设时隙包括所述中转设备的工作频点的最后一个时隙。
本发明还构造一种集群通信系统,所述系统包括主叫终端和被叫终端,以及在所述主叫终端和被叫终端通信链路上的至少一个中转设备,
所述主叫终端用于通过主叫终端预设时隙发送业务数据至所述中转设备;
所述中转设备用于通过其第一预设时隙接收所述业务数据,并将所述中转设备的、与所述第一预设时隙不同的第二预设时隙的所述业务数据中同步信息的时隙号修改为预设时隙号后发送所述业务数据,其中,所述预设时隙号与所述第一预设时隙的时隙号相同;
所述被叫终端用于通过被叫终端预设时隙接收所述业务数据并进行最终处理。
优选地,所述至少一个中转设备包括多个级联的中转设备,所述多个级联的中转设备的第一级用于接收所述主叫设备发送的业务数据,并依次通过其后的每一级中转设备发送所述业务数据,最终发送所述业务数据至所述被叫终端。
发明的有益效果
实施本发明的集群通信系统的中转方法、终端、中转设备及集群通信系统,具有以下有益效果:可以实现TETRA DMO信号传输时,可以通过实现互不干扰的时隙复用来构建TETRA DMO自组网络,实现多级链路延伸以实现远距离覆盖范围。
对附图的简要说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是现有技术的中转设备的工作原理示意图;
图2是现有技术的中转设备级联的工作原理示意图;
图3是现有技术的中转设备级联的时隙示意图;
图4是本发明集群通信系统的中转方法的第一实施例的工作原理图;
图5是图4对应的时隙示意图;
图6是图4对应的时隙延伸规律示意图;
图7是本发明集群通信系统的中转方法的第二实施例的时隙示意图。
发明实施例
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。
本发明的一种集群通信系统的中转方法,该方法包括:中转设备通过中转设备的第一预设时隙接收中转设备的上一级设备发送的业务数据;中转设备通过中转设备的、与第一预设时隙不同的第二预设时隙发送业务数据至中转设备的下一级设备;中转设备在第二预设时隙发送业务数据时、业务数据中同步消息的时隙号为预设时隙号;其中,第一预设时隙的时隙号与预设时隙号均相同。具体的,通过中转设备的第一预设时隙接收上一级设备发送的业务数据,然后通过与第一预设时隙不同的第二预设时隙发送该业务数据至下一级设备,下一级设备接收该业务数据采用与上一级设备相同的第一预设时隙,为了使收发同步,其第二预设时隙发送该业务数据时,将其同步消息的时隙号改为与第一预设时隙的时隙号的预设时隙号,其中转过程可以根据需要多次级联中转。通过当前时隙收相邻时隙发,实现收发间隔,错开收发时隙,实现收发延伸,实现区域复用,以尽可能的扩展覆盖效果。以TETRA单频点4时隙的物理层结构为例,对4个时隙号按照规定的顺序进行排列复用,将该时隙占用顺序应用于中转台设备E-PACK无线业务传输过程;同时缩减DMO终端数据传输通道为单时隙,以配合E-PACK构建TETRA DMO多级延伸覆盖自组网络。例如DM-MS收发使用时 隙1,取消时隙3发送,割舍话语权交换、预占功能。E-PACK接收使用其时隙1,然后使用其他的任意时隙发送业务数据,比如可以延迟至时隙2,时隙3或时隙4发送业务数据。在这里通过E-PACK收发都使用单时隙,设定时隙占用规则避免链路延伸时发生时隙碰撞,避免产生干扰,使得链路延伸最大化。还可以理解,中转设备在接收业务数据之前先根据上一级设备的同步消息进行帧时隙的同步。对于其他的多时隙业务传输设备,也可以采用相同的技术方案进行业务传输,以实现业务传输的尽可能大的覆盖。
进一步的,中转设备通过中转设备的第一预设时隙接收中转设备的上一级设备发送的业务数据包括:中转设备通过中转设备的第一预设时隙接收主叫终端的第三预设时隙发送的业务数据,其中第一预设时隙的时隙号与第三预设时隙的时隙号相同;或中转设备通过中转设备的第一预设时隙接收上一级的中转设备的第二预设时隙发送的业务数据。具体的,在一些实施例中,中转设备的上一级设备可以为主叫终端,这里的主叫终端在现有技术的基础上,需要修改DMO模式数据发送的方式,保留时隙1发送即第三预设时隙,取消时隙3发送。通过单时隙收发,在另一些实施例中,中转设备的上一级设备也可以是其他的中转设备,构成该中转设备的上一级中转设备,其上一级中转设备与该中转设备操作相同,其上一级中转设备的第二预设时隙可以与本中转设备相同,也可以不同。以TETRA DMO举例,E-PACK即上一级中转设备接收到业务数据的同步消息,完成信道同步之后在该信道的其他任一时隙上转发,转发同步消息前修改同步消息中的时隙号为时隙1,下一级E-PACK接收到同步消息,同步信道后就是在时隙1接收,接收跟随发射的时隙进行同步。
进一步的,所述第一预设时隙为所述中转设备的工作频点的第一个时隙,所述第二预设时隙为所述中转设备的工作频点的最后一个时隙。。具体的,中转设备收发时隙可有多种方案,其只要满足当前时隙收相邻时隙发即可。当信号起始发送设备在时隙1发送时,为了扩大延伸距离同时保证信息传递过程质量,即减少相邻时隙之间的干扰,其可以间隔至少一个时隙间隔发送。对于四时隙的TETRA DMO系统,中转设备通过其工作频点的第一个时隙即时隙1接收业务数据,通过其工作频点的最后一时隙发送业务数据,即时隙4,通过其时隙4方式进 行业务数据的发送,可以实现链路的无限延伸,保证了不被干扰。当然也可以采用其他的时隙组合方式进行业务数据发送。
进一步的,通过中转设备的、与第一预设时隙不同的第二预设时隙发送业务数据至中转设备的下一级设备包括:中转设备将第二预设时隙发送的业务数据中同步信息的时隙号修改为预设时隙号后发送业务数据至被叫终端和/或下一级中转设备。具体的,这里中转设备可以同上一级中转设备一样,通过时隙1即第一预设时隙接收业务数据后,将业务数据通过其他的时隙即第一预设时隙发送出去,这里中转设备在通过其他时隙发送该业务数据时,也是要将其同步信息中的时隙号修改为时隙1即预设时隙号,这里就理解为将其他时隙伪装成了伪时隙1发送业务数据。还有就是,中转设备可以直接通信连接被叫设备发送业务数据至该被叫设备,也可以连接下一级的中转设备,进行中转后最后才发给被叫设备。当然这里的中转设备的级联数量没有要求。
下面以具体实施例说明,在图5所示的实施例中,第一级中转设备E-PACK1通过其时隙1接收DM-MS发送的业务数据,然后通过其时隙4发送接收到的业务数据,这里第一级中转设备E-PACK1将其时隙4中同步信息时隙号修改为时隙1,将其4时隙伪装成伪时隙1发送业务数据至下一级中转设备,第二级中转设备E-PACK2通上一级设备相同,也通过其时隙1接收该业务数据,通过将其时隙4伪装成伪时隙1发送该业务数据,依次进行级联,这里依据同步性,全部以第一级中转设备E-PACK1时间为基准(即以主叫终端时间为基准在这里称为标准时隙),从图5中进行时隙对齐(所有时隙以标准时隙对齐),可以得到图4中各级中转设备E-PACK的时隙(标准时隙),即可以看到单频点F1进行业务数据传递的过程中,每一级中转设备E-PACK的发送业务数据的时隙(标准时隙)分别为时隙4即F1S4,时隙3即F1S3,时隙2即F1S2,时隙1即F1S1,彼此之间不会对邻近覆盖的中转设备产生干扰。而且还可以理解为,如图6所示,在第四级中转设备E-PACK4后时隙(标准时隙)开始依据前面描述的顺序进入下一个时隙(标准时隙)循环,出现一定规律的时隙(标准时隙)复用。这样,就可以实现当经过多级中转设备E-PACK中转业务数据时,保证占用相同时隙(标准时隙)发送业务数据的中转设备E-PACK的信号覆盖范围互相无交叉,以避免同时隙(标准 时隙)上发生信号干扰。
如图7所示的另一个实施例中,第一级中转设备E-PACK1通过其时隙1接收DM-MS通过时隙1发送的业务数据,并通过其时隙3发送该业务数据至下一级中转设备E-PACK,这里第一级中转设备E-PACK1将其时隙3中同步信息时隙号修改为时隙1,将其时隙3伪装成伪时隙1发送业务数据至下一级中转设备。第二级中转设备E-PACK2通过其时隙1接收该业务数据,并通过其时隙4发送该业务数据,这里第二级中转设备E-PACK2将其时隙4中同步信息时隙号修改为时隙1,将其时隙4伪装成伪时隙1发送业务数据至下一级中转设备E-PACK。第三级中转设备E-PACK3接收该业务数据通进行通第一中转设备E-PACK1一样的操作,第四级中转设备E-PACK4进行通第二级中转设备E-PACK2一样的操作,这里可以看出,各级的中转设备E-PACK采用上面描述的发送业务数据的规律依次进行业务数据的中转,依照呼叫发起方终端的时间为标准(称为标准时隙),各级中转设备E-PACK发送业务数据采用单频点F1的时隙(标准时隙)分别为F1S1,F1S3,F1S2,F1S4,F1S3,F1S1,可以理解为,彼此之间不会对邻近覆盖的中转设备E-PACK产生干扰,而在出现时隙(标准)复用时,经过中转设备E-PACK多级中转,复用的时隙出现不同的覆盖区域,不会出现交叉覆盖,因此很容易的避免了信号干扰。这里可以理解,当无限延伸时,时隙(标准)复用可以呈现一定的复用规律。
另,本发明一种集群通信系统信号中转装置,包括:
接收单元,用于接收通过中转设备的第一预设时隙接收中转装置的上一级设备发送的业务数据;
发送单元,用于通过与第一预设时隙不同的第二预设时隙发送业务数据至中转装置的下一级设备;
设置单元,用于在第二预设时隙发送业务数据时、设置业务数据中同步消息的时隙号为预设时隙号;其中第一预设时隙的时隙号与预设时隙号相同。
可选的,接收单元包括第一接收单元或第二接收单元;
第一接收单元用于通过第一预设时隙接收主叫终端的第三预设时隙发送的业务数据,其中第一预设时隙的时隙号与第三预设时隙的时隙号相同;
第二接收单元用于通过第一预设时隙接收上一级的中转装置的第二预设时隙发送的业务数据。
可选的,设置单元包括修改单元,
修改单元用于将第二预设时隙发送的业务数据中同步信息的时隙号修改为预设时隙号。
这里集群通信系统信号中转装置各单元之间具体的配合操作过程具体可以参照上述集群通信系统信号中转方法,这里不再赘述。
另,本发明的一种终端,包括处理器和存储器,其中存储器,用于存储程序指令,处理器,用于根据存储器所存储的程序指令执行以下步骤:通过终端的预设时隙向中转设备发送业务数据,和/或,通过终端的预设时隙接收业务数据,预设时隙为单时隙。具体的,这里的终端可以包括主叫终端,也可以包括被叫终端,终端修改DMO模式语音数据发送的方式,取消双时隙发送数据,通过单时隙发送数据,即可选的,终端的预设时隙为终端的时隙1或终端的时隙2。例如,通过时隙1收发,取消时隙3发送,割舍与占用时隙3发射相关的话语权交换、预占功能。主叫终端通过其时隙1发送业务数据,通过中转设备进行业务数据的中转,被叫终端通过其时隙1接收业务数据,接收中转设备发送的业务数据。还有一些实施例中,可以通过终端的时隙2收发数据,其原理同上。
另,本发明还构造一种中转设备,包括:处理器和存储器,存储器,用于存储程序指令,处理器,用于根据存储器所存储的程序指令执行以下步骤:通过中转设备的第一预设时隙接收上一级设备发送的业务数据,并将中转设备的、与第一预设时隙不同的第二预设时隙的业务数据中同步信息的时隙号修改为预设时隙号后,发送业务数据至下一级设备,预设时隙号与第一预设时隙的时隙号相同。具体的,在一实施例中,中转设备可以为如图4、图5和图7中的任意E-PACK,E-PACK收发都使用单时隙,设定时隙占用规则避免链路延伸时发生时隙碰撞,使得链路延伸最大化。中转设备在接收业务数据之前先根据上一级设备的同步消息进行时隙同步,然后在该中转设备的时隙1即第一预设时隙接收上一级设备发送的业务数据,即E-PACK接收到上一级设备发送的同步消息进行时隙同步,于该E-PACK的时隙1即第一预设时隙接收上一级设备发送的业务数据, 并通过该E-PACK的其他任一时隙即第二预设时隙发送业务数据至该E-PACK的下一级设备,并在转发业务数据的同步消息前修改同步消息中的时隙号为时隙1即预设时隙号,下一级设备接收到业务数据的同步该消息同步信道后仍在时隙1即第一预设时隙接收,实现接收跟随发射的时隙进行同步。在这里通过设定中转设备的发射时隙,可以在多级中转设备级联的情况下,实现以首发设备(这里可以理解为呼叫发起方终端设备)的时隙为标准,这里定位标准时隙,实现整个发射链路上的时隙(标准)复用,这里的时隙(标准时隙)复用可以为满足要求的规则。例如相邻的中转设备中时隙(即标准时隙)使用不相互产生干扰。在其他的实施例中,第一预设时隙也可以为其他时隙号,对应的第二预设时隙也做相应的调整。
进一步的,通过中转设备的第一预设时隙接收上一级设备发送的业务数据包括:所述中转设备通过所述中转设备的工作频点的第一个时隙接收所述上一级设备发送的业务数据,所述中转设备的第二预设时隙包括所述中转设备的工作频点的最后一个时隙。具体的,中转设备收发时隙可有多种方案,其只要满足当前时隙收相邻时隙发即可。当信号起始发送设备在第一个时隙时隙1发送时,为了扩大延伸距离同时保证信息传递过程质量,即减少相邻时隙之间的干扰,其可以间隔至少一个时隙间隔发送。对于四时隙的TETRA DMO系统,其最优可以选择最后一个时隙即时隙4发送业务数据。如图4和图5所示,采用时隙4进行发送或者采用时隙4进行业务数据的发送,可以实现在多级中转设备连接时,实现一定规律的时隙(标准时隙)占用规则进行数据传输,实现链路的延伸最大化。当然也可以采用其他的时隙组合方式进行业务数据发送。具体可以参照上文描述。
另,本发明的一种集群通信系统,系统包括主叫终端和被叫终端,以及在主叫终端和被叫终端通信链路上的至少一个中转设备,主叫终端用于通过主叫终端预设时隙发送业务数据至中转设备;中转设备用于通过其第一预设时隙接收业务数据,并将中转设备的、与第一预设时隙不同的第二预设时隙的业务数据中同步信息的时隙号修改为预设时隙号后发送业务数据,其中,预设时隙号与第一预设时隙的时隙号相同;被叫终端用于通过被叫终端预设时隙接收业务数据 并进行最终处理。具体的,这里中转设备在接收业务数据之前先根据发射终端或者上一级的中转设备的同步信息进行时隙同步,整个集群通信系统可以采用如图4所示的以TETRA单频点4时隙的物理层结构的通信系统,包括多级中转设备E-PACK,具体可以采用上面描述的方法进行业务数据的中转,这里不再赘述。
进一步的,至少一个中转设备包括多个级联的中转设备,多个级联的中转设备的第一级用于接收主叫设备发送的业务数据,并依次通过其后的每一级中转设备发送业务数据,最终发送业务数据至被叫终端。具体的,可以参照图4,图5和图6,每一级中转设备E-PACK的时隙3或时隙4发送业务数据,即中装设备可以为相同的中转设备,也可以为不同的中装设备相互配合使用,例如一个中转设备采用时隙4进行发送,相邻的中转设备采用时隙3进行发送,实现多级中转设备的交替,即实现多级中转设备进行组合方式进行业务数据的发送,可以实现时隙(标准时隙)呈现一特定规则分复用而不出现相邻覆盖区域的时隙(标准时隙)干扰,实现链路最大化的延伸。这里通过时隙3或时隙4发送业务数据时,中转设备将其时隙3或时隙4中同步信息时隙号修改为时隙1。具体可以参照上文描述,这里不再赘述。
该通信系统不局限与上述的组网方式,也可以是各种链形、星形以及混合组网,无线数据传输不依赖邻点信息,无需全网同步。采取接收跟随发射的时隙进行同步的策略,按照规则依次转发。建立当前链路中转设备和临近链路中转设备的无线续接,最后完成整个无线链路系统的信息传输。
可以理解的,以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。
Claims (13)
- 一种集群通信系统信号中转方法,其特征在于,所述方法包括:中转设备通过所述中转设备的第一预设时隙接收所述中转设备的上一级设备发送的业务数据;所述中转设备通过所述中转设备的、与所述第一预设时隙不同的第二预设时隙发送所述业务数据至所述中转设备的下一级设备;所述中转设备在所述第二预设时隙发送所述业务数据时、所述业务数据中同步消息的时隙号为预设时隙号;其中,所述第一预设时隙的时隙号与所述预设时隙号相同。
- 根据权利要求1所述的集群通信系统信号中转方法,其特征在于,所述中转设备通过所述中转设备的第一预设时隙接收所述中转设备的上一级设备发送的业务数据包括:所述中转设备通过所述中转设备的第一预设时隙接收主叫终端的第三预设时隙发送的业务数据,其中所述第一预设时隙的时隙号与所述第三预设时隙的时隙号相同;或所述中转设备通过所述中转设备的第一预设时隙接收上一级的中转设备的第二预设时隙发送的业务数据。
- 根据权利要求2所述的集群通信系统信号中转方法,其特征在于,所述第一预设时隙为所述中转设备的工作频点的第一个时隙,所述第二预设时隙为所述中转设备的工作频点的最后一个时隙。
- 根据权利要求1所述的集群通信系统信号中转方法,其特征在于,所述通过所述中转设备的、与所述第一预设时隙不同的第二预设时隙发送所述业务数据至所述中转设备的下一级设备包括:所述中转设备将所述第二预设时隙发送的业务数据中同步信息的时隙号修改为所述预设时隙号后发送所述业务数据至被叫终端和/或下一级中转设备。
- 一种集群通信系统信号中转装置,其特征在于,包括:接收单元,用于接收通过所述中转设备的第一预设时隙接收所述 中转装置的上一级设备发送的业务数据;发送单元,用于通过与所述第一预设时隙不同的第二预设时隙发送所述业务数据至所述中转装置的下一级设备;设置单元,用于在所述第二预设时隙发送所述业务数据时、设置所述业务数据中同步消息的时隙号为预设时隙号;其中所述第一预设时隙的时隙号与所述预设时隙号相同。
- 根据权利要求5所述的集群通信系统信号中转装置,其特征在于,所述接收单元包括第一接收单元或第二接收单元;所述第一接收单元用于通过所述第一预设时隙接收主叫终端的第三预设时隙发送的业务数据,其中所述第一预设时隙的时隙号与所述第三预设时隙的时隙号相同;所述第二接收单元用于通过所述第一预设时隙接收上一级的中转装置的第二预设时隙发送的业务数据。
- 根据权利要求5所述的集群通信系统信号中转装置,其特征在于,所述设置单元包括修改单元,所述修改单元用于将所述第二预设时隙发送的业务数据中同步信息的时隙号修改为所述预设时隙号。
- 一种终端,其特征在于,包括:处理器和存储器,所述存储器,用于存储程序指令,所述处理器,用于根据所述存储器所存储的程序指令执行以下步骤:通过所述终端的预设时隙向中转设备发送业务数据,和/或,通过所述终端的预设时隙接收所述业务数据,所述预设时隙为单时隙。
- 根据权利要求8所述的终端,其特征在于,所述终端的预设时隙为所述终端的时隙1或所述终端的时隙2。
- 一种中转设备,其特征在于,包括:处理器和存储器,所述存储器,用于存储程序指令,所述处理器,用于根据所述存储器所存储的程序指令执行以下步骤:通过所述中转设备的第一预设时隙接收上一级设备发送的业务数据,并将所述中转设备的、与所述第一预设时隙不同的第二预设时隙的业务数据中同步信息的时隙号修改为预设时隙号后,发送所述业务数据至下一级设备,所述预设时隙号与所述第一预设时隙的时隙号相同。
- 根据权利要求10所述的中转设备,其特征在于,所述通过中转设备的第一预设时隙接收上一级设备发送的业务数据包括:所述中转设备通过所述中转设备的工作频点的第一个时隙接收所述上一级设备发送的业务数据,所述中转设备的第二预设时隙包括所述中转设备的工作频点的最后一个时隙。
- 一种集群通信系统,其特征在于,所述系统包括主叫终端和被叫终端,以及在所述主叫终端和被叫终端通信链路上的至少一个中转设备,所述主叫终端用于通过主叫终端预设时隙发送业务数据至所述中转设备;所述中转设备用于通过其第一预设时隙接收所述业务数据,并将所述中转设备的、与所述第一预设时隙不同的第二预设时隙的所述业务数据中同步信息的时隙号修改为预设时隙号后发送所述业务数据,其中,所述预设时隙号与所述第一预设时隙的时隙号相同;所述被叫终端用于通过被叫终端预设时隙接收所述业务数据并进行最终处理。
- 根据权利要求12所述的集群通信系统,其特征在于,所述至少一个中转设备包括多个级联的中转设备,所述多个级联的中转设备的第一级用于接收所述主叫设备发送的业务数据,并依次通过其后的每一级中转设备发送所述业务数据,最终发送所述业务数据 至所述被叫终端。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/097664 WO2021012253A1 (zh) | 2019-07-25 | 2019-07-25 | 集群通信系统信号中转方法、装置、终端、中转设备及集群通信系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/097664 WO2021012253A1 (zh) | 2019-07-25 | 2019-07-25 | 集群通信系统信号中转方法、装置、终端、中转设备及集群通信系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021012253A1 true WO2021012253A1 (zh) | 2021-01-28 |
Family
ID=74192634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/097664 WO2021012253A1 (zh) | 2019-07-25 | 2019-07-25 | 集群通信系统信号中转方法、装置、终端、中转设备及集群通信系统 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021012253A1 (zh) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150264628A1 (en) * | 2014-03-14 | 2015-09-17 | Fujitsu Limited | Method for digital communication, radio communication system, and radio communication apparatus |
CN105208661A (zh) * | 2015-11-04 | 2015-12-30 | 浪潮(北京)电子信息产业有限公司 | 一种无线网络的信道分配方法及系统 |
CN105282851A (zh) * | 2015-09-28 | 2016-01-27 | 浪潮(北京)电子信息产业有限公司 | 一种信道分配方法和系统 |
CN106385708A (zh) * | 2016-09-13 | 2017-02-08 | 哈尔滨海能达科技有限公司 | 一种数据传输方法及无线链路机 |
-
2019
- 2019-07-25 WO PCT/CN2019/097664 patent/WO2021012253A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150264628A1 (en) * | 2014-03-14 | 2015-09-17 | Fujitsu Limited | Method for digital communication, radio communication system, and radio communication apparatus |
CN105282851A (zh) * | 2015-09-28 | 2016-01-27 | 浪潮(北京)电子信息产业有限公司 | 一种信道分配方法和系统 |
CN105208661A (zh) * | 2015-11-04 | 2015-12-30 | 浪潮(北京)电子信息产业有限公司 | 一种无线网络的信道分配方法及系统 |
CN106385708A (zh) * | 2016-09-13 | 2017-02-08 | 哈尔滨海能达科技有限公司 | 一种数据传输方法及无线链路机 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100890237B1 (ko) | 일반 전화 교환망 및 셀룰러 네트워크에 인터페이스된애드-호크 피투피 이동통신 무선 접근 시스템 | |
CN110418415B (zh) | 集群通信系统信号中转方法、终端、中转设备及集群通信系统 | |
CN1957562B (zh) | 用于在无线电通信系统中传输信号的方法和电台 | |
US20150117269A1 (en) | Full Duplex Services Using RTS/CTS | |
CN105119632A (zh) | 基于多跳频图案的适用于无线移动自组织网的通信方法 | |
CN108616933A (zh) | 一种中央单元-分布式单元架构下的通信处理方法及装置 | |
US20080013606A1 (en) | Relay | |
KR20110016248A (ko) | 수중 음향 네트워크를 위한 계층적 시간 분할 다중 접속 매체 접속 제어 방법 | |
CN111010696B (zh) | 一种集群自组网系统的组网方法及自组网基站 | |
CN113490163B (zh) | 一种无线自组网对讲系统及其通信方法 | |
CN103874226B (zh) | 自组织网络中基于tdma的多址接入方法 | |
CN107277939A (zh) | 一种控制ue状态转换的方法 | |
CN107231669B (zh) | 一种数据传输装置方法和装置 | |
WO2021012253A1 (zh) | 集群通信系统信号中转方法、装置、终端、中转设备及集群通信系统 | |
Khan | Self-forming multiple sub-nets based protocol for tactical networks consisting of sdrs | |
Luvisotto et al. | RCFD: A frequency-based channel access scheme for full-duplex wireless networks | |
WO2022213328A1 (zh) | 侧行链路资源配置的方法和通信装置 | |
US8121059B2 (en) | Wireless non-cellular network | |
CN103731835A (zh) | 一种实现单播及广播的mimo mac协议方法 | |
RU2358396C2 (ru) | Способ, промежуточная станция и центральное устройство управления для передачи данных с коммутацией пакетов в самоорганизующейся сети радиосвязи | |
KR101268759B1 (ko) | 무선 분산 비코닝 시스템에서, 의사 중앙 제어형 비코닝 방법 및 장치 | |
US20240129022A1 (en) | Wireless communication system and method for operating wireless communication system as high-performance wireless backhaul network | |
Silard et al. | Frequency Reuse in IAB-based 5G Networks using Graph Coloring Methods | |
CN115967436A (zh) | 一种tdma无线自组网的集群网关实现方法 | |
Chen et al. | Light Ad Hoc Network: A Solution to Hidden Terminal Problem |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19938409 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19938409 Country of ref document: EP Kind code of ref document: A1 |