WO2021010299A1 - Exhaust purification apparatus for internal combustion engine - Google Patents

Exhaust purification apparatus for internal combustion engine Download PDF

Info

Publication number
WO2021010299A1
WO2021010299A1 PCT/JP2020/026943 JP2020026943W WO2021010299A1 WO 2021010299 A1 WO2021010299 A1 WO 2021010299A1 JP 2020026943 W JP2020026943 W JP 2020026943W WO 2021010299 A1 WO2021010299 A1 WO 2021010299A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidation catalyst
temperature
exhaust temperature
threshold value
internal combustion
Prior art date
Application number
PCT/JP2020/026943
Other languages
French (fr)
Japanese (ja)
Inventor
卓史 池田
武紘 矢澤
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2021010299A1 publication Critical patent/WO2021010299A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/36Arrangements for supply of additional fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions

Definitions

  • This disclosure relates to an exhaust gas purification device for an internal combustion engine.
  • an exhaust purification device for an internal combustion engine is provided with an oxidation catalyst and a filter in order from the upstream side in the exhaust passage.
  • the filter collects particulate matter contained in the exhaust.
  • An oxidation catalyst is supported on the filter to burn the collected particulate matter. Therefore, the filter can be regarded as a kind of oxidation catalyst.
  • the oxidation catalyst In such an exhaust gas purification device, it may be diagnosed whether or not the oxidation catalyst is normal. Generally, this diagnosis is performed based on the outlet exhaust temperature of the oxidation catalyst at one timing when the outlet exhaust temperature of the oxidation catalyst rises after the start of temperature rise control.
  • this disclosure was devised in view of such circumstances, and its purpose is to provide an exhaust gas purification device for an internal combustion engine capable of improving the diagnostic accuracy of an oxidation catalyst.
  • the first oxidation catalyst and the second oxidation catalyst provided in order from the upstream side in the exhaust passage of the internal combustion engine, A temperature rise control for raising the outlet exhaust temperature of the first oxidation catalyst is executed, and the first oxidation catalyst is diagnosed based on the outlet exhaust temperature of the second oxidation catalyst during the execution of the temperature rise control.
  • the control unit configured in An exhaust gas purification device for an internal combustion engine is provided.
  • control unit diagnoses the first oxidation catalyst as abnormal when the outlet exhaust temperature of the second oxidation catalyst is equal to or higher than a predetermined threshold value.
  • control unit diagnoses the first oxidation catalyst as abnormal when the temperature difference between the outlet exhaust temperature and the inlet exhaust temperature of the second oxidation catalyst is equal to or greater than a predetermined threshold value.
  • the control unit has a cumulative time in which the outlet exhaust temperature of the second oxidation catalyst is equal to or higher than a predetermined threshold value or more than a predetermined time threshold, or is equal to or higher than the outlet exhaust temperature of the second oxidation catalyst.
  • the cumulative time in a state where the temperature difference between the inlet and exhaust temperatures is equal to or greater than a predetermined threshold exceeds a predetermined time threshold the first oxidation catalyst is diagnosed as abnormal.
  • control unit sets the threshold value based on the integrated value of the temperature raising fuel supplied during the execution of the temperature rising control.
  • control unit diagnoses the first oxidation catalyst after the outlet exhaust temperature of the first oxidation catalyst reaches a predetermined target temperature during the execution of the temperature rise control.
  • control unit executes the preliminary diagnosis of the first oxidation catalyst at a timing before the outlet exhaust temperature of the first oxidation catalyst reaches the target temperature, and based on the result of the preliminary diagnosis, the first Diagnose the oxidation catalyst.
  • the second oxidation catalyst is a filter for collecting particulate matter on which the oxidation catalyst is supported, or an oxidation catalyst for oxidizing the soluble organic component of the particulate matter.
  • the diagnostic accuracy of the oxidation catalyst can be improved.
  • FIG. 1 is a schematic diagram showing a configuration of an embodiment of the present disclosure.
  • FIG. 2 is a time chart showing the transition of each value during temperature rise control.
  • FIG. 3 is a flowchart of the diagnostic process based on the first diagnostic method.
  • FIG. 4 is a flowchart of the diagnostic process based on the second diagnostic method.
  • FIG. 5 is a flowchart of the diagnostic process based on the third diagnostic method.
  • FIG. 6 is a flowchart of the diagnostic process based on the fourth diagnostic method.
  • FIG. 7 is a flowchart of the diagnostic process of the preliminary diagnosis according to the fifth diagnostic method.
  • FIG. 8 is a flowchart of the diagnostic process of the comprehensive diagnosis according to the fifth diagnostic method.
  • FIG. 1 is a schematic view showing the configuration of this embodiment.
  • the internal combustion engine (also referred to as an engine) 1 is a multi-cylinder engine mounted on a vehicle (not shown).
  • the vehicle is a large vehicle such as a truck, and the engine 1 as a vehicle power source mounted on the large vehicle is an in-line 4-cylinder diesel engine.
  • the type, type, use, and the like of the vehicle and the internal combustion engine are not particularly limited.
  • the vehicle may be a small vehicle such as a passenger car, and the engine 1 may be a gasoline engine.
  • the engine may be mounted on a moving body other than a vehicle, for example, a ship, a construction machine, or an industrial machine. Further, the engine does not have to be mounted on a moving body, and may be a stationary engine.
  • the engine 1 includes an engine main body 2, an intake passage 3 and an exhaust passage 4 connected to the engine main body 2, a turbocharger 14, and a fuel injection device 5.
  • the engine body 2 includes structural parts such as a cylinder head, a cylinder block, and a crankcase, and movable parts such as a piston, a crankshaft, and a valve housed therein.
  • the fuel injection device 5 comprises a common rail type fuel injection device, and includes a fuel injection injector 7 provided in each cylinder and a common rail 8 connected to the injector 7.
  • the injector 7 is an in-cylinder injector for supplying fuel into the cylinder of the corresponding cylinder, and in the case of the present embodiment, the fuel is directly injected into the cylinder.
  • the common rail 8 stores the fuel injected from the injector 7 in a high pressure state.
  • the intake passage 3 is mainly defined by an intake manifold 10 connected to the engine body 2 (particularly a cylinder head) and an intake pipe 11 connected to the upstream end of the intake manifold 10.
  • the intake manifold 10 distributes and supplies the intake air sent from the intake pipe 11 to the intake ports of each cylinder.
  • the intake pipe 11 is provided with an air cleaner 12, an air flow meter 13, a turbocharger 14 compressor 14C, an intercooler 15, and an electronically controlled intake throttle valve 16 in this order from the upstream side.
  • the air flow meter 13 is a sensor for detecting the intake air amount per unit time of the engine 1, that is, the intake flow rate, and is also called a mass air flow (MAF) sensor or the like.
  • MAF mass air flow
  • the exhaust passage 4 is mainly defined by an exhaust manifold 20 connected to the engine body 2 (particularly a cylinder head) and an exhaust pipe 21 connected to the downstream side of the exhaust manifold 20.
  • the exhaust manifold 20 collects the exhaust gas sent from the exhaust port of each cylinder.
  • a turbine 14T of a turbocharger 14 is provided between the exhaust pipe 21 or the exhaust manifold 20 and the exhaust pipe 21.
  • An oxidation catalyst 22 and a filter 23 are provided in the exhaust passage 4 on the downstream side of the turbine 14T in order from the upstream side. Further, the exhaust passage 4 on the downstream side of the filter 23 is provided with the selective reduction NOx catalyst 24 and the ammonia oxidation catalyst 26 in this order from the upstream side. An addition valve 25 for adding urea water as a reducing agent is provided in the exhaust passage 4 between the filter 23 and the NOx catalyst 24.
  • the oxidation catalyst 22 oxidizes and purifies the unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust gas, heats and raises the exhaust gas with the heat of reaction at this time, and NO 2 in the exhaust gas. Oxidizes to.
  • the filter 23 is composed of a so-called continuously regenerating type filter with a catalyst, which collects particulate matter (PM (Particulate Matter)) contained in the exhaust gas and burns the collected PM by catalytic action.
  • PM particulate Matter
  • An oxidation catalyst is supported on the carrier of the filter 23 in order to burn the collected PM. Therefore, the filter can be regarded as a kind of oxidation catalyst.
  • a so-called wall flow type filter in which the openings at both ends of the ceramic honeycomb carrier are alternately sealed is used.
  • the oxidation catalyst 22 and the filter 23 correspond to the first oxidation catalyst and the second oxidation catalyst, respectively, according to the claims.
  • the NOx catalyst 24 reacts ammonia derived from urea water added from the addition valve 25 with NOx to reduce and purify NOx in the exhaust gas.
  • the ammonia oxidation catalyst 26 oxidizes and purifies the excess ammonia discharged from the NOx catalyst 24.
  • An exhaust pipe injector 38 is provided in the exhaust passage 4 on the upstream side of the oxidation catalyst 22.
  • the exhaust pipe injector 38 can inject fuel into the exhaust passage 4 or the exhaust pipe 21 at the time of temperature rise control described later.
  • fuel injection into the exhaust passage 4 will be referred to as exhaust pipe injection.
  • the exhaust pipe injector 38 is provided on the downstream side of the turbine 14T, but the installation position thereof can be changed.
  • the engine 1 is also equipped with an exhaust gas recirculation device (EGR (Exhaust Gas Recirculation) device) 30.
  • the EGR device 30 includes an EGR passage 31 for recirculating a part (referred to as EGR gas) of exhaust gas in the exhaust passage 4 (particularly in the exhaust manifold 20) into the intake passage 3 (particularly in the intake manifold 10), and an EGR.
  • An EGR cooler 32 for cooling the EGR gas flowing through the passage 31 and an EGR valve 33 for adjusting the flow rate of the EGR gas are provided.
  • the vehicle is equipped with a control device for controlling the engine 1.
  • the control device includes a control unit, a circuit element (circuitry), or an electronic control unit (referred to as an ECU (Electronic Control Unit)) 100 that forms a controller.
  • the ECU 100 includes a CPU (Central Processing Unit) having a calculation function, ROM (Read Only Memory) and RAM (Random Access Memory) which are storage media, an input / output port, and a storage device other than ROM and RAM.
  • the ECU 100 is configured and programmed to control an in-cylinder injector 7, an intake throttle valve 16, an addition valve 25, an EGR valve 33, and an exhaust pipe injector 38.
  • the control device includes the following sensors in addition to the above-mentioned air flow meter 13. That is, a rotation speed sensor 40 for detecting the rotation speed of the engine, specifically, the rotation speed (rpm) per minute, and an accelerator opening degree sensor 41 for detecting the accelerator opening degree are provided. Further, an exhaust temperature sensor 42 for detecting the inlet exhaust temperature of the oxidation catalyst 22, an exhaust temperature sensor 43 for detecting the outlet exhaust temperature of the oxidation catalyst 22, and an exhaust for detecting the outlet exhaust temperature of the filter 23. A temperature sensor 44 is provided. Further, a differential pressure sensor 45 for detecting the differential pressure between the inlet exhaust pressure and the outlet exhaust pressure of the filter 23 is provided. The output signals of these sensors are sent to the ECU 100.
  • the outlet exhaust temperature of the oxidation catalyst 22 is synonymous with the inlet exhaust temperature of the filter 23, and the outlet exhaust temperature of the filter 23 is synonymous with the inlet exhaust temperature of the NOx catalyst 24.
  • the ECU 100 also has a function as a diagnostic unit for diagnosing the oxidation catalyst 22.
  • the diagnostic method of this embodiment will be described.
  • the ECU 100 is configured to execute a temperature rise control for raising the outlet exhaust temperature of the oxidation catalyst 22, and to diagnose the oxidation catalyst 22 based on the outlet exhaust temperature of the filter 23 during the execution of the temperature rise control. There is.
  • the temperature rise control will be described.
  • the ECU 100 When the differential pressure detected by the differential pressure sensor 45 reaches a predetermined upper limit threshold value or more, the ECU 100 considers that the PM collection amount of the filter 23 has reached the vicinity of fullness, and burns and removes the collected PM. Control the temperature rise.
  • the ECU 100 causes the in-cylinder injector 7 to execute a well-known post injection, and injects the post-injection fuel as the heating fuel from the in-cylinder injector 7. Then, the post-injection fuel is burned by the oxidation catalyst 22, and the outlet exhaust temperature of the oxidation catalyst 22 rises.
  • PM is burned and removed in the filter 23. Then, the PM collecting ability of the filter 23 is restored, and the filter 23 is regenerated.
  • the ECU 100 feedback-controls the post injection amount so that the outlet exhaust temperature of the oxidation catalyst 22 detected by the exhaust temperature sensor 43 approaches a predetermined target temperature.
  • exhaust pipe injection may be performed by the exhaust pipe injector 38.
  • the horizontal axis is time t, and on the vertical axis, (A) is the integrated value (referred to as fuel integrated value) Q of the post injection amount, and (B) is the inlet exhaust temperature T1 and (C) of the oxidation catalyst 22. Is the outlet exhaust temperature T2 of the oxidation catalyst 22, and (D) is the outlet exhaust temperature T3 of the filter 23.
  • the fuel integrated value Q gradually increases. Then, the inlet exhaust temperature T1 rises slightly and then stabilizes at a constant value.
  • the outlet exhaust temperature T2 starts to rise at the same time as the temperature rise control starts, eventually reaches the target temperature T2t (for example, 600 ° C.), and is maintained near the target temperature T2t.
  • the solid line a in the figure is the case of the normal oxidation catalyst 22, and the broken line b is the case of the abnormal oxidation catalyst 22.
  • the temperature rise rate is higher in the normal state than in the abnormal state, and the outlet exhaust temperature T2 reaches the target temperature T2t at an earlier timing. This is because the oxidation catalyst 22 can burn the post-injection fuel with higher efficiency. In other words, the amount of heat possessed by the post-injection fuel can be converted into exhaust temperature energy with higher efficiency.
  • the diagnosis of the oxidation catalyst 22 is executed at the timing t1 during the rise of the outlet exhaust temperature T2. That is, the ECU 100 compares the detected value of the outlet exhaust temperature T2 with the predetermined threshold T2s when the fuel integrated value Q reaches the predetermined threshold Qsp (t1), and when the outlet exhaust temperature T2 is equal to or higher than the threshold T2s, the oxidation catalyst 22 is determined to be normal, and when the outlet exhaust temperature T2 is less than the threshold value T2s, the oxidation catalyst 22 is determined to be abnormal.
  • the threshold value T2s is a value set in advance through a test or the like.
  • a test is performed using an oxidation catalyst at the boundary between normal and abnormal conditions (reference state, criteria state), and the outlet exhaust temperature T2 when the fuel integrated value Q reaches the threshold value Qsp is set as the threshold value T2s.
  • the diagnosis is executed at the timing t1 such that the outlet exhaust temperature T2 is rising.
  • the oxidation catalyst 22 is cooled by the outside air as compared with the time when the oxidation catalyst 22 is heated by the post-injection fuel. Since the time required for the fuel is long, it becomes difficult for the outlet exhaust temperature T2 to rise, and there is a risk that the temperature will fall below the threshold value T2s even though it is normal. Further, when the outside air temperature is low in a cold region or the like, or when rain and snow adhere to the oxidation catalyst 22 in a rainy and snowy environment, the oxidation catalyst 22 is remarkably cooled by them, so that the outlet exhaust temperature T2 also rises. It becomes difficult to do so, and there is a risk that the threshold value T2s will be exceeded even though it is normal.
  • the diagnosis is executed based on the outlet exhaust temperature T3 of the filter 23 instead of the outlet exhaust temperature T2 of the oxidation catalyst 22.
  • the ECU 100 executes the diagnosis of the oxidation catalyst 22 at the timing after the outlet exhaust temperature T2 of the oxidation catalyst 22 reaches the target temperature T2t during the execution of the temperature rise control.
  • the timing at which the outlet exhaust temperature T2 reaches the target temperature T2t can be defined as the timing at which the outlet exhaust temperature T2 of the oxidation catalyst 22 in the criterion state reaches the target temperature T2t.
  • such a diagnosis timing corresponds to the timing t2 at which the fuel integrated value Q reaches a predetermined threshold value Qs. That is, the threshold value Qs is predetermined so that the above diagnosis timing is obtained when the fuel integrated value Q reaches the threshold value Qs.
  • this diagnosis timing is later than the timing at which the outlet exhaust temperature T3 of the filter 23 changes from rising to stable when the oxidation catalyst 22 in the criterion state is used.
  • the solid line c shows the case of the normal oxidation catalyst 22
  • the broken line d shows the case of the abnormal oxidation catalyst 22.
  • the heat of the exhaust gas flowing into the filter 23 is taken away by the filter 23 having a relatively large heat capacity, while PM burns in the filter 23 to generate heat.
  • the heat dissipation amount of the former is larger than the heat generation amount of the latter. Therefore, as a result of summarizing the transfer of heat, when the oxidation catalyst 22 is normal, the outlet exhaust temperature T3 of the filter 23 tends to be equal to or less than or slightly higher than the outlet exhaust temperature T2 of the oxidation catalyst 22.
  • the outlet exhaust temperature T3 (solid line c) of the filter 23 tends to be higher than or slightly higher than the target temperature T2t. is there.
  • the oxidation catalyst 22 when the oxidation catalyst 22 is abnormal, it becomes difficult for the oxidation catalyst 22 to burn out the post-injection fuel. Therefore, the post-injection fuel that could not be completely burned by the oxidation catalyst 22, that is, HC, flows into the filter 23 and burns in the filter 23. Therefore, the amount of heat generated by this combustion is added, and the outlet exhaust temperature T3 of the filter 23 becomes higher.
  • the outlet exhaust temperature T3 of the filter 23 tends to be significantly higher than the outlet exhaust temperature T2 of the oxidation catalyst 22. As shown in the figure, when the outlet exhaust temperature T2 of the oxidation catalyst 22 is constant near the target temperature T2t, the outlet exhaust temperature T3 (broken line d) of the filter 23 tends to be significantly higher than the target temperature T2t.
  • this characteristic is used to diagnose the oxidation catalyst 22 based on the outlet exhaust temperature T3 of the filter 23.
  • a more specific diagnostic method is as follows.
  • the ECU 100 diagnoses the oxidation catalyst 22 as abnormal when the outlet exhaust temperature T3 of the filter 23 is equal to or higher than a predetermined threshold value T3s. Specifically, the ECU 100 compares the detected value of the outlet exhaust temperature T3 with the threshold value T3s at the diagnosis timing t2, and if the detected value is the threshold value T3s or more, diagnoses the oxidation catalyst 22 as abnormal, and if the detected value is less than the threshold value T3s. If there is, the oxidation catalyst 22 is diagnosed as normal.
  • the oxidation catalyst 22 can be suitably diagnosed by utilizing the characteristic that the outlet exhaust temperature T3 of the filter 23 becomes remarkably high when the oxidation catalyst 22 is abnormal.
  • the ECU 100 sets the threshold value T3s based on the integrated value of the heating fuel supplied during the execution of the temperature rising control, that is, the fuel integrated value Q.
  • a map (may be a function; the same applies hereinafter) that defines the relationship between the fuel integrated value Q and the threshold value T3s (shown by the alternate long and short dash line e in FIG. 2D) is stored in the ECU 100 in advance. Then, the ECU 100 calculates the threshold value T3s corresponding to the actual fuel integrated value Q from the map. As the integrated fuel value Q increases, the amount of heat supplied to the filter 23 increases, so that the filter outlet exhaust temperature T3 tends to increase.
  • the threshold value T3s is also set to increase as the fuel integrated value Q increases. Further, the map is created based on the relationship between the fuel integrated value Q and the filter outlet exhaust temperature T3 when the oxidation catalyst in the criterion state is used.
  • threshold value T3s By using such a threshold value T3s, it is possible to use an optimum threshold value T3s corresponding to the outlet exhaust temperature T3 that changes according to the fuel integrated value Q, and the diagnostic accuracy can be improved.
  • the ECU 100 determines the oxidation catalyst when the temperature difference ⁇ T32 between the outlet exhaust temperature T3 of the filter 23 and the inlet exhaust temperature (that is, the outlet exhaust temperature of the oxidation catalyst 22) T2 is equal to or greater than a predetermined threshold value ⁇ T32s. 22 is diagnosed as abnormal. Specifically, the ECU 100 calculates the temperature difference ⁇ T32 by subtracting the detected value of the inlet exhaust temperature T2 from the detected value of the outlet exhaust temperature T3 at the diagnosis timing t2, and compares the temperature difference ⁇ T32 with the threshold value ⁇ T32s.
  • the oxidation catalyst 22 is diagnosed as abnormal, and if the temperature difference ⁇ T32 is less than the threshold value ⁇ T32s, the oxidation catalyst 22 is diagnosed as normal.
  • the ECU 100 sets the threshold value ⁇ T32s based on the fuel integrated value Q. Specifically, the ECU 100 calculates the threshold value ⁇ T32s by subtracting the detected value of the inlet / exhaust temperature T2 from the threshold value T3s calculated by the above method.
  • the oxidation catalyst 22 can be suitably diagnosed by utilizing this characteristic.
  • the inlet exhaust temperature T2 of the filter 23 is made substantially constant by feedback control, but slightly fluctuates according to changes in the engine operating state and the like. According to the second diagnostic method, since the diagnosis is performed using the difference between the fluctuating filter 23 and the inlet / exhaust temperature T2, the diagnostic accuracy can be improved.
  • a map defining the relationship between the fuel integrated value Q and the threshold value ⁇ T32s may be stored in advance, and the threshold value ⁇ T32s corresponding to the fuel integrated value Q may be calculated using this map.
  • the ECU 100 calculates the cumulative time when the state is abnormal by the first diagnostic method, that is, the outlet exhaust temperature T3 is the threshold value T3s or more. At this time, the ECU 100 continuously increases the cumulative time if the state occurs continuously, and intermittently increases the cumulative time if the state occurs intermittently. Then, when the cumulative time exceeds a predetermined time threshold value, the oxidation catalyst 22 is diagnosed as abnormal. The calculation of the cumulative time can be executed until the end of temperature rise control (that is, the end of filter regeneration). Therefore, if the cumulative time exceeds the time threshold value by the end of the temperature rise control, the oxidation catalyst 22 is diagnosed as abnormal.
  • an abnormality is diagnosed only when the abnormal state continues for more than the time threshold value. Therefore, although it is originally normal, it temporarily becomes apparently abnormal due to a change in the engine operating state or the like. Occasionally, it is possible to suppress erroneous diagnosis as an abnormality and improve the accuracy of diagnosis.
  • the cumulative time when the state made abnormal by the second diagnostic method that is, the state where the temperature difference ⁇ T32 is equal to or greater than the threshold value ⁇ T32s is calculated, and when the cumulative time becomes equal to or greater than the predetermined time threshold value, oxidation occurs.
  • the catalyst 22 may be diagnosed as abnormal.
  • the diagnostic method of the present embodiment not within a short period during which the outlet exhaust temperature T2 of the oxidation catalyst 22 is rising, but within a long period after the outlet exhaust temperature T2 of the oxidation catalyst 22 reaches the target temperature T2t.
  • the diagnosis is performed at.
  • FIG. 2 shows only an early part of the latter period, but in reality the latter period is many times longer than the period shown.
  • the outlet exhaust temperature T3 of the filter 23 is stable during this period, and the diagnosis can be executed at any timing (for example, t2) within the stable long period.
  • diagnosis is performed at a plurality of timings (for example, t2 and t3) after the outlet exhaust temperature T2 of the oxidation catalyst 22 reaches the target temperature T2t, and a comprehensive diagnosis is made in consideration of the diagnosis results. You may go. For example, if the results of the diagnosis performed at a plurality of timings are all abnormal, or if the results are abnormal with a probability of 50% or more, the result of the comprehensive diagnosis may be abnormal.
  • the diagnosis of the above-mentioned comparative example may also be performed as a preliminary diagnosis, and a comprehensive diagnosis may be performed based on the diagnosis result.
  • a comprehensive diagnosis may be performed based on the diagnosis result.
  • the result of the diagnosis of the comparative example is abnormal and the result of the diagnosis of any of the first to fourth diagnostic methods (referred to as the main diagnosis) is also abnormal
  • the result of the comprehensive diagnosis may be abnormal.
  • the diagnosis accuracy can be further improved.
  • the illustrated routine is repeatedly executed by the ECU 100 every predetermined calculation cycle ⁇ (for example, 10 msec).
  • step S101 the ECU 100 determines whether or not the fuel integrated value Q integrated from the start of the temperature rise control has reached a predetermined threshold value Qs or more. If the fuel integrated value Q does not reach the predetermined threshold Qs or more, the routine is terminated because it is not yet the diagnosis timing. On the other hand, when the fuel integrated value Q reaches a predetermined threshold value Qs or more, the process proceeds to step S102.
  • step S102 the ECU 100 calculates the threshold value T3s corresponding to the fuel integrated value Q from a predetermined map.
  • step S103 the ECU 100 compares the detected value of the outlet exhaust temperature T3 with the threshold value T3s.
  • the routine is terminated.
  • the oxidation catalyst 22 is substantially diagnosed as normal.
  • step S104 the process proceeds to step S104 to diagnose the oxidation catalyst 22 as abnormal.
  • the ECU 100 activates a warning device (for example, a warning light) (not shown) to urge the driver to perform necessary inspections and maintenance (the same applies hereinafter).
  • a warning device for example, a warning light
  • step S201 the ECU 100 determines whether or not the fuel integrated value Q has reached the threshold value Qs or more, as in step S101. If the fuel integrated value Q does not reach the threshold Qs or more, the routine ends, and if the fuel integrated value Q reaches the threshold Qs or more, the process proceeds to step S202.
  • step S202 the ECU 100 calculates the threshold value ⁇ T32s corresponding to the fuel integrated value Q by the above method.
  • step S203 the ECU 100 compares the temperature difference ⁇ T32 calculated by the above method with the threshold value ⁇ T32s. If the temperature difference ⁇ T32 is less than the threshold value ⁇ T32s, the routine is terminated, and if the temperature difference ⁇ T32 is the threshold value ⁇ T32s or more, the process proceeds to step S204 to diagnose the oxidation catalyst 22 as abnormal.
  • step S301 the ECU 100 determines whether or not the fuel integrated value Q has reached the threshold value Qs or more, as in step S101. If the fuel integrated value Q does not reach the threshold Qs or more, the routine ends, and if the fuel integrated value Q reaches the threshold Qs or more, the process proceeds to step S302.
  • step S302 the ECU 100 calculates the threshold value ⁇ T32s corresponding to the fuel integrated value Q by the above method.
  • step S303 the ECU 100 compares the temperature difference ⁇ T32 calculated by the above method with the threshold value ⁇ T32s. If the temperature difference ⁇ T32 is less than the threshold value ⁇ T32s, the routine is terminated, and if the temperature difference ⁇ T32 is greater than or equal to the threshold value ⁇ T32s, the process proceeds to step S304.
  • step S305 the ECU 100 compares the cumulative time tA with the predetermined time threshold tAs. If the cumulative time tA is less than the time threshold tAs, the routine is terminated, and if the cumulative time tA is greater than or equal to the time threshold tAs, the process proceeds to step S306 to diagnose the oxidation catalyst 22 as abnormal.
  • the cumulative time tA is accumulated in step S304 every time ⁇ T32 ⁇ ⁇ T32s in step S303. Then, before the cumulative time tA reaches the time threshold tAs or more, step S305 is no, so that the oxidation catalyst 22 is not yet diagnosed as abnormal (substantially diagnosed as normal). When the cumulative time tA reaches the time threshold tAs or more, step S305 becomes yes, and the oxidation catalyst 22 is diagnosed as abnormal.
  • step S402 the ECU 100 determines whether or not the fuel integrated value Q has reached the second threshold value Qs2 (see FIG. 2), which is higher than the first threshold value Qs1. If the fuel integrated value Q does not reach the second threshold value Qs2 or more, the process proceeds to step S403, and if the fuel integrated value Q reaches the second threshold value Qs2 or more, the process proceeds to step S408.
  • step S403 the ECU 100 calculates the first threshold value T3s1 corresponding to the fuel integrated value Q from the map. Then, in step S404, the detected value of the outlet exhaust temperature T3 is compared with the first threshold value T3s1. When the detected value is less than the first threshold value T3s1, the process proceeds to step S406. On the other hand, when the detected value is equal to or higher than the first threshold value T3s1, the process proceeds to step S405, and the abnormality flag 1 tentatively indicating that the oxidation catalyst 22 is abnormal is turned on. Then, the process proceeds to step S406.
  • step S408 the ECU 100 calculates the second threshold value T3s2 corresponding to the fuel integrated value Q from the map. Then, in step S409, the detected value of the outlet exhaust temperature T3 is compared with the second threshold value T3s2. When the detected value is less than the second threshold value T3s2, the process proceeds to step S406. On the other hand, when the detected value is equal to or higher than the second threshold value T3s2, the process proceeds to step S410, and the abnormality flag 2 tentatively indicating that the oxidation catalyst 22 is abnormal is turned on. Then, the process proceeds to step S406.
  • step S406 the ECU 100 determines whether or not both the abnormality flag 1 and the abnormality flag 2 are on. Exit the routine if both are not on, that is, if both are off or only one is on. On the other hand, when both are on, the oxidation catalyst 22 is diagnosed as abnormal as a result of the comprehensive diagnosis in step S407.
  • the diagnosis may be made as an abnormality as a result of the comprehensive diagnosis.
  • the diagnosis timing and the number of abnormality flags may be increased, and a comprehensive diagnosis may be performed based on the results of more individual diagnoses.
  • step S501 the ECU 100 determines whether or not the fuel integrated value Q has reached a predetermined threshold value Qsp (see FIG. 2) or more.
  • This threshold value Qsp is a value lower than the above-mentioned threshold value Qs, and is a value corresponding to the rising period before the outlet exhaust temperature T2 of the oxidation catalyst 22 reaches the target temperature T2t. If the fuel integrated value Q does not reach the threshold Qsp or more, the routine ends, and if the fuel integrated value Q reaches the threshold Qsp or more, the process proceeds to step S502.
  • step S502 the ECU 100 compares the detected value of the outlet exhaust temperature T2 of the oxidation catalyst 22 with the predetermined threshold value T2s.
  • the routine is terminated, and when the detected value is less than the threshold value T2s, the process proceeds to step S503 to diagnose the oxidation catalyst 22 as abnormal.
  • the oxidation catalyst 22 is diagnosed as normal, and when the detected value is less than the threshold value T2s, the oxidation catalyst 22 is diagnosed as abnormal.
  • step S601 the ECU 100 determines whether or not this diagnosis has been completed. If it is not finished, the routine is finished, and if it is finished, the process proceeds to step S602.
  • step S602 the ECU 100 determines whether or not the result of the preliminary diagnosis is abnormal. If it is not abnormal, the routine is terminated, and if it is abnormal, the process proceeds to step S603.
  • step S603 the ECU 100 determines whether or not the result of this diagnosis is abnormal. If it is not abnormal, the routine is terminated, and if it is abnormal, the process proceeds to step S604.
  • step S604 the ECU 100 diagnoses the oxidation catalyst 22 as abnormal as a result of the comprehensive diagnosis. In this way, when the results of both the preliminary diagnosis and the main diagnosis are abnormal, a comprehensive diagnosis with the abnormality is made.
  • a SOF oxidation catalyst may be used instead of the filter 23.
  • the SOF oxidation catalyst is an oxidation catalyst for oxidizing a soluble organic component (SOF (Soluble Organic Fraction)) of PM. Since this SOF oxidation catalyst also has a function of oxidizing HC like the filter 23, the diagnostic method of the present disclosure can be suitably applied.
  • SOF Soluble Organic Fraction
  • a normal oxidation catalyst may be used as the second oxidation catalyst.
  • the temperature rise control can be executed not only for the regeneration of the filter 23 but also for any other purpose.
  • the exhaust gas purification device for an internal combustion engine according to the present disclosure is useful in that it can improve the diagnostic accuracy of the oxidation catalyst.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

This exhaust purification apparatus for an internal combustion engine 1 comprises: a first oxidation catalyst 22 and a second oxidation catalyst 23 provided to an exhaust passage 4 in the stated order from an upstream side; and a control unit 100 configured so as to execute temperature-increasing control for increasing the temperature of exhaust in an outlet of the first oxidation catalyst, and diagnose the first oxidation catalyst on the basis of the temperature of exhaust in an outlet of the second oxidation catalyst while the temperature-increasing control is being executed.

Description

内燃機関の排気浄化装置Exhaust purification device for internal combustion engine
 本開示は、内燃機関の排気浄化装置に関する。 This disclosure relates to an exhaust gas purification device for an internal combustion engine.
 内燃機関、特にディーゼルエンジンの排気浄化装置において、排気通路に上流側から順に酸化触媒およびフィルタを設けたものが知られている。フィルタは排気中に含まれる粒子状物質を捕集する。フィルタには、捕集した粒子状物質を燃焼させるため酸化触媒が担持されている。そのためフィルタは一種の酸化触媒とみなせる。 It is known that an exhaust purification device for an internal combustion engine, particularly a diesel engine, is provided with an oxidation catalyst and a filter in order from the upstream side in the exhaust passage. The filter collects particulate matter contained in the exhaust. An oxidation catalyst is supported on the filter to burn the collected particulate matter. Therefore, the filter can be regarded as a kind of oxidation catalyst.
 フィルタの捕集量が満杯付近に達したとき、粒子状物質を燃焼除去してフィルタの性能を回復させるため、再生が行われる。この際、酸化触媒の出口排気温度を昇温させる昇温制御が実行される。 When the collected amount of the filter reaches near full, regeneration is performed in order to burn and remove particulate matter and restore the performance of the filter. At this time, the temperature rise control for raising the outlet exhaust temperature of the oxidation catalyst is executed.
日本国特開2018-96313号公報Japanese Patent Application Laid-Open No. 2018-96313
 こうした排気浄化装置において、酸化触媒が正常なのか否かを診断することがある。一般にこの診断は、昇温制御開始後に酸化触媒の出口排気温度が上昇するときの1タイミングで、酸化触媒の出口排気温度に基づき実行される。 In such an exhaust gas purification device, it may be diagnosed whether or not the oxidation catalyst is normal. Generally, this diagnosis is performed based on the outlet exhaust temperature of the oxidation catalyst at one timing when the outlet exhaust temperature of the oxidation catalyst rises after the start of temperature rise control.
 しかし、こうしたタイミングで診断する方法だと、内燃機関の運転状態や外部環境の変化等による出口排気温度の上昇の仕方のバラつきが比較的大きいため、必ずしも正確な診断結果を得られるとは限らないという欠点がある。 However, with the method of diagnosing at such timing, accurate diagnosis results cannot always be obtained because there is a relatively large variation in the way the outlet exhaust temperature rises due to changes in the operating state of the internal combustion engine and the external environment. There is a drawback.
 そこで本開示は、かかる事情に鑑みて創案され、その目的は、酸化触媒の診断精度を向上できる内燃機関の排気浄化装置を提供することにある。 Therefore, this disclosure was devised in view of such circumstances, and its purpose is to provide an exhaust gas purification device for an internal combustion engine capable of improving the diagnostic accuracy of an oxidation catalyst.
 本開示の一の態様によれば、
 内燃機関の排気通路に上流側から順に設けられた第1酸化触媒および第2酸化触媒と、
 前記第1酸化触媒の出口排気温度を昇温させる昇温制御を実行すると共に、該昇温制御の実行中に前記第2酸化触媒の出口排気温度に基づいて前記第1酸化触媒を診断するように構成された制御ユニットと、
 を備えることを特徴とする内燃機関の排気浄化装置が提供される。
According to one aspect of the present disclosure
The first oxidation catalyst and the second oxidation catalyst provided in order from the upstream side in the exhaust passage of the internal combustion engine,
A temperature rise control for raising the outlet exhaust temperature of the first oxidation catalyst is executed, and the first oxidation catalyst is diagnosed based on the outlet exhaust temperature of the second oxidation catalyst during the execution of the temperature rise control. With the control unit configured in
An exhaust gas purification device for an internal combustion engine is provided.
 好ましくは、前記制御ユニットは、前記第2酸化触媒の出口排気温度が所定の閾値以上であるときに前記第1酸化触媒を異常と診断する。 Preferably, the control unit diagnoses the first oxidation catalyst as abnormal when the outlet exhaust temperature of the second oxidation catalyst is equal to or higher than a predetermined threshold value.
 好ましくは、前記制御ユニットは、前記第2酸化触媒の出口排気温度と入口排気温度の温度差が所定の閾値以上であるときに前記第1酸化触媒を異常と診断する。 Preferably, the control unit diagnoses the first oxidation catalyst as abnormal when the temperature difference between the outlet exhaust temperature and the inlet exhaust temperature of the second oxidation catalyst is equal to or greater than a predetermined threshold value.
 好ましくは、前記制御ユニットは、前記第2酸化触媒の出口排気温度が所定の閾値以上である状態の累積時間が所定の時間閾値以上となるか、または、前記第2酸化触媒の出口排気温度と入口排気温度の温度差が所定の閾値以上である状態の累積時間が所定の時間閾値以上となったとき、前記第1酸化触媒を異常と診断する。 Preferably, the control unit has a cumulative time in which the outlet exhaust temperature of the second oxidation catalyst is equal to or higher than a predetermined threshold value or more than a predetermined time threshold, or is equal to or higher than the outlet exhaust temperature of the second oxidation catalyst. When the cumulative time in a state where the temperature difference between the inlet and exhaust temperatures is equal to or greater than a predetermined threshold exceeds a predetermined time threshold, the first oxidation catalyst is diagnosed as abnormal.
 好ましくは、前記制御ユニットは、前記昇温制御の実行中に供給された昇温用燃料の積算値に基づいて前記閾値を設定する。 Preferably, the control unit sets the threshold value based on the integrated value of the temperature raising fuel supplied during the execution of the temperature rising control.
 好ましくは、前記制御ユニットは、前記昇温制御の実行中に前記第1酸化触媒の出口排気温度が所定の目標温度に達した後に前記第1酸化触媒を診断する。 Preferably, the control unit diagnoses the first oxidation catalyst after the outlet exhaust temperature of the first oxidation catalyst reaches a predetermined target temperature during the execution of the temperature rise control.
 好ましくは、前記制御ユニットは、前記第1酸化触媒の出口排気温度が前記目標温度に達する前のタイミングで前記第1酸化触媒の予備診断を実行し、この予備診断の結果にも基づいて前記第1酸化触媒を診断する。 Preferably, the control unit executes the preliminary diagnosis of the first oxidation catalyst at a timing before the outlet exhaust temperature of the first oxidation catalyst reaches the target temperature, and based on the result of the preliminary diagnosis, the first Diagnose the oxidation catalyst.
 好ましくは、前記第2酸化触媒は、酸化触媒が担持された粒子状物質捕集用フィルタであるか、または粒子状物質の可溶有機成分を酸化するための酸化触媒である。 Preferably, the second oxidation catalyst is a filter for collecting particulate matter on which the oxidation catalyst is supported, or an oxidation catalyst for oxidizing the soluble organic component of the particulate matter.
 本開示によれば、酸化触媒の診断精度を向上できる。 According to the present disclosure, the diagnostic accuracy of the oxidation catalyst can be improved.
図1は、本開示の実施形態の構成を示す概略図である。FIG. 1 is a schematic diagram showing a configuration of an embodiment of the present disclosure. 図2は、昇温制御時の各値の推移を示すタイムチャートである。FIG. 2 is a time chart showing the transition of each value during temperature rise control. 図3は、第1の診断方法に基づく診断処理のフローチャートである。FIG. 3 is a flowchart of the diagnostic process based on the first diagnostic method. 図4は、第2の診断方法に基づく診断処理のフローチャートである。FIG. 4 is a flowchart of the diagnostic process based on the second diagnostic method. 図5は、第3の診断方法に基づく診断処理のフローチャートである。FIG. 5 is a flowchart of the diagnostic process based on the third diagnostic method. 図6は、第4の診断方法に基づく診断処理のフローチャートである。FIG. 6 is a flowchart of the diagnostic process based on the fourth diagnostic method. 図7は、第5の診断方法に係る予備診断の診断処理のフローチャートである。FIG. 7 is a flowchart of the diagnostic process of the preliminary diagnosis according to the fifth diagnostic method. 図8は、第5の診断方法に係る総合診断の診断処理のフローチャートである。FIG. 8 is a flowchart of the diagnostic process of the comprehensive diagnosis according to the fifth diagnostic method.
 以下、添付図面を参照して本開示の実施形態を説明する。なお本開示は以下の実施形態に限定されない点に留意すべきである。 Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. It should be noted that the present disclosure is not limited to the following embodiments.
 図1は、本実施形態の構成を示す概略図である。内燃機関(エンジンともいう)1は、車両(図示せず)に搭載された多気筒エンジンである。本実施形態において、車両はトラック等の大型車両であり、これに搭載される車両動力源としてのエンジン1は直列4気筒ディーゼルエンジンである。しかしながら、車両および内燃機関の種類、形式、用途等に特に限定はなく、例えば車両は乗用車等の小型車両であってもよいし、エンジン1はガソリンエンジンであってもよい。 FIG. 1 is a schematic view showing the configuration of this embodiment. The internal combustion engine (also referred to as an engine) 1 is a multi-cylinder engine mounted on a vehicle (not shown). In the present embodiment, the vehicle is a large vehicle such as a truck, and the engine 1 as a vehicle power source mounted on the large vehicle is an in-line 4-cylinder diesel engine. However, the type, type, use, and the like of the vehicle and the internal combustion engine are not particularly limited. For example, the vehicle may be a small vehicle such as a passenger car, and the engine 1 may be a gasoline engine.
 なおエンジンは、車両以外の移動体、例えば船舶、建設機械、または産業機械に搭載されたものであってもよい。またエンジンは、移動体に搭載されたものでなくてもよく、定置式のものであってもよい。 The engine may be mounted on a moving body other than a vehicle, for example, a ship, a construction machine, or an industrial machine. Further, the engine does not have to be mounted on a moving body, and may be a stationary engine.
 エンジン1は、エンジン本体2と、エンジン本体2に接続された吸気通路3および排気通路4と、ターボチャージャ14と、燃料噴射装置5とを備える。エンジン本体2は、シリンダヘッド、シリンダブロック、クランクケース等の構造部品と、その内部に収容されたピストン、クランクシャフト、バルブ等の可動部品とを含む。 The engine 1 includes an engine main body 2, an intake passage 3 and an exhaust passage 4 connected to the engine main body 2, a turbocharger 14, and a fuel injection device 5. The engine body 2 includes structural parts such as a cylinder head, a cylinder block, and a crankcase, and movable parts such as a piston, a crankshaft, and a valve housed therein.
 燃料噴射装置5は、コモンレール式燃料噴射装置からなり、各気筒に設けられた燃料噴射用インジェクタ7と、インジェクタ7に接続されたコモンレール8とを備える。インジェクタ7は、対応気筒の筒内に燃料を供給するための筒内インジェクタであり、本実施形態の場合、筒内に燃料を直接噴射する。コモンレール8は、インジェクタ7から噴射される燃料を高圧状態で貯留する。 The fuel injection device 5 comprises a common rail type fuel injection device, and includes a fuel injection injector 7 provided in each cylinder and a common rail 8 connected to the injector 7. The injector 7 is an in-cylinder injector for supplying fuel into the cylinder of the corresponding cylinder, and in the case of the present embodiment, the fuel is directly injected into the cylinder. The common rail 8 stores the fuel injected from the injector 7 in a high pressure state.
 吸気通路3は、エンジン本体2(特にシリンダヘッド)に接続された吸気マニホールド10と、吸気マニホールド10の上流端に接続された吸気管11とにより主に画成される。吸気マニホールド10は、吸気管11から送られてきた吸気を各気筒の吸気ポートに分配供給する。吸気管11には、上流側から順に、エアクリーナ12、エアフローメータ13、ターボチャージャ14のコンプレッサ14C、インタークーラ15、および電子制御式の吸気スロットルバルブ16が設けられる。エアフローメータ13は、エンジン1の単位時間当たりの吸入空気量すなわち吸気流量を検出するためのセンサであり、マスエアフロー(MAF)センサ等とも称される。 The intake passage 3 is mainly defined by an intake manifold 10 connected to the engine body 2 (particularly a cylinder head) and an intake pipe 11 connected to the upstream end of the intake manifold 10. The intake manifold 10 distributes and supplies the intake air sent from the intake pipe 11 to the intake ports of each cylinder. The intake pipe 11 is provided with an air cleaner 12, an air flow meter 13, a turbocharger 14 compressor 14C, an intercooler 15, and an electronically controlled intake throttle valve 16 in this order from the upstream side. The air flow meter 13 is a sensor for detecting the intake air amount per unit time of the engine 1, that is, the intake flow rate, and is also called a mass air flow (MAF) sensor or the like.
 排気通路4は、エンジン本体2(特にシリンダヘッド)に接続された排気マニホールド20と、排気マニホールド20の下流側に接続された排気管21とにより主に画成される。排気マニホールド20は、各気筒の排気ポートから送られてきた排気ガスを集合させる。排気管21、もしくは排気マニホールド20と排気管21の間には、ターボチャージャ14のタービン14Tが設けられる。 The exhaust passage 4 is mainly defined by an exhaust manifold 20 connected to the engine body 2 (particularly a cylinder head) and an exhaust pipe 21 connected to the downstream side of the exhaust manifold 20. The exhaust manifold 20 collects the exhaust gas sent from the exhaust port of each cylinder. A turbine 14T of a turbocharger 14 is provided between the exhaust pipe 21 or the exhaust manifold 20 and the exhaust pipe 21.
 タービン14Tより下流側の排気通路4には、上流側から順に、酸化触媒22およびフィルタ23が設けられる。またフィルタ23より下流側の排気通路4には、上流側から順に、選択還元型NOx触媒24およびアンモニア酸化触媒26が設けられる。フィルタ23とNOx触媒24の間の排気通路4には、還元剤としての尿素水を添加する添加弁25が設けられる。 An oxidation catalyst 22 and a filter 23 are provided in the exhaust passage 4 on the downstream side of the turbine 14T in order from the upstream side. Further, the exhaust passage 4 on the downstream side of the filter 23 is provided with the selective reduction NOx catalyst 24 and the ammonia oxidation catalyst 26 in this order from the upstream side. An addition valve 25 for adding urea water as a reducing agent is provided in the exhaust passage 4 between the filter 23 and the NOx catalyst 24.
 酸化触媒22は、排気中の未燃成分(炭化水素HCおよび一酸化炭素CO)を酸化して浄化すると共に、このときの反応熱で排気を加熱昇温し、また排気中のNOをNO2に酸化する。 The oxidation catalyst 22 oxidizes and purifies the unburned components (hydrocarbon HC and carbon monoxide CO) in the exhaust gas, heats and raises the exhaust gas with the heat of reaction at this time, and NO 2 in the exhaust gas. Oxidizes to.
 フィルタ23は、所謂連続再生式の触媒付きフィルタからなり、排気中に含まれる粒子状物質(PM(Particulate Matter))を捕集すると共に、捕集したPMを触媒作用により燃焼する。フィルタ23の担体には、捕集したPMを燃焼させるため酸化触媒が担持されている。そのためフィルタは一種の酸化触媒とみなせる。フィルタ23として、セラミックス製ハニカム担体の両端開口を交互に目封じした所謂ウォールフロータイプのフィルタが用いられる。 The filter 23 is composed of a so-called continuously regenerating type filter with a catalyst, which collects particulate matter (PM (Particulate Matter)) contained in the exhaust gas and burns the collected PM by catalytic action. An oxidation catalyst is supported on the carrier of the filter 23 in order to burn the collected PM. Therefore, the filter can be regarded as a kind of oxidation catalyst. As the filter 23, a so-called wall flow type filter in which the openings at both ends of the ceramic honeycomb carrier are alternately sealed is used.
 なお酸化触媒22およびフィルタ23は、それぞれ請求の範囲にいう第1酸化触媒および第2酸化触媒に対応する。 The oxidation catalyst 22 and the filter 23 correspond to the first oxidation catalyst and the second oxidation catalyst, respectively, according to the claims.
 NOx触媒24は、添加弁25から添加された尿素水に由来するアンモニアをNOxと反応させて排気中のNOxを還元浄化する。アンモニア酸化触媒26は、NOx触媒24から排出された余剰アンモニアを酸化して浄化する。 The NOx catalyst 24 reacts ammonia derived from urea water added from the addition valve 25 with NOx to reduce and purify NOx in the exhaust gas. The ammonia oxidation catalyst 26 oxidizes and purifies the excess ammonia discharged from the NOx catalyst 24.
 酸化触媒22より上流側の排気通路4には排気管インジェクタ38が設けられる。排気管インジェクタ38は、後述する昇温制御時に排気通路4ないし排気管21内に燃料を噴射し得るものである。以下、こうした排気通路4内への燃料噴射を排気管噴射と称す。本実施形態では排気管インジェクタ38がタービン14Tの下流側に設けられているが、その設置位置は変更可能である。 An exhaust pipe injector 38 is provided in the exhaust passage 4 on the upstream side of the oxidation catalyst 22. The exhaust pipe injector 38 can inject fuel into the exhaust passage 4 or the exhaust pipe 21 at the time of temperature rise control described later. Hereinafter, such fuel injection into the exhaust passage 4 will be referred to as exhaust pipe injection. In the present embodiment, the exhaust pipe injector 38 is provided on the downstream side of the turbine 14T, but the installation position thereof can be changed.
 エンジン1は排気再循環装置(EGR(Exhaust Gas Recirculation)装置)30も備える。EGR装置30は、排気通路4内(特に排気マニホールド20内)の排気ガスの一部(EGRガスという)を吸気通路3内(特に吸気マニホールド10内)に還流させるためのEGR通路31と、EGR通路31を流れるEGRガスを冷却するEGRクーラ32と、EGRガスの流量を調節するためのEGR弁33とを備える。 The engine 1 is also equipped with an exhaust gas recirculation device (EGR (Exhaust Gas Recirculation) device) 30. The EGR device 30 includes an EGR passage 31 for recirculating a part (referred to as EGR gas) of exhaust gas in the exhaust passage 4 (particularly in the exhaust manifold 20) into the intake passage 3 (particularly in the intake manifold 10), and an EGR. An EGR cooler 32 for cooling the EGR gas flowing through the passage 31 and an EGR valve 33 for adjusting the flow rate of the EGR gas are provided.
 車両には、エンジン1を制御するための制御装置が搭載されている。制御装置は、制御ユニット、回路要素(circuitry)もしくはコントローラをなす電子制御ユニット(ECU(Electronic Control Unit)という)100を含む。ECU100は、演算機能を有するCPU(Central Processing Unit)、記憶媒体であるROM(Read Only Memory)およびRAM(Random Access Memory)、入出力ポート、ならびにROMおよびRAM以外の記憶装置等を含む。ECU100は、筒内インジェクタ7、吸気スロットルバルブ16、添加弁25、EGR弁33および排気管インジェクタ38を制御するように構成され、プログラムされている。 The vehicle is equipped with a control device for controlling the engine 1. The control device includes a control unit, a circuit element (circuitry), or an electronic control unit (referred to as an ECU (Electronic Control Unit)) 100 that forms a controller. The ECU 100 includes a CPU (Central Processing Unit) having a calculation function, ROM (Read Only Memory) and RAM (Random Access Memory) which are storage media, an input / output port, and a storage device other than ROM and RAM. The ECU 100 is configured and programmed to control an in-cylinder injector 7, an intake throttle valve 16, an addition valve 25, an EGR valve 33, and an exhaust pipe injector 38.
 制御装置は、上述のエアフローメータ13に加えて以下のセンサ類も含む。すなわち、エンジンの回転速度、具体的には毎分当たりの回転数(rpm)を検出するための回転速度センサ40と、アクセル開度を検出するためのアクセル開度センサ41とが設けられる。また、酸化触媒22の入口排気温度を検出するための排気温センサ42と、酸化触媒22の出口排気温度を検出するための排気温センサ43と、フィルタ23の出口排気温度を検出するための排気温センサ44とが設けられている。また、フィルタ23の入口排気圧および出口排気圧の差圧を検出するための差圧センサ45が設けられている。これらセンサ類の出力信号はECU100に送られる。 The control device includes the following sensors in addition to the above-mentioned air flow meter 13. That is, a rotation speed sensor 40 for detecting the rotation speed of the engine, specifically, the rotation speed (rpm) per minute, and an accelerator opening degree sensor 41 for detecting the accelerator opening degree are provided. Further, an exhaust temperature sensor 42 for detecting the inlet exhaust temperature of the oxidation catalyst 22, an exhaust temperature sensor 43 for detecting the outlet exhaust temperature of the oxidation catalyst 22, and an exhaust for detecting the outlet exhaust temperature of the filter 23. A temperature sensor 44 is provided. Further, a differential pressure sensor 45 for detecting the differential pressure between the inlet exhaust pressure and the outlet exhaust pressure of the filter 23 is provided. The output signals of these sensors are sent to the ECU 100.
 なお、酸化触媒22の出口排気温度はフィルタ23の入口排気温度と同義であり、フィルタ23の出口排気温度はNOx触媒24の入口排気温度と同義である。 The outlet exhaust temperature of the oxidation catalyst 22 is synonymous with the inlet exhaust temperature of the filter 23, and the outlet exhaust temperature of the filter 23 is synonymous with the inlet exhaust temperature of the NOx catalyst 24.
 ECU100は、酸化触媒22を診断する診断ユニットとしての機能も有する。以下、本実施形態の診断方法を説明する。 The ECU 100 also has a function as a diagnostic unit for diagnosing the oxidation catalyst 22. Hereinafter, the diagnostic method of this embodiment will be described.
 概してECU100は、酸化触媒22の出口排気温度を昇温させる昇温制御を実行すると共に、昇温制御の実行中にフィルタ23の出口排気温度に基づいて酸化触媒22を診断するように構成されている。 Generally, the ECU 100 is configured to execute a temperature rise control for raising the outlet exhaust temperature of the oxidation catalyst 22, and to diagnose the oxidation catalyst 22 based on the outlet exhaust temperature of the filter 23 during the execution of the temperature rise control. There is.
 まず昇温制御について説明する。ECU100は、差圧センサ45により検出された差圧が所定の上限閾値以上に達したとき、フィルタ23のPM捕集量が満杯付近に達したとみなして、捕集PMを燃焼除去するために昇温制御を行う。この際、ECU100は、周知のポスト噴射を筒内インジェクタ7に実行させ、昇温用燃料としてのポスト噴射燃料を筒内インジェクタ7から噴射させる。すると、ポスト噴射燃料が酸化触媒22で燃焼し、酸化触媒22の出口排気温度が上昇する。この昇温された排気がフィルタ23に供給されることで、フィルタ23内でPMが燃焼除去される。そしてフィルタ23のPM捕集能が回復され、フィルタ23が再生される。 First, the temperature rise control will be described. When the differential pressure detected by the differential pressure sensor 45 reaches a predetermined upper limit threshold value or more, the ECU 100 considers that the PM collection amount of the filter 23 has reached the vicinity of fullness, and burns and removes the collected PM. Control the temperature rise. At this time, the ECU 100 causes the in-cylinder injector 7 to execute a well-known post injection, and injects the post-injection fuel as the heating fuel from the in-cylinder injector 7. Then, the post-injection fuel is burned by the oxidation catalyst 22, and the outlet exhaust temperature of the oxidation catalyst 22 rises. By supplying the heated exhaust gas to the filter 23, PM is burned and removed in the filter 23. Then, the PM collecting ability of the filter 23 is restored, and the filter 23 is regenerated.
 昇温制御中、ECU100は、排気温センサ43により検出された酸化触媒22の出口排気温度が所定の目標温度に近づくよう、ポスト噴射量をフィードバック制御する。 During the temperature rise control, the ECU 100 feedback-controls the post injection amount so that the outlet exhaust temperature of the oxidation catalyst 22 detected by the exhaust temperature sensor 43 approaches a predetermined target temperature.
 なおポスト噴射の代わりに、排気管インジェクタ38による排気管噴射を行ってもよい。 Instead of post injection, exhaust pipe injection may be performed by the exhaust pipe injector 38.
 次に、本実施形態の診断の原理を説明する。図2において、横軸は時間tであり、縦軸について、(A)はポスト噴射量の積算値(燃料積算値という)Q、(B)は酸化触媒22の入口排気温度T1、(C)は酸化触媒22の出口排気温度T2、(D)はフィルタ23の出口排気温度T3である。 Next, the principle of diagnosis of this embodiment will be described. In FIG. 2, the horizontal axis is time t, and on the vertical axis, (A) is the integrated value (referred to as fuel integrated value) Q of the post injection amount, and (B) is the inlet exhaust temperature T1 and (C) of the oxidation catalyst 22. Is the outlet exhaust temperature T2 of the oxidation catalyst 22, and (D) is the outlet exhaust temperature T3 of the filter 23.
 時刻t0で昇温制御が開始された後、燃料積算値Qは次第に増加していく。そして入口排気温度T1は少しだけ上昇した後、一定値で安定する。 After the temperature rise control is started at time t0, the fuel integrated value Q gradually increases. Then, the inlet exhaust temperature T1 rises slightly and then stabilizes at a constant value.
 出口排気温度T2は、昇温制御開始と同時に上昇し始め、やがて目標温度T2t(例えば600℃)に達して目標温度T2t付近に維持される。図中の実線aは正常な酸化触媒22の場合、破線bは異常な酸化触媒22の場合である。正常時の方が異常時よりも昇温速度が高く、出口排気温度T2は早いタイミングで目標温度T2tに達する。これは、酸化触媒22がポスト噴射燃料をより高効率で燃焼できるからである。言い換えれば、ポスト噴射燃料が持つ熱量をより高効率で排気温度エネルギに変換できるからである。 The outlet exhaust temperature T2 starts to rise at the same time as the temperature rise control starts, eventually reaches the target temperature T2t (for example, 600 ° C.), and is maintained near the target temperature T2t. The solid line a in the figure is the case of the normal oxidation catalyst 22, and the broken line b is the case of the abnormal oxidation catalyst 22. The temperature rise rate is higher in the normal state than in the abnormal state, and the outlet exhaust temperature T2 reaches the target temperature T2t at an earlier timing. This is because the oxidation catalyst 22 can burn the post-injection fuel with higher efficiency. In other words, the amount of heat possessed by the post-injection fuel can be converted into exhaust temperature energy with higher efficiency.
 ところで、本開示の着想前の比較例では、出口排気温度T2の上昇中のタイミングt1で酸化触媒22の診断が実行される。すなわちECU100は、燃料積算値Qが所定の閾値Qspに達した時(t1)に、出口排気温度T2の検出値を所定の閾値T2sと比較し、出口排気温度T2が閾値T2s以上のときには酸化触媒22を正常と判定し、出口排気温度T2が閾値T2s未満のときには酸化触媒22を異常と判定する。閾値T2sは、試験等を通じて予め設定された値である。例えば、正常と異常の境目の状態(基準状態、クライテリア状態)にある酸化触媒を用いて試験を行い、燃料積算値Qが閾値Qspに達した時の出口排気温度T2を、閾値T2sとして定めている。このように比較例では、出口排気温度T2が上昇中となるようなタイミングt1で診断を実行している。 By the way, in the comparative example before the idea of the present disclosure, the diagnosis of the oxidation catalyst 22 is executed at the timing t1 during the rise of the outlet exhaust temperature T2. That is, the ECU 100 compares the detected value of the outlet exhaust temperature T2 with the predetermined threshold T2s when the fuel integrated value Q reaches the predetermined threshold Qsp (t1), and when the outlet exhaust temperature T2 is equal to or higher than the threshold T2s, the oxidation catalyst 22 is determined to be normal, and when the outlet exhaust temperature T2 is less than the threshold value T2s, the oxidation catalyst 22 is determined to be abnormal. The threshold value T2s is a value set in advance through a test or the like. For example, a test is performed using an oxidation catalyst at the boundary between normal and abnormal conditions (reference state, criteria state), and the outlet exhaust temperature T2 when the fuel integrated value Q reaches the threshold value Qsp is set as the threshold value T2s. There is. As described above, in the comparative example, the diagnosis is executed at the timing t1 such that the outlet exhaust temperature T2 is rising.
 しかしこの方法だと、エンジンの運転状態や外部環境の変化等による出口排気温度T2の上昇の仕方のバラつきが比較的大きいため、必ずしも正確な診断結果を得られない欠点がある。 However, this method has a drawback that accurate diagnostic results cannot always be obtained because there is a relatively large variation in how the outlet exhaust temperature T2 rises due to changes in the operating state of the engine and the external environment.
 すなわち、例えば運転手がアクセルペダルを頻繁に解除するような減速フューエルカットの多い運転方法を行うと、酸化触媒22がポスト噴射燃料により昇温される時間に比べ、酸化触媒22が外気で冷却される時間が長くなるため、出口排気温度T2が昇温され難くなり、正常なのに閾値T2sを下回る虞がある。また、寒冷地等で外気温が低かったり、雨雪環境下で酸化触媒22に雨雪が付着したりすると、それらにより酸化触媒22が顕著に冷却されるため、やはり出口排気温度T2が昇温され難くなり、正常なのに閾値T2sを下回る虞がある。 That is, for example, when a driver performs an operation method with many deceleration fuel cuts such as frequently releasing the accelerator pedal, the oxidation catalyst 22 is cooled by the outside air as compared with the time when the oxidation catalyst 22 is heated by the post-injection fuel. Since the time required for the fuel is long, it becomes difficult for the outlet exhaust temperature T2 to rise, and there is a risk that the temperature will fall below the threshold value T2s even though it is normal. Further, when the outside air temperature is low in a cold region or the like, or when rain and snow adhere to the oxidation catalyst 22 in a rainy and snowy environment, the oxidation catalyst 22 is remarkably cooled by them, so that the outlet exhaust temperature T2 also rises. It becomes difficult to do so, and there is a risk that the threshold value T2s will be exceeded even though it is normal.
 こうした問題に対処するのは比較例では難しい。なぜなら、出口排気温度T2が上昇中という短い期間内の唯一のタイミングで診断を実行しているからである。仮にこうしたタイミングで、出口排気温度T2が上述の理由により低温側にズレてしまうと、異常と誤診断する虞があり、改善策が望まれる。 It is difficult to deal with such problems in comparative examples. This is because the diagnosis is performed at the only timing within a short period of time when the outlet exhaust temperature T2 is rising. If the outlet exhaust temperature T2 shifts to the low temperature side at such a timing due to the above-mentioned reason, there is a risk of erroneous diagnosis as an abnormality, and improvement measures are desired.
 そこで本実施形態では、酸化触媒22の出口排気温度T2の代わりに、フィルタ23の出口排気温度T3に基づいて診断を実行する。ECU100は、昇温制御の実行中、酸化触媒22の出口排気温度T2が目標温度T2tに達した後のタイミングで、酸化触媒22の診断を実行する。なお出口排気温度T2が目標温度T2tに達するタイミングを、クライテリア状態の酸化触媒22の出口排気温度T2が目標温度T2tに達するタイミングと規定することができる。こうした診断タイミングは、図示例では、燃料積算値Qが所定の閾値Qsに達したタイミングt2が該当する。すなわち燃料積算値Qが閾値Qsに達した時に上記の診断タイミングとなるよう、閾値Qsが予め定められている。 Therefore, in the present embodiment, the diagnosis is executed based on the outlet exhaust temperature T3 of the filter 23 instead of the outlet exhaust temperature T2 of the oxidation catalyst 22. The ECU 100 executes the diagnosis of the oxidation catalyst 22 at the timing after the outlet exhaust temperature T2 of the oxidation catalyst 22 reaches the target temperature T2t during the execution of the temperature rise control. The timing at which the outlet exhaust temperature T2 reaches the target temperature T2t can be defined as the timing at which the outlet exhaust temperature T2 of the oxidation catalyst 22 in the criterion state reaches the target temperature T2t. In the illustrated example, such a diagnosis timing corresponds to the timing t2 at which the fuel integrated value Q reaches a predetermined threshold value Qs. That is, the threshold value Qs is predetermined so that the above diagnosis timing is obtained when the fuel integrated value Q reaches the threshold value Qs.
 なおこの診断タイミングは、クライテリア状態の酸化触媒22を用いたときのフィルタ23の出口排気温度T3が上昇から安定に転じるタイミングよりも後のタイミングであるのが好ましい。 It is preferable that this diagnosis timing is later than the timing at which the outlet exhaust temperature T3 of the filter 23 changes from rising to stable when the oxidation catalyst 22 in the criterion state is used.
 図2(D)においても、実線cは正常な酸化触媒22の場合、破線dは異常な酸化触媒22の場合を示す。まず正常な酸化触媒22の場合、フィルタ23の出口排気温度T3は酸化触媒22の出口排気温度T2よりも遅れて上昇し始める。そして酸化触媒22の出口排気温度T2が目標温度T2t付近で安定するようになると、これに対応して、フィルタ23の出口排気温度T3も安定するようになる。但し、燃料積算値Qの増加と共に供給熱量が増加するため、フィルタ23の出口排気温度T3はゆっくりと上昇し、その後一定となる。 Also in FIG. 2D, the solid line c shows the case of the normal oxidation catalyst 22, and the broken line d shows the case of the abnormal oxidation catalyst 22. First, in the case of the normal oxidation catalyst 22, the outlet exhaust temperature T3 of the filter 23 starts to rise later than the outlet exhaust temperature T2 of the oxidation catalyst 22. Then, when the outlet exhaust temperature T2 of the oxidation catalyst 22 becomes stable near the target temperature T2t, the outlet exhaust temperature T3 of the filter 23 also becomes stable correspondingly. However, since the amount of heat supplied increases as the integrated fuel value Q increases, the outlet exhaust temperature T3 of the filter 23 rises slowly and then becomes constant.
 フィルタ23に流入した排気の熱が、比較的大きい熱容量のフィルタ23に奪われる一方で、フィルタ23内ではPMが燃焼するため発熱する。概して前者の放熱量は後者の発熱量より大きい。そのため、これらの熱の授受を総合した結果、酸化触媒22の正常時では、フィルタ23の出口排気温度T3が酸化触媒22の出口排気温度T2以下か、それより少しだけしか高くならない傾向にある。図示するように、酸化触媒22の出口排気温度T2が目標温度T2t付近で一定の場合、フィルタ23の出口排気温度T3(実線c)は、目標温度T2t以下かそれより少しだけしか高くならない傾向にある。 The heat of the exhaust gas flowing into the filter 23 is taken away by the filter 23 having a relatively large heat capacity, while PM burns in the filter 23 to generate heat. Generally, the heat dissipation amount of the former is larger than the heat generation amount of the latter. Therefore, as a result of summarizing the transfer of heat, when the oxidation catalyst 22 is normal, the outlet exhaust temperature T3 of the filter 23 tends to be equal to or less than or slightly higher than the outlet exhaust temperature T2 of the oxidation catalyst 22. As shown in the figure, when the outlet exhaust temperature T2 of the oxidation catalyst 22 is constant near the target temperature T2t, the outlet exhaust temperature T3 (solid line c) of the filter 23 tends to be higher than or slightly higher than the target temperature T2t. is there.
 しかし、酸化触媒22の異常時だと、酸化触媒22でポスト噴射燃料を燃焼し切るのが困難となる。このため、酸化触媒22で燃焼し切れなかったポスト噴射燃料、すなわちHCが、フィルタ23に流入し、フィルタ23内で燃焼する。このため、この燃焼による発熱量が加わって、フィルタ23の出口排気温度T3がより高くなる。酸化触媒22の異常時では、フィルタ23の出口排気温度T3が酸化触媒22の出口排気温度T2よりも顕著に高くなる傾向にある。図示するように、酸化触媒22の出口排気温度T2が目標温度T2t付近で一定の場合、フィルタ23の出口排気温度T3(破線d)は、目標温度T2tよりも顕著に高くなる傾向にある。 However, when the oxidation catalyst 22 is abnormal, it becomes difficult for the oxidation catalyst 22 to burn out the post-injection fuel. Therefore, the post-injection fuel that could not be completely burned by the oxidation catalyst 22, that is, HC, flows into the filter 23 and burns in the filter 23. Therefore, the amount of heat generated by this combustion is added, and the outlet exhaust temperature T3 of the filter 23 becomes higher. When the oxidation catalyst 22 is abnormal, the outlet exhaust temperature T3 of the filter 23 tends to be significantly higher than the outlet exhaust temperature T2 of the oxidation catalyst 22. As shown in the figure, when the outlet exhaust temperature T2 of the oxidation catalyst 22 is constant near the target temperature T2t, the outlet exhaust temperature T3 (broken line d) of the filter 23 tends to be significantly higher than the target temperature T2t.
 そこで本実施形態では、この特性を利用し、フィルタ23の出口排気温度T3に基づいて酸化触媒22を診断する。より具体的な診断方法は次の通りである。 Therefore, in the present embodiment, this characteristic is used to diagnose the oxidation catalyst 22 based on the outlet exhaust temperature T3 of the filter 23. A more specific diagnostic method is as follows.
 まず第1の診断方法について、ECU100は、フィルタ23の出口排気温度T3が所定の閾値T3s以上であるときに酸化触媒22を異常と診断する。具体的にはECU100は、診断タイミングt2において出口排気温度T3の検出値を閾値T3sと比較し、検出値が閾値T3s以上であれば酸化触媒22を異常と診断し、検出値が閾値T3s未満であれば酸化触媒22を正常と診断する。 First, regarding the first diagnostic method, the ECU 100 diagnoses the oxidation catalyst 22 as abnormal when the outlet exhaust temperature T3 of the filter 23 is equal to or higher than a predetermined threshold value T3s. Specifically, the ECU 100 compares the detected value of the outlet exhaust temperature T3 with the threshold value T3s at the diagnosis timing t2, and if the detected value is the threshold value T3s or more, diagnoses the oxidation catalyst 22 as abnormal, and if the detected value is less than the threshold value T3s. If there is, the oxidation catalyst 22 is diagnosed as normal.
 この第1の診断方法によれば、酸化触媒22の異常時にフィルタ23の出口排気温度T3が顕著に高くなる特性を利用して、酸化触媒22を好適に診断できる。 According to this first diagnostic method, the oxidation catalyst 22 can be suitably diagnosed by utilizing the characteristic that the outlet exhaust temperature T3 of the filter 23 becomes remarkably high when the oxidation catalyst 22 is abnormal.
 ここでECU100は、昇温制御の実行中に供給された昇温用燃料の積算値すなわち燃料積算値Qに基づいて閾値T3sを設定する。具体的には、燃料積算値Qと閾値T3sの関係(図2(D)に一点鎖線eで示す)を規定したマップ(関数でもよい。以下同様)が予めECU100に記憶される。そしてECU100は、実際の燃料積算値Qに対応した閾値T3sをマップから算出する。燃料積算値Qが増加するほど、フィルタ23への供給熱量が増加するので、フィルタ出口排気温度T3は増加する傾向にある。従ってこの傾向に合わせて、閾値T3sも、燃料積算値Qが増加するほど増加するように設定している。またマップは、クライテリア状態の酸化触媒を用いたときの燃料積算値Qとフィルタ出口排気温度T3の関係に基づいて作成されている。 Here, the ECU 100 sets the threshold value T3s based on the integrated value of the heating fuel supplied during the execution of the temperature rising control, that is, the fuel integrated value Q. Specifically, a map (may be a function; the same applies hereinafter) that defines the relationship between the fuel integrated value Q and the threshold value T3s (shown by the alternate long and short dash line e in FIG. 2D) is stored in the ECU 100 in advance. Then, the ECU 100 calculates the threshold value T3s corresponding to the actual fuel integrated value Q from the map. As the integrated fuel value Q increases, the amount of heat supplied to the filter 23 increases, so that the filter outlet exhaust temperature T3 tends to increase. Therefore, in line with this tendency, the threshold value T3s is also set to increase as the fuel integrated value Q increases. Further, the map is created based on the relationship between the fuel integrated value Q and the filter outlet exhaust temperature T3 when the oxidation catalyst in the criterion state is used.
 こうした閾値T3sを用いることにより、燃料積算値Qに応じて変化する出口排気温度T3に見合った最適な閾値T3sを用いることができ、診断精度を向上することができる。 By using such a threshold value T3s, it is possible to use an optimum threshold value T3s corresponding to the outlet exhaust temperature T3 that changes according to the fuel integrated value Q, and the diagnostic accuracy can be improved.
 次に第2の診断方法について、ECU100は、フィルタ23の出口排気温度T3と入口排気温度(すなわち酸化触媒22の出口排気温度)T2の温度差ΔT32が所定の閾値ΔT32s以上であるときに酸化触媒22を異常と診断する。具体的にはECU100は、診断タイミングt2において出口排気温度T3の検出値から入口排気温度T2の検出値を減じて温度差ΔT32を算出し、温度差ΔT32を閾値ΔT32sと比較する。温度差ΔT32が閾値ΔT32s以上であれば酸化触媒22を異常と診断し、温度差ΔT32が閾値ΔT32s未満であれば酸化触媒22を正常と診断する。 Next, regarding the second diagnostic method, the ECU 100 determines the oxidation catalyst when the temperature difference ΔT32 between the outlet exhaust temperature T3 of the filter 23 and the inlet exhaust temperature (that is, the outlet exhaust temperature of the oxidation catalyst 22) T2 is equal to or greater than a predetermined threshold value ΔT32s. 22 is diagnosed as abnormal. Specifically, the ECU 100 calculates the temperature difference ΔT32 by subtracting the detected value of the inlet exhaust temperature T2 from the detected value of the outlet exhaust temperature T3 at the diagnosis timing t2, and compares the temperature difference ΔT32 with the threshold value ΔT32s. If the temperature difference ΔT32 is equal to or greater than the threshold value ΔT32s, the oxidation catalyst 22 is diagnosed as abnormal, and if the temperature difference ΔT32 is less than the threshold value ΔT32s, the oxidation catalyst 22 is diagnosed as normal.
 ここでもECU100は、燃料積算値Qに基づいて閾値ΔT32sを設定する。具体的にはECU100は、前述の方法で算出した閾値T3sから入口排気温度T2の検出値を減じて閾値ΔT32sを算出する。 Here, too, the ECU 100 sets the threshold value ΔT32s based on the fuel integrated value Q. Specifically, the ECU 100 calculates the threshold value ΔT32s by subtracting the detected value of the inlet / exhaust temperature T2 from the threshold value T3s calculated by the above method.
 酸化触媒22の異常時には、フィルタ23の出口排気温度T3と入口排気温度T2の温度差ΔT32も大きくなる。従って第2の診断方法によれば、この特性を利用して酸化触媒22を好適に診断できる。特に、フィルタ23の入口排気温度T2はフィードバック制御によりほぼ一定とされるが、エンジン運転状態等の変化に応じて微妙に変動する。第2の診断方法によれば、この変動するフィルタ23の入口排気温度T2との差を用いて診断を行うため、診断精度を向上できる。 When the oxidation catalyst 22 is abnormal, the temperature difference ΔT32 between the outlet exhaust temperature T3 and the inlet exhaust temperature T2 of the filter 23 also increases. Therefore, according to the second diagnostic method, the oxidation catalyst 22 can be suitably diagnosed by utilizing this characteristic. In particular, the inlet exhaust temperature T2 of the filter 23 is made substantially constant by feedback control, but slightly fluctuates according to changes in the engine operating state and the like. According to the second diagnostic method, since the diagnosis is performed using the difference between the fluctuating filter 23 and the inlet / exhaust temperature T2, the diagnostic accuracy can be improved.
 なお、燃料積算値Qと閾値ΔT32sの関係を規定したマップを予め記憶しておき、このマップを使用して、燃料積算値Qに対応した閾値ΔT32sを算出してもよい。 A map defining the relationship between the fuel integrated value Q and the threshold value ΔT32s may be stored in advance, and the threshold value ΔT32s corresponding to the fuel integrated value Q may be calculated using this map.
 次に第3の診断方法について、ECU100は、第1の診断方法により異常とされる状態、すなわち出口排気温度T3が閾値T3s以上の状態であるときの累積時間を計算する。このときECU100は、当該状態が連続的に起きれば累積時間を連続的に増加させ、当該状態が間欠的に起きれば累積時間を間欠的に増加させる。そして累積時間が所定の時間閾値以上となったとき、酸化触媒22を異常と診断する。累積時間の計算は昇温制御終了(すなわちフィルタ再生終了)まで実行可能である。従って昇温制御終了までに累積時間が時間閾値以上となれば、酸化触媒22が異常と診断されることとなる。 Next, regarding the third diagnostic method, the ECU 100 calculates the cumulative time when the state is abnormal by the first diagnostic method, that is, the outlet exhaust temperature T3 is the threshold value T3s or more. At this time, the ECU 100 continuously increases the cumulative time if the state occurs continuously, and intermittently increases the cumulative time if the state occurs intermittently. Then, when the cumulative time exceeds a predetermined time threshold value, the oxidation catalyst 22 is diagnosed as abnormal. The calculation of the cumulative time can be executed until the end of temperature rise control (that is, the end of filter regeneration). Therefore, if the cumulative time exceeds the time threshold value by the end of the temperature rise control, the oxidation catalyst 22 is diagnosed as abnormal.
 この第3の診断方法によれば、異常とされる状態が時間閾値以上継続した場合に限って異常と診断するので、本来正常なのにエンジン運転状態の変化等により一時的に見掛け上異常となったときに異常と誤診断するのを抑制でき、診断精度を向上できる。 According to this third diagnostic method, an abnormality is diagnosed only when the abnormal state continues for more than the time threshold value. Therefore, although it is originally normal, it temporarily becomes apparently abnormal due to a change in the engine operating state or the like. Occasionally, it is possible to suppress erroneous diagnosis as an abnormality and improve the accuracy of diagnosis.
 代替的に、第2の診断方法により異常とされる状態、すなわち温度差ΔT32が閾値ΔT32s以上の状態であるときの累積時間を計算し、この累積時間が所定の時間閾値以上となったとき酸化触媒22を異常と診断してもよい。 Alternatively, the cumulative time when the state made abnormal by the second diagnostic method, that is, the state where the temperature difference ΔT32 is equal to or greater than the threshold value ΔT32s is calculated, and when the cumulative time becomes equal to or greater than the predetermined time threshold value, oxidation occurs. The catalyst 22 may be diagnosed as abnormal.
 さて、本実施形態の診断方法によれば、酸化触媒22の出口排気温度T2が上昇中の短い期間内ではなく、酸化触媒22の出口排気温度T2が目標温度T2tに達した後の長い期間内で診断が実行される。図2には便宜上、後者の期間のうちの初期の一部のみが記載されているが、実際には後者の期間は図示の期間の何倍にも及ぶ。しかもこの期間ではフィルタ23の出口排気温度T3が安定しており、その安定した長い期間内の任意のタイミング(例えばt2)で診断が実行可能である。よって、エンジンの運転状態や外部環境の変化等により、出口排気温度T2の上昇の仕方が大きくバラついた場合でも、それとは無関係に、正確な診断結果を得ることができる。それ故、酸化触媒22の診断精度を向上することが可能である。 By the way, according to the diagnostic method of the present embodiment, not within a short period during which the outlet exhaust temperature T2 of the oxidation catalyst 22 is rising, but within a long period after the outlet exhaust temperature T2 of the oxidation catalyst 22 reaches the target temperature T2t. The diagnosis is performed at. For convenience, FIG. 2 shows only an early part of the latter period, but in reality the latter period is many times longer than the period shown. Moreover, the outlet exhaust temperature T3 of the filter 23 is stable during this period, and the diagnosis can be executed at any timing (for example, t2) within the stable long period. Therefore, even if the way in which the outlet exhaust temperature T2 rises varies greatly due to changes in the operating state of the engine, the external environment, or the like, accurate diagnostic results can be obtained regardless of the difference. Therefore, it is possible to improve the diagnostic accuracy of the oxidation catalyst 22.
 なお、第4の診断方法として、酸化触媒22の出口排気温度T2が目標温度T2tに達した後の複数のタイミング(例えばt2とt3)で診断を行い、それら診断結果を考慮して総合診断を行ってもよい。例えば、複数タイミングで行った診断の結果が全て異常だった場合、あるいは50%以上の確率で異常だった場合、総合診断の結果を異常としてもよい。 As a fourth diagnostic method, diagnosis is performed at a plurality of timings (for example, t2 and t3) after the outlet exhaust temperature T2 of the oxidation catalyst 22 reaches the target temperature T2t, and a comprehensive diagnosis is made in consideration of the diagnosis results. You may go. For example, if the results of the diagnosis performed at a plurality of timings are all abnormal, or if the results are abnormal with a probability of 50% or more, the result of the comprehensive diagnosis may be abnormal.
 あるいは第5の診断方法として、前述の比較例の診断も予備診断として併せて実行し、その診断結果にも基づいて総合診断を行ってもよい。例えば、比較例の診断の結果が異常で、第1~第4の診断方法のいずれかの診断(本診断という)の結果も異常である場合、総合診断の結果を異常としてもよい。 Alternatively, as a fifth diagnostic method, the diagnosis of the above-mentioned comparative example may also be performed as a preliminary diagnosis, and a comprehensive diagnosis may be performed based on the diagnosis result. For example, when the result of the diagnosis of the comparative example is abnormal and the result of the diagnosis of any of the first to fourth diagnostic methods (referred to as the main diagnosis) is also abnormal, the result of the comprehensive diagnosis may be abnormal.
 これらによれば、複数の診断結果に基づいて総合診断を行うので、診断精度を一層向上することができる。 According to these, since the comprehensive diagnosis is performed based on a plurality of diagnosis results, the diagnosis accuracy can be further improved.
 次に、ECU100が実行する診断処理の内容を説明する。まず図3を参照して、第1の診断方法に基づく診断処理の内容を説明する。図示するルーチンはECU100により所定の演算周期τ(例えば10msec)毎に繰り返し実行される。 Next, the contents of the diagnostic processing executed by the ECU 100 will be described. First, the contents of the diagnostic process based on the first diagnostic method will be described with reference to FIG. The illustrated routine is repeatedly executed by the ECU 100 every predetermined calculation cycle τ (for example, 10 msec).
 まずステップS101で、ECU100は、昇温制御開始時から積算された燃料積算値Qが所定の閾値Qs以上に達したか否かを判断する。燃料積算値Qが所定の閾値Qs以上に達してない場合には、まだ診断タイミングでないとしてルーチンを終了する。他方、燃料積算値Qが所定の閾値Qs以上に達した場合にはステップS102に進む。 First, in step S101, the ECU 100 determines whether or not the fuel integrated value Q integrated from the start of the temperature rise control has reached a predetermined threshold value Qs or more. If the fuel integrated value Q does not reach the predetermined threshold Qs or more, the routine is terminated because it is not yet the diagnosis timing. On the other hand, when the fuel integrated value Q reaches a predetermined threshold value Qs or more, the process proceeds to step S102.
 ステップS102でECU100は、燃料積算値Qに対応した閾値T3sを所定のマップから算出する。 In step S102, the ECU 100 calculates the threshold value T3s corresponding to the fuel integrated value Q from a predetermined map.
 次いでステップS103で、ECU100は、出口排気温度T3の検出値を閾値T3sと比較する。検出値が閾値T3s未満であるときは、ルーチンを終了する。これにより実質的に酸化触媒22は正常と診断される。 Next, in step S103, the ECU 100 compares the detected value of the outlet exhaust temperature T3 with the threshold value T3s. When the detected value is less than the threshold value T3s, the routine is terminated. As a result, the oxidation catalyst 22 is substantially diagnosed as normal.
 他方、検出値が閾値T3s以上であるときは、ステップS104に進んで酸化触媒22を異常と診断する。このときECU100は図示しない警告装置(例えば警告灯)を起動させ、必要な点検整備を運転手に促す(以下においても同様)。 On the other hand, when the detected value is equal to or higher than the threshold value T3s, the process proceeds to step S104 to diagnose the oxidation catalyst 22 as abnormal. At this time, the ECU 100 activates a warning device (for example, a warning light) (not shown) to urge the driver to perform necessary inspections and maintenance (the same applies hereinafter).
 次に図4を参照して、第2の診断方法に基づく診断処理の内容を説明する。まずステップS201でECU100は、ステップS101と同様、燃料積算値Qが閾値Qs以上に達したか否かを判断する。燃料積算値Qが閾値Qs以上に達してなければルーチンを終了し、燃料積算値Qが閾値Qs以上に達した場合にはステップS202に進む。 Next, with reference to FIG. 4, the content of the diagnostic process based on the second diagnostic method will be described. First, in step S201, the ECU 100 determines whether or not the fuel integrated value Q has reached the threshold value Qs or more, as in step S101. If the fuel integrated value Q does not reach the threshold Qs or more, the routine ends, and if the fuel integrated value Q reaches the threshold Qs or more, the process proceeds to step S202.
 ステップS202でECU100は、燃料積算値Qに対応した閾値ΔT32sを前述の方法により算出する。 In step S202, the ECU 100 calculates the threshold value ΔT32s corresponding to the fuel integrated value Q by the above method.
 次いでステップS203で、ECU100は、前述の方法により算出した温度差ΔT32を閾値ΔT32sと比較する。温度差ΔT32が閾値ΔT32s未満であればルーチンを終了し、温度差ΔT32が閾値ΔT32s以上であればステップS204に進んで酸化触媒22を異常と診断する。 Next, in step S203, the ECU 100 compares the temperature difference ΔT32 calculated by the above method with the threshold value ΔT32s. If the temperature difference ΔT32 is less than the threshold value ΔT32s, the routine is terminated, and if the temperature difference ΔT32 is the threshold value ΔT32s or more, the process proceeds to step S204 to diagnose the oxidation catalyst 22 as abnormal.
 次に図5を参照して、第3の診断方法に基づく診断処理の内容を説明する。ここでは第2の診断方法との組み合わせを説明するが、第1の診断方法との組み合わせに容易に変形できることが当業者に認識可能であろう。 Next, with reference to FIG. 5, the content of the diagnostic process based on the third diagnostic method will be described. Although the combination with the second diagnostic method will be described here, those skilled in the art will recognize that the combination with the first diagnostic method can be easily transformed.
 まずステップS301でECU100は、ステップS101と同様、燃料積算値Qが閾値Qs以上に達したか否かを判断する。燃料積算値Qが閾値Qs以上に達してなければルーチンを終了し、燃料積算値Qが閾値Qs以上に達した場合にはステップS302に進む。 First, in step S301, the ECU 100 determines whether or not the fuel integrated value Q has reached the threshold value Qs or more, as in step S101. If the fuel integrated value Q does not reach the threshold Qs or more, the routine ends, and if the fuel integrated value Q reaches the threshold Qs or more, the process proceeds to step S302.
 ステップS302でECU100は、燃料積算値Qに対応した閾値ΔT32sを前述の方法により算出する。 In step S302, the ECU 100 calculates the threshold value ΔT32s corresponding to the fuel integrated value Q by the above method.
 次いでステップS303で、ECU100は、前述の方法により算出した温度差ΔT32を閾値ΔT32sと比較する。温度差ΔT32が閾値ΔT32s未満であればルーチンを終了し、温度差ΔT32が閾値ΔT32s以上であればステップS304に進む。 Next, in step S303, the ECU 100 compares the temperature difference ΔT32 calculated by the above method with the threshold value ΔT32s. If the temperature difference ΔT32 is less than the threshold value ΔT32s, the routine is terminated, and if the temperature difference ΔT32 is greater than or equal to the threshold value ΔT32s, the process proceeds to step S304.
 ステップS304でECU100は、ΔT32≧ΔT32sとなっている時間の累積値もしくは積算値である累積時間tAを計算する。累積時間の今回値をtAn、前回値をtAnー1とすると、累積時間の今回値は式:tAn=tAnー1+τから計算される。 In step S304, the ECU 100 calculates the cumulative time tA which is the cumulative value or the integrated value of the time when ΔT32 ≧ ΔT32s. Assuming that the current value of the cumulative time is tA n and the previous value is tA n-1 , the current value of the cumulative time is calculated from the formula: tA n = tA n-1 + τ.
 次いでステップS305でECU100は、累積時間tAを所定の時間閾値tAsと比較する。累積時間tAが時間閾値tAs未満であればルーチンを終了し、累積時間tAが時間閾値tAs以上であればステップS306に進んで酸化触媒22を異常と診断する。 Next, in step S305, the ECU 100 compares the cumulative time tA with the predetermined time threshold tAs. If the cumulative time tA is less than the time threshold tAs, the routine is terminated, and if the cumulative time tA is greater than or equal to the time threshold tAs, the process proceeds to step S306 to diagnose the oxidation catalyst 22 as abnormal.
 このルーチンによれば、ステップS303でΔT32≧ΔT32sとなる度にステップS304で累積時間tAが積算される。そしてこの累積時間tAが時間閾値tAs以上に達する前は、ステップS305がノーとなるので、酸化触媒22はまだ異常と診断されない(実質的に正常と診断される)。累積時間tAが時間閾値tAs以上に達した時点でステップS305がイエスとなり、酸化触媒22が異常と診断される。 According to this routine, the cumulative time tA is accumulated in step S304 every time ΔT32 ≧ ΔT32s in step S303. Then, before the cumulative time tA reaches the time threshold tAs or more, step S305 is no, so that the oxidation catalyst 22 is not yet diagnosed as abnormal (substantially diagnosed as normal). When the cumulative time tA reaches the time threshold tAs or more, step S305 becomes yes, and the oxidation catalyst 22 is diagnosed as abnormal.
 次に図6を参照して、第4の診断方法に基づく診断処理の内容を説明する。ここでは第1の診断方法との組み合わせを説明するが、第2または第3の診断方法との組み合わせに容易に変形できることが当業者に認識可能であろう。 Next, with reference to FIG. 6, the contents of the diagnostic process based on the fourth diagnostic method will be described. Although the combination with the first diagnostic method will be described here, those skilled in the art will recognize that the combination with the second or third diagnostic method can be easily transformed.
 まずステップS401で、ECU100は、燃料積算値Qが第1閾値Qs1(=Qs、図2参照)以上に達したか否かを判断する。燃料積算値Qが第1閾値Qs1以上に達してない場合にはルーチンを終了し、燃料積算値Qが第1閾値Qs1以上に達した場合にはステップS402に進む。 First, in step S401, the ECU 100 determines whether or not the fuel integrated value Q has reached the first threshold value Qs1 (= Qs, see FIG. 2) or more. If the fuel integrated value Q does not reach the first threshold value Qs1 or more, the routine ends, and if the fuel integrated value Q reaches the first threshold value Qs1 or more, the process proceeds to step S402.
 ステップS402でECU100は、燃料積算値Qが、第1閾値Qs1より高い第2閾値Qs2(図2参照)以上に達したか否かを判断する。燃料積算値Qが第2閾値Qs2以上に達してない場合にはステップS403に進み、燃料積算値Qが第2閾値Qs2以上に達した場合にはステップS408に進む。 In step S402, the ECU 100 determines whether or not the fuel integrated value Q has reached the second threshold value Qs2 (see FIG. 2), which is higher than the first threshold value Qs1. If the fuel integrated value Q does not reach the second threshold value Qs2 or more, the process proceeds to step S403, and if the fuel integrated value Q reaches the second threshold value Qs2 or more, the process proceeds to step S408.
 ステップS403に進んだ場合、ECU100は、燃料積算値Qに対応した第1閾値T3s1をマップから算出する。そしてステップS404において、出口排気温度T3の検出値を第1閾値T3s1と比較する。検出値が第1閾値T3s1未満であるときにはステップS406に進む。他方、検出値が第1閾値T3s1以上であるときにはステップS405に進んで、酸化触媒22が異常である旨を暫定的に示す異常フラグ1がオンされる。そしてステップS406に進む。 When the process proceeds to step S403, the ECU 100 calculates the first threshold value T3s1 corresponding to the fuel integrated value Q from the map. Then, in step S404, the detected value of the outlet exhaust temperature T3 is compared with the first threshold value T3s1. When the detected value is less than the first threshold value T3s1, the process proceeds to step S406. On the other hand, when the detected value is equal to or higher than the first threshold value T3s1, the process proceeds to step S405, and the abnormality flag 1 tentatively indicating that the oxidation catalyst 22 is abnormal is turned on. Then, the process proceeds to step S406.
 一方、ステップS408に進んだ場合、ECU100は、燃料積算値Qに対応した第2閾値T3s2をマップから算出する。そしてステップS409において、出口排気温度T3の検出値を第2閾値T3s2と比較する。検出値が第2閾値T3s2未満であるときにはステップS406に進む。他方、検出値が第2閾値T3s2以上であるときにはステップS410に進んで、酸化触媒22が異常である旨を暫定的に示す異常フラグ2がオンされる。そしてステップS406に進む。 On the other hand, when the process proceeds to step S408, the ECU 100 calculates the second threshold value T3s2 corresponding to the fuel integrated value Q from the map. Then, in step S409, the detected value of the outlet exhaust temperature T3 is compared with the second threshold value T3s2. When the detected value is less than the second threshold value T3s2, the process proceeds to step S406. On the other hand, when the detected value is equal to or higher than the second threshold value T3s2, the process proceeds to step S410, and the abnormality flag 2 tentatively indicating that the oxidation catalyst 22 is abnormal is turned on. Then, the process proceeds to step S406.
 ステップS406においてECU100は、異常フラグ1と異常フラグ2の両方がオンか否かを判断する。両方がオンでない場合、すなわち両方がオフか一方のみがオンの場合にはルーチンを終了する。他方、両方がオンの場合にはステップS407で、総合診断の結果として、酸化触媒22を異常と診断する。 In step S406, the ECU 100 determines whether or not both the abnormality flag 1 and the abnormality flag 2 are on. Exit the routine if both are not on, that is, if both are off or only one is on. On the other hand, when both are on, the oxidation catalyst 22 is diagnosed as abnormal as a result of the comprehensive diagnosis in step S407.
 なお、異常フラグ1と異常フラグ2のいずれか一方がオンの場合に総合診断の結果として異常と診断してもよい。また、診断タイミングと異常フラグの数を増やし、より多くの個別診断の結果に基づいて総合診断を行ってもよい。 If either the abnormality flag 1 or the abnormality flag 2 is on, the diagnosis may be made as an abnormality as a result of the comprehensive diagnosis. In addition, the diagnosis timing and the number of abnormality flags may be increased, and a comprehensive diagnosis may be performed based on the results of more individual diagnoses.
 次に、第5の診断方法の診断処理の内容を説明する。まず図7を参照して、第5の診断方法に組み合わされる比較例の診断処理、すなわち予備診断の診断処理の内容を説明する。 Next, the content of the diagnostic process of the fifth diagnostic method will be described. First, with reference to FIG. 7, the contents of the diagnostic process of the comparative example combined with the fifth diagnostic method, that is, the diagnostic process of the preliminary diagnosis will be described.
 まずステップS501で、ECU100は、燃料積算値Qが所定の閾値Qsp(図2参照)以上に達したか否かを判断する。この閾値Qspは前述の閾値Qsよりも低い値であり、酸化触媒22の出口排気温度T2が目標温度T2tに到達する前の上昇中の期間に対応するような値である。燃料積算値Qが閾値Qsp以上に達してない場合にはルーチンを終了し、燃料積算値Qが閾値Qsp以上に達した場合にはステップS502に進む。 First, in step S501, the ECU 100 determines whether or not the fuel integrated value Q has reached a predetermined threshold value Qsp (see FIG. 2) or more. This threshold value Qsp is a value lower than the above-mentioned threshold value Qs, and is a value corresponding to the rising period before the outlet exhaust temperature T2 of the oxidation catalyst 22 reaches the target temperature T2t. If the fuel integrated value Q does not reach the threshold Qsp or more, the routine ends, and if the fuel integrated value Q reaches the threshold Qsp or more, the process proceeds to step S502.
 ステップS502でECU100は、酸化触媒22の出口排気温度T2の検出値を所定の閾値T2sと比較する。検出値が閾値T2s以上であるときはルーチンを終了し、検出値が閾値T2s未満であるときは、ステップS503に進んで酸化触媒22を異常と診断する。これにより予備診断の結果として、検出値が閾値T2s以上であるときには酸化触媒22が正常と診断され、検出値が閾値T2s未満であるときには酸化触媒22が異常と診断される。 In step S502, the ECU 100 compares the detected value of the outlet exhaust temperature T2 of the oxidation catalyst 22 with the predetermined threshold value T2s. When the detected value is the threshold value T2s or more, the routine is terminated, and when the detected value is less than the threshold value T2s, the process proceeds to step S503 to diagnose the oxidation catalyst 22 as abnormal. As a result of the preliminary diagnosis, when the detected value is the threshold value T2s or more, the oxidation catalyst 22 is diagnosed as normal, and when the detected value is less than the threshold value T2s, the oxidation catalyst 22 is diagnosed as abnormal.
 なおここでは出口排気温度T2を閾値T2sと比較して診断したが、代替的に、出口排気温度T2と入口排気温度T1の温度差ΔT21=T2-T1を所定の閾値ΔT21sと比較して診断してもよい。この場合、ΔT21≧ΔT21sのとき正常、ΔT21<ΔT21sのとき異常と診断する。 Here, the outlet exhaust temperature T2 is diagnosed by comparing it with the threshold value T2s, but instead, the temperature difference ΔT21 = T2-T1 between the outlet exhaust temperature T2 and the inlet exhaust temperature T1 is diagnosed by comparing it with the predetermined threshold value ΔT21s. You may. In this case, it is diagnosed as normal when ΔT21 ≧ ΔT21s and abnormal when ΔT21 <ΔT21s.
 次に、予備診断の結果と、第1~第4の診断方法のいずれかによる本診断の結果とに基づく総合診断の診断処理の内容を、図8を参照して説明する。 Next, the content of the diagnostic process of the comprehensive diagnosis based on the result of the preliminary diagnosis and the result of the main diagnosis by any of the first to fourth diagnostic methods will be described with reference to FIG.
 ステップS601でECU100は、本診断が終了したか否かを判断する。終了してなければルーチンを終了し、終了してればステップS602に進む。 In step S601, the ECU 100 determines whether or not this diagnosis has been completed. If it is not finished, the routine is finished, and if it is finished, the process proceeds to step S602.
 ステップS602でECU100は、予備診断の結果が異常であるか否かを判断する。異常でなければルーチンを終了し、異常であればステップS603に進む。 In step S602, the ECU 100 determines whether or not the result of the preliminary diagnosis is abnormal. If it is not abnormal, the routine is terminated, and if it is abnormal, the process proceeds to step S603.
 ステップS603でECU100は、本診断の結果が異常であるか否かを判断する。異常でなければルーチンを終了し、異常であればステップS604に進む。 In step S603, the ECU 100 determines whether or not the result of this diagnosis is abnormal. If it is not abnormal, the routine is terminated, and if it is abnormal, the process proceeds to step S604.
 ステップS604でECU100は、総合診断の結果として、酸化触媒22を異常と診断する。このように予備診断と本診断の両方の結果が異常であるときに異常との総合診断を行う。 In step S604, the ECU 100 diagnoses the oxidation catalyst 22 as abnormal as a result of the comprehensive diagnosis. In this way, when the results of both the preliminary diagnosis and the main diagnosis are abnormal, a comprehensive diagnosis with the abnormality is made.
 他方、予備診断と本診断の少なくとも一方の結果が異常でないときには、実質的に正常との総合診断が行われる。 On the other hand, when the results of at least one of the preliminary diagnosis and the main diagnosis are not abnormal, a comprehensive diagnosis of substantially normal is performed.
 以上、本開示の実施形態を詳細に述べたが、本開示の実施形態および変形例は他にも様々考えられる。 Although the embodiments of the present disclosure have been described in detail above, various other embodiments and modifications of the present disclosure can be considered.
 (1)例えば第2酸化触媒として、フィルタ23の代わりに、SOF酸化触媒を用いてもよい。SOF酸化触媒とは、PMの可溶有機成分(SOF(Soluble Organic Fraction))を酸化するための酸化触媒である。このSOF酸化触媒もフィルタ23と同様にHCを酸化する機能を有するため、本開示の診断方法を好適に適用可能である。 (1) For example, as the second oxidation catalyst, a SOF oxidation catalyst may be used instead of the filter 23. The SOF oxidation catalyst is an oxidation catalyst for oxidizing a soluble organic component (SOF (Soluble Organic Fraction)) of PM. Since this SOF oxidation catalyst also has a function of oxidizing HC like the filter 23, the diagnostic method of the present disclosure can be suitably applied.
 (2)当然ながら第2酸化触媒として、通常の酸化触媒を用いてもよい。 (2) As a matter of course, a normal oxidation catalyst may be used as the second oxidation catalyst.
 (3)昇温制御は、フィルタ23の再生のみならず、他の任意の目的のために実行可能である。 (3) The temperature rise control can be executed not only for the regeneration of the filter 23 but also for any other purpose.
 本開示の実施形態は前述の実施形態のみに限らず、特許請求の範囲によって規定される本開示の思想に包含されるあらゆる変形例や応用例、均等物が本開示に含まれる。従って本開示は、限定的に解釈されるべきではなく、本開示の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。 The embodiments of the present disclosure are not limited to the above-described embodiments, and all modifications, applications, and equivalents included in the idea of the present disclosure defined by the scope of claims are included in the present disclosure. Therefore, this disclosure should not be construed in a limited way and can be applied to any other technique that belongs within the scope of the ideas of this disclosure.
 本出願は、2019年7月12日付で出願された日本国特許出願(特願2019-130181)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2019-130181) filed on July 12, 2019, the contents of which are incorporated herein by reference.
 本開示に係る内燃機関の排気浄化装置は、酸化触媒の診断精度を向上できる点で有用である。 The exhaust gas purification device for an internal combustion engine according to the present disclosure is useful in that it can improve the diagnostic accuracy of the oxidation catalyst.
1 内燃機関(エンジン)
4 排気通路
7 インジェクタ
22 酸化触媒(第1酸化触媒)
23 フィルタ(第2酸化触媒)
38 排気管インジェクタ
42,43,44 排気温センサ
100 電子制御ユニット(ECU)
1 Internal combustion engine (engine)
4 Exhaust passage 7 Injector 22 Oxidation catalyst (first oxidation catalyst)
23 Filter (second oxidation catalyst)
38 Exhaust pipe injectors 42, 43, 44 Exhaust temperature sensor 100 Electronic control unit (ECU)

Claims (8)

  1.  内燃機関の排気通路に上流側から順に設けられた第1酸化触媒および第2酸化触媒と、
     前記第1酸化触媒の出口排気温度を昇温させる昇温制御を実行すると共に、該昇温制御の実行中に前記第2酸化触媒の出口排気温度に基づいて前記第1酸化触媒を診断するように構成された制御ユニットと、
     を備えることを特徴とする内燃機関の排気浄化装置。
    The first oxidation catalyst and the second oxidation catalyst provided in order from the upstream side in the exhaust passage of the internal combustion engine,
    A temperature rise control for raising the outlet exhaust temperature of the first oxidation catalyst is executed, and the first oxidation catalyst is diagnosed based on the outlet exhaust temperature of the second oxidation catalyst during the execution of the temperature rise control. With the control unit configured in
    An exhaust gas purification device for an internal combustion engine, which comprises.
  2.  前記制御ユニットは、前記第2酸化触媒の出口排気温度が所定の閾値以上であるときに前記第1酸化触媒を異常と診断する
     請求項1に記載の内燃機関の排気浄化装置。
    The exhaust gas purification device for an internal combustion engine according to claim 1, wherein the control unit diagnoses the first oxidation catalyst as abnormal when the outlet exhaust temperature of the second oxidation catalyst is equal to or higher than a predetermined threshold value.
  3.  前記制御ユニットは、前記第2酸化触媒の出口排気温度と入口排気温度の温度差が所定の閾値以上であるときに前記第1酸化触媒を異常と診断する
     請求項1に記載の内燃機関の排気浄化装置。
    The exhaust gas of the internal combustion engine according to claim 1, wherein the control unit diagnoses the first oxidation catalyst as abnormal when the temperature difference between the outlet exhaust temperature and the inlet exhaust temperature of the second oxidation catalyst is equal to or more than a predetermined threshold value. Purification device.
  4.  前記制御ユニットは、前記第2酸化触媒の出口排気温度が所定の閾値以上である状態の累積時間が所定の時間閾値以上となるか、または、前記第2酸化触媒の出口排気温度と入口排気温度の温度差が所定の閾値以上である状態の累積時間が所定の時間閾値以上となったとき、前記第1酸化触媒を異常と診断する
     請求項1に記載の内燃機関の排気浄化装置。
    In the control unit, the cumulative time in a state where the outlet exhaust temperature of the second oxidation catalyst is equal to or higher than a predetermined threshold is equal to or longer than a predetermined time threshold, or the outlet exhaust temperature and the inlet exhaust temperature of the second oxidation catalyst are reached. The exhaust gas purification device for an internal combustion engine according to claim 1, wherein the first oxidation catalyst is diagnosed as abnormal when the cumulative time in which the temperature difference is equal to or greater than a predetermined threshold exceeds a predetermined time threshold.
  5.  前記制御ユニットは、前記昇温制御の実行中に供給された昇温用燃料の積算値に基づいて前記閾値を設定する
     請求項2~4のいずれか一項に記載の内燃機関の排気浄化装置。
    The exhaust gas purification device for an internal combustion engine according to any one of claims 2 to 4, wherein the control unit sets the threshold value based on the integrated value of the fuel for raising the temperature supplied during the execution of the temperature raising control. ..
  6.  前記制御ユニットは、前記昇温制御の実行中に前記第1酸化触媒の出口排気温度が所定の目標温度に達した後に前記第1酸化触媒を診断する
     請求項1~5のいずれか一項に記載の内燃機関の排気浄化装置。
    According to any one of claims 1 to 5, the control unit diagnoses the first oxidation catalyst after the outlet exhaust temperature of the first oxidation catalyst reaches a predetermined target temperature during execution of the temperature rise control. Exhaust purification device for internal combustion engine described.
  7.  前記制御ユニットは、前記第1酸化触媒の出口排気温度が前記目標温度に達する前のタイミングで前記第1酸化触媒の予備診断を実行し、この予備診断の結果にも基づいて前記第1酸化触媒を診断する
     請求項6に記載の内燃機関の排気浄化装置。
    The control unit executes a preliminary diagnosis of the first oxidation catalyst at a timing before the outlet exhaust temperature of the first oxidation catalyst reaches the target temperature, and based on the result of this preliminary diagnosis, the first oxidation catalyst The exhaust gas purification device for an internal combustion engine according to claim 6.
  8.  前記第2酸化触媒は、酸化触媒が担持された粒子状物質捕集用フィルタであるか、または粒子状物質の可溶有機成分を酸化するための酸化触媒である
     請求項1~7のいずれか一項に記載の内燃機関の排気浄化装置。
    The second oxidation catalyst is either a filter for collecting particulate matter on which an oxidation catalyst is carried, or an oxidation catalyst for oxidizing a soluble organic component of the particulate matter, according to any one of claims 1 to 7. The exhaust purification device for an internal combustion engine according to item 1.
PCT/JP2020/026943 2019-07-12 2020-07-10 Exhaust purification apparatus for internal combustion engine WO2021010299A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-130181 2019-07-12
JP2019130181A JP2021014827A (en) 2019-07-12 2019-07-12 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2021010299A1 true WO2021010299A1 (en) 2021-01-21

Family

ID=74210823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026943 WO2021010299A1 (en) 2019-07-12 2020-07-10 Exhaust purification apparatus for internal combustion engine

Country Status (2)

Country Link
JP (1) JP2021014827A (en)
WO (1) WO2021010299A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312025A (en) * 1992-05-13 1993-11-22 Nissan Motor Co Ltd Catalyst deterioration diagnosis device for internal combustion engine
JPH0674025A (en) * 1992-08-27 1994-03-15 Nissan Motor Co Ltd Catalyst deterioration diagnosis device for internal combustion engine
JP2004353606A (en) * 2003-05-30 2004-12-16 Toyota Motor Corp Catalyst degradation determination device for internal combustion engine
JP2006291742A (en) * 2005-04-06 2006-10-26 Toyota Motor Corp Catalyst deterioration detection device for internal combustion engine
JP2007016617A (en) * 2005-07-05 2007-01-25 Honda Motor Co Ltd Catalyst deterioration judgment device
JP2010112220A (en) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd Catalyst diagnostic device
JP2016003615A (en) * 2014-06-17 2016-01-12 日野自動車株式会社 Method and device for detecting thermal deterioration of oxidation catalyst

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312025A (en) * 1992-05-13 1993-11-22 Nissan Motor Co Ltd Catalyst deterioration diagnosis device for internal combustion engine
JPH0674025A (en) * 1992-08-27 1994-03-15 Nissan Motor Co Ltd Catalyst deterioration diagnosis device for internal combustion engine
JP2004353606A (en) * 2003-05-30 2004-12-16 Toyota Motor Corp Catalyst degradation determination device for internal combustion engine
JP2006291742A (en) * 2005-04-06 2006-10-26 Toyota Motor Corp Catalyst deterioration detection device for internal combustion engine
JP2007016617A (en) * 2005-07-05 2007-01-25 Honda Motor Co Ltd Catalyst deterioration judgment device
JP2010112220A (en) * 2008-11-05 2010-05-20 Nissan Motor Co Ltd Catalyst diagnostic device
JP2016003615A (en) * 2014-06-17 2016-01-12 日野自動車株式会社 Method and device for detecting thermal deterioration of oxidation catalyst

Also Published As

Publication number Publication date
JP2021014827A (en) 2021-02-12

Similar Documents

Publication Publication Date Title
RU2716098C2 (en) System and method (embodiments) for adaptive regeneration of particulate filters in diesel engines
JP4007085B2 (en) Exhaust gas purification device for internal combustion engine
US8146351B2 (en) Regeneration systems and methods for particulate filters using virtual brick temperature sensors
US20170234199A1 (en) Method and apparatus for controlling an internal combustion engine coupled to an exhaust aftertreatment system
US20140123968A1 (en) Method and apparatus for controlling the operation of a turbocharged internal combustion engine
JP2007262896A (en) Dpf regeneration control device and dpf reproduction control method
JP4453718B2 (en) Exhaust gas purification device for internal combustion engine
JP5834773B2 (en) Exhaust gas purification device for internal combustion engine
JP2010196498A (en) Pm emission estimation device
EP2682579B1 (en) Exhaust emission control system for internal combustion engine, and control method for exhaust emission control system
JP2007162489A (en) Control device for internal combustion engine with supercharger
JP2004150416A (en) Regeneration method for particulate filter
US8527185B2 (en) Energy-based closed-loop control of turbine outlet temperature in a vehicle
US9885273B2 (en) Diagnostic device for an oxidation catalyst
WO2021010299A1 (en) Exhaust purification apparatus for internal combustion engine
JP4012037B2 (en) Exhaust purification equipment
JP5831162B2 (en) NOx sensor abnormality diagnosis method, NOx sensor abnormality diagnosis system, and internal combustion engine
JP5136465B2 (en) Exhaust gas purification device for internal combustion engine
JP2019116876A (en) Sensor diagnostic system
JP2019196755A (en) diesel engine
JP2020012407A (en) Engine system
JP3906135B2 (en) Method for removing sulfate from particulate filter
JP7302541B2 (en) exhaust treatment system
JP2005351093A (en) Exhaust gas post-treatment device
JP2018178775A (en) Filter regeneration control device and filter regeneration control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840737

Country of ref document: EP

Kind code of ref document: A1