WO2021009823A1 - Underwater aeration mixing device provided with motor cooling function - Google Patents

Underwater aeration mixing device provided with motor cooling function Download PDF

Info

Publication number
WO2021009823A1
WO2021009823A1 PCT/JP2019/027821 JP2019027821W WO2021009823A1 WO 2021009823 A1 WO2021009823 A1 WO 2021009823A1 JP 2019027821 W JP2019027821 W JP 2019027821W WO 2021009823 A1 WO2021009823 A1 WO 2021009823A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
underwater aeration
cooling nozzle
guide plate
water
Prior art date
Application number
PCT/JP2019/027821
Other languages
French (fr)
Japanese (ja)
Inventor
育馬 尊田
Original Assignee
阪神動力機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阪神動力機械株式会社 filed Critical 阪神動力機械株式会社
Priority to PCT/JP2019/027821 priority Critical patent/WO2021009823A1/en
Publication of WO2021009823A1 publication Critical patent/WO2021009823A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F7/00Aeration of stretches of water
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/02Arrangements for cooling or ventilating by ambient air flowing through the machine
    • H02K9/04Arrangements for cooling or ventilating by ambient air flowing through the machine having means for generating a flow of cooling medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an underwater aeration stirrer that is installed in a water tank such as a wastewater treatment facility or in a river to aerate and stir the waste water in the water tank and the water in the river.
  • an underwater aeration stirrer In order to improve the quality of wastewater in water tanks of wastewater treatment facilities and river water, an underwater aeration stirrer is used that forcibly creates convection with surface water while supplying oxygen to low-rise water.
  • an underwater aeration agitator as described in Patent Document 1 below, drainage or the like is generally sucked up from an impeller whose drive source is a motor, mixed with air supplied from an air supply pipe, and discharged.
  • the structure is such that the water is discharged from the outlet to the outside of the underwater aeration agitator.
  • the underwater aeration agitator described in Patent Document 1 has a discharge port for discharging a gas-liquid mixed water flow in the radial direction.
  • the discharge flow is generated in the radial direction. Due to this discharge flow, a water flow is generated in the water tank, and the gas-liquid mixed water flow is placed on the water flow and diffused to the end of the water tank, and aeration can be reliably performed over a wide range.
  • a motor that serves as a rotational drive source for the impeller is provided above the underwater aeration agitator.
  • the discharge flow Since the purpose of the discharge flow is to diffuse the gas-liquid mixed water flow over as wide a range as possible in a water tank or the like, the discharge flow is generated in a direction away from the underwater aeration agitator. Then, the water flow generated in the water tank by the discharge flow reaches the wall surface or the water surface while moving away from the underwater aeration agitator, and then continues to move back. A part of the water flow eventually reaches the upper part of the underwater aeration agitator, but when a part of the water flow reaches the upper part of the underwater aeration agitator, that is, the peripheral edge of the motor, it is decelerated by the drag force. There is.
  • the inside of the motor generates heat due to operation. By dissipating the heat generated to the outside of the motor, it is possible to reduce the occurrence of an abnormal temperature rise inside the motor.
  • the present invention has been made to solve the above-mentioned conventional problems, and by injecting a gas-liquid mixed water flow to the periphery of the motor to generate a water flow, the heat generated by the motor is efficiently dissipated and the motor is dissipated. It is an object of the present invention to provide an underwater aeration agitator having a motor cooling function capable of alleviating overheating.
  • the underwater agitation / stirring device of the present invention includes an underwater agitation device including a motor, an impeller rotated by driving the motor, and a discharge port for discharging a gas-liquid mixed water flow sent from the impeller.
  • the underwater agitation agitator has a cooling nozzle formed so as to branch from the discharge port, and the cooling nozzle injects the gas-liquid mixed water flow toward the motor, and the motor of the agitator. It is characterized in that a water flow is generated on the outer circumference.
  • the gas-liquid mixed water flow sent from the impeller is branched into a discharge port and a cooling nozzle, the gas-liquid mixed water flow is discharged from the discharge port, and the gas-liquid mixed water flow is also injected from the cooling nozzle. Can be done. Then, a gas-liquid mixed water flow injected from the cooling nozzle toward the motor generates a water flow on the periphery of the motor.
  • the heat generated by the motor can be efficiently dissipated by injecting a water stream, and the overheating of the motor can be mitigated. Therefore, the deterioration of the insulating material due to overheating of the motor can be delayed, and the life of the motor can be extended.
  • FIG. 1 is a front view showing an underwater aeration / stirring device 1 according to an embodiment of the present invention. Further, FIG. 2 is a vertical cross-sectional view showing the underwater aeration stirring device 1, and FIG. 3 is a top view showing the underwater aeration stirring device 1.
  • the underwater aeration / stirring device 1 has a rotational power mechanism 10 arranged at the upper part with the axis in a vertical state, and below the rotational power mechanism 10 so as to be rotated by the rotational power mechanism 10. It is provided with an impeller 20 attached to the side.
  • the impeller 20 is arranged in the pump casing 30 formed in a cylindrical shape, and a discharge casing 40 provided with a plurality of discharge ports 411 extending in the radial direction is attached to the upper side of the pump casing 30.
  • a rotational power mechanism 10 arranged at the upper part with the axis in a vertical state, and below the rotational power mechanism 10 so as to be rotated by the rotational power mechanism 10. It is provided with an impeller 20 attached to the side.
  • the impeller 20 is arranged in the pump casing 30 formed in a cylindrical shape, and a discharge casing 40 provided with a plurality of discharge ports 411 extending in the radial direction is attached to the upper side of the pump casing 30.
  • the rotary power mechanism 10 includes a motor 11 whose axis is in a vertical state, and a speed reducer 12 attached to an output shaft extending below the motor 11.
  • the motor 11 is arranged above the discharge casing 40.
  • a cabtire cable 13 that supplies electric power to the rotational power mechanism 10 is connected above the motor 11.
  • the speed reducer 12 is arranged in the discharge casing 40 so as to be supported by the discharge casing 40.
  • the output shaft of the speed reducer 12 penetrates the central portion of the discharge casing 40 and reaches the inside of the pump casing 30.
  • An impeller 20 is attached to the output shaft of the speed reducer 12 located in the pump casing 30.
  • the impeller 20 is surrounded by a pump casing 30 and has a cylindrical hub 21 attached so that the output shaft of the speed reducer 12 is inserted upward, and a plurality of blades arranged at equal intervals in the circumferential direction of the hub 21. 22 and.
  • the power generated by driving the motor 11 is transmitted to the hub 21 via the output shaft of the motor 11, the speed reducer 12, and the output shaft of the speed reducer 12, so that the impeller 20 rotates.
  • the impeller 20 has a role of sucking water from below the pump casing 30 and sending it into the discharge casing 40 by its rotational operation.
  • Both the hub 21 and the blade 22 are made of austenitic stainless steel, but the hub 21 and the blade 22 are not limited to this as long as they have excellent durability.
  • the hub 21 has an opening at the bottom, and an air supply pipe 50 for supplying air into the underwater aeration / stirring device 1 is inserted through the opening.
  • a plurality of air discharge ports 21a are arranged on the upper peripheral surface of the hub 21 at equal intervals in the circumferential direction. The air supplied from the air supply pipe 50 into the hub 21 is discharged into the pump casing 30 through each air discharge port 21a.
  • Each blade 22 is formed so as to extend in the radial direction from the peripheral surface of the hub 21 with a large pitch angle so as to generate a strong upward water flow by the rotation of the impeller 20.
  • the pump casing 30 has a cylindrical pump casing main body 31 whose diameter gradually increases toward the lower side, and a plurality of legs 32 formed so as to extend below the pump casing main body 31.
  • the pump casing main body 31 is formed so that the upper surface and the lower surface are open.
  • the outer peripheral surface of the pump casing main body 31 is reinforced by a plurality of reinforcing ribs 31a extending in the vertical direction arranged at equal intervals in the circumferential direction.
  • the pump casing main body 31 is made of a cast iron material having excellent workability, but of course, the pump casing main body 31 is not limited to this.
  • the legs 32 are arranged at equal intervals in the circumferential direction.
  • the underwater aeration agitator 1 is supported by the legs 32 so as to stand upright in the water tank.
  • the underwater aeration / stirring device 1 is supported by three legs 32, but the number of legs 32 is not limited to this.
  • the length of the leg portion 32 is set so as to secure a sufficient clearance for piping the air supply pipe 50 from the lower part of the pump casing main body 31 to the bottom surface where the submersible aeration / stirring device 1 is installed. ..
  • the discharge casing 40 is attached to the upper side of the pump casing 30 and is provided with a plurality of discharge ports 411 extending in the radial direction.
  • the discharge casing main body 41 is spaced equal to the circumferential direction. It has a plurality of cooling nozzles 42 arranged at the base end portion, a flange 43 fastened to the pump casing 30, and a hook member 44 to which the hanger 60 is locked.
  • the discharge casing main body 41 is formed so that the upper surface and the lower surface are open.
  • the discharge casing main body 41 is made of a cast iron material having excellent workability like the pump casing main body 31, but is not limited to this, of course.
  • Each discharge port 411 is provided to discharge the water sent from the impeller 20 into the discharge casing 40, and is suitable upward with respect to the annular lower guide plate 413 and the lower guide plate 413. It is an opening formed from an annular upper guide plate 412 arranged at intervals and a plurality of partition walls 414 connecting the upper guide plate 412 and the lower guide plate 413.
  • the lower guide plate 413 has an opening in the axial center portion, and is formed so as to incline downward in order toward the outside at an angle of about 5 to 40 degrees.
  • the upper guide plate 412 has a through hole in the center, and is arranged above the lower guide plate 413 substantially in parallel with a certain interval.
  • the inner peripheral side portion of the upper guide plate 412 is gently curved in an arc shape so as to go downward, and the inner peripheral edge thereof is concentrically located in the opening of the lower guide plate 413.
  • the upper guide plate 412 is divided into six equal parts by six pairs of partition walls 414 extending in the radial direction at the six equal parts in the circumferential direction.
  • the number of divisions may be appropriately changed depending on the model and the like.
  • Each partition wall 414 is formed by being integrally bent with the upper guide plate 412 and bent downward, and the lower edge is formed so as to abut against the upper surface of the lower guide plate 413.
  • a connecting portion 415 for connecting the inner peripheral side portions of the partition walls 414 is provided on the inner peripheral side portion of the partition wall 414.
  • the connecting portion 415 is formed so as to be curved in an arc shape with a relatively large curvature so as to project toward the inner peripheral side, and to be inclined at about 30 to 60 degrees so as to be located upward toward the inner peripheral side.
  • each partition wall 414 there is a guide groove 416 that is open upward and in the radial direction and extends in the radial direction.
  • the lower end edge of the truncated cone-shaped stay 417 is supported by the curved portion on the inner peripheral side of the upper guide plate 412.
  • the stay 417 is concentric with the through hole of the upper guide plate 412, and is formed so that the peripheral surface is inclined at about 45 degrees so as to be continuous with the connecting portion 415 of the partition wall 414.
  • the upper surface and the lower surface of the stay 417 are opened, and the speed reducer 12 is incorporated between the inner peripheral side portion of the upper guide plate 412 and the stay 417.
  • FIG. 4 is a perspective view showing the cooling nozzle 42.
  • FIG. 5 is a radial cross-sectional view of the cooling nozzle 42 attached to the underwater aeration / stirring device 1
  • FIG. 6 is a circumferential cross-sectional view of the cooling nozzle 42 attached to the underwater aeration / stirring device 1. It is a figure.
  • the cooling nozzle 42 is arranged on the proximal end side of the surface of the upper guide plate 412 at a position divided into three equal parts in the circumferential direction.
  • a part of the water flowing between the upper guide plate 412 and the lower guide plate 413 is branched to the cooling nozzle 42 and discharged from the discharge port 411. It is injected as an injection flow from the cooling nozzle 42 separately from the discharge flow.
  • the cooling nozzle 42 is made of austenitic stainless steel, but is not limited to this as long as it has excellent durability.
  • the cooling nozzle 42 is provided so as to face the nozzle body 421 formed so that the upper end of the cylinder is gently curved so as to form 180 degrees in the radial direction of the nozzle body 421. It has two flanges 422, an injection port 423 formed by the nozzle body 421, and a fastening hole 424 provided so as to penetrate in the thickness direction of the flange 422.
  • the nozzle body 421 has a cylindrical lower portion and an upper portion formed so that the central axis of the cylinder is gently curved to a predetermined angle so as to move away from the vertical axis. Become. That is, the upper end of the nozzle body 421 is opened so as to be inclined in the radial direction, and the lower end of the nozzle body 421 is opened in the vertical axis direction.
  • the angle at which the upper part of the nozzle body 421 is curved is set so that the water ejected from the injection port 423, which will be described later, faces the direction of the motor 11 arranged on the upper part of the underwater aeration stirring device 1.
  • a fitting portion 421a for fitting into a fitting hole previously provided in the upper guide plate 412 is provided at the lower end of the lower portion of the nozzle body 421.
  • the outer circumference of the fitting portion 421a is formed to be smaller than the outer circumference of the lower portion of the nozzle body 421 in order to avoid stress concentration at the connection portion between the flange 422 and the nozzle body 421, which will be described later.
  • two flanges 422 are provided on the outer peripheral edge of the nozzle body 421 above the fitting portion 421a.
  • One of the flanges 422 is horizontally attached to the outer peripheral edge of the nozzle body 421 at a position of 90 degrees clockwise with respect to the direction in which the opening at the upper end of the nozzle body 421 is inclined in the radial direction.
  • the other end of the flange 422 is horizontally attached to the outer peripheral edge of the nozzle body 421 at a position of 270 degrees clockwise with respect to the direction in which the opening at the upper end of the nozzle body 421 is inclined in the radial direction.
  • the two flanges 422 are provided facing each other so as to form 180 degrees in the radial direction.
  • the flange 422 is formed in a substantially rectangular shape whose width is set smaller than the outer circumference of the lower portion of the nozzle body 421.
  • the two corners located at the tip of the flange 422 are chamfered.
  • the length of the flange 422 is set by the position of the fastening hole 424 described later.
  • the injection port 423 is an opening formed by the nozzle body 421 as shown in FIGS. 4, 5 and 6. A part of the water sent into the discharge casing 40 by the impeller 20 rides on the water flow due to the rotation of the impeller 20 and enters the nozzle body 421, and is directly ejected from the injection port 423 to the outside of the underwater aeration stirring device 1. .. Since the cross-sectional area of the nozzle body 421 is significantly smaller than the cross-sectional area of the path including the upper guide plate 412 and the lower guide plate 413 through which water has passed so far, water passes through the nozzle body 421. It is accelerated and injected from the injection port 423.
  • the fastening holes 424 are two bolt fastening holes used for fixing the cooling nozzle 42 to the surface of the upper guide plate 412, one in the thickness direction of each flange 422. It was penetrated.
  • the pitch between the fastening holes 424 is set so as to correspond to the nozzle fixing portion 412a provided in advance on the upper guide plate 412.
  • the nozzle fixing portion 412a of the upper guide plate 412 is a through hole, and the cooling nozzle 42 is attached to the surface of the upper guide plate 412 by penetrating the bolt through the fastening hole 424 and fastening the flange 422 to the nozzle fixing portion 412a. Fix it.
  • the nozzle fixing portion 412a is not limited to the above structure, and may be configured as a stud, for example, the stud may be passed through the fastening hole 424 and the flange 422 may be fastened with a nut.
  • the cooling nozzle 42 injects a part of the water flowing between the upper guide plate 412 and the lower guide plate 413 from the cooling nozzle 42 separately from the discharge flow that branches to the cooling nozzle 42 and is discharged from the discharge port 411. Since it is sufficient if the cooling nozzle 42 can be injected as a flow, the shape and structure of the cooling nozzle 42 are not limited to the above, and may be complicated, for example. Further, the cooling nozzle 42 may be a separate component attached to the upper guide plate 412 as described above, or may be integrally molded with the upper guide plate 412.
  • the flange 43 is provided on the inner peripheral edge of the lower surface open portion of the discharge casing main body 41 over the entire circumference.
  • the flange 43 is placed on the upper surface of the pump casing main body 31 over the entire circumference, and is fixed to the upper surface of the pump casing main body 31 with bolts or the like.
  • hook members 44 are attached to the upper surfaces of the upper guide plates 412 located on one side of the guide grooves 416 arranged every other in all the guide grooves 416.
  • the lower end of the hanger 60 is locked to each hook member 44.
  • a wire rope or the like is locked to the hanger 60, and the entire underwater aeration / stirring device is lowered inside the water treatment reaction tank or the like and installed on the bottom surface thereof.
  • the discharge casing 40 is attached to the upper side of the pump casing 30, but in the present invention, the discharge casing 40 is attached to the lower side of the pump casing 30 and water is attached from the upper side of the pump casing 30. May be sucked and discharged from the lower side.
  • the motor 11 is arranged on the upper side of the discharge casing 40 and the cooling nozzle 42 is opened upward toward the motor 11, but in the present invention, the motor 11 is placed on the discharge casing. It may be arranged on the lower side of the 40 and the cooling nozzle 42 may be opened downward toward the motor 11.
  • the present invention will be described in more detail together with an example of using the underwater aeration / stirring device according to the present invention.
  • the present invention is not limited to the following examples.
  • the underwater aeration / stirring device 1 described above is used in a state of being installed on the bottom surface of a water treatment reaction tank or the like.
  • the impeller 20 arranged in the pump casing main body 31 rotates.
  • water is sucked into the pump casing main body 31 through the bottom surface, and flows upward in the pump casing main body 31.
  • each air discharge port 21a provided on the upper peripheral surface of the hub 21. Then, the air discharged from each air discharge port 21a is diffused and mixed in the water flowing upward through the pump casing main body 31. Since each air discharge port 21a rotates coaxially with the blade 22, the air discharged from each air discharge port 21a is finely sheared by the rotational action to become fine bubbles, and the oxygen in the bubbles is efficiently in the water. Is dissolved in.
  • the water in which the fine bubbles are diffused rides on the water flow generated by the impeller 20 and flows upward in the pump casing main body 31, and the upper guide plate 412 and the lower guide plate 413 of the discharge casing 40 Introduced during.
  • a part of the water is branched into three cooling nozzles 42 provided at the base end of the upper guide plate 412, and while riding on the water flow generated by the impeller 20, all the cooling nozzles 42 head toward the motor 11. Is injected.
  • the other part of the water is bent outward in the radial direction by the upper guide plate 412, and is discharged diagonally downward in the radial direction from all the discharge ports 411 partitioned by the partition wall 414.
  • the injection flow injected from each cooling nozzle 42 generates a water flow in the direction of the motor 11.
  • a water flow is generated on the outer circumference of the motor 11 by the injection flow injected from each cooling nozzle 42, and the water flow can efficiently dissipate the heat staying on the outer circumference of the motor 11 and alleviate the overheating of the motor. .. Therefore, it is possible to delay the deterioration of the insulating material due to overheating of the motor and extend the life of the motor.
  • the cooling nozzle 42 branches a part of the water introduced between the upper guide plate 412 and the lower guide plate 413 into the cooling nozzle 42 provided at the base end of the upper guide plate 412.
  • the structure is such that the water flow generated by the impeller 20 is used to inject water from the cooling nozzle 42 toward the motor 11. Therefore, the cooling nozzle 42 can inject water even though it has a simple structure that does not have a separate pump or the like for injecting water from the cooling nozzle 42.
  • ⁇ Temperature measurement experiment> The internal temperature of the motor 11 and the surface temperature of the motor 11 were measured using the above-mentioned underwater aeration stirring device 1. The internal temperature of the motor 11 and the surface temperature of the motor 11 were measured before the cooling nozzle 42 was attached to the underwater aeration stirring device 1 and after the cooling nozzle 42 was attached to the underwater aeration stirring device 1, respectively.
  • the internal temperature of the motor 11 is measured by measuring the coil temperature by the resistance method, and is 1 each before the cooling nozzle 42 is attached to the underwater aeration stirring device 1 and after the cooling nozzle 42 is attached to the underwater aeration stirring device 1. Measured times.
  • the surface temperature of the motor 11 was measured by mounting a resistance temperature sensor made of Pt100 on the surface of the motor 11 and measured every 10 minutes.
  • Table 1 shows the measurement results of the internal temperature of the motor 11 of the underwater aeration stirring device 1.
  • the internal temperature of the motor 11 before attaching the cooling nozzle 42 to the underwater aeration stirring device 1 was 91.6 degrees, whereas the inside of the motor 11 after attaching the cooling nozzle 42 to the underwater aeration stirring device 1 The temperature was 52.3 degrees. That is, the internal temperature of the motor 11 was lowered by 39.3 degrees by attaching the cooling nozzle 42.
  • FIG. 7 is a graph showing the surface temperature of the motor 11. As is clear from this graph, it can be seen that in the underwater aeration agitation device 1 to which the cooling nozzle 42 is attached, the increase in the surface temperature of the motor 11 is effectively suppressed as compared with the case where the cooling nozzle 42 is not attached.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Power Engineering (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Abstract

An underwater aeration mixing device that comprises a motor, an impeller that is rotated by being driven by the motor, and a discharge port to discharge a gas-liquid mixed water flow supplied from the impeller, wherein a cooling nozzle is provided so as to branch from the discharge port and a water current is generated on the outer circumference of the motor due to the gas-liquid mixed water flow being sprayed from the cooling nozzle toward the motor. By generating a water current on the outer circumference of the motor, it is possible to efficiently dissipate heat generated by the motor and mitigate motor overheating.

Description

モータの冷却機能を備えた水中曝気撹拌装置Underwater aeration agitator with motor cooling function
 本発明は、排水処理施設等の水槽内や河川に設置され、水槽内の排水や河川の水を曝気撹拌させる水中曝気撹拌装置に関する。 The present invention relates to an underwater aeration stirrer that is installed in a water tank such as a wastewater treatment facility or in a river to aerate and stir the waste water in the water tank and the water in the river.
 排水処理施設等の水槽内の排水や河川の水の水質を改善するために、低層水に酸素を供給しつつ表層水との間で強制的に対流を生じさせる水中曝気撹拌装置が用いられる。水中曝気撹拌装置は、一般的に、以下の特許文献1に記載されるように、排水等が、モータを駆動源とするインペラより吸い上げられ、空気供給管から供給される空気と混合され、吐出口から水中曝気撹拌装置の外に排出される構造となっている。 In order to improve the quality of wastewater in water tanks of wastewater treatment facilities and river water, an underwater aeration stirrer is used that forcibly creates convection with surface water while supplying oxygen to low-rise water. In an underwater aeration agitator, as described in Patent Document 1 below, drainage or the like is generally sucked up from an impeller whose drive source is a motor, mixed with air supplied from an air supply pipe, and discharged. The structure is such that the water is discharged from the outlet to the outside of the underwater aeration agitator.
特許第3203336号公報Japanese Patent No. 32033336
 特許文献1に記載の水中曝気撹拌装置は、放射方向に気液混合水流を吐出する吐出口を有する。気液混合水流が吐出口から吐出されると、吐出流が放射方向に発生する。この吐出流により、水槽内に水流が発生し、気液混合水流をその水流に乗せて水槽の端部まで拡散するとともに、広範囲にわたって確実に曝気することが可能となる。 The underwater aeration agitator described in Patent Document 1 has a discharge port for discharging a gas-liquid mixed water flow in the radial direction. When the gas-liquid mixed water flow is discharged from the discharge port, the discharge flow is generated in the radial direction. Due to this discharge flow, a water flow is generated in the water tank, and the gas-liquid mixed water flow is placed on the water flow and diffused to the end of the water tank, and aeration can be reliably performed over a wide range.
 また、水中曝気撹拌装置の上方には、インペラの回転駆動源となるモータが設けられている。 In addition, a motor that serves as a rotational drive source for the impeller is provided above the underwater aeration agitator.
 吐出流は、あくまでも気液混合水流を水槽等において可能な限り広範囲にわたって拡散することが目的であるから、吐出流は、水中曝気撹拌装置から遠ざかる方向に発生する。そして、吐出流により水槽内に発生する水流は、水中曝気撹拌装置から遠ざかりながら壁面や水面に到達した後、折り返すように進み続ける。水流の一部は、やがて水中曝気撹拌装置の上方にも到達するが、その水流の一部が水中曝気撹拌装置の上方、すなわちモータの周縁に到達するときには、抗力により減速された状態となっている。 Since the purpose of the discharge flow is to diffuse the gas-liquid mixed water flow over as wide a range as possible in a water tank or the like, the discharge flow is generated in a direction away from the underwater aeration agitator. Then, the water flow generated in the water tank by the discharge flow reaches the wall surface or the water surface while moving away from the underwater aeration agitator, and then continues to move back. A part of the water flow eventually reaches the upper part of the underwater aeration agitator, but when a part of the water flow reaches the upper part of the underwater aeration agitator, that is, the peripheral edge of the motor, it is decelerated by the drag force. There is.
 -課題-
 モータ内部は、運転により発熱する。その発熱をモータの外部に放熱することにより、モータ内部の異常な温度上昇の発生を軽減することができる。
-Task-
The inside of the motor generates heat due to operation. By dissipating the heat generated to the outside of the motor, it is possible to reduce the occurrence of an abnormal temperature rise inside the motor.
 しかし、上述の通り、モータの周縁に到達する水流は、抗力により減速された状態となっていることから、該水流は、モータの周縁の熱移動を促進するに足りるものではない。よって、モータの発熱がモータの周縁に滞留してしまい、モータ内部の絶縁材が劣化し、モータが短期間で破損するという問題があった。 However, as described above, since the water flow reaching the peripheral edge of the motor is in a state of being decelerated by the drag force, the water flow is not sufficient to promote the heat transfer of the peripheral edge of the motor. Therefore, there is a problem that the heat generated by the motor stays on the periphery of the motor, the insulating material inside the motor deteriorates, and the motor is damaged in a short period of time.
 本発明は、上記従来の問題点を解決するためになされたものであり、モータの周縁に気液混合水流を噴射して水流を発生させることにより、モータの発熱を効率的に放熱させ、モータの過熱を緩和することができる、モータの冷却機能を備えた水中曝気撹拌装置を提供することを目的とする。 The present invention has been made to solve the above-mentioned conventional problems, and by injecting a gas-liquid mixed water flow to the periphery of the motor to generate a water flow, the heat generated by the motor is efficiently dissipated and the motor is dissipated. It is an object of the present invention to provide an underwater aeration agitator having a motor cooling function capable of alleviating overheating.
 上記目的を達成するため、本発明の水中曝気撹拌装置は、モータと、該モータの駆動により回転されるインペラと、該インペラから送り込まれる気液混合水流を吐出する吐出口と、を備える水中曝気撹拌装置において、前記水中曝気撹拌装置は、前記吐出口から分岐するように形成された冷却ノズルを有し、前記冷却ノズルは、前記気液混合水流を前記モータに向けて噴射させ、前記モータの外周に水流を発生させることを特徴とするものである。 In order to achieve the above object, the underwater agitation / stirring device of the present invention includes an underwater agitation device including a motor, an impeller rotated by driving the motor, and a discharge port for discharging a gas-liquid mixed water flow sent from the impeller. In the agitator, the underwater agitation agitator has a cooling nozzle formed so as to branch from the discharge port, and the cooling nozzle injects the gas-liquid mixed water flow toward the motor, and the motor of the agitator. It is characterized in that a water flow is generated on the outer circumference.
 この特定事項により、インペラから送り込まれた気液混合水流を、吐出口と冷却ノズルとに分岐させ、吐出口から気液混合水流を吐出するとともに、冷却ノズルからも気液混合水流を噴射することができる。そして、冷却ノズルからモータの方向に向かって噴射された気液混合水流により、モータの周縁に水流が発生する。 According to this specific matter, the gas-liquid mixed water flow sent from the impeller is branched into a discharge port and a cooling nozzle, the gas-liquid mixed water flow is discharged from the discharge port, and the gas-liquid mixed water flow is also injected from the cooling nozzle. Can be done. Then, a gas-liquid mixed water flow injected from the cooling nozzle toward the motor generates a water flow on the periphery of the motor.
 本発明の水中曝気撹拌装置によれば、水流の噴射によりモータの発熱を効率的に放熱させ、モータの過熱を緩和することができる。従って、モータの過熱による絶縁材の劣化を遅延させることができ、モータの寿命を延命できるという効果がある。 According to the underwater aeration agitator of the present invention, the heat generated by the motor can be efficiently dissipated by injecting a water stream, and the overheating of the motor can be mitigated. Therefore, the deterioration of the insulating material due to overheating of the motor can be delayed, and the life of the motor can be extended.
本発明の一実施形態に係る水中曝気撹拌装置を示す正面図である。It is a front view which shows the underwater aeration agitator which concerns on one Embodiment of this invention. 図1の水中曝気撹拌装置を示す縦断面図である。It is a vertical cross-sectional view which shows the underwater aeration agitator of FIG. 図1の水中曝気撹拌装置を示す天面図である。It is a top view which shows the underwater aeration agitator of FIG. 冷却ノズルを示す斜面図である。It is a slope view which shows the cooling nozzle. 図3のA-A線における断面図である。It is sectional drawing in line AA of FIG. 図3のB-B線における断面図であるIt is sectional drawing in BB line of FIG. モータの表面温度を示すグラフである。It is a graph which shows the surface temperature of a motor.
 以下、本発明の実施の形態について、添付図面を参照しながら説明する。但し、本発明は、以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. However, the present invention is not limited to the following embodiments.
 図1は、本発明の一実施形態に係る水中曝気撹拌装置1を示す正面図である。また、図2は、水中曝気撹拌装置1を示す縦断面図であり、図3は、水中曝気撹拌装置1を示す天面図である。 FIG. 1 is a front view showing an underwater aeration / stirring device 1 according to an embodiment of the present invention. Further, FIG. 2 is a vertical cross-sectional view showing the underwater aeration stirring device 1, and FIG. 3 is a top view showing the underwater aeration stirring device 1.
 水中曝気撹拌装置1は、図1及び図2に示すように、軸心が鉛直状態になって上部に配置された回転動力機構10と、この回転動力機構10にて回転されるようにその下側に取り付けられたインペラ20とを備える。インペラ20は、円筒状に形成されたポンプケーシング30内に配置され、ポンプケーシング30の上側には、放射方向に沿って延びる複数の吐出口411が設けられた吐出ケーシング40が取り付けられる。以下、上記の各構成要素について、回転動力機構10から詳述する。 As shown in FIGS. 1 and 2, the underwater aeration / stirring device 1 has a rotational power mechanism 10 arranged at the upper part with the axis in a vertical state, and below the rotational power mechanism 10 so as to be rotated by the rotational power mechanism 10. It is provided with an impeller 20 attached to the side. The impeller 20 is arranged in the pump casing 30 formed in a cylindrical shape, and a discharge casing 40 provided with a plurality of discharge ports 411 extending in the radial direction is attached to the upper side of the pump casing 30. Hereinafter, each of the above components will be described in detail from the rotational power mechanism 10.
 -回転駆動機構-
 回転動力機構10は、図2に示すように、軸心が鉛直状態になったモータ11と、モータ11の下方に延出する出力軸に取り付けられた減速機12とを有する。
-Rotation drive mechanism-
As shown in FIG. 2, the rotary power mechanism 10 includes a motor 11 whose axis is in a vertical state, and a speed reducer 12 attached to an output shaft extending below the motor 11.
 モータ11は、吐出ケーシング40の上方に配置される。モータ11の上方には、回転動力機構10に電力を供給するキャブタイヤケーブル13が連結される。 The motor 11 is arranged above the discharge casing 40. A cabtire cable 13 that supplies electric power to the rotational power mechanism 10 is connected above the motor 11.
 減速機12は、吐出ケーシング40に支持されるように、吐出ケーシング40内に配置される。減速機12の出力軸は、吐出ケーシング40の中心部を貫通して、ポンプケーシング30内に達する。ポンプケーシング30内に位置する減速機12の出力軸には、インペラ20が取り付けられる。 The speed reducer 12 is arranged in the discharge casing 40 so as to be supported by the discharge casing 40. The output shaft of the speed reducer 12 penetrates the central portion of the discharge casing 40 and reaches the inside of the pump casing 30. An impeller 20 is attached to the output shaft of the speed reducer 12 located in the pump casing 30.
 -インペラ-
 インペラ20は、ポンプケーシング30に囲繞され、減速機12の出力軸が上側に挿通するように取り付けられた円筒状のハブ21と、ハブ21の周方向に等間隔に配置された複数枚の羽根22と、を有する。モータ11の駆動による動力が、モータ11の出力軸、減速機12及び減速機12の出力軸を介してハブ21に伝達されることにより、インペラ20が回転する。インペラ20は、その回転動作により、水をポンプケーシング30の下方から吸い上げて吐出ケーシング40内に送り込む役割を持つ。
-Imeller-
The impeller 20 is surrounded by a pump casing 30 and has a cylindrical hub 21 attached so that the output shaft of the speed reducer 12 is inserted upward, and a plurality of blades arranged at equal intervals in the circumferential direction of the hub 21. 22 and. The power generated by driving the motor 11 is transmitted to the hub 21 via the output shaft of the motor 11, the speed reducer 12, and the output shaft of the speed reducer 12, so that the impeller 20 rotates. The impeller 20 has a role of sucking water from below the pump casing 30 and sending it into the discharge casing 40 by its rotational operation.
 ハブ21及び羽根22は、ともに、オーステナイト系のステンレス鋼からなるが、耐久性に優れるものであれば、これに限らない。 Both the hub 21 and the blade 22 are made of austenitic stainless steel, but the hub 21 and the blade 22 are not limited to this as long as they have excellent durability.
 ハブ21は、底部に開口部を有し、その開口部には、水中曝気撹拌装置1内に空気を供給する空気供給管50が挿通される。ハブ21の上部周面には、複数の空気吐出口21aが、周方向に等しい間隔をあけて配置される。空気供給管50からハブ21内に供給された空気は、各空気吐出口21aを通って、ポンプケーシング30内に吐出される。 The hub 21 has an opening at the bottom, and an air supply pipe 50 for supplying air into the underwater aeration / stirring device 1 is inserted through the opening. A plurality of air discharge ports 21a are arranged on the upper peripheral surface of the hub 21 at equal intervals in the circumferential direction. The air supplied from the air supply pipe 50 into the hub 21 is discharged into the pump casing 30 through each air discharge port 21a.
 各羽根22は、インペラ20の回転によって、上方への強い水流を発生するように、大きなピッチ角度を有してハブ21の周面から放射方向に延出するように形成される。 Each blade 22 is formed so as to extend in the radial direction from the peripheral surface of the hub 21 with a large pitch angle so as to generate a strong upward water flow by the rotation of the impeller 20.
 -ポンプケーシング-
 ポンプケーシング30は、下側になるにつれて順次拡径した円筒状のポンプケーシング本体31と、ポンプケーシング本体31の下方に延出するように形成された複数の脚部32と、を有する。
-Pump casing-
The pump casing 30 has a cylindrical pump casing main body 31 whose diameter gradually increases toward the lower side, and a plurality of legs 32 formed so as to extend below the pump casing main body 31.
 ポンプケーシング本体31は、上面及び下面が開放されるように形成される。ポンプケーシング本体31の外周面は、周方向に等しい間隔をあけて配置された上下方向に延びる複数の補強リブ31aにて補強される。ポンプケーシング本体31は、加工性に優れる鋳鉄材からなるが、勿論のこと、これに限らない。 The pump casing main body 31 is formed so that the upper surface and the lower surface are open. The outer peripheral surface of the pump casing main body 31 is reinforced by a plurality of reinforcing ribs 31a extending in the vertical direction arranged at equal intervals in the circumferential direction. The pump casing main body 31 is made of a cast iron material having excellent workability, but of course, the pump casing main body 31 is not limited to this.
 脚部32は、周方向に等しい間隔をあけて配置される。水中曝気撹拌装置1は、脚部32により、水槽内で直立するように支持される。例えば、水中曝気撹拌装置1は、3本の脚部32により支持されるが、脚部32の本数はこれに限らない。また、脚部32の長さは、ポンプケーシング本体31の下方から水中曝気撹拌装置1が据え付けられる底面までの間に、空気供給管50を配管するに十分なクリアランスを確保できるように設定される。 The legs 32 are arranged at equal intervals in the circumferential direction. The underwater aeration agitator 1 is supported by the legs 32 so as to stand upright in the water tank. For example, the underwater aeration / stirring device 1 is supported by three legs 32, but the number of legs 32 is not limited to this. Further, the length of the leg portion 32 is set so as to secure a sufficient clearance for piping the air supply pipe 50 from the lower part of the pump casing main body 31 to the bottom surface where the submersible aeration / stirring device 1 is installed. ..
 -吐出ケーシング-
 吐出ケーシング40は、ポンプケーシング30の上側に取り付けられており、放射方向に沿って延びる複数の吐出口411が設けられた吐出ケーシング本体41と、周方向に等しい間隔をあけて吐出ケーシング本体41の基端部に配置された複数の冷却ノズル42と、ポンプケーシング30と締結されたフランジ43と、吊具60が係止されたフック部材44と、を有する。
-Discharge casing-
The discharge casing 40 is attached to the upper side of the pump casing 30 and is provided with a plurality of discharge ports 411 extending in the radial direction. The discharge casing main body 41 is spaced equal to the circumferential direction. It has a plurality of cooling nozzles 42 arranged at the base end portion, a flange 43 fastened to the pump casing 30, and a hook member 44 to which the hanger 60 is locked.
 吐出ケーシング本体41は、上面及び下面が開放されるように形成される。吐出ケーシング本体41は、ポンプケーシング本体31と同じく、加工性に優れる鋳鉄材からなるが、勿論のこと、これに限らない。 The discharge casing main body 41 is formed so that the upper surface and the lower surface are open. The discharge casing main body 41 is made of a cast iron material having excellent workability like the pump casing main body 31, but is not limited to this, of course.
 各吐出口411は、インペラ20から吐出ケーシング40内に送り込まれた水を吐出するために設けられたものであり、円環状の下ガイド板413と、下ガイド板413に対して上方に適当な間隔をあけて配置された円環状の上ガイド板412と、上ガイド板412と下ガイド板413とを連結する複数の隔壁414と、から形成された開口部である。 Each discharge port 411 is provided to discharge the water sent from the impeller 20 into the discharge casing 40, and is suitable upward with respect to the annular lower guide plate 413 and the lower guide plate 413. It is an opening formed from an annular upper guide plate 412 arranged at intervals and a plurality of partition walls 414 connecting the upper guide plate 412 and the lower guide plate 413.
 下ガイド板413は、軸心部に開口部を有しており、5~40度程度の角度で、外側になるにつれて順次下方に傾斜するように形成される。 The lower guide plate 413 has an opening in the axial center portion, and is formed so as to incline downward in order toward the outside at an angle of about 5 to 40 degrees.
 上ガイド板412は、中心部に貫通孔を有しており、下ガイド板413の上方に、一定の間隔をあけてほぼ平行に配置される。上ガイド板412の内周側部分は、下方に向かうように、円弧状に緩やかに湾曲し、その内周縁は、下ガイド板413の開口部内に同心状態で位置する。 The upper guide plate 412 has a through hole in the center, and is arranged above the lower guide plate 413 substantially in parallel with a certain interval. The inner peripheral side portion of the upper guide plate 412 is gently curved in an arc shape so as to go downward, and the inner peripheral edge thereof is concentrically located in the opening of the lower guide plate 413.
 上ガイド板412は、図3に示すように、周方向の六等分位置にて、放射方向に延びる6つの一対の隔壁414によって、六等分される。この分割数は機種等に応じて適宜変更してもよい。 As shown in FIG. 3, the upper guide plate 412 is divided into six equal parts by six pairs of partition walls 414 extending in the radial direction at the six equal parts in the circumferential direction. The number of divisions may be appropriately changed depending on the model and the like.
 各隔壁414は、上ガイド板412とは一体となって、下方に屈曲されることにより構成され、下側縁が下ガイド板413の上面に突き当てられるように形成される。隔壁414の内周側部分には、各隔壁414の内周側部分同士を連結する連結部415が設けられている。この連結部415は、内周側に突出するように、比較的大きな曲率で円弧状に湾曲し、内周側になるにつれて上方に位置するように30~60度程度に傾斜するように形成される。 Each partition wall 414 is formed by being integrally bent with the upper guide plate 412 and bent downward, and the lower edge is formed so as to abut against the upper surface of the lower guide plate 413. A connecting portion 415 for connecting the inner peripheral side portions of the partition walls 414 is provided on the inner peripheral side portion of the partition wall 414. The connecting portion 415 is formed so as to be curved in an arc shape with a relatively large curvature so as to project toward the inner peripheral side, and to be inclined at about 30 to 60 degrees so as to be located upward toward the inner peripheral side. To.
 各隔壁414の間は、上方および径方向に開放されて、放射方向に延びるガイド溝416になっている。 Between each partition wall 414, there is a guide groove 416 that is open upward and in the radial direction and extends in the radial direction.
 上ガイド板412における内周側の湾曲部分には、円錐台状のステイ417の下端縁が支持されている。ステイ417は、上ガイド板412の貫通孔とは同心状態になっており、また、隔壁414の連結部415に連続するように、周面が45度程度に傾斜するように形成される。ステイ417の上面および下面は開放され、減速機12が、上ガイド板412の内周側部分とステイ417との間に内蔵される。 The lower end edge of the truncated cone-shaped stay 417 is supported by the curved portion on the inner peripheral side of the upper guide plate 412. The stay 417 is concentric with the through hole of the upper guide plate 412, and is formed so that the peripheral surface is inclined at about 45 degrees so as to be continuous with the connecting portion 415 of the partition wall 414. The upper surface and the lower surface of the stay 417 are opened, and the speed reducer 12 is incorporated between the inner peripheral side portion of the upper guide plate 412 and the stay 417.
 図4は、冷却ノズル42を示す斜視図である。図5は、冷却ノズル42を水中曝気撹拌装置1に取り付けた状態においての径方向の断面図であり、図6は、冷却ノズル42を水中曝気撹拌装置1に取り付けた状態においての周方向の断面図である。 FIG. 4 is a perspective view showing the cooling nozzle 42. FIG. 5 is a radial cross-sectional view of the cooling nozzle 42 attached to the underwater aeration / stirring device 1, and FIG. 6 is a circumferential cross-sectional view of the cooling nozzle 42 attached to the underwater aeration / stirring device 1. It is a figure.
 冷却ノズル42は、図3に示すように、周方向の三等分位置にて、上ガイド板412の表面の基端側に配置される。冷却ノズル42が上ガイド板412の上面に配置されることにより、上ガイド板412と下ガイド板413との間を流れる水の一部が、冷却ノズル42に分岐され、吐出口411から吐出される吐出流とは別に、冷却ノズル42から噴射流として噴射される。冷却ノズル42は、オーステナイト系のステンレス鋼からなるが、耐久性に優れるものであれば、これに限らない。 As shown in FIG. 3, the cooling nozzle 42 is arranged on the proximal end side of the surface of the upper guide plate 412 at a position divided into three equal parts in the circumferential direction. By arranging the cooling nozzle 42 on the upper surface of the upper guide plate 412, a part of the water flowing between the upper guide plate 412 and the lower guide plate 413 is branched to the cooling nozzle 42 and discharged from the discharge port 411. It is injected as an injection flow from the cooling nozzle 42 separately from the discharge flow. The cooling nozzle 42 is made of austenitic stainless steel, but is not limited to this as long as it has excellent durability.
 冷却ノズル42は、図4に示すように、円筒の上端が緩やかに湾曲するように形成されたノズル本体421と、ノズル本体421の径方向に180度をなすように正対して設けられた2つのフランジ422と、ノズル本体421によって形成された噴射口423と、フランジ422の厚み方向に貫通するように設けられた締結穴424と、を有する。 As shown in FIG. 4, the cooling nozzle 42 is provided so as to face the nozzle body 421 formed so that the upper end of the cylinder is gently curved so as to form 180 degrees in the radial direction of the nozzle body 421. It has two flanges 422, an injection port 423 formed by the nozzle body 421, and a fastening hole 424 provided so as to penetrate in the thickness direction of the flange 422.
 ノズル本体421は、図4及び図5に示すように、円筒状の下部と、その円筒の中心軸が鉛直軸から遠ざかるように所定の角度まで緩やかに湾曲するように形成された上部と、からなる。つまり、ノズル本体421の上端は、径方向に傾斜するように開放され、ノズル本体421の下端は、鉛直軸方向に開放される。 As shown in FIGS. 4 and 5, the nozzle body 421 has a cylindrical lower portion and an upper portion formed so that the central axis of the cylinder is gently curved to a predetermined angle so as to move away from the vertical axis. Become. That is, the upper end of the nozzle body 421 is opened so as to be inclined in the radial direction, and the lower end of the nozzle body 421 is opened in the vertical axis direction.
 ノズル本体421の上部が湾曲する角度は、後述する噴射口423から噴出する水が、水中曝気撹拌装置1の上部に配置されたモータ11の方向を向くように設定される。 The angle at which the upper part of the nozzle body 421 is curved is set so that the water ejected from the injection port 423, which will be described later, faces the direction of the motor 11 arranged on the upper part of the underwater aeration stirring device 1.
 ノズル本体421の下部の下端には、図4、図5及び図6に示すように、上ガイド板412に予め設けられた嵌合穴に嵌合する嵌合部421aが設けられている。嵌合部421aの外周は、後述するフランジ422とノズル本体421との接続部に応力が集中することを回避するために、ノズル本体421の下部の外周よりも小さくなるように形成される。 As shown in FIGS. 4, 5 and 6, a fitting portion 421a for fitting into a fitting hole previously provided in the upper guide plate 412 is provided at the lower end of the lower portion of the nozzle body 421. The outer circumference of the fitting portion 421a is formed to be smaller than the outer circumference of the lower portion of the nozzle body 421 in order to avoid stress concentration at the connection portion between the flange 422 and the nozzle body 421, which will be described later.
 フランジ422は、図4及び図6に示すように、嵌合部421aの上方において、ノズル本体421の外周縁に2つ設けられている。フランジ422の一方は、ノズル本体421の上端の開口部が径方向に傾斜する方向を基準として、時計回りに90度の位置において、ノズル本体421の外周縁に水平に取り付けられる。そして、フランジ422の他方は、ノズル本体421の上端の開口部が径方向に傾斜する方向を基準として、時計回りに270度の位置において、ノズル本体421の外周縁に水平に取り付けられる。つまり、2つのフランジ422は、互いに径方向に180度をなすように正対して設けられている。フランジ422は、その幅がノズル本体421の下部の外周よりも小さく設定された略長方形状に形成される。フランジ422の先端に位置する2つの角部は、面取りされた状態となっている。なお、フランジ422の長さは、後述する締結穴424の位置によって設定される。 As shown in FIGS. 4 and 6, two flanges 422 are provided on the outer peripheral edge of the nozzle body 421 above the fitting portion 421a. One of the flanges 422 is horizontally attached to the outer peripheral edge of the nozzle body 421 at a position of 90 degrees clockwise with respect to the direction in which the opening at the upper end of the nozzle body 421 is inclined in the radial direction. The other end of the flange 422 is horizontally attached to the outer peripheral edge of the nozzle body 421 at a position of 270 degrees clockwise with respect to the direction in which the opening at the upper end of the nozzle body 421 is inclined in the radial direction. That is, the two flanges 422 are provided facing each other so as to form 180 degrees in the radial direction. The flange 422 is formed in a substantially rectangular shape whose width is set smaller than the outer circumference of the lower portion of the nozzle body 421. The two corners located at the tip of the flange 422 are chamfered. The length of the flange 422 is set by the position of the fastening hole 424 described later.
 噴射口423は、図4、図5及び図6に示すように、ノズル本体421により形成された開口部である。インペラ20により吐出ケーシング40内に送り込まれた水の一部が、インペラ20の回転による水流に乗って、ノズル本体421内に進入し、そのまま噴射口423から水中曝気撹拌装置1の外に噴出する。ノズル本体421の断面積は、水がそれまでに通過してきた上ガイド板412と下ガイド板413とからなる経路の断面積に比べて格段に小さくなることから、水は、ノズル本体421を通過する際に加速され、噴射口423から噴射される。 The injection port 423 is an opening formed by the nozzle body 421 as shown in FIGS. 4, 5 and 6. A part of the water sent into the discharge casing 40 by the impeller 20 rides on the water flow due to the rotation of the impeller 20 and enters the nozzle body 421, and is directly ejected from the injection port 423 to the outside of the underwater aeration stirring device 1. .. Since the cross-sectional area of the nozzle body 421 is significantly smaller than the cross-sectional area of the path including the upper guide plate 412 and the lower guide plate 413 through which water has passed so far, water passes through the nozzle body 421. It is accelerated and injected from the injection port 423.
 締結穴424は、図4及び図6に示すように、冷却ノズル42を上ガイド板412の表面に固定する際に用いられる2つのボルト締結穴であり、各フランジ422の厚み方向に1つずつ貫通されたものである。締結穴424同士のピッチは、上ガイド板412に予め設けられたノズル固定部412aに対応するように設定される。上ガイド板412のノズル固定部412aは、貫通穴であり、ボルトを締結穴424に貫通させて、フランジ422をノズル固定部412aに締結させることにより、冷却ノズル42を上ガイド板412の表面に固定する。なお、ノズル固定部412aは、上記の構造に限られず、例えば、スタッドとして、該スタッドを締結穴424に貫通させて、ナットでフランジ422を締結するような構成としてもよい。 As shown in FIGS. 4 and 6, the fastening holes 424 are two bolt fastening holes used for fixing the cooling nozzle 42 to the surface of the upper guide plate 412, one in the thickness direction of each flange 422. It was penetrated. The pitch between the fastening holes 424 is set so as to correspond to the nozzle fixing portion 412a provided in advance on the upper guide plate 412. The nozzle fixing portion 412a of the upper guide plate 412 is a through hole, and the cooling nozzle 42 is attached to the surface of the upper guide plate 412 by penetrating the bolt through the fastening hole 424 and fastening the flange 422 to the nozzle fixing portion 412a. Fix it. The nozzle fixing portion 412a is not limited to the above structure, and may be configured as a stud, for example, the stud may be passed through the fastening hole 424 and the flange 422 may be fastened with a nut.
 冷却ノズル42は、上ガイド板412と下ガイド板413との間を流れる水の一部を、冷却ノズル42に分岐させて吐出口411から吐出される吐出流とは別に、冷却ノズル42から噴射流として噴射させることができれば足りることから、冷却ノズル42の形状や構造は上記に限らず、例えば、複雑なものでもよい。また、冷却ノズル42は、上記のように上ガイド板412に取り付けられた別個の部品でもよいし、上ガイド板412と一体成形されるものでもよい。 The cooling nozzle 42 injects a part of the water flowing between the upper guide plate 412 and the lower guide plate 413 from the cooling nozzle 42 separately from the discharge flow that branches to the cooling nozzle 42 and is discharged from the discharge port 411. Since it is sufficient if the cooling nozzle 42 can be injected as a flow, the shape and structure of the cooling nozzle 42 are not limited to the above, and may be complicated, for example. Further, the cooling nozzle 42 may be a separate component attached to the upper guide plate 412 as described above, or may be integrally molded with the upper guide plate 412.
 フランジ43は、図2に示すように、吐出ケーシング本体41の下面開放部の内周縁部に全周にわたって設けられている。フランジ43は、ポンプケーシング本体31の上面に全周にわたって載置され、ポンプケーシング本体31上面にボルト等で固定される。 As shown in FIG. 2, the flange 43 is provided on the inner peripheral edge of the lower surface open portion of the discharge casing main body 41 over the entire circumference. The flange 43 is placed on the upper surface of the pump casing main body 31 over the entire circumference, and is fixed to the upper surface of the pump casing main body 31 with bolts or the like.
 図3に示すように、全てのガイド溝416における一つ置きに配置されたガイド溝416の一方の側方に位置する上ガイド板412の上面には、フック部材44がそれぞれ取り付けられる。各フック部材44には、図1および図2に示すように、吊具60の下端部が係止される。この吊具60にワイヤーロープ等が係止されて、水中曝気撹拌装置全体が水処理反応槽等の内部に下降されてその底面に据え付けられる。 As shown in FIG. 3, hook members 44 are attached to the upper surfaces of the upper guide plates 412 located on one side of the guide grooves 416 arranged every other in all the guide grooves 416. As shown in FIGS. 1 and 2, the lower end of the hanger 60 is locked to each hook member 44. A wire rope or the like is locked to the hanger 60, and the entire underwater aeration / stirring device is lowered inside the water treatment reaction tank or the like and installed on the bottom surface thereof.
 なお、上記実施形態では、吐出ケーシング40をポンプケーシング30の上側に取り付けた構成であったが、本発明は、吐出ケーシング40をポンプケーシング30の下側に取り付けて、ポンプケーシング30の上側から水を吸引して下側から吐出するようにしてもよい。さらに、上記実施形態では、モータ11を吐出ケーシング40の上側に配置するとともに、冷却ノズル42をモータ11の方向に向かって上側に開放させる構成であったが、本発明は、モータ11を吐出ケーシング40の下側に配置するとともに、冷却ノズル42をモータ11の方向に向かって下側に開放させるようにしてもよい。 In the above embodiment, the discharge casing 40 is attached to the upper side of the pump casing 30, but in the present invention, the discharge casing 40 is attached to the lower side of the pump casing 30 and water is attached from the upper side of the pump casing 30. May be sucked and discharged from the lower side. Further, in the above embodiment, the motor 11 is arranged on the upper side of the discharge casing 40 and the cooling nozzle 42 is opened upward toward the motor 11, but in the present invention, the motor 11 is placed on the discharge casing. It may be arranged on the lower side of the 40 and the cooling nozzle 42 may be opened downward toward the motor 11.
 上記の実施形態に基づき、本発明に係る水中曝気撹拌装置の使用例と併せて、本発明をさらに詳細に説明する。但し、本発明は、以下の実施例に限定されるものではない。 Based on the above embodiment, the present invention will be described in more detail together with an example of using the underwater aeration / stirring device according to the present invention. However, the present invention is not limited to the following examples.
 以上で説明した水中曝気撹拌装置1は、水処理反応槽等の底面に据え付けられた状態で使用される。回転駆動機構10のモータ11が駆動することにより、ポンプケーシング本体31内に配置されたインペラ20が回転する。インペラ20の回転により、ポンプケーシング本体31内に、底面を通って水が吸引され、ポンプケーシング本体31内を上方へと通流する。 The underwater aeration / stirring device 1 described above is used in a state of being installed on the bottom surface of a water treatment reaction tank or the like. By driving the motor 11 of the rotation drive mechanism 10, the impeller 20 arranged in the pump casing main body 31 rotates. By the rotation of the impeller 20, water is sucked into the pump casing main body 31 through the bottom surface, and flows upward in the pump casing main body 31.
 このとき、空気供給管50から供給される空気が、ハブ21の上部周面に設けられた各空気吐出口21aから吐出される。そして、各空気吐出口21aから吐出された空気が、ポンプケーシング本体31を上方へと通流する水内に拡散されて混合される。各空気吐出口21aは、羽根22と同軸に回転するために、各空気吐出口21aから吐出される空気は、回転作用によって細かく剪断されて、微細気泡となり、気泡内の酸素が効率よく水内に溶解される。 At this time, the air supplied from the air supply pipe 50 is discharged from each air discharge port 21a provided on the upper peripheral surface of the hub 21. Then, the air discharged from each air discharge port 21a is diffused and mixed in the water flowing upward through the pump casing main body 31. Since each air discharge port 21a rotates coaxially with the blade 22, the air discharged from each air discharge port 21a is finely sheared by the rotational action to become fine bubbles, and the oxygen in the bubbles is efficiently in the water. Is dissolved in.
 このようにして、微細気泡が拡散された水は、インペラ20によって発生した水流に乗って、ポンプケーシング本体31内を上方へと通流し、吐出ケーシング40の上ガイド板412と下ガイド板413との間に導入される。水の一部は、上ガイド板412の基端に設けられた3つの冷却ノズル42に分岐され、インペラ20によって発生した水流に乗ったまま、全ての冷却ノズル42から、モータ11の方向に向かって噴射される。もう一部の水は、上ガイド板412によって放射方向外側に屈曲されて、隔壁414によって仕切られた全ての吐出口411から、放射方向の斜め下方に向かって吐出される。 In this way, the water in which the fine bubbles are diffused rides on the water flow generated by the impeller 20 and flows upward in the pump casing main body 31, and the upper guide plate 412 and the lower guide plate 413 of the discharge casing 40 Introduced during. A part of the water is branched into three cooling nozzles 42 provided at the base end of the upper guide plate 412, and while riding on the water flow generated by the impeller 20, all the cooling nozzles 42 head toward the motor 11. Is injected. The other part of the water is bent outward in the radial direction by the upper guide plate 412, and is discharged diagonally downward in the radial direction from all the discharge ports 411 partitioned by the partition wall 414.
 各冷却ノズル42から噴射された噴射流は、モータ11の方向に向かって水流を発生させる。各冷却ノズル42から噴射された噴射流によって、モータ11の外周に水流が発生し、その水流によって、モータ11の外周に滞留する熱を効率的に放熱させ、モータの過熱を緩和することができる。従って、モータの過熱による絶縁材の劣化を遅延させ、モータの寿命を延命することが可能となる。 The injection flow injected from each cooling nozzle 42 generates a water flow in the direction of the motor 11. A water flow is generated on the outer circumference of the motor 11 by the injection flow injected from each cooling nozzle 42, and the water flow can efficiently dissipate the heat staying on the outer circumference of the motor 11 and alleviate the overheating of the motor. .. Therefore, it is possible to delay the deterioration of the insulating material due to overheating of the motor and extend the life of the motor.
 冷却ノズル42は、上述の通り、上ガイド板412と下ガイド板413との間に導入された水の一部を、上ガイド板412の基端に設けられた冷却ノズル42に分岐して、インペラ20によって発生した水流を利用して、冷却ノズル42から、モータ11の方向に向かって噴射する構造となっている。そのため、冷却ノズル42は、冷却ノズル42から水を噴射するために別途ポンプ等を有しないシンプルな構造でありながらも、水を噴射することができる。 As described above, the cooling nozzle 42 branches a part of the water introduced between the upper guide plate 412 and the lower guide plate 413 into the cooling nozzle 42 provided at the base end of the upper guide plate 412. The structure is such that the water flow generated by the impeller 20 is used to inject water from the cooling nozzle 42 toward the motor 11. Therefore, the cooling nozzle 42 can inject water even though it has a simple structure that does not have a separate pump or the like for injecting water from the cooling nozzle 42.
 全ての吐出口411から吐出された水は、水処理反応槽等の底部に沿って通流するために水処理反応槽等の底部が確実に撹拌される。しかも、吐出口411から吐出される水と空気とは、互いに効率よく混合されるために、水処理反応槽の全体が効率よく確実に曝気される。 Since the water discharged from all the discharge ports 411 flows along the bottom of the water treatment reaction tank and the like, the bottom of the water treatment reaction tank and the like is surely agitated. Moreover, since the water and air discharged from the discharge port 411 are efficiently mixed with each other, the entire water treatment reaction tank is efficiently and reliably aerated.
 <温度測定実験>
 上述した水中曝気撹拌装置1を用いて、モータ11の内部温度及びモータ11の表面温度を測定した。水中曝気撹拌装置1に冷却ノズル42を取り付ける前と、水中曝気撹拌装置1に冷却ノズル42を取り付けた後とに、それぞれ、モータ11の内部温度及びモータ11の表面温度を測定した。
<Temperature measurement experiment>
The internal temperature of the motor 11 and the surface temperature of the motor 11 were measured using the above-mentioned underwater aeration stirring device 1. The internal temperature of the motor 11 and the surface temperature of the motor 11 were measured before the cooling nozzle 42 was attached to the underwater aeration stirring device 1 and after the cooling nozzle 42 was attached to the underwater aeration stirring device 1, respectively.
 モータ11の内部温度は、抵抗法によるコイル温度の測定により測定し、水中曝気撹拌装置1に冷却ノズル42を取り付ける前と、水中曝気撹拌装置1に冷却ノズル42を取り付けた後とに、それぞれ1回測定した。 The internal temperature of the motor 11 is measured by measuring the coil temperature by the resistance method, and is 1 each before the cooling nozzle 42 is attached to the underwater aeration stirring device 1 and after the cooling nozzle 42 is attached to the underwater aeration stirring device 1. Measured times.
 モータ11の表面温度は、Pt100からなる測温抵抗体センサーを、モータ11の表面に装着することにより測定し、10分毎に測定した。 The surface temperature of the motor 11 was measured by mounting a resistance temperature sensor made of Pt100 on the surface of the motor 11 and measured every 10 minutes.
 表1は、水中曝気撹拌装置1のモータ11の内部温度の測定結果を示す。水中曝気撹拌装置1に冷却ノズル42を取り付ける前のモータ11の内部温度は、91.6度であったのに対して、水中曝気撹拌装置1に冷却ノズル42を取り付けた後のモータ11の内部温度は、52.3度であった。すなわち、モータ11の内部温度は、冷却ノズル42を取り付けることによって、39.3度下がった。 Table 1 shows the measurement results of the internal temperature of the motor 11 of the underwater aeration stirring device 1. The internal temperature of the motor 11 before attaching the cooling nozzle 42 to the underwater aeration stirring device 1 was 91.6 degrees, whereas the inside of the motor 11 after attaching the cooling nozzle 42 to the underwater aeration stirring device 1 The temperature was 52.3 degrees. That is, the internal temperature of the motor 11 was lowered by 39.3 degrees by attaching the cooling nozzle 42.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図7は、モータ11の表面温度を示すグラフである。このグラフからも明らかなように、冷却ノズル42を取り付けた水中曝気撹拌装置1では、冷却ノズル42を取り付けない場合に比べてモータ11の表面温度の上昇が効果的に抑えられたことがわかる。 FIG. 7 is a graph showing the surface temperature of the motor 11. As is clear from this graph, it can be seen that in the underwater aeration agitation device 1 to which the cooling nozzle 42 is attached, the increase in the surface temperature of the motor 11 is effectively suppressed as compared with the case where the cooling nozzle 42 is not attached.
 以上の結果から、冷却ノズル42から噴射される噴射流に起因してモータ11の外周に発生する水流が、モータの放熱を促し、かつ、モータの過熱を抑止すると結論付けることができる。 From the above results, it can be concluded that the water flow generated on the outer circumference of the motor 11 due to the injection flow injected from the cooling nozzle 42 promotes heat dissipation of the motor and suppresses overheating of the motor.
 上記の実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。従って、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれる。 The above embodiment is an example in all respects and does not serve as a basis for a limited interpretation. Therefore, the technical scope of the present invention is not construed solely by the above-described embodiments, but is defined based on the description of the claims. It also includes all changes within the meaning and scope of the claims.
1    水中曝気撹拌装置
10   回転動力機構
11   モータ
12   減速機
13   キャブタイヤケーブル
20   インペラ
21   ハブ
21a  空気吐出口
22   羽根
30   ポンプケーシング
31   ポンプケーシング本体
31a  補強リブ
32   脚部
40   吐出ケーシング
41   吐出ケーシング本体
411  吐出口
412  上ガイド板
412a ノズル固定部
413  下ガイド板
414  隔壁
415  連結部
416  ガイド溝
417  ステイ
42   冷却ノズル
421  ノズル本体
421a 嵌合部
422  フランジ
423  噴射口
424  締結穴
43   フランジ
50   空気供給管
60   吊具
1 Submersible air exposure agitator 10 Rotating power mechanism 11 Motor 12 Reducer 13 Cabtire cable 20 Impeller 21 Hub 21a Air discharge port 22 Blade 30 Pump casing 31 Pump casing body 31a Reinforcing rib 32 Leg 40 Discharge casing 41 Discharge casing body 411 Discharge Outlet 412 Upper guide plate 412a Nozzle fixing part 413 Lower guide plate 414 Partition 415 Connecting part 416 Guide groove 417 Stay 42 Cooling nozzle 421 Nozzle body 421a Fitting part 422 Flange 423 Injection port 424 Fastening hole 43 Flange 50 Air supply pipe 60 Hanger

Claims (1)

  1.  モータと、該モータの駆動により回転されるインペラと、該インペラから送り込まれる気液混合水流を排出する吐出口と、を備える水中曝気撹拌装置において、
     前記水中曝気撹拌装置は、前記吐出口から分岐するように形成された冷却ノズルを有し、
     前記冷却ノズルは、前記気液混合水流を前記モータに向けて噴射させ、前記モータの外周に水流を発生させることを特徴とする水中曝気撹拌装置。
    In an underwater aeration / stirring device including a motor, an impeller rotated by driving the motor, and a discharge port for discharging a gas-liquid mixed water flow sent from the impeller.
    The underwater aeration agitator has a cooling nozzle formed so as to branch from the discharge port.
    The cooling nozzle is an underwater aeration agitator that injects the gas-liquid mixed water flow toward the motor to generate a water flow on the outer periphery of the motor.
PCT/JP2019/027821 2019-07-12 2019-07-12 Underwater aeration mixing device provided with motor cooling function WO2021009823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027821 WO2021009823A1 (en) 2019-07-12 2019-07-12 Underwater aeration mixing device provided with motor cooling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027821 WO2021009823A1 (en) 2019-07-12 2019-07-12 Underwater aeration mixing device provided with motor cooling function

Publications (1)

Publication Number Publication Date
WO2021009823A1 true WO2021009823A1 (en) 2021-01-21

Family

ID=74210347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027821 WO2021009823A1 (en) 2019-07-12 2019-07-12 Underwater aeration mixing device provided with motor cooling function

Country Status (1)

Country Link
WO (1) WO2021009823A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422477A (en) * 2021-06-22 2021-09-21 刘正家 Cooling device of variable frequency motor
CN116789326A (en) * 2023-07-27 2023-09-22 康增特材集团有限公司 Stainless steel pickling wastewater treatment system and treatment tank thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271590A (en) * 1999-03-25 2000-10-03 Sumitomo Heavy Ind Ltd Aeration device
JP2002079290A (en) * 2000-07-07 2002-03-19 Sumitomo Heavy Ind Ltd Underwater aeration device
JP2004105856A (en) * 2002-09-18 2004-04-08 Ebara Corp Underwater aerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271590A (en) * 1999-03-25 2000-10-03 Sumitomo Heavy Ind Ltd Aeration device
JP2002079290A (en) * 2000-07-07 2002-03-19 Sumitomo Heavy Ind Ltd Underwater aeration device
JP2004105856A (en) * 2002-09-18 2004-04-08 Ebara Corp Underwater aerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113422477A (en) * 2021-06-22 2021-09-21 刘正家 Cooling device of variable frequency motor
CN116789326A (en) * 2023-07-27 2023-09-22 康增特材集团有限公司 Stainless steel pickling wastewater treatment system and treatment tank thereof

Similar Documents

Publication Publication Date Title
KR101566240B1 (en) Aeration impeller and agitator for water treatment having the same
US3856272A (en) Floating mixer
KR101525925B1 (en) Hyper bloid type mixer
US7661658B2 (en) Submersible hollow shaft motor and submersible floating aerator comprising the same
KR100316317B1 (en) Liquid mixing device
US20040174769A1 (en) Aeration apparatus and method
CN202022785U (en) Submersible stirring flow-pushing equipment mounting system with adjustable angle
KR101440535B1 (en) Self-aspirating microbubble generater
US20090256269A1 (en) Swing-type submersible floating aerator
WO2021009823A1 (en) Underwater aeration mixing device provided with motor cooling function
JP2010264337A (en) Aeration agitator
CN211521764U (en) Underwater aeration stirring device with motor cooling function
CN204522887U (en) A kind of chemical-dosing mixer
KR101266470B1 (en) Air diffuser with stirring function
FI88262B (en) LUFTNINGSANORDNING FOER VAETSKOR
CN103007866B (en) Agitation reactor
JP2010167328A (en) Aeration agitator
KR100371530B1 (en) Hydraulic mixing and circulating system in water treatment
JP4754586B2 (en) Aeration stirrer
US10710032B1 (en) Universal bridge and wall mounted aeration apparatus
PT2542333E (en) Waste water treatment system
CN211706774U (en) Reaction kettle capable of stirring uniformly
JP3160718U (en) Circulation type vertical axial flow agitator
KR20210083520A (en) Submersible Aerator
KR100847693B1 (en) A agitator device for waste water processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937585

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP