WO2021008683A1 - Procédé et dispositif d'allocation de ressources servant à la transmission de paquets de données - Google Patents

Procédé et dispositif d'allocation de ressources servant à la transmission de paquets de données Download PDF

Info

Publication number
WO2021008683A1
WO2021008683A1 PCT/EP2019/069026 EP2019069026W WO2021008683A1 WO 2021008683 A1 WO2021008683 A1 WO 2021008683A1 EP 2019069026 W EP2019069026 W EP 2019069026W WO 2021008683 A1 WO2021008683 A1 WO 2021008683A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
transmission
data packets
resource
data
Prior art date
Application number
PCT/EP2019/069026
Other languages
German (de)
English (en)
Inventor
Feng Chen
Franz-Josef GÖTZ
Marcel Kiessling
An Ninh NGUYEN
Jürgen Schmitt
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2019/069026 priority Critical patent/WO2021008683A1/fr
Publication of WO2021008683A1 publication Critical patent/WO2021008683A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/801Real time traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0813Configuration setting characterised by the conditions triggering a change of settings
    • H04L41/0816Configuration setting characterised by the conditions triggering a change of settings the condition being an adaptation, e.g. in response to network events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/72Admission control; Resource allocation using reservation actions during connection setup
    • H04L47/724Admission control; Resource allocation using reservation actions during connection setup at intermediate nodes, e.g. resource reservation protocol [RSVP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/78Architectures of resource allocation
    • H04L47/781Centralised allocation of resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • H04L47/805QOS or priority aware

Definitions

  • Ethernet is used as a transmission technology.
  • the respective automation task places increased demands on the maximum transmission time (latency) and the availability (downtime) of data in the network.
  • the network consists z. B. only from one line (devices with integrated switch) or a ring.
  • the network was set up specifically for the implementation of the application.
  • the PROFINET RT (RealTime) model was introduced for systems with greater flexibility that can cope with greater latency.
  • preferred forwarding is used based on the priority.
  • the network itself is not taken into account when planning the application - the data is transparently forwarded by the network. Overloading the network or individual connections is not possible.
  • the maximum bandwidth is checked in order to avoid overloading the connections to the end devices (especially the PLC, programmable logic controller, programmable logic controller of a system). There If the network is not taken into account, the system cannot give any guarantees.
  • the uniform resource model for audio and video transmissions enables the calculation and verification of the resources required for secure transmission.
  • the configuration of the network is initiated by the end devices through MSRP.
  • the forwarding and the resources required for this are allocated based on the information from the end devices. In this way overloads in the network can be excluded and guarantees can be given for the transmission.
  • the AV resource allocation model is optimized for the highest possible utilization of the network with the lowest possible resources required - but leads to a higher latency of individual connections.
  • Figure 1 shows different network configurations, for example MRP / MRPD, HSR, IRT and AVB, in which the individual network elements NE, NE1, ..., NE12, ..., NE21, ... are each shown. These can be arranged as a ring, bus or tree structure, for example, with special PLC network elements which are typical for communication in a system, as described above, and which represent a certain type of communication. Multiple transmissions can also occur, particularly in ring structures, in order to ensure the failsafe security of the data communication.
  • the object of the invention is to provide a possibility which, when using Ethernet-based, allows a plurality of applications to be made simultaneously with different expectations of the network using the resources in the network components that must be shared
  • the basic idea is to introduce several resource models for the allocation of resources and to identify them using an ID. This means that the mechanisms available in the hardware can be configured differently - depending on the model used. Several classes, each with their own behavior models, can be supported in the network.
  • Simplification e.g. by area reservation for a guaranteed number of streams
  • a shorter latency e.g., a shorter latency
  • an optimization of the "Makespan” ie the time from the beginning of the information transmission to the complete transmission of the information to the recipient
  • the following losses in the possible usable resources should be preferred.
  • All resource models are based on the same generic parameters, already introduced with AVB, to describe their data. Depending on the selected resource model behind the class, there is a maximum bandwidth and a typical latency for this class (target latency). All applications use the same protocol to reserve resources while the connection is being established. The same protocol, with different internal calculations and hardware configurations, enables interoperability in the network.
  • the resource models that can be implemented in a network depend on the hardware available and, as with AVB (Audio Video Bridging), must be configured by the network management. Based on the target latency, the application can then find a class that suits its requirements choose. The internal mapping to the hardware mechanisms and the underlying resource model remain hidden from the application.
  • AVB Audio Video Bridging
  • the respective assumed behavior can then be checked by a configuration of the monitoring mechanisms that is adapted to it. This leads to increased robustness - since incorrect data packets can be identified and deleted before they cause further problems in the overall system.
  • the hardware can then be set up automatically in each network participant for the affected streams in order to monitor the behavior.
  • the inventive method for resource allocation for the transmission of data packets in an industrial network which consists of individual network elements, each of the network elements having a connection to at least one further network element, with the following steps:
  • - Data packets are generated by at least one application (for a recipient and received from the network for this purpose)
  • One of the data packets (usually the first data packet sent) contains a connection setup request which also contains information on a required transmission latency, the latency time being the maximum permissible duration of the complete transmission of the data packets (data) to the recipient.
  • the allocation of the resources of the network takes place in that in the individual network elements a configuration is made with regard to a storage capacity made available for the transmission in the network elements and a communication protocol used for the transmission, with
  • a suitable resource model is selected from a set of possible resource models that meets the required latency time, and a reservation of the transmission capacities at least of the network elements required for the necessary transmission is carried out by a network manager in accordance with the selected resource model.
  • the inventive device for resource allocation for the transmission of data packets in an industrial network which consists of individual network elements, each of the network element having a connection to at least one further network element, and
  • Data packets are generated by at least one application for a receiver and transmitted through the network, and the device determines a connection setup request for the transmission of the data packets from one of the data packets, which additionally contain information about a required latency of the transmission, the latency being the maximum permissible time for the complete transmission of the data packets to the recipient.
  • the device achieves an allocation of the resources of the network in that a configuration is carried out in the individual network elements with regard to a storage capacity made available for the transmission in the network elements and a communication protocol used for the transmission, whereby beforehand based on the required latency A suitable resource model has been selected from a set of the possible resource models, which fulfills the required latency, and the transmission capacities of at least network elements required for the required transmission are reserved by the device in accordance with the selected resource model.
  • a model that is frequently used in industry is communication from a PLC to decentralized IO devices.
  • the optimization consists in the utilization of the so-called wind shadow effect.
  • the fact that the data is sent first with a long transmission time is used.
  • Data to closer devices are transmitted in the "slipstream" of the previously sent data and the data transmission takes place in parallel with the previously started data transmissions.
  • this is automatically achieved with simultaneous transmission of all sensors in the network. This effect allows a higher bandwidth in the simplified flat model , however, is difficult to monitor and is only typically found in this particular application.
  • the configuration can be carried out automatically using a protocol in the network components.
  • the application indirectly determines the model to be used by selecting the required latency and thus ensures that the required network behavior can be checked in the network (configured by the reservation).
  • the same reservation model is used to check in each node whether forwarding is possible.
  • Each reservation can be checked individually according to the respective model, whereby a guarantee of transmission (low latency and no data loss) is possible.
  • the novelty lies in the introduction of different calculation and configuration variants (resource allocation model) in the same reservation protocol.
  • the method according to the invention also has information about the maximum possible bandwidth for the transmission of data packets by means of the respective resource model.
  • the method according to the invention advantageously enables the assigned resource model to be identified when the data packets are sent using a unique identifier.
  • the differentiation (based on the identifier, ID) of the various models means that the various "optimizations" introduced in the industry (resource calculation model) can be applied.
  • the appropriate model can be selected directly by the application (by selecting the stream class in The reservation based on the required latency). This enables more streams in the network, lower latency can be achieved or a completely different type of network data can be supported (e.g. flows only with bandwidth protection for alarms with maximum bandwidth) is exchanged within the network as part of the existing class description and communicated to the end devices.
  • the data already available through the reservation can be used in the network nodes
  • Streams can be monitored for compliance with the respective application model.
  • the behavior model can be recognized by an ID of the resource model (depends on the class). It is only through monitoring that the transmission and latency can be guaranteed. These guarantees are missing in many previous systems (no monitoring possible).
  • FIG. 1 different network configurations according to the prior art
  • Figure 2 shows a novel network configuration according to the inven tion
  • Figure 3 is a flow chart according to the independent method claim.
  • An advantageous embodiment of the method uses a uniform reservation protocol during the reservation of the network elements required for the transmission connection establishment for all applications and resource models.
  • the configuration of the network elements depends on the hardware contained in the network elements.
  • the resource model used for the transfer is one that works according to one of the following standards:
  • FIG. 2 shows a network structure according to the invention, where all possible network configurations already shown in FIG. 1 are found. These are structured, 1, 2, 3, 4 and suitable for the respective transmission protocols.
  • FIG. 3 shows a flow chart of the method according to the invention.
  • Any (any) application ANW / S generates a data stream to at least one receiver E.
  • the connection setup request VAW is transmitted to a network manager NWM, with information about the required maximum latency, which uses the information available to provide a suitable resource model for transmitting the Selects data and sends the associated unique identification ID back to the application.
  • the reservations AR necessary for the resource model are carried out in the network NW.
  • the user ANW / S it is irrelevant how and in which ways the data are transmitted; this is indicated by the dashed line around the network elements NE1, NE2, NE3. From the application's point of view, the data is transmitted transparently, ie the application has no information about the type of transport or the selected transport route.
  • the data is then transmitted with the ID from the application and transmitted via the reserved path.
  • PCT / EP2017 / 066989 method for high-performance data transmission in a data network with some real-time requirements and a device for performing the method enables z.
  • B a fixed statement about the number of connections that are possible in the network (e.g. backbone ring) - regardless of the location of the end devices - with a very low maximum latency - with higher resource consumption (through reservation on all links).
  • neighboring network components as with AVB
  • the limits in the network within which an application model is supported can be recognized by a protocol and taken into account when making the reservation. This means that this model, which has been optimized for latency, can be combined with other classes in the same network, e.g. with OPC UA connections outside the machine.
  • the support of optimized industrial models enables the use of TSN for industrial communication, as the special application requirements, such as B. a lower latency for line topologies can be achieved through special resource allocation models. Thanks to a class with area reservation (PCT / EP2017 / 056132 - method for bandwidth reservation and suitable network element), optimized mechanisms for switchover redundancy (MRP, HRP, RSTP, eRSTP, RSTP +, ...) can be used, since no new reservation is required must be carried out on the changed topology, which would increase the switchover time and prevent it from being used. This means that a class with protection for networks through switchover redundancy can be introduced - this was previously not possible.
  • a separate network for each application model that is configured accordingly and only supports one model for all connections can also meet the technical requirements - but leads to significantly higher costs and is therefore no longer accepted by the customer.
  • a monitoring of the data connections and a comparison with the expected behavior is then only possible as a uniform system definition for all connections in the network and must be specified when the network is set up. This is probably only possible with devices from one manufacturer with a uniform configuration.
  • the ID of the resource model can be part of a profile (e.g. in the IEEE or IEC). This means that a uniform model can be defined for typical applications and manufacturer-independent use can be ensured.
  • the ID can be a manufacturer-dependent ID, such as B. an OUI in the IEEE

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

L'invention concerne un procédé et un dispositif appropriés pour introduire plusieurs modèles de ressources destinés à l'allocation des ressources et à identifier ceux-ci à l'aide d'un identifiant. Tous les modèles de ressources sont basés sur les mêmes paramètres génériques pour décrire leurs données. Une largeur de bande passante maximale et une latence typique pour cette classe résulte du modèle de ressources sélectionné derrière la classe. Toutes les applications utilisent le même protocole pour réserver des ressources pendant l'établissement de la liaison. Par le même protocole, à l'aide de calculs et de configurations internes différents du matériel, une interopérabilité est permise dans le réseau. La représentation interne sur les mécanismes matériels et le modèle de ressources présent derrière restent masqués par rapport à l'application.
PCT/EP2019/069026 2019-07-15 2019-07-15 Procédé et dispositif d'allocation de ressources servant à la transmission de paquets de données WO2021008683A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/069026 WO2021008683A1 (fr) 2019-07-15 2019-07-15 Procédé et dispositif d'allocation de ressources servant à la transmission de paquets de données

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2019/069026 WO2021008683A1 (fr) 2019-07-15 2019-07-15 Procédé et dispositif d'allocation de ressources servant à la transmission de paquets de données

Publications (1)

Publication Number Publication Date
WO2021008683A1 true WO2021008683A1 (fr) 2021-01-21

Family

ID=67480178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/069026 WO2021008683A1 (fr) 2019-07-15 2019-07-15 Procédé et dispositif d'allocation de ressources servant à la transmission de paquets de données

Country Status (1)

Country Link
WO (1) WO2021008683A1 (fr)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"IEEE Standard for Local and Metropolitan Area Networks--Bridges and Bridged Networks -- Amendment 31: Stream Reservation Protocol (SRP) Enhancements and Performance Improvements ; IEEE Std 802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018 as amended by IEEE Std 802.1Qcp-2018)", IEEE STANDARD, IEEE, PISCATAWAY, NJ USA, 29 October 2018 (2018-10-29), pages 1 - 208, XP068132839, ISBN: 978-1-5044-5064-5, [retrieved on 20181029], DOI: 10.1109/IEEESTD.2018.8514112 *
ANONYMOUS: "IEEE Standard for Local and Metropolitan Area Network--Bridges and Bridged Networks ; IEEE Std 802.1Q-2018 (Revision of IEEE Std 802.1Q-2014)", IEEE STANDARD, IEEE, PISCATAWAY, NJ USA, no. 802.1Q-2018, 4 July 2018 (2018-07-04), pages 1 - 1993, XP068127700, ISBN: 978-1-5044-4929-8, [retrieved on 20180704], DOI: 10.1109/IEEESTD.2018.8403927 *

Similar Documents

Publication Publication Date Title
EP1554839B1 (fr) Procede et noeud pour utiliser en parallele un reseau de communication pour des applications temps reel et des applications non temps reel
EP3183851A1 (fr) Noeud de distribution, réseau d'automatisation et procédé de transmission de paquets de données sensibles au temps réel et non sensibles au temps réel
WO2019149578A1 (fr) Procédé de communication de données dans un réseau en particulier industriel, procédé de commande, dispositif, programme informatique et support lisible par ordinateur
DE102005060085B9 (de) Verfahren, Kommunikationsnetzwerk und Steuereinheit zum zyklischen Übertragen von Daten
AT12932U1 (de) Verfahren und vorrichtung zum betrieb von windpark-verbundnetzen mit verbessertem daten-übertragungsprotokoll
EP3664465B1 (fr) Procédé de fonctionnement d'un système de communication destiné à la transmission de données critiques temporelles, et dispositif de commande de communication
EP3577871B1 (fr) Procédé et dispositif permettant l'orientation modulaire d'un flux avb
EP3501140B1 (fr) Procédé pour faire fonctionner un réseau de communication d'un système d'automatisation industriel comprenant plusieurs appareils de communication, et unité de commande
EP3618384B1 (fr) Procédé de simulation d'un traitement des requêtes de réservation pour flux de données multidiffusion dans des réseaux de communication et un système de simulation
WO2005066728A1 (fr) Methode, interface et reseau de transmission cyclique de telegrammes ethernet
EP2526654A1 (fr) Amélioration des capacités temps réel de réseaux ethernet
WO2018141357A1 (fr) Procédé d'exploitation d'un réseau de communication comportant plusieurs appareils de communication pour un système industriel d'automatisation et unité de commande
WO2021008683A1 (fr) Procédé et dispositif d'allocation de ressources servant à la transmission de paquets de données
WO2023126127A1 (fr) Procédé et système permettant de fournir des applications de commande prioritaires
EP3629548B1 (fr) Procédé de transmission de données dans un réseau de communication industriel et appareil de communication
EP3616367B1 (fr) Procédé permettant de faire fonctionner un réseau de communication comprenant plusieurs appareils de communication pour un système d'automatisation industriel, et unité de commande
EP3917089A1 (fr) Procédé de fonctionnement d'un système de communication permettant de transmettre des données critiques dans le temps et commutateur
WO2021093928A1 (fr) Procédé et dispositif de recherche d'abonnés au moyen du protocole opc ua pub/sub
EP3758310A1 (fr) Procédé de communication de données, dispositif de commande de réseau, réseau, programme informatique et support lisible par ordinateur
EP3462673A1 (fr) Procédé de fonctionnement d'un réseau de communication d'un système d'automatisation industriel et unité de commande
WO2021209218A1 (fr) Procédé d'activation d'un système de communication permettant la transmission de données prioritaires, contrôleur de domaine et contrôleur de communication
EP3560153B1 (fr) Procédé pour faire fonctionner un dispositif de traitement de données et dispositif de traitement de données
EP3975488A1 (fr) Procédé et appareil de communication destinés à la transmission de données temporellement critiques
WO2021219312A1 (fr) Procédé de fonctionnement d'un système de communication pour la transmission de données à durée critique et dispositif de commande
EP4381714A1 (fr) Procédé de transmission de données à temps critique dans un système de communication, et commande de communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746025

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746025

Country of ref document: EP

Kind code of ref document: A1