WO2021008630A1 - 圈闭断层的封闭性定量分析方法、装置及系统 - Google Patents

圈闭断层的封闭性定量分析方法、装置及系统 Download PDF

Info

Publication number
WO2021008630A1
WO2021008630A1 PCT/CN2020/111223 CN2020111223W WO2021008630A1 WO 2021008630 A1 WO2021008630 A1 WO 2021008630A1 CN 2020111223 W CN2020111223 W CN 2020111223W WO 2021008630 A1 WO2021008630 A1 WO 2021008630A1
Authority
WO
WIPO (PCT)
Prior art keywords
fault
mudstone
smear
core
data volume
Prior art date
Application number
PCT/CN2020/111223
Other languages
English (en)
French (fr)
Inventor
景紫岩
方乐华
张亚军
李国斌
苏玉平
代寒松
郑长龙
张婷静
袁晓宇
曹立虎
付占宝
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910649401.2A external-priority patent/CN112329187B/zh
Priority claimed from CN202010303957.9A external-priority patent/CN113534248A/zh
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to GB2112593.5A priority Critical patent/GB2595809B/en
Publication of WO2021008630A1 publication Critical patent/WO2021008630A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V20/00Geomodelling in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/64Geostructures, e.g. in 3D data cubes
    • G01V2210/642Faults
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/08Fluids

Definitions

  • This application relates to the technical field of oil and gas exploration and development, and in particular to a method, device and system for quantitative analysis of the sealing of trap faults.
  • fault sealing is an important factor in the formation of oil and gas reservoirs and controlling the scale of oil and gas reservoirs. Its research is of great significance for understanding faults in oil and gas accumulation and petroleum exploration and development. Therefore, the study of fault sealing is very important. At the same time, there are many factors that affect the sealability of faults, and the analysis of these factors is also very necessary. What role faults play in the process of oil and gas migration and accumulation depends on their sealing properties.
  • fault sealability refers to the ability of fault planes or fault zones to seal formation fluids and prevent fluid seepage.
  • trap fault is the fault of stratum. After the stratum is fractured, a fault is formed by moving it again. There is only a fracture, no movement, that is a crack. The extension range of fractures is small, and the extension range of trap faults is large. Fractures usually act as seepage channels, while trap faults have more complicated functions, sometimes sealing oil and gas, and sometimes transporting oil and gas. Faults are dislocated, which is the result of shearing. Shearing can cause rocks on both sides to be broken. Some clastics fall off and fill the cracks, and then evolve into wider or narrow rock layers. Therefore, the trap fault is a clastic rock layer formed after being filled. Clastic rocks have porosity and permeability.
  • the physical properties of the fault clastic rocks are also very different. They are heterogeneous layers. Some parts are low porosity and low permeability, and some parts are high porosity and high permeability.
  • the fault rock facing the reservoir is clastic rock with relatively poor physical properties
  • the fault plays a role of sealing oil and gas.
  • the fault rock facing the reservoir is clastic rock with relatively good physical properties
  • the fault plays a role in transporting oil and gas.
  • faults cannot seal water, but can only seal oil and gas.
  • the mechanism for faults to seal oil and gas is exactly the same as that of caprocks.
  • a fault transports or seals oil and gas has nothing to do with the occurrence of the fault, has nothing to do with the positive and negative properties, and has nothing to do with the tension and compression.
  • Underground faults are all closed and cannot be opened. Closed faults can seal oil and gas, and can also transport oil and gas.
  • Tectonic movement may destroy the fault again, but it only changes the properties of the fault rock. For example, it may produce cracks in the fault rock, but it is impossible to change the closure properties of the fault.
  • the sealability of trap faults has always been one of the core issues of petroleum geology research, and has attracted much attention from domestic and foreign petroleum geologists. 80% of fault block oil and gas reservoirs are controlled by fault sealability, and the trap fault rock mudstone smear type is Mainly closed type.
  • the analysis of the sealability of the trap fault is directly related to the ability to accurately judge whether the trap controlled by the fault can accumulate and the hydrocarbon height. In the practice of petroleum industry exploration and production, for fault block traps, whether it is possible to accurately predict the oil and gas height and the size of the trap area is critical to improving the efficiency of oil and gas exploration, and will directly affect exploration decision deployment and investment .
  • the embodiment of the present invention proposes a method for quantitatively analyzing the sealing properties of trap faults, which is used to quantitatively analyze the sealing properties of trap faults to be drilled with high accuracy.
  • the method includes:
  • each sampling point analyzes the sealability of each sampling point of the mudstone smear type fault to be drilled.
  • the embodiment of the present invention provides a quantitative analysis device for the sealability of trap faults, which is used to quantitatively analyze the sealability of the trap fault to be drilled with high accuracy.
  • the device includes:
  • the first module is used to obtain a three-dimensional data volume of the mudstone smear-type fault in the trap to be drilled, and the three-dimensional data volume is obtained by scanning and reconstructing the fault simulation model of the mudstone smear-type fault in the trap to be drilled;
  • the second module is used to obtain the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points according to the three-dimensional data volume;
  • the third module is used to fit the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points, and determine the fitting coefficient of the mudstone smear thickness and fault gouge ratio of the fault zone;
  • the fourth module is used to determine the mudstone smear sealing factor of the fracture zone of multiple sampling points according to the fitting coefficient and the fault gouge ratio of multiple sampling points of the mudstone smear type fault to be drilled;
  • the fifth module is used to analyze the sealability of each sampling point of the mudstone smear-type fault to be drilled according to the mudstone smear sealing factor of each sampling point.
  • the embodiment of the present invention provides a quantitative analysis system for the sealability of trap faults, which is used to quantitatively analyze the sealability of the trap fault to be drilled with high accuracy.
  • the system includes: a fault simulation model structural unit, a scanning unit and the above-mentioned traps
  • a quantitative analysis device for the sealing of faults in which,
  • the fault simulation model structural unit is used to construct the fault simulation model of the mudstone smear type fault to be drilled;
  • the scanning unit is used to scan the fault simulation model to generate the surface data of the mudstone smear type fault to be drilled and send it to the sealing quantitative analysis device of the trap fault;
  • a quantitative analysis device for the sealing of trap faults is used to reconstruct the received surface data to obtain a three-dimensional data volume; according to the three-dimensional data volume, obtain the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points;
  • the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points are fitted to determine the fitting coefficient of the mudstone smear thickness and the fault gouge ratio of the fault zone; according to the fitting coefficient and the mudstone smear type fault to be drilled
  • the ratio of fault mud at multiple sampling points determines the mudstone smear sealing factor of the fracture zone at multiple sampling points; according to the mudstone smear sealing factor of the fracture zone at each sampling point, analyze each sampling point of the mudstone smear type fault to be drilled The closure.
  • the embodiment of the present invention proposes a fault sealing analysis method, which is used to quantitatively analyze the fault sealing performance with high accuracy.
  • the method includes:
  • the fault sealing is analyzed.
  • the embodiment of the present invention provides a fault sealing analysis device, which is used to quantitatively analyze the fault sealing performance with high accuracy.
  • the device includes:
  • the first data obtaining module is used to obtain a first core data volume containing pores, and the first core data volume containing pores is obtained by scanning a core model of a target interval containing faults;
  • the second data acquisition module is used to perform three-dimensional reconstruction of the first core data volume containing pores to obtain a solid second core data volume;
  • the third data acquisition module is used to make a difference between the second solid core data volume and the first core data volume containing pores to obtain the pore data volume;
  • the core fracture zone seepage field acquisition module is used to obtain the core fracture zone seepage field according to the pore data volume
  • Calculation module used to calculate the strength of the core fracture zone seepage field at the fracture zone
  • the analysis module is used to analyze the fault sealability according to the strength of the core fracture zone's seepage field at the fracture zone.
  • the embodiment of the present invention provides a fault sealing analysis system for quantitative analysis of fault sealing with high accuracy.
  • the system includes: the above-mentioned fault sealing analysis device and a scanning unit, wherein:
  • the scanning unit is used for:
  • the embodiment of the present invention also provides a computer device, including a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor realizes the closure of the trap fault when the processor executes the computer program. Quantitative analysis method or fault sealing analysis method.
  • the embodiment of the present invention also provides a computer-readable storage medium that stores a computer program that executes the above-mentioned trapped fault sealing quantitative analysis method or fault sealing analysis method.
  • a first data volume of the mudstone smear-type fault in the trap to be drilled is obtained, and the first data volume is obtained by scanning and reconstruction of the fault simulation model of the mudstone smear-type fault in the trap to be drilled.
  • the fault simulation model contains pores, and the first data volume is a data volume containing pores; the first data volume is three-dimensionally reconstructed to obtain a second data volume, and the second data volume is a solid data volume; The second data volume is compared with the first data volume to obtain the pore data volume; according to the pore data volume, the core fracture zone seepage field is obtained, and the strength of the core fracture zone seepage field at the fracture zone is calculated; according to the first data volume, Obtain the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points; fit the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points, and determine the fitting coefficient of the mudstone smear thickness and fault gouge ratio of the fault zone; Determine the mudstone smear sealing factor of the fracture zone of multiple sampling points according to the fitting coefficient and the fault mud ratio of the multiple sampling points of the mudstone smear type fault to be drilled; according to the mudstone smear seal of the
  • the strength of the seepage field of the core fracture zone at the fracture zone and the mudstone smear sealing factor of the fracture zone at multiple sampling points were calculated at the same time, so as to analyze the mudstone smear type fault to be drilled for each sampling point. Closeness, compared with qualitative analysis, has high accuracy.
  • a first core data volume containing pores is obtained, and the first core data volume containing pores is obtained by scanning a core model of a target interval containing faults; and the first core data volume containing pores Perform three-dimensional reconstruction of the volume to obtain a solid second core data volume; make a difference between the solid second core data volume and the first core data volume containing pores to obtain the pore data volume; obtain the core fracture zone seepage field according to the pore data volume ; Calculate the strength of the seepage field of the core fracture zone at the fracture zone; analyze the fault sealability according to the strength of the seepage field of the core fracture zone at the fracture zone.
  • the process of analyzing the sealability of a fault is the process of quantitatively analyzing the sealability of a fault. Compared with qualitative analysis, the accuracy is high.
  • Fig. 1 is a flowchart of a method for quantitative analysis of the sealability of a trap fault in an embodiment of the present invention
  • FIG. 2 is a detailed flow chart of a method for quantitative analysis of the sealability of trap faults according to an embodiment of the present invention
  • FIG. 3 is a front view of a physical simulation model of a trap to be drilled constructed in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a cross-sectional view of a fault zone obtained by scanning in an embodiment of the present invention
  • Figure 5 is a schematic diagram of a three-dimensional data volume in an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a relationship chart in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a sealing quantitative analysis device for a trap fault in an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a quantitative analysis system for the sealing of a trap fault in an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for analyzing the sealability of an interrupted layer according to an embodiment of the present invention.
  • FIG. 10 is a detailed flowchart of a fault sealing analysis method proposed by an embodiment of the present invention.
  • Figure 11 is a schematic diagram of a first core data volume containing pores in an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a solid second core data volume in an embodiment of the present invention.
  • Figure 13 is a schematic diagram of a pore data volume in an embodiment of the present invention.
  • Fig. 14 is a schematic diagram of a percolation communication channel in an embodiment of the present invention.
  • Figure 15 is a schematic diagram of the seepage line in the embodiment of the present invention.
  • 16 is a schematic diagram of the strength of the seepage field of the core fracture zone at the fracture zone in the embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a device for analyzing the sealability of an interrupted layer according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a system for analyzing the sealability of an interrupted layer according to an embodiment of the present invention.
  • Fig. 1 is a flowchart of a method for quantitative analysis of the sealability of a trap fault in an embodiment of the present invention. As shown in Fig. 1, the method includes:
  • Step 101 Obtain a three-dimensional data volume of a mudstone smear-type fault in a trap to be drilled, and the three-dimensional data volume is obtained by scanning and reconstructing a fault simulation model of the mudstone smear-type fault in a trap to be drilled;
  • Step 102 Obtain the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points according to the three-dimensional data volume;
  • Step 103 Fitting the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points, and determine the fitting coefficient of the mudstone smear thickness of the fault zone and the fault gouge ratio;
  • Step 104 Determine the mudstone smear sealing factor of the fault zone of the multiple sampling points according to the fitting coefficient and the fault gouge ratio of the multiple sampling points of the mudstone smear type fault to be drilled;
  • Step 105 Analyze the sealability of each sampling point of the mudstone smear-type fault to be trapped by the trap according to the mudstone smear sealing factor of each sampling point.
  • the sealability of the trap fault to be drilled can be analyzed, and in the analysis process, the fitting coefficient of the mudstone smear thickness of the fault zone and the fault mud ratio is determined, and the fitting coefficient can indicate the effective smearing degree of the mudstone. Therefore, the mudstone smear sealing factor of the fault zone is determined more accurately, which makes the final analysis of the sealability of each sampling point of the mudstone smear fault to be drilled more accurate.
  • obtaining the three-dimensional data volume of the mudstone smear-type fault in the trap to be drilled includes:
  • fault data and horizon data of the trap to be drilled determine the structural parameters and fault deformation stress of the physical simulation model of the trap to be drilled;
  • the fault simulation model is obtained by loading the fault deformation stress on the physical simulation model of the trap to be drilled, and the physical simulation model of the trap to be drilled is constructed based on the structural parameters.
  • the method before determining the structural parameters of the physical simulation model of the trap to be drilled, the method further includes:
  • the fault data and horizon data of the trap to be drilled are obtained.
  • the fault data and horizon data of the trap to be drilled can be obtained by interpretation in the seismic interpretation system or other related software (such as Geoeast software, Landmark software or Geoframe software) based on the post-stack seismic data. Obtain the section distribution law and distance information. According to the results of interpretation, sand and mudstone formations can be obtained, and the fault data and horizon data of the traps to be drilled provided by the interpretation provide accurate parameters and basis for physical simulation, ensuring the accuracy and science of the physical simulation model of drilling traps expected later. Sex.
  • the structural parameters and fault deformation stress of the physical simulation model of the trap to be drilled can be determined. This process is also called the physical simulation of the trap to be drilled. Schematic design of the model.
  • the structural parameters of the physical simulation model of the trap to be drilled include one or any combination of the model boundary, the physical simulation model similarity ratio, the physical simulation duration similarity ratio, the simulated formation material and the simulated mudstone material.
  • the steps for constructing a physical simulation model of the trap to be drilled are as follows:
  • S2 According to the principle of material similarity, determine the simulated formation material and the simulated mudstone layer material; for example, quartz sand is used to simulate sandstone layer and clay is used to simulate mudstone layer. These two types of materials are similar, relatively high and stable, and are currently commonly used.
  • S3 Construct a physical simulation model of the trap to be drilled according to the structural parameters of the physical simulation model of the trap to be drilled.
  • the physical simulation model of the trap to be drilled is loaded with the fault deformation stress to obtain the fault simulation model.
  • the loaded fault deformation stress can be used in the deformed sandbox to cause the strata to move and form a fault.
  • the mudstone layer descends through the hanging wall and drags smearing to form a mudstone smear layer, and finally a mudstone smear type fault.
  • the mudstone thickness at the location where the mudstone smear loses continuity can determine the minimum mudstone thickness H of the fault seal by analyzing the mudstone smear disconnection, which is also called the fault zone mudstone smear thickness H.
  • the fault deformation stress can be stopped, the structural deformation is completed, and the fault simulation model is obtained.
  • a three-dimensional data volume of the mudstone smear-type fault in the trap to be drilled is obtained, and the three-dimensional data volume is obtained by scanning and reconstructing the fault simulation model of the mudstone smear-type fault in the trap to be drilled.
  • Scanning methods such as industrial CT can be used to scan the tomographic simulation model.
  • the dynamic monitoring scan position, scan frequency, scan interval, etc. can be set according to the accuracy requirements to ensure the scan accuracy.
  • scanning the fault simulation model it is mainly to scan the fault zone in the fault simulation model to obtain the surface data of the mudstone smear type fault to be drilled. The more surface data obtained, the higher the accuracy of the final fault zone.
  • the specific scanning process can be as follows:
  • S1 Set different collection intervals according to the research accuracy requirements. Place the position to be scanned for the tomographic simulation model under the industrial CT, and scan the surface data.
  • a difference method or a fitting method is used to perform three-dimensional reconstruction of the surface data to obtain a three-dimensional data volume of the mudstone smear type fault to be drilled.
  • the three-dimensional data volume obtained by the three-dimensional reconstruction method has high accuracy.
  • the three-dimensional data volume facilitates the comprehensive identification of fault simulation models.
  • Reconstruct the surface data in three dimensions that is, construct unknown surface data (surface data between two sets of adjacent surface data) through the known surface data obtained by scanning, and finally recombine all surface data to form a three-dimensional Data body.
  • the reconstruction method such as the difference can be realized with the help of software or other computer equipment.
  • the difference method is used to reconstruct the surface data in three dimensions, that is, between the two sets of adjacent surface data (for example, two gray-scale scanned images), mathematical methods such as Gaussian difference are used to calculate the difference between the two sets of adjacent surface data.
  • the 3D reconstruction of the surface data is carried out using the fitting method, that is, the process of fitting the shape of other surface data according to the change law of the surface data through a certain known surface data to obtain the unknown surface data.
  • obtaining the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points according to the three-dimensional data volume includes:
  • the fault gouge ratio of multiple sampling points is calculated.
  • the attribute information of the fault zone includes the mudstone smear thickness of the fault zone at multiple sampling points, the fault distance of the fault, and the mud content of the section, while the fault distance of the fault and the mud content of the section at multiple sampling points.
  • SGR is the ratio of fault gouge at each sampling point
  • Z is the shale content of each sampling point
  • in cm is the distance between each sampling point in cm.
  • extracting the fault zone attribute information of the mudstone smear type fault from the three-dimensional data volume includes:
  • the gray-scale characteristic value of the fault zone is generally obtained from the analysis of simulated materials.
  • the gray-scale characteristic value of the fault zone is generally about 430.
  • the fault zone of the mudstone smear-type fault can be identified .
  • the identification of the fracture zone can be realized by means of gray-scale processing software such as VG, etc., of course, other methods can also be used, and the relevant changes should fall within the protection scope of the present invention.
  • the gray-scale characteristic value of sandstone and mudstone is 436, that is, more than 436 is mudstone, and less than 436 is sandstone.
  • the minimum mudstone thickness H of the fault closure can be determined by analyzing the mudstone smear disconnection, which is also called the fault zone mudstone smear thickness H. Plot the fracture zone mudstone smear thickness H and SGR on a chart to obtain the fault zone mudstone smear Thickness and SGR relationship chart, based on the relationship chart, determine the fitting coefficient between the mudstone smear thickness of the fault zone and the fault gouge ratio.
  • the mudstone smear thickness and the fault gouge ratio of the fault zone at the multiple sampling points have a linear relationship.
  • the fitting formula of the linear relationship may be as follows:
  • H is the mudstone smear thickness of the fault zone
  • A is the fitting coefficient.
  • B is a constant value parameter.
  • the mudstone smear thickness of the fault zone has a linear relationship with the fault gouge ratio, the larger the mudstone smear thickness of the fault zone, the larger the fault gouge ratio and the better the sealing.
  • the corresponding SGR is 18%, that is, mudstone less than 0.1cm thick loses continuity is invalid smearing, and the corresponding SGR is less than 18% can not play an effective plugging effect. Therefore, using this method, the extreme point of continuous mudstone smearing can be accurately defined on the relationship chart, that is, the SGR lower limit of fault sealing.
  • the following formula is used to determine the mudstone smear sealing factor of the fracture zone at multiple sampling points based on the fitting coefficient and the fault gouge ratios at multiple sampling points of the mudstone smear-type fault to be drilled:
  • SGRN is the mudstone smear sealing factor in the fault zone of each sampling point
  • A is the fitting coefficient
  • C is a constant value parameter
  • SGR is the fault gouge ratio at each sampling point.
  • the physical meaning of the fitting coefficient is to indicate the effective degree of mudstone smearing, also known as the effective continuous mudstone smearing contribution rate, which is related to regional geological characteristics, and its value range is 0-1, more specifically,
  • the resultant coefficient A is between 0.62 and 0.67.
  • the mudstone smear sealing factor of the fault zone obtained after the calculation of the above formula takes into account the effective degree of mudstone smear and the effectiveness and heterogeneity of mudstone smear, rather than a rough simple Calculate the mudstone of all formations.
  • the present invention can more accurately analyze the sealability of the mudstone smear-type fault to be drilled.
  • the effective smearing degree of mudstone comes from quantitative physical simulation and analysis, which is suitable for the real situation under the set geological conditions, with high reliability, strong scientificity, and closer to the real underground core characteristics. In fact, according to different geological conditions in different blocks, the value of the fitting coefficient may be different.
  • analyzing the sealing properties of each sampling point of the mudstone smear-type fault to be drilled in the trap to be drilled according to the mudstone smear sealing factor of the fracture zone of each sampling point including:
  • the sampling point For each sampling point, if the mudstone smear sealing factor of the fault zone of the sampling point is greater than the threshold value, it is determined that the sampling point is closed; otherwise, the sampling point is not closed.
  • the method further includes: determining whether to drill the trap to be drilled according to the sealing property of the mudstone smear type fault.
  • the process of calculating the fitting coefficients according to this method can also be obtained by sampling from field geological outcrops, performing industrial CT scanning and then following similar steps. It should also belong to the protection scope of this application example.
  • FIG. 2 is a detailed flow chart of the method for quantitative analysis of the sealing of trap faults according to an embodiment of the present invention.
  • the detailed process of the method for quantitative analysis of the sealability of trap faults includes:
  • Step 201 Obtain fault data and horizon data of the trap to be drilled according to the post-stack seismic data of the trap to be drilled;
  • Step 202 Determine the structural parameters and fault deformation stress of the physical simulation model of the trap to be drilled according to the geological background information, fault data and horizon data of the trap to be drilled;
  • Step 203 Obtain the surface data of the mudstone smear-type fault in the trap to be drilled, and perform three-dimensional reconstruction on the surface data to obtain a three-dimensional data volume of the mudstone smear-type fault in the trap to be drilled.
  • the surface data is a simulation of the fault
  • the model is obtained by scanning, and the fault simulation model is obtained by loading the fault deformation stress on the physical simulation model of the trap to be drilled;
  • Step 204 Identify the fracture zone from the three-dimensional data volume according to the gray feature value of the fracture zone
  • Step 205 Extract the attribute information of the fault zone body, the attribute information includes the mudstone smear thickness of the fault zone at multiple sampling points, the fault distance of the fault, and the shale content of the section;
  • Step 206 Calculate the fault gouge ratio of the multiple sampling points according to the fault distance of the multiple sampling points and the mud content of the cross section;
  • Step 207 Fit the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points, and determine the fitting coefficient of the mudstone smear thickness and fault gouge ratio of the fault zone;
  • Step 208 Determine the mudstone smear sealing factor of the fault zone of the multiple sampling points according to the fitting coefficient and the fault gouge ratio of the multiple sampling points of the mudstone smear type fault to be drilled;
  • Step 209 Determine the threshold value of the mudstone smear sealing factor of the fault zone to be drilled;
  • Step 210 For each sampling point, if the mudstone smear sealing factor of the fracture zone of the sampling point is greater than the threshold value, it is determined that the sampling point is closed; otherwise, the sampling point is not closed.
  • S11 Load the post-stack seismic data of the trap to be drilled into the seismic interpretation system or other related software, such as Geoeast software, and interpret the fault data and horizon data of the trap to be drilled.
  • the size of the physical simulation model of the trap to be drilled is 48cm ⁇ 24cm ⁇ 26cm; the mudstone layer has 3 layers, The thickness is 1.5cm; the simulated displacement and deformation of the physical simulation model of the trap to be drilled is determined according to the fault distance value interpreted by the post-stack seismic data volume, that is, the section distance is the maximum displacement, which is 9cm in this example;
  • quartz sand simulates a sandstone layer, and clay simulates a mudstone layer.
  • Fig. 3 is a front view of a physical simulation model of a trap to be drilled constructed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the fracture zone section obtained by scanning in the embodiment of the present invention, forming surface data. Here, 30 fracture zone sections are scanned and stored in DICOM format.
  • the graphics workstation performs visualization processing and three-dimensional reconstruction.
  • the professional three-dimensional reconstruction software Mimics is used to establish a 3D model by interpolation and perform editing processing to obtain a three-dimensional data volume.
  • FIG. 5 is a schematic diagram of the three-dimensional data volume in an embodiment of the present invention.
  • S15 Identify the fault zone from the three-dimensional data volume according to the gray feature value of the fault zone.
  • the sand and mudstone are distinguished according to the gray feature value in the Mimics software.
  • the gray characteristic value is 436, the ones larger than 436 are mudstone, and those smaller than 436 are sandstone.
  • the attribute information of the fault zone body is extracted, and the attribute information includes the mudstone smear thickness of the fault zone at multiple sampling points, the distance of the fault, and the mud content of the section.
  • the fault gouge ratio SGR of multiple sampling points is calculated; the obtained mudstone smear thickness value H and SGR are generated into a scatter plot to form the mudstone smear thickness value H and SGR relationship chart. Based on the relationship chart, the fitting coefficient of the mudstone smear thickness of the fault zone and the fault gouge ratio is determined through fitting.
  • the fitting formula can be as follows:
  • 0.6248 is the fitting coefficient, which is also the slope of the curve in the relationship chart.
  • Figure 6 is a schematic diagram of the relationship chart in the embodiment of the present invention.
  • the fitting coefficient 0.6248 represents the effective mudstone smearing degree, which is also called effective continuous mudstone smearing contribution rate.
  • S17 Determine the threshold of the mudstone smear sealing factor of the fault zone to be drilled.
  • the lower limit of the SGR for the fault sealability is 18%.
  • the mudstone of the fault zone to be drilled is smeared with the threshold of the seal factor It is determined to be 18%.
  • the threshold of the seal factor It is determined to be 18%.
  • For each sampling point if the mudstone smear sealing factor of the fault zone of the sampling point is greater than the threshold, it is determined that the sampling point is closed; otherwise, the sampling point is not closed. So as to find out the weak points of sealing and avoid drilling risks.
  • a three-dimensional data volume of the mudstone smeared fault to be drilled is obtained, and the three-dimensional data volume is a fault simulation model of the mudstone smeared fault to be drilled.
  • Obtained by scanning reconstruction according to the three-dimensional data volume, obtain the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points; fit the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points to determine the fault Fitting coefficient of mudstone smear thickness and fault gouge ratio; according to the fitting coefficient and the fault gouge ratios of multiple sampling points of the mudstone smear type fault to be drilled, determine the mudstone smear closure of multiple sampling points in the fracture zone Factor; According to the mudstone smear sealing factor of each sampling point, analyze the sealability of each sampling point of the mudstone smear-type fault to be drilled.
  • the present invention can analyze the sealability of the trap fault to be drilled, and in the analysis process, the fitting coefficient of the mudstone smear thickness of the fault zone and the fault mud ratio is determined, and the fitting coefficient can indicate the effective smearing degree of the mudstone. Therefore, the mudstone smear sealing factor of the fault zone is determined more accurately, which makes the final analysis of the sealability of each sampling point of the mudstone smear fault to be drilled more accurate.
  • the present invention uses post-stack seismic data to improve the accuracy of the attribute information of mudstone smear-type faults, and uses advanced methods of physical simulation and industrial CT data quantitative acquisition and analysis to obtain three-dimensional data volume with high accuracy and quantitatively solve existing faults.
  • the idealization of the calculation model the incomplete consideration of the factors, the scientificity and the low accuracy of the problem, provide a scientific basis for the closure evaluation, accurately evaluate the closure and screen out the leakage points, avoid the risk of drilling investment, and have a good
  • the technical application prospects and economic benefits have improved the success rate of drilling and achieved the technical effect of evaluating fault block traps with higher accuracy based on fault sealing.
  • an embodiment of the present invention also provides a sealing quantitative analysis device for trap faults, as described in the following embodiments. Since these problem-solving principles are similar to the quantitative analysis method of the sealing of the trap fault, the implementation of the device can refer to the implementation of the method, and the repetition will not be repeated.
  • Fig. 7 is a schematic diagram of a device for quantitative analysis of the sealability of a trap fault in an embodiment of the present invention. As shown in Fig. 7, the device includes:
  • the first module 701 is used to obtain a three-dimensional data volume of a mudstone smear-type fault in a trap to be drilled, and the three-dimensional data volume is obtained by scanning and reconstructing a fault simulation model of the mudstone smear-type fault in a trap to be drilled;
  • the second module 702 is used to obtain the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points according to the three-dimensional data volume;
  • the third module 703 is used to fit the mudstone smear thickness and the fault gouge ratio of the fault zone at multiple sampling points, and determine the fitting coefficient of the mudstone smear thickness and the fault gouge ratio of the fault zone;
  • the fourth module 704 is used to determine the mudstone smear sealing factor of the fault zone of multiple sampling points according to the fitting coefficient and the fault gouge ratio of multiple sampling points of the mudstone smear type fault to be drilled;
  • the fifth module 705 is used to analyze the sealability of each sampling point of the mudstone smear-type fault to be drilled according to the mudstone smear sealing factor of the fracture zone of each sampling point.
  • the third module 703 is specifically used for:
  • the second module 702 is specifically used for:
  • the fault gouge ratio of multiple sampling points is calculated.
  • the second module 702 is specifically used for:
  • the first module 701 is specifically used for:
  • fault data and horizon data of the trap to be drilled determine the structural parameters and fault deformation stress of the physical simulation model of the trap to be drilled;
  • the fault simulation model is obtained by loading the fault deformation stress on the physical simulation model of the trap to be drilled, and the physical simulation model of the trap to be drilled is constructed based on the structural parameters.
  • the first module 701 is specifically used for:
  • the fault data and horizon data of the trap to be drilled are obtained.
  • the structural parameters of the physical simulation model of the trap to be drilled include one or any combination of the model boundary, the physical simulation model similarity ratio, the physical simulation duration similarity ratio, the simulated formation material and the simulated mudstone material.
  • the first module 701 is specifically used for:
  • a difference method or a fitting method is used to perform three-dimensional reconstruction on the surface data to obtain a three-dimensional data volume of the mudstone smear type fault to be drilled.
  • the fifth module 705 is specifically used for:
  • the sampling point For each sampling point, if the mudstone smear sealing factor of the fault zone of the sampling point is greater than the threshold value, it is determined that the sampling point is closed; otherwise, the sampling point is not closed.
  • a three-dimensional data volume of mudstone smeared faults to be drilled is obtained, and the three-dimensional data volume is a fault simulation model of the mudstone smeared faults to be drilled.
  • Obtained by scanning reconstruction according to the three-dimensional data volume, obtain the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points; fit the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points to determine the fault Fitting coefficient of mudstone smear thickness and fault gouge ratio; according to the fitting coefficient and the fault gouge ratios of multiple sampling points of the mudstone smear type fault to be drilled, determine the mudstone smear closure of multiple sampling points in the fracture zone Factor; According to the mudstone smear sealing factor of each sampling point, analyze the sealability of each sampling point of the mudstone smear-type fault to be drilled.
  • the present invention can analyze the sealability of the trap fault to be drilled, and in the analysis process, the fitting coefficient of the mudstone smear thickness of the fault zone and the fault mud ratio is determined, and the fitting coefficient can indicate the effective smearing degree of the mudstone. Therefore, the mudstone smear sealing factor of the fault zone is determined more accurately, which makes the final analysis of the sealability of each sampling point of the mudstone smear fault to be drilled more accurate.
  • the present invention uses post-stack seismic data to improve the accuracy of the attribute information of mudstone smear-type faults, and uses advanced methods of physical simulation and industrial CT data quantitative acquisition and analysis to obtain three-dimensional data volume with high accuracy and quantitatively solve existing faults.
  • the idealization of the calculation model the incomplete consideration of the factors, the scientificity and the low accuracy of the problem, provide a scientific basis for the closure evaluation, accurately evaluate the closure and screen out the leakage points, avoid the risk of drilling investment, and have a good
  • the technical application prospects and economic benefits have improved the success rate of drilling and achieved the technical effect of evaluating fault block traps with higher accuracy based on fault sealing.
  • FIG. 8 is a schematic diagram of the closedness quantitative analysis system for trap faults in an embodiment of the present invention, including: a fault simulation model construction unit 801 and a scanning unit 802 And the aforementioned trap and fault sealing quantitative analysis device 803, in which,
  • the fault simulation model structure unit 801 is used to construct the fault simulation model of the mudstone smear type fault to be drilled;
  • the scanning unit 802 is used to scan the fault simulation model to generate surface data of the mudstone smear type fault to be drilled and send to the sealing quantitative analysis device of the trap fault;
  • the sealing quantitative analysis device 803 of the trap fault is used to reconstruct the received surface data to obtain a three-dimensional data volume; according to the three-dimensional data volume, obtain the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points; Fit the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points, and determine the fitting coefficient of the mudstone smear thickness and the fault gouge ratio in the fault zone; according to the fitting coefficient and the mudstone smear type fault to be drilled Determine the mudstone smear sealing factor of the fault zone at multiple sampling points, and analyze the mudstone smear seal factor of the fracture zone mudstone at each sampling point to analyze each sample of the mudstone smear type fault to be drilled Point of closure.
  • a three-dimensional data volume of mudstone smeared faults to be drilled is obtained, and the three-dimensional data volume is a fault simulation model of the mudstone smeared faults to be drilled.
  • Obtained by scanning reconstruction according to the three-dimensional data volume, obtain the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points; fit the mudstone smear thickness and fault gouge ratio of the fault zone at multiple sampling points to determine the fault Fitting coefficient of mudstone smear thickness and fault gouge ratio; according to the fitting coefficient and the fault gouge ratios of multiple sampling points of the mudstone smear type fault to be drilled, determine the mudstone smear closure of multiple sampling points in the fracture zone Factor; According to the mudstone smear sealing factor of each sampling point, analyze the sealability of each sampling point of the mudstone smear-type fault to be drilled.
  • the present invention can analyze the sealability of the trap fault to be drilled, and in the analysis process, the fitting coefficient of the mudstone smear thickness of the fault zone and the fault mud ratio is determined, and the fitting coefficient can indicate the effective smearing degree of the mudstone. Therefore, the mudstone smear sealing factor of the fault zone is determined more accurately, which makes the final analysis of the sealability of each sampling point of the mudstone smear fault to be drilled more accurate.
  • the present invention uses post-stack seismic data to improve the accuracy of the attribute information of mudstone smear-type faults, and uses advanced methods of physical simulation and industrial CT data quantitative acquisition and analysis to obtain three-dimensional data volume with high accuracy and quantitatively solve existing faults.
  • the idealization of the calculation model the incomplete consideration of the factors, the scientificity and the low accuracy of the problem, provide a scientific basis for the closure evaluation, accurately evaluate the closure and screen out the leakage points, avoid the risk of drilling investment, and have a good
  • the technical application prospects and economic benefits have improved the success rate of drilling and achieved the technical effect of evaluating fault block traps with higher accuracy based on fault sealing.
  • FIG. 9 is a flowchart of the method for analyzing the sealability of a fault in an embodiment of the present invention. As shown in FIG. 9, the method includes:
  • Step 901 Obtain a first core data volume containing pores, where the first core data volume containing pores is obtained by scanning a core model of a target interval containing faults;
  • Step 902 Perform a three-dimensional reconstruction on the first core data volume containing pores to obtain a solid second core data volume
  • Step 903 Make a difference between the second solid core data volume and the first core data volume containing pores to obtain a pore data volume
  • Step 904 Obtain the seepage field of the core fracture zone according to the pore data volume
  • Step 905 Calculate the strength of the core fracture zone seepage field at the fracture zone
  • Step 906 According to the strength of the core fracture zone seepage field at the fracture zone, the fault sealing is analyzed.
  • a first core data volume containing pores is obtained, and the first core data volume containing pores is obtained by scanning a core model of a target interval containing faults; and the first core data volume containing pores Perform three-dimensional reconstruction of the volume to obtain a solid second core data volume; make a difference between the solid second core data volume and the first core data volume containing pores to obtain the pore data volume; obtain the core fracture zone seepage field according to the pore data volume ; Calculate the strength of the seepage field of the core fracture zone at the fracture zone; analyze the fault sealability according to the strength of the seepage field of the core fracture zone at the fracture zone.
  • the process of analyzing the sealability of a fault is the process of quantitatively analyzing the sealability of a fault. Compared with qualitative analysis, the accuracy is high.
  • the target interval core model containing faults includes mudstone smear type faults, sand-shale butt-type faults and other types.
  • the first core data volume containing pores is obtained by scanning the core model of the target interval containing faults. There can be many scanning methods. For example, high-precision industrial CT scanning can be used, and reasonable scanning steps and ranges can be set according to specific needs. , The scanning range must include the structure of the fracture zone to ensure a clear scan near the fracture zone. Of course, other three-dimensional scanning methods can also be used for scanning.
  • the second solid core data volume does not contain voids.
  • the difference between the second solid core data volume and the first core data volume containing pores is to obtain the pores in the core data volume, which is called the void data volume.
  • the pore data volume the seepage field of the core fracture zone is obtained; the intensity of the seepage field of the core fracture zone at the fracture zone is calculated.
  • the intensity is a specific quantitative value. According to the intensity, the sealing of the fault can be quantitatively analyzed.
  • the first core data volume containing pores includes core skeleton volume data and/or pore volume data.
  • performing three-dimensional reconstruction on the first core data volume containing pores to obtain a solid second core data volume includes:
  • the pores in the first core data volume containing pores are reconstructed and filled to obtain a solid second core data volume.
  • the first core data volume containing pores is a three-dimensional structure
  • the three-dimensional reconstruction is to reconstruct and fill the pores to obtain a solid second core data volume.
  • obtaining the seepage field of the core fracture zone according to the pore data volume includes:
  • the connected pores and the pores that can be connected under the set pressure are formed to form multiple seepage connection channels perpendicular to the fault direction;
  • the seepage field of the core fracture zone is constructed.
  • the pore three-dimensional imaging data can be obtained by loading the pore data volume into professional imaging software, for example, VG or Simpleware software.
  • the starting point of the seepage connection channel is generally on the side of the fault, and the end point of the seepage connection channel is the fault.
  • N1, N2, N3... easy to analyze in subsequent steps.
  • obtaining connected pores and pores capable of being connected under a set pressure according to the three-dimensional imaging data of the pores includes:
  • the connected pores and the pores that can be connected under the set pressure are obtained, including:
  • the pore size and the distance between the pores From the pore three-dimensional imaging data, find the connected pores and the pores that can be connected under the set pressure.
  • the size of the gap and the distance between the pores can be set according to the principle of gap connection, and from the pore three-dimensional imaging data, the connected pores and the pores that can be connected under the set pressure can be found.
  • calculating the strength of the core fracture zone seepage field at the fracture zone includes:
  • the strength of the seepage field of the core fracture zone at the fracture zone is obtained.
  • the percolation lines L1, L2, L3... of the percolation connected channel are obtained, wherein the density of the percolation line Indicates the strength of the seepage field.
  • the direction of the seepage line from the starting point through the fault to the end point is the direction of the calibrated seepage field.
  • the following formula is used to obtain the strength of the core fracture zone's seepage field at the fracture zone according to the number of seepage lines and the cross-sectional area of the fault:
  • W is the strength of the core fracture zone's seepage field at the fracture zone
  • L is the number of seepage lines
  • S is the cross-sectional area of the fault.
  • the core fracture zone seepage field is near the fracture zone where the strength coefficient W is stronger, the fault sealing is weaker, and the core fracture zone seepage field is faulted at the place where the fracture zone strength coefficient W is weaker or where there is no seepage line. The stronger the closure.
  • the analysis of the fault sealability according to the strength of the core fracture zone's seepage field at the fracture zone includes:
  • the intensity threshold is determined according to the drilling data.
  • the strength W of the seepage field of the core fracture zone at the fracture zone is compared with the intensity threshold W1. Where W is greater than W1, it indicates that the seepage ability is strong, the fault is not strong against fluid, and the fluid is easy to pass, which confirms the core fracture.
  • the seepage field of the zone is not closed at the fault zone.
  • the point where W is less than W1 indicates that the seepage capacity is weak, and the fault has a strong ability to hinder fluids, and fluid is not easy to pass. It is determined that the seepage field of the core fracture zone is closed at the fault zone.
  • it may be determined whether to drill the fault block trap under the control of the target fault according to the sealing properties of various places in the spatial section of the target fault.
  • FIG. 10 is a detailed flowchart of the fault sealing analysis method proposed by the embodiment of the present invention. As shown in FIG. 10, a In the embodiment, the detailed process of the fault sealing analysis method includes:
  • Step 1001 Obtain a first core data volume containing pores, where the first core data volume containing pores is obtained by scanning a core model of a target interval containing faults;
  • Step 1002 reconstruct and fill the pores in the first core data volume containing pores to obtain a solid second core data volume
  • Step 1003 making a difference between the second solid core data volume and the first core data volume containing pores to obtain a pore data volume
  • Step 1004 Obtain pore three-dimensional imaging data of the pore data volume
  • Step 1005 determine the pore size and the distance between the pores
  • Step 1006 according to the pore size and the distance between the pores, from the pore three-dimensional imaging data, search for connected pores and pores that can be connected under a set pressure;
  • Step 1007 Determine the start point and end point of the seepage connection channel
  • Step 1008 according to the start point and the end point of the seepage communication channel, connect the pores and the pores that can be connected under the set pressure to form a plurality of seepage communication channels perpendicular to the fault direction;
  • Step 1009 constructing the seepage field of the core fracture zone according to the multiple seepage communication channels
  • Step 1010 Obtain the seepage lines corresponding to multiple seepage communication channels in the seepage field of the core fracture zone;
  • Step 1011 Obtain the strength of the core fracture zone's seepage field at the fracture zone according to the number of seepage lines and the cross-sectional area of the fault;
  • Step 1012 Compare the intensity of the seepage field at the core fracture zone with the intensity threshold of the core fracture zone seepage field. If the intensity of the core fracture zone seepage field at the fracture zone is greater than the intensity threshold, then the core fracture zone seepage The field is not closed at the fracture zone, otherwise, the core fracture zone seepage field is closed at the fracture zone; the intensity threshold is determined according to the drilling data.
  • the target interval core containing the target fault A and target fault B with a length of 80mm and a core radius of 79mm.
  • the core of the target interval is processed as necessary, and the length is 80mm.
  • a columnar body with a width of 40mm and a height of 40mm forms a core model of the target interval, in which the external excess sandstone is cut off, so that the scanning rays can more easily penetrate the external surface to reach the internal fault.
  • Preliminary observations have identified that the fault in the core of the target interval is a reverse fault, and the lithological docking method is sand and mud interconnection.
  • the first core data volume with pores obtained by scanning contains the core skeleton volume and pore volume.
  • the data near the fault zone is characterized by tight mudstone Floor.
  • Figure 11 is a schematic diagram of the first core data volume with pores in the embodiment of the present invention.
  • the first core data volume with pores is reconstructed by professional three-dimensional reconstruction VG software to obtain a solid second core data volume.
  • Figure 12 shows A schematic diagram of the second solid core data volume in the embodiment of the present invention.
  • the second solid core data volume and the first core data volume containing pores are compared to obtain the pore data volume.
  • Figure 13 shows the pore data in the embodiment of the present invention. Schematic diagram of the body.
  • FIG. 14 is a schematic diagram of the seepage connection channel in the embodiment of the present invention.
  • Figure 15 is a schematic diagram of the seepage line in the embodiment of the present invention.
  • the density of the seepage line indicates the strength of the seepage field, the direction of the seepage line from the starting point through the fault to the end point is the direction of the calibrated seepage field, and the density of the seepage line represents The strength of the seepage field, the direction of the seepage line passing through the fault from the starting point to the end point is the direction of the calibrated seepage field.
  • Figure 16 It is a schematic diagram of the strength of the seepage field of the core fracture zone at the fracture zone in the embodiment of the present invention.
  • the strength threshold of the core fracture zone seepage field is determined to be 2.8, and the intensity of the core fracture zone seepage field at the fracture zone is compared with the intensity threshold. If the core fracture zone seepage field strength at the fracture zone is greater than all If the strength threshold is stated, the core fracture zone seepage field is not closed at the fracture zone. Otherwise, the core fracture zone seepage field is closed at the fracture zone.
  • Table 1 shows the analysis of the core fracture zone seepage field closed at the fracture zone in the example of the present invention. As a result, it can be seen from Table 1 that the seepage field of the core fracture zone is closed at 31 fracture zones.
  • a first core data volume containing pores is obtained, and the first core data volume containing pores is obtained by scanning a core model of a target interval containing faults; Perform a three-dimensional reconstruction of a core data volume to obtain a solid second core data volume; make a difference between the solid second core data volume and the first core data volume containing pores to obtain a pore data volume; obtain a core fracture according to the pore data volume Zone seepage field; calculate the strength of the core fracture zone seepage field at the fracture zone; analyze the fault sealing according to the strength of the core fracture zone seepage field at the fracture zone.
  • the process of analyzing the sealability of a fault is the process of quantitatively analyzing the sealability of a fault. Compared with qualitative analysis, the accuracy is high.
  • an embodiment of the present invention also provides a fault sealing analysis device, as described in the following embodiment. Since these problem-solving principles are similar to the fault sealing analysis method, the implementation of the device can refer to the implementation of the method, and the repetition will not be repeated.
  • FIG. 17 is a schematic diagram of a device for analyzing the sealability of an interrupted layer according to an embodiment of the present invention. As shown in FIG. 17, the device includes:
  • the first data obtaining module 1701 is used to obtain a first core data volume containing pores, and the first core data volume containing pores is obtained by scanning a core model of a target interval containing faults;
  • the second data obtaining module 1702 is used to perform three-dimensional reconstruction of the first core data volume containing pores to obtain a solid second core data volume;
  • the third data obtaining module 1703 is used to make a difference between the second solid core data volume and the first core data volume containing pores to obtain a pore data volume;
  • the core fracture zone seepage field acquisition module 1704 is used to obtain the core fracture zone seepage field according to the pore data volume;
  • Calculation module 1705 used to calculate the strength of the core fracture zone seepage field at the fracture zone
  • the analysis module 1706 is used to analyze the fault sealability according to the strength of the core fracture zone's seepage field at the fracture zone.
  • the second data obtaining module 1702 is specifically configured to:
  • the pores in the first core data volume containing pores are reconstructed and filled to obtain a solid second core data volume.
  • the core fracture zone seepage field obtaining module 1704 is specifically used for:
  • the connected pores and the pores that can be connected under the set pressure are formed to form multiple seepage connection channels perpendicular to the fault direction;
  • the seepage field of the core fracture zone is constructed.
  • the core fracture zone seepage field obtaining module 1704 is specifically used for:
  • the pore size and the distance between the pores From the pore three-dimensional imaging data, find the connected pores and the pores that can be connected under the set pressure.
  • calculation module 1705 is specifically configured to:
  • the strength of the seepage field of the core fracture zone at the fracture zone is obtained.
  • the analysis module 1706 is specifically configured to:
  • the core fracture zone seepage field is not closed at the fracture zone. Otherwise, the seepage field of the core fracture zone is closed at the fracture zone, and the intensity threshold is determined according to the drilling data.
  • calculation module 1705 is specifically configured to:
  • W is the strength of the core fracture zone's seepage field at the fracture zone
  • L is the number of seepage lines
  • S is the cross-sectional area of the fault.
  • the first core data volume containing pores includes core skeleton volume data and/or pore volume data.
  • a first core data volume containing pores is obtained, and the first core data volume containing pores is obtained by scanning a core model of a target interval containing faults; Perform a three-dimensional reconstruction of a core data volume to obtain a solid second core data volume; make a difference between the solid second core data volume and the first core data volume containing pores to obtain a pore data volume; obtain a core fracture according to the pore data volume Zone seepage field; calculate the strength of the core fracture zone seepage field at the fracture zone; analyze the fault sealing according to the strength of the core fracture zone seepage field at the fracture zone.
  • the process of analyzing the sealability of a fault is the process of quantitatively analyzing the sealability of a fault. Compared with qualitative analysis, the accuracy is high.
  • FIG. 18 is a schematic diagram of the fault sealing analysis system according to the embodiment of the present invention.
  • the system includes:
  • the second scanning unit 1802 is configured to:
  • the first core data volume containing pores is sent to the first data obtaining module 1801.
  • a first core data volume containing pores is obtained, and the first core data volume containing pores is obtained by scanning the core model of the target interval containing faults; Perform a three-dimensional reconstruction of a core data volume to obtain a solid second core data volume; make a difference between the solid second core data volume and the first core data volume containing pores to obtain a pore data volume; obtain a core fracture according to the pore data volume Zone seepage field; calculate the strength of the core fracture zone seepage field at the fracture zone; analyze the fault sealing according to the strength of the core fracture zone seepage field at the fracture zone.
  • the process of analyzing the sealability of a fault is the process of quantitatively analyzing the sealability of a fault. Compared with qualitative analysis, the accuracy is high.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明提供了一种圈闭断层的封闭性定量分析方法、装置及系统,该方法包括:获得待钻圈闭的泥岩涂抹型断层的第一数据体;对第一数据体进行三维重建,获得第二数据体,进而获得孔隙数据体;根据孔隙数据体,获得岩心断裂带渗流场,并计算岩心断裂带渗流场在断裂带处的强度;根据第一数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率,并进行拟合,确定拟合系数;确定多个采样点的断裂带泥岩涂抹封闭因子;根据每个采样点的断裂带泥岩涂抹封闭因子和岩心断裂带渗流场在断裂带处的强度,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。本发明可以定量分析断层封闭性,准确度高。

Description

圈闭断层的封闭性定量分析方法、装置及系统 技术领域
本申请涉及油气勘探开发技术领域,特别涉及一种圈闭断层的封闭性定量分析方法、装置及系统。
背景技术
断层封闭性是形成油气藏及控制油气藏规模的重要因素,它的研究对于了解断层在油气成藏和石油勘探开发中具有重要意义。因此,对断层封闭性的研究显得很重要。同时,影响断层封闭性的因素有很多,对这些因素的分析也是十分必要的。断层在油气运聚过程中究竟起何种作用,关键取决于其封闭性。所谓断层封闭性是指断层面或断裂带对地层流体封堵并阻止流体渗流的能力。断层封闭性的研究,包括断层封闭性的定性和定量(或半定量)研究,一直以来都是油气勘探领域研究的热点问题,目前已成为涉及到与断层有关的油气成藏条件研究和减少勘探风险的一个重要指标。尤其是近几年,海域勘探的高风险性促进了断层封闭性定量评价的步伐。断层封闭性的研究自20世纪50~60年代起步以来,已有半个多世纪之久,取得了一系列进展和可喜的成果。国内外对断层封闭性的研究,主要侧重于断层的几何学、形态学、断层面的物质涂抹及动力学、运动学等方面,偏向于宏观定性研究较多,准确度不高。
所谓圈闭断层,就是地层的错断。地层断裂后,再错动一下即形成断层。只有断裂,没有错动,那是裂缝。裂缝的延伸范围小,圈闭断层的延伸范围大。裂缝通常起到渗流通道的作用,而圈闭断层的功能则比较复杂,有时候封闭油气,有时候又输导油气。断层有错动,这是剪切作用的结果,剪切可以使两侧岩石产生破碎,一些碎屑物脱落后充填到裂缝里,然后演化成或宽或窄的岩石层。因此,圈闭断层是一个被充填后形成的碎屑岩石层。碎屑岩有孔隙度,也有渗透率。由于圈闭断层两侧的岩石性质不同,断层碎屑岩的物性也存在很大差别,属于非均质地层,有些部位是低孔低渗,有些部位是高孔高渗。当储集层对着的断层岩石为物性相对较差的碎屑岩时,断层则起到封闭油气的作用。当储集层对着的断层岩石为物性相对较好的碎屑岩时,断层则起到输导油气的作用。但是,断层无法封闭水,只能封闭油气,断层封闭油气的机理与盖层完全相同。断层是输导油气,还是封闭油气,与断层的产状无关,与正、逆性无关,与张、压 性无关。地下的断层都是闭合的,不可能是开启的,闭合的断层可以封闭油气,也可以输导油气。
构造运动有可能再次破坏断层,但也只是改变断层岩石的性质,比如可能在断层岩石中产生裂缝,但不可能改变断层的闭合性质。圈闭断层封闭性一直是石油地质研究的核心问题之一,备受国内外石油地质工作者所关注,80%的的断块油气藏受断层封闭性控制,而圈闭断层岩泥岩涂抹型为主要封闭类型。圈闭断层封闭性分析直接关系到能否准确判断断层控制下的圈闭能否成藏以及油气高度。在石油工业勘探生产实践中,对于断块圈闭,能否准确判断预测断块圈闭的油气高度及圈闭面积大小,对于提高油气勘探效益至关重要,将直接影响到勘探决策部署和投资。
为了确定断层的封闭性,现有的定量分析圈闭断层的封闭性的方法较多,如根据钻井资料,通过SGR(断层泥比率)法确定目标断层的封闭性。但具体实施时,现有的评价参数模型过于理想化,只考虑了泥质含量与断距之间简单的比例关系,尤其对无井或者少井区分析时存在准确度不高的情况。
发明内容
本发明实施例提出一种圈闭断层的封闭性定量分析方法,用以定量分析待钻圈闭断层的封闭性,准确度高,该方法包括:
获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述三维数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的;
根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;
对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;
根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;
根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。
本发明实施例提出一种圈闭断层的封闭性定量分析装置,用以定量分析待钻圈闭断层的封闭性,准确度高,该装置包括:
第一模块,用于获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述三维数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的;
第二模块,用于根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;
第三模块,用于对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;
第四模块,用于根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;
第五模块,用于根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。
本发明实施例提出一种圈闭断层的封闭性定量分析系统,用以定量分析待钻圈闭断层的封闭性,准确度高,该系统包括:断层模拟模型构造单元、扫描单元和上述圈闭断层的封闭性定量分析装置,其中,
断层模拟模型构造单元,用于构造对待钻圈闭的泥岩涂抹型断层的断层模拟模型;
扫描单元,用于对断层模拟模型进行扫描,生成待钻圈闭的泥岩涂抹型断层的面数据,并发送至圈闭断层的封闭性定量分析装置;
圈闭断层的封闭性定量分析装置,用于对接收的面数据进行重构,获得三维数据体;根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。
本发明实施例提出一种断层封闭性分析方法,用以定量分析断层封闭性,准确度高,该方法包括:
获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;
对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;
对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;
根据孔隙数据体,获得岩心断裂带渗流场;
计算岩心断裂带渗流场在断裂带处的强度;
根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。
本发明实施例提出一种断层封闭性分析装置,用以定量分析断层封闭性,准确度高,该装置包括:
第一数据获得模块,用于获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;
第二数据获得模块,用于对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;
第三数据获得模块,用于对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;
岩心断裂带渗流场获得模块,用于根据孔隙数据体,获得岩心断裂带渗流场;
计算模块,用于计算岩心断裂带渗流场在断裂带处的强度;
分析模块,用于根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。
本发明实施例提出一种断层封闭性分析系统,用以定量分析断层封闭性,准确度高,该系统包括:上述断层封闭性分析装置,扫描单元,其中,
所述扫描单元,用于:
对含有断层的目标层段岩心模型进行扫描,获得含有孔隙的第一岩心数据体;
将含有孔隙的第一岩心数据体发送至第一数据获得模块。
本发明实施例还提出了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述圈闭断层的封闭性定量分析方法或断层封闭性分析方法。
本发明实施例还提出了一种计算机可读存储介质,所述计算机可读存储介质存储有执行上述圈闭断层的封闭性定量分析方法或断层封闭性分析方法的计算机程序。
在本发明实施例中,获得待钻圈闭的泥岩涂抹型断层的第一数据体,所述第一数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的,所述断层模拟模型含有孔隙,所述第一数据体为含有孔隙的数据体;对第一数据体进行三维重建,获得第二数据体,所述第二数据体为实心的数据体;对第二数据体和第一数据体作差,获得孔隙数据体;根据孔隙数据体,获得岩心断裂带渗流场,并计算岩心断裂带渗流场在断裂带处的强度;根据所述第一数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;根据每个采样 点的断裂带泥岩涂抹封闭因子和岩心断裂带渗流场在断裂带处的强度,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。在上述过程中,同时计算了岩心断裂带渗流场在断裂带处的强度,以及多个采样点的断裂带泥岩涂抹封闭因子,从而分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性,相对于定性分析,准确度高。
在本发明实施例中,获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;根据孔隙数据体,获得岩心断裂带渗流场;计算岩心断裂带渗流场在断裂带处的强度;根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。在上述过程中,获得了孔隙数据体,构造了岩心断裂带渗流场,并计算了岩心断裂带渗流场在断裂带处的强度,然后根据岩心断裂带渗流场在断裂带处的强度的具体数据,分析断层封闭性的过程即为定量分析断层封闭性的过程,相对于定性分析,准确度高。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,并不构成对本发明的限定。在附图中:
图1为本发明实施例中圈闭断层的封闭性定量分析方法的流程图;
图2为本发明实施例提出的圈闭断层的封闭性定量分析方法的详细流程图;
图3为本发明实施例中构造出的待钻圈闭物理模拟模型的正视图;
图4为本发明实施例中扫描得到的断裂带剖面示意图;
图5为本发明实施例中三维数据体的示意图;
图6为本发明实施例中关系图版示意图;
图7为本发明实施例中圈闭断层的封闭性定量分析装置的示意图;
图8为本发明实施例中圈闭断层的封闭性定量分析系统的示意图;
图9为本发明实施例中断层封闭性分析方法的流程图;
图10为本发明实施例提出的断层封闭性分析方法的详细流程图;
图11为本发明实施例中含有孔隙的第一岩心数据体的示意图;
图12为本发明实施例中实心的第二岩心数据体的示意图;
图13为本发明实施例中孔隙数据体的示意图;
图14为本发明实施例中渗流联通通道的示意图;
图15为本发明实施例中渗流线的示意图;
图16为本发明实施例中岩心断裂带渗流场在断裂带处的强度的示意图;
图17为本发明实施例中断层封闭性分析装置的示意图;
图18为本发明实施例中断层封闭性分析系统的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。
图1为本发明实施例中圈闭断层的封闭性定量分析方法的流程图,如图1所示,该方法包括:
步骤101,获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述三维数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的;
步骤102,根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;
步骤103,对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;
步骤104,根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;
步骤105,根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。
在本发明实施例中,可以分析待钻圈闭断层的封闭性,且分析过程中,确定了断裂带泥岩涂抹厚度与断层泥比率的拟合系数,该拟合系数可表示泥岩有效涂抹程度,从而更精确地确定了断裂带泥岩涂抹封闭因子,使得最后分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性的准确度更高。
在现有的断层的封闭性分析方法中,通常利用断层岩泥比率SGR进行定量评价,取得了一定的效果。并且现有方法大多是只以测井数据为输入数据进行计算,上述方法存在两点不足,一是往往只涉及某井泥质含量与断距,并没考虑到岩性的变化的影响,二是没有考虑泥岩涂抹连续性和非均质性,测井数据不全或者没有测井数据的区域无法确 定封闭性阈值,导致现有的封闭性分析方法还存在科学性和准确性不高的技术问题。发明人经过分析上述技术问题的根本原因,认为应该考虑断层的泥岩涂抹性,包括连续性和有效性,即应该充分分析泥岩涂抹型断层的封闭性。
在一实施例中,获得待钻圈闭的泥岩涂抹型断层的三维数据体,包括:
根据待钻圈闭的地质背景信息、断层数据和层位数据,确定待钻圈闭物理模拟模型的构造参数、断层变形应力;
获得待钻圈闭的泥岩涂抹型断层的面数据,对所述面数据进行三维重构,获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述面数据是对断层模拟模型进行扫描获得的,所述断层模拟模型是对待钻圈闭物理模拟模型加载断层变形应力获得的,所述待钻圈闭物理模拟模型是基于所述构造参数构造的。
具体实施时,在确定待钻圈闭物理模拟模型的构造参数之前,所述方法还包括:
根据待钻圈闭的叠后地震数据,获得待钻圈闭的断层数据和层位数据。
在上述实施例中,可以根据叠后地震数据,在地震解释系统或其他相关软件(例如Geoeast软件、Landmark软件或Geoframe软件)中,解释获得待钻圈闭的断层数据和层位数据,还可以得到断面展布规律和断距信息。根据解释的成果,可以得到砂泥岩地层,解释得到的待钻圈闭的断层数据和层位数据为物理模拟提供准确的参数和依据,保证了后期待钻圈闭物理模拟模型的准确性和科学性。
之后,即可根据待钻圈闭的地质背景信息、断层数据和层位数据,确定待钻圈闭物理模拟模型的构造参数、断层变形应力,这一过程也称为构造待钻圈闭物理模拟模型的方案设计。
在一实施例中,待钻圈闭物理模拟模型的构造参数包括模型边界、物理模拟模型相似比、物理模拟时长相似比、模拟地层材料和模拟泥岩层材料中的其中一种或任意组合。
基于上述实施例,构造待钻圈闭物理模拟模型的步骤如下:
S1:根据待钻圈闭的地质背景信息、断层数据和层位数据,确定待钻圈闭物理模拟模型的模型边界、物理模拟模型相似比、物理模拟时长相似比,具体包括待钻圈闭物理模拟模型的大小和厚度、泥岩层的层数和层厚、模拟位移变形量(断面断距为最大位移量);
S2:根据材料相似原则,确定模拟地层材料和模拟泥岩层材料;例如采用石英砂模拟砂岩层,黏土模拟泥岩层,这两类材料相似比较高稳定性较好,为目前普遍所采用。
S3:按照待钻圈闭物理模拟模型的构造参数构造待钻圈闭物理模拟模型。
在构造了待钻圈闭物理模拟模型后,对待钻圈闭物理模拟模型加载断层变形应力获得断层模拟模型。具体实施时,可以在变形砂箱里通过加载的断层变形应力促使地层发生错动,形成断层,泥岩层通过上盘下降而发生拖曳涂抹现象,形成泥岩涂抹层,最终形成泥岩涂抹型断层。
在一个实施方式中,泥岩涂抹失去连续性部位即断层封堵失效部位的泥岩厚度,通过分析泥岩涂抹断开处即可确定断层封闭最小泥岩厚度H,也称为断裂带泥岩涂抹厚度H。
在一个实施方式中,当断层错动到预设的最大位移时,即可停止断层变形应力,构造变形完成,得到断层模拟模型。
在步骤101中,获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述三维数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的,具体实施时,对断层模拟模型进行扫描时可以采用工业CT等扫描方法,在采用工业CT描述时,可根据精度要求设置动态监测扫描位置、扫描频率、扫描间隔等,保证扫描精度。另外,对断层模拟模型进行扫描时,主要是对断层模拟模型中的断裂带进行扫描,获得待钻圈闭的泥岩涂抹型断层的面数据。获得的面数据越多,最后断裂带精度越高。具体扫描过程可以如下:
S1:根据研究精度需求,设置不同的采集间隔。将断层模拟模型需要扫描的位置放置于工业CT下,进行面数据扫描。
S2:将断层模拟模型以一定速率匀速推入工业CT,扫描不同的面,获得连续的等间隔的面数据。
在一实施例中,采用差值法或拟合法对所述面数据进行三维重构,获得待钻圈闭的泥岩涂抹型断层的三维数据体。
在上述实施例中,三维重构法得到的三维数据体精度高。三维数据体便于断层模拟模型的全方位识别。对面数据进行三维重构,即通过扫描得到的已知面数据,构造出未知的面数据(两组相邻面数据之间的面数据),最后将所有面数据重新组合起来,即可形成三维数据体。可以借助软件或者其他计算机设备进行差值等重构方法的实现。采用差值法对面数据进行三维重构,即在两组相邻面数据(例如,两个灰度扫描图像)之间采用高斯差值等数学方法进行差值求出两组相邻面数据之间的面数据。采用拟合法对面 数据进行三维重构,即通过某个已知的面数据,根据该面数据的变化规律来拟合其他面数据的形态,获得未知面数据的过程。
根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率的方法有多种,下面给出其中一个实施例。
在一实施例中,根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率,包括:
从所述三维数据体中,提取泥岩涂抹型断层的断裂带属性信息,所述属性信息包括多个采样点的断裂带泥岩涂抹厚度、断层的断距和断面的泥质含量;
根据多个采样点的断层的断距和断面的泥质含量,计算多个采样点的断层泥比率。
在上述实施例中,断裂带属性信息中包括多个采样点的断裂带泥岩涂抹厚度、断层的断距和断面的泥质含量这些信息,而多个采样点的断层的断距和断面的泥质含量,计算多个采样点的断层泥比率,计算公式如下:
SGR=Z/D            (1)
其中,SGR为每个采样点的断层泥比率,Z为每个采样点的断面的泥质含量,单位cm,D为每个采样点的断面的断距,单位为cm。
上述实施例中提取泥岩涂抹型断层的断裂带属性信息的方法有多种,下面给出其中一个实施例。
在一实施例中,从所述三维数据体中,提取泥岩涂抹型断层的断裂带属性信息,包括:
根据断裂带体的灰度特征值,从所述三维数据体中,识别出断裂带体;
提取出断裂带体的属性信息。
在上述实施例中,断裂带体的灰度特征值一般根据模拟材料分析获得,断裂带体的灰度特征值一般为430左右,根据泥岩灰度值,可以识别泥岩涂抹型断层的断裂带体。可以借助于灰度处理软件如VG等来实现断裂带体的识别,当然也可以采用其他方式,相关变化例均应落入本发明的保护范围。在砂泥岩模型中,砂岩和泥岩的灰度特征值为436,即大于436为泥岩,小于436为砂岩。
在前述实施例中,对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合时,可以通过断裂带泥岩涂抹厚度与SGR图版来实现。前述已经知道,通过分析泥岩涂抹断开处即可确定断层封闭最小泥岩厚度H,也称为断裂带泥岩涂抹厚度H,在一图版上绘 制断裂带泥岩涂抹厚度H与SGR,得到断裂带泥岩涂抹厚度与SGR关系图版,基于该关系图版,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数。
在一实施例中,在进行多个采样点的断裂带泥岩涂抹厚度和断层泥比率的拟合时,多个采样点的断裂带泥岩涂抹厚度和断层泥比率为线性关系。
在上述实施例中,线性关系的拟合公式可以如下:
H=A·SGR+B        (2)
其中,H为断裂带泥岩涂抹厚度;
A为拟合系数。
B为常值参数。
在上述拟合公式中,由于断裂带泥岩涂抹厚度与断层泥比率是线性关系,即断裂带泥岩涂抹厚度越大,断层泥比率也越大,封闭性越好。根据统计,纵轴断裂带泥岩涂抹厚度为0.1cm时,对应的SGR为18%,即小于0.1cm厚的泥岩失去连续性是无效的涂抹,对应SGR小于18%的不能起有效封堵作用。因此利用此种方法,可以在关系图版上准确界定出泥岩连续涂抹的极值点,即断层封闭性的SGR下限值。
在一实施例中,采用如下公式,根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子:
SGRN=A·SGR+C          (3)
其中,SGRN为每个采样点的断裂带泥岩涂抹封闭因子;
A为拟合系数;
C为常值参数;
SGR为每个采样点的断层泥比率。
在上述实施例中,拟合系数其物理意义为表示泥岩有效涂抹程度,也称为有效连续的泥岩涂抹贡献率,跟区域地质特征有关,其值范围介于0-1,更具体地,拟合系数A值为0.62-0.67之间,经过上述公式计算后获得的断裂带泥岩涂抹封闭因子考虑了泥岩有效涂抹程度,考虑了泥岩涂抹的有效性和非均质性,而不是粗略的简单的计算所有地层泥岩,相比于未使用该泥岩有效涂抹程度表示的断层泥比率分析断层封闭性,本发明更能精确地分析待钻圈闭的泥岩涂抹型断层的封闭性,由于拟合系数表示的泥岩有效涂抹程度来自于定量物理模拟和分析,适应于设定地质条件下的真实情况,可靠程度高,科学性强,更加接近真实的地下岩心特征。实际上,根据不同区块不同地质条件,拟合系数的值大小可能不尽相同。
在一实施例中,根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性,包括:
确定待钻圈闭的断裂带泥岩涂抹封闭因子的阈值;
对每个采样点,若该采样点的断裂带泥岩涂抹封闭因子大于所述阈值,确定该采样点的封闭;否则,该采样点不封闭。
在一实施例中,所述方法还包括:根据所述泥岩涂抹型断层的封闭性,确定是否对待钻圈闭进行钻井。
特别的,根据本方法计算拟合系数的过程,也可以通过野外地质露头采样,进行工业CT进行扫描然后按照相似步骤求得。也应该属于本申请例的保护范围。
基于上述实施例,本发明提出如下一个实施例来说明圈闭断层的封闭性定量分析方法的详细流程,图2为本发明实施例提出的圈闭断层的封闭性定量分析方法的详细流程图,如图2所示,在一实施例中,圈闭断层的封闭性定量分析方法的详细流程包括:
步骤201,根据待钻圈闭的叠后地震数据,获得待钻圈闭的断层数据和层位数据;
步骤202,根据待钻圈闭的地质背景信息、断层数据和层位数据,确定待钻圈闭物理模拟模型的构造参数、断层变形应力;
步骤203,获得待钻圈闭的泥岩涂抹型断层的面数据,对所述面数据进行三维重构,获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述面数据是对断层模拟模型进行扫描获得的,所述断层模拟模型是对待钻圈闭物理模拟模型加载断层变形应力获得的;
步骤204,根据断裂带体的灰度特征值,从所述三维数据体中,识别出断裂带体;
步骤205,提取出断裂带体的属性信息,所述属性信息包括多个采样点的断裂带泥岩涂抹厚度、断层的断距和断面的泥质含量;
步骤206,根据多个采样点的断层的断距和断面的泥质含量,计算多个采样点的断层泥比率;
步骤207,对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;
步骤208,根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;
步骤209,确定待钻圈闭的断裂带泥岩涂抹封闭因子的阈值;
步骤210,对每个采样点,若该采样点的断裂带泥岩涂抹封闭因子大于所述阈值,确定该采样点的封闭;否则,该采样点不封闭。
当然,可以理解的是,上述圈闭断层的封闭性定量分析方法的详细流程还可以有其他变化例,相关变化例均应落入本发明的保护范围。
下面给出一个具体实施例,来说明圈闭断层的封闭性定量分析方法的具体应用。
S11,将待钻圈闭的叠后地震数据加载进地震解释系统或其他相关软件中如Geoeast软件,解释获得待钻圈闭的断层数据和层位数据。
S12,根据待钻圈闭的地质背景信息、断层数据和层位数据,确定待钻圈闭物理模拟模型的模型边界、物理模拟模型相似比、物理模拟时长相似比,具体包括待钻圈闭物理模拟模型的大小和厚度、泥岩层的层数和层厚、模拟位移变形量,其中,本实施例中,待钻圈闭物理模拟模型大小为48cm×24cm×26cm;泥岩层为3层,层厚为1.5cm;根据叠后地震数据体解释出的断层的断距值确定待钻圈闭物理模拟模型的模拟位移变形量,即所述断面断距为最大位移量,本实例中为9cm;本实施例中,石英砂模拟砂岩层,黏土模拟泥岩层。图3为本发明实施例中构造出的待钻圈闭物理模拟模型的正视图。
S13:对待钻圈闭物理模拟模型加载断层变形应力获得断层模拟模型,形成泥岩涂抹带。
S14:将断层模拟模型进行处理,为了达到更好的扫描和处理效果,获取包含断裂带核心位置的模型,对断层模拟模型进行处理,切去边角,获得14cm×15cm×17cm的扫描模型。每隔0.5cm的扫描间隔进行工业CT扫描,图4为本发明实施例中扫描得到的断裂带剖面示意图,形成面数据,这里扫描得到了30个断裂带剖面,以DICOM格式存储,通过强大的图形工作站进行可视化处理并进行三维重构。采用专业三维重建软件Mimics利用插值法建立3D模型并进行编辑处理得到三维数据体,图5为本发明实施例中三维数据体的示意图。
S15:根据断裂带体的灰度特征值,从所述三维数据体中,识别出断裂带体,本实施例中在Mimics软件中按照灰度特征值进行区分砂泥岩,经过分析,砂泥岩的灰度特征值为436,大于436的为泥岩,小于436的为砂岩。提取出断裂带体的属性信息,所述属性信息包括多个采样点的断裂带泥岩涂抹厚度、断层的断距和断面的泥质含量。
根据多个采样点的断层的断距和断面的泥质含量,计算多个采样点的断层泥比率SGR;将获得的泥岩涂抹厚度值H与SGR生成散点图,形成泥岩涂抹厚度值H与SGR的关系图版,通过拟合,基于该关系图版,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数,拟合公式可以如下:
H=0.6248·SGR+0.032
其中,0.6248为拟合系数,也为关系图版中曲线的斜率,图6为本发明实施例中关系图版示意图,拟合系数0.6248表示泥岩有效涂抹程度,也称为有效连续的泥岩涂抹贡献率。
S16:根据公式(3),可以得到每一采样点的断裂带泥岩涂抹封闭因子,公式(3)中的参数C在本实施例中取0。
S17:确定待钻圈闭的断裂带泥岩涂抹封闭因子的阈值,前述可知断层封闭性的SGR下限值为18%,这里本实施例中将待钻圈闭的断裂带泥岩涂抹封闭因子的阈值确定为18%,对每个采样点,若该采样点的断裂带泥岩涂抹封闭因子大于所述阈值,确定该采样点的封闭;否则,该采样点不封闭。从而找出封闭性薄弱点,规避钻井风险。
综上所述,在本发明实施例提出的方法中,获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述三维数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的;根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。在上述过程中,本发明可以分析待钻圈闭断层的封闭性,且分析过程中,确定了断裂带泥岩涂抹厚度与断层泥比率的拟合系数,该拟合系数可表示泥岩有效涂抹程度,从而更精确地确定了断裂带泥岩涂抹封闭因子,使得最后分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性的准确度更高。另外,本发明利用叠后地震资料提高了泥岩涂抹型断层的属性信息的精度,并利用物理模拟、工业CT数据定量采集分析先进手段,获得的三维数据体精度高,定量的解决了现有断层封闭性分析中计算模型理想化、考虑因素不全面、科学性及准确性不高的问题,为封闭性评价提供科学依据,准确评价封闭性筛选出渗漏点,规避钻井投资风险,具有良好的技术应用前景和经济效益,提高了钻井成功率,达到了较高精度依据断层封闭性评价断块圈闭的技术效果。
基于同样的发明构思,本发明实施例还提供了一种圈闭断层的封闭性定量分析装置,如下面的实施例所述。由于这些解决问题的原理与圈闭断层的封闭性定量分析方法相似,因此装置的实施可以参见方法的实施,重复之处不在赘述。
图7为本发明实施例中圈闭断层的封闭性定量分析装置的示意图,如图7所示,该装置包括:
第一模块701,用于获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述三维数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的;
第二模块702,用于根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;
第三模块703,用于对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;
第四模块704,用于根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;
第五模块705,用于根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。
在一实施例中,第三模块703具体用于:
在进行多个采样点的断裂带泥岩涂抹厚度和断层泥比率的拟合时,多个采样点的断裂带泥岩涂抹厚度和断层泥比率为线性关系。
在一实施例中,第二模块702具体用于:
从所述三维数据体中,提取泥岩涂抹型断层的断裂带属性信息,所述属性信息包括多个采样点的断裂带泥岩涂抹厚度、断层的断距和断面的泥质含量;
根据多个采样点的断层的断距和断面的泥质含量,计算多个采样点的断层泥比率。
在一实施例中,第二模块702具体用于:
根据断裂带体的灰度特征值,从所述三维数据体中,识别出断裂带体;
提取出断裂带体的属性信息。
在一实施例中,第一模块701具体用于:
根据待钻圈闭的地质背景信息、断层数据和层位数据,确定待钻圈闭物理模拟模型的构造参数、断层变形应力;
获得待钻圈闭的泥岩涂抹型断层的面数据,对所述面数据进行三维重构,获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述面数据是对断层模拟模型进行扫描获得的,所述断层模拟模型是对待钻圈闭物理模拟模型加载断层变形应力获得的,所述待钻圈闭物理模拟模型是基于所述构造参数构造的。
在一实施例中,第一模块701具体用于:
根据待钻圈闭的叠后地震数据,获得待钻圈闭的断层数据和层位数据。
在一实施例中,待钻圈闭物理模拟模型的构造参数包括模型边界、物理模拟模型相似比、物理模拟时长相似比、模拟地层材料和模拟泥岩层材料中的其中一种或任意组合。
在一实施例中,第一模块701具体用于:
采用差值法或拟合法对所述面数据进行三维重构,获得待钻圈闭的泥岩涂抹型断层的三维数据体。
在一实施例中,第五模块705具体用于:
确定待钻圈闭的断裂带泥岩涂抹封闭因子的阈值;
对每个采样点,若该采样点的断裂带泥岩涂抹封闭因子大于所述阈值,确定该采样点的封闭;否则,该采样点不封闭。
综上所述,在本发明实施例提出的装置中,获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述三维数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的;根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。在上述过程中,本发明可以分析待钻圈闭断层的封闭性,且分析过程中,确定了断裂带泥岩涂抹厚度与断层泥比率的拟合系数,该拟合系数可表示泥岩有效涂抹程度,从而更精确地确定了断裂带泥岩涂抹封闭因子,使得最后分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性的准确度更高。另外,本发明利用叠后地震资料提高了泥岩涂抹型断层的属性信息的精度,并利用物理模拟、工业CT数据定量采集分析先进手段,获得的三维数据体精度高,定量的解决了现有断层封闭性分析中计算模型理想化、考虑因素不全面、科学性及准确性不高的问题,为封闭性评价提供科学依据,准确评价封闭性筛选出渗漏点,规避钻井投资风险,具有良好的技术应用前景和经济效益,提高了钻井成功率,达到了较高精度依据断层封闭性评价断块圈闭的技术效果。
本发明实施例还提出一种圈闭断层的封闭性定量分析系统,图8为本发明实施例中圈闭断层的封闭性定量分析系统的示意图,包括:断层模拟模型构造单元801、扫描单元802和上述的圈闭断层的封闭性定量分析装置803,其中,
断层模拟模型构造单元801,用于构造对待钻圈闭的泥岩涂抹型断层的断层模拟模型;
扫描单元802,用于对断层模拟模型进行扫描,生成待钻圈闭的泥岩涂抹型断层的面数据,并发送至圈闭断层的封闭性定量分析装置;
圈闭断层的封闭性定量分析装置803,用于对接收的面数据进行重构,获得三维数据体;根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。
综上所述,在本发明实施例提出的系统中,获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述三维数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的;根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。在上述过程中,本发明可以分析待钻圈闭断层的封闭性,且分析过程中,确定了断裂带泥岩涂抹厚度与断层泥比率的拟合系数,该拟合系数可表示泥岩有效涂抹程度,从而更精确地确定了断裂带泥岩涂抹封闭因子,使得最后分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性的准确度更高。另外,本发明利用叠后地震资料提高了泥岩涂抹型断层的属性信息的精度,并利用物理模拟、工业CT数据定量采集分析先进手段,获得的三维数据体精度高,定量的解决了现有断层封闭性分析中计算模型理想化、考虑因素不全面、科学性及准确性不高的问题,为封闭性评价提供科学依据,准确评价封闭性筛选出渗漏点,规避钻井投资风险,具有良好的技术应用前景和经济效益,提高了钻井成功率,达到了较高精度依据断层封闭性评价断块圈闭的技术效果。
本发明实施例还提出一种断层封闭性分析方法,图9为本发明实施例中断层封闭性分析方法的流程图,如图9所示,该方法包括:
步骤901,获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;
步骤902,对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;
步骤903,对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;
步骤904,根据孔隙数据体,获得岩心断裂带渗流场;
步骤905,计算岩心断裂带渗流场在断裂带处的强度;
步骤906,根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。
在本发明实施例中,获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;根据孔隙数据体,获得岩心断裂带渗流场;计算岩心断裂带渗流场在断裂带处的强度;根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。在上述过程中,获得了孔隙数据体,构造了岩心断裂带渗流场,并计算了岩心断裂带渗流场在断裂带处的强度,然后根据岩心断裂带渗流场在断裂带处的强度的具体数据,分析断层封闭性的过程即为定量分析断层封闭性的过程,相对于定性分析,准确度高。
具体实施时,首先获得含有断层的目标层段岩心模型,含有断层的目标层段岩心模型包括泥岩涂抹类型断层,砂泥岩对接型断层等多种类型。含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的,扫描方式可以有多种,例如,可以采用高精度工业CT扫描,根据具体需求设置合理扫描步长和范围,扫描范围需包含断裂带结构,保证断裂带附近清晰扫描,当然,还可以采用其他三维扫描方式进行扫描。实心的第二岩心数据体不含空隙,因此,对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得的即为岩心数据体中的孔隙,称之为空隙数据体。根据孔隙数据体,获得岩心断裂带渗流场;计算岩心断裂带渗流场在断裂带处的强度,该强度为一个具体的定量的数值,根据该强度,即可定量分析断层的封闭性。
在一实施例中,含有孔隙的第一岩心数据体包括岩心骨架体积数据和/或孔隙体积数据。
具体实施时,对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体的方法有多种,下面给出其中一个实施例。
在一实施例中,对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体,包括:
对含有孔隙的第一岩心数据体中的孔隙进行重建填充,获得实心的第二岩心数据体。
在上述实施例中,含有孔隙的第一岩心数据体为一个三维结构,三维重建即对孔隙进行重建填充,获得实心的第二岩心数据体。
具体实施时,根据孔隙数据体,获得岩心断裂带渗流场的方法有多种,下面给出其中一个实施例。
在一实施例中,根据孔隙数据体,获得岩心断裂带渗流场,包括:
获得孔隙数据体的孔隙三维成像数据;
根据孔隙三维成像数据,获得联通孔隙和能够在设定压力下形成联通的孔隙;
确定渗流联通通道的起点和终点;
根据渗流联通通道的起点和终点,联通孔隙和能够在设定压力下形成联通的孔隙,形成多个垂直通过断层方向的渗流联通通道;
根据所述多个渗流联通通道,构造岩心断裂带渗流场。
在上述实施例中,孔隙三维成像数据可以通过将孔隙数据体加载进专业的成像软件获得,例如,VG或者Simpleware软件,渗流联通通道的起点一般为断层一侧,渗流联通通道的终点为断层的另一侧,然后连通这些联通孔隙和能够在设定压力下形成联通的孔隙,形成多个垂直通过断层方向的渗流联通通道,将形成的垂直通过断层方向的渗流联通通道按照顺序进行标记,通道N1、N2、N3……,便于后续步骤分析。
具体实施时,根据孔隙三维成像数据,获得联通孔隙和能够在设定压力下形成联通的孔隙的方法有多种,下面给出其中一个实施例。
在一实施例中,根据孔隙三维成像数据,获得联通孔隙和能够在设定压力下形成联通的孔隙,包括:
根据孔隙三维成像数据,获得联通孔隙和能够在设定压力下形成联通的孔隙,包括:
确定孔隙尺寸和孔隙间的距离;
根据孔隙尺寸和孔隙间的距离,从孔隙三维成像数据中,查找联通孔隙和能够在设定压力下形成联通的孔隙。
在上述实施例中,可根据空隙联通原理,设定空隙尺寸和孔隙间的距离,从孔隙三维成像数据中,查找联通孔隙和能够在设定压力下形成联通的孔隙。
具体实施时,计算岩心断裂带渗流场在断裂带处的强度的方法有多种,下面给出其中一个实施例。
在一实施例中,计算岩心断裂带渗流场在断裂带处的强度,包括:
获得岩心断裂带渗流场中多个渗流联通通道对应的渗流线;
根据渗流线的数量和断层的断面面积,获得岩心断裂带渗流场在断裂带处的强度。
在上述实施例中,对每一渗流联通通道,从该渗流联通通道的起点到渗流联通通道的终点,获得该渗流联通通道的渗流线L1、L2、L3……,其中,渗流线的疏密表示渗流场的强度,渗流线从起点穿过断层到终点的方向为标定的渗流场的方向。
在一实施例中,采用如下公式,根据渗流线的数量和断层的断面面积,获得岩心断裂带渗流场在断裂带处的强度:
W=L/S
W为岩心断裂带渗流场在断裂带处的强度;
L为渗流线的数量;
S为断层的断面面积。
在上述实施例中,岩心断裂带渗流场在断裂带附近强度系数W越强的地方断层封闭性越弱,岩心断裂带渗流场在断裂带强度系数W越弱的地方或者无渗流线的地方断层封闭性越强。
根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性的方法有多种,下面给出其中一个实施例。
在一实施例中,根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性,包括:
将岩心断裂带渗流场在断裂带处的强度与岩心断裂带渗流场的强度阈值进行比较,若岩心断裂带渗流场在断裂带处的强度大于所述强度阈值,则岩心断裂带渗流场在断裂带处不封闭,否则,岩心断裂带渗流场在断裂带处封闭;所述强度阈值是根据钻井数据确定的。
在上述实施例中,将岩心断裂带渗流场在断裂带处的强度W与强度阈值W1相比较,W大于W1处表示渗流能力强,断层对流体阻碍能力不强,流体易通过,确定岩心 断裂带渗流场在断裂带处不封闭,W小于W1处表示渗流能力弱,断层对流体阻碍能力强,流体不易通过,确定岩心断裂带渗流场在断裂带处封闭。
在一实施例中,可根据目标断层的空间断面中各处的封闭性,确定是否对所述目标断层控制下的断块圈闭进行钻井。
基于上述实施例,本发明提出如下一个实施例来说明断层封闭性分析方法的详细流程,图10为本发明实施例提出的断层封闭性分析方法的详细流程图,如图10所示,在一实施例中,断层封闭性分析方法的详细流程包括:
步骤1001,获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;
步骤1002,对含有孔隙的第一岩心数据体中的孔隙进行重建填充,获得实心的第二岩心数据体;
步骤1003,对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;
步骤1004,获得孔隙数据体的孔隙三维成像数据;
步骤1005,确定孔隙尺寸和孔隙间的距离;
步骤1006,根据孔隙尺寸和孔隙间的距离,从孔隙三维成像数据中,查找联通孔隙和能够在设定压力下形成联通的孔隙;
步骤1007,确定渗流联通通道的起点和终点;
步骤1008,根据渗流联通通道的起点和终点,联通孔隙和能够在设定压力下形成联通的孔隙,形成多个垂直通过断层方向的渗流联通通道;
步骤1009,根据所述多个渗流联通通道,构造岩心断裂带渗流场;
步骤1010,获得岩心断裂带渗流场中多个渗流联通通道对应的渗流线;
步骤1011,根据渗流线的数量和断层的断面面积,获得岩心断裂带渗流场在断裂带处的强度;
步骤1012,将岩心断裂带渗流场在断裂带处的强度与岩心断裂带渗流场的强度阈值进行比较,若岩心断裂带渗流场在断裂带处的强度大于所述强度阈值,则岩心断裂带渗流场在断裂带处不封闭,否则,岩心断裂带渗流场在断裂带处封闭;所述强度阈值是根据钻井数据确定的。
当然,可以理解的是,上述断层封闭性分析方法的详细流程还可以有其他变化例,相关变化例均应落入本发明的保护范围。
下面给出一具体实施例,说明本发明提出的断层封闭性分析方法的具体应用。
获得含有目标断层A、目标断层B的目标层段岩心,长度为80mm,岩心半径为79mm,为了保证扫描效果以及满足扫描平台尺寸要求,对目标层段岩心做必要的处理,处理为长80mm,宽高分别为40mm的柱状体,形成目标层段岩心模型,其中,切去外部多余砂岩,可使扫描射线更容易穿透外表到达内部断层部位。初步观察识别出目标层段岩心中的断层为逆断层,岩性对接方式为砂泥互接。
将准备好的含有断层A和断层B的目标层段岩心模型放置于扫描平台上,采用高精度工业CT扫描仪进行数据采集,设置扫描方式为三维体积扫描,扫描长度为80mm,扫描宽度为50mm,为了保证扫描效果,设置合理扫描电压和电流分别为420kv和1.2A,通过扫描获得的含有孔隙的第一岩心数据体中,包含了岩心骨架体积和孔隙体积,断裂带附近数据特征为泥岩致密层。图11为本发明实施例中含有孔隙的第一岩心数据体的示意图,对含有孔隙的第一岩心数据体利用专业三维重建VG软件进行三维重建,获得实心的第二岩心数据体,图12为本发明实施例中实心的第二岩心数据体的示意图,对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体,图13为本发明实施例中孔隙数据体的示意图。
将所述孔隙数据体加载进VG等专业成像软件,得到孔隙三维成像数据,确定孔隙尺寸和孔隙间的距离;根据孔隙尺寸和孔隙间的距离,从孔隙三维成像数据中,查找联通孔隙和能够在设定压力下形成联通的孔隙;确定渗流联通通道的起点和终点;根据渗流联通通道的起点和终点,联通孔隙和能够在设定压力下形成联通的孔隙,形成多个垂直通过断层方向的渗流联通通道,图14为本发明实施例中渗流联通通道的示意图,根据所述多个渗流联通通道,构造岩心断裂带渗流场;获得岩心断裂带渗流场中多个渗流联通通道对应的渗流线,图15为本发明实施例中渗流线的示意图,渗流线的疏密表示渗流场的强度,渗流线从起点穿过断层到终点的方向为标定的渗流场的方向,渗流线的疏密表示渗流场的强度,渗流线从起点穿过断层到终点的方向为标定的渗流场的方向,根据渗流线的数量和断层的断面面积,获得岩心断裂带渗流场在断裂带处的强度,图16为本发明实施例中岩心断裂带渗流场在断裂带处的强度的示意图。
根据钻井数据,确定岩心断裂带渗流场的强度阈值为2.8,将岩心断裂带渗流场在断裂带处的强度与所述强度阈值进行比较,若岩心断裂带渗流场在断裂带处的强度大于所述强度阈值,则岩心断裂带渗流场在断裂带处不封闭,否则,岩心断裂带渗流场在断裂 带处封闭,表1为本发明实施例中岩心断裂带渗流场在断裂带处封闭的分析结果,从表1中可以看出,岩心断裂带渗流场在31个断裂带处封闭的分析结果。
表1岩心断裂带渗流场在断裂带处封闭的分析结果
Figure PCTCN2020111223-appb-000001
Figure PCTCN2020111223-appb-000002
在本发明实施例提出的方法中,获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;根据孔隙数据体,获得岩心断裂带渗流场;计算岩心断裂带渗流场在断裂带处的强度;根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。在上述过程中,获得了孔隙数据体,构造了岩心断裂带渗流场,并计算了岩心断裂带渗流场在断裂带处的强度,然后根据岩心断裂带渗流场在断裂带处的强度的具体数据,分析断层封闭性的过程即为定量分析断层封闭性的过程,相对于定性分析,准确度高。
基于同样的发明构思,本发明实施例还提供了一种断层封闭性分析装置,如下面的实施例所述。由于这些解决问题的原理与断层封闭性分析方法相似,因此装置的实施可以参见方法的实施,重复之处不在赘述。
图17为本发明实施例中断层封闭性分析装置的示意图,如图17所示,该装置包括:
第一数据获得模块1701,用于获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;
第二数据获得模块1702,用于对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;
第三数据获得模块1703,用于对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;
岩心断裂带渗流场获得模块1704,用于根据孔隙数据体,获得岩心断裂带渗流场;
计算模块1705,用于计算岩心断裂带渗流场在断裂带处的强度;
分析模块1706,用于根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。
在一实施例中,第二数据获得模块1702具体用于:
对含有孔隙的第一岩心数据体中的孔隙进行重建填充,获得实心的第二岩心数据体。
在一实施例中,岩心断裂带渗流场获得模块1704具体用于:
获得孔隙数据体的孔隙三维成像数据;
根据孔隙三维成像数据,获得联通孔隙和能够在设定压力下形成联通的孔隙;
确定渗流联通通道的起点和终点;
根据渗流联通通道的起点和终点,联通孔隙和能够在设定压力下形成联通的孔隙,形成多个垂直通过断层方向的渗流联通通道;
根据所述多个渗流联通通道,构造岩心断裂带渗流场。
在一实施例中,岩心断裂带渗流场获得模块1704具体用于:
确定孔隙尺寸和孔隙间的距离;
根据孔隙尺寸和孔隙间的距离,从孔隙三维成像数据中,查找联通孔隙和能够在设定压力下形成联通的孔隙。
在一实施例中,计算模块1705具体用于:
获得岩心断裂带渗流场中多个渗流联通通道对应的渗流线;
根据渗流线的数量和断层的断面面积,获得岩心断裂带渗流场在断裂带处的强度。
在一实施例中,分析模块1706具体用于:
将岩心断裂带渗流场在断裂带处的强度与所述强度阈值进行比较,若岩心断裂带渗流场在断裂带处的强度大于所述强度阈值,则岩心断裂带渗流场在断裂带处不封闭,否则,岩心断裂带渗流场在断裂带处封闭,所述强度阈值是根据钻井数据确定的。
在一实施例中,计算模块1705具体用于:
采用如下公式,根据渗流线的数量和断层的断面面积,获得岩心断裂带渗流场在断裂带处的强度:
W=L/S
W为岩心断裂带渗流场在断裂带处的强度;
L为渗流线的数量;
S为断层的断面面积。
在一实施例中,含有孔隙的第一岩心数据体包括岩心骨架体积数据和/或孔隙体积数据。
在本发明实施例提出的装置中,获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;根据孔隙数据体,获得岩心断裂带渗流场;计算岩心断裂带渗流场在断裂带处的强度;根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。在上述过程中,获得了孔隙数据体,构造了岩心断裂带渗流场,并计算了岩心断裂带渗流场在断裂带处的强度,然后根据岩心断裂带渗流场在断裂带处的强度的具体数据,分析断层封闭性的过程即为定量分析断层封闭性的过程,相对于定性分析,准确度高。
本发明实施例提出一种断层封闭性分析系统,图18为本发明实施例中断层封闭性分析系统的示意图,该系统包括:
上述断层封闭性分析装置1801,第二扫描单元1802,其中,
所述第二扫描单元1802,用于:
对含有断层的目标层段岩心模型进行扫描,获得含有孔隙的第一岩心数据体;
将含有孔隙的第一岩心数据体发送至第一数据获得模块1801。
在本发明实施例提出的系统中,获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;根据孔隙数据体,获得岩心断裂带渗流场;计算岩心断裂带渗流场在断裂带处的强度;根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。在上述过程中,获得了孔隙数据体,构造了岩心断裂带渗流场,并计算了岩心断裂带渗流场在断裂带处的强度,然后根据岩心断裂带渗流场在断裂带处的强度的具体数据,分析断层封闭性的过程即为定量分析断层封闭性的过程,相对于定性分析,准确度高。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种圈闭断层的封闭性定量分析方法,其特征在于,包括:
    获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述三维数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的;
    根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;
    对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;
    根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;
    根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。
  2. 如权利要求1所述的圈闭断层的封闭性定量分析方法,其特征在于,还包括:
    在进行多个采样点的断裂带泥岩涂抹厚度和断层泥比率的拟合时,多个采样点的断裂带泥岩涂抹厚度和断层泥比率为线性关系。
  3. 如权利要求1所述的圈闭断层的封闭性定量分析方法,其特征在于,根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率,包括:
    从所述三维数据体中,提取泥岩涂抹型断层的断裂带属性信息,所述属性信息包括多个采样点的断裂带泥岩涂抹厚度、断层的断距和断面的泥质含量;
    根据多个采样点的断层的断距和断面的泥质含量,计算多个采样点的断层泥比率。
  4. 如权利要求3所述的圈闭断层的封闭性定量分析方法,其特征在于,从所述三维数据体中,提取泥岩涂抹型断层的断裂带属性信息,包括:
    根据断裂带体的灰度特征值,从所述三维数据体中,识别出断裂带体;
    提取出断裂带体的属性信息。
  5. 如权利要求1所述的圈闭断层的封闭性定量分析方法,其特征在于,获得待钻圈闭的泥岩涂抹型断层的三维数据体,包括:
    根据待钻圈闭的地质背景信息、断层数据和层位数据,确定待钻圈闭物理模拟模型的构造参数、断层变形应力;
    获得待钻圈闭的泥岩涂抹型断层的面数据,对所述面数据进行三维重构,获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述面数据是对断层模拟模型进行扫描获得的, 所述断层模拟模型是对待钻圈闭物理模拟模型加载断层变形应力获得的,所述待钻圈闭物理模拟模型是基于所述构造参数构造的。
  6. 如权利要求5所述的圈闭断层的封闭性定量分析方法,其特征在于,待钻圈闭物理模拟模型的构造参数包括模型边界、物理模拟模型相似比、物理模拟时长相似比、模拟地层材料和模拟泥岩层材料中的其中一种或任意组合。
  7. 如权利要求5所述的圈闭断层的封闭性定量分析方法,其特征在于,采用差值法或拟合法对所述面数据进行三维重构,获得待钻圈闭的泥岩涂抹型断层的三维数据体。
  8. 如权利要求1所述的圈闭断层的封闭性定量分析方法,其特征在于,根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性,包括:
    确定待钻圈闭的断裂带泥岩涂抹封闭因子的阈值;
    对每个采样点,若该采样点的断裂带泥岩涂抹封闭因子大于所述阈值,确定该采样点的封闭;否则,该采样点不封闭。
  9. 一种圈闭断层的封闭性定量分析装置,其特征在于,包括:
    第一模块,用于获得待钻圈闭的泥岩涂抹型断层的三维数据体,所述三维数据体是对待钻圈闭的泥岩涂抹型断层的断层模拟模型进行扫描重构获得的;
    第二模块,用于根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;
    第三模块,用于对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;
    第四模块,用于根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;
    第五模块,用于根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。
  10. 一种圈闭断层的封闭性定量分析系统,其特征在于,包括:断层模拟模型构造单元、扫描单元和权利要求9所述的圈闭断层的封闭性定量分析装置,其中,
    断层模拟模型构造单元,用于构造对待钻圈闭的泥岩涂抹型断层的断层模拟模型;
    扫描单元,用于对断层模拟模型进行扫描,生成待钻圈闭的泥岩涂抹型断层的面数据,并发送至圈闭断层的封闭性定量分析装置;
    圈闭断层的封闭性定量分析装置,用于对接收的面数据进行重构,获得三维数据体;根据所述三维数据体,获得多个采样点的断裂带泥岩涂抹厚度和断层泥比率;对多个采样点的断裂带泥岩涂抹厚度和断层泥比率进行拟合,确定断裂带泥岩涂抹厚度与断层泥比率的拟合系数;根据所述拟合系数和待钻圈闭的泥岩涂抹型断层的多个采样点的断层泥比率,确定多个采样点的断裂带泥岩涂抹封闭因子;根据每个采样点的断裂带泥岩涂抹封闭因子,分析待钻圈闭的泥岩涂抹型断层的每个采样点的封闭性。
  11. 一种断层封闭性分析方法,其特征在于,包括:
    获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;
    对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;
    对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;
    根据孔隙数据体,获得岩心断裂带渗流场;
    计算岩心断裂带渗流场在断裂带处的强度;
    根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。
  12. 如权利要求11所述的断层封闭性分析方法,其特征在于,对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体,包括:
    对含有孔隙的第一岩心数据体中的孔隙进行重建填充,获得实心的第二岩心数据体。
  13. 如权利要求11所述的断层封闭性分析方法,其特征在于,根据孔隙数据体,获得岩心断裂带渗流场,包括:
    获得孔隙数据体的孔隙三维成像数据;
    根据孔隙三维成像数据,获得联通孔隙和能够在设定压力下形成联通的孔隙;
    确定渗流联通通道的起点和终点;
    根据渗流联通通道的起点和终点,联通孔隙和能够在设定压力下形成联通的孔隙,形成多个垂直通过断层方向的渗流联通通道;
    根据所述多个渗流联通通道,构造岩心断裂带渗流场。
  14. 如权利要求13所述的断层封闭性分析方法,其特征在于,根据孔隙三维成像数据,获得联通孔隙和能够在设定压力下形成联通的孔隙,包括:
    确定孔隙尺寸和孔隙间的距离;
    根据孔隙尺寸和孔隙间的距离,从孔隙三维成像数据中,查找联通孔隙和能够在设定压力下形成联通的孔隙。
  15. 如权利要求13所述的断层封闭性分析方法,其特征在于,计算岩心断裂带渗流场在断裂带处的强度,包括:
    获得岩心断裂带渗流场中多个渗流联通通道对应的渗流线;
    根据渗流线的数量和断层的断面面积,获得岩心断裂带渗流场在断裂带处的强度。
  16. 如权利要求15所述的断层封闭性分析方法,其特征在于,采用如下公式,根据渗流线的数量和断层的断面面积,获得岩心断裂带渗流场在断裂带处的强度:
    W=L/S
    W为岩心断裂带渗流场在断裂带处的强度;
    L为渗流线的数量;
    S为断层的断面面积。
  17. 如权利要求11所述的断层封闭性分析方法,其特征在于,根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性,包括:
    将岩心断裂带渗流场在断裂带处的强度与岩心断裂带渗流场的强度阈值进行比较,若岩心断裂带渗流场在断裂带处的强度大于所述强度阈值,则岩心断裂带渗流场在断裂带处不封闭,否则,岩心断裂带渗流场在断裂带处封闭;所述强度阈值是根据钻井数据确定的。
  18. 如权利要求11所述的断层封闭性分析方法,其特征在于,含有孔隙的第一岩心数据体包括岩心骨架体积数据和/或孔隙体积数据。
  19. 一种断层封闭性分析装置,其特征在于,包括:
    第一数据获得模块,用于获得含有孔隙的第一岩心数据体,所述含有孔隙的第一岩心数据体是对含有断层的目标层段岩心模型进行扫描获得的;
    第二数据获得模块,用于对含有孔隙的第一岩心数据体进行三维重建,获得实心的第二岩心数据体;
    第三数据获得模块,用于对实心的第二岩心数据体和含有孔隙的第一岩心数据体作差,获得孔隙数据体;
    岩心断裂带渗流场获得模块,用于根据孔隙数据体,获得岩心断裂带渗流场;
    计算模块,用于计算岩心断裂带渗流场在断裂带处的强度;
    分析模块,用于根据岩心断裂带渗流场在断裂带处的强度,分析断层封闭性。
  20. 一种断层封闭性分析系统,其特征在于,包括:权利要求19所述的断层封闭性分析装置,第二扫描单元,其中,
    所述第二扫描单元,用于:
    对含有断层的目标层段岩心模型进行扫描,获得含有孔隙的第一岩心数据体;
    将含有孔隙的第一岩心数据体发送至第一数据获得模块。
  21. 一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至8、权利要求11至18任一项所述方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有执行权利要求1至8、权利要求11至18任一项所述方法的计算机程序。
PCT/CN2020/111223 2019-07-18 2020-08-26 圈闭断层的封闭性定量分析方法、装置及系统 WO2021008630A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2112593.5A GB2595809B (en) 2019-07-18 2020-08-26 Method, apparatus, and system for quantitative analysis of seal of trap faults

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910649401.2 2019-07-18
CN201910649401.2A CN112329187B (zh) 2019-07-18 2019-07-18 断层封闭性分析方法、装置及系统
CN202010303957.9A CN113534248A (zh) 2020-04-17 2020-04-17 圈闭断层的封闭性定量分析方法、装置及系统
CN202010303957.9 2020-04-17

Publications (1)

Publication Number Publication Date
WO2021008630A1 true WO2021008630A1 (zh) 2021-01-21

Family

ID=74210189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111223 WO2021008630A1 (zh) 2019-07-18 2020-08-26 圈闭断层的封闭性定量分析方法、装置及系统

Country Status (2)

Country Link
GB (1) GB2595809B (zh)
WO (1) WO2021008630A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946245A (zh) * 2021-03-11 2021-06-11 中国电建集团成都勘测设计研究院有限公司 红层地区软弱夹层的强度参数确定方法及装置
CN112965108A (zh) * 2021-02-05 2021-06-15 中国石油天然气股份有限公司 圈闭盖层垂向封闭性确定方法及系统
CN113466931A (zh) * 2021-05-31 2021-10-01 中国石油天然气股份有限公司 一种地质时期断层封闭性评价方法及系统
CN113687441A (zh) * 2021-07-28 2021-11-23 中国海洋石油集团有限公司 一种陆相断陷盆地断裂带的断层封闭能力定量评价方法
CN113870676A (zh) * 2021-08-31 2021-12-31 中国石油大学(北京) 一种断层模拟装置及模拟方法
CN114004104A (zh) * 2021-11-09 2022-02-01 中铁第一勘察设计院集团有限公司 基于棋盘格测试的cors站点选取方法
CN116146202A (zh) * 2023-03-30 2023-05-23 中国石油大学(华东) 一种礁滩碳酸盐岩的圈闭划分方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840914B1 (en) * 2005-05-13 2010-11-23 Massachusetts Institute Of Technology Distributing computations in a parallel processing environment
CN106772675A (zh) * 2016-12-05 2017-05-31 中国石油化工股份有限公司 基于断层断裂结构评价断层启闭性的方法
CN106918839A (zh) * 2015-12-25 2017-07-04 中国石油天然气股份有限公司 构造圈闭模型的定量评价方法及装置
CN107292435A (zh) * 2017-06-16 2017-10-24 中国石油化工股份有限公司江汉油田分公司勘探开发研究院 一种基于含油高度定量预测的断块圈闭评价方法
CN109239778A (zh) * 2018-09-14 2019-01-18 中国石油大学(华东) 一种断层侧向封闭性定量评价方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840914B1 (en) * 2005-05-13 2010-11-23 Massachusetts Institute Of Technology Distributing computations in a parallel processing environment
CN106918839A (zh) * 2015-12-25 2017-07-04 中国石油天然气股份有限公司 构造圈闭模型的定量评价方法及装置
CN106772675A (zh) * 2016-12-05 2017-05-31 中国石油化工股份有限公司 基于断层断裂结构评价断层启闭性的方法
CN107292435A (zh) * 2017-06-16 2017-10-24 中国石油化工股份有限公司江汉油田分公司勘探开发研究院 一种基于含油高度定量预测的断块圈闭评价方法
CN109239778A (zh) * 2018-09-14 2019-01-18 中国石油大学(华东) 一种断层侧向封闭性定量评价方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965108B (zh) * 2021-02-05 2023-08-22 中国石油天然气股份有限公司 圈闭盖层垂向封闭性确定方法及系统
CN112965108A (zh) * 2021-02-05 2021-06-15 中国石油天然气股份有限公司 圈闭盖层垂向封闭性确定方法及系统
CN112946245A (zh) * 2021-03-11 2021-06-11 中国电建集团成都勘测设计研究院有限公司 红层地区软弱夹层的强度参数确定方法及装置
CN113466931A (zh) * 2021-05-31 2021-10-01 中国石油天然气股份有限公司 一种地质时期断层封闭性评价方法及系统
CN113466931B (zh) * 2021-05-31 2023-08-22 中国石油天然气股份有限公司 一种地质时期断层封闭性评价方法及系统
CN113687441A (zh) * 2021-07-28 2021-11-23 中国海洋石油集团有限公司 一种陆相断陷盆地断裂带的断层封闭能力定量评价方法
CN113687441B (zh) * 2021-07-28 2022-11-08 中国海洋石油集团有限公司 一种陆相断陷盆地断裂带的断层封闭能力定量评价方法
CN113870676B (zh) * 2021-08-31 2022-11-11 中国石油大学(北京) 一种断层模拟装置及模拟方法
CN113870676A (zh) * 2021-08-31 2021-12-31 中国石油大学(北京) 一种断层模拟装置及模拟方法
CN114004104A (zh) * 2021-11-09 2022-02-01 中铁第一勘察设计院集团有限公司 基于棋盘格测试的cors站点选取方法
CN114004104B (zh) * 2021-11-09 2024-06-07 中铁第一勘察设计院集团有限公司 基于棋盘格测试的cors站点选取方法
CN116146202A (zh) * 2023-03-30 2023-05-23 中国石油大学(华东) 一种礁滩碳酸盐岩的圈闭划分方法和装置
CN116146202B (zh) * 2023-03-30 2023-10-13 中国石油大学(华东) 一种礁滩碳酸盐岩的圈闭划分方法和装置

Also Published As

Publication number Publication date
GB2595809B (en) 2023-05-24
GB202112593D0 (en) 2021-10-20
GB2595809A (en) 2021-12-08

Similar Documents

Publication Publication Date Title
WO2021008630A1 (zh) 圈闭断层的封闭性定量分析方法、装置及系统
RU2651719C1 (ru) Способ усовершенствованного планирования высоты трещины гидроразрыва в слоистой породе подземного пласта
Iding et al. Evaluating the impact of fractures on the long-term performance of the In Salah CO2 storage site
Espinoza et al. Natural and induced fractures in coal cores imaged through X-ray computed microtomography—Impact on desorption time
Al-Marzouqi Digital rock physics: Using CT scans to compute rock properties
CN104948176B (zh) 一种基于渗透增大率识别碳酸盐岩储层裂缝的方法
RU2601733C2 (ru) Способ построения геолого-гидродинамических моделей двойной среды залежей баженовской свиты
CN107795320B (zh) 一种水平井碳酸盐岩储层参数的计算方法
CN107558999B (zh) 一种孤立缝洞体剩余油定量预测方法
CN104977617A (zh) 储层裂缝识别方法和成像测井储层裂缝识别方法
CN104678438B (zh) 一种co2地质封存中四维地震资料co2分布预测的方法
CN110632657B (zh) 泥岩涂抹型断层封闭性分析方法及装置
CN110632658B (zh) 断层的侧向封闭性分析方法及装置
Wennberg et al. A brief introduction to the use of X-ray computed tomography (CT) for analysis of natural deformation structures in reservoir rocks
CN110632659A (zh) 断层空间封闭性分析方法、装置及系统
WO2012006871A1 (zh) 一种直接探测地层中游离态气体的方法
Huang et al. Modeling well interference and optimal well spacing in unconventional reservoirs using the fast marching method
CN114690243A (zh) 一种碎屑岩断层古封闭性三维数值模拟恢复方法及装置
Yang et al. Study on the stimulation effectiveness evaluation of large-scale hydraulic fracturing simulation experiment based on optical scanning technology
Hadavand et al. A practical methodology for integration of 4D seismic in steam-assisted-gravity-drainage reservoir characterization
CN107831540A (zh) 储层物性参数直接提取新方法
He et al. Self-supporting conductivity in shallow and ultra shallow shale reservoirs: Under hydraulic, CO2 and Sc-CO2 fracturing
CN107942381B (zh) 一种致密油储层层理缝定量预测方法
CN113534248A (zh) 圈闭断层的封闭性定量分析方法、装置及系统
Fossen Structural core observations in a siliciclastic reservoir-scale framework

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202112593

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200826

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840334

Country of ref document: EP

Kind code of ref document: A1