WO2021008618A1 - 用于充电的一拉式旋转动力平台和与其匹配的电动玩具 - Google Patents

用于充电的一拉式旋转动力平台和与其匹配的电动玩具 Download PDF

Info

Publication number
WO2021008618A1
WO2021008618A1 PCT/CN2020/102840 CN2020102840W WO2021008618A1 WO 2021008618 A1 WO2021008618 A1 WO 2021008618A1 CN 2020102840 W CN2020102840 W CN 2020102840W WO 2021008618 A1 WO2021008618 A1 WO 2021008618A1
Authority
WO
WIPO (PCT)
Prior art keywords
pull
platform
shaft
module
flywheel
Prior art date
Application number
PCT/CN2020/102840
Other languages
English (en)
French (fr)
Inventor
麦永光
Original Assignee
永丰朝有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永丰朝有限公司 filed Critical 永丰朝有限公司
Publication of WO2021008618A1 publication Critical patent/WO2021008618A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G5/00Devices for producing mechanical power from muscle energy
    • F03G5/06Devices for producing mechanical power from muscle energy other than of endless-walk type
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H17/00Toy vehicles, e.g. with self-drive; ; Cranes, winches or the like; Accessories therefor
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63HTOYS, e.g. TOPS, DOLLS, HOOPS OR BUILDING BLOCKS
    • A63H18/00Highways or trackways for toys; Propulsion by special interaction between vehicle and track
    • A63H18/12Electric current supply to toy vehicles through the track
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/02Additional mass for increasing inertia, e.g. flywheels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the invention relates to the field of machinery, in particular to a pull-type rotary power platform for charging and an electric toy matched with the platform.
  • the embodiments of the present invention provide a pull-type rotary power platform and an electric toy car, which are suitable for operation by children and can solve or alleviate the disadvantages of a large number of batteries and electrical energy consumption in existing battery or rechargeable battery-propelled products, and the above existing Other technical issues in technology.
  • the embodiment of the present invention provides a pull-type rotary power platform, including: a generator module, a charging pin, a pull rod module, and a platform for supporting a device to be charged; the generator module is electrically connected to the charging pin;
  • the pull rod module includes a pull/push rod and a shaft perpendicularly connected to the pull/push rod.
  • the shaft of the pull rod module is inserted from one side of the platform and penetrates two opposite sides of the platform; One end is fixed on the shaft of the pull rod module, and the other end is a hook; the charging pin is used to buckle and charge the device to be charged, and the pull/push rod is forward or backward. When pushed, the charging pin rotates with the rotation of the shaft, so that the hook of the charging pin buckles or releases the device to be charged, so as to charge the device to be charged or stop charging.
  • it further comprises a casing integrally formed with the platform, and the generator module is arranged inside the casing.
  • the generator module includes a flywheel module, a connecting belt and a DC motor; the connecting belt is connected to a first pulley fixed on the flywheel module and a first pulley fixed on the shaft of the DC motor. Two pulleys; when the flywheel module rotates, the first pulley drives the connecting belt to move, the connecting belt drives the second pulley to rotate, and rotates the shaft of the DC motor to make the DC motor generate electricity .
  • the flywheel module includes a ring gear, the first pulley, a flywheel, and a shaft; the ring gear, the flywheel, and the first pulley are sequentially fixed on the shaft of the flywheel module, And the ring gear is sleeved in the shaft hole of the flywheel, and the flywheel is attached to the first pulley.
  • the flywheel module includes two flywheels and two ring gears, two side surfaces of the first pulley are respectively attached to one flywheel, and the flywheel is in the shaft hole of the flywheel.
  • Each ring gear is sleeved.
  • the flywheel module further includes ball bearings arranged on the two edges of the shaft of the flywheel module to reduce the resistance when the flywheel module rotates to achieve higher rotation speed and longer rotation time , Thereby generating more electricity.
  • the housing is in the shape of a whistle, and the housing includes a platform at the mouth of the whistle and a cylindrical cavity whose side is connected with the platform, and two inner planes of the cylindrical cavity
  • the center positions of the flywheel module are respectively provided with circular holes corresponding to the two ends of the shaft of the flywheel module, the two ends of the shaft of the flywheel module are respectively fixed in the two circular holes opposite to each other, and the DC motor is fixed in the Inside the junction of the cylindrical cavity and the platform.
  • the cylindrical cavity further includes a rail penetrating from an opening on the side surface of the cylindrical cavity, passing through the ring gear, and finally passing through another opening on the side surface , And a flat gear sliding belt provided with a pop-up gear meshing with the ring gear, when the flat gear sliding belt moves along the track, the flat gear sliding belt rotates the ring gear, causing the The flywheel module rotates.
  • the pull rod module further includes a first sleeve and a second sleeve, one end of the first sleeve is vertically fixed to the pull/push rod; the shaft of the pull rod module passes through the In the hole of the charging pin, the charging pin is fixed on the shaft of the pull rod module, and the two ends of the shaft with the charging pin are respectively sleeved in the first sleeve and the second sleeve.
  • one side of the two sides of the pull rod module that penetrates the platform is provided with a connecting hole, and the other side is provided with a protrusion that can be inserted into and fixed to the connecting hole.
  • the protrusion of the pull rod module of one of the platforms is clamped into and fixed to the connecting hole of the pull rod module of the other platform.
  • the embodiment of the present invention also includes a toy car, including: a car base provided with a driving motor and an upward turning plate provided with power components for storing or releasing electricity on the surface;
  • the first metal plate and the opening under the flip plate, the first metal plate is connected to the drive motor, and the drive motor is connected to the wheel of the electric toy car through a gear; one side of the upward flip plate passes
  • the rotatable shaft is fixed on the base of the car, the bottom of the upward turning plate is provided with a second metal plate, and the power supply component is connected with the second metal plate; wherein, when the upward turning plate is flat
  • the second metal plate is in contact with the first metal plate, and the power supply component supplies power to the drive motor; it is placed on the base of the car in a pull-type rotation as claimed in any one of claims 1 to 10
  • the hook of the charging pin is moved to the car base by pushing and pulling the pull/push rod, so that the hook of the charging pin enters the second metal through the opening.
  • the vehicle base further includes a front wheel arranged at the front part and a rear wheel arranged at the rear part, and the driving motor is connected to the front wheel through a gear.
  • the vehicle base further includes a shaft fixed on the front wheel, a first standard gear and a second standard gear, the first standard wheel is fixed on the shaft of the front wheel, the The second standard gear is fixed on the shaft of the motor, and the first standard gear meshes with the second standard gear.
  • the embodiment of the present invention provides a pull-type rotary power platform that can be charged by a charging device, such as an electric toy car.
  • a charging device such as an electric toy car.
  • the platform can place the device to be charged, and the shaft is rotated by pushing and pulling the lever module on the platform, the charging pin fixed on the shaft of the lever module can rotate with the rotation of the shaft, and the hook of the charging pin can be connected with the device to be charged Or disconnect, that is to charge the device to be charged or stop charging.
  • the generator module can generate renewable electric energy, so that when charging the device to be charged, there is no need to use an external power source.
  • power can also be produced by pulling and rotating, and the power can be converted into electricity, which can then charge the device to be charged.
  • Figure 1 is a schematic diagram of the appearance of a pull-type rotary power platform provided by an embodiment of the present invention
  • Fig. 2 is a perspective view of the housing of a pull-type rotary power platform provided by an embodiment of the present invention after being opened.
  • Fig. 3 is a schematic diagram of a connection structure between a generator module and a tie rod module provided by an embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a power generation module provided by an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the disassembled structure of the flywheel module provided by the embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the installation of the DC motor and the second pulley provided by the embodiment of the present invention.
  • FIG 7 and 8 are schematic diagrams of the structure of the opened housing provided by the embodiment of the present invention.
  • Fig. 9 is a schematic structural diagram of a flat gear sliding belt provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the operation of the flat gear sliding belt pulling the flywheel module according to the embodiment of the present invention.
  • FIG. 11 is a schematic diagram of assembly of a tie rod module provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the appearance structure of a tie rod module provided by an embodiment of the present invention.
  • Figures 13 and 14 are schematic diagrams of a pull-type rotary power platform provided with an electric toy car provided by an embodiment of the present invention.
  • Fig. 15 is a schematic diagram of the connection of two platforms provided by an embodiment of the present invention.
  • Fig. 16 is a schematic diagram of the disassembled structure of the car base of the electric toy car provided by the embodiment of the present invention.
  • Fig. 17 is a schematic structural diagram of a car base of an electric toy car provided by an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of the structure of an upward turning plate provided by an embodiment of the present invention.
  • Fig. 19 is a schematic diagram of the disassembled structure of the drive motor provided by the embodiment of the present invention.
  • 20 to 22 are schematic diagrams of the structure of the DC motor supplying power to the power supply component provided by the embodiment of the present invention.
  • Fig. 23 is a schematic diagram of inserting a flat gear sliding belt in a path of a pull-type rotary power platform according to an embodiment of the present invention.
  • 24 to 27 are schematic diagrams of the connection relationship between the car base and the platform provided by the embodiment of the present invention.
  • 28 and 29 are schematic diagrams of the splicing process of the extended track and the platform provided by an embodiment of the present invention.
  • Fig. 30 is a schematic structural diagram of a guide pin located on a base of an automobile provided by an embodiment of the present invention.
  • 200-generator module 210-DC motor; 210a-current positive output terminal of DC motor, 210b-current negative output terminal of DC motor; 220-second pulley 220; 230-connection belt;
  • 300-shell 300a-platform; 300b-cylindrical cavity; 300s-chute on platform 300a; 320-rail; 301-connection hole of shell; 320-u-upper inner wall; 320-d-lower inner wall ;320-c-Gap on the lower inner wall; 300-xt-rail spliced with platform 300a, 300-st-chute on track 300-xt;
  • 1000-Tie rod module 1010-Tie rod module shaft; 1020-Pull/push rod; 1030-Connecting hole; 1040-End cover kit; 1041-Protrusion on the end cover kit.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more than two, unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection, it can be an electrical connection, it can also be communication; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between two components .
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection, it can be an electrical connection, it can also be communication; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between two components .
  • the "above” or “below” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • the "above”, “square”, and “above” of the first feature on the second feature include the first feature directly above and diagonally above the second feature, or it simply means that the first feature is higher in level than the second feature.
  • the “below”, “below” and “below” of the first feature of the second feature include the first feature directly above and diagonally above the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • FIG. 1 is a schematic diagram of the appearance of an embodiment of a pull-type rotary power platform provided by the present invention.
  • the pull-type rotary power platform may be a platform as shown in FIG. 1, or a pull-type rotary power platform used for charging in other forms or applied to other occasions.
  • Those skilled in the art can easily change the form without creative improvement, and make a pull-type rotary power platform of different forms.
  • Fig. 2 is a perspective view of the casing of a pull-type rotary power platform provided by an embodiment of the present invention after being opened.
  • Fig. 3 is a schematic diagram of an embodiment of the connection structure between the generator module and the tie rod module provided by the present invention.
  • Fig. 4 is a schematic structural diagram of an embodiment of the power generation module provided by the present invention.
  • the embodiment of the present invention provides a pull-type rotary power platform for charging, including a generator module 200, charging pins (710a, 710b), a lever module 1000, and a platform 300a for supporting equipment to be charged, which may be referred to as To support the platform.
  • the equipment to be charged may include, but is not limited to, electric toy cars.
  • the generator module 200 is connected to the charging pins (710a, 710b) through wires.
  • the pull rod module 1000 includes a pull/push rod 1020 and a shaft 1010 perpendicularly connected to one end of the pull/push rod 1020.
  • the shaft 1010 is inserted from one side of the supporting platform and penetrates two opposite sides of the platform 300a.
  • the pull/push rod 1020 is on one side of the supporting platform 300a, and the shaft 1010 can rotate in the supporting platform 300a.
  • the pull/push rod 1020 may be a handle shape or a shape that is easy for the user to push and pull, and the user may be a child.
  • the charging pins (710a, 710b) are used to buckle the device to be charged and charge the device to be charged.
  • the charging pins (710a, 710b) buckle the bottom of the electric toy car and connect with the power supply part of the electric toy car to charge the power supply part.
  • the pull/push rod 1020 is pushed forward or backward, the charging pins (710a, 710b) rotate with the rotation of the shaft 1010, so that the hooks of the charging pins (710a, 710b) buckle or release the device to be charged, To charge the charging device or stop charging.
  • the device to be charged is placed on the platform 300a, and the charging pins (710a, 710b) are located below the device to be charged.
  • the platform 300a may be in the shape of a frame as long as it can support the device to be charged.
  • the platform 300a has an opening that can facilitate the entry and exit of the hooks of the charging pins (710a, 710b).
  • the shaft 1010 rotates and drives the charging pins (710a, 710b) to rotate up or down, and the hooks of the charging pins (710a, 710b) can enter and exit from the opening of the platform 300a. Buckle or release the device to be charged.
  • the supporting platform 300a when the supporting platform 300a is placed on the ground or a plane, there is an inclined angle between the surface of the supporting platform 300a and the ground or the plane.
  • the charging pins (710a, 710b) of a pull-type rotating power platform release the device to be charged, the device to be charged can move forward.
  • the charging pins (710a, 710b) of a pull-type rotary power platform release the electric toy car, since the electric toy car has been charged, it can start to drive the wheels, and the electric toy car moves forward along the inclined support platform 300a scroll.
  • the generator module 200 may include, but is not limited to, manual power generation methods such as hand-cranked power generation, hand-drawn power generation, etc., and may also be controlled by the generator to generate power in an external control manner.
  • a pull-type rotary power platform may further include a housing 300 integrally formed with the platform 300 a, and the generator module 200 is provided in the housing 300.
  • the structure of the housing 300 is matched with the generator module 200, can accommodate the generator module 200 and facilitate the generator module 200 to generate electricity.
  • the housing 300 is provided with an interface for connecting with a hand crank or a hand-pulled component, renewable power can be generated without the need for an external power source to provide power.
  • an interface connected to an external motor is provided in the housing 300, and power can be supplied through the external motor.
  • the housing 300 provided in this embodiment aims to provide a stable environment for the generator module 200 to work to generate more electricity.
  • the generator module 200 includes a flywheel module 100, a connecting belt 230 and a DC motor 210.
  • the connecting belt 230 may be a closed loop belt.
  • the connecting belt 230 is arranged on the first pulley 120 on the flywheel module 100 and the second pulley 220 on the shafts of the DC motor 210, and the first pulley 120 and the second pulley 220 are looped simultaneously In the circle enclosed by the connecting belt 230; when the flywheel module 100 is rotated by an external force, the first pulley 120 rotates, and the connecting belt 230 on the first pulley 120 moves accordingly, and because the connecting belt 230 is also located on the second pulley On 220, the second pulley 220 also rotates with the movement of the connecting belt 230.
  • the shaft of the DC motor 210 will also rotate with the rotation of the second pulley 220, so that the DC motor 210 generates electricity.
  • the DC motor 210 has the function of generating electricity. When the shaft of the DC motor 210 rotates, the DC motor 210 starts to generate electricity. When the shaft of the DC motor 210 stops rotating, the DC motor 210 stops generating electricity.
  • the diameter of the first pulley 120 may be much larger than the diameter of the second pulley 220.
  • the second pulley 220 may rotate multiple times, which improves the power generation efficiency, especially in the pull type. In the case of manual power generation.
  • FIG. 5 is a schematic diagram of the split structure of an embodiment of the flywheel module 100 provided by the present invention.
  • the flywheel module 100 includes at least one ring gear 130, the first pulley 120, at least one flywheel 110 and a shaft 160.
  • the ring gear 130, the flywheel 110 and the first pulley 120 are sequentially fixed on the shaft 160 of the flywheel module 100, and the ring gear 130 is inserted into the shaft hole of the flywheel 110 from one side of the flywheel 110, and the other side of the flywheel 110 is
  • the first pulley 120 is attached.
  • two side surfaces of the first pulley 120 are respectively attached to a flywheel 110 and the shaft hole of the flywheel 110 is covered with a ring gear 130. Specifically as follows:
  • the flywheel module 100 includes two ring gears 130, a first pulley 120, two flywheels 110, and a shaft 160.
  • the first pulley 120 is sandwiched between the two flywheels 110 and fixed on the shaft 160 of the flywheel module 100.
  • the radius of the two flywheels 110 is larger than the radius of the first pulley 120. In this way, the connection provided on the first pulley 120 can be prevented from being separated from the first pulley 120 when moving.
  • the two ring gears 130 penetrate through the two sides of the shaft 160 respectively, and are inserted into the shaft holes of the two flywheels 110.
  • the flywheel 110 may be rotated as the ring gear 130 rotates. Since the first pulley 120 is stuck between the two flywheels 110, as the flywheel 110 rotates, the first pulley 120 will also rotate accordingly.
  • the flywheel module 100 further includes ball bearings 140 arranged on both edges of the shaft 160 of the flywheel module 100, or other additional components similar to the ball bearings 140.
  • the ball bearing 140 can minimize friction when the flywheel 110 module 100 rotates, and reduce the resistance when the flywheel 110 module 100 rotates to achieve a higher rotation speed and longer rotation time, thereby generating more power.
  • FIG. 6 is a schematic diagram of the installation of the DC motor 210 and the second pulley 220 provided by the present invention.
  • the shaft 212 of the DC motor 210 is inserted into the shaft hole of the second pulley 220.
  • the DC motor 210 has a current output terminal, including a "+" current output terminal 210a and a "-" current output terminal 210b.
  • the current output terminal 210a of "+” is connected to the charging pin 710a through a wire 212a
  • the current output terminal 210b of "-” is connected to the charging pin 710b through a wire 212b.
  • the charging pin 710a transmits a positive "+” current
  • the charging pin 710b transmits a negative "-" current.
  • the above-mentioned housing 300 is in the shape of a whistle.
  • the housing 300 includes a platform 300 a located at the mouth of the housing 300 and a cylindrical cavity 300 b whose side is connected to the platform 300 a.
  • the platform 300a and the cylindrical cavity 300b may be an integral structure, and the connection between the two may also be a detachable connection.
  • Figs. 7 and 8 are structural schematic diagrams of the opened housing 300 provided by the embodiment of the present invention.
  • the housing 300 can be split into two parts from the central axis of the housing 300 to facilitate disassembly and assembly of the components in the housing 300.
  • the two bottom planes of the cylindrical cavity 300b are both perpendicular to the plane of the platform 330a.
  • the center points of the inner walls of the two opposite bottom planes are respectively provided with connecting holes 301 corresponding to the two ends of the shaft 160 of the flywheel module 100.
  • the two ends of the shaft 160 of the flywheel module 100 are respectively fixed in two opposite connection holes 301 in the housing 300.
  • the cross-section at both ends of the shaft 160 and the cross-sectional shape of the connecting hole 301 may be the same.
  • the cross section at both ends of the shaft 160 is circular
  • the cross section of the connecting hole 301 is also circular.
  • the ring gear 130 is sleeved on both ends of the shaft 160
  • the connecting hole 301 matches the ring gear 130
  • the ring gear 130 can be sleeved in the connecting hole 301 and fixed in the connecting hole 301.
  • the two ends of the shaft 160 not only sleeve the ring gear 130, but also include a ball bearing 140, which is provided on the edge of the shaft 160, the connecting hole 301 matches the ball bearing 140, and the ball bearing 140 can be sleeved
  • the connecting hole 301 is fixed in the connecting hole 301.
  • the DC motor 210 may be fixed in the junction of the cylindrical cavity 300b and the platform 300a.
  • the joint has a certain arc, which is convenient to accommodate the DC motor 210.
  • the flywheel module 100 located in the cylindrical cavity 300b can transfer the kinetic energy along the direction of the cylindrical cavity 300b to the platform 300a to transmit the mechanical kinetic energy to the DC motor 210 at the junction, and the DC motor 210 converts the received mechanical kinetic energy into electrical energy , And transmit power along the aforementioned direction to the device to be charged on the platform 300a. In this way, in the process of energy transmission, energy loss is reduced and energy utilization efficiency is improved.
  • FIG. 9 is a schematic structural diagram of a flat gear sliding belt 170 provided by an embodiment of the present invention.
  • the housing 300 also includes a rail 320 and a flat gear belt 170.
  • two opposite openings are provided on the side surface of the cylindrical cavity 300b, and the track 320 penetrates through one opening on the side surface of the cylindrical cavity 300b, passes through the ring gear 130 and exits from the other side opening.
  • the flat gear sliding belt 170 can penetrate through an opening on the side of the cylindrical cavity 300b, slide on the rail 320 and pass through another opening.
  • the surface of the flat gear sliding belt 170 is provided with ejection gears 171, which are uniformly Distributed on most of the surface of the sliding belt.
  • the eject gear 171 on the flat gear sliding belt 170 meshes with the ring gear 130.
  • FIG. 10 is a schematic diagram of the operation of the flat gear sliding belt 170 pulling the flywheel module 100 according to an embodiment of the present invention.
  • the flat gear sliding belt 170 moves in the direction of the straight arrow. Since the eject gear 171 on the flat gear sliding belt 170 meshes with the ring gear 130, the ring gear 130 can be driven by the eject gear 171 and rotate in the direction of the clockwise rotation arrow in FIG. 10 , And the flywheel module 100 rotates in the direction of the clockwise rotation arrow.
  • the track 320 in the housing 300 may be composed of an upper inner wall 320-u and a lower inner wall 320-d.
  • the lower inner wall 320-d may be provided with a notch 320-c at a position passing through the ring gear 130 (as shown in FIG. 8).
  • the flat gear sliding belt 170 not only includes a sliding belt provided with an ejection gear 171, but also includes a pull ring 172 that is convenient for manually pulling the sliding belt.
  • the pull ring 172 may be provided at one end of the sliding belt.
  • the sliding belt and the pull ring 172 may be integrally formed.
  • FIG. 11 and FIG. 12 is a schematic diagram of assembling a tie rod module provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the appearance structure of a tie rod module provided by an embodiment of the present invention.
  • the tie rod module 1000 further includes a first sleeve 1010-t1 and a second sleeve 1010-t2.
  • the first sleeve 1010-t1 is vertically fixed to one end of the pull/push rod 1020.
  • the shaft 1010 of the lever module passes through the holes of the charging pins (710a, 710b), and the charging pins (710a, 710b) are fixed on the shaft 1010.
  • one end of the shaft 1010 with charging pins (710a, 710b) is embedded in the first sleeve 1010-t1.
  • the second sleeve 1010-t2 is inserted into the other end of the shaft 1010 with charging pins (710a, 710b), and the end of the sleeve is also provided with an end cap set 1040 to prevent the shaft 1010 from passing out of the sleeve.
  • the end cap kit 1040 can also prevent the shaft 1010 from slipping out of the platform 300a.
  • Figs. 13 and 14 are schematic structural diagrams of a pull-type rotary power platform on which an electric toy car is placed according to an embodiment of the present invention.
  • a connecting hole 1030 For the two sides of the tie rod module 1000 that penetrates the platform, one side is provided with a connecting hole 1030, and the other side is provided with a protrusion 1041 matching the connecting hole 1030.
  • the center of the connecting hole 1030 and the center of the protrusion 1041 have the same axis, for example, the same axis as the axis of the shaft 1010. Therefore, two or more one-pull rotary power platforms can be connected side by side through the above structure.
  • a connecting hole 1030 is provided on the side surface of the pull/push rod 1020 that does not fit the platform 300a, and where the first sleeve 1010-t1 is connected with the pull/push rod 1020.
  • a protrusion 1041 is provided on the surface of the end cover assembly 1040 of the second sleeve 1010-t2. In this way, the center of the connecting hole 1030 and the center of the protrusion 1041 are located on the same axis and are the axis of the shaft 1010.
  • Fig. 15 is a schematic diagram of the connection of two one-pull rotary power platforms provided by an embodiment of the present invention.
  • the protrusion 1041 of the tie rod module 1000 of one platform 300a is embedded and fixed to the connecting hole 1030 of the tie rod module 1000 of the other platform 300a.
  • the pull/push rod 1020 or pull/push handle of one of the one-pull rotary power platforms is pushed forward or backward, it can control the pull/push rod 1020 or pull/push handle of all other platforms forward or backward Push so that the platform can charge the devices to be charged at the same time or release all the devices to be charged at the same time.
  • multiple one-pull rotary power platforms can be connected side by side, and multiple electric toy cars can be placed on these platforms.
  • the charging pins (710a, 710b) on all platforms release all electric toy cars, and the electric toy cars are powered at the same time and start to drive at the same time for the electric toy car competition.
  • the platform used to support the device to be charged has a certain slope, such as 15 degrees or 30 degrees. It is convenient for the equipment to be charged to slide out of the platform after being fully charged.
  • the embodiment of the present invention further includes a track 300-xt for splicing with the end of the platform 300a.
  • the center axis of the platform 300a and the center axis of the rail 300-xt are on the same axis.
  • This track 300-xt can extend the glideable length of the device to be charged on the platform.
  • the car toy can be run along the track 300-xt after sliding off the platform 300a.
  • the track 300-xt is spliced with the platform 300a along the arrow direction in FIG. 28, and the illustration after the track 300-xt and the platform 300a are spliced can refer to FIG. 29.
  • a sliding groove (300s, 300-st) may be provided at the position on the central axis of the platform 300a and the central axis of the track 300-xt.
  • a section of the central axis of the platform 300a is provided with a chute 300s.
  • a sliding groove 300-st is provided on the central axis of the track 300-xt.
  • the bottom of the device to be charged is provided with a guide pin that matches the chute (300s, 300-st), refer to the structure of the guide pin in FIG. 30 and the description of the guide pin later.
  • the guide pin of the device to be charged is inserted into the chute, and as the device to be charged slides forward, the guide pin also slides forward along the chute. Therefore, for a toy car, the toy car can move forward according to the groove on the track without leaving the track.
  • FIG. 16 is a schematic diagram of the disassembled structure of the car base of the electric toy car provided by the embodiment of the present invention.
  • Fig. 17 is a schematic structural diagram of a car base of an electric toy car provided by an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of the structure of an upward turning plate provided by an embodiment of the present invention.
  • Fig. 19 is a schematic diagram of the disassembled structure of the drive motor provided by the embodiment of the present invention.
  • 20 to 22 are schematic diagrams of the structure in which the DC motor 210 provides power to the power supply component according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of inserting a flat gear sliding belt 170 on the path of a pull-type rotary power platform provided by the present invention.
  • 24 to 27 are schematic diagrams of the connection relationship between the car base and the platform provided by the present invention.
  • the embodiment of the present invention provides an electric toy car, which includes a car base 410 provided with a driving motor 460 and an upward turning plate 420 provided with power components for storing or releasing power on the surface.
  • the power supply part may include a capacitor 440 or a rechargeable battery or the like.
  • the surface of the car base 410 is provided with a first metal plate (470a, 470b) and an opening 490 located below the upturning plate 420.
  • the first metal plates (470a, 470b) are connected to the drive motor 460, and the drive motor 460 is connected to the wheels of the toy car through gears.
  • One side of the flip-up plate 420 is fixed on the car base 410 through a rotatable shaft.
  • the bottom of the flip-up plate 420 is provided with a second metal plate (422, 424), and the power supply component is connected with the second metal plate (422, 424).
  • the second metal plate (422, 424) can contact the first metal plate (470a, 470b), and the power supply component can supply power to the driving motor 460.
  • the hook of the charging pin (710a, 710b) is driven toward the car base by pushing the pull/push rod forward or backward.
  • the generator module 200 of a pull-type rotary power platform is connected to the power supply component of the electric toy car, and the generator module 200 can start to generate electricity and charge the power supply component of the electric toy car, and enter the charging mode.
  • the first metal plate (470a, 470b) when the first metal plate (470a, 470b) is in contact with the second metal plate (422, 424), the first metal plate 470a is connected to the second metal plate 422 to transmit the positive "+” current; the first metal plate 470b and the second metal plate The two metal plates 424 are connected to transmit the negative "-" current.
  • the charging pins (710a, 710b) are connected to the second metal plate (422, 424), the charging pin 710a is connected to the second metal plate 422 to transmit the positive "+” current; the charging pin 710b is connected to the second metal plate 424 to transmit the negative "-" Current.
  • the upturning plate 420 is provided with an empty slot penetrating the surface of the board, and the second metal plates (422, 424) are embedded in the empty slot.
  • the main body of the second metal plate (422, 424) is embedded in the bottom plane of the upward turning plate 420, and the main body is slightly higher than the bottom plane of the upward turning plate 420 or at least flush with the bottom plane of the upward turning plate 420.
  • the two ends of the second metal plate (422, 424) are respectively folded, which can be called the first end and the second end.
  • the first end is folded upward, so that the surface of the first end of the second metal plate (422, 424) can be level with the upper plane of the upwardly turning plate 420.
  • the power supply components on the surface of the flip-up board 420 such as the pins of the capacitor, may be connected to the board surface of the first end.
  • the second end is also folded upwards, as shown in FIG. 28, so that part of the surface of the second end of the second metal plate (422, 424) can be level with the upper plane of the upward turning plate 420.
  • the flat surface can support the tail of the power supply unit.
  • the charging pins (710a, 710b) abut against the second metal plates (422, 424) and push the upward turning plate 420 to turn upward.
  • the DC motor 210 in the pull-type rotary power platform sequentially transmits current to the capacitor 440 through the wires (212a, 212b), the charging pins (710a, 710b), and the second metal plate (422, 424), and the capacitor 440 is charged.
  • the power generation process of the generator module 200 of the platform is: the flat gear sliding belt 170 is inserted from one opening of the track 320 of the housing 300, slides along the track 320, and passes through another opening of the track 320. Out.
  • the flat gear sliding belt 170 is inserted into the housing 300, the child's fingers can be buckled in the pull ring 172 of the flat gear sliding belt 170, and the flat gear sliding belt 170 can be pulled out quickly and forcefully, pulling the flywheel module 100 to rotate and rotate the DC motor 210 ⁇ The shaft.
  • the DC motor 210 starts to generate electricity and transmit current to the power supply components of the electric toy car.
  • the hooks of the charging pins (710a, 710b) gradually pass through the opening of the platform 300a,
  • the upward turning plate 420 moves downward as the hooks of the charging pins (710a, 710b) move downward.
  • the flip-up plate 420 lies flat, and the hooks of the charging pins (710a, 710b) no longer contact the second metal plate (422, 424).
  • the second metal plate (422, 424) contacts the first metal plate (470a, 470b) again.
  • the power supply component can supply power to the driving motor 460 of the electric toy car, and the car can move forward.
  • the charging mode is changed to the normal mode.
  • the power supply part of the electric toy car is connected to the driving motor 460 of the electric toy car, and the current is transmitted from the power supply part to the driving motor 460.
  • the driving motor 460 starts to rotate the wheels of the car, and the car will drive from a pull-type rotary power platform. Out.
  • FIG. 24 show the process of the electric toy car from charging to stopping.
  • the user places the electric toy car on a pull-type rotating power platform. Since the charging pins (710a, 710b) protrude from the opening on the surface of the platform, the charging pins (710a, 710b) are connected to the second metal plate (422, 424) of the electric toy car. Abut and push the upward turning plate 420 to turn upward. If the DC motor 210 in a pull-type rotating power platform generates electricity, it transmits current to the capacitor 440 through the wires (212a, 212b), the charging pins (710a, 710b), and the second metal plate (422, 424) in order to charge the capacitor 440. Referring to FIG. 23, the user can buckle fingers in the pull ring 172 of the flat gear sliding belt 170, and quickly pull out the flat gear sliding belt 170, pull the flyshaft module to rotate and rotate the shaft of the DC motor 210, and the DC motor 210 generates electricity.
  • the user can push the pull/push rod 1020 in the direction of the arrow in Figure 26, and the pull/push rod 1020 drives the charging pins (710a, 710b) to rotate in the same direction to charge
  • the pins (710a, 710b) exit downward from the opening of the platform, and no longer jam the electric toy car.
  • the upward turning plate 420 of the electric toy car is placed flat on the car base 410 again, the second metal plate (422, 424) is in contact with the first metal plate (470a, 470b), and the power supply component supplies power to the driving motor 460 of the electric toy car to drive
  • the electric motor 460 drives the electric toy car to travel forward in the direction of the arrow in FIG. 27.
  • the car base 410 further includes a front wheel 452 arranged at the front and a rear wheel 451 arranged at the rear.
  • the electric motor is connected to the front wheel 452 through a gear.
  • the front wheel 452 may include two or four, which are arranged in half at both ends of the shaft of the front wheel 452.
  • the rear wheels 451 may include two or four, and are arranged in half at both ends of the front wheel 452.
  • the car base 410 further includes a shaft fixed to the front wheel 452, a first standard gear 453, and a second standard gear 461.
  • the first standard wheel 453 is fixed to the shaft of the front wheel 452, and the second standard gear 461 Fixed on the shaft 462 of the driving motor, the first standard gear 453 meshes with the second standard gear 461.
  • the car base 410 may further include a guide pin 480 for the driving route.
  • One end of the guide pin 480 is fixed on the rotation shaft 480-1 of the guide pin, and the rotation shaft 480-1 of the guide pin 480 is inserted.
  • the rotating shaft 480-1 can rotate around the shaft hole.
  • the other end of the guide pin 480 is a hook, and an opening is provided on the car base 410 where the guide pin 480 is placed to facilitate the hook of the guide pin 480 to enter and exit the opening.
  • the user can flip the guide pin 480 downward, pass through the opening of the car base 410, and insert it into the groove on the track, thereby guiding the car on the track. Drive on a fixed route. If the electric toy car is running on a track with no track or groove, the user can flip the guide pin 480 upwards, and the guide pin 480 no longer protrudes from the bottom plane of the car base, and the electric toy car can run on the ground at will.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Toys (AREA)

Abstract

一种用于充电的一拉式旋转动力平台应用于电动玩具汽车。透过旋转动力平台和与之匹配设计的充电式电动玩具汽车,通过结合多个平台可作汽车比赛游戏。所述平台包括:发电机模块(200)、充电销(710a,710b)、拉杆模块(100)和用于支撑待充电设备的平台(300a);所述发电机模块(200)通过导线与所述充电销(710a,710b)连接;所述拉杆模块(1000)包括拉/推杆(1020)和与所述拉/推杆(1020)垂直连接的轴(1010),所述轴(1010)从所述平台(300a)的一侧插入并贯穿所述平台(300a)相对的两侧;所述充电销(710a,710b)的一端固定在所述轴(1010)上,另一端为钩部;所述充电销(710a,710b)用于在所述拉/推杆(1020)被推拉时随所述轴(1010)的旋转而旋转,以使所述充电销(710a,710b)的钩部与所述待充电设备连接或断开连接。采用该方案,可以省去电池。且电动玩具汽车具有充电易操作的优点、效率高。

Description

用于充电的一拉式旋转动力平台和与其匹配的电动玩具 技术领域
本发明涉及机械领域,尤其涉及一种用于充电的一拉式旋转动力平台和与此平台匹配的电动玩具。
背景技术
随着人们生活水平的不断提高,以电池驱动的电子玩具的消费需求也不断的增长。而且,采用电池供电的玩具或电子产品也越来越受欢迎。
但是,这些以电池驱动的电子玩具或电子产品在使用一段时间之后,电池中的电力将会秏尽或因电量不足而不能驱动,需要频繁地更换电池。即使采用可充电的电池,也需要在电池没电时将电池拆卸下来并为电池充电,待电池充满电后再将电池装回电子玩具或电子产品中。如此反复来回拆卸、充电及安装,操作非常繁琐。而且,在充电过程中也耗用了电力能源,成本高,效率低。
此外,随着电池广泛使用,会产生大量废弃的电池,污染环境。
发明内容
本发明实施例提供一种一拉式旋转动力平台和电动玩具汽车,适合儿童操作且以解决或缓解现有电池或充电池推动产品中大量耗用电池及耗用电能的缺点,以及以上现有技术中其他技术问题。
本发明实施例提供了一种一拉式旋转动力平台,包括:发电机模块、充电销、拉杆模块和用于支撑待充电设备的平台;所述发电机模块与所述充电销电连接;所述拉杆模块包括拉/推杆和与所述拉/推杆垂直连接的轴,所述拉杆模块的轴从所述平台的一侧插入并贯穿所述平台相对的两侧;所述充电销的一端固定在所述拉杆模块的轴上,另一端为钩部;所述充电销用于扣住所述待充电设备并对所述待充电设备充电,所述拉/推杆在向前或向后推动时充电销随所述轴的旋转而旋转,以使所述充电销的钩部扣住或释放所述待充电设备,以对所述待充电设备充电或停止充电。
在一种实施方式中,还包括与所述平台一体成形的壳体,所述发电机模块设在所述壳体的内部。
在一种实施方式中,所述发电机模块包括飞轮模块、连接带和直流电机;所述连接带连接固定在所述飞轮模块上的第一皮带轮和固定在所述直流电机的轴上的第二皮带轮;当所述飞轮模块旋转时,所述第一皮带轮带动所述连接带移动,所述连接带带动所述第二皮带轮旋转,并转动所述直流电机的轴以使所述直流电机发电。
在一种实施方式中,所述飞轮模块包括环形齿轮、所述第一皮带轮、飞轮和轴;所述环形齿轮、所述飞轮和所述第一皮带轮依次固定在所述飞轮模块的轴上,且所述环形齿轮套入所述飞轮的轴孔中,所述飞轮与所述第一皮带轮贴合。
在一种实施方式中,所述飞轮模块包括两个所述飞轮和两个所述环形齿轮,所述第一皮带轮的两个侧面分别贴合一个所述飞轮,在所述飞轮的轴孔中均套有一个所述环形齿轮。
在一种实施方式中,所述飞轮模块还包括设置在所述飞轮模块的轴的两个边缘上的滚珠轴承,以减低飞轮模块旋转时的阻力达到更高的旋转速度及更长的旋转时间,从而产生更多的电力。
在一种实施方式中,所述壳体为哨子形状,所述壳体包括位于哨嘴部位的平台和侧面与所述平台衔接的圆柱形腔体,所述圆柱形腔体的两个内平面的中心位置分别设有与所述飞轮模块的轴的两端相适应的圆孔,所述飞轮模块的轴的两端分别固定相对的两个所述圆孔内,所述直流电机固定在所述圆柱形腔体与所述平台的衔接处内。
在一种实施方式中,所述圆柱形腔体还包括从所述圆柱形腔体的侧面上的一个开口穿入并经过所述环形齿轮且最后从所述侧面的另一个开口穿出的轨道、以及设有与所述环形齿轮相啮合的弹出齿轮的扁平齿轮滑带,当所述扁平齿轮滑带沿着所述轨道移动时,所述扁平齿轮滑带转动所述环形齿轮,使所述飞轮模块转动。
在一种实施方式中,所述拉杆模块还包括第一套筒和第二套筒,所述第一套筒的一端垂直固定于所述拉/推杆;所述拉杆模块的轴穿过所述充电销的孔,所述充电销固定在所述拉杆模块的轴上,带所述充电销的轴的两端分别套入到所述第一套筒和所述第二套筒中。
在一种实施方式中,贯穿所述平台的所述拉杆模块的两侧中的一侧设有连接孔,另一侧设有能卡入并固定于所述连接孔的凸起,在两个以上所述平台并排时,其中一个所述平台的所述拉杆模块的凸起卡入并固定于另一个所述平台的所述拉杆模块的连接孔。
本发明实施例还包括一种玩具汽车,包括:设有驱动电动机的汽车底座和在表面设有用于储存或释放电力的电源部件的向上翻转板;所述汽车底座的表面设有位于所述向上翻转板下方的第一金属板和开口,所述第一金属板与所述驱动电动机连接,所述驱动电动机通过齿轮与所述电动玩具汽车的车轮连接;所述向上翻转板的一个侧边通过可旋转轴固定在所述汽车底座上,所述向上翻转板的底部设有第二金属板,且所述电源部件与所述第二金属板连接;其中,在所述向上翻转板平放时,所述第二金属板与所述第一金属板接触,所述电源部件为所述驱动电动机供电;在所述汽车底座放置于如权利要求1至10任一项所述的一拉式旋转动力平台之上时,通过推拉所述拉/推杆来带动所 述充电销的钩部向所述汽车底座移动,以使所述充电销的钩部从所述开口进入与所述第二金属板接触,并向上推动所述向上翻转板向上翻转,以使所述第二金属板脱离所述第一金属板,所述一拉式旋转动力平台为所述电动玩具汽车的电源部件充电。
在一种实施方式中,所述汽车底座还包括设置在前部的前轮和设置在后部的后轮,所述驱动电动机通过齿轮与所述前轮连接。
在一种实施方式中,所述汽车底座还包括固定在所述前轮的轴、第一标准齿轮和第二标准齿轮,所述第一标准轮固定在所述前轮的轴上,所述第二标准齿轮固定在所述电动机的轴上,所述第一标准齿轮与所述第二标准齿轮啮合。
上述技术方案中的任意一个技术方案具有如下优点或有益效果:
本发明实施例提供一个一拉式旋转动力平台,可以待充电设备充电,例如电动玩具汽车。平台可以放置待充电设备,通过推拉平台上的拉杆模块使轴旋转,则固定在拉杆模块的轴上的充电销可以随轴的旋转而旋转,充电销的钩部可以与所述待充电设备连接或断开连接,即为待充电设备充电或停止充电。另一方面,发电机模块能够产生可再生电能,使得为待充电设备充电时,无需要利用外部电源。而且,还可以通过拉式旋转生产动力,动力转换成电力,进而可以为待充电设备充电。
上述概述仅仅是为了说明书的目的,并不意图以任何方式进行限制。除上述描述的示意性的方面、实施方式和特征之外,通过参考附图和以下的详细描述,本发明进一步的方面、实施方式和特征将会是容易明白的。
附图说明
在附图中,除非另外规定,否则贯穿多个附图相同的附图标记表示相同或相似的部件或元素。这些附图不一定是按照比例绘制的。应该理解,这些附图仅描绘了根据本发明公开的一些实施方式,而不应将其视为是对本发明范围的限制。
图1是本发明实施例提供的一拉式旋转动力平台的外观示意图
图2是本发明实施例提供的一拉式旋转动力平台的壳体在打开后的立体图。
图3是本发明实施例提供的发电机模块与拉杆模块之间的连接结构的示意图。
图4是本发明实施例提供的发电模块的结构示意图。
图5是本发明实施例提供的飞轮模块的拆分结构示意图。
图6是本发明实施例提供的直流电机与第二皮带轮的安装示意图。
图7和图8是本发明实施例提供的打开的壳体的结构示意图。
图9是本发明实施例提供的扁平齿轮滑带的结构示意图。
图10是本发明实施例提供的扁平齿轮滑带拉动飞轮模块工作的示意图。
图11是本发明实施例提供的拉杆模块的组装示意图。
图12是本发明实施例提供的拉杆模块的外观结构示意图。
图13和图14是本发明实施例提供的放置有电动玩具汽车的一拉式旋转动力平台的结构示意图。
图15是本发明实施例提供的两个平台的连接示意图。
图16是本发明实施例提供的电动玩具汽车的的汽车底座的拆分结构示意图。
图17是本发明实施例提供的电动玩具汽车的汽车底座的结构示意图。
图18是本发明实施例提供的向上翻转板的结构示意图。
图19是本发明实施例提供的驱动电动机的拆分结构示意图。
图20至图22是本发明实施例提供的直流电机为电源部件供电的结构示意图。
图23是本发明实施例提供的在一拉式旋转动力平台的路径上插入扁平齿轮滑带的示意图。
图24至图27是本发明实施例提供的汽车底座与平台之间的连接关系的示意图。
图28和图29是本发明实施例提供的延伸的轨道与平台拼接的过程示意图。
图30是本发明实施例提供的位于汽车底座的引导销的结构示意图。
100-飞轮模块;110-飞轮;120-第一皮带轮;130-环形齿轮;140-滚珠轴承;160-飞轮模块的轴;170-扁平齿轮滑带;171-弹出齿轮;
200-发电机模块;210-直流电机;210a-直流电机的电流正极输出端,210b-直流电机的电流负极输出端;220-第二皮带轮220;230-连接带;
212-直流电机的轴;
212a-与电流正极输出端连接的导线;212b-与电流负极输出端连接的导线;
300-壳体;300a-平台;300b-圆柱形腔体;300s-平台300a上的滑槽;320-轨道;301-壳体的连接孔;320-u-上内壁;320-d-下内壁;320-c-下内壁的缺口;300-xt-与平台300a拼接的轨道,300-st-轨道300-xt上的滑槽;
410-汽车底座;420-向上翻转板;440-电容器;460-驱动电动机;470a-传输正极电流的第一金属板;470b-传输负极电流的第二金属板;422-传输正极电流的第二金属板;424-传输负正电流的第二金属板;462-驱动电动机的轴;461-第二标准齿轮;451-后轮;452-前轮;453-第一标准齿轮;480-行车路线的引导销;480-1-引导销的转轴;480-2-固定引导销的轴孔;
710a-传输正极电流的充电销;710b-传输负极电流的充电销;
1000-拉杆模块;1010-拉杆模块的轴;1020-拉/推杆;1030-连接孔;1040-端盖套件;1041-端盖套件上的凸起。
具体实施方式
在下文中,仅简单地描述了某些示例性实施例。正如本领域技术人员可认识到的那样,在不脱离本发明的精神或范围的情况下,可通过各种不同方式修改所描述的实施例。因此,附图和描述被认为本质上是示例性的而非限制性的。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或组件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个组件内部的连通或两个组件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本 发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
参见图1至图27,本发明实施例提供一种用于充电的一拉式旋转动力平台。其中,图1是本发明提供的一拉式旋转动力平台的一个实施例的外观示意图。应当说明的是,该一拉式旋转动力平台可以是如图1所示的平台,也可以是其他形态或应用于其他场合的用于充电的一拉式旋转动力平台。本领域技术人员能够在不作出创造性改进的基础上轻易进行形态的变换,做出不同形态的一拉式旋转动力平台。应当说明的是,基于本文所述之思想所制造或形成的一拉式旋转动力平台,即使结构或形态不同,也应当视为本发明的保护范围之内。
回到图1至图4,其中,图2是本发明实施例提供的一拉式旋转动力平台的壳体在打开后的立体图。图3是本发明提供的发电机模块与拉杆模块之间的连接结构的一个实施例的示意图。图4是本发明提供的发电模块的一个实施例的结构示意图。本发明实施例提供了一种用于充电的一拉式旋转动力平台,包括发电机模块200、充电销(710a,710b)、拉杆模块1000和用于支撑待充电设备的平台300a,以下可以称为支撑平台。其中,待充电设备可以包括但不限于电动玩具汽车。发电机模块200通过导线与充电销(710a,710b)连接。拉杆模块1000包括拉/推杆1020和与拉/推杆1020一端垂直连接的轴1010,轴1010从支撑平台的一侧插入并贯穿平台300a相对的两侧。以及,拉/推杆1020在支撑平台300a的其中一侧,轴1010可以在支撑平台300a内旋转。其中,拉/推杆1020可以是手柄形状或者易于使用者推拉的形状,使用者可以是儿童。充电销(710a,710b)的一端固定在轴1010上,另一端为钩部。充电销(710a,710b)用于扣住待充电设备并对待充电设备进行充电。例如,充电销(710a,710b)扣住电动玩具汽车的底部并与电动玩具汽车的电源部件连接,为电源部件充电。拉/推杆1020在向前或向后推动时,充电销(710a,710b)随着轴1010的旋转而旋转,以使充电销(710a,710b)的钩部扣住或释放待充电设备,以对待充电设备充电或停止充电。例如,待充电设备放置在平台300a上,充电销(710a,710b)位于待充电设备的下方,平台300a可以呈框架形状,只要达到支撑待充电设备即可。或者,平台300a具有可以方便充电销(710a,710b)的钩部进出的开口。当拉/推杆1020向前或向后推动时,轴1010旋转并带动充电销(710a,710b)向上或向下转动,充电销(710a,710b)的钩部可以从平台300a的开口进出以扣住或释放待充电设备。
在一些实施例中,支撑平台300a放置在地面或平面上时,支撑平台300a的表面与地面或平面之间存在一个倾斜的角度。当一拉式旋转动力平台的充电销(710a,710b)释放待充电设备时,待充电设备可以往前移动。例如,当一拉式旋转动力平台的充电销(710a,710b)释放电动玩具汽车时, 由于电动玩具汽车已充好了电可以开始驱动车轮转动,电动玩具汽车顺着倾斜的支撑平台300a往前滚动。
在一些实施例中,发电机模块200可以包括但不限于手摇发电、手拉发电等手动发电方式,也可以是采用外部控制的方式控制发电机发电。
在一些实施例中,如图2所示,一拉式旋转动力平台还可以包括与平台300a一体成形的壳体300,发电机模块200设在壳体300的内部。此壳体300的结构与发电机模块200匹配,能够容纳发电机模块200并方便发电机模块200发电。例如,在壳体300中设置与手摇或手拉组件与连接的接口,可以产生可再生的电力,无需外部电源提供电能。再如,在壳体300中设置与外部电动机连接的接口,可以通过外部电动机供电。本实施例提供的壳体300旨在提供一个稳定的环境让发电机模块200工作,以产生更多的电力。
在一些实施例中,如图4所示,发电机模块200包括飞轮模块100、连接带230和直流电机210。连接带230可以是封闭的圈带,连接带230设在飞轮模块100上的第一皮带轮120和直流电机210的轴上的第二皮带轮220上,将第一皮带轮120和第二皮带轮220同时圈在连接带230围成的圈内;当通过外力旋转飞轮模块100时,第一皮带轮120旋转,位于第一皮带轮120上的连接带230则随之移动,且由于连接带230也位于第二皮带轮220上,第二皮带轮220也随连接带230的移动而旋转。由于第二皮带轮220是固定在直流电动机的轴上,则直流电机210的轴也会随着第二皮带轮220的旋转而旋转,进而使得直流电机210发电。在本实施例中,直流电机210具有发电的功能,当直流电机210的轴旋转时,直流电机210开始发电。当直流电机210的轴停止转旋时,直流电机210停止发电。
在本实施例中,第一皮带轮120的直径可以远大于第二皮带轮220的直径,在第一皮带轮120转动一圈时,第二皮带轮220可以转动多圈,提高发电效率,特别是在拉式手动发电的情况下。
在一些实施例中,如图5所示,图5是本发明提供的飞轮模块100一个实施例的拆分结构示意图。飞轮模块100包括至少一个环形齿轮130、所述第一皮带轮120、至少一个飞轮110和轴160。环形齿轮130、飞轮110和第一皮带轮120依次固定在所述飞轮模块100的轴160上,且环形齿轮130从飞轮110的一个侧面套入飞轮110的轴孔,飞轮110的另一个侧面与所述第一皮带轮120贴合。当然,在一些实施例中,第一皮带轮120的两个侧面分别贴合一个飞轮110且飞轮110的轴孔均套有环形齿轮130。具体地如下:
飞轮模块100包括两个环形齿轮130、第一皮带轮120、两个飞轮110和轴160。第一皮带轮120 夹在两个飞轮110的中间并固定在飞轮模块100的轴160上且两个飞轮110的半径大于第一皮带轮120的半径。如此,设置在第一皮带轮120上的连接在移动时可以避免从第一皮带轮120中脱离。两个环形齿轮130分别从轴160的两侧穿入,并套入到这两个飞轮110的轴孔中。在环形齿轮130旋转时可以旋转飞轮110。由于第一皮带轮120卡在两个飞轮110中间,随着飞轮110的旋转,第一皮带轮120也会随之旋转。
在一些实施例中,飞轮模块100还包括设置在飞轮模块100的轴160的两个边缘上的滚珠轴承140,或者其他与滚珠轴承140相类似的附加部件。滚珠轴承140可以在飞轮110模块100旋转时使摩擦最小化,减低飞轮110模块100旋转时的阻力达到更高的旋转速度及更长的旋转时间,从而产生更多的电力。
如图6所示,图6是本发明提供的直流电机210与第二皮带轮220的安装示意图。直流电机210的轴212套入到第二皮带轮220的轴孔中。直流电机210具有电流输出端,包括“+”的电流输出端210a和“-”的电流输出端210b。如图20所示,“+”的电流输出端210a通过导线212a与充电销710a连接,“-”的电流输出端210b通过导线212b与充电销710b连接。充电销710a传输正极“+”电流,充电销710b传输负极“-”电流。
在一些实施例中,如图7所示,上述壳体300为哨子形状,壳体300包括位于壳体300的哨嘴部位的平台300a和侧面与平台300a衔接的圆柱形腔体300b。平台300a与圆柱形腔体300b可以是一体成形的结构,两者之间的连接也可以为可拆缺连接。如图7和图8所示,图7和图8是本发明实施例提供的打开的壳体300的结构示意图。壳体300可以从壳体300的中轴线处拆分成两部分,方便拆装壳体300内的部件。其中,圆柱形腔体300b的两个底平面均与平台330a的平面相垂直。此相对的两个底平面的内壁(即,腔体300b的内平面)的中心点分别设有与飞轮模块100的轴160的两端相适应的连接孔301。飞轮模块100的轴160的两端分别固定在壳体300中相对的两个连接孔301内。
其中,轴160的两端的截面与连接孔301的截面形状可以是相同的。例如,轴160的两端的截面为圆形,连接孔301的截面也为圆形。在一些实施方式中,轴160的两端套接环形齿轮130,则连接孔301与环形齿轮130相匹配,环形齿轮130可以套入连接孔301并固定在连接孔301内。在一些实施方式中,轴160的两端除了套接环形齿轮130,还包括滚珠轴承140,其设在轴160的边缘上,则连接孔301与滚珠轴承140相匹配,滚珠轴承140可以套入连接孔301并固定在连接孔301中。
此外,直流电机210可以固定在圆柱形腔体300b与平台300a的衔接处内。衔接处具有一定的弧度,方便容纳直流电机210。如此,位于圆柱形腔体300b的飞轮模块100可以将动能顺着圆柱形腔体300b指向平台300a的方向传输机械动能给位于衔接处的直流电机210,直流电机210将接收到的机械动能转化电能,并沿着前述方向传送电能给位于平台300a上的待充电设备。如此,在能量传输的过程中,减少能量的损耗,提高能能的利用效率。
在一些实施例中,如图1和图9所示,图9是本发明实施例提供的扁平齿轮滑带170的结构示意图。壳体300还包括轨道320和扁平齿轮滑带170。其中,圆柱形腔体300b内的侧面上设有两个相对的开口,轨道320从圆柱形腔体300b的侧面上的一个开口穿入,经过环形齿轮130并从侧面的另一个开口穿出。扁平齿轮滑带170可以从圆柱形腔体300b的侧面上的一个开口穿入,在轨道320上滑行并从另一个开口穿出,扁平齿轮滑带170的表面设有弹出齿轮171,其均匀地分布在滑带的大部分表面上。扁平齿轮滑带170在轨道320上滑行的过程中,扁平齿轮滑带170上的弹出齿轮171与环形齿轮130相啮合。
如图10所示,图10是本发明实施例提供的扁平齿轮滑带170拉动飞轮模块100工作的示意图。扁平齿轮滑带170沿直行箭头的方向移动,由于扁平齿轮滑带170上的弹出齿轮171与环形齿轮130啮合,环形齿轮130可以被弹出齿轮171带动并按照图10的顺时针旋转箭头的方向转动,进而飞轮模块100按照顺时针旋转箭头的方向转动。
如图8所示,壳体300内的轨道320可以由上内壁320-u和下内壁320-d构成。下内壁320-d在经过环形齿轮130的位置上可以设置一个缺口320-c(如图8所示)。在扁平齿轮滑带170在轨道320中滑行时,弹出齿轮171可以从此缺口320-c弹出并与环形齿轮130啮合。在弹出齿轮171向前或向后移动时,环形齿轮130也随之移动。
在一些实施例中,如图9所示,扁平齿轮滑带170除了包括设有弹出齿轮171的滑带之外,还包括一个方便以手动的方式拉动滑带的拉环172。此拉环172可以设在滑带的一端。例如,在图9中的扁平齿轮滑带170中,滑带与拉环172可以一体成形。
在一些实施例中,参见图11和图12,图11是本发明实施例提供的拉杆模块的组装示意图。图12是本发明实施例提供的拉杆模块的外观结构示意图。拉杆模块1000还包括第一套筒1010-t1和第二套筒1010-t2。第一套筒1010-t1垂直固定在拉/推杆1020的一端。拉杆模块的轴1010穿过充电销(710a,710b)的孔,充电销(710a,710b)固定在轴1010上。然后,带充电销(710a,710b)轴1010的一端嵌入到第一套筒1010-t1当中。接着,第二套筒1010-t2插入带充电销(710a,710b)轴1010 的另一端,套筒的末端还设有端盖套件1040,用于防止轴1010从套筒中穿出。通过以上结构的连接,在拉/推杆1020向前或向后推动时,轴1010上所有的组件可以绕轴1010的中轴线同步旋转,即带动充电销旋转。
其次,如图12所示,端盖套件1040还可以避免轴1010从平台300a中滑出。
在一些实施例中,如图13和图14所示,图13和图14是本发明实施例提供的放置有电动玩具汽车的一拉式旋转动力平台的结构示意图。对于贯穿平台的拉杆模块1000的两侧,其中一侧设有连接孔1030,另一侧设有与所述连接孔1030相匹配的凸起1041。连接孔1030的中心与凸起1041的中心同一轴线,例如,与轴1010的轴线相同。从而,两个或两个以上的一拉式旋转动力平台可以通过以上结构实现并排连接。
示例性地,在拉/推杆1020中不贴合平台300a的侧面上,且第一套筒1010-t1与拉/推杆1020连接处所对应的位置上设置连接孔1030。在第二套筒1010-t2的端盖套件1040的表面设置凸起1041。如此,连接孔1030的中心与凸起1041的中心位于同一轴线,且为轴1010的轴线。
参见图15,图15是本发明实施例提供的两个一拉式旋转动力平台的连接示意图。对于相邻的两个一拉式旋转动力平台,其中一个平台300a的拉杆模块1000的凸起1041嵌入并固定于另一个平台300a的拉杆模块1000的连接孔1030。当向前或向后推动其中一个一拉式旋转动力平台的拉/推杆1020或拉/推手柄时,其可以控制其他所有平台的拉/推杆1020或拉/推手柄向前或向后推动,以使平台同时为待充电设备充电或同时释放所有的待充电设备。
在一些应用示例中,可以将多个一拉式旋转动力平台并排连接,多个电动玩具汽车置于这些平台之上。在充电完毕之时,向前推动其中一个平台的拉/推手柄,可以使得所有平台的拉/推手柄同时向前推动。所有平台上的充电销(710a,710b)释放所有的电动玩具汽车,电动玩具汽车同时受到供电并同时开始驾驶,以进行电动玩具汽车的比赛。
在一些实施例中,用于支撑待充电设备的平台具有一定的坡度,例如15度或30度等。可以方便待充电设备在充满电后从平台滑出去。
在一些实施例中,参见图28,本发明实施例还包括用于与平台300a的末端拼接的轨道300-xt。平台300a的中轴线与轨道300-xt的中轴线在同一轴线上。此轨道300-xt可以扩展待充电设备在平台上的可滑行长度。例如,汽车玩具可以在滑出平台300a之后沿着轨道300-xt行使。轨道300-xt沿着图28中的箭头方向与平台300a拼接,则轨道300-xt与平台300a拼接后的图示可以参考图29。进一步地,在平台300a的中轴线上的位置以及轨道300-xt的中轴线上可以设有滑槽(300s,300-st)。 如图7所示,位于平台300a的末端、平台300a中轴线上一段设有滑槽300s。如图28所示,位于轨道300-xt的中轴线上设有滑槽300-st。相应地,如果待充电设备的底部设有与滑槽(300s,300-st)匹配的引导销,可以参见图30的引导销的结构以及后文对引导销的描述。在待充电设备在平台300a或轨道300-xt上滑行时,待充电设备的引导销插入到滑槽当中,并随着待充电设备往前滑动,引导销也沿着滑槽往前滑动。因此,对于玩具汽车来说,玩具汽车可以根据轨道上的槽向前移动,而不会离开轨道行驶。
参见图16至图27,图16是本发明实施例提供的电动玩具汽车的的汽车底座的拆分结构示意图。图17是本发明实施例提供的电动玩具汽车的汽车底座的结构示意图。图18是本发明实施例提供的向上翻转板的结构示意图。图19是本发明实施例提供的驱动电动机的拆分结构示意图。图20至图22是本发明实施例提供的直流电机210为电源部件供电的结构示意图。图23是本发明提供的在一拉式旋转动力平台的路径上插入扁平齿轮滑带170的示意图。图24至图27是本发明提供的汽车底座与平台之间的连接关系的示意图。
本发明实施例提供一种电动玩具汽车,包括:设有驱动电动机460的汽车底座410和在表面设有用于储存或释放电力的电源部件的向上翻转板420。电源部件可以包括电容器440或可充电的电池等。汽车底座410的表面上设有位于向上翻转板420下方的第一金属板(470a,470b)和开口490。第一金属板(470a,470b)与驱动电动机460的连接,驱动电动机460通过齿轮与玩具汽车的车轮连接。向上翻转板420的一个侧边通过可旋转轴固定在汽车底座410上,向上翻转板420的底部设有第二金属板(422,424),且电源部件与第二金属板(422,424)连接。其中,在向上翻转板420平放时,第二金属板(422,424)能够与第一金属板(470a,470b)接触,电源部件可以为驱动电动机460供电。当汽车底座410置于如前述任一项实施例的一拉式旋转动力平台之上时,通过向前或向后推动拉/推杆来带动充电销(710a,710b)的钩部向汽车底座410移动,以使充电销(710a,710b)的钩部从平台的开口490进入并与第二金属板(422,424)接触。进一步地,推动向上翻转板420向上翻动,第二金属板(422,424)脱离第一金属板(470a,470b),一拉式旋转动力平台的充电销(710a,710b)与第二金属板(422,424)连接。即,一拉式旋转动力平台的发电机模块200与电动玩具汽车的电源部件连接,发电机模块200可以开始发电并为电动玩具汽车的电源部件充电,进入到充电模式。
其中,当第一金属板(470a,470b)与第二金属板(422,424)接触时,第一金属板470a与第二金属板422连接,传输正极“+”电流;第一金属板470b与第二金属板424连接,传输负极“-”电流。当充电销(710a,710b)与第二金属板(422,424)连接时,充电销710a与第二金属板422连接, 传输正极“+”电流;充电销710b与第二金属板424连接,传输负极“-”电流。
对于向上翻转板420的第二金属板(422,424)的结构,可以参见图18、图20至图21。向上翻转板420设有贯穿板面的空槽,第二金属板(422,424)内嵌在空槽内。第二金属板(422,424)的主体嵌在向上翻转板420的底平面,主体略高于向上翻转板420的底平面或至少与向上翻转板420的底平面持平。第二金属板(422,424)的两端分别进行折叠,可称为第一端和第二端。第一端向上折叠,使第二金属板(422,424)的第一端的板面可以与向上翻转板420的上平面持平。向上翻转板420表面的电源部件,例如电容器的引脚,可以与第一端的板面连接。第二端也向上折叠,可以如图28所示,使第二金属板(422,424)的第二端的部分板面可以与向上翻转板420的上平面持平。持平的板面可以支撑电源部件的尾部。
参见图20至图21,在电动玩具汽车放置在一拉式旋转动力平台上时,充电销(710a,710b)与第二金属板(422,424)抵接,并推动向上翻转板420向上翻动。一拉式旋转动力平台中的直流电机210依次通过导线(212a,212b)、充电销(710a,710b)、第二金属板(422,424)传输电流到电容器440,电容器440充电。
如图23所示,平台的发电机模块200的发电过程为:扁平齿轮滑带170从壳体300的轨道320的一个开口插入,并沿着轨道320滑动,并从轨道320的另一个开口穿出。在扁平齿轮滑带170插入壳体300之后,儿童的手指可以扣在扁平齿轮滑带170的拉环172中,并快速用力拉出扁平齿轮滑带170,拉动飞轮模块100旋转并转动直流电机210的轴。直流电机210开始发电并传输电流到电动玩具汽车的电源部件中。
此外,通过向前或向后推动拉/推杆1020来带动充电销(710a,710b)的钩部远离汽车底座410,充电销(710a,710b)的钩部逐渐从平台300a的开口穿出,向上翻转板420随着充电销(710a,710b)的钩部的下移而向下移动。充电销(710a,710b)的钩部完全从平台300a的开口穿出时,向上翻转板420平放,且充电销(710a,710b)的钩部不再与第二金属板(422,424)接触,第二金属板(422,424)再次与第一金属板(470a,470b)接触。此时,电源部件可以为电动玩具汽车的驱动电动机460供电,汽车可以往前行驶。从而,实现从充电模式变为正常模式。在正常模式中,电动玩具汽车的电源部件连接到电动玩具汽车的驱动电动机460,电流从电源部件传输到驱动电动机460,驱动电动机460开始转动汽车的车轮,汽车将从一拉式旋转动力平台驶出。
参见图24至图27,其展示了电动玩具汽车从开始充电到停止充电的过程。用户将电动玩具汽车放置在一拉式旋转动力平台上,由于充电销(710a,710b)从平台的表面的开口突出,充电销 (710a,710b)与电动玩具汽车的第二金属板(422,424)抵接,并推动向上翻转板420向上翻动。如果一拉式旋转动力平台中的直流电机210发电,则依次通过导线(212a,212b)、充电销(710a,710b)、第二金属板(422,424)传输电流到电容器440,为电容器440充电。参见图23,用户可以将手指扣在扁平齿轮滑带170的拉环172中,并快速用力拉出扁平齿轮滑带170,拉动飞轴模块旋转并转动直流电机210的轴,直流电机210发电。
待电动玩具汽车的电源部件的电容量满足工作需求之后,用户可以按照图26的箭头方向推动拉/推杆1020,拉/推杆1020带动充电销(710a,710b)向相同的方向旋转,充电销(710a,710b)向下从平台的开口退出,不再卡住电动玩具汽车。且电动玩具汽车的向上翻转板420再次平放在汽车底座410上,第二金属板(422,424)与第一金属板(470a,470b)接触,电源部件为电动玩具汽车的驱动电动机460供电,驱动电动机460驱动电动玩具汽车沿着图27的箭头方向向前行驶。
在一些实施例中,汽车底座410还包括设置在前部的前轮452和设置在后部的后轮451,电动机通过齿轮与前轮452连接。前轮452可以包括两个或四个,对半地设置在前轮452的轴的两端。后轮451可以包括两个或四个,对半地设置在前轮452的两端。
在一些实施例中,汽车底座410还包括固定在前轮452的轴、第一标准齿轮453和第二标准齿轮461,第一标准轮453固定在前轮452的轴上,第二标准齿轮461固定在驱动电动机的轴462上,第一标准齿轮453与第二标准齿轮461啮合。
在一些实施例中,如图30所示,汽车底座410还可以包括行车路线的引导销480,引导销480的一端固定在引导销的转轴480-1上,引导销480的转轴480-1插在汽车底座410的固定轴孔480-2中,转轴480-1可以绕轴孔旋转。引导销480的另一端为钩部,汽车底座410上放置引导销480的位置设置一开口,方便引导销480的钩部进出此开口。如果电动玩具汽车在中轴线上带有槽的轨道上行驶,用户可以将引导销480向下翻转,穿过汽车底座410的开口,并插入到轨道上的槽中,从而引导汽车在轨道上的固定路线行驶。如果电动玩具汽车在没有轨道或不带槽的轨道上行驶,用户可以将引导销480向上翻转,引导销480不再突出汽车底座的底平面,电动玩具汽车可以随意地在地面上行驶。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到其各种变化或替换,这些都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (13)

  1. 一种用于充电的一拉式旋转动力平台,其特征在于,包括:发电机模块、充电销、拉杆模块和用于支撑待充电设备的平台;
    所述发电机模块与所述充电销电连接;所述拉杆模块包括拉/推杆和与所述拉/推杆垂直连接的轴,所述拉杆模块的轴从所述平台的一侧插入并贯穿所述平台相对的两侧;所述充电销的一端固定在所述轴上,另一端为钩部;所述充电销用于扣住所述待充电设备并对所述待充电设备充电;所述拉/推杆在向前或向后推动时所述充电销随所述拉杆模块的轴的旋转而旋转,以使所述充电销的钩部扣住或释放所述待充电设备,以对所述待充电设备充电或停止充电。
  2. 如权利要求1所述的一拉式旋转动力平台,其特征在于,还包括与所述平台一体成形的壳体,所述发电机模块设在所述壳体的内部。
  3. 如权利要求2所述的一拉式旋转动力平台,其特征在于,所述发电机模块包括飞轮模块、连接带和直流电机;所述连接带连接固定在所述飞轮模块上的第一皮带轮和固定在所述直流电机的轴上的第二皮带轮;
    当所述飞轮模块旋转时,所述第一皮带轮带动所述连接带移动,所述连接带带动所述第二皮带轮旋转,并转动所述直流电机的轴以使所述直流电机发电。
  4. 如权利要求3所述的一拉式旋转动力平台,其特征在于,所述飞轮模块包括环形齿轮、所述第一皮带轮、飞轮和轴;所述环形齿轮、所述飞轮和所述第一皮带轮依次固定在所述飞轮模块的轴上,且所述环形齿轮套入所述飞轮的轴孔中,所述飞轮与所述第一皮带轮贴合。
  5. 如权利要求4所述的一拉式旋转动力平台,其特征在于,所述飞轮模块包括两个所述飞轮和两个所述环形齿轮,所述第一皮带轮的两个侧面分别贴合一个所述飞轮,两个所述环形齿轮分别套在所述飞轮的轴孔中。
  6. 如权利要求4所述的旋转动力平台,其特征在于,所述飞轮模块还包括设置在所述飞轮模块的轴的两个边缘上的滚珠轴承。
  7. 如权利要求3所述的旋转动力平台,其特征在于,所述壳体为哨子形状,所述壳体包括位于哨嘴部位的平台和侧面与所述平台衔接的圆柱形腔体,所述圆柱形腔体的两个内平面的中心位置分别设有与所述飞轮模块的轴的两端相适应的连接孔,所述飞轮模块的轴的两端分别固定相对的两个所述连接孔内,所述直流电机固定在所述圆柱形腔体与所述平台的衔接处内。
  8. 如权利要求7所述的一拉式旋转动力平台,其特征在于,所述圆柱形腔体还包括从所述圆 柱形腔体的侧面上的一个开口穿入并经过所述环形齿轮且最后从所述侧面的另一个开口穿出的轨道、以及设有与所述环形齿轮相啮合的弹出齿轮的扁平齿轮滑带,当所述扁平齿轮滑带沿着所述轨道移动时,所述扁平齿轮滑带转动所述环形齿轮,使所述飞轮模块转动。
  9. 如权利要求1所述的一拉式旋转动力平台,其特征在于,所述拉杆模块还包括第一套筒和第二套筒,所述第一套筒的一端垂直固定于所述拉/推杆;
    所述拉杆模块的轴穿过所述充电销的孔,所述充电销固定在所述拉杆模块的轴上,带所述充电销的轴的两端分别套入到所述第一套筒和所述第二套筒中。
  10. 如权利要求1所述的一拉式旋转动力平台,其特征在于,贯穿所述平台的所述拉杆模块的两侧中的一侧设有连接孔,另一侧设有能卡入并固定于所述连接孔的凸起,在两个以上所述平台并排时,其中一个所述平台的所述拉杆模块的凸起卡入并固定于另一个所述平台的所述拉杆模块的连接孔。
  11. 一种电动玩具汽车,其特征在于,包括:设有驱动电动机的汽车底座和在表面设有用于储存或释放电力的电源部件的向上翻转板;
    所述汽车底座的表面设有位于所述向上翻转板下方的第一金属板和开口,所述第一金属板与所述驱动电动机连接,所述驱动电动机通过齿轮与所述电动玩具汽车的车轮连接;
    所述向上翻转板的一个侧边通过可旋转轴固定在所述汽车底座上,所述向上翻转板的底部设有第二金属板,且所述电源部件与所述第二金属板连接;
    其中,在所述向上翻转板平放时,所述第二金属板与所述第一金属板接触,所述电源部件为所述驱动电动机供电;
    在所述汽车底座放置于如权利要求1至10任一项所述的一拉式旋转动力平台之上时,通过推拉所述拉/推杆来带动所述充电销的钩部向所述汽车底座移动,以使所述充电销的钩部从所述开口进入与所述第二金属板接触,并向上推动所述向上翻转板向上翻转,以使所述第二金属板脱离所述第一金属板,所述一拉式旋转动力平台为所述电动玩具汽车的电源部件充电。
  12. 如权利要求1所述的电动玩具汽车,其特征在于,所述汽车底座还包括设置在前部的前轮和设置在后部的后轮,所述驱动电动机通过齿轮与所述前轮连接。
  13. 如权利要求1所述的电动玩具汽车,其特征在于,所述汽车底座还包括固定在所述前轮的轴、第一标准齿轮和第二标准齿轮,所述第一标准轮固定在所述前轮的轴上,所述第二标准齿轮固定在所述电动机的轴上,所述第一标准齿轮与所述第二标准齿轮啮合。
PCT/CN2020/102840 2019-07-17 2020-07-17 用于充电的一拉式旋转动力平台和与其匹配的电动玩具 WO2021008618A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910645503.7 2019-07-17
CN201910645503.7A CN112240271A (zh) 2019-07-17 2019-07-17 用于充电的一拉式旋转动力平台和与其匹配的电动玩具

Publications (1)

Publication Number Publication Date
WO2021008618A1 true WO2021008618A1 (zh) 2021-01-21

Family

ID=74167356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102840 WO2021008618A1 (zh) 2019-07-17 2020-07-17 用于充电的一拉式旋转动力平台和与其匹配的电动玩具

Country Status (2)

Country Link
CN (1) CN112240271A (zh)
WO (1) WO2021008618A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2454002Y (zh) * 2000-09-30 2001-10-17 广州市速龙玩具有限公司 一种玩具赛车用跑道
JP2004215716A (ja) * 2003-01-09 2004-08-05 Takara Co Ltd 走行玩具システム
CN101741128A (zh) * 2010-01-08 2010-06-16 华北电力大学 一种拉锯式充电装置
CN202087058U (zh) * 2010-01-27 2011-12-28 王海丹 一种手摇发电折叠式轨道玩具车
CN206279415U (zh) * 2016-11-15 2017-06-27 马庆涛 基于飞轮储能原理的发电地板
CN107441677A (zh) * 2017-08-18 2017-12-08 罗江岚 动感单车健身装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5606207A (en) * 1995-04-11 1997-02-25 Gotoh; Kazuhiko Power generating apparatus for a bicycle
CN105186658B (zh) * 2015-10-15 2017-11-07 潘爱松 一种具有锻炼功能的手力发电充电器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2454002Y (zh) * 2000-09-30 2001-10-17 广州市速龙玩具有限公司 一种玩具赛车用跑道
JP2004215716A (ja) * 2003-01-09 2004-08-05 Takara Co Ltd 走行玩具システム
CN101741128A (zh) * 2010-01-08 2010-06-16 华北电力大学 一种拉锯式充电装置
CN202087058U (zh) * 2010-01-27 2011-12-28 王海丹 一种手摇发电折叠式轨道玩具车
CN206279415U (zh) * 2016-11-15 2017-06-27 马庆涛 基于飞轮储能原理的发电地板
CN107441677A (zh) * 2017-08-18 2017-12-08 罗江岚 动感单车健身装置

Also Published As

Publication number Publication date
CN112240271A (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
CA2359306C (en) A toy building set
CN102983616A (zh) 一种手动发电充电器
US20120028538A1 (en) Electrical charger for rechargeable electrical wireless unit
WO2021008618A1 (zh) 用于充电的一拉式旋转动力平台和与其匹配的电动玩具
CN101837196A (zh) 惯性行走的玩具车及其用于发射玩具车的发射器
CN112003351A (zh) 一种带有散热功能的定时防过充锂电池充电座
WO2017028648A1 (zh) 一种结构简单的模块拼装电动玩具车
CN201578860U (zh) 拉绳行走的玩具车
CN201491080U (zh) 手动充电手机
JP4718207B2 (ja) 携帯電子機器用充電装置
CN216536886U (zh) 行驶玩具
CN201178722Y (zh) 可以发电的鞋
CN202364055U (zh) 带有离合器的手摇发电机
CN206195438U (zh) 一种发电装置及包含该装置的鼠标和手机
EP2562909A1 (en) Electrical charger for a radio-controlled toy
CN102486163A (zh) 脚踏发电装置
CN201104521Y (zh) 一种发电、充电鞋
CN201651819U (zh) 一种跳绳发电式手电筒
CN2509765Y (zh) 一种新型环保电源
KR101052495B1 (ko) 휴대용 자가발전 충전장치
CN217886979U (zh) 一种自发电装置及具有该装置的声光玩具
CN210724243U (zh) 滚动式应急发电充电宝
CN113440870B (zh) 发电式玩具套装
CN211410977U (zh) 一种电动玩具鸽子
CN214030302U (zh) 一种环保可分型电池回收箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841352

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841352

Country of ref document: EP

Kind code of ref document: A1