WO2021008336A1 - 工频和冲击叠加电压波形的测量方法及系统 - Google Patents

工频和冲击叠加电压波形的测量方法及系统 Download PDF

Info

Publication number
WO2021008336A1
WO2021008336A1 PCT/CN2020/098676 CN2020098676W WO2021008336A1 WO 2021008336 A1 WO2021008336 A1 WO 2021008336A1 CN 2020098676 W CN2020098676 W CN 2020098676W WO 2021008336 A1 WO2021008336 A1 WO 2021008336A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
acquisition unit
low
sampling rate
power frequency
Prior art date
Application number
PCT/CN2020/098676
Other languages
English (en)
French (fr)
Inventor
龙兆芝
李文婷
周峰
雷民
刘少波
范佳威
王海燕
岳长喜
Original Assignee
中国电力科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国电力科学研究院有限公司 filed Critical 中国电力科学研究院有限公司
Priority to JP2021577392A priority Critical patent/JP7308306B2/ja
Publication of WO2021008336A1 publication Critical patent/WO2021008336A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/14Circuits therefor, e.g. for generating test voltages, sensing circuits

Definitions

  • This application relates to the technical field of transient voltage measurement, for example, to a method and system for measuring power frequency and impulse superimposed voltage waveforms.
  • a superimposed voltage test is sometimes required.
  • the power frequency voltage superimposed impulse voltage test is the most commonly used.
  • the superposition of different test voltages generated by two independent power sources connected in an appropriate manner is applied to one terminal of the test product at the same time.
  • a protective element is required between the two power supplies to prevent the voltage of one power supply from damaging the other power supply system.
  • the technical parameters of the superimposed voltage test include the voltage value U, the time delay ⁇ t and the parameters of the two voltage components.
  • Time delay refers to the time interval between the peak moments of two voltage components.
  • Figure 1 is a typical superimposed voltage test circuit of related technology. It can be seen from the figure that there is an isolation ball gap between the impulse voltage generator and the test product to prevent the power frequency voltage from being applied to the impulse voltage generator and protect the resistance and power frequency voltage.
  • the generator forms a voltage divider system to prevent the impulse voltage applied to the power frequency voltage from being too high and damaging the power supply equipment.
  • the lightning overvoltage will invade the power system directly or through induction, and the waveform of the transient overvoltage is the superimposed voltage of the power frequency voltage and the lightning impulse voltage.
  • the frequency range of the superimposed waveform is very large, from 50 Hz to MHz.
  • the power frequency voltage needs to be measured at least 3 cycles, and the measurement time cannot be less than 60ms, so that the sampling rate cannot be too high, and the sampling rate is too low to record the impulse voltage waveform completely, resulting in inaccurate voltage peak calculation. If the sampling rate is too high, the total recording time may be too short, the complete power frequency voltage cycle cannot be recorded, or the recording data may cause slow calculation.
  • the technical solution of this application provides a method and system for measuring power frequency and impulse superimposed voltage waveforms to solve the problem of how to measure the power frequency and impulse superimposed voltage waveforms.
  • This application provides a method for measuring power frequency and impulse superimposed voltage waveforms.
  • the method includes:
  • the low-voltage signal received by the high-sampling-rate acquisition unit and the low-sampling-rate acquisition unit are superimposed on the time axis through the trigger phase calculation module, and the trigger phase is calculated at the position of the high-voltage power frequency voltage cycle at the trigger moment .
  • a measurement system for power frequency and impulse superimposed voltage waveforms includes a broadband voltage divider, an impulse voltage calculation module, a power frequency voltage calculation module, and a trigger phase calculation module;
  • the wide-frequency voltage divider is configured to convert the high-voltage power frequency voltage and the superimposed impulse voltage waveform into a low-voltage signal, and output the low-voltage signal to a high sampling rate acquisition unit and a low sampling rate acquisition unit respectively;
  • the impulse voltage calculation module is configured to calculate the low voltage signal received by the high sampling rate acquisition unit to obtain the peak voltage and time parameters of the impulse voltage;
  • the power frequency voltage calculation module is configured to calculate the low voltage signal received by the low sampling rate acquisition unit to obtain the peak voltage and frequency parameters of the power frequency voltage;
  • the trigger phase calculation module is configured to superimpose the low-voltage signal received by the high-sampling-rate acquisition unit and the low-sampling-rate acquisition unit on the time axis, and pass the trigger moment at the position of the high-voltage power frequency voltage cycle Calculate the trigger phase.
  • Figure 1 is a schematic diagram of the superimposed voltage test principle according to the related technology
  • Figure 2 is a flow chart of a method for measuring power frequency and impulse superimposed voltage waveforms according to an alternative embodiment of the present application
  • FIG. 3 is a flowchart of a method for measuring power frequency and impulse superimposed voltage waveforms according to an optional embodiment of the present application
  • Fig. 4 is a structural diagram of a measurement system for power frequency and impulse superimposed voltage waveforms according to an alternative embodiment of the present application.
  • Fig. 2 is a flowchart of a method for measuring power frequency and impulse superimposed voltage waveforms according to an alternative embodiment of the present application.
  • the embodiment of the present application proposes a power frequency/impact superimposed voltage waveform measurement method, which can realize the collection and processing of voltage signals including a wide frequency range, and provide technical support for the measurement of transient overvoltage in the power system.
  • a method for measuring power frequency and impulse superimposed voltage waveforms includes:
  • step 201 convert the high-voltage power frequency voltage and the superimposed impulse voltage waveform into a low-voltage signal through a broadband voltage divider, and output the low-voltage signal to the high sampling rate acquisition unit and the low sampling rate acquisition unit respectively.
  • the broadband voltage divider is: a capacitor and resistor series voltage divider, or a capacitor and resistor parallel voltage divider.
  • the method includes: connecting the protective ball gap to the high-voltage side of the broadband voltage divider (ie, the broadband voltage divider).
  • the method further includes: separately triggering the impulse voltage and the high-voltage power frequency voltage.
  • the capacitor and resistor series voltage divider includes a voltage divider in which units are formed by series connected capacitors and resistors. For example, each unit is connected in series by a resistor and a capacitor.
  • the capacitor and resistor parallel voltage divider refers to a voltage divider that includes units formed by parallel capacitors and resistors. For example, each unit is connected in parallel by a resistor and a capacitor.
  • the broadband voltage divider of the present application converts the superimposed impulse voltage waveform of the high-voltage power frequency voltage into a low-voltage signal that can be collected by the data acquisition unit.
  • the output voltage signal of the same broadband voltage divider is measured by two acquisition units, a high sampling rate acquisition unit and a low sampling rate acquisition unit.
  • the wideband voltage divider is a series voltage divider of capacitors and resistors, or a parallel voltage divider of capacitors and resistors.
  • the high-voltage side of the broadband voltage divider is connected to the back end of the protective ball gap. Due to the existence of the protective ball gap, the actual impulse voltage waveform is inconsistent with the output waveform of the impulse voltage generator. The rise time is steeper.
  • a T-type connector is added to the end of the coaxial cable of the broadband voltage divider of the present application, and the measurement signal is simultaneously connected to two data acquisition units with different sampling rates.
  • the two data acquisition units with different sampling rates are a high sampling rate acquisition unit and a low sampling rate acquisition unit.
  • the impulse voltage calculation module is used to calculate the low voltage signal received by the high sampling rate acquisition unit to obtain the peak voltage and time parameters of the impulse voltage.
  • This application processes the discrete data collected by the high sampling rate acquisition unit through the impulse voltage calculation module, and obtains the impulse voltage peak voltage and time parameters.
  • the low-voltage signal received by the low sampling rate acquisition unit is calculated by the power frequency voltage calculation module to obtain the peak voltage and frequency parameters of the power frequency voltage.
  • the high sampling acquisition unit is set to an internal trigger mode, and the low sampling acquisition unit is set to an external trigger mode; the low sampling acquisition unit is triggered by a trigger signal of the high sampling acquisition unit.
  • the sampling rate of the low sampling rate acquisition unit for measuring the power frequency voltage signal is not less than 100kS/s and measuring at least 3 cycles; the sampling rate of the high sampling rate acquisition unit for measuring the impulse voltage signal is not less than 100MS/s, measuring The time is not less than 200us.
  • This application processes the discrete data collected by the low sampling rate acquisition unit through the power frequency voltage calculation module, and calculates the power frequency voltage peak value, frequency and other parameters.
  • the high sampling rate acquisition unit is set to internal trigger mode
  • the low sampling rate acquisition unit is set to external trigger mode
  • the trigger signal of the high sampling rate acquisition unit is used to trigger the low sampling rate acquisition unit, which can guarantee the trigger time of two acquisition units Consistent.
  • the sampling rate of the data acquisition unit for measuring power frequency voltage signals in this application is not less than 100 kS/s, and it measures at least 3 cycles.
  • the sampling rate of the data single-stage unit for measuring the impulse voltage signal is not less than 100MS/s, and the measurement time is not less than 200us.
  • the two collection units of this application measure the same signal and can be placed in a metal shielded box to eliminate the surrounding electromagnetic field interference.
  • step 204 superimpose the low-voltage signals received by the high-sampling-rate acquisition unit and the low-sampling-rate acquisition unit on the time axis through the trigger phase calculation module, and calculate the trigger phase at the position of the high-voltage power frequency voltage cycle at the trigger moment .
  • the present application superimposes the data obtained by the two acquisition units on the time axis through the trigger phase calculation module, and calculates the trigger phase at the position of the power frequency voltage cycle at the trigger time. At this time, the maximum peak value of the superimposed waveform can be calculated.
  • the waveform superimposition display module displays the superimposed data and waveform parameter results on the PC.
  • the embodiments of this application are suitable for measuring superimposed voltage waveforms in laboratories, and are also suitable for measuring actual transient overvoltage waveforms in substations and extracting characteristic parameters.
  • the key waveform parameters on the superimposed waveform can be accurately obtained, which resolves the contradiction between the measurement time and the sampling rate.
  • This application triggers the transient voltage and the power frequency voltage separately to simplify the calculation while increasing the calculation speed.
  • the embodiments of this application are also suitable for transient overvoltage measurement at the substation site.
  • the measurement method of the superimposed waveform of 100kV power frequency voltage and 200kV impulse voltage is as follows. Use an 800kV weakly damped voltage divider to convert the high-voltage superimposed voltage waveform into a low-voltage signal.
  • the output voltage waveform of the voltage divider is outputted to two digital oscilloscopes MDO3052 through the T-connector. Signal input terminal.
  • High sampling rate digital oscilloscope sampling rate is set to 100MS/s, edge trigger.
  • the sampling rate of the low sampling rate digital oscilloscope is set to 100kS/s, and external triggering.
  • the trigger signal of the low sampling rate oscilloscope is provided by the high sampling rate digital oscilloscope.
  • Two digital oscilloscopes are placed in the same metal shielded box.
  • the collected data of the digital oscilloscope is transmitted to different PCs through the network cable.
  • the impulse voltage calculation module calculates the impulse voltage peak voltage and rise time T 1 and half-peak time T 2 , and outputs the filtered impulse data file.
  • the power frequency voltage calculation module calculates the voltage peak-to-peak value, effective value and frequency and other parameters, and outputs the filtered power frequency data file.
  • the trigger phase calculation module superimposes the two data files on the same time axis after the trigger time point to calculate the characteristic parameters such as the superimposed phase ⁇ , time delay, and voltage peak value at the superimposed point.
  • Fig. 4 is a structural diagram of a measurement system for power frequency and impulse superimposed voltage waveforms according to an alternative embodiment of the present application. As shown in Figure 4, this application provides a measurement system for power frequency and impulse superimposed voltage waveforms.
  • 1 is a broadband voltage divider
  • 2 is a coaxial cable
  • 3 is a T-connector
  • 4 is a high sampling rate acquisition unit.
  • 5 is a low sampling rate acquisition unit
  • 6 is an external trigger cable
  • 7 is a metal shielded box
  • 8 is a network cable
  • 9 is a computer or various intelligent terminals.
  • the measurement system for the power frequency and impulse superimposed voltage waveforms includes a broadband voltage divider 1, an impulse voltage calculation module, a power frequency voltage calculation module, and a trigger phase calculation module.
  • the high-voltage power frequency voltage and superimposed impulse voltage waveforms are converted into low-voltage signals through the broadband voltage divider 1, and the low-voltage signals can be output to the high sampling rate acquisition unit 4 and the low sampling rate acquisition unit 5 respectively; optionally, the broadband voltage divider 1 It is: a series voltage divider of a capacitor and a resistance, or a parallel voltage divider of a capacitor and a resistance.
  • the system further includes a protective ball gap, which is connected to the high-voltage side of the broadband voltage divider.
  • the peak voltage and time parameters of the impulse voltage can be obtained.
  • the power frequency voltage calculation module calculates the low voltage signal received by the low sampling rate acquisition unit 5, and the peak voltage and frequency parameters of the power frequency voltage can be obtained.
  • the system further includes: the sampling rate of the low sampling rate acquisition unit for measuring the power frequency voltage signal is not less than 100kS/s, and measuring at least 3 cycles; the sampling rate of the high sampling rate acquisition unit for measuring the impulse voltage signal is not less than 100MS /s, the measurement time is not less than 200us.
  • the trigger phase calculation module superimposes the low voltage signals received by the high sampling rate acquisition unit and the low sampling rate acquisition unit on the time axis, and the trigger phase can be calculated at the position of the high voltage power frequency voltage cycle at the trigger moment.
  • the system further includes: the high sampling acquisition unit is set to an internal trigger mode, and the low sampling acquisition unit is set to an external trigger mode; and the low sampling acquisition unit is triggered by a trigger signal of the high sampling acquisition unit.
  • the system further includes: triggering the impulse voltage and the high-voltage power frequency voltage respectively.
  • the power frequency and impulse superimposed voltage waveform measurement system 400 of the alternative embodiment of the present application corresponds to the power frequency and impulse superimposed voltage waveform measurement method 200 of another alternative embodiment of the present application, and will not be repeated here.
  • the technical solution of this application provides a method for measuring power frequency and impulse superimposed voltage waveforms.
  • the method includes: converting the high-voltage power frequency voltage and superimposed impulse voltage waveforms into low-voltage signals through a broadband voltage divider, and outputting the low-voltage signals to high sampling rate acquisition Unit and low sampling rate acquisition unit; calculate the low-voltage signal received by the high sampling rate acquisition unit through the impulse voltage calculation module to obtain the peak voltage and time parameters of the impulse voltage; use the power frequency voltage calculation module to receive the low sampling rate acquisition unit The low-voltage signal is calculated to obtain the peak voltage and frequency parameters of the power frequency voltage; the low-voltage signal received by the high sampling rate acquisition unit and the low sampling rate acquisition unit is superimposed on the time axis through the trigger phase calculation module, and the The position of the frequency voltage cycle calculates the trigger phase.
  • An accurate measurement method and system for power frequency/impact superimposed waveforms proposed in the technical solution of this application can accurately obtain key waveform parameters on superimposed waveforms by using two acquisition units with different sampling rates, which solves the problem of measurement time and sampling rate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Relating To Insulation (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一种工频和冲击叠加电压波形的测量方法,包括:通过宽频分压器将高压工频电压和叠加冲击电压波形转换为低压信号,将低压信号分别输出至高采样率采集单元和低采样率采集单元(201);通过冲击电压计算模块对高采样率采集单元接收的低压信号进行计算,获取冲击电压的峰值电压和时间参数(202);通过工频电压计算模块对低采样率采集单元接收的低压信号进行计算,获取工频电压的峰值电压和频率参数(203);通过触发相位计算模块对高采样率采集单元和低采样率采集单元接收的低压信号在时间轴上进行叠加,通过触发时刻在高压工频电压周波的位置计算触发相位(204)。

Description

工频和冲击叠加电压波形的测量方法及系统
本公开要求在2019年07月17日提交中国专利局、申请号为201910645797.3的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及暂态电压测量技术领域,例如涉及一种工频和冲击叠加电压波形的测量方法及系统。
背景技术
为了考核防雷设备如避雷器的绝缘能力,除了单独进行工频耐压试验和冲击耐压试验,有时还需要进行叠加电压试验。相关技术中,使用最多的是工频电压叠加冲击电压试验,用适当方式连接的两个独立电源产生的不同的试验电压的叠加,两个电源同时施加在试品的一个端子上。两个电源之间需要采用保护元件避免一个电源的电压损坏另一套电源系统。叠加电压试验的技术参数包括电压值U、时延Δt以及两个电压分量的参数。电压值是指作用在试品上引起叠加两个试验电压,合成电压U=U 1+U 2。时延指两个电压分量达到峰值时刻之间的时间间隔。图1为相关技术典型的叠加电压试验电路,从图中可以看出冲击电压发生器和试品之间存在隔离球隙,防止工频电压施加到冲击电压发生器上,保护电阻和工频电压发生器组成分压系统,防止施加在工频电压上的冲击电压过高,损坏电源设备。
当电力系统输变电设备或附近物体遭受雷击时,雷电过电压会直接或通过感应侵入电力系统,而暂态过电压的波形即为工频电压和雷电冲击电压的叠加电压。
对于叠加电压的测量,相关技术中,通常使用采集仪器测量。此时存在的主要问题是,叠加波形包含的频率范围非常大,从50Hz值至MHz。工频电压至少需要测量3个周波,测量时间不能小于60ms,从而使得采样率不能太高,而采样率太低不能完整记录冲击电压波形,导致电压峰值计算不准确。采样率太高又可能导致总记录时间太短,不能记录完整的工频电压周波,或者记录数据过多而导致计算缓慢。
因此,需要一种技术,以实现对工频和冲击叠加电压波形的测量。
发明内容
本申请技术方案提供一种工频和冲击叠加电压波形的测量方法及系统,以解决如何对工频和冲击叠加电压波形进行测量的问题。
本申请提供了一种工频和冲击叠加电压波形的测量方法,所述方法包括:
通过宽频分压器将高压工频电压和叠加冲击电压波形转换为低压信号,将所述低压信号分别输出至高采样率采集单元和低采样率采集单元;
通过冲击电压计算模块对所述高采样率采集单元接收的所述低压信号进行计算,获取冲击电压的峰值电压和时间参数;
通过工频电压计算模块对所述低采样率采集单元接收的所述低压信号进行计算,获取工频电压的峰值电压和频率参数;
通过触发相位计算模块对所述高采样率采集单元和所述低采样率采集单元接收的所述低压信号在时间轴上进行叠加,通过触发时刻在所述高压工频电压周波的位置计算触发相位。
基于本申请的另一方面,提供一种工频和冲击叠加电压波形的测量系统,所述系统包括宽频分压器、冲击电压计算模块、工频电压计算模块和触发相位计算模块;
所述宽频分压器设置为将高压工频电压和叠加冲击电压波形转换为低压信号,将所述低压信号分别输出至高采样率采集单元和低采样率采集单元;
所述冲击电压计算模块设置为对所述高采样率采集单元接收的所述低压信号进行计算,获取冲击电压的峰值电压和时间参数;
所述工频电压计算模块设置为对所述低采样率采集单元接收的所述低压信号进行计算,获取工频电压的峰值电压和频率参数;
所述触发相位计算模块设置为对所述高采样率采集单元和所述低采样率采集单元接收的所述低压信号在时间轴上进行叠加,通过触发时刻在所 述高压工频电压周波的位置计算触发相位。
附图说明
通过参考下面的附图,可以更为完整地理解本申请的示例性实施方式:
图1为根据相关技术的叠加电压试验原理示意图;
图2为根据本申请可选实施方式的工频和冲击叠加电压波形的测量方法流程图;
图3为根据本申请可选实施方式的工频和冲击叠加电压波形的测量方法流程图;
图4为根据本申请可选实施方式的工频和冲击叠加电压波形的测量系统结构图。
具体实施方式
现在参考附图介绍本申请的示例性实施方式,然而,本申请可以用许多不同的形式来实施,并且不局限于此处描述的实施例,提供这些实施例是为了详尽地且完全地公开本申请,并且向所属技术领域的技术人员充分传达本申请的范围。对于表示在附图中的示例性实施方式中的术语并不是对本申请的限定。在附图中,相同的单元/元件使用相同的附图标记。
除非另有说明,此处使用的术语(包括科技术语)对所属技术领域的技术人员具有通常的理解含义。另外,可以理解的是,以通常使用的词典限定的术语,应当被理解为与其相关领域的语境具有一致的含义,而不应该被理解为理想化的或过于正式的意义。
图2为根据本申请可选实施方式的工频和冲击叠加电压波形的测量方法流程图。本申请实施方式提出一种工频/冲击叠加电压波形测量方法,能够实现包含宽频率范围的电压信号的采集与处理,对电力系统中暂态过电压的测量提供技术支撑。如图2所示,一种工频和冲击叠加电压波形的测量方法,方法包括:
可选地,在步骤201:通过宽频分压器将高压工频电压和叠加冲击电 压波形转换为低压信号,将低压信号分别输出至高采样率采集单元和低采样率采集单元。可选地,宽频分压器为:电容、电阻串联分压器,或电容、电阻并联分压器。可选地,所述方法包括:将保护球隙连接于宽频电压分压器(即:宽频分压器)的高压侧。可选地,所述方法还包括:分别进行对冲击电压和高压工频电压的触发。
可理解的是,所述电容、电阻串联分压器是指,包括由串联的电容、电阻形成单元的分压器,示例性地,每个单元由一个电阻和一个电容串联。所述电容、电阻并联分压器是指,包括由并联的电容、电阻形成单元的分压器,示例性地,每个单元由一个电阻和一个电容并联。
本申请的宽频电压分压器将高压工频电压叠加冲击电压波形转换成可供数据采集单元采集的低压信号。通过高采样率采集单元和低采样率采集单元两台采集单元测量同一台宽频分压器的输出电压信号。宽频电压分压器为电容、电阻串联分压器,或电容、电阻并联分压器。本申请的工频/冲击联合电压波形测量方法,宽频电压分压器的高压侧与保护球隙后端相连,由于保护球隙的存在,实际冲击电压波形与冲击电压发生器的输出波形不一致,上升时间更陡。本申请的宽频分压器的同轴电缆末端增加T型连接器,将测量信号同时接入两台采样率不同的数据采集单元。两台不同采样率测数据采集单元分别为高采样率采集单元和低采样率采集单元。
可选地,在步骤202:通过冲击电压计算模块对高采样率采集单元接收的低压信号进行计算,获取冲击电压的峰值电压和时间参数。本申请通过冲击电压计算模块处理高采样率采集单元采集的离散数据,并获得冲击电压峰值电压和时间参数。
可选地,在步骤203:通过工频电压计算模块对低采样率采集单元接收的低压信号进行计算,获取工频电压的峰值电压和频率参数。可选地,高采样采集单元设置为内触发模式,低采样采集单元设置为外触发模式;通过高采样采集单元的触发信号对低采样采集单元进行触发。可选地,测量工频电压信号的低采样率采集单元的采样率不小于100kS/s,测量至少3个周波;测量冲击电压信号的高采样率采集单元的采样率不小于100MS/s, 测量时间不短于200us。
本申请通过工频电压计算模块处理低采样率采集单元采集的离散数据,并计算工频电压峰值、频率等参数。本申请中,高采样率采集单元设置为内触发模式,低采样率采集单元设置为外触发模式,使用高采样率采集单元的触发信号触发低采样率采集单元,可保证两台采集单元触发时间一致。本申请测量工频电压信号的数据采集单元的采样率不小于100kS/s,测量至少3个周波。测量冲击电压信号的数据单级单元的采样率不小于100MS/s,测量时间不短200us。本申请的两台采集单元测量同一信号,可置于一个金属屏蔽箱内,以消除周围电磁场干扰。
可选地,在步骤204:通过触发相位计算模块对高采样率采集单元和低采样率采集单元接收的低压信号在时间轴上进行叠加,通过触发时刻在高压工频电压周波的位置计算触发相位。如图3所示,本申请通过触发相位计算模块将两台采集单元获得的数据在时间轴上进行叠加,通过触发时刻在工频电压周波的位置计算触发相位。此时可计算叠加波形的最大峰值。波形叠加显示模块将叠加的数据和波形参数结果在PC机上进行显示。
本申请实施方式适用于实验室测量叠加电压波形,也适用于在变电站测量实际的暂态过电压波形并提取特性参数。本申请通过使用两台采样率不同的采集单元,可准确获取叠加波形上的关键波形参数,解决了测量时间与采样率之间的矛盾。本申请对暂态电压和工频电压进行分别触发,简化计算的同时提升计算速度。本申请实施方式同时适用于变电站现场的暂态过电压测量。
以下对本申请实施方式进行举例说明:
100kV工频电压和200kV冲击电压叠加波形测量方法如下,使用800kV弱阻尼分压器将高压叠加电压波形转换成低压信号,分压器的输出电压波形通过T型连接器输出两台数字示波器MDO3052的信号输入端。高采样率数字示波器采样率设置为100MS/s,边沿触发。低采样率数字示波器的采样率设置为100kS/s,外部触发。低采样率示波器的触发信号由高采样率数字示波器提供。两台数字示波器置于同一个金属屏蔽盒中。
数字示波器的采集数据通过网线传输至不同的PC机,冲击电压计算模 块计算冲击电压峰值电压和上升时间T 1和半峰值时间T 2,输出经过滤波的冲击数据文件。工频电压计算模块计算电压峰峰值,有效值和频率等参数,输出经过滤波的工频数据文件。触发相位计算模块,将两个数据文件在触发时间点之后进行同一时间轴的叠加,从而计算叠加相位θ、时延以及叠加点电压峰值等特性参数。
图4为根据本申请可选实施方式的工频和冲击叠加电压波形的测量系统结构图。如图4所示,本申请提供一种工频和冲击叠加电压波形的测量系统,1为宽频分压器,2为同轴电缆,3为T型连接件,4为高采样率采集单元,5为低采样率采集单元,6为外触发电缆,7为金属屏蔽盒,8为网线,9为电脑或各种智能终端。
在一些实施例中,所述工频和冲击叠加电压波形的测量系统包括宽频分压器1、冲击电压计算模块、工频电压计算模块和触发相位计算模块。
通过宽频分压器1将高压工频电压和叠加冲击电压波形转换为低压信号,可以将低压信号分别输出至高采样率采集单元4和低采样率采集单元5;可选地,宽频分压器1为:电容、电阻串联分压器,或电容、电阻并联分压器。可选地,系统还包括保护球隙,保护球隙连接于宽频电压分压器的高压侧。
通过冲击电压计算模块对高采样率采集单元4接收的低压信号进行计算,可以获取冲击电压的峰值电压和时间参数。
通过工频电压计算模块对低采样率采集单元5接收的低压信号进行计算,可以获取工频电压的峰值电压和频率参数。
可选地,系统还包括:测量工频电压信号的低采样率采集单元的采样率不小于100kS/s,测量至少3个周波;测量冲击电压信号的高采样率采集单元的采样率不小于100MS/s,测量时间不短于200us。
通过触发相位计算模块对高采样率采集单元和低采样率采集单元接收的低压信号在时间轴上进行叠加,可以通过触发时刻在高压工频电压周波的位置计算触发相位。
可选地,系统还包括:高采样采集单元设置为内触发模式,低采样采集单元设置为外触发模式;通过高采样采集单元的触发信号对低采样采集 单元进行触发。
可选地,系统还包括:分别进行对冲击电压和的高压工频电压的触发。
本申请可选实施方式的工频和冲击叠加电压波形的测量系统400与本申请另一可选实施方式的工频和冲击叠加电压波形的测量方法200相对应,在此不再进行赘述。
已经通过参考少量实施方式描述了本申请。然而,本领域技术人员所公知的,正如附带的专利权利要求所限定的,除了本申请以上公开的其他的实施例等同地落在本申请的范围内。
通常地,在权利要求中使用的所有术语都根据他们在技术领域的通常含义被解释,除非在其中被另外明确地定义。所有的参考“一个/所述/该[装置、组件等]”都被开放地解释为所述装置、组件等中的至少一个实例,除非另外明确地说明。这里公开的任何方法的步骤都没必要以公开的准确的顺序运行,除非明确地说明。
本申请技术方案提供一种工频和冲击叠加电压波形的测量方法,方法包括:通过宽频分压器将高压工频电压和叠加冲击电压波形转换为低压信号,将低压信号分别输出至高采样率采集单元和低采样率采集单元;通过冲击电压计算模块对高采样率采集单元接收的低压信号进行计算,获取冲击电压的峰值电压和时间参数;通过工频电压计算模块对低采样率采集单元接收的低压信号进行计算,获取工频电压的峰值电压和频率参数;通过触发相位计算模块对高采样率采集单元和低采样率采集单元接收的低压信号在时间轴上进行叠加,通过触发时刻在高压工频电压周波的位置计算触发相位。本申请技术方案提出的一种工频/冲击叠加波形的准确测量方法及系统,通过使用两台采样率不同的采集单元,可准确获取叠加波形上的关键波形参数,解决了测量时间与采样率之间的矛盾,既满足的高频电压波 形的准确采集,又能提高计算速度,保证工作效率。

Claims (11)

  1. 一种工频和冲击叠加电压波形的测量方法,所述方法包括:
    通过宽频分压器将高压工频电压和叠加冲击电压波形转换为低压信号,将所述低压信号分别输出至高采样率采集单元和低采样率采集单元;
    通过冲击电压计算模块对所述高采样率采集单元接收的所述低压信号进行计算,获取冲击电压的峰值电压和时间参数;
    通过工频电压计算模块对所述低采样率采集单元接收的所述低压信号进行计算,获取工频电压的峰值电压和频率参数;
    通过触发相位计算模块对所述高采样率采集单元和所述低采样率采集单元接收的所述低压信号在时间轴上进行叠加,通过触发时刻在所述高压工频电压周波的位置计算触发相位。
  2. 根据权利要求1所述的方法,所述宽频分压器为电容、电阻串联分压器,或电容、电阻并联分压器。
  3. 根据权利要求1所述的方法,所述方法还包括:将保护球隙连接于所述宽频分压器的高压侧。
  4. 根据权利要求1所述的方法,所述方法还包括:将所述高采样采集单元设置为内触发模式,将所述低采样采集单元设置为外触发模式;
    通过所述高采样采集单元的触发信号对所述低采样采集单元进行触发。
  5. 根据权利要求1所述的方法,所述方法还包括:测量工频电压信号的所述低采样率采集单元的采样率不小于100kS/s,所述低采样率采集单元测量至少3个周波;
    其中,测量冲击电压信号的所述高采样率采集单元的采样率不小于100MS/s,测量时间不短于200us。
  6. 根据权利要求1所述的方法,所述方法还包括:分别进行对所述冲击电压和所述高压工频电压触发。
  7. 一种工频和冲击叠加电压波形的测量系统,所述系统包括宽频分压器、冲击电压计算模块、工频电压计算模块和触发相位计算模块;
    所述宽频分压器设置为将高压工频电压和叠加冲击电压波形转换为低 压信号,将所述低压信号分别输出至高采样率采集单元和低采样率采集单元;
    所述冲击电压计算模块设置为对所述高采样率采集单元接收的所述低压信号进行计算,获取冲击电压的峰值电压和时间参数;
    所述工频电压计算模块设置为对所述低采样率采集单元接收的所述低压信号进行计算,获取工频电压的峰值电压和频率参数;
    所述触发相位计算模块设置为对所述高采样率采集单元和所述低采样率采集单元接收的所述低压信号在时间轴上进行叠加,通过触发时刻在所述高压工频电压周波的位置计算触发相位。
  8. 根据权利要求7所述的系统,所述宽频分压器为电容、电阻串联分压器,或电容、电阻并联分压器。
  9. 根据权利要求7所述的系统,包括保护球隙,所述保护球隙连接于所述宽频分压器的高压侧。
  10. 根据权利要求7所述的系统,其中,所述高采样采集单元设置为内触发模式,所述低采样采集单元设置为外触发模式;
    所述低采样采集单元设置为通过所述高采样采集单元的触发信号进行触发。
  11. 根据权利要求7所述的系统,其中,测量工频电压信号的所述低采样率采集单元的采样率不小于100kS/s,所述低采样率采集单元设置为测量至少3个周波;
    测量冲击电压信号的所述高采样率采集单元的采样率设置为不小于100MS/s,所述高采样率采集单元设置为测量时间不短于200us。
PCT/CN2020/098676 2019-07-17 2020-06-29 工频和冲击叠加电压波形的测量方法及系统 WO2021008336A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021577392A JP7308306B2 (ja) 2019-07-17 2020-06-29 商用電圧及びインパルス電圧の重畳電圧波形の測定方法及びシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910645797.3 2019-07-17
CN201910645797.3A CN110398675A (zh) 2019-07-17 2019-07-17 一种用于对工频和冲击叠加电压波形的测量的方法及系统

Publications (1)

Publication Number Publication Date
WO2021008336A1 true WO2021008336A1 (zh) 2021-01-21

Family

ID=68325751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098676 WO2021008336A1 (zh) 2019-07-17 2020-06-29 工频和冲击叠加电压波形的测量方法及系统

Country Status (3)

Country Link
JP (1) JP7308306B2 (zh)
CN (1) CN110398675A (zh)
WO (1) WO2021008336A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590057A (zh) * 2024-01-17 2024-02-23 中国电力科学研究院有限公司 一种冲击电压峰值及时间参数全量程溯源实现方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110398675A (zh) * 2019-07-17 2019-11-01 中国电力科学研究院有限公司 一种用于对工频和冲击叠加电压波形的测量的方法及系统
CN112345903A (zh) * 2020-10-29 2021-02-09 中国电力科学研究院有限公司 一种用于工频叠加冲击电压的电压发生装置及方法
CN112666434B (zh) * 2020-11-23 2023-12-05 中国电力科学研究院有限公司 特高压直流电缆叠加冲击试验装置的参数确定方法及系统
CN115047301A (zh) * 2022-06-29 2022-09-13 中国电力科学研究院有限公司 一种测量工频叠加操作冲击电压信号的方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271267A (ja) * 1989-04-13 1990-11-06 Toshiba Corp 過電圧測定装置
CN102608388A (zh) * 2012-03-13 2012-07-25 中国电力科学研究院 一种vfto的测量方法和系统
CN202903954U (zh) * 2012-11-02 2013-04-24 湖南省电力公司科学研究院 绝缘子串工频任意相角叠加雷电冲击试验装置
CN106124843A (zh) * 2016-07-08 2016-11-16 国网上海市电力公司 一种交流电网暂态过程的宽频带监测系统
CN106526476A (zh) * 2016-12-21 2017-03-22 国家电网公司 一种工频续流遮断能力试验合成回路同步控制装置及方法
CN110398675A (zh) * 2019-07-17 2019-11-01 中国电力科学研究院有限公司 一种用于对工频和冲击叠加电压波形的测量的方法及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341005Y2 (zh) * 1974-03-02 1978-10-03
JP2011128130A (ja) * 2010-03-12 2011-06-30 Nissin Electric Co Ltd インパルス電流発生装置
CN204154824U (zh) * 2014-09-23 2015-02-11 广东电网有限责任公司佛山供电局 冲击电压与工频振荡合成回路试验平台
CN104297647B (zh) * 2014-10-16 2017-04-05 四川大学 工频叠加冲击试验的试验方法
CN108896883B (zh) * 2018-06-28 2021-01-08 四川大学 架空线路在冲击电压下的闪络故障模拟装置及模拟方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02271267A (ja) * 1989-04-13 1990-11-06 Toshiba Corp 過電圧測定装置
CN102608388A (zh) * 2012-03-13 2012-07-25 中国电力科学研究院 一种vfto的测量方法和系统
CN202903954U (zh) * 2012-11-02 2013-04-24 湖南省电力公司科学研究院 绝缘子串工频任意相角叠加雷电冲击试验装置
CN106124843A (zh) * 2016-07-08 2016-11-16 国网上海市电力公司 一种交流电网暂态过程的宽频带监测系统
CN106526476A (zh) * 2016-12-21 2017-03-22 国家电网公司 一种工频续流遮断能力试验合成回路同步控制装置及方法
CN110398675A (zh) * 2019-07-17 2019-11-01 中国电力科学研究院有限公司 一种用于对工频和冲击叠加电压波形的测量的方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHOU, KAI ET AL.: "Development of Test Device of Controllable Phase for Synergy of Power Frequency Voltage and Impulse Voltage", HIGH VOLTAGE ENGINEERING, vol. 44, no. 3, 31 March 2018 (2018-03-31), ISSN: 1003-6520, DOI: 20200907170633A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590057A (zh) * 2024-01-17 2024-02-23 中国电力科学研究院有限公司 一种冲击电压峰值及时间参数全量程溯源实现方法及装置
CN117590057B (zh) * 2024-01-17 2024-04-02 中国电力科学研究院有限公司 一种冲击电压峰值及时间参数全量程溯源实现方法及装置

Also Published As

Publication number Publication date
JP7308306B2 (ja) 2023-07-13
CN110398675A (zh) 2019-11-01
JP2022538874A (ja) 2022-09-06

Similar Documents

Publication Publication Date Title
WO2021008336A1 (zh) 工频和冲击叠加电压波形的测量方法及系统
CN106872866A (zh) 并联避雷器均流特性测试系统
CN104698352B (zh) 一种小间隙放电时延测量装置及测量方法
KR100498927B1 (ko) 피뢰기의 열화 진단에 있어서 시간 지연 합성법을 이용한저항성 누설전류의 측정 방법 및 장치
CN110456123B (zh) 一种宽频暂态电压分压测量装置及方法
CN108761184B (zh) 一种基于雷电冲击的铁塔电位分布及阻抗特性测试方法
Yutthagowith Rogowski coil with a non-inverting integrator used for impulse current measurement in high-voltage tests
CN104977555A (zh) 一种直接注入可控脉冲源局放仪的测试系统及其测试方法
Zhao et al. Testing and modelling of voltage transformer for high order harmonic measurement
CN104865438A (zh) 一种氧化锌避雷器阻性电流基波测量方法
Wang et al. Capacitive voltage sensor array for detecting transient voltage distribution in transformer windings
Ge et al. A test method for response behavior of metal-oxide arrester subjected to transient electromagnetic disturbances
CN107024613A (zh) 高压馈电电缆方波过电压在线监测装置
Feilat Prony analysis technique for estimation of the mean curve of lightning impulses
KR101447676B1 (ko) 기설 전력선의 지지물 접지저항 측정방법 및 장치
CN206832933U (zh) 并联避雷器均流特性测试系统
Petit Comparison of PD amplitudes of stator bars taken with different instruments
Harrold et al. The Relationship Between the Picocoolomb and Microvolt for Corona Measurements on HV Transformers and Other Apparatus
CN101876680B (zh) 一种浪涌保护器件保护性能测评方法及装置
Kreitlow et al. Accreditation of a NEMP test procedure: Approach, measurement technique, uncertainty
Wei et al. Experimental study on consistency of surge test between using gas arrestors and capacitors
Gronwald et al. Efficient immunity testing of smart meter devices in the frequency range 2-150 kHz
CN109324232A (zh) 一种定子接地保护的接地电阻测量电路
Xie et al. Quantitative determination of response time and time-varying characteristics of surge protective devices
Chen et al. Study on the impulse characteristics of capacitive voltage transformer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577392

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840646

Country of ref document: EP

Kind code of ref document: A1