WO2021008270A1 - 一种数据处理的方法、装置和系统 - Google Patents

一种数据处理的方法、装置和系统 Download PDF

Info

Publication number
WO2021008270A1
WO2021008270A1 PCT/CN2020/094872 CN2020094872W WO2021008270A1 WO 2021008270 A1 WO2021008270 A1 WO 2021008270A1 CN 2020094872 W CN2020094872 W CN 2020094872W WO 2021008270 A1 WO2021008270 A1 WO 2021008270A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
network device
grid
entity
network
Prior art date
Application number
PCT/CN2020/094872
Other languages
English (en)
French (fr)
Inventor
邢玮俊
吴问付
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021008270A1 publication Critical patent/WO2021008270A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • This application relates to the field of communications, and in particular to a method, device and system for data processing.
  • V2X vehicle-to-everything
  • SL sidelink
  • proximity communication 5 proximity communication 5, PC5
  • V2V vehicle-to-vehicle
  • SL communication adopts the communication mode in which the user is directly connected.
  • the UE may be in motion, and the communication quality of SL communication is also constantly changing. Therefore, the UE cannot accurately determine the network resources that adapt to the SL communication quality. Therefore, how to enable the UE to use accurate network resources to communicate has become an urgent problem to be solved.
  • This application provides a data processing method, device, and system for analyzing network resources with a grid as the granularity, and then predicting network performance, which can more accurately predict the network situation where the UE is located, and achieve more accuracy To schedule the UE’s network resources.
  • the first aspect of the present application provides a data processing method, including: an access network device obtains information of N grids within a preset range, where N is a positive integer greater than or equal to 1; Receive the first SL network information from the UE; the access network device sends the identification of the first grid and the second SL network information related to the first grid to the network device according to the first SL network information, and the UE is in the first grid , N grids include the first grid.
  • the access network device can obtain information of N grids within a preset range, and receive the first SL network from the UE within the coverage of the first grid among the N grids. Information, and based on the first SL network information, send the identification of the first grid and the second SL network information related to the first grid to the network device, so that the network device can obtain at least one grid based on the second SL network information According to the grid resource analysis result, the at least one grid may include the first grid and grids near the first grid.
  • a data processing method characterized in that it comprises:
  • the access network device obtains information of N grids within a preset range, where N is a positive integer greater than or equal to 1; the access network device receives the first SL network information from the UE; the access network device according to the first SL network Information, sending the identifier of the first grid and the second SL network information related to the first grid to the network device, the UE is in the first grid, and the N grids include the first grid.
  • the access network device can obtain information of N grids within a preset range, and receive the first SL network from the UE within the coverage of the first grid among the N grids.
  • the at least one grid may include a first grid and grids near the first grid
  • the network resource analysis result may be used to adjust the network resource of the UE within the coverage of the at least one grid .
  • the granularity of the grid where the UE is located is smaller than the granularity of the cell the UE is currently accessing. Therefore, the network resources used by the UE can be adjusted based on the smaller granularity of the grid, and the UE's network resources can be adjusted more accurately , Improve the accuracy of adjusting network resources.
  • the access network device acquiring information of N grids within a preset range includes:
  • the access network device receives N grid information from a policy and control function (PCF) entity; or, the access network device receives N grid information from a data analysis entity; or, the access network
  • the device receives N grid information from the application function AF entity.
  • the PCF entity may perform grid division in a preset range to obtain information of N grids, and send the information to the access network device.
  • the data analysis entity can also divide the grid in a preset range to obtain the information of N grids and send it to the access network device. It is also possible to use an application function (AF) entity to divide grids in a preset range to obtain information of N grids and send them to the access network device. Therefore, the access network device can obtain the information of the N grids within the preset range through a variety of ways.
  • AF application function
  • the access network device acquiring information of N grids within a preset range includes: the access network device divides the preset range into grids to obtain N grids within the preset range. Information.
  • the access network device may divide the preset range to obtain the information of N grids, which provides a way to obtain the information of the N grids within the preset range.
  • the above method further includes: the access network device sends N grid information to the PCF entity; or, the access network device sends N grid information to the network device.
  • the access network device if the access network device divides the preset range into grids, the information of the divided N grids is also sent to other network elements, such as PCF entities, network equipment, and so on. This enables other network elements to simultaneously acquire the information of the N grids, so that subsequent access network equipment can adjust the network resources of the UEs within the coverage of the N grids.
  • the above method further includes: the access network device receives a network resource analysis result of at least one of the N grids from the network device; when the network resource analysis result meets the first preset condition When the access network device sends the SL radio bearer configuration to the UE within the coverage of at least one grid; or, when the network resource analysis result satisfies the first preset condition, the access network device is at least one grid based on the network resource analysis result.
  • the UE within the grid coverage allocates network resources.
  • the access network device also receives the network resource analysis result of at least one of the N grids from the network device, and when the network resource analysis result satisfies the first preset condition, it may send at least A UE within a grid coverage area sends an SL radio bearer configuration, where the SL radio bearer configuration carries information about the network resources available to the UE. Further, the UE can select network resources from the available network resources for SL communication.
  • the access network device can directly allocate network resources to the UE based on the network resource analysis result, so that the UE can use the network resources allocated by the access network device for the UE to perform SL communication, improve the efficiency of the UE in SL communication, and avoid the UE in channel congestion The frequency band for SL communication.
  • the above method further includes: the access network device sends a first request to the network device, the first request is used to request to obtain the network resource analysis result; wherein, the first request carries at least one grid information information.
  • the access network device may request the network resource analysis result of at least one grid by sending a first request to the network device, and carry the identification of the at least one grid in the first request, so that the network device At least one grid corresponding to the network resource analysis result requested by the first request is obtained.
  • the first request also carries second SL network information.
  • the access network device may also carry the second SL network information in the first request, so that the network device can analyze the network resources based on the second SL network information carried in the first request, reducing separate sending The signaling overhead of the second SL network information.
  • the aforementioned identifier of the first grid and the second SL network information can be sent through the first request, which can reduce the signaling overhead of the access network device.
  • the aforementioned network device is a data analysis entity or a network data analysis function (NWDAF) entity.
  • NWDAF network data analysis function
  • at least one grid network resource analysis result can be obtained by a data analysis entity or a NWDAF entity, and various implementation manners are provided.
  • the workload of the NWDAF entity can be reduced.
  • the information of the N grids includes: the identification of the N grids and the coverage information of the N grids.
  • the coverage information of each of the N grids may include: the length and width of each of the aforementioned grids, or the length, width, and altitude of each of the aforementioned grids.
  • the above method further includes: the access network device assigns an identifier to each of the N grids.
  • the access network device also allocates an identifier to each of the above-mentioned grids, providing a way to allocate a grid identifier.
  • the first SL network information includes at least one of the following: location information, channel quality information, V2X service information, or road information of the corresponding UE.
  • the UE can report its own location information, the channel quality information of the grid where it is located, the UE’s V2X service information or the road information within a certain range of the UE’s current location to the access network equipment, so that the access The network access device can learn the change of the communication quality of SL communication in real time.
  • the above method further includes: the access network device determines that the UE is in the first grid according to the location of the UE and the information of the N grids.
  • the access network device may determine that the UE is in the first grid according to the location of the UE and the information of the N grids.
  • the first grid is one or more of the N grids, and provides a way for the access network device to determine the grid where the UE is located.
  • the coverage of the first grid is smaller than the coverage of the cell currently accessed by the UE.
  • the range of the first grid where the UE is located is smaller than the coverage range of the cell currently accessed by the UE. Therefore, the grid granularity is smaller than the granularity of the cell currently accessed by the UE, and the access network device can report the second SL network information to the network device based on the grid granularity, so that subsequent network resource analysis results based on the grid granularity are more accurate.
  • the coverage area of each of the foregoing N grids is smaller than the coverage area of the smallest cell under the access network device, or the coverage area of each of the foregoing grids is smaller than the coverage area of the access network.
  • the coverage area of each of the foregoing N grids is smaller than the coverage area of the smallest sector under the access network equipment, or the coverage area of each of the foregoing grids is smaller than the coverage area of the access network device.
  • a second aspect of the present application provides a data processing method, including: a network device obtains information of N grids within a preset range, where N is a positive integer greater than or equal to 1, and the network device receives the first data from the access network device
  • the identification of a grid and the second SL network information related to the first grid, the N grids include the first grid; the network device is based on the information of the N grids, the second SL network information and the identification of the first grid , Obtaining a network resource analysis result of at least one grid in the N grids, and the at least one grid includes the first grid.
  • the network device can obtain information of N grids within a preset range, and receive the identification of the first grid from the access network device and the second SL network information related to the first grid, Then, according to the information of the N grids, the identifier of the first grid, and the second SL network information related to the first grid, the network resource analysis result of at least one of the N grids is obtained, and the at least one The grid includes the first grid.
  • the network resource analysis result can reflect the network conditions of the SL communication within the coverage area of the at least one grid, and can realize the analysis of the SL network performance of the at least one grid, so that the access network equipment, PCF entity, AF entity, etc.
  • the network element can adjust the network resources of the UE, the communication parameters of the V2X service, or the QoS parameters of the C2X service within the coverage of the at least one grid based on the network resource analysis result, so as to reduce the communication delay of the UE performing SL communication, Improve the efficiency of the data transmission of the V2X service by the UE, and reduce the delay of the V2X service.
  • the network device acquiring information of N grids within a preset range includes:
  • the network device receives the information of the N grids from the PCF entity; or, the network device receives the information of the N grids from the access network device; or, the network device receives the information of the N grids from the AF entity. Therefore, in the embodiment of the present application, the network device can obtain the information of the N grids in a variety of ways.
  • the above method further includes: the network device sends the network resource analysis result to the access network device; or, the network device sends the network resource analysis result to the PCF entity; or, the network device sends the network resource to the AF entity Analyze the results.
  • the network device may send the network resource analysis result of the at least one grid to the access network device, PCF entity or AF entity, etc., so that the access network device, PCF entity or AF entity, etc., can be based on the
  • the network resource analysis result is to adjust the network resources of the UE, the communication parameters of the V2X service, or the QoS parameters of the V2X service within the coverage of the at least one grid, so as to reduce the delay of the UE's SL communication and improve the efficiency of the UE's SL communication , Or improve the efficiency of UE data transmission of V2X service, and reduce the delay of V2X service.
  • the above method further includes: the network device receives a first request from the access network device, the first request is used to request to obtain network resource analysis results, and the first request carries information of at least one grid
  • the network device receives a second request from the AF entity, the second request is used to request to obtain network resource analysis results, and the second request carries at least one grid information.
  • the network device also receives the first request from the access network device or the second request from the AF entity, and after receiving the first request or the second request, transfers at least one grid network
  • the resource analysis result is sent to the access network device or the AF entity, etc., so that the access network device or the AF entity can obtain the network resource analysis result.
  • the network device in this application is an NWDAF entity or a data analysis entity. Therefore, this application provides multiple ways for NWDAF entities or data analysis entities to obtain network resource decomposition results.
  • the network device when the network device is a data analysis entity, the network device obtains at least one grid of the N grids according to the information of the N grids, the second SL network information, and the identification of the first grid.
  • the results of grid network resource analysis include: the network equipment preprocesses the second SL network information to obtain the preprocessed SL network information; the network equipment preprocesses the SL network information and the identification of the first grid based on the information of the N grids , Obtain the network resource analysis result of at least one of the N grids.
  • the network analysis entity may preprocess the second SL network information to obtain preprocessed SL network information, and preprocess the SL network based on the information of N grids Information and the identification of the first grid, and the network resource analysis result of at least one grid among the N grids is obtained.
  • the network resource of the at least one grid can be analyzed.
  • the network device when the network device is a data analysis entity, the network device obtains information of N grids within a preset range, which further includes: the network device divides the preset range into grids to obtain the preset Information of N grids in the range.
  • the data analysis entity when the network device is a data analysis entity, the data analysis entity can also divide the preset range to obtain the information of N grids within the preset range, which provides a data analysis entity The method of grid division.
  • a data processing method includes: a PCF entity divides a preset range into grids to obtain information about N grids within the preset range, where N is a positive integer greater than or equal to 1; the PCF entity Send N grid information.
  • the PCF entity may perform grid division, and send the information of the N grids obtained by the grid division to other network elements. This allows other network elements to learn the result of grid division.
  • the network device can analyze the network resources of at least one grid based on the grid granularity to obtain the network resource analysis result based on the grid granularity, and subsequently adjust the UE's network resources, the communication parameters of the V2X service, or the QoS of the V2X service. When leveling, it can be adjusted based on the granularity of the grid to improve the accuracy of adjustment.
  • the PCF entity sends the information of N grids, including: the PCF entity sends the information of the N grids to the access network device; or the PCF entity sends the information of the N grids to the AF entity ; Or, the PCF entity sends N grid information to the network device. Therefore, the PCF entity can specifically send the information of the N grids to the access network device, the network device or the AF entity, etc., so that other network elements can synchronously obtain the information of the N grids.
  • the above method further includes: the PCF entity receives a network resource analysis result of at least one of the N grids from the network device; when the network resource analysis result meets a second preset condition, The PCF entity sends V2X communication parameters to UEs within the coverage of at least one grid.
  • the V2X communication parameters include at least one of Qos parameters, address information, or frequency band information of the V2X service.
  • the PCF entity also receives the network resource analysis result of at least one of the N grids from the network device.
  • the PCF entity can adjust the UE in the grid according to the grid-based network resource analysis result.
  • the communication parameters of the V2X service improve the efficiency of the data transmission of the V2X service by the UE, and reduce the delay of the V2X service.
  • the aforementioned network device is a data analysis entity or an NWDAF entity.
  • a fourth aspect of the present application provides a data processing method, including: an AF entity divides a preset range into grids to obtain information about N grids within the preset range, where N is a positive integer greater than or equal to 1; AF The entity sends N grids of information.
  • the AF entity can divide the grid with the preset range to obtain the information of the N grids within the preset range, and send the information of the N grids to other network elements, so that other networks The element learns the result of grid division.
  • the network device can obtain the network resource analysis result based on the grid granularity, and then realize the adjustment of the UE's network resources, the communication parameters of the V2X service, or the QoS parameters of the V2X service based on the grid granularity, and improve the efficiency of the UE for SL communication. Improve the efficiency of the data transmission of the V2X service by the UE, and reduce the delay of the V2X service.
  • the AF entity sending information about N grids includes: the AF entity sending information about N grids to the PCF entity; or the AF entity sending information about N grids to the access network device ; Or, the AF entity sends N grid information to the network device.
  • the AF entity can send the information of the N grids to other network elements, so that other network elements can obtain the information of the N grids synchronously, and subsequently can obtain network resources based on grid granularity.
  • the above method further includes: the AF entity receives a network resource analysis result of at least one of the N grids from the network device; when the network resource analysis result meets a third preset condition, The AF entity sends the QoS parameters of the V2X service to the UE that executes the V2X service provided by the AF entity within the coverage of at least one grid.
  • the AF after the AF obtains the network resource analysis result based on the grid granularity, it can send the QoS parameters of the V2X service to the UE within the coverage of at least one grid, so as to achieve the The adjustment of the QoS parameters of the UE’s V2X service.
  • the above method further includes: the AF entity sends a second request to the network device, the second request is used to request to obtain the network resource analysis result, and the second request carries information of at least one grid. Therefore, in the embodiment of the present application, the AF entity may actively request the network resource analysis result of at least one grid from the network device through the second request, so as to obtain the network resource analysis result of at least one grid based on the grid granularity.
  • the network device is a data analysis entity or a NWDAF entity.
  • a fifth aspect of the present application provides a data processing device, which has the function of implementing the data processing method of the first aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the data processing device specifically includes: a transceiver unit and a processing unit;
  • the processing unit is used to obtain information of N grids within a preset range, where N is a positive integer greater than or equal to 1;
  • the transceiver unit is configured to receive the first side link SL network information from the user equipment UE;
  • the transceiver unit is further configured to send the identifier of the first grid and the second SL network information related to the first grid to the network device according to the first SL network information.
  • the UE is in the first grid, and the N grids include the first grid. Grid.
  • the transceiver unit is specifically configured to:
  • the processing unit is specifically configured to perform grid division on the preset range to obtain information of N grids within the preset range.
  • the transceiver unit is further used for:
  • the transceiver unit is further configured to receive the network resource analysis result of at least one of the N grids from the network device;
  • the transceiver unit is further configured to send the SL radio bearer configuration to at least one UE within the coverage of the grid when the network resource analysis result meets the first preset condition; or,
  • the processing unit is further configured to allocate network resources to UEs within the coverage of at least one grid according to the network resource analysis result when the network resource analysis result meets the first preset condition.
  • the transceiver unit is further configured to send a first request to the network device, where the first request is used to request to obtain a network resource analysis result;
  • the first request carries information of at least one grid.
  • the first request also carries second SL network information.
  • the network device is a data analysis entity or a network data analysis function NWDAF entity.
  • the information of the N grids includes: the identification of the N grids and the coverage information of the N grids.
  • the processing unit is further configured to assign an identifier to each of the N grids.
  • the first SL network information includes at least one of the following: location information of the UE, channel quality information, V2X service information, or road information.
  • the processing unit is further configured to determine that the UE is in the first grid according to the location of the UE and the information of the N grids.
  • the coverage of the first grid is smaller than the coverage of the cell currently accessed by the UE.
  • a sixth aspect of the present application provides a data processing device, which has the function of realizing the data processing method of the second aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the data processing device includes: a transceiver unit and a processing unit;
  • the transceiver unit is used to obtain information of N grids within a preset range, where N is a positive integer greater than or equal to 1;
  • the transceiver unit is further configured to receive the identifier of the first grid from the access network device and the second SL network information related to the first grid, and the N grids include the first grid;
  • the processing unit is configured to obtain a network resource analysis result of at least one of the N grids according to the information of the N grids, the second SL network information, and the identification of the first grid, and at least one grid includes the first grid. Grid.
  • the transceiver unit is specifically configured to:
  • the network device receives the information of N grids from the PCF entity; or,
  • the network equipment receives the information of N grids from the access network equipment; or,
  • the network device receives the information of N grids from the AF entity.
  • the transceiver unit is further used for:
  • the transceiver unit is further used for:
  • the first request is used to request to obtain network resource analysis results, and the first request carries information of at least one grid; or,
  • a second request from the AF entity is received, the second request is used to request to obtain a network resource analysis result, and the second request carries information of at least one grid.
  • the network device is a NWDAF entity or a data analysis entity.
  • the network device is a data analysis entity
  • the processing unit is also used to preprocess the second SL network information to obtain preprocessed SL network information;
  • the processing unit is further configured to obtain a network resource analysis result of at least one of the N grids according to the information of the N grids, the preprocessed SL network information, and the identification of the first grid.
  • the processing unit is also used for grid division of the preset range to obtain information of N grids within the preset range.
  • a seventh aspect of the present application provides a data processing device that has the function of realizing the data processing method of the third aspect.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the data processing device includes: a transceiver unit and a processing unit;
  • the processing unit is configured to divide the preset range into grids to obtain information of N grids within the preset range, where N is a positive integer greater than or equal to 1;
  • the transceiver unit is used to send information of N grids.
  • the transceiver unit is specifically configured to:
  • the transceiver unit is further configured to receive the network resource analysis result of at least one of the N grids from the network device;
  • the transceiver unit is further configured to, when the network resource analysis result meets the second preset condition, send communication parameters of the V2X service to at least one UE within the coverage of the grid.
  • the communication parameters of the V2X service include the QoS parameters and address information of the V2X service Or at least one item of frequency band information.
  • the network device is a data analysis entity or a NWDAF entity.
  • An eighth aspect of the present application provides a data processing device, which has the function of implementing the data processing method of the fourth aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • the data processing device includes: a transceiver unit and a processing unit;
  • the processing unit is configured to divide the preset range into grids to obtain information of N grids within the preset range, where N is a positive integer greater than or equal to 1;
  • the transceiver unit is used to send information of N grids.
  • the transceiver unit is specifically configured to:
  • the transceiver unit is further configured to receive the network resource analysis result of at least one of the N grids from the network device;
  • the transceiver unit is further configured to send QoS parameters of the V2X service to at least one UE that executes the V2X service provided by the AF entity within the coverage area of the grid when the network resource analysis result meets the third preset condition.
  • the AF entity sends a second request to the network device, the second request is used to request to obtain the network resource analysis result, and the second request carries information of at least one grid.
  • the network device is a data analysis entity or a NWDAF entity.
  • a ninth aspect of the embodiments of the present application provides a data processing device, which may include:
  • a processor, a memory, and an input-output interface, the processor, the memory are connected to the input-output interface; the memory is used to store program code; the processor executes the first aspect or the first aspect of the application when calling the program code in the memory On the one hand, the steps of the method provided by any embodiment.
  • a tenth aspect of the embodiments of the present application provides a data processing device, which may include:
  • a processor, a memory, and an input-output interface, the processor, the memory are connected to the input-output interface; the memory is used to store program code; the processor executes the second aspect or the first aspect of the present application when calling the program code in the memory.
  • the eleventh aspect of the embodiments of the present application provides a data processing device, which may include:
  • a twelfth aspect of the embodiments of the present application provides a data processing device, which may include:
  • the thirteenth aspect of the embodiments of the present application provides a data processing device.
  • the data processing device can be applied to a network device, a PCF entity, an access network device, or an AF entity, etc.
  • the data processing device is coupled with a memory for reading And execute the instructions stored in the memory, so that the data processing apparatus implements the steps of the method provided by any one of the first aspect of the first aspect to the fourth aspect of the present application.
  • the data processing device is a chip or a system on a chip.
  • a fourteenth aspect of the present application provides a chip system including a processor for supporting a network device, a PCF entity, an access network device, or an AF entity to implement any one of the first aspect to the fourth aspect of the present application.
  • the function involved in any embodiment of the first aspect for example, for example, processing the data and/or information involved in the above method.
  • the chip system further includes a memory for storing necessary program instructions and data for the PCF entity, the access network device, the network device, or the AF entity.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the processor mentioned in any of the above can be a general-purpose central processing unit (Central Processing Unit, CPU), microprocessor, application-specific integrated circuit (ASIC), or one or more An integrated circuit for controlling program execution of the data processing method in the first to fourth aspects described above.
  • CPU Central Processing Unit
  • ASIC application-specific integrated circuit
  • the fifteenth aspect of the embodiments of this application provides a storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be produced by software.
  • the computer software product is stored in a storage medium for storing the computer software instructions used by the above-mentioned device, which includes any one of the first aspect of the first aspect to the fourth aspect.
  • One embodiment is a program designed by a data processing device, such as a PCF entity, an access network device, a network device, or an AF entity.
  • the storage medium includes: U disk, mobile hard disk, read-only memory (English abbreviation ROM, English full name: Read-Only Memory), random access memory (English abbreviation: RAM, English full name: Random Access Memory), magnetic disk or CD Various media that can store program codes.
  • the sixteenth aspect of the embodiments of the present application provides a computer program product containing instructions, which when run on a computer, causes the computer to execute any implementation manner of any one of the first aspect to the fourth aspect of the present application The method described.
  • a seventeenth aspect of the embodiments of the present application provides a communication system, which includes an access network device, a PCF entity, and a network device;
  • the access network equipment may include the data processing apparatus provided in the above fifth aspect;
  • the network equipment may include the data processing apparatus provided in the above sixth aspect;
  • the PCF entity may include the data processing device provided in the seventh aspect.
  • the communication system further includes: an AF entity;
  • the AF entity may include the data processing device provided in the above eighth aspect.
  • the access network device can obtain the information of N grids within a preset range, and receive the first SL network information from the UE. Then, the access network device sends the identification of the first grid and the second SL network information related to the first grid to the network device according to the first SL network information. Since the access network device provides the network device with the SL network information based on the grid granularity, the network device obtains the network resource analysis result based on the grid granularity and adjusts the network resources of the UE within the grid coverage.
  • FIG. 1 is a schematic diagram of a network architecture to which the data processing method provided by this application is applied;
  • FIG. 2 is a schematic flowchart of a data processing method provided by this application.
  • FIG. 3 is a schematic diagram of another flow of the data processing method provided by this application.
  • FIG. 4 is a schematic diagram of another flow chart of the data processing method provided by this application.
  • FIG. 5 is a schematic diagram of another flow chart of the data processing method provided by this application.
  • FIG. 6 is a schematic diagram of another flow of the data processing method provided by this application.
  • FIG. 7A is a schematic diagram of a grid in the data processing method provided by this application.
  • FIG. 7B is another schematic diagram of the grid in the data processing method provided by this application.
  • FIG. 7C is another schematic diagram of the grid in the data processing method provided by this application.
  • FIG. 8 is a schematic diagram of grids and partitions in the data processing method provided by this application.
  • FIG. 9 is another schematic diagram of grids and partitions in the data processing method provided by this application.
  • FIG. 10 is a schematic diagram of another flow chart of the data processing method provided by this application.
  • FIG. 11 is a schematic diagram of another flow chart of the data processing method provided by this application.
  • FIG. 12 is a schematic diagram of another flow chart of the data processing method provided by this application.
  • FIG. 13 is a schematic diagram of another flow chart of the data processing method provided by this application.
  • FIG. 14 is a schematic diagram of another flow chart of the data processing method provided by this application.
  • FIG. 15 is a schematic structural diagram of a data processing device provided by this application.
  • FIG. 16 is a schematic diagram of another structure of the data processing device provided by this application.
  • FIG. 17 is a schematic diagram of another structure of the data processing device provided by this application.
  • FIG. 18 is a schematic diagram of another structure of the data processing device provided by this application.
  • FIG. 19 is a schematic diagram of another structure of the data processing device provided by this application.
  • 21 is a schematic diagram of another structure of the data processing device provided by this application.
  • FIG. 22 is a schematic diagram of another structure of the data processing device provided by this application.
  • FIG. 23 is a schematic structural diagram of the communication system provided by this application.
  • FIG. 24 is a schematic diagram of another structure of the communication system provided by this application.
  • This application provides a data processing method, device, and system for analyzing network resources with a grid as the granularity, and then predicting network performance, which can more accurately predict the network situation where the UE is located, and achieve more accuracy To schedule the UE’s network resources.
  • V2X Vehicle-to-everything: Vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) and vehicle-to-vehicle (V2V) (vehicle-to-vehicle (V2V) (vehicle-to-vehicle, V2V
  • Side link A link for direct communication between V2X terminal devices.
  • V2X terminal devices can perform short-distance communication through a side-link interface, and the side-link interface may also be called a proximity communication 5 (PC5) interface or a direct link interface.
  • PC5 proximity communication 5
  • the data processing method provided in the embodiments of this application can be applied to various communication networks, for example, it can be applied to 5G communication networks, it can also be applied to 3G or 4G communication networks, and it can also be applied to future communication networks, such as 6G networks. , 7G network, etc., and the names of the network elements mentioned above are not limited, and can be replaced with network element names with the same or similar functions in the future communication network, and this application does not limit it.
  • the data processing method provided in this application may be specifically applied to a V2X communication system, which may be based on the various communication networks mentioned above.
  • the V2X communication system may specifically include, but is not limited to: unified data management (UDM) network elements, policy and control function (PCF) entities, network capability exposure function (NEF) entities, Application function (AF) entity, unified data repository (UDR) network element, access management function (access and mobility management function, AMF) entity, session management function (session management function, SMF) entity , User plane function (UPF) entity, radio access network (RAN) equipment, network data analysis function (NWDAF) entity (not shown in the figure), data analysis entity and many more. And the number of each network element or device can be one or more.
  • the AMF entity is mainly responsible for terminal equipment authentication, terminal equipment mobility management, network slice selection, and session management function entity selection.
  • the AMF entity may forward the data sent or received by the PCF entity, which will not be repeated in the following embodiments of the present application.
  • the PCF entity is mainly responsible for providing policy rules to network entities. Including providing a unified policy framework to control network behavior, or providing policy rules to control layer network functions, and at the same time responsible for obtaining user subscription information related to policy decisions. Used to manage network behaviors, provide strategies and rules for the control plane, and generally make strategic decisions based on contract information.
  • the RAN can be a network composed of multiple RAN devices, which implements radio physical layer functions, resource scheduling and radio resource management, radio access control, and mobility management functions.
  • the RAN device is connected to the UPF entity through the user plane interface N3, and is used to transmit data of the terminal device.
  • the RAN device establishes a control plane signaling connection with the AMF entity through the control plane interface N2 to implement functions such as radio access bearer control.
  • the wireless access network equipment shown in FIG. 1 of the present application that is, RAN equipment, can also be replaced by wired access network equipment. In FIG. 1, only the RAN equipment is used as an example for illustration. In the following description of this application , Directly referred to as access network equipment, including RAN equipment and wired access network equipment.
  • the access network device may be a device with a central control function, such as a macro base station, a micro base station, a hot spot (pico), a femto base station (femeto), a transmission point (TP), a relay (relay), and an access point. Access point (AP), etc.
  • the base station may be a base station (eNodeB, eNB) in a long term evolution (LTE), a base station (gNodeB, gNB) in a new radio (NR), etc.
  • UE User equipment
  • UE User equipment
  • UE is used to provide voice/data connectivity to users, for example, handheld devices or vehicle-mounted devices with wireless connection functions. It may also include smart mobile phones, mobile stations (mobile stations, MS), mobile terminals (mobile terminals, MT), etc., which may also be referred to as terminal devices below.
  • the UPF entity as the anchor point of the protocol data unit (PDU) session connection, is responsible for data message filtering, data transmission/forwarding, rate control, and charging information generation for user equipment.
  • PDU protocol data unit
  • the UDM network elements are mainly used to control user data.
  • the management of the subscription information may include: obtaining the subscription information from the UDR network element and providing it to other network elements (such as AMF entities), generating 3GPP authentication credentials for the terminal device, and registering and maintaining the network element currently serving the terminal device.
  • UDR network element is mainly used to store user data.
  • User data may include subscription data called by UDM network elements, policy information called by PCF entities, structured data used for capability opening, and application data called by NEF entities.
  • the NEF entity is used to connect other internal network elements of the core network with the external application server of the core network, and provide services such as authentication and data forwarding when the external application server initiates a service request to the core network, so as to provide network capability information to the external application server, or Provide the information of the external application server to the core network element.
  • the AF entity transmits data with the core network element or access network device, for example, the PCF entity, the access network device, the data analysis entity, the NWDAF entity, etc.
  • the NEF entity can Forward it.
  • the NEF entity can perform security authentication on the data (the NEF authenticates the AF identifier carried in the message sent by the AF, and confirms that the AF is operational Commercially trusted AF), identity conversion (messages sent by the AF may carry external identities, such as the service user identity or the operation identity of the message, etc. NEF needs to convert these external identities into internal identities recognized by the core network element ) And other steps, so that the core network element or the access network device can safely and correctly receive the data sent by the AF entity.
  • the AF approved by the operator can directly send the message to the PCF entity through NEF or store the message in the UDR or UDM network element through NEF, and then the PCF entity can read or receive these messages in the UDR or UDM network element.
  • the core network The method used by the network element to obtain the AF message is determined by the operator in actual deployment.
  • the PCF entity needs to send these messages to the access network device through the AMF entity or the PCF entity passes through the AMF entity and then passes through the access The network device sends it to the UE.
  • the specific steps will not be repeated in the following embodiments of this application.
  • the SMF entity is mainly responsible for the control plane functions of UE session management, including UPF selection, IP address allocation, session QoS management, and acquisition of policy control and charging (PCC) policies (from the PCF entity).
  • PCF policy control and charging
  • the AF entity is an application server corresponding to the application.
  • application service function interact with core network elements to provide services for terminal devices. For example, interacting with the PCF entity for business policy control, or interacting with the NEF entity to obtain network capability information or providing application information to the network, or interacting with the PCF entity to provide data network access point information to the PCF entity for The PCF entity generates routing information for corresponding data services.
  • the NWDAF entity is used to analyze and predict the data of the core network element.
  • the data analysis entity can be used for data analysis and prediction of base station information.
  • the data analysis entity may be specifically deployed in the access network device, or may be an independent device deployed on the access network side.
  • the data analysis entity may implement part of the functions of the access network device, and the data analysis entity may also implement part of the functions of the NWDAF entity.
  • the V2X communication system may also include other network elements (not shown in the figure), for example, authentication server function (AUSF), network slice The selection function (Network Slice Selection Function, NSSF), etc.
  • AUSF authentication server function
  • NSSF Network Slice Selection Function
  • the embodiments of the present application are only exemplary descriptions, and can be specifically adjusted according to actual application scenarios.
  • the access network device as a base station as an example, specific application scenarios are described.
  • the UE performs SL communication through the PC5 interface, and the SL carries important services, such as security services, sensor sharing services for autonomous driving, and so on.
  • the base station can directly obtain the status of the UE's network resources within its coverage, for example, channel quality, congestion, etc.
  • the base station cannot directly obtain the communication quality of the PC5 interface of the UE within its coverage, such as channel quality parameters and congestion status information.
  • Estimating the performance of the network based on the channel quality reported by the current UE can only determine the network situation at the current location of the UE. After the UE reports the SL network information, as the location of the UE moves, the SL network information at the location of the UE has changed. The base station cannot accurately allocate or adjust the information used by the UE based on the SL network information reported by the UE. Internet resources. Therefore, the embodiment of the present application provides a data processing method, which can more accurately adjust the network resources of the UE for SL communication.
  • an embodiment of the present application provides a data processing method, which is specifically described as follows.
  • An access network device obtains information of N grids within a preset range.
  • the preset range may be a range set based on a cell, a sector or a base station, or a range set based on a map.
  • the preset range is a road area on the map, or, when the access network device is one or more base stations, the preset range is one or more cells under the one or more base stations, or, When the access network device is one or more base stations, the preset range is all or part of the sectors under the one or more base stations.
  • a cell under the base station can be divided into one or more sectors.
  • the N grids may be grids obtained by dividing the preset range, and N is a positive integer greater than or equal to 1.
  • the grid can be divided into multiple granularities. For example, dividing the coverage area of a cell whose granularity is the smallest coverage area within the preset range, so that the coverage area of each grid is smaller than the minimum coverage area.
  • the granularity is the coverage area of the smallest sector of the base station within the preset range for division, so that the coverage area of each grid is smaller than the coverage area of the smallest sector.
  • the information of the N grids may include: the identification and coverage information of each grid in the N grids.
  • the size of the coverage area of each of the N grids may be the same or different.
  • the coverage information of each of the foregoing grids may include: the length and width of each of the foregoing grids, or the length, width, and altitude of each of the foregoing grids.
  • the identification of the grid can be used to uniquely identify a grid, for example, the name of the grid. It should be pointed out that there are many situations in the coverage of each of the N grids.
  • the size of the coverage of each grid can be a preset value, that is, the coverage of each grid The size of the range is the same.
  • the size of the coverage area of each grid may also be different, or it may also be that some of the N grids have the same coverage area.
  • the coverage area of each grid can be divided into smaller areas.
  • the coverage size of each grid is smaller than the coverage size of the smallest cell under the base station, or the coverage size of each grid is smaller than the average coverage size of multiple cells under the base station, or the The coverage of each grid is smaller than the coverage of the smallest sector under the base station, etc., so that subsequent analysis of network resources by network equipment can be based on a smaller granularity than a cell or a granularity greater than the smallest sector. Analyze with a small grid granularity to improve the accuracy of the analysis results of network resources.
  • the above-mentioned network equipment and the network equipment in the following embodiments of the present application may be the NWDAF entity or the data analysis entity in FIG. 1, which will not be repeated in the following embodiments of the present application.
  • step 201 can be implemented in multiple ways, as follows.
  • the access network equipment can receive the N grid information from other network elements.
  • the other network element may be a PCF entity, the above-mentioned network equipment, or an AF entity, without limitation.
  • the PCF entity divides the preset range to obtain N grids, and sends the information of the N grids to the access network device, and then the access network device receives the information of the N grids from the PCF entity.
  • the data analysis entity may divide the preset range to obtain N grids, and send the information of the N grids to the access network device, and the access network device receives the information of the N grids from the data analysis entity .
  • the AF entity may divide the preset range to obtain N grids, and send the information of the N grids to the access network device, and the access network device receives the information of the N grids from the AF entity.
  • Manner 2 The access network device divides the preset range into grids to obtain the information of N grids within the preset range.
  • the access network device obtains map information, and the preset range may be a part or all of the area in the map.
  • the access network device can divide the preset range based on the information of the map to obtain N grids within the preset range, and assign an identifier to each of the N grids, thereby obtaining N grids. Information.
  • the information of the map may include information about the geographic location within the preset range, for example, the map may include roads, mountains, buildings, etc. within the preset range.
  • the map information can be stored on the access network device, or sent to the access network device by other network elements.
  • the map information can be used by an application server (AS) or UDR network element. Send to the access network equipment.
  • AS application server
  • UDR UDR network element
  • the access network device divides the preset range based on the information of the map, which can be divided according to the preset size.
  • the length of each grid is 20 meters and the width is 15 meters.
  • the above method may further include: the access network device sends the information of the N grids to other network elements, for example, a PCF entity, a NWDAF entity, an AF entity, or a data analysis entity , No restrictions.
  • the access network device sends the information of the N grids to other network elements, for example, a PCF entity, a NWDAF entity, an AF entity, or a data analysis entity , No restrictions.
  • the access network device receives the first SL network information from the UE.
  • the access network device may receive first SL network information from one or more UEs.
  • the first SL network information may include at least one of the following: location information, channel quality information, V2X service information, or road information of the UE.
  • the location information of the UE may include the longitude, latitude, and altitude of the location of the UE.
  • the channel quality information may include information that characterizes the communication quality of the UE currently performing SL communication, and specifically may include channel quality reference information, or channel busy ratio (CBR) information, etc.
  • the channel quality reference information may include: information used to measure the corresponding channel quality during data transmission of the V2X service based on the PC5 interface, for example, block error rate (BLER), signal to interference plus (signal to interference plus) noise ratio, SINR), received power, etc.
  • BLER block error rate
  • SINR signal to interference plus
  • received power etc.
  • the V2X service information may include information related to the V2X service currently performed by the UE, for example, the service type of the V2X service, the channel occupancy for transmitting the data of the V2X service, the data packet priority of the V2X service, the Communication parameters of the V2X service, interface information corresponding to the V2X service, etc.
  • the communication parameters of the V2X service may include: the PC5 resource level of the V2X service or the PC5 QoS identifier (PQI) of the V2X service, etc.
  • the interface information corresponding to the V2X service may include: used to transmit the V2X The type or identification of the communication interface of the business data.
  • the road information may include the current situation of the road where the UE is currently located.
  • the road information includes traffic flow density, vehicle speed, etc. within a certain range around the current location of the UE on the road.
  • the certain range may be on the road, centered on the location of the UE, and the length is a range of 100 meters before and after the location of the UE.
  • the road information may also include road condition information collected by sensors or cameras on the UE, for example, road images, temperature, humidity, visibility, etc.
  • the first SL network information further includes time information, that is, the collection time of the first SL network information, so that the access network device determines the first SL network information according to the collection time of the first SL network information. 1. Whether the SL network information is available, or the available weight. This time information may also be referred to as a time stamp below.
  • the access network device may obtain the collection time of the first SL network information according to the time stamp, so as to determine whether the first SL network information has expired according to the collection time. If the difference between the collection time of the first SL network information and the current time is greater than the preset time value, the first SL network information may be discarded.
  • the UE may report the first SL network information periodically, so that the access network device can obtain the SL network information of the UE in real time. Furthermore, the access network device may obtain information about the communication quality of the SL communication performed by the UE according to the first SL network information reported by the UE, so as to perform network resource adjustment or network resource allocation for the UE.
  • the access network device sends the identification of the first grid and the second SL network information related to the first grid to the network device according to the first SL network information.
  • the first grid is the grid where the UE is located, that is, the UE is located in the first grid.
  • the N grids include the first grid, in other words, the first grid is one or more of the N grids.
  • the second SL network information related to the first grid may refer to SL communication information related to the one or more grids.
  • the second SL network information may include: the identity of the UE in the first grid, channel quality information in the coverage of the first grid, and V2X service information of one or more UEs in the coverage of the first grid. Or road information within the coverage of the first grid, etc.
  • the channel quality information, V2X service information, and road information reference may be made to the related description in step 202.
  • first SL network information and the second SL network information may be the same or different.
  • step 203 may include: using the first SL network information as the second SL network information, and sending the identification of the first grid and the first grid to the network device 2. SL network information.
  • step 203 may include: the access network device obtains the second SL network information according to the first SL network information, and sends the identification of the first grid to the network device And the second SL network information.
  • the above-mentioned access network device can obtain the second SL network information according to the first SL network information in two ways.
  • Manner 1 The access network device preprocesses the first SL network information to obtain the second SL network information.
  • the access network device may add, delete, or modify part of the data in the group of first SL network information to obtain the second SL network information.
  • the access network device receives multiple sets of first SL network information, and the access network device receives multiple sets of first SL network information, if it includes information such as different frequency bands (or channels), different roads or different locations, it can Different information included in multiple sets of first SL network information is classified and combined (for example, first SL network information in different frequency bands at the same location is classified and combined, or first SL network information at different locations in the same frequency band is classified and combined, etc.).
  • the access network device may also calculate the parameters included in the multiple first SL network information to obtain the second SL network information.
  • the parameters used to measure the channel quality of the same channel included in the multiple sets of first SL network information such as block error rate (BLER), signal to interference plus noise ratio , SINR), received power, etc., are weighted or averaged to obtain the calculated parameters, and then the second SL network information is obtained, and the second SL network information includes the calculated parameters.
  • the second SL network information can be obtained by preprocessing the first SL network information, which reduces the redundancy of the second SL network information sent by the access network device to the network device, and improves the subsequent network The efficiency of network resource analysis by the device based on the second SL network information.
  • the access network device sends the first SL network information to the data analysis entity, and the data analysis entity preprocesses the first SL network information to obtain the second SL network information, and sends the second SL network information to the access network device.
  • the access network device may determine that the UE is in the first grid according to the location of the UE and the information of the N grids.
  • the location of the UE may be reported by the UE, for example, reported through the first SL network information, or obtained by the access network device positioning the UE, or the access network device may obtain it from other network elements. To limit.
  • the coverage of the first grid is smaller than the coverage of the cell currently accessed by the UE, that is, the granularity of the first grid is smaller than the granularity of the cell.
  • the access network device sends the SL network information of the first grid to the network device, for example, the second SL network information, for the network device to obtain a network resource analysis result based on the first grid. Since the first grid has a smaller granularity than the cell, the accuracy of the network resource analysis result based on the first grid is higher.
  • the method shown in FIG. 2 can greatly improve the accuracy of the network resource analysis result.
  • the access network device can obtain the information of N grids within a preset range, and receive the first SL network information from the UE. Then, the access network device sends the identification of the first grid and the second SL network information related to the first grid to the network device according to the first SL network information for the network device to analyze network resources to obtain network resource analysis result. Because the access network equipment provides SL network information based on grid granularity, the network equipment can analyze the results of network resources based on the grid granularity, so that the access network equipment can adjust the grid coverage more accurately according to the network resources.
  • the network resources of the UE within the network can use network resources that adapt to changes in the communication quality of the SL communication for SL communication, improve the efficiency of the UE for SL communication, reduce the delay of the UE for SL communication, and avoid the occurrence of channels when the UE performs SL communication. Congestion situation.
  • the aforementioned grid granularity may be smaller than cell granularity, sector granularity, etc. Therefore, the access network device can adjust the UE's network resources based on the grid granularity and adjust the UE's network resources according to the network resource analysis results of the grid granularity. The accuracy of the network resources of the UE can be adjusted more accurately.
  • the above method further includes: the access network device sends a first request to the network device.
  • the first request is used to request to obtain the network resource analysis result of at least one grid.
  • the first request may carry information of the at least one grid.
  • the first request may carry information such as the identification and coverage of the at least one grid.
  • the network resource analysis result of the at least one grid is an analysis result of the network resource of the at least one grid.
  • the at least one grid may be located within the coverage area of the access network device.
  • the foregoing first request also carries the second SL network information in the foregoing step 203.
  • the specific manner for the access network device to send the foregoing second SL network information to the network device may be: the access network device sends the first request to the network device.
  • the first request is used to request to obtain the network resource analysis result of at least one grid.
  • the first request carries the information of the at least one grid and the second SL network information in step 203.
  • the foregoing method further includes:
  • the access network device receives a network resource analysis result of at least one of the N grids from the network device;
  • the access network device sends the SL radio bearer configuration to the UE within the coverage of the at least one grid; or,
  • the access network device allocates network resources to the UE in the at least one grid range according to the network resource analysis result.
  • the network resource analysis result of the at least one grid may include: the QoS level supported by the SL communication in the at least one grid, the congestion degree of the SL communication in the at least one grid, and the SL communication in the at least one grid.
  • QoS key performance indicators key performance indicators, KPIs
  • adjustment instructions that the communication meets.
  • the QoS level may include a PC5 QoS identifier (PC5 QoS identifier, PQI).
  • the PQI may be composed of multiple QoS parameters, such as delay, packet loss rate, priority level, and so on.
  • the congestion degree of SL communication in the at least one grid may be used to characterize the congestion condition of SL communication in the at least one grid.
  • the network device may determine the congestion degree of SL communication in the at least one grid according to the number of UEs performing the V2X service in the at least one grid or the channel occupation. Furthermore, the network device may also combine parameters related to channel quality, such as SINR, received power, BLER, and other parameters, to determine the congestion degree of SL communication in the at least one grid.
  • QoS KPI may include: delay or packet loss rate, etc.
  • the delay may include the average delay or the maximum delay supported by each grid in the at least one grid.
  • the packet loss rate may include: the maximum packet loss rate or the average packet loss rate of data transmission within the coverage of the at least one grid.
  • the adjustment indication information may be resource adjustment indication information, which is used to indicate that the network resources used by the UE in the at least one grid coverage area during SL communication need to be adjusted.
  • the first preset condition may be: the parameter value in the network resource analysis result is within the first preset range, or the network resource analysis result includes the aforementioned resource adjustment instruction information, which is not limited.
  • the network resource analysis result carries the QoS level supported by the SL communication in at least one grid range
  • the first preset condition includes: the QoS level currently supported by the SL communication within the at least one grid coverage area is low
  • the first preset condition includes: the aforementioned resource adjustment indication information is carried in the network resource analysis result.
  • the SL radio bearer configuration may include information about the network resources available to the UE, for example, the frequency of the PC5 resource available to the UE Information, time domain information, and interface information (for example, interface type or identification, etc.) supporting V2X service data transmission in PC5 resources available to the UE. Further, the UE may select available network resources according to the information about the available network resources of the UE carried in the SL radio bearer configuration. It can be understood that the access network device can send the SL radio bearer configuration to the UE within the coverage of the at least one grid to notify the UE of which PC5 resources are available. The UE can select the available PC5 resources according to the SL radio bearer configuration. SL communication.
  • the access network device may provide the access network device to the at least one grid through the control channel
  • the information of the network resources allocated by the UE within the coverage area is sent to the UE within the coverage area of the at least one grid.
  • the access network device may perform SL communication support QoS level, congestion level of SL communication, QoS KPI satisfied by SL communication, etc., from the at least one grid range carried in the network resource analysis result, from the at least one grid Among the network resources in the coverage area, the network resources corresponding to the communication parameters of the UE's V2X service in the at least one grid coverage area are determined, and the network resources are allocated to the UE in the at least one grid coverage area.
  • the information of the network resource allocated to the UE within the coverage of the at least one grid may include: frequency band information, time domain information of the network resource allocated to the UE by the access network device, and interface information supporting the transmission of V2X service data (For example, the type or identification of the interface) and other information.
  • the UE updates the current network resource configuration of the UE according to the received network resource information from the access network device, and then the UE uses the network resource allocated by the access network device to perform SL communication.
  • the access network device when the access network device determines that channel congestion occurs in a certain frequency band based on the results of network resources, the access network device can avoid the frequency band where channel congestion occurs when allocating network resources to the UE, thereby preventing the UE from appearing
  • the channel congested frequency band performs SL communication, which reduces the delay of the UE in the SL communication and improves the efficiency of the UE in the SL communication.
  • the access network device allocates and performs the process for UEs within the coverage of each grid according to the network resources of each grid in the at least one grid.
  • the network resources used in SL communication so that the network resources of each UE in the grid coverage area for SL communication can be allocated by the access network equipment, so that the access network equipment can perform the grid coverage on the UE in the grid coverage area.
  • the network resources of the SL communication are scheduled to avoid channel congestion caused by the UE's own selection of network resources.
  • the aforementioned step 201 or step 203 may also be performed by the data analysis entity. Can reduce the workload of access network equipment.
  • an embodiment of the present application provides another data processing method, which is specifically described as follows.
  • the network device obtains information of N grids within a preset range.
  • step 301 can be implemented in multiple ways, as described below.
  • the network device receives N grid information from other network elements, and the other network elements can be PCF entities, access network devices, or AF entities, without limitation.
  • the PCF entity divides the preset range to obtain N grids, and sends the information of the N grids to the network device, and then the network device receives the information of the N grids from the PCF entity.
  • the access network device may divide the preset range to obtain N grids, and send the information of the N grids to the network device, and then the network device receives the information of the N grids from the data analysis entity.
  • the AF entity may divide the preset range to obtain N grids, and send the information of the N grids to the network device, and then the network device receives the information of the N grids from the AF entity.
  • Manner 2 When the network device is a data analysis entity, the network device divides the preset range into grids to obtain information about N grids within the preset range.
  • the method for the data analysis entity to divide the preset range into grids may be similar to the second method in step 202 above, and the access network device therein can be replaced with the data analysis entity, which will not be repeated here.
  • step 301 can be implemented in the second method above, after step 301, the method may further include: the data analysis entity sends the information of the N grids to other network elements, for example, the access network There are no restrictions on equipment, PCF entities, NWDAF entities or AF entities.
  • the network device receives the identifier of the first grid from the access network device and the second SL network information related to the first grid.
  • the N grids described in step 301 include the first grid, and the first grid may be one or more of the N grids.
  • the network device when the information of the N grids received by the network device comes from the access network device, the network device can simultaneously receive the information of the N grids from the access network device through the same message, The identification of the first grid and the second SL network information. It can also be understood that the access network device can send the information of the N grids, the identifier of the first grid, and the second SL network information to the network device through the same message. For example, the access network device may send a first message to the network device, and the first message carries the information of the N grids, the identifier of the first grid, and the second SL network information.
  • the network device obtains a network resource analysis result of at least one of the N grids according to the information of the N grids, the second SL network information, and the identification of the first grid.
  • the network device can analyze the network resources of at least one of the N grids according to the information of the N grids, the second SL network information, and the identification of the first grid to obtain the information of the at least one grid. Network resource analysis results.
  • the at least one grid includes a first grid.
  • the at least one grid may include a first grid and a grid adjacent to the first grid.
  • the network device may determine that the second SL network information is related to the first grid based on the identification of the first grid. Then, the network device obtains at least one grid network resource analysis result based on the second SL network information and through a preset algorithm.
  • the preset algorithm may be a Kalman filter algorithm or a neural network algorithm.
  • the preset algorithm is a neural network algorithm
  • the number of UEs within the coverage of the first grid included in the second SL network information, the V2X service information executed by the UEs within the coverage of the first grid, One or more of the channel quality information within the coverage of the first grid or the road information within the coverage of the first grid is used as the input of the neural network algorithm, and the network resource analysis result of at least one grid is output.
  • step 203 For the network resource analysis result, please refer to the relevant description in step 203 above.
  • the network device receives the information of the N grids and the second SL network information related to the first grid. Therefore, the access network device can send the second SL network information to the network device based on the grid granularity, and the network device can obtain the network resource analysis result of at least one grid based on the grid granularity. Therefore, it is possible to accurately adjust the network resources of the UE within the coverage of the grid based on the network resource analysis results of the grid granularity. Furthermore, the UE can use the adjusted network resources for SL communication to improve the efficiency of the UE for SL communication. , To reduce the delay of the UE in SL communication. In addition, the grid granularity in the embodiment of the present application is relatively small.
  • the grid granularity can be smaller than the cell granularity, sector granularity, etc. Therefore, the network device can obtain the grid-based grid-based second SL network information based on the grid. Based on the network resource analysis results of grid granularity, the obtained network resource analysis results are more accurate.
  • the communication parameters of the V2X service, or the QoS parameters of the V2X service when adjusting the network resources of the UE, the communication parameters of the V2X service, or the QoS parameters of the V2X service, you can More accurate network resource analysis results adjust the UE’s network resources, V2X service communication parameters or V2X service QoS parameters, and improve the accuracy of adjusting the UE’s network resources, V2X service communication parameters or V2X service QoS parameters, so as to achieve the UE More accurate adjustment of network resources, communication parameters of V2X services, or QoS parameters of V2X services.
  • step 303 may include: the data analysis entity preprocesses the second SL network information to obtain the preprocessed SL network information. Then, based on the preprocessed SL network information, the information of the N grids, and the identification of the first grid, the network resource of at least one of the N grids is analyzed to obtain the network resource analysis result of the at least one grid .
  • the manner in which the data analysis entity preprocesses the second SL network information can refer to the manner in which the access network device preprocesses the first SL network information in step 203, which will not be repeated here.
  • step 303 the above method further includes:
  • the network device sends the network resource analysis result of the at least one grid to other network elements, for example, the access network device, the PCF entity or the AF entity, etc., without limitation.
  • the above method further includes: the network device receives a first request from the access network device, the first request is used to request to obtain the network resource analysis result, and the The first request carries information of the at least one grid, for example, the identification and coverage information of the at least one grid.
  • the network device After step 303, or if the network device receives the first request after step 303, after the network device receives the first request, the network device also sends the network resource analysis result to the access network device. Therefore, in the embodiment of the present application, the access network device may request the network resource analysis result of the at least one grid from the network device according to the demand, so that the access network device can perform the analysis on the network resource analysis result of the at least one grid.
  • the UE within the coverage of the at least one grid performs network resource adjustment or allocation.
  • the above method further includes: the network device further receives a second request from the AF entity, the second request is used to request to obtain the network resource analysis result, and the The second request carries information of the at least one grid, for example, the identification of the at least one grid, coverage information, and so on.
  • the network device After step 303, or if the network device receives the second request after step 303, after the network device receives the first request, the network device also sends the network resource analysis result to the AF entity.
  • the AF entity may request the network resource analysis result of the at least one grid from the network device according to requirements, so that the AF entity can adjust the at least one grid according to the network resource analysis result of the at least one grid. QoS parameters of some V2X services of UEs in the coverage area, etc.
  • an embodiment of the present application provides another data processing method, which is specifically described below.
  • the PCF entity performs grid division on a preset range to obtain information about N grids within the preset range.
  • the PCF entity may divide the preset range into grids to obtain information of N grids.
  • information of the N grids please refer to the relevant description in step 201 above.
  • the way that the PCF entity divides the preset range can refer to the way the access network device divides the preset range in the second way in step 202 to obtain the relevant description of the information of the N grids.
  • the network equipment can be replaced with a PCF entity, which will not be repeated here.
  • the PCF entity sends information of N grids.
  • the PCF entity can send the N grid information to other network elements.
  • the other network elements may include: AF entities, access network equipment or network equipment, etc., without limitation.
  • the PCF entity can divide the preset range into grids to obtain N grids, and send the information of the N grids to other network elements, so that other network elements can learn about the grids.
  • the result of grid division The network device can obtain the network resource analysis result of at least one grid based on the grid granularity, and then can realize the grid-based granularity, accurately adjust the communication parameters of the UE's V2X service, so that the UE can use the adjusted VX service communication Parameters for V2X service, improve the efficiency of V2X service, and reduce the delay of V2X service.
  • the above method further includes: the PCF entity receives a network resource analysis result of at least one of the N grids from the network device.
  • the network resource analysis result please refer to the above Relevant description in step 203.
  • the PCF entity may send the communication parameters of the V2X service to the UEs within the coverage of the at least one grid, and the communication parameters of the V2X service may include the QoS parameters of the V2X service , At least one of address information or frequency band information.
  • the QoS parameter may include one or more of the following: PC5 QoS identifier (PC5 QoS identifier, PQI), used to indicate the QoS requirements of the UE; PC5 priority level information (PC5 priority level), used to indicate the information of the V2X service message Transmission priority); PC5 guaranteed flow bit rate (GFBR); PC5 maximum flow bit rate (maximum flow bite rate, MFBR); packet error rate (packet error rate), used to indicate the data that can be received Packet error probability, etc.
  • PC5 QoS identifier PC5 QoS identifier, PQI
  • PC5 priority level information PC5 priority level
  • PC5 priority level used to indicate the information of the V2X service message Transmission priority
  • PC5 guaranteed flow bit rate GFBR
  • PC5 maximum flow bit rate maximum flow bite rate
  • MFBR maximum flow bite rate
  • packet error rate packet error rate
  • the QoS parameter may be generated by the PCF entity for the UE within the coverage of the at least one grid, or the PCF entity may receive the QoS parameter from one or more AF entities, or the PCF entity may receive information from one or more AF entities. Part of the QoS parameters.
  • the address information may include information about an address that the UE can use when performing a V2X service.
  • the address information may include a specific address that can be accessed by one of the V2X services of the UE.
  • the frequency band information refers to information about the frequency band that the UE can use when performing V2X services.
  • the PCF entity may also send a control strategy to the UE within the coverage of the at least one grid, and the control strategy is used to adjust the data used when the UE transmits V2X service. interface.
  • the control strategy can be used to allocate the UE to use the PC5 interface to transmit V2X service data in the first frequency band, use the Uu port to transmit V2X service data in the second frequency band, etc., or the UE can use the PC5 interface to transmit V2X service in the first time period
  • the Uu port can be used to transmit V2X service data and so on in the second time period.
  • the second preset condition may be: the parameter value in the network resource analysis result is within a second preset range, or the network resource analysis result includes adjustment instruction information, etc.
  • the adjustment indication information may be communication parameter adjustment indication information of the V2X service, and the communication parameter adjustment indication information of the V2X service is used to indicate that the communication parameters of the V2X service of the UE within the coverage of the at least one grid need to be adjusted.
  • the second preset condition may be the same as or different from the first preset condition described in step 203 above.
  • the PCF entity may, according to the network resource analysis result of at least one grid from the network device, deliver the communication parameters of the V2X service to the UE within the coverage of the at least one grid, thereby adjusting the at least one grid.
  • the communication parameters of the V2X service of the UE within the coverage of a grid, or the PCF entity may also issue a control strategy to the UE within the coverage of the at least one grid, thereby controlling the UE within the coverage of the at least one grid to perform The interface used for data transmission of V2X services.
  • the UE can perform the V2X service according to the communication parameters or control strategy of the V2X service issued by the PCF entity, which can improve the efficiency of the data transmission of the V2X service by the UE and reduce the delay of the data transmission of the V2X service by the UE.
  • an embodiment of the present application provides another data processing method, which is specifically described below.
  • the AF entity divides a preset range into grids to obtain information about N grids within the preset range.
  • the AF entity may divide the preset range into grids to obtain information of N grids.
  • information of the N grids please refer to the relevant description in 201 above, and will not be repeated here.
  • the way that the AF entity divides the preset range can be similar to the way the access network device divides the preset range in the second way in step 202 to obtain the information of N grids, and the access network device Just replace it with the AF entity, so I won’t repeat it here.
  • the AF entity sends information of N grids.
  • the AF entity may send the information of the N grids to other network elements, and the other network elements may include: access network equipment, NWDAF entity or PCF entity, etc., without limitation.
  • the AF entity may divide the preset range into grids to obtain N grids, and send the information of the N grids to other network elements, such as network equipment, access network equipment, etc. .
  • This allows other network elements to learn the result of grid division.
  • the network device can obtain the network resource analysis result of at least one grid based on the grid granularity, and thus can adjust the QoS parameters of the UE's V2X service based on the grid granularity. Further, the UE can use the adjusted QoS parameters of the V2X service to perform the V2X service, which improves the efficiency of the V2X service and reduces the delay of the V2X service.
  • the above method further includes : The AF entity sends the second request to the network device.
  • the second request is used to request to obtain the network resource analysis result, and the second request carries information of at least one grid, for example, the identification of the at least one grid, coverage information, and so on.
  • the above method further includes: the AF entity receives at least one of the N grids from the network device The results of network resource analysis.
  • the AF entity sends the QoS parameters of the V2X service to the UE in the at least one grid that performs the V2X service provided by the AF entity.
  • the QoS parameters of the V2X service refer to the related description in step 402 above.
  • the third preset condition may include: the parameter value in the network resource analysis result is in the third preset range, or the network resource analysis result includes adjustment instruction information, etc.
  • the third preset condition may be the same as or different from the first preset condition or the second preset condition.
  • the adjustment instruction information may include the QoS parameter adjustment instruction information of the V2X service.
  • the QoS parameter adjustment indication information of the V2X service is used to indicate that the QoS parameter of the V2X service of the UE within the coverage of the at least one grid needs to be adjusted.
  • the AF entity can adjust the QoS parameters of the V2X service of the UE within the coverage of the at least one grid according to the network resource analysis result of the at least one grid from the network device, so that the UE can Use QoS parameters that are more compatible with the channel quality of SL communication to perform V2X services, so that the UE can perform V2X services using the QoS parameters of the V2X services issued by the AF.
  • the AF entity may also send the QoS parameters of the V2X service to the PCF entity through the NEF entity, and the PCF entity may send the QoS parameters of the V2X service to the PCF entity.
  • the parameters are sent via the AMF entity to the UE in the at least one grid performing the V2X service provided by the AF entity, so that the AF entity indirectly realizes the adjustment of the QoS parameters of the V2X service of the UE within the coverage of the at least one grid through the PCF entity .
  • the access network device performs map rasterization.
  • the access network device divides the preset range into grids based on the information of the map to obtain information of N grids within the preset range, and N is a positive integer greater than or equal to 1.
  • N is a positive integer greater than or equal to 1.
  • the access network device obtains information of N grids after performing map rasterization.
  • information of the N grids please refer to the related description in step 201 above.
  • each of the N grids has a corresponding identifier, and one grid can correspond to one identifier one to one.
  • the identifier of each grid may be assigned to each grid when the access network device divides the grid; or after the grid division is completed, the access network device assigns an identifier to each grid.
  • the way of assigning the identifier of each grid may be according to a preset rule. For example, each grid can be assigned an identifier according to the order of grid division, or each grid can be randomly assigned an identifier, or each grid can be assigned an identifier according to the arrangement order of each grid, etc. .
  • the preset range may be the cell coverage area under the access network equipment, or the sector coverage area under the access network equipment, or the access network equipment or other network elements based on the map based on preset rules.
  • the predetermined range for example, the predetermined range may be a road area on the map.
  • the N grids may be obtained by dividing the preset range by the access network device according to the preset size.
  • the access network device may divide the road according to a preset length, width or height (altitude), etc., to obtain N grids.
  • the coverage area of each of the N grids may be smaller than the preset range.
  • the coverage of each grid may be smaller than the coverage of one or more cells under the access network equipment, or the coverage of each grid may be smaller than the average coverage of the cells under the access network equipment Wait.
  • each grid may be a rectangle, a circle, a polygon, etc., and the shape of each grid may be the same or different, and may be adjusted according to actual application scenarios.
  • the preset range is a road in the map as an example for description.
  • the access network device may perform rasterization processing based on the road information of the map information, and divide the road into multiple grids.
  • the width of the road can be used as the width of each grid, and the length of each grid can be determined according to the operator's setting. It can be understood that the access network equipment divides the roads on the map into segments, and each road segment is a grid, and the length of each road segment can be set by the operator.
  • the width of the grid is the width of the road, the value of the width may be different in different scenes.
  • the lane width of urban roads is 3.5 meters
  • the diverging lanes of intersections are 2.3-2.5 meters per lane
  • the arterial roads including expressways
  • the shoulder exitpressway emergency parking zone
  • the coverage information of each grid may also include altitude.
  • the above-mentioned preset range is a cell under one or more base stations as an example for description.
  • the base station includes one or more cells, and three cells are used for description here.
  • the base station can divide the coverage of the three cells to obtain multiple grids. Among them, a cell can be divided into one or more grids, and the size of the coverage area of each grid is not greater than the size of the coverage area of the smallest cell under the base station.
  • the above-mentioned preset range is a sector under one or more base stations as an example for description.
  • the base station can also divide based on the coverage of the sectors within its coverage, and divide a sector into one or more grids. As shown in Figure 7C. Among them, one base station may include one or more sectors, and three sectors are described here. The base station can divide the coverage of the three sectors to obtain multiple grids. Among them, a sector can be divided into one or more grids, and the size of the coverage area of each grid is not greater than the size of the coverage area of the smallest sector under the base station.
  • the access network device when the access network device is one or more base stations, after dividing and obtaining the information of the N grids, the access network device can associate each grid with one or more base stations. The next one or more cells are matched. Then save the grid information to the data of the corresponding cell.
  • the coverage area of cell A includes grid 1, grid 2, and grid 5, and the coverage area of cell B includes grid 3, grid 4, and grid 6. You can combine grid 1, grid 2, and grid
  • the identifier of 5 is saved to the data of cell A, and the identifiers of grid 3, grid 4, and grid 5 can be saved to the data of cell B.
  • network elements such as AMF entities, NEF entities, etc.
  • AMF entities can also match the N grids with the aforementioned one or more cells
  • process and the access network equipment can match the N grids with the aforementioned one or more cells.
  • the matching method of the cell is similar, and will not be repeated here.
  • a region is divided based on a map to obtain one or more zones. Then you can associate the PC5 resource with the zone, for example, save the PC5 resource to the relevant data of the corresponding zone.
  • the grid and the zone may be matched by an access network device, a PCF entity or a network device, etc., and the grid and the zone may be associated.
  • the information of the zone where each of the above N grids is located can be stored in the information of each grid, or the information of each grid can be stored in each grid.
  • the information of the zone is medium.
  • the size of the coverage area of the grid provided in this application is smaller than the size of the average coverage area of the zone, or the size of the coverage area of the grid provided in this application is smaller than the size of the minimum coverage area of the zone.
  • the grid obtained based on map division in the embodiment of the present application may be a subset of the zone.
  • a zone can be divided into multiple grids.
  • each grid has a corresponding PC5 resource.
  • each zone has a corresponding zone identification number (identification, ID).
  • ID zone identification number
  • the identification of each grid can be associated with the zone ID.
  • the ID of each grid may include the zone ID of the corresponding zone.
  • the coverage of the zone can be adjusted with the grid as the granularity.
  • one or more grids in FIG. 9 can be divided from zone A to zone B.
  • you only need to adjust the identification of the grid in the zone for example, add or delete the identification of the grid corresponding to the zone, etc., without re-adjusting the longitude and latitude or latitude of each zone. Readjust the length, etc.
  • the complexity of adjusting zone can be reduced.
  • the above method further includes: the access network device sends the N grid information to other network elements, for example, a PCF entity, a data analysis entity, a NWDAF entity, or an AF entity And so on, without restriction.
  • the access network device sends the N grid information to other network elements, for example, a PCF entity, a data analysis entity, a NWDAF entity, or an AF entity And so on, without restriction.
  • step 601 can be replaced with step 6011.
  • the PCF entity performs map rasterization.
  • the step of rasterizing the map in step 601 may also be performed by the PCF entity.
  • the steps for the PCF entity to perform map rasterization are similar to the steps for the access network device to perform map rasterization in step 601, and it is sufficient to replace the access network device in step 601 with the PCF entity, which will not be repeated.
  • the above method further includes: the PCF entity sends the information of the N grids to other network elements, for example, access network equipment, NWDAF entity, data analysis entity or AF Entities, etc., are not restricted.
  • step 601 can be replaced with step 6011.
  • the AF entity performs map rasterization.
  • the step of rasterizing the map in step 601 can also be performed by an AF entity.
  • the steps for the AF entity to perform map rasterization are similar to the steps for the access network device to perform map rasterization in step 601, and it is sufficient to replace the access network device in step 601 with the AF entity, which will not be repeated.
  • the above method further includes: the AF entity sends the N grid information to other network elements, for example, access network equipment, NWDAF entity, data analysis entity or PCF Entities, etc., are not restricted.
  • the AF entity sends the N grid information to other network elements, for example, access network equipment, NWDAF entity, data analysis entity or PCF Entities, etc., are not restricted.
  • the UE reports the first SL network information to the access network device.
  • the UE may report the first SL network information to the access network device through radio resource control (radio resource control, RRC) signaling.
  • radio resource control radio resource control
  • Manner 1 The UE may periodically report the first SL network information to the access network device.
  • the period of reporting the first SL network information may be written by the PCF entity into the configuration information issued to the UE, and the UE reads the reporting period from the configuration information, and then reports the first SL network information according to the reporting period.
  • the access network equipment in the signaling sent to the UE carries an indication instructing the UE to periodically report the first SL network information to the access network equipment, and the reporting period.
  • the UE may according to the signaling, according to the reporting period, period
  • the first SL network information is reported to the access network device.
  • the PCF entity can issue configuration information to the UE through the AMF entity.
  • the configuration information May carry the period in which the UE reports the first SL network information.
  • the access network device sends radio resource control (Radio Resource Control, RRC) signaling to the UE
  • RRC Radio Resource Control
  • the RRC signaling carries an indication instructing the UE to periodically report the first SL network information to the access network device, And the reporting cycle.
  • RRC Radio Resource Control
  • the UE can report the first SL network information periodically. For example, the UE reports the first SL network information f1 to the access network device every minute, so that the access network device can periodically obtain the first SL network information. SL network information. Furthermore, the access network device may also periodically send the second SL network information to the network device, and periodically receive the network resource analysis result from the network device, so as to realize that the access network device periodically covers the grid coverage area.
  • Manner 2 The UE reports the first SL network information according to the trigger condition.
  • the access network device carries the information that triggers the UE to report the first SL network information to the access network device in the signaling sent to the UE.
  • the trigger condition may include: CBR is lower than a preset threshold, or the current channel quality cannot meet the current communication requirements, for example, the delay of the UE performing SL communication is higher than the first threshold, or the UE performing SL communication is lost.
  • the packet rate is higher than the second threshold, etc., which cannot meet the needs of V2X services.
  • the access network device may carry the trigger condition information in the RRC signaling issued to the UE.
  • the UE when the UE determines that the CBR is lower than the preset threshold, or the UE detects that the current channel quality cannot meet the current communication requirements, it can report the first SL network information to the access network device, so that the access The network-connected device can timely obtain the change in communication quality when the UE performs SL communication.
  • Manner 3 When the access network device needs to obtain the first SL network information, it directly issues to the UE report instruction information that instructs the UE to report the first SL network information.
  • the UE may report the first SL network information to the access network device after receiving the report instruction information from the access network device.
  • the access network device can notify the UE to report the first SL network information according to requirements, which can reduce the amount of data sent by the UE and reduce the signaling overhead of the UE.
  • the above method further includes: the location information of the UE may be carried in the first SL network information, and the access network determines that the UE is in the first grid according to the location information.
  • the first SL network information carries the longitude and latitude of the location of the UE, and the access network device can compare the longitude and latitude coordinates of each grid according to the longitude and latitude of the UE location, or combine the first SL network
  • the longitude and latitude of the UE’s location carried in the information are converted into plane coordinates, and compared with the plane coordinates after the transformation of the longitude and latitude and longitude of each grid above, it is determined that the UE is in the first grid, which is included in The above N grids.
  • the access network device performs data preprocessing.
  • step 603 in the embodiment of the present application is an optional step.
  • the access network device may preprocess the first SL network information to obtain the second SL network information.
  • step 203 For the specific steps of preprocessing and the second SL network information, please refer to the relevant description in step 203 above.
  • the access network device can communicate with the two UEs. Preprocessing the first SL network information reported in the first frequency band, the first grid, and the first time period, for example, weighting and averaging the data included in the first SL network information to obtain the preprocessing SL network information . Therefore, in the embodiments of the present application, the preprocessing of the first SL network information by the access network device can reduce the data redundancy of the first SL network information and improve the efficiency of data analysis by the network device.
  • the access network device performs weighted average or other quantization operations on the CBR reported by multiple UEs to obtain each grid. A CBR corresponding to the grid, thereby reducing the redundancy of the CBR of the same grid.
  • each set of first SL network information in the multiple sets of first SL network information may carry different information of the corresponding UE, for example, The location information of each UE, the information of the V2X service performed by each UE, etc., for each group of different information in the first SL network information, you can directly include this information in the second SL network information without preprocessing. OK.
  • the access network device periodically preprocesses the first SL network information, and the period of preprocessing the first SL network information is generally less than that of the UE reporting the first SL in step 602.
  • the cycle of network information For example, the access network device may preprocess the first SL network information f2 times every minute, where f2 is smaller than f1 in step 602.
  • step 603 may also be performed by the data analysis entity.
  • the access network device receives the first SL network information
  • the first SL The network information is sent to the data analysis entity.
  • the process of the data analysis entity preprocessing the first SL network information is similar to the steps of the access network device preprocessing the first SL network information, and will not be repeated here.
  • the access network device sends the identifier of the first grid and the second SL network information to the network device.
  • step 604 in the embodiment of the present application is similar to step 203 described above, and will not be repeated here.
  • the data analysis entity may also send the identification of the first grid and the second SL network information to the NWDAF entity.
  • the access network device sends an SL network performance prediction request to the network device.
  • the SL network performance prediction request sent by the access network device to the network device is the first request described in step 203.
  • the relevant description in step 203 please refer to the relevant description in step 203, which will not be repeated here.
  • the access network device may send the SL network performance prediction request, the identifier of the first grid, and the second SL network information through the same message.
  • step 605 it can be understood that if the access network device needs to predict the SL network performance of certain areas, it can compare the second SL network information and the first grid to the area where the SL network performance prediction needs to be performed.
  • the identifier of the grid is sent to the network device to request the network device to obtain the network resource analysis result of at least one grid, and the at least one grid may be the first grid or the first grid and grids nearby.
  • the network resource analysis result can be used for the access network device to adjust or allocate network resources used by the UE.
  • the access network device may periodically send an SL network performance prediction request to the network device to request the network resource analysis result of at least one grid, so that the UE in the at least one grid can be identified Real-time regulation of network resources used.
  • the access network device may send f3 SL network performance prediction requests to the network device every minute, and f3 is smaller than f2 in step 603 above.
  • the access network device sends the SL network performance prediction request, it carries the second SL network information in the current period.
  • the second SL network information please refer to the relevant description in step 203 above.
  • the access network device may send an SL network performance prediction request to the network device according to the trigger event.
  • the trigger event may include: the UE requests the access network device to allocate network resources, or the CBR value reported by the UE is greater than a preset value, or the road information vehicle density value reported by the UE is greater than the preset vehicle density value, and so on.
  • the access network device may send the SL network performance prediction request, the identifier of the first grid, and the second SL network information through the same message.
  • the second SL network information may be the first SL network information in the foregoing step 602, or may be the SL network information after preprocessing the first SL network information.
  • Scenario 1 The access network device sends the preprocessed SL network information to the network device.
  • the specific content of the message can refer to Table 1.
  • the content requested by the access network device from the network device can be understood as the SL network performance prediction request, which may include at least one grid (including the grid near the first grid in Table 1) coverage Lower the QoS level supported by the SL communication, or the congestion degree of the SL communication under at least one grid coverage, etc.
  • the information of the first grid and the information of the grids near the first grid in Table 1 may include the identification of the first grid and the second SL network information.
  • the grid near the first grid can be understood as a grid adjacent to the first grid.
  • the information of the first grid may include a timestamp, the ID of the first grid, the frequency band in which the UE performs SL communication, channel quality reference information, and CBR information (preprocessed data), etc.
  • the information of the first grid further includes the number of UEs under the first grid, the UE IDs of the UEs within the coverage of the first grid, the movement track of the UEs within the coverage of the first grid, and the first grid.
  • V2X service information of the UE within the coverage area for example, the UE’s ongoing V2X service, the channel occupancy of the V2X service, or the priority of the V2X service data packet, etc., refer to the relevant description in step 202 above
  • the UE perceives One or more of the information (for example, local traffic flow density, vehicle speed, temperature, humidity, visibility, etc., refer to the relevant description in step 202 above) and other information.
  • the frequency band, channel quality reference information, and CBR information in which the UE performs SL communication are preprocessed data. For preprocessing steps, refer to the relevant description in step 203 above.
  • the information of the grids near the first grid is similar to the information of the first grid, and will not be repeated here.
  • the access network device can send the preprocessed SL network information to the network device, which can reduce the redundancy of the sent data and improve the data sending efficiency.
  • the network equipment receives the preprocessed SL network information, the data volume of the preprocessed SL network information is less than the data volume of the unpreprocessed SL network information. Therefore, the network equipment can be based on less SL network information.
  • the network information obtains the network resource analysis result, which can reduce the workload of the network equipment and improve the work efficiency of the network equipment.
  • Scenario 2 The access network device sends unpreprocessed SL network information to the network device.
  • the specific content of the message can refer to Table 2.
  • the content included in Table 2 is similar to the content included in Table 1, and the similar content will not be repeated.
  • the difference is that the frequency band, channel quality reference information, and CBR information for the UE within the coverage of each grid in the first grid and the grids near the first grid carried in Table 2 for SL communication are unpredicted. Processed data.
  • the access network device sends unpreprocessed SL network information to the network device, it may carry a large amount of first SL network information related to the first grid.
  • the network equipment can obtain the usage of network resources under each grid more accurately based on the unpreprocessed SL network information.
  • the more accurate the data carried in the SL network performance message the more accurate the subsequent network resource analysis results will be.
  • step 605 in the embodiment of the present application is an optional step, that is, step 605 may not be performed, or step 605 may be performed, which is not limited.
  • step 605 can also be replaced with 6051.
  • the AF entity sends an SL network performance prediction request to the network device.
  • the above step 605 may also be performed by the AF entity.
  • the SL network performance prediction request sent by the AF entity to the network device is the second request in step 502 above.
  • the SL network performance prediction request is used to request network resource analysis results of at least one grid from the network device.
  • the AF entity may not be able to obtain the SL network information of the UE under at least one grid. Therefore, the SL network performance prediction request sent by the AF entity to the network device may not carry the second SL network information.
  • the device sends the second SL network information to the network device.
  • the manner in which the AF entity sends the SL network performance prediction request to the network device may refer to the manner in which the access network device sends the SL performance prediction request to the network device in step 605.
  • the SL network performance prediction request sent by the AF entity to the network device may carry the information of at least one grid, for example, the at least one grid. Identification, coverage, etc.
  • the SL network performance prediction request sent by the AF entity to the network device may carry the location information corresponding to the network resource analysis result that needs to be obtained .
  • the SL network performance prediction request may carry: the longitude and latitude of the area requested to be predicted, or the information of a single or multiple paths of the UE, or the coordinate information of the geometric area of the requested prediction range, etc.
  • the network device may determine at least one grid corresponding to the network resource analysis result requested by the AF entity according to the location information of the UE carried in the SL network performance prediction request. Therefore, even if the AF entity does not include the information of the N grids, the location information of the requested area can be sent to the network device, so as to request the network device to obtain the network resource analysis result.
  • the network device performs data analysis.
  • step 606 in the embodiment of the present application can refer to the above step 303, which will not be repeated here.
  • Manner 1 The network device may be triggered by the SL network performance prediction request to perform data analysis after step 605 or 6051.
  • the content included in the network resource analysis result may be different according to the requested content carried in the SL network performance prediction request.
  • the network resource analysis result carries the degree of congestion of the SL communication. If the SL network performance prediction request is used to request the network device to analyze the QoS level supported by the SL communication, the network resource analysis result may include the QoS level supported by the SL communication.
  • the network resource analysis result may include an indication of the at least one grid of QoS parameter indicators that can meet the V2X service requirements, for example,
  • the network resource analysis result may include indicators such as delay or packet loss rate, or the network resource analysis result may directly include an indication of whether the QoS indicators of the V2X service are met.
  • the SL network performance prediction request when the SL network performance prediction request is sent by the AF entity, and the AF entity does not save the information of the above N grids, the SL network performance prediction request carries the information of the location that needs to be requested After receiving the SL network performance prediction request, the network device determines at least one grid corresponding to the location information according to the location information carried in the SL network performance prediction request. Then the network resource of the at least one grid is analyzed to obtain the network resource analysis result.
  • Method 2 After step 604, data analysis can be performed.
  • the network device can also periodically base on the The identification of the first grid and the second SL network information related to the first grid analyze the network resources of at least one grid to obtain a network resource analysis result of the at least one grid.
  • the period during which the network device analyzes the network resources of the at least one grid may be adjusted according to the period during which the access network device sends the identifier of the first grid and the second SL network information related to the first grid.
  • the access network device may periodically send the SL network performance prediction request and the second SL network information within a preset time period to the network device. For example, the access network device may send the second SL network information within 5 minutes to the network device. In this way, the network device can obtain the network resource analysis result of the at least one grid based on the SL network performance prediction request and the second SL network information within the preset time period.
  • the network resource analysis result may include the communication quality information of the SL communication within the coverage of the at least one grid in the future preset time period.
  • the network device may take the second SL network information collected in the preset time period as input according to a preset algorithm, such as a Kalman filter algorithm, a neural network algorithm, etc., and output the network resource analysis of the at least one grid
  • a preset algorithm such as a Kalman filter algorithm, a neural network algorithm, etc.
  • the network resource analysis result may include the communication quality information of the SL communication within the coverage of the at least one grid in the future preset time period.
  • the preset time period may be determined by the network equipment according to the prediction algorithm, or may be directly determined by the access network equipment.
  • the access network device can send the SL network performance prediction request and the second SL network information within a preset time period to the network device, requesting the network resource analysis result of the at least one grid, so that the access network device can obtain the result based on the prediction
  • the network resource analysis result of the at least one grid in the future preset time period is adjusted to adjust the network resource of the UE. It can be understood that the analysis or prediction of the communication quality of SL communication can be realized based on the granularity of the grid through Kalman filter algorithm or neural network algorithm, and then the communication quality of SL communication can be analyzed or predicted accurately. Adjust the UE's network resources to avoid channel congestion when the UE is in SL communication.
  • the network device sends the network resource analysis result to the PCF entity.
  • the network device may send the network resource analysis result of the at least one grid to the PCF entity.
  • the network device may periodically send the network resource analysis result to the PCF entity.
  • step 607 in the embodiment of the present application is an optional step, that is, the network device may not send the network resource analysis result of at least one grid to the PCF entity.
  • the network device sends the network resource analysis result to the AF entity.
  • the network device may send the network resource analysis result of the at least one grid to the AF entity.
  • Manner 1 The network device periodically sends the network resource analysis result to the AF entity. For example, if the network device periodically analyzes the network resources of at least one grid, the network device may periodically send the network resource analysis result to the AF entity.
  • Manner 2 The network device receives the SL network performance prediction request from the AF entity, and sends the network resource analysis result to the AF entity.
  • the network device may forward the network resource analysis result to the AF entity through the NEF entity.
  • the network device sends the network resource analysis result to the access network device.
  • the network device may send the network resource analysis result of the at least one grid to the access network device.
  • Method 1 The network device periodically sends the network resource analysis result to the access network device. For example, if the network device periodically analyzes the network resources of at least one grid, the network device periodically sends the network resource analysis result to the access network device.
  • Method 2 The access network device sends an SL network performance prediction request to the network device, and the network device sends the network resource analysis result to the access network device.
  • the access network device sends network resource information to the UE.
  • the information of the network resource is information of the network resource available to the UE, or information of the network resource allocated by the access network device to the UE.
  • the information about the network resources may be sent to the UE by the access network device through the SL radio bearer configuration.
  • the access network device may directly send the network resource information to the UE.
  • the access network device receives the network resource analysis result of at least one grid from the network device, when the network resource analysis result satisfies the first preset condition, the access network device provides coverage to the at least one grid
  • the UE in the network sends the SL radio bearer configuration; or, when the network resource analysis result meets the first preset condition, the access network device allocates network resources for the UE within the coverage of the at least one grid according to the network resource analysis result, And send the information of the allocated network resources to the UE.
  • step 610 reference may be made to the related description of step 203 above. The following describes step 610 in more detail with some specific scenarios.
  • the network resource analysis result carries the QoS level supported by the SL communication in at least one grid range.
  • the first preset condition is that the QoS level carried in the network resource analysis result is lower than the preset QoS level. Therefore, when the network resource analysis result meets the first preset condition, the UE under the at least one grid needs to adjust the network resources used for SL communication.
  • the access network device can issue SL radio bearers to the UEs under the at least one grid, and the SL radio bearers can include information about the network resources available to the UE, so that the UE can select available network resources for SL according to the SL radio bearers. Communication.
  • the access network device may send the SL radio bearer configuration to the UE through RRC signaling or a system information block (system information block, SIB) message.
  • SIB system information block
  • the access network device can send the SL radio bearer configuration to the UE within the coverage of the at least one grid to notify the UE of the available PC5 resources.
  • the access network device may configure corresponding PC5 resources for the UE according to the PC5 authorization information or QoS parameters included in the communication parameters of the V2X service of each UE. For example, the higher the QoS level of the UE, the more PC5 resources allocated to the UE; or the more PC5 resources the UE is authorized to use, the more available PC5 resources allocated to the UE.
  • the first preset condition may be that the value indicating the degree of congestion in at least one grid exceeds a preset value. Then when the value exceeds the preset value, the access network device determines that the network resource analysis result meets the first preset condition.
  • the access network device may allocate network resources for SL communication to the UE according to the network resource result, and deliver information about the network resources allocated for the SL communication for the UE to the UE. Further, the UE may update the network resource configuration according to the information that the access network device allocates network resources for SL communication to the UE, and use the access network device to allocate network resources for SL communication to the UE for SL communication.
  • the frequency band for direct communication that the UE can use when performing the V2X service is the 5905-5925 MHz frequency band, which can also be understood as the working frequency band of the IoV direct communication of the LTE-V2X application.
  • the direct working frequency band of 20MHz bandwidth is prone to channel congestion.
  • the access network device determines that the network resource analysis result meets the first preset condition, it can be understood that the communication quality of the current SL communication is poor, or channel congestion occurs.
  • the access network device can send the SL radio bearer configuration to the UE to notify the UE of the available PC5 resources so that the UE can select PC5 resources for communication, or the access network device can allocate PC5 resources to the UE based on the network resource analysis results. Therefore, in this example, the UE can perform SL communication through available PC5 resources or allocated PC5 resources, thereby improving the communication efficiency of the UE in SL communication, and avoiding channel congestion when the UE is in SL communication.
  • the SL radio bearer configuration can also be understood as a pre-configured SL radio bearer, that is, the access network device predicts the possible poor communication quality or channel congestion of the SL communication based on the network resource analysis result obtained by the network device analysis.
  • the pre-configured SL radio bearer situations such as poor communication quality or channel congestion when the UE performs SL communication are avoided.
  • the PCF entity sends the communication parameters of the V2X service to the UE.
  • step 611 in the embodiment of the present application, reference may be made to the related description after step 402, which will not be repeated here.
  • the PCF entity can send the communication parameters of the V2X service to one or more UEs within the coverage area of the at least one grid according to the network resource analysis result, thereby realizing the Adjustment of the communication parameters of the V2X service of one or more UEs within the coverage of at least one grid.
  • the PCF entity can issue the communication parameters of the V2X service to reduce the V2X of the UE within the at least one grid.
  • the QoS level of the service can adapt to the change of the communication quality of SL communication and avoid channel congestion of SL communication.
  • the PCF entity can adjust the frequency band used by the UE for V2X service by issuing the communication parameters of the V2X service to the UE, so as to avoid the UE from communicating in the frequency band with poor channel quality, improve the communication quality of the UE's SL communication, and reduce the UE's communication Time delay.
  • the PCF entity can also correspondingly increase the UE’s performance in the at least one grid by issuing the communication parameters of the V2X service.
  • the QoS level of the V2X service can adapt to the communication quality of SL communication and improve the communication quality of UE in SL communication.
  • the PCF entity can issue V2X service communication parameters to the UE, adjust the frequency band used by the UE for V2X service, etc., so that the UE can communicate in a frequency band with better channel quality, which can also improve the communication quality of the UE’s SL communication and reduce The time delay for the UE to perform SL communication.
  • the AF entity sends the QoS parameters of the V2X service to the UE.
  • step 612 in the embodiment of the present application, reference may be made to the related description in step 502 above, which will not be repeated here.
  • the V2X service referred to in this step is a service provided by the AF entity for the UE.
  • vehicles share sensor information services, vehicles periodically broadcast their own position, speed and other status information services, and vehicles forward information services of other vehicles or roadside equipment.
  • the network resource analysis result can refer to the related description of step 203 above.
  • the AF entity can send the QoS parameter of the V2X service to one or more UEs within the coverage of the at least one grid according to the network resource analysis result.
  • the QoS parameter can be Used to adjust the QoS parameters of the UE's V2X service.
  • the AF entity can adjust the QoS parameters of the V2X service of the UE based on the granularity of the grid through the network resource analysis result based on the grid granularity, and realize more accurate adjustment of the QoS parameters of the V2X service of the UE.
  • the AF entity may deliver the QoS parameters of the V2X service to UEs within the at least one grid to reduce the at least one QoS parameter.
  • the QoS level of the V2X service of the UE within the grid range. Thereby, the channel congestion of SL communication can be avoided.
  • the AF entity can deliver the QoS parameters of the V2X service to the UEs within the at least one grid range to improve the QoS level of the V2X service of the UEs within the at least one grid range. Therefore, the communication quality of the SL communication performed by the UE is improved, and the communication delay of the UE is reduced.
  • the AF entity after the AF entity receives the network resource analysis result of at least one grid from the network device, if the network resource analysis result satisfies the third preset condition, it can be understood as the network resource within the coverage of the at least one grid
  • the communication quality of PC5 resources may be poor, or channel congestion may occur. Therefore, the AF entity can send the QoS parameters of the V2X service to the UE performing the V2X service within the coverage area of the at least one grid. This allows the UE to configure the QoS parameters of the V2X service executed by itself according to the QoS parameters of the V2X service.
  • the AF entity can adjust the QoS parameters of the V2X service of the UE to adapt the QoS parameters of the V2X service of the UE to the communication quality of SL communication, improve the communication efficiency of the UE in SL communication, and reduce the communication delay of the UE.
  • the QoS parameters included in the communication parameters of the V2X service sent by the PCF entity to the UE may be sent to the PCF entity by one or more AF entities, and then sent to the PCF entity by the PCF entity.
  • the AF entity may be an entity corresponding to the V2X service.
  • the communication parameters of the V2X service sent by the PCF entity to the UE may include one or more communication parameters of the V2X service of the UE, and the communication parameters of the one or more V2X services may include the QoS parameters of the one or more V2X services.
  • the QoS parameters of the one or more V2X services may be sent by the AF entity corresponding to the one or more V2X services to the PCF entity through the NEF entity, and then sent by the PCF entity to the UE.
  • one of the access network device, the PCF entity, or the AF entity performs map rasterization, and informs other network elements of the information of the N grids obtained by the rasterization.
  • the UE within the coverage of the first grid can report the first SL network information to the access network device, and the access network device can send the identification of the first grid and the second SL network information related to the first grid to the network device .
  • the network device can obtain the network resource analysis result of at least one grid based on the information of the N grids, the identification of the first grid, and the second SL network information.
  • the QoS parameters of the service are adjusted to avoid situations such as poor communication quality of the UE within the coverage of the at least one grid or failure to communicate due to congestion of the SL communication channel.
  • Scenario 1 The map is rasterized by the access network equipment.
  • FIG. 10 is a schematic diagram of another flow of the data processing method provided in this application, which is specifically described below.
  • the access network equipment performs map rasterization.
  • the access network device performs map rasterization to obtain N grid information.
  • N grid information For the information of the N grids, please refer to the relevant description in step 201 above.
  • the access network device After the access network device obtains the map information, it divides the roads in the map into N segments based on the map information, that is, N grids are obtained.
  • the length of each grid is the length of the N segments, and the width of each grid is the width of the road, or the width of each grid is greater than the width of the road.
  • each base station can perform grid division on the roads within its coverage area, and multiple base stations can perform grid division to obtain N grid information.
  • the size of the coverage of each grid may be smaller than the coverage of the smallest cell under the base station, so that the granularity of the divided grid is smaller than the granularity of the cell.
  • the size of the coverage area of each grid may be smaller than the size of the coverage area of the smallest sector under the base station, so that the granularity of the divided grid is smaller than the granularity of the sector.
  • the shape of each grid may be a circle, an ellipse, a square, or other polygons, etc., and the shape of each grid may be different. Therefore, the content included in the coverage information of each grid may also be different.
  • the coverage information of the grid may include the longitude, latitude and radius of the center of the circle, and indication data indicating that the shape of the grid is circular.
  • the coverage information of the grid may include the longitude and latitude of the position of each vertex, or it may also include indication data indicating that the shape of the grid is a polygon.
  • step 601 The specific steps for the access network device to perform map rasterization can refer to the above step 601, which will not be repeated here.
  • the access network device sends information of N grids to the NWDAF entity.
  • the access network device after the access network device performs the map rasterization and obtains the information of the N grids, it can send the information of the N grids to the NWDAF entity.
  • the access network device sends N grid information to the PCF entity.
  • the access network device performs map rasterization and obtains the information of the N grids, and can send the information of the N grids to the PCF entity.
  • the UE reports the first SL network information to the access network device.
  • the access network equipment performs data preprocessing.
  • steps 1004-1005 in the embodiment of the present application please refer to the above steps 602-603, which will not be repeated here.
  • the access network device sends the second SL network information to the NWDAF entity.
  • the access network device sends an SL network performance prediction request to the NWDAF entity.
  • the network device in the above steps 604-605 may be an NWDAF entity, and for steps 1006-1007 in the embodiment of the present application, please refer to the above steps 604-605, and replace the network device in steps 604-605 with the NWDAF entity. The details are not repeated here.
  • the NWDAF entity performs data analysis.
  • NWDAF entity for data analysis.
  • NWDAF entity for data analysis.
  • the NWDAF entity sends the network resource analysis result to the access network device.
  • step 1009 in the embodiment of the present application can refer to the above step 609, which will not be repeated here.
  • the NWDAF entity After the NWDAF entity performs data analysis and obtains at least one grid network resource analysis result, it sends the network resource analysis result to the access network device.
  • the network resource analysis result can be understood as the QoS level, congestion level, or QoS KPI conditions supported by the SL communication within the coverage of the at least one grid in a certain period of time in the future.
  • the NWDAF entity sends the network resource analysis result to the PCF entity.
  • step 1010 in the embodiment of the present application refer to the foregoing step 607, which will not be repeated here.
  • the access network device sends network resource information to the UE.
  • step 1011 in the embodiment of the present application reference may be made to the foregoing step 610, which will not be repeated here.
  • the access network device may adjust or allocate PC5 resources for the UE within the coverage of the at least one grid, or the UE that is about to enter the coverage of the at least one grid, so that the UE can use the available PC5 resources for communication.
  • the communication efficiency of the UE in the at least one grid can be improved, and the degree of channel congestion of SL communication in the coverage of the at least one grid can be reduced.
  • the access network equipment can be configured with more PC5 resources, so that the communication transmission of this type of UE can be guaranteed, and the communication transmission can be improved. Reliability.
  • the PCF entity issues a control strategy and communication parameters of the V2X service to the UE.
  • step 1012 in the embodiment of the present application please refer to the above step 611, which will not be repeated here.
  • the PCF entity determines that in a certain period of time, the communication quality of the SL communication within the coverage of the at least one grid changes greatly, for example, the QoS level supported by SL communication is reduced, and the channel is congested High degree. Therefore, the PCF entity can also deliver control strategies and V2X service communication parameters to at least one UE within the coverage of the grid.
  • the control strategy can be used to inform the UE in which time periods or frequency bands or the PC5 interface or Uu interface used to perform data transmission of the V2X service. Therefore, it is avoided that the UEs within the coverage of the at least one grid use the same interface for communication in the same time period or the same frequency band, so as to reduce the channel congestion of the SL communication covered by the at least one grid.
  • the PCF entity can reduce the QoS level of the V2X service of the UE within the coverage of the at least one grid by sending the communication parameters of the V2X service to the UE, or reduce some transmissions.
  • the QoS level of the V2X service of the UE whose data is less important.
  • the PCF entity may also issue the communication parameters of the V2X service to the UE to improve the QoS level of the V2X service of the UE within the coverage of the at least one grid.
  • the PCF entity may send the control strategy and the communication parameters of the V2X service to the UEs within the coverage of the at least one grid via a downlink non-access stratum (NAS) message via the AMF entity , Or, a UE that is about to enter the coverage area of the at least one grid.
  • NAS downlink non-access stratum
  • the NWDAF entity can carry the at least one grid resource analysis result when sending the network resource analysis result of at least one grid to the PCF entity.
  • the information of one grid for example, the identification coverage information of the at least one grid, etc.
  • the NWDAF entity may also send the information of N grids to the PCF entity; or, after receiving the network resource analysis result of at least one grid, the PCF entity requests the information of the N grids from the access network device, etc. .
  • the access network device may perform map rasterization and notify other network elements.
  • the access network device also sends the second SL network information and the SL network performance prediction request to the NWDAF entity, so that the NWDAF entity can obtain network resource analysis of at least one grid based on the information of the N grids and the second SL network information result. And send the network resource analysis result to the access network equipment and PCF entity, so that the access network equipment or PCF entity can adjust the UE’s network resources and the communication parameters of the V2X service based on the grid-granular network resource analysis results. It is avoided that the UE within the coverage of the at least one grid has poor communication quality of SL communication, channel congestion of SL communication, and the like.
  • Scenario 2 The map is rasterized by PCF entities.
  • FIG. 11 is a schematic diagram of another flow of the data processing method provided by this application, which is specifically described as follows.
  • the PCF entity performs map rasterization.
  • the PCF entity performs map rasterization to obtain information of N grids.
  • step 1101 in the embodiment of the present application is similar to step 6011 described above, and will not be repeated here.
  • the PCF entity sends N grid information to the access network device.
  • the PCF entity After the PCF entity performs map rasterization and obtains the information of the N grids, it sends the information of the N grids to the access network device so that the access network device can obtain the information of the N grids.
  • the PCF entity sends information of N grids to the NWDAF entity.
  • the PCF entity After the PCF entity performs map rasterization and obtains the information of the N grids, the information of the N grids is sent to the NWDAF entity, so that the NWDAF entity can obtain the information of the N grids.
  • the UE reports the first SL network information to the access network device.
  • the access network equipment performs data preprocessing.
  • the access network device sends the second SL network information to the NWDAF entity.
  • the access network device sends an SL network performance prediction request to the NWDAF entity.
  • NWDAF entity performs data analysis.
  • the NWDAF entity sends the network resource analysis result to the access network device.
  • the NWDAF entity sends the network resource analysis result to the PCF entity.
  • the access network device sends network resource information to the UE.
  • the PCF entity issues a control strategy and communication parameters of the V2X service to the UE.
  • Steps 1104-1112 in the embodiment of this application are similar to the above-mentioned steps 1004-1012, and will not be repeated here.
  • the NWDAF entity may also send the network resource analysis result to the AF entity.
  • the NWDAF entity may also send the network resource analysis result to the AF entity.
  • the PCF entity may perform map rasterization and notify other network elements.
  • the access network device sends the second SL network information and the SL network performance prediction request to the NWDAF entity, so that the NWDAF entity can obtain the network resource analysis result of at least one grid based on the information of the N grids and the second SL network information.
  • the network resource analysis result is sent to the access network equipment and PCF entity, so that the access network equipment and PCF entity can analyze the network resources of the UE, the communication parameters of the V2X service, or the V2X service based on the grid-granularity QoS parameters and the like are adjusted to avoid situations such as poor communication quality of SL communication and channel congestion of SL communication for UEs within the coverage of the at least one grid.
  • Scene 3 The map is rasterized by the AF entity.
  • FIG. 12 is a schematic diagram of another flow of the data processing method provided in this application, which is specifically described below.
  • the AF entity performs map rasterization.
  • step 1201 in the embodiment of the present application is similar to step 6011 described above, and will not be repeated here.
  • the AF entity sends N grid information to the PCF entity.
  • the AF entity performs map rasterization, and after obtaining the information of the N grids, sends the information of the N grids to the PCF entity, so that the PCF entity can obtain the information of the N grids.
  • the AF entity sends information of N grids to the NWDAF entity.
  • the AF entity performs map rasterization, and after obtaining the information of the N grids, sends the information of the N grids to the NWDAF entity, so that the NWDAF entity can obtain the information of the N grids.
  • the AF entity sends N grid information to the access network device.
  • the AF entity performs map rasterization, and after obtaining the information of the N grids, sends the information of the N grids to the access network device, so that the access network device can obtain the information of the N grids.
  • the AF entity may not send the information of the N grids to the PCF entity or the access network device, that is, step 1202 and step 1204 are optional steps.
  • the UE reports the first SL network information to the access network device.
  • the access network equipment performs data preprocessing.
  • the access network device sends the second SL network information to the NWDAF entity.
  • Steps 1205-1007 in the embodiment of this application are similar to the above-mentioned steps 1004-1006, and will not be repeated here.
  • the AF entity sends an SL network performance prediction request to the NWDAF entity.
  • the sending of the SL network performance prediction request by the AF entity to the NWDAF entity can be understood as the second request described in step 203 above.
  • the SL network performance prediction request is used to request to obtain at least one grid network resource analysis result from the network device.
  • the AF entity after the AF entity performs the map rasterization, the information of the N grids can be obtained. Therefore, the AF can carry the information of the requested at least one grid in the SL network performance prediction request, for example, the at least one grid. Grid identification, coverage information, etc.
  • NWDAF entity performs data analysis.
  • the NWDAF entity after the NWDAF entity receives the SL network performance prediction request from the AF, because the SL network performance prediction request does not carry the second SL network information, the NWDAF entity also sends to the access network device The indication data instructs the access network device to send the second SL network information to the NWDAF entity.
  • the NWDAF entity can obtain the second SL network information, and subsequently can perform data analysis based on the second SL network information.
  • the NWDAF entity may send instruction data to the access network device, and the instruction data carries the N items.
  • the grid information enables the access network device to obtain the grid division result, and associate the second SL network information with the first grid of the N grids, and associate the second SL network information with the first grid.
  • the identification of the grid is sent to the NWDAF entity.
  • sending the instruction data by the NWDAF entity to the access network device may include: the NWDAF entity requests information about at least one grid of the prediction in the SL network performance prediction request from the AF entity, or the location information of the area requested for prediction , Through the instruction data sent to the AMF entity.
  • the AMF entity searches for the information or location information of the at least one grid and the corresponding access network device, and then sends the indication data to the access network device.
  • the access network device can report the second SL network information related to the first grid in the at least one grid according to the indication data.
  • the at least one grid may include: a first grid, or a first grid and a grid adjacent to the first grid.
  • step 1208 and step 1207 can also be executed first, which can be specifically adjusted according to actual application scenarios.
  • the NWDAF entity sends the network resource analysis result to the access network device.
  • the NWDAF entity sends the network resource analysis result to the PCF entity.
  • the access network device sends network resource information to the UE.
  • the PCF entity issues a control strategy and communication parameters of the V2X service to the UE.
  • the AF entity sends the QoS parameters of the V2X service to the UE.
  • Steps 1210-1214 in the embodiment of the present application are similar to the above-mentioned steps 606-612, and will not be repeated here.
  • the AF entity performs map rasterization, and sends the grid division result to other network elements, such as access network equipment, PCF entity, NWDAF entity, and so on.
  • the AF entity also sends an SL network performance prediction request to the NWDAF entity, and the NWDAF entity may obtain the network resource analysis result of at least one grid based on the information of the N grids and the second SL network information.
  • the network resource analysis result is sent to the access network equipment and PCF entity, so that the access network equipment and PCF entity can analyze the network resources of the UE, the communication parameters of the V2X service, or the V2X service based on the grid-granular network resource analysis result.
  • QoS parameters and the like are adjusted to avoid situations such as poor communication quality of SL communication and channel congestion of SL communication for UEs within the coverage of the at least one grid.
  • the map is rasterized by the data analysis entity.
  • FIG. 13 is a schematic diagram of another flow of the data processing method provided in this application, which is specifically described as follows.
  • the data analysis entity performs map rasterization.
  • the data analysis entity is deployed independently of the access network equipment, and the data analysis entity performs map rasterization to obtain N grid information.
  • the data analysis entity performs map rasterization to obtain N grid information.
  • the information of the N grids please refer to the related description in the above step 201, which will not be repeated here.
  • step 1301 in the embodiment of the present application is similar to the step of performing map rasterization by the access network device in step 601, and will not be repeated here. The difference is that the aforementioned step 601 is performed by the access network device. , Step 1301 is performed by the data analysis entity.
  • the data analysis entity sends N grid information to the PCF entity.
  • the data analysis entity performs map rasterization, and after obtaining the information of the N grids, sends the information of the N grids to the PCF entity, so that the PCF entity can obtain the information of the N grids.
  • the data analysis entity sends information of N grids to the NWDAF entity.
  • the data analysis entity performs map rasterization, and after obtaining the information of the N grids, sends the information of the N grids to the NWDAF entity, so that the NWDAF entity can obtain the information of the N grids.
  • the data analysis entity sends N grid information to the access network device.
  • the data analysis entity performs map rasterization, and after obtaining the information of the N grids, sends the information of the N grids to the NWDAF, so that the access network device can obtain the information of the N grids.
  • the UE reports the first SL network information to the access network device.
  • step 1305 in the embodiment of the present application is similar to step 602 described above, and will not be repeated here.
  • the access network device sends the first SL network information to the data analysis entity.
  • the access network device may forward the first SL network information to the data analysis entity, and the data analysis entity performs subsequent data preprocessing.
  • the data analysis entity performs data preprocessing.
  • the process of data preprocessing performed by the data analysis entity is similar to the process of data preprocessing performed by the access network device, and reference may be made to step 603 above.
  • the data analysis entity sends the second SL network information to the NWDAF entity.
  • the data analysis entity may send the identification of the first grid and the second SL network information to the NWDAF entity.
  • the NWDAF entity may send the identification of the first grid and the second SL network information to the NWDAF entity.
  • the second SL network information reference may be made to the related description in the foregoing step 203, which is not repeated here.
  • the data analysis entity sends an SL network performance prediction request to the NWDAF entity.
  • the data analysis entity sends an SL network performance prediction request to the NWDAF entity.
  • the SL network performance prediction request is similar to the first request described in step 203 above, and will not be repeated here.
  • the data analysis entity sends the SL network performance prediction request to the NWDAF entity, which is similar to the procedure of the access network sending the SL network performance prediction request to the NWDAF entity. Refer to step 605 above.
  • the data analysis entity after the data analysis entity performs preprocessing to obtain the second SL network information, it can also send the first grid identifier, the second SL network information, and the SL network prediction request through the same message to request NWDAF for at least one grid Network resource analysis results.
  • the SL network prediction request also carries information of the at least one grid, for example, the identification and coverage information of the at least one grid.
  • the NWDAF entity performs data analysis.
  • the NWDAF entity sends the network resource analysis result to the access network device.
  • the NWDAF entity sends the network resource analysis result to the PCF entity.
  • the access network device sends network resource information to the UE.
  • the PCF entity issues a control strategy and communication parameters of the V2X service to the UE.
  • Steps 1310-1314 in the embodiment of this application are similar to the above-mentioned steps 1008-1012, and will not be repeated here.
  • the NWDAF entity may also send the network resource analysis result to the AF entity.
  • the NWDAF entity may also send the network resource analysis result to the AF entity.
  • the data analysis entity may perform map rasterization and notify other network elements.
  • the data analysis entity can also perform data preprocessing to reduce the workload of the access network equipment.
  • the data analysis entity also sends the second SL network information and the SL network performance prediction request to the NWDAF entity, so that the NWDAF entity can obtain the network resource analysis result of at least one grid based on the information of the N grids and the second SL network information.
  • send the network resource analysis result to the access network device and PCF entity so that the network resource analysis result based on the grid granularity of the access network device and PCF entity can be used for the UE’s network resources, V2X service communication parameters or V2X service information.
  • QoS parameters and the like are adjusted to avoid situations such as poor communication quality and channel congestion for SL communication in the network resources used by the UE within the coverage of the at least one grid.
  • Scenario 5 Data analysis is performed by the data analysis entity.
  • FIG. 14 is a schematic diagram of another flow chart of the data processing method provided by the present application, which is specifically described as follows.
  • the map is rasterized by one of an access network device, a data analysis entity, a PCF entity, or an AF entity.
  • one of the access network device, the data analysis entity or the PCF entity may perform map rasterization to obtain N grid information, and send the rasterization result to other network elements .
  • the access network device may perform map rasterization, and send the information of the N grids to the data analysis entity, the PCF entity or the AF entity.
  • the data analysis entity may also perform map rasterization, and send the information of the N grids to the access network device, the PCF entity or the AF entity.
  • the PCF entity may also perform the map rasterization, and send the obtained information of the N grids to the access network device, the data analysis entity or the AF entity.
  • the AF entity may also perform map rasterization, and send the information of the N grids to the access network device, the data analysis entity or the PCF entity.
  • the UE reports the first SL network information to the access network device.
  • the access network equipment performs data preprocessing.
  • the access network device sends the second SL network information to the data analysis entity.
  • steps 1402-1404 in the embodiment of this application please refer to the above steps 602-604.
  • the access network device sends an SL network performance prediction request to the data analysis entity.
  • the access network device sends an SL network performance prediction request to the data analysis entity for requesting at least one grid network resource analysis result from the data analysis entity.
  • the SL network performance prediction request can be understood as the first request.
  • the SL network performance prediction request carries information of at least one grid.
  • step 1405 in the embodiment of the present application please refer to the foregoing step 605, which will not be repeated here.
  • the data analysis entity performs data analysis.
  • data analysis is performed by a data analysis entity.
  • the data analysis entity sends the network resource analysis result to the access network device.
  • the data analysis entity sends the network resource analysis result to the PCF entity.
  • the data analysis entity sends the network resource analysis result to the AF entity.
  • the access network device sends network resource information to the UE.
  • the PCF entity issues a control strategy and communication parameters of the V2X service to the UE.
  • the AF entity sends the QoS parameters of the V2X service to the UE.
  • Steps 1210-1214 in the embodiment of the present application are similar to the above-mentioned steps 606-612, and the network device in steps 606-612 can be replaced with a data analysis entity, which will not be repeated here.
  • the map rasterization is performed by one of the access network device, the data analysis entity, the PCF entity, or the AF entity.
  • the access network device also sends an SL network performance prediction request to the data analysis entity, and the data analysis entity may obtain the network resource analysis result of at least one grid based on the information of the N grids and the second SL network information. And send the network resource analysis result to the access network equipment and PCF entity, so that the access network equipment and PCF entity can analyze the network resources of the UE, the communication parameters of the V2X service, or the V2X service based on the grid-granular network resource analysis result.
  • QoS parameters and the like are adjusted to avoid situations such as poor communication quality and channel congestion of SL communication when the UE within the coverage of the at least one grid performs SL communication.
  • the foregoing provides a detailed description of the method provided by the present application, and the following describes a data processing apparatus provided in an embodiment of the present application based on the foregoing method.
  • the data processing device may be an access network device, or a chip or a chip system located on the access network device.
  • the data processing device may be used to execute For the steps performed by the access network device in the embodiment shown in FIGS. 2-14, reference may be made to the related description in the foregoing method embodiment.
  • the data processing device includes: a transceiver unit 1501 and a processing unit 1502.
  • the transceiver unit is configured to obtain information of N grids within a preset range, where N is a positive integer greater than or equal to 1;
  • the transceiver unit is also used to receive the first side link SL network information from the user equipment UE;
  • the access network device sends the identifier of the first grid and the second SL network information related to the first grid to the network device according to the first SL network information, and the UE is in the first grid ,
  • the N grids include the first grid.
  • the transceiver unit 1501 is specifically configured to:
  • the processing unit 1502 is specifically configured to perform grid division on the preset range to obtain information of N grids within the preset range.
  • the transceiver unit 1501 is also used for:
  • the transceiving unit 1501 is further configured to receive the network resource analysis result of at least one of the N grids from the network device;
  • the transceiver unit 1501 is further configured to send the SL radio bearer configuration to at least one UE within the coverage of the grid when the network resource analysis result meets the first preset condition; or,
  • the processing unit 1502 is further configured to allocate network resources to UEs within the coverage of at least one grid according to the network resource analysis result when the network resource analysis result meets the first preset condition.
  • the transceiver unit 1501 is further configured to send a first request to a network device, where the first request is used to request to obtain a network resource analysis result; wherein, the first request carries information of at least one grid.
  • the first request also carries second SL network information.
  • the network device is a data analysis entity or a network data analysis function NWDAF entity.
  • the information of the N grids includes:
  • the processing unit 1502 is further configured to assign an identifier to each of the N grids.
  • the first SL network information includes at least one of the following: location information of the UE, channel quality information, V2X service information, or road information.
  • the processing unit 1502 is further configured to determine that the UE is in the first grid according to the location of the UE and the information of the N grids.
  • the coverage of the first grid is smaller than the coverage of the cell currently accessed by the UE.
  • the data processing apparatus may be a network device, or a chip or a chip system located on the network device, and the data processing apparatus may be used to execute FIG. 2-
  • the steps performed by the network device in the embodiment shown in 14 reference may be made to the relevant description in the foregoing method embodiment.
  • the data processing device includes: a transceiver unit 1601 and a processing unit 1602;
  • the transceiver unit 1601 is configured to obtain information of N grids within a preset range, where N is a positive integer greater than or equal to 1;
  • the transceiver unit 1601 is further configured to receive the identifier of the first grid from the access network device and the second SL network information related to the first grid, and the N grids include the first grid;
  • the processing unit 1602 is configured to obtain a network resource analysis result of at least one of the N grids according to the information of the N grids, the second SL network information, and the identification of the first grid, at least one grid includes the first grid One grid.
  • the transceiver unit 1601 is specifically configured to:
  • the network device receives the information of N grids from the PCF entity; or,
  • the network equipment receives the information of N grids from the access network equipment; or,
  • the network device receives the information of N grids from the AF entity.
  • the transceiver unit 1601 is also used for:
  • the transceiver unit 1601 is also used for:
  • the first request is used to request to obtain network resource analysis results, and the first request carries information of at least one grid; or,
  • a second request from the AF entity is received, the second request is used to request to obtain a network resource analysis result, and the second request carries information of at least one grid.
  • the network device is an NWDAF entity or a data analysis entity.
  • the network device is a data analysis entity
  • the processing unit 1602 is further configured to preprocess the second SL network information to obtain preprocessed SL network information;
  • the processing unit 1602 is further configured to obtain a network resource analysis result of at least one of the N grids according to the information of the N grids, the preprocessed SL network information, and the identification of the first grid.
  • the processing unit 1602 is further configured to perform grid division on the preset range to obtain information of N grids within the preset range.
  • the data processing device may be a PCF entity, or a chip or a chip system located on the PCF entity, and the data processing device may be used to execute FIG. 2-
  • the steps performed by the PCF entity in the embodiment shown in 14 reference may be made to the relevant description in the foregoing method embodiment.
  • the data processing device includes: a transceiver unit 1701 and a processing unit 1702;
  • the processing unit 1702 is configured to perform grid division on the preset range to obtain information of N grids in the preset range, where N is a positive integer greater than or equal to 1;
  • the transceiver unit 1701 is used to send information of N grids.
  • the transceiver unit 1701 is specifically configured to:
  • the transceiving unit 1701 is further configured to receive the network resource analysis result of at least one of the N grids from the network device;
  • the transceiving unit 1701 is further configured to send communication parameters of the V2X service to at least one UE within the coverage of the grid when the network resource analysis result meets the second preset condition.
  • the communication parameters of the V2X service include the QoS parameters and addresses of the V2X service At least one of information or frequency band information.
  • the network device is a data analysis entity or an NWDAF entity.
  • the data processing device may be an AF entity, or a chip or chip system located on the AF entity, and the data processing device may be used to execute FIG. 2-
  • the steps performed by the AF entity in the embodiment shown in 14 reference may be made to the relevant description in the foregoing method embodiment.
  • the data processing device includes: a transceiver unit 1801 and a processing unit 1802;
  • the processing unit 1802 is configured to perform grid division on the preset range to obtain information of N grids within the preset range, where N is a positive integer greater than or equal to 1;
  • the transceiver unit 1801 is used to send information of N grids.
  • the transceiver unit 1801 is specifically configured to:
  • the transceiving unit 1801 is further configured to receive the network resource analysis result of at least one of the N grids from the network device;
  • the transceiver unit 1801 is further configured to send QoS parameters of the V2X service to at least one UE that executes the V2X service provided by the AF entity within the coverage of the grid when the network resource analysis result meets the third preset condition.
  • the AF entity sends a second request to the network device, the second request is used to request to obtain the network resource analysis result, and the second request carries information of at least one grid.
  • the network device is a data analysis entity or an NWDAF entity.
  • This application also provides a data processing device 1900. Please refer to FIG. 19, an embodiment of the data processing device in the embodiment of this application.
  • the data processing device may be an access network device, or a chip or a chip located on the access network device
  • the data processing apparatus can be used to execute the steps executed by the access network device in any of the embodiments shown in FIGS. 2-14, and reference may be made to the relevant description in the above method embodiment.
  • the data processing apparatus 1900 includes a processor 1901, a memory 1902, and an input and output device 1903.
  • the processor 1901, the memory 1902, and the input/output device 1903 are respectively connected to a bus, and computer instructions are stored in the memory.
  • the transceiving unit 1501 in the foregoing embodiment may specifically be the input/output device 1903 in this embodiment, so the specific implementation of the input/output device 1903 will not be repeated.
  • the processing unit 1502 in the foregoing embodiment may specifically be the processor 1901 in this embodiment, so the specific implementation of the processor 1901 will not be described again.
  • the data processing device 1900 may include more or less components than those shown in FIG. 19, which is only an exemplary description in this application and is not limited.
  • This application also provides a data processing device 2000. Please refer to FIG. 20.
  • the data processing device may be a network device, or a chip or a chip system located on the network device.
  • the data The processing device may be used to execute the steps executed by the network device in any of the embodiments shown in FIGS. 2-14, and reference may be made to the relevant description in the foregoing method embodiment.
  • the data processing device 2000 includes a processor 2001, a memory 2002, and an input and output device 2003.
  • the processor 2001, the memory 2002, and the input/output device 2003 are respectively connected to a bus, and computer instructions are stored in the memory.
  • the transceiving unit 1601 in the foregoing embodiment may specifically be the input/output device 2003 in this embodiment, so the specific implementation of the input/output device 2003 will not be described again.
  • the processing unit 1602 in the foregoing embodiment may specifically be the processor 2001 in this embodiment, so the specific implementation of the processor 2001 will not be described again.
  • the data processing apparatus 2000 may include more or less components than that shown in FIG. 20, which is only an exemplary description in this application and is not limited.
  • This application also provides a data processing device 2100. Please refer to FIG. 21.
  • the data processing device is an embodiment.
  • the data processing device may be a PCF entity, or a chip or chip system located on the PCF entity.
  • the processing device may be used to execute the steps executed by the PCF entity in any of the embodiments shown in FIGS. 2-14, and reference may be made to the related description in the above method embodiment.
  • the data processing apparatus 2100 includes a processor 2101, a memory 2102, and an input and output device 2103.
  • the processor 2101, the memory 2102, and the input/output device 2103 are respectively connected to a bus, and computer instructions are stored in the memory.
  • the transceiving unit 1701 in the foregoing embodiment may specifically be the input output device 2103 in this embodiment, so the specific implementation of the input output device 2103 will not be described in detail.
  • the processing unit 1702 in the foregoing embodiment may specifically be the processor 2101 in this embodiment, so the specific implementation of the processor 2101 will not be described again.
  • the data processing device 2100 may include more or less components than those shown in FIG. 21, which is only an exemplary description in this application and is not limited.
  • This application also provides a data processing device 2200. Please refer to FIG. 22.
  • the data processing device may be an AF entity, or a chip or chip system located on the AF entity.
  • the processing device may be used to execute the steps performed by the AF entity in any of the embodiments shown in FIGS. 2-14, and reference may be made to the relevant description in the foregoing method embodiment.
  • the data processing apparatus 2200 includes: a processor 2201, a memory 2202, and an input and output device 2203.
  • the processor 2201, the memory 2202, and the input/output device 2203 are respectively connected to a bus, and computer instructions are stored in the memory.
  • the transceiving unit 1801 in the foregoing embodiment may specifically be the input/output device 2203 in this embodiment, so the specific implementation of the input/output device 2203 will not be repeated.
  • the processing unit 1802 in the foregoing embodiment may specifically be the processor 2201 in this embodiment, so the specific implementation of the processor 2201 will not be repeated.
  • the data processing device 2200 may include more or less components than those shown in FIG. 22, which is only an exemplary description in this application and is not limited.
  • the communication network includes: an access network device, a PCF entity, and a network device.
  • the access network device may include the data processing apparatus shown in FIG. 15 described above, which is used to perform all or part of the steps performed by the access network device in any of the embodiments shown in FIGS. 2-14.
  • the network device may include the aforementioned data processing apparatus shown in FIG. 16 for executing all or part of the steps performed by the network device in any of the aforementioned embodiments shown in FIGS. 2-14.
  • the PCF entity may include the data processing device shown in FIG. 17 for executing all or part of the steps performed by the PCF entity in any of the embodiments shown in FIGS. 4-14.
  • the communication system may further include a UE, and the UE may be used to perform all or part of the steps performed by the UE in any of the foregoing embodiments shown in FIGS. 2-14.
  • an embodiment of the present application also provides a communication system.
  • the communication network includes: an access network device, a PCF entity, a network device, and an AF entity.
  • the access network device may include the data processing apparatus shown in FIG. 15 described above, which is used to perform all or part of the steps performed by the access network device in any of the embodiments shown in FIGS. 2-14.
  • the network device may include the aforementioned data processing apparatus shown in FIG. 16 for executing all or part of the steps performed by the network device in any of the aforementioned embodiments shown in FIGS. 2-14.
  • the PCF entity may include the aforementioned data processing device shown in FIG. 17 for executing all or part of the steps executed by the PCF entity in any of the aforementioned embodiments shown in FIGS. 2-14.
  • the AF entity may include the data processing device shown in FIG. 18 for executing all or part of the steps performed by the AF entity in any of the embodiments shown in FIGS. 2-14.
  • the communication system may further include a UE, and the UE may be used to perform all or part of the steps performed by the UE in any of the foregoing embodiments shown in FIGS. 2-14.
  • the present application provides a chip system including a processor for supporting the data processing device to implement the functions involved in the above aspects, for example, sending or processing the data and/or information involved in the above methods.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the data processing apparatus when the data processing apparatus is a chip in a terminal device, an access network device, a network device, an AF entity, or a PCF entity, the chip includes: a processing unit and a communication unit, the processing unit For example, it may be a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute the computer execution instructions stored in the storage unit, so that the chip in the terminal device, the access network device, the network device, the AF entity, or the PCF entity, etc. executes the interface in any one of the embodiments in Figure 2-14. Steps of the method executed by the network device, network device, PCF entity, or AF entity.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be in the terminal device, access network device, network device, AF entity, or PCF entity, etc.
  • the storage unit outside the chip such as read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), etc.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the method flow related to the data processing apparatus in any of the foregoing method embodiments is implemented.
  • the computer may be the aforementioned data processing device.
  • the data processing device includes access network equipment, network equipment, PCF entity or AF entity.
  • the embodiments of the present application also provide a computer program or a computer program product including a computer program.
  • the computer program When the computer program is executed on a computer, the computer will enable the computer to implement the data processing in any of the foregoing method embodiments.
  • Device-related method flow Correspondingly, the computer may be the aforementioned data processing device.
  • all or part of the embodiments may be implemented by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • wired such as coaxial cable, optical fiber, digital subscriber line (DSL)
  • wireless such as infrared, wireless, microwave, etc.
  • the computer-readable storage medium may be any available medium that can be stored by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • processors mentioned in this application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits (Application Specific Integrated Circuits). Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • processors in the present application may be one or multiple, and may be specifically adjusted according to actual application scenarios. This is only an exemplary description and is not limited.
  • the number of memories in the embodiments of the present application may be one or multiple, and may be specifically adjusted according to actual application scenarios. This is only an exemplary description and is not limited.
  • the data processing device includes a processor (or processing unit) and a memory
  • the processor in this application may be integrated with the memory, or the processor and the memory may be connected through an interface. It is adjusted according to actual application scenarios and is not limited.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or other devices, etc.) execute all or part of the steps of the methods described in the embodiments in Figures 2-14 of this application.
  • the storage medium or memory mentioned in this application may include volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synch link DRAM SLDRAM
  • Direct Rambus RAM DR RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种数据处理的方法、装置和系统,用于以栅格为粒度对网络资源进行分析,进而对网络性能进行预测,可以更准确地预测出UE所在位置的网络情况,实现更准确地调度UE的网络资源。本实施例提供的方法可以应用于多种通信系统,例如V2X、LTE-V、V2V、车联网、MTC、IoT、LTE-M,M2M,物联网等。该方法包括:接入网设备获取预设范围内的N个栅格的信息,N为大于或等于1的正整数;接入网设备接收来自用户设备UE的第一侧链路SL网络信息;接入网设备根据第一SL网络信息,向网络设备发送第一栅格的标识以及第一栅格相关的第二SL网络信息,UE处于第一栅格,N个栅格包括第一栅格。

Description

一种数据处理的方法、装置和系统
本申请要求于2019年7月12日提交中国专利局、申请号为“201910631211.8”、申请名称为“一种数据处理的方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种数据处理的方法、装置和系统。
背景技术
在车联网(Vehicle-to-everything,V2X)通信场景中,可以包括多种应用场景,例如,车辆组队、传感器扩展、远程驾驶或驾驶增强等等。为了支持这些应用场景的实现,侧链路(Sidelink,SL)的基于邻近通信5(prose communication 5,PC5)接口的车到车(vehicle-to-vehicle,V2V)通信需要支持低时延高可靠的传输需求。且不同于Uu口通信,用户设备(user equipment,UE)与基站之间的上下行通信方式,SL通信采用用户直接连接的通信方式。
通常,在V2X通信场景下,UE可能处于运动状态,而SL通信的通信质量也时刻处于变化中。因此,UE并不能准确地确定出适应SL通信质量的网络资源。因此,如何使UE使用准确的网络资源进行通信,成为亟待解决的问题。
发明内容
本申请提供一种数据处理的方法、装置和系统,用于以栅格为粒度对网络资源进行分析,进而对网络性能进行预测,可以更准确地预测出UE所在位置的网络情况,实现更准确地调度UE的网络资源。
有鉴于此,本申请第一方面提供一种数据处理的方法,包括:接入网设备获取预设范围内的N个栅格的信息,N为大于或等于1的正整数;接入网设备接收来自UE的第一SL网络信息;接入网设备根据第一SL网络信息,向网络设备发送第一栅格的标识以及第一栅格相关的第二SL网络信息,UE处于第一栅格,N个栅格包括第一栅格。
在本申请实施方式中,接入网设备可以获取到预设范围内的N个栅格的信息,并接收来自该N个栅格中的第一栅格覆盖范围内的UE的第一SL网络信息,并根据该第一SL网络信息,向网络设备发送第一栅格的标识以及第一栅格相关的第二SL网络信息,使得网络设备可以根据该第二SL网络信息,得到至少一个栅格的网络资源分析结果,该至少一个栅格可以包括第一栅格以及第一栅格附近的栅格。一种数据处理的方法,其特征在于,包括:
接入网设备获取预设范围内的N个栅格的信息,N为大于或等于1的正整数;接入网设备接收来自UE的第一SL网络信息;接入网设备根据第一SL网络信息,向网络设备发送第一栅格的标识以及第一栅格相关的第二SL网络信息,UE处于第一栅格,N个栅格包括第一栅格。在本申请实施方式中,接入网设备可以获取到预设范围内的N个栅格的信息,并接收来自该N个栅格中的第一栅格覆盖范围内的UE的第一SL网络信息,并根据该第一SL网络信息,向网络设备发送第一栅格的标识以及第一栅格相关的第二SL网络信息,使得网络设备可以根据该第二SL网络信息,得到至少一个栅格的网络资源分析结果,该至少一个栅格可以包括第一栅格以及第一栅格附近的栅格,该网络资源分析结果可以用于调整该至少 一个栅格覆盖范围内的UE的网络资源。UE所处的栅格的粒度小于该UE当前接入的小区的粒度,因此,可以基于更小粒度的栅格粒度,调整UE所使用的网络资源,可以更精准地对UE的网络资源进行调整,提高调整网络资源的精度。
在一种可能的实施方式中,接入网设备获取预设范围内的N个栅格的信息,包括:
接入网设备接收来自策略与控制功能(policy control function,PCF)实体的N个栅格的信息;或者,接入网设备接收来自数据分析实体的N个栅格的信息;或者,接入网设备接收来自应用功能AF实体的N个栅格的信息。在本申请实施方式中,可以由PCF实体在预设范围进行栅格划分,得到N个栅格的信息,并发送至接入网设备。也可以由数据分析实体在预设范围进行栅格划分,得到N个栅格的信息,并发送至接入网设备。还可以由应用功能(application function,AF)实体、在预设范围进行栅格划分,得到N个栅格的信息,并发送至接入网设备。因此,接入网设备可以通过多种途径获取到预设范围内的N个栅格的信息。
在一种可能的实施方式中,接入网设备获取预设范围内的N个栅格的信息,包括:接入网设备对预设范围进行栅格划分,得到预设范围内的N个栅格的信息。在本申请实施方式中,接入网设备可以对预设范围进行划分,得到N个栅格的信息,提供了一种获取到预设范围内的N个栅格的信息。
在一种可能的实施方式中,上述方法还包括:接入网设备向PCF实体发送N个栅格的信息;或者,接入网设备向网络设备发送N个栅格的信息。在本申请实施方式中,若由接入网设备对预设范围进行栅格划分,还将划分得到的N个栅格的信息发送给其他网元,例如,PCF实体、网络设备等。使得其他网元也可以同步获取到该N个栅格的信息,以便后续接入网设备对该N个栅格覆盖范围内的UE的网络资源进行调整。
在一种可能的实施方式中,上述方法还包括:接入网设备接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果;当网络资源分析结果满足第一预设条件时,接入网设备向至少一个栅格覆盖范围内的UE发送SL无线承载配置;或,当网络资源分析结果满足第一预设条件时,接入网设备根据网络资源分析结果为至少一个栅格覆盖范围内的UE分配网络资源。在本申请实施方式中,接入网设备还接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果,并且当网络资源分析结果满足第一预设条件时,可以向至少一个栅格覆盖范围内的UE发送SL无线承载配置,在该SL无线承载配置携带UE可用的网络资源的信息,进一步地,UE可以从可用的网络资源选择网络资源进行SL通信。或者,接入网设备可以直接根据网络资源分析结果为UE分配网络资源,使得UE可以使用接入网设备为UE分配的网络资源进行SL通信,提高UE进行SL通信的效率,避免UE在信道拥塞的频段进行SL通信。
在一种可能的实施方式中,上述方法还包括:接入网设备向网络设备发送第一请求,第一请求用于请求获取网络资源分析结果;其中,第一请求中携带至少一个栅格的信息。在本申请实施方式中,接入网设备可以通过向网络设备发送第一请求,请求至少一个栅格的网络资源分析结果,并在第一请求中携带该至少一个栅格的标识,使得网络设备获知第一请求所请求的网络资源分析结果对应的至少一个栅格。
在一种可能的实施方式中,第一请求还携带有第二SL网络信息。在本申请实施方式中,接入网设备还可以在第一请求中携带第二SL网络信息,使得网络设备可以基于第一请求中携带的第二SL网络信息进行网络资源的分析,降低单独发送第二SL网络信息的信令开销。
在一种可能的实施方式中,前述的第一栅格的标识以及第二SL网络信息,可以通过第一请求发送,可以降低接入网设备的信令开销。
在一种可能的实施方式中,前述的网络设备为数据分析实体或网络数据分析功能(network data analysis function,NWDAF)实体。在本申请实施方式中,可以由数据分析实体或NWDAF实体得到至少一个栅格的网络资源分析结果,提供了多种实施方式。并且,当网络设备为数据分析实体时,可以降低NWDAF实体的工作量。
在一种可能的实施方式中,N个栅格的信息包括:N个栅格的标识和N个栅格的覆盖范围信息。
在一种可能的实施方式中,该N个栅格中每个栅格的覆盖范围信息可以包括:前述每个栅格的长度以及宽度,或者,前述每个栅格的长度、宽度以及海拔。
在一种可能的实施方式中,上述方法还包括:接入网设备为N个栅格中的每个栅格分配标识。在本申请实施方式中,接入网设备还为上述每个栅格分配标识,提供了一种分配栅格标识的方式。
在一种可能的实施方式中,第一SL网络信息包括以下至少一项:对应的UE的位置信息、信道质量信息、V2X业务信息或者道路信息。在本申请实施方式中,UE可以将自身的位置信息、所在栅格的信道质量信息、UE的V2X业务信息或者UE当前所处位置的一定范围内的道路信息上报至接入网设备,使得接入网设备可以实时获知SL通信的通信质量的变化。
在一种可能的实施方式中,上述方法还包括:接入网设备根据UE的位置和N个栅格的信息,确定UE处于第一栅格。在本申请实施方式中,接入网设备可以根据UE所在的位置,以及该N个栅格的信息,确定UE处于第一栅格。该第一栅格为该N个栅格中的一个或多个,提供了一种接入网设备确定UE所处栅格的方式。
在一种可能的实施方式中,第一栅格的覆盖范围小于UE当前接入小区的覆盖范围。在本申请实施方式中,UE所处的第一栅格的范围是小于UE当前接入的小区的覆盖范围的。因此,栅格的粒度是小于UE当前接入的小区的粒度,接入网设备可以基于栅格粒度向网络设备上报第二SL网络信息,使得后续基于栅格粒度的网络资源分析结果更准确。
在一种可能的实施方式中,上述N个栅格中的每个栅格的覆盖范围小于接入网设备下的最小小区的覆盖范围,或者,前述每个栅格的覆盖范围小于接入网设备下的小区的平均覆盖范围。
在一种可能的实施方式中,上述N个栅格中的每个栅格的覆盖范围小于接入网设备下的最小扇区的覆盖范围,或者,前述每个栅格的覆盖范围小于接入网设备下的扇区的平均覆盖范围。
本申请第二方面提供一种数据处理的方法,包括:网络设备获取预设范围内的N个栅格的信息,N为大于或等于1的正整数;网络设备接收来自接入网设备的第一栅格的标识 以及第一栅格相关的第二SL网络信息,N个栅格包括第一栅格;网络设备根据N个栅格的信息、第二SL网络信息以及第一栅格的标识,获得N个栅格中的至少一个栅格的网络资源分析结果,至少一个栅格包括第一栅格。在本申请实施方式中,网络设备可以获取预设范围内的N个栅格的信息,以及收来自接入网设备的第一栅格的标识以及第一栅格相关的第二SL网络信息,然后根据该N个栅格的信息、第一栅格的标识以及第一栅格相关的第二SL网络信息,获得该N个栅格中的至少一个栅格的网络资源分析结果,该至少一个栅格包括该第一栅格。该网络资源分析结果可以反映该至少一个栅格覆盖范围内的SL通信的网络情况,可以实现对该至少一个栅格的SL网络性能的分析,使得接入网设备、PCF实体、AF实体等其他网元,可以基于该网络资源分析结果对该至少一个栅格覆盖范围内的UE的网络资源、V2X业务的通信参数或C2X业务的QoS参数进行进行调整,降低UE进行SL通信的通信时延,提高UE进行V2X业务的数据传输的效率,降低进行V2X业务的时延。
在一种可能的实施方式中,该网络设备获取预设范围内的N个栅格的信息,包括:
网络设备接收来自PCF实体的N个栅格的信息;或者,网络设备接收来自接入网设备的N个栅格的信息;或者,网络设备接收来自AF实体的N个栅格的信息。因此,在本申请实施方式中,网络设备可以通过多种方式获取N个栅格的信息。
在一种可能的实施方式中,上述方法还包括:网络设备向接入网设备发送网络资源分析结果;或者,网络设备向PCF实体发送网络资源分析结果;或者,网络设备向AF实体发送网络资源分析结果。在本申请实施方式中,网络设备可以向接入网设备、PCF实体或AF实体等发送该至少一个栅格的网络资源分析结果,使得接入网设备、PCF实体或AF实体等,可以基于该网络资源分析结果,对该至少一个栅格覆盖范围内的UE的网络资源、V2X业务的通信参数或V2X业务的QoS参数进行调整,降低UE的SL通信的时延,提高UE的SL通信的效率,或提高UE进行V2X业务的数据传输的效率,降低进行V2X业务的时延。
在一种可能的实施方式中,上述方法还包括:网络设备接收来自接入网设备的第一请求,第一请求用于请求获取网络资源分析结果,第一请求中携带至少一个栅格的信息;或者,网络设备接收来自AF实体的第二请求,第二请求用于请求获取网络资源分析结果,第二请求中携带至少一个栅格的信息。在本申请实施方式中,网络设备还接收来自接入网设备的第一请求或来自AF实体的第二请求,并在接收到该第一请求或第二请求之后,将至少一个栅格的网络资源分析结果,发送至接入网设备或者AF实体等,使得接入网设备或者AF实体可以获取到网络资源分析结果。
在一种可能的实施方式中,本申请中的网络设备为NWDAF实体或数据分析实体。因此,本申请提供了由NWDAF实体或者数据分析实体得到网络资源分解结果的多种方式。
在一种可能的实施方式中,当网络设备为数据分析实体,网络设备根据N个栅格的信息、第二SL网络信息以及第一栅格的标识,获得N个栅格中的至少一个栅格的网络资源分析结果,包括:网络设备对第二SL网络信息进行预处理,得到预处理SL网络信息;网络设备根据N个栅格的信息、预处理SL网络信息以及第一栅格的标识,获得N个栅格中的至少一个栅格的网络资源分析结果。在本申请实施方式中,当网络设备为数据分析实体时,网络分析实体可以对第二SL网络信息进行预处理,得到预处理SL网络信息,并根据N个 栅格的信息、预处理SL网络信息以及第一栅格的标识,获得N个栅格中的至少一个栅格的网络资源分析结果。可以实现对该至少一个栅格的网络资源的分析。
在一种可能的实施方式中,当网络设备为数据分析实体时,网络设备获取预设范围内的N个栅格的信息,还包括:网络设备对预设范围进行栅格划分,得到预设范围内的N个栅格的信息。在本申请实施方式中,当网络设备为数据分析实体时,该数据分析实体还可以对预设范围进行划分,得到预设范围内的N个栅格的信息,提供了一种由数据分析实体进行栅格划分的方式。
本申请第三方面一种数据处理的方法,包括:PCF实体对预设范围进行栅格划分,得到预设范围内的N个栅格的信息,N为大于或等于1的正整数;PCF实体发送N个栅格的信息。在本申请实施方式中,可以由PCF实体进行栅格划分,并向其他网元发送栅格划分得到的N个栅格的信息。使得其他网元可以获知栅格划分的结果。进一步地,网络设备可以基于栅格粒度进行至少一个栅格的网络资源的分析,得到基于栅格粒度的网络资源分析结果,后续在调整UE的网络资源、V2X业务的通信参数或V2X业务的QoS等级时,可以基于栅格的粒度进行调整,提高调整的精度。
在一种可能的实施方式中,PCF实体发送N个栅格的信息,包括:PCF实体向接入网设备发送N个栅格的信息;或者,PCF实体向AF实体发送N个栅格的信息;或者,PCF实体向网络设备发送N个栅格的信息。因此,PCF实体具体可以将N个栅格的信息发送给接入网设备、网络设备或AF实体等,使得其他网元可以同步获取到该N个栅格的信息。
在一种可能的实施方式中,上述方法还包括:PCF实体接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果;当网络资源分析结果满足第二预设条件时,PCF实体向至少一个栅格覆盖范围内的UE发送V2X通信参数,V2X通信参数包括V2X业务的Qos参数、地址信息或者频段信息中的至少一项。在本申请实施方式中,PCF实体还接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果,PCF实体可以根据基于栅格粒度网络资源分析结果,调整栅格内的UE的V2X业务的通信参数。提高UE进行V2X业务的数据传输的效率,降低进行V2X业务的时延。
在一种可能的实施方式中,前述的网络设备为数据分析实体或NWDAF实体。
本申请第四方面提供一种数据处理的方法,包括:AF实体对预设范围进行栅格划分,得到预设范围内的N个栅格的信息,N为大于或等于1的正整数;AF实体发送N个栅格的信息。在本申请实施方式中,可以由AF实体对与预设范围进行栅格划分,得到预设范围内的N个栅格的信息,并向其他网元发送N个栅格的信息,使得其他网元获知栅格划分的结果。进一步地,网络设备可以基于栅格粒度得到网络资源分析结果,进而实现基于栅格粒度对UE的网络资源、V2X业务的通信参数或V2X业务的QoS参数进行调整,提高UE进行SL通信的效率,提高UE进行V2X业务的数据传输的效率,降低进行V2X业务的时延。
在一种可能的实施方式中,AF实体发送N个栅格的信息,包括:AF实体向PCF实体发送N个栅格的信息;或者,AF实体向接入网设备发送N个栅格的信息;或者,AF实体向网络设备发送N个栅格的信息。在本申请实施方式中,AF实体可以将N个栅格的信息发送至其他网元,以使其他网元可以同步获取到N个栅格的信息,后续可以获取到基于栅格粒度 的网络资源分析结果,并根据基于栅格粒度的网络资源分析结果,对UE的网络资源、V2X业务的通信参数或V2X业务的QoS参数进行调整,提高UE进行SL通信的效率,提高UE进行V2X业务的数据传输的效率,降低进行V2X业务的时延。
在一种可能的实施方式中,上述方法还包括:AF实体接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果;当网络资源分析结果满足第三预设条件时,AF实体向至少一个栅格覆盖范围内执行AF实体提供的V2X业务的UE发送V2X业务的QoS参数。本申请实施方式中,AF在获取到基于栅格粒度的网络资源分析结果之后,即可向至少一个栅格覆盖范围内的UE发送V2X业务的QoS参数,以实现对至少一个栅格覆盖范围内的UE的V2X业务的QoS参数的调整。
在一种可能的实施方式中,上述方法还包括:AF实体向网络设备发送第二请求,第二请求用于请求获取网络资源分析结果,第二请求中携带至少一个栅格的信息。因此,在本申请实施方式中,AF实体可以通过第二请求,主动向网络设备请求至少一个栅格的网络资源分析结果,以获取到基于栅格粒度的至少一个栅格的网络资源分析结果。
在一种可能的实施方式中,网络设备为数据分析实体或NWDAF实体。
本申请第五方面提供一种数据处理装置,该数据处理装置具有实现上述第一方面数据处理的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该数据处理装置具体包括:收发单元以及处理单元;
处理单元,用于获取预设范围内的N个栅格的信息,N为大于或等于1的正整数;
收发单元,用于接收来自用户设备UE的第一侧链路SL网络信息;
收发单元,还用于根据第一SL网络信息,向网络设备发送第一栅格的标识以及第一栅格相关的第二SL网络信息,UE处于第一栅格,N个栅格包括第一栅格。
在一种可能的实施方式中,收发单元,具体用于:
接收来自策略和控制功能PCF实体的N个栅格的信息;或者,
接收来自数据分析实体的N个栅格的信息;或者,
接收来自应用功能AF实体的N个栅格的信息。
在一种可能的实施方式中,
处理单元,具体用于对预设范围进行栅格划分,得到预设范围内的N个栅格的信息。
在一种可能的实施方式中,收发单元,还用于:
向PCF实体发送N个栅格的信息;或者,
向网络设备发送N个栅格的信息。
在一种可能的实施方式中,
收发单元,还用于接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果;
收发单元,还用于当网络资源分析结果满足第一预设条件时,向至少一个栅格覆盖范围内的UE发送SL无线承载配置;或,
处理单元,还用于当网络资源分析结果满足第一预设条件时根据网络资源分析结果为 至少一个栅格覆盖范围内的UE分配网络资源。
在一种可能的实施方式中,
收发单元,还用于向网络设备发送第一请求,第一请求用于请求获取网络资源分析结果;
其中,第一请求中携带至少一个栅格的信息。
在一种可能的实施方式中,第一请求还携带有第二SL网络信息。
在一种可能的实施方式中,网络设备为数据分析实体或网络数据分析功能NWDAF实体。
在一种可能的实施方式中,N个栅格的信息包括:N个栅格的标识和N个栅格的覆盖范围信息。
在一种可能的实施方式中,处理单元,还用于为N个栅格中的每个栅格分配标识。
在一种可能的实施方式中,第一SL网络信息包括以下至少一项:UE的位置信息、信道质量信息、V2X业务信息或者道路信息。
在一种可能的实施方式中,处理单元,还用于根据UE的位置和N个栅格的信息,确定UE处于第一栅格。
在一种可能的实施方式中,第一栅格的覆盖范围小于UE当前接入小区的覆盖范围。
本申请第六方面提供一种数据处理装置,该数据处理装置具有实现上述第二方面数据处理的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该数据处理装置包括:收发单元以及处理单元;
收发单元,用于获取预设范围内的N个栅格的信息,N为大于或等于1的正整数;
收发单元,还用于接收来自接入网设备的第一栅格的标识以及第一栅格相关的第二SL网络信息,N个栅格包括第一栅格;
处理单元,用于根据N个栅格的信息、第二SL网络信息以及第一栅格的标识,获得N个栅格中的至少一个栅格的网络资源分析结果,至少一个栅格包括第一栅格。
在一种可能的实施方式中,收发单元,具体用于:
网络设备接收来自PCF实体的N个栅格的信息;或者,
网络设备接收来自接入网设备的N个栅格的信息;或者,
网络设备接收来自AF实体的N个栅格的信息。
在一种可能的实施方式中,收发单元,还用于:
向接入网设备发送网络资源分析结果;或者,
向PCF实体发送网络资源分析结果;或者,
向AF实体发送网络资源分析结果。
在一种可能的实施方式中,收发单元,还用于:
接收来自接入网设备的第一请求,第一请求用于请求获取网络资源分析结果,第一请求中携带至少一个栅格的信息;或者,
接收来自AF实体的第二请求,第二请求用于请求获取网络资源分析结果,第二请求中携带至少一个栅格的信息。
在一种可能的实施方式中,网络设备为NWDAF实体或数据分析实体。
在一种可能的实施方式中,网络设备为数据分析实体,
处理单元,还用于对第二SL网络信息进行预处理,得到预处理SL网络信息;
处理单元,还用于根据N个栅格的信息、预处理SL网络信息以及第一栅格的标识,获得N个栅格中的至少一个栅格的网络资源分析结果。
在一种可能的实施方式中,
处理单元,还用于对预设范围进行栅格划分,得到预设范围内的N个栅格的信息。
本申请第七方面提供一种数据处理装置,该数据处理装置具有实现上述第三方面数据处理的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该数据处理装置包括:收发单元以及处理单元;
处理单元,用于对预设范围进行栅格划分,得到预设范围内的N个栅格的信息,N为大于或等于1的正整数;
收发单元,用于发送N个栅格的信息。
在一种可能的实施方式中,收发单元,具体用于:
向接入网设备发送N个栅格的信息;或者,
向AF实体发送N个栅格的信息;或者,
向网络设备发送N个栅格的信息。
在一种可能的实施方式中,
收发单元,还用于接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果;
收发单元,还用于当网络资源分析结果满足第二预设条件时,向至少一个栅格覆盖范围内的UE发送V2X业务的通信参数,V2X业务的通信参数包括V2X业务的QoS参数、地址信息或者频段信息中的至少一项。
在一种可能的实施方式中,网络设备为数据分析实体或NWDAF实体。
本申请第八方面提供一种数据处理装置,该数据处理装置具有实现上述第四方面数据处理的方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。该数据处理装置包括:收发单元以及处理单元;
处理单元,用于对预设范围进行栅格划分,得到预设范围内的N个栅格的信息,N为大于或等于1的正整数;
收发单元,用于发送N个栅格的信息。
在一种可能的实施方式中,收发单元,具体用于:
向PCF实体发送N个栅格的信息;或者,
向接入网设备发送N个栅格的信息;或者,
向网络设备发送N个栅格的信息。
在一种可能的实施方式中,
收发单元,还用于接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果;
收发单元,还用于当网络资源分析结果满足第三预设条件时向至少一个栅格覆盖范围内执行AF实体提供的V2X业务的UE发送V2X业务的QoS参数。
在一种可能的实施方式中,
AF实体向网络设备发送第二请求,第二请求用于请求获取网络资源分析结果,第二请求中携带至少一个栅格的信息。
在一种可能的实施方式中,网络设备为数据分析实体或NWDAF实体。
本申请实施例第九方面提供一种数据处理装置,可以包括:
处理器、存储器以及输入输出接口,该处理器、该存储器与该输入输出接口连接;该存储器,用于存储程序代码;该处理器调用该存储器中的程序代码时执行本申请第一方面或第一方面任一实施方式提供的方法的步骤。
本申请实施例第十方面提供一种数据处理装置,可以包括:
处理器、存储器以及输入输出接口,该处理器、该存储器与该输入输出接口连接;该存储器,用于存储程序代码;该处理器调用该存储器中的程序代码时执行本申请第二方面或第二方面任一实施方式提供的方法的步骤。
本申请实施例第十一方面提供一种数据处理装置,可以包括:
处理器、存储器以及输入输出接口,该处理器、该存储器与该输入输出接口连接;该存储器,用于存储程序代码;该处理器调用该存储器中的程序代码时执行本申请第三方面或第三方面任一实施方式提供的方法的步骤。
本申请实施例第十二方面提供一种数据处理装置,可以包括:
处理器、存储器以及输入输出接口,该处理器、该存储器与该输入输出接口连接;该存储器,用于存储程序代码;该处理器调用该存储器中的程序代码时执行本申请第四方面或第四方面任一实施方式提供的方法的步骤。
本申请实施例第十三方面提供一种数据处理装置,该数据处理装置可以应用于网络设备、PCF实体、接入网设备或者AF实体等设备中,数据处理装置与存储器耦合,用于读取并执行所述存储器中存储的指令,使得所述数据处理装置实现本申请第一方面至第四方面中任一第一方面的任一实施方式提供的方法的步骤。在一种可能的设计中,该数据处理装置为芯片或片上系统。
本申请第十四方面提供一种芯片系统,该芯片系统包括处理器,用于支持网络设备、PCF实体、接入网设备或者AF实体等实现上述本申请第一方面至第四方面中任一第一方面的任一实施方式中所涉及的功能,例如,例如处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存PCF实体、接入网设备、网络设备或AF实体必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit, ASIC),或一个或多个用于控制上述第一方面至第四方面中数据处理方法的程序执行的集成电路。
本申请实施例第十五方面提供一种存储介质,需要说明的是,本发的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产口的形式体现出来,该计算机软件产品存储在一个存储介质中,用于储存为上述设备所用的计算机软件指令,其包含用于执行上述本第一方面至第四方面中任一第一方面的任一实施方式为数据处理装置,例如PCF实体、接入网设备、网络设备或AF实体,所设计的程序。
该存储介质包括:U盘、移动硬盘、只读存储器(英文缩写ROM,英文全称:Read-Only Memory)、随机存取存储器(英文缩写:RAM,英文全称:Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例第十六方面提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如本申请第一方面至第四方面中任一第一方面的任一实施方式所述的方法。
本申请实施例第十七方面提供一种通信系统,该通信系统包括接入网设备、PCF实体以及网络设备;
该接入网设备可以包括上述第五方面提供的数据处理装置;
该网络设备可以包括上述第六方面提供的数据处理装置;
该PCF实体可以包括上述第七方面提供的数据处理装置。
在一种可能的实现方式中,该通信系统还包括:AF实体;
该AF实体可以包括上述第八方面提供的数据处理装置。
在本申请提供的方法中,接入网设备可以获取预设范围内的N个栅格的信息,并接收来自UE的第一SL网络信息。然后接入网设备根据第一SL网络信息,向网络设备发送第一栅格的标识以及与第一栅格相关的第二SL网络信息。由于接入网设备向网络设备提供的是基于栅格粒度的SL网络信息,进而使得网络设备得到基于栅格粒度的网络资源分析结果,调整栅格覆盖范围内的UE的网络资源。
附图说明
图1为本申请提供的数据处理的方法应用的一种网络架构示意图;
图2为本申请提供的数据处理的方法的一种流程示意图;
图3为本申请提供的数据处理的方法的另一种流程示意图;
图4为本申请提供的数据处理的方法的另一种流程示意图;
图5为本申请提供的数据处理的方法的另一种流程示意图;
图6为本申请提供的数据处理的方法的另一种流程示意图;
图7A为本申请提供的数据处理的方法中栅格的一种示意图;
图7B为本申请提供的数据处理的方法中栅格的另一种示意图;
图7C为本申请提供的数据处理的方法中栅格的另一种示意图;
图8为本申请提供的数据处理的方法中栅格与分区对应的一种示意图;
图9为本申请提供的数据处理的方法中栅格与分区对应的另一种示意图;
图10为本申请提供的数据处理的方法的另一种流程示意图;
图11为本申请提供的数据处理的方法的另一种流程示意图;
图12为本申请提供的数据处理的方法的另一种流程示意图;
图13为本申请提供的数据处理的方法的另一种流程示意图;
图14为本申请提供的数据处理的方法的另一种流程示意图;
图15为本申请提供的数据处理装置的一种结构示意图;
图16为本申请提供的数据处理装置的另一种结构示意图;
图17为本申请提供的数据处理装置的另一种结构示意图;
图18为本申请提供的数据处理装置的另一种结构示意图;
图19为本申请提供的数据处理装置的另一种结构示意图;
图20为本申请提供的数据处理装置的另一种结构示意图;
图21为本申请提供的数据处理装置的另一种结构示意图;
图22为本申请提供的数据处理装置的另一种结构示意图;
图23为本申请提供的通信系统的一种结构示意图;
图24为本申请提供的通信系统的另一种结构示意图。
具体实施方式
本申请提供一种数据处理的方法、装置和系统,用于以栅格为粒度对网络资源进行分析,进而对网络性能进行预测,可以更准确地预测出UE所在位置的网络情况,实现更准确地调度UE的网络资源。
为便于理解,下面对本申请实施例涉及的一些术语进行介绍:
车联网(vehicle-to-everything,V2X):可以通过装载在车上的传感器或车载终端设备等提供车辆信息,实现车辆到车辆(vehicle to-vehicle,V2V),车辆到基础设施(vehicle-to-infrastructure,V2I),车辆到网络(vehicle-to-network,V2N)以及车辆到行人(vehicle-to-pedestrian,V2P)之间的通信。因此,车联网涉及的终端设备可以被称为V2X终端设备。
侧链路(side link,SL):V2X终端设备之间的直接通信的链路。V2X终端设备之间可以通过侧行链路接口进行短距离通信,该侧行链路接口还可以称为邻近通信5(prose communication 5,PC5)接口,或直通链路接口。
本申请实施例提供的数据处理的方法可以应用于各种通信网络,例如,可以应用于5G通信网络,也可以应用于3G,或4G通信网络,还可以应用于未来通信网络,例如,6G网络、7G网络等,且上述涉及的网元名称不限定,均可以替换成在未来通信网络中具备相同或相似功能的网元名称,本申请并不做限定。
示例性地,本申请提供的数据处理的方法具体可以应用于V2X通信系统,该通信系统可以基于上述的各种通信网络。
该V2X通信系统具体可以包括但不限于:统一数据管理(unified data management, UDM)网元、策略与控制功能(policy control function,PCF)实体、网络能力开放功能(network exposure function,NEF)实体、应用功能(application function,AF)实体、统一数据存储库(unified data repository,UDR)网元、接入管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体、用户面功能(user plane function,UPF)实体、无线接入网(radio access network,RAN)设备、网络数据分析功能(network data analysis function,NWDAF)实体(图中未示出)、数据分析实体等等。且各个网元或设备的数量可以是一个或多个。
AMF实体,主要负责终端设备的认证、终端设备的移动性管理、网络切片选择、会话管理功能实体的选择等功能。在本申请实施方式中,AMF实体可以对PCF实体发送或接收的数据进行转发,在本申请的以下实施例中,不再赘述。
PCF实体,主要负责提供策略规则给网络实体。包括提供统一的策略框架来控制网络行为,或者提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。用于管理网络行为,为控制面提供策略、规则,一般根据签约信息等进行策略的决策。
RAN可以是由多个RAN设备组成的网络,实现无线物理层功能、资源调度和无线资源管理、无线接入控制以及移动性管理功能等。RAN设备通过用户面接口N3与UPF实体相连,用于传输终端设备的数据。RAN设备通过控制面接口N2和AMF实体建立控制面信令连接,用于实现无线接入承载控制等功能。其中,本申请图1中示出了无线接入网设备,即RAN设备,也可以替换为有线的接入网设备,图1中仅以RAN设备进行示例性说明,在本申请以下的说明中,直接称为接入网设备,即包括RAN设备以及有线接入网设备。具体的,接入网设备可以是具有中心控制功能的设备,如宏基站、微基站、热点(pico)、家庭基站(femeto)、传输点(transmission point,TP)、中继(relay)、接入点(access point,AP)等。若该接入网设备为基站,该基站可以是,长期演进(long term evolution,LTE)中的基站(eNodeB,eNB),新空口(new radio,NR)中的基站(gNodeB,gNB)等。
用户设备(user equipment,UE),用于向用户提供语音/数据连通性,例如,具有无线连接功能的手持式设备或车载设备等。也可以包括智能移动电话、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等等,以下也可以称为终端设备。
UPF实体,作为协议数据单元(protocol data unit,PDU)会话连接的锚定点,负责对用户设备的数据报文过滤、数据传输/转发、速率控制、生成计费信息等。
UDM网元,主要是管控用户数据。例如,签约信息的管理,可以包括:从UDR网元获取签约信息并提供给其它网元(例如AMF实体)、为终端设备生成3GPP的认证凭证和登记维护当前为终端设备服务的网元。
UDR网元,主要用于存储用户数据。用户数据可以包括由UDM网元调用的签约数据,PCF实体调用的策略信息,用于能力开放的结构化数据,NEF实体调用的应用数据。
NEF实体,用于连接核心网其它内部网元与核心网外部应用服务器,对外部应用服务器向核心网发起业务请求时提供认证与数据转发等服务,以将网络能力信息提供给外部应用服务器,或者将外部应用服务器的信息提供给核心网网元。在本申请实施方式中,在AF实体与核心网网元或者接入网设备等进行数据传输时,例如,PCF实体、接入网设备、数据 分析实体、NWDAF实体等,NEF实体可以对该数据进行转发。具体地,在AF实体向核心网网元或者接入网设备等发送数据时,NEF实体可以对该数据进行安全认证(由NEF对AF发送消息所携带的AF标识进行认证,确认该AF为运营商可信的AF)、标识转换(AF发送的消息可能携带外部标识,如所服务的用户标识或该消息的操作标识等,NEF需要将这些外部标识转换为核心网网元所识的内部标识)等步骤,使得核心网网元或者接入网设备可以安全并正确接收到AF实体发送的数据。通过运营商许可的AF可以通过NEF直接将消息发送给PCF实体或将消息通过NEF存储在UDR或UDM网元中,之后由PCF实体在UDR或UDM网元中读取或接收这些消息,核心网网元采用哪种方式获取AF消息由运营商在实际部署中决定。而AF需要将消息发送给接入网设备或经过核心网网元发送给UE时,则需要由PCF实体将这些消息经过AMF实体发送给接入网设备或由PCF实体经过AMF实体再经过接入网设备发送给UE。具体步骤在本申请以下的实施例中不再赘述。
SMF实体,主要负责UE会话管理的控制面功能,包括UPF选择,IP地址分配,会话的QoS管理,(从PCF实体)获取策略控制和计费(policy control and charging,PCC)策略等。
AF实体,AF实体具体为应用所对应的应用服务器。具备应用服务功能,与核心网网元交互以为终端设备提供服务。例如,与PCF实体交互以进行业务策略控制,或者,与NEF实体交互以获取网络能力信息或提供应用信息给网络,或者,与PCF实体交互以提供数据网络接入点信息给PCF实体,用以PCF实体生成相应的数据业务的路由信息。
NWDAF实体,用于对核心网网元的数据进行分析与预测。
数据分析实体,可以用于对基站的信息进行数据分析与预测。数据分析实体具体可以部署于接入网设备内,也可以是部署在接入网侧独立的设备。在本申请中,数据分析实体可以实现接入网设备的部分功能,数据分析实体也可以实现NWDAF实体的部分功能。
此外,V2X通信系统除了图1中所包括的网元之外,该网络架构还可以包括其他网元(图中未示出),例如,鉴权服务器功能(Authentication Server Function,AUSF)、网络切片选择功能(Network Slice Selection Function,NSSF)等,本申请实施例仅仅是示例性说明,具体可以根据实际应用场景进行调整。
示例性地,以接入网设备为基站为例,对具体的应用场景进行说明。例如,在V2X通信场景中,UE通过PC5接口进行SL通信,SL承载着重要的业务,例如,安全类业务,用于自动驾驶的传感器共享业务等。且不同于Uu口通信中,基站可以直接获取到其覆盖范围内的UE的网络资源的状况,例如,信道质量、拥塞情况等。在UE与UE之间的PC5接口通信中,基站无法直接获取到其覆盖范围内的UE的PC5接口的通信质量,例如,信道质量参数及拥塞情况信息等。根据当前UE上报的信道质量来估计网络的性能仅能判断出UE当前位置的网络情况。在UE上报了SL网络信息之后,随着UE的位置的移动,该UE所在位置的SL网络信息已改变,基站根据该UE上报的SL网络信息,并不能准确地为UE分配或调整其使用的网络资源。因此,本申请实施例提供了一种数据处理方法,可以更准确地对UE进行SL通信的网络资源进行调整。
下面基于上述图1的网络架构,对本申请提供的数据处理的方法进行说明。
请参阅图2,本申请实施例提供了一种数据处理方法,具体如下所述。
201、接入网设备获取预设范围内的N个栅格的信息。
其中,该预设范围可以是基于小区、扇区或基站设置的范围,也可以是基于地图设置的范围。例如,该预设范围为地图中的道路区域,或者,当该接入网设备为一个或多个基站时,该预设范围为该一个或多个基站下的一个或多个小区,或者,当该接入网设备为一个或多个基站时,该预设范围为一个或多个基站下的全部或部分扇区。其中,基站下的一个小区可以分为一个或多个扇区。
其中,该N个栅格可以是对该预设范围进行划分得到的栅格,N为大于或等于1的正整数。栅格的划分可以采用多种粒度。例如,以粒度为该预设范围内最小覆盖范围的小区的覆盖范围进行划分,使得上述每个栅格的覆盖范围小于该最小覆盖范围。再例如,以粒度为该预设范围内基站的最小扇区的覆盖范围进行划分,使得上述每个栅格的覆盖范围小于该最小扇区的覆盖范围。
其中,该N个栅格的信息可以包括:N个栅格中每个栅格的标识以及覆盖范围信息。其中,N个栅格中每个栅格的覆盖范围大小可以相同,也可以不相同。
其中,上述每个栅格的覆盖范围信息可以包括:上述每个栅格的长度以及宽度,或者,上述每个栅格的长度、宽度以及海拔。栅格的标识可以用于唯一标识一个栅格,例如,栅格的名字。需要指出的是,该N个栅格中的每个栅格的覆盖范围存在多种情况,例如,该每个栅格的覆盖范围的大小可以是预设值,即该每个栅格的覆盖范围的大小都相同。该每个栅格的覆盖范围大小也可以不相同,或者,还可以是该N个栅格中有部分栅格的覆盖范围大小相同。
通常,该每个栅格的覆盖范围可以划分为较小的范围。例如,该每个栅格的覆盖范围大小小于基站下的最小小区的覆盖范围大小,或者,该每个栅格的覆盖范围大小小于基站下的多个小区的平均覆盖范围大小,又或者,该每个栅格的覆盖范围大小小于基站下的最小扇区的覆盖范围大小等,以使后续在网络设备对网络资源进行分析时,可以基于比小区粒度更小,或者,比最小扇区粒度更小的栅格粒度进行分析,提高网络资源的分析结果的准确性。
其中,上述网络设备,以及本申请以下实施例中的网络设备,可以为图1中的NWDAF实体或者数据分析实体,本申请以下实施例中将不再赘述。
其中,步骤201可以采用多种方式实现,如下。
方式一,接入网设备可以接收来自其他网元的该N个栅格的信息。
其中,该其他网元可以是PCF实体,上述网络设备,或AF实体,不予限制。
例如,PCF实体对预设范围进行划分得到N个栅格,并将N个栅格的信息发送给接入网设备,进而接入网设备接收来自PCF实体的N个栅格的信息。
再例如,数据分析实体可以对预设范围进行划分得到N个栅格,并将N个栅格的信息发送给接入网设备,接入网设备接收来自数据分析实体的N个栅格的信息。
再例如,AF实体可以对预设范围进行划分得到N个栅格,并将N个栅格的信息发送给接入网设备,接入网设备接收来自AF实体的N个栅格的信息。
方式二,接入网设备对预设范围进行栅格划分,得到预设范围内的N个栅格的信息。
在一个示例中,接入网设备获取地图的信息,该预设范围可以是地图中的部分区域或全部区域。接入网设备可以基于该地图的信息,对该预设范围进行划分,得到预设范围内的N个栅格,并为N个栅格中的每个栅格分配标识,进而得到N个栅格的信息。
其中,该地图的信息可以包括该预设范围内的地理位置的信息,例如,该地图中可以包括该预设范围内的道路、山体、建筑等。该地图的信息可以是接入网设备上存储的,也可以是由其他网元发送至接入网设备,例如,可以由应用服务器(application server,AS)或UDR网元等将该地图的信息发送至接入网设备。
其中,接入网设备基于地图的信息,对预设范围进行划分,具体可以按照预设的大小进行划分,例如每个栅格的长度为20米,宽度为15米。
需要说明的是,若采用上述方式二,则上述方法还可以包括:接入网设备将该N个栅格的信息发送至其他网元,例如,PCF实体、NWDAF实体、AF实体或数据分析实体,不予限制。
202、接入网设备接收来自UE的第一SL网络信息。
其中,接入网设备可以接收来自一个或多个UE的第一SL网络信息。
具体地,该第一SL网络信息可以包括以下至少一项:UE的位置信息、信道质量信息、V2X业务信息或者道路信息等。
其中,该UE的位置信息可以包括UE所处位置的经度、纬度、海拔等。
其中,该信道质量信息可以包括表征UE当前进行SL通信的通信质量的信息,具体可以包括信道质量参考信息,或者,信道忙碌率(channel busy ratio,CBR)信息等。该信道质量参考信息可以包括:用于衡量基于PC5接口进行V2X业务的数据传输时对应的信道质量的信息,例如,误块率(block error rate,BLER)、信干噪比(signal to interference plus noise ratio,SINR)、接收功率等。
其中,该V2X业务信息可以包括UE当前执行的V2X业务的相关信息,例如,该V2X业务的业务类型、用于传输该V2X业务的数据的信道占用量、该V2X业务的数据包优先级、该V2X业务的通信参数、该V2X业务对应的接口信息等。具体地,该V2X业务的通信参数可以包括:V2X业务的PC5资源的等级或V2X业务的PC5服务质量标识(PC5QoS identifier,PQI)等;该V2X业务对应的接口信息可以包括:用于传输该V2X业务的数据的通信接口的类型或标识等。
其中,该道路信息可以包括UE当前所处道路的情况,例如,该道路信息包括UE在当前道路上所处位置周边一定范围内的交通流密度、车辆行驶速度等等。其中,该一定范围可以是在道路上,以该UE所处位置为中心,长度为UE所处位置前后100米的范围。该道路信息还可以包括该UE上的传感器或摄像头等采集到的路况信息,例如,道路图像、温度、湿度、可见度等。
在一种可选的实施方式中,该第一SL网络信息还包括时间信息,即第一SL网络信息的采集时间,使得接入网设备根据该第一SL网络信息的采集时间,确定该第一SL网络信息是否可用,或可用的权重。该时间信息以下也可以称为时间戳。例如,接入网设备可以 根据该时间戳获取到该第一SL网络信息的采集时间,从而根据采集时间确定该第一SL网络信息是否已过期。若该第一SL网络信息的采集时间与当前时间相差大于预设时间值,则可以丢弃该第一SL网络信息。
需要说明的是,UE可以周期性地上报第一SL网络信息,以使接入网设备可以实时获取到UE的SL网络信息。进而,接入网设备可以根据UE上报的第一SL网络信息,获取到UE进行SL通信的通信质量的信息,以便对UE进行网络资源调整或网络资源分配等。
203、接入网设备根据第一SL网络信息,向网络设备发送第一栅格的标识以及第一栅格相关的第二SL网络信息。
其中,第一栅格为UE所处的栅格,即UE位于第一栅格。N个栅格包括该第一栅格,换言之,该第一栅格为N个栅格中的一个或多个栅格。
其中,第一栅格相关的第二SL网络信息可以指的是与该一个或多个栅格相关的SL通信的信息。例如,该第二SL网络信息可以包括:处于第一栅格内的UE的标识、第一栅格覆盖范围内的信道质量信息、第一栅格覆盖范围内一个或多个UE的V2X业务信息或者第一栅格覆盖范围内的道路信息等。其中,信道质量信息,V2X业务信息,以及道路信息等均可以参考步骤202中的相关描述。
其中,第一SL网络信息与第二SL网络信息可以相同,也可以不同。
其中,当第一SL网络信息与第二SL网络信息相同时,步骤203可以包括:将该第一SL网络信息作为该第二SL网络信息,并向网络设备发送第一栅格的标识以及第二SL网络信息。
当第一SL网络信息与第二SL网络信息不相同时,步骤203可以包括:接入网设备根据第一SL网络信息,得到第二SL网络信息,并向网络设备发送第一栅格的标识以及该第二SL网络信息。
其中,上述接入网设备根据第一SL网络信息,得到第二SL网络信息可以采用两种方式。
方式一、接入网设备对第一SL网络信息进行预处理,得到第二SL网络信息。
示例性地,若接入网设备接收到一组第一SL网络信息,则可以在该一组第一SL网络信息中添加、删除或修改部分数据等,得到第二SL网络信息。若接入网设备接收到多组第一SL网络信息,接入网设备接收到多组第一SL网络信息,若其中包括不同频段(或信道)、不同道路或不同位置等信息,可以对该多组第一SL网络信息所包括的不同信息进行分类合并(例如,将同一位置不同频段第一SL网络信息进行归类合并或同一频段不同位置的第一SL网络信息进行归类合并等)。接入网设备还可以对该多第一SL网络信息中包括的参数进行计算,得到该第二SL网络信息。例如,可以对该多组第一SL网络信息中所包括的用于衡量相同信道的信道质量的参数,如误块率(block error rate,BLER)、信干噪比(signal to interference plus noise ratio,SINR)、接收功率等等,进行加权或平均运算,得到运算后的参数,进而得到第二SL网络信息,该第二SL网络信息即包括该运算后的参数。本申请实施例中,可以通过对第一SL网络信息进行预处理的方式,得到第二SL网络信息,减少接入网设备发送给网络设备的第二SL网络信息的冗余量,提高后续网络设备基于该第 二SL网络信息进行网络资源分析的效率。
方式二,接入网设备向数据分析实体发送第一SL网络信息,数据分析实体对第一SL网络信息进行预处理得到第二SL网络信息,并向接入网设备发送第二SL网络信息。
此外,在步骤203中,接入网设备可以根据UE所处的位置,以及N个栅格的信息,确定UE处于第一栅格。其中,UE所处的位置可以由UE上报,例如,通过第一SL网络信息上报,也可以由接入网设备对UE进行定位得到,或者,接入网设备从其他网元处获取到,不予限制。
在一种具体的实现方式中,第一栅格的覆盖范围小于UE当前接入小区的覆盖范围,即第一栅格的粒度小于小区的粒度。接入网设备向网络设备发送第一栅格的SL网络信息,例如,第二SL网络信息,用于网络设备得到基于第一栅格的网络资源分析结果。由于第一栅格比小区更小粒度,因此基于第一栅格的网络资源分析结果准确性更高,图2所示的方法能够大大提高网络资源分析结果的准确性。
在本申请实施例提供的方法中,接入网设备可以获取预设范围内的N个栅格的信息,并接收来自UE的第一SL网络信息。然后接入网设备根据第一SL网络信息,向网络设备发送第一栅格的标识以及与第一栅格相关的第二SL网络信息,用于网络设备进行网络资源的分析,得到网络资源分析结果。由于接入网设备提供的是基于栅格粒度的SL网络信息,进而使得网络设备可以基于栅格粒度的网络资源分析结果,使得接入网设备可以根据该网络资源更准确地调整栅格覆盖范围内的UE的网络资源,进而UE可以使用适应SL通信的通信质量变化的网络资源进行SL通信,提升UE进行SL通信的效率,降低UE进行SL通信的时延,避免UE进行SL通信时出现信道拥塞的情况。并且,前述栅格的粒度可以小于小区粒度、扇区粒度等,因此,接入网设备可以根据栅格粒度的网络资源分析结果,基于栅格粒度调整UE的网络资源,提高调整UE的网络资源的精度,实现对UE的网络资源的更准确地调整。
在一种可能的实现方式中,在上述步骤203之后,上述方法还包括:接入网设备向网络设备发送第一请求。
其中,该第一请求用于请求获取至少一个栅格的网络资源分析结果。并且,该第一请求中可以携带该至少一个栅格的信息。例如,该第一请求中可以携带该至少一个栅格的标识、覆盖范围等信息。
其中,该至少一个栅格的网络资源分析结果为针对该至少一个栅格的网络资源的分析结果。该至少一个栅格可以位于该接入网设备的覆盖范围内。
在一种可能的实现方式中,上述的第一请求中还携带有上述步骤203中的第二SL网络信息。
在另一种可能的实现方式中,上述步骤203中的,接入网设备向网络设备发送上述第二SL网络信息的具体方式可以为:接入网设备向网络设备发送第一请求。
其中,该第一请求用于请求获取至少一个栅格的网络资源分析结果。并且,该第一请求中携带该至少一个栅格的信息,以及上述步骤203中的第二SL网络信息。
在一种可能的实现方式中,在上述步骤203之后,或者,在接入网设备向网络设备发 送上述第一请求之后,上述方法还包括:
接入网设备接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果;
当该网络资源分析结果满足第一预设条件时,接入网设备向该至少一个栅格覆盖范围内的UE发送SL无线承载配置;或者,
当该网络资源分析结果满足第一预设条件时,接入网设备根据该网络资源分析结果,为该至少一个栅格范围内的UE分配网络资源。
其中,该至少一个栅格的网络资源分析结果可以包括:该至少一个栅格中的SL通信支持的QoS等级,该至少一个栅格中的SL通信的拥塞程度、该至少一个栅格中的SL通信满足的QoS关键性能指标(key performance indicator,KPI)或者调整指示信息等。
具体地,该QoS等级可以包括PC5服务质量标识(PC5QoS identifier,PQI)。该PQI可以由多个QoS参数组合而成,例如,时延、丢包率、优先等级等。
其中,该至少一个栅格中SL通信的拥塞程度可以用于表征该至少一个栅格中SL通信的拥塞情况。网络设备可以根据该至少一个栅格中进行V2X业务的UE的数量或者信道占用量等确定该至少一个栅格中SL通信的拥塞程度。更进一步地,网络设备还可以结合与信道质量相关的参数,例如,SINR、接收功率、BLER等参数,确定该至少一个栅格中SL通信的拥塞程度。
其中,QoS KPI可以包括:时延或丢包率等。具体地,该时延可以包括该至少一个栅格中每个栅格支持的平均时延或最大时延等。丢包率可以包括:该至少一个栅格覆盖范围内的数据传输的最大丢包率或平均丢包率等。
其中,调整指示信息可以是资源调整指示信息,用于指示该至少一个栅格覆盖范围内的UE在进行SL通信时使用的网络资源需要调整。
其中,该第一预设条件可以为:网络资源分析结果中的参数值处于第一预设范围内,或者,网络资源分析结果包括上述的资源调整指示信息,不予限制。例如,若网络资源分析结果中携带至少一个栅格范围中进行SL通信支持的QoS等级,对应的,第一预设条件包括:该至少一个栅格覆盖范围内的SL通信当前支持的QoS等级低于该至少一个栅格范围内的UE的V2X业务的QoS等级。再例如,第一预设条件包括:该网络资源分析结果中携带有上述的资源调整指示信息。
其中,在接入网设备向该至少一个栅格覆盖范围内的UE发送SL无线承载配置情况下,该SL无线承载配置可以包括UE可用的网络资源的信息,例如,UE可用的PC5资源的频率信息、时域信息,以及UE可用的PC5资源中支持V2X业务数据传输的接口信息(例如,接口的类型或标识等)等。进一步地,UE可以根据该SL无线承载配置中携带UE可用的网络资源的信息,选择可用的网络资源。可以理解为,接入网设备可以向该至少一个栅格覆盖范围内的UE发送SL无线承载配置,用于通知UE哪些PC5资源可用,UE可以根据该SL无线承载配置,选择可用的PC5资源进行SL通信。
其中,在接入网设备接入网设备根据该网络资源分析结果,为该至少一个栅格范围内的UE分配网络资源的情况下,接入网设备可以通过控制信道将为该至少一个栅格覆盖范围内的UE分配的网络资源的信息发送至该至少一个栅格覆盖范围内的UE。具体地,接入网 设备可以根据网络资源分析结果中携带的至少一个栅格范围中进行SL通信支持的QoS等级、SL通信的拥塞程度、SL通信满足的QoS KPI等,从该至少一个栅格覆盖范围内的网络资源中,确定该至少一个栅格覆盖范围内与UE的V2X业务的通信参数对应的网络资源,并为该至少一个栅格覆盖范围内的UE分配网络资源。
具体地,为该至少一个栅格覆盖范围内的UE分配的网络资源的信息可以包括:接入网设备为UE分配的网络资源的频段信息、时域信息,以及支持传输V2X业务数据的接口信息(例如,接口的类型或标识)等信息。进一步地,UE根据接收到的来自接入网设备的网络资源的信息,更新UE当前的网络资源配置,进而UE使用接入网设备分配的网络资源进行SL通信。
例如,当接入网设备根据网络资源结果,确定某一频段出现信道拥塞的情况,则接入网设备在为UE分配网络资源时,可以避开出现信道拥塞的频段,从而可以避免UE在出现信道拥塞的频段进行SL通信,降低UE进行SL通信的时延,提高UE进行SL通信的效率。
又例如,若网络资源分析结果中携带上述的资源调整指示信息,则接入网设备根据该至少一个栅格中每个栅格的网络资源,为该每个栅格覆盖范围内的UE分配进行SL通信时使用的网络资源,使得上述每个栅格覆盖范围内的UE进行SL通信的网络资源可以由接入网设备分配,实现接入网设备基于栅格粒度对栅格覆盖范围内的UE的SL通信的网络资源进行调度,避免因UE自行选择网络资源而导致的信道拥塞。
在另一种具体的实现方式中,当上述的网络设备为NWDAF实体,且数据分析实体为独立于接入网设备部署的设备时,上述的步骤201或步骤203也可以由数据分析实体执行,可以降低接入网设备的工作量。
请参阅图3,本申请实施例提供了另一种数据处理方法,具体如下所述。
301、网络设备获取预设范围内的N个栅格的信息。
其中,该预设范围内的N个栅格的信息可以参阅上述步骤201中的相关描述,此处不再赘述。
其中,步骤301可以通过多种方式实现,如下所述。
方式一:网络设备接收来自其他网元的N个栅格的信息,该其他网元可以是PCF实体,接入网设备,或AF实体,不予限制。
例如,PCF实体对预设范围进行划分得到N个栅格,并将N个栅格的信息发送给网络设备,进而网络设备接收来自PCF实体的N个栅格的信息。
又例如,接入网设备可以对预设范围进行划分得到N个栅格,并将N个栅格的信息发送给网络设备,进而网络设备接收来自数据分析实体的N个栅格的信息。
又例如,AF实体可以对预设范围进行划分得到N个栅格,并将N个栅格的信息发送给网络设备,进而网络设备接收来自AF实体的N个栅格的信息。
方式二:当该网络设备为数据分析实体时,网络设备对预设范围进行栅格划分,得到与预设范围内的N个栅格的信息。
具体地,该数据分析实体对预设范围进行栅格划分的方式可以与上述步骤202中的方 式二类似,将其中的接入网设备替换为数据分析实体即可,此处不再赘述。
需要说明的是,若步骤301可以通过上述的方式二实现,则在步骤301之后,该方法还可以包括:数据分析实体将该N个栅格的信息发送至其他网元,例如,接入网设备、PCF实体、NWDAF实体或AF实体,不予限制。
302、网络设备接收来自接入网设备的第一栅格的标识以及第一栅格相关的第二SL网络信息。
其中,步骤301中所述的N个栅格包括该第一栅格,该第一栅格可以是该N个栅格中的一个或多个。
在一种可能的实现方式中,当网络设备接收到的该N个栅格的信息来自接入网设备时,网络设备可以通过同一消息同时接收来自接入网设备的N个栅格的信息、第一栅格的标识以及第二SL网络信息。也可以理解为,接入网设备可以通过同一消息将该N个栅格的信息、第一栅格的标识以及第二SL网络信息发送至网络设备。例如,接入网设备可以向网络设备发送第一消息,该第一消息中携带该N个栅格的信息、第一栅格的标识以及第二SL网络信息。
该第二SL网络信息具体可以参阅上述步骤203中的相关描述。
303、网络设备根据N个栅格的信息、第二SL网络信息以及第一栅格的标识,获得N个栅格中的至少一个栅格的网络资源分析结果。
其中,网络设备可以根据N个栅格的信息、第二SL网络信息以及第一栅格的标识,对N个栅格中的至少一个栅格的网络资源进行分析,得到该至少一个栅格的网络资源分析结果。
其中,该至少一个栅格包括第一栅格。例如,该至少一个栅格可以包括第一栅格以及与第一栅格相邻的栅格。
具体地,网络设备得到第一栅格的标识以及第二SL网络信息之后,可以基于第一栅格的标识,确定该第二SL网络信息与第一栅格相关。然后网络设备基于第二SL网络信息,并通过预设算法,得到至少一个栅格的网络资源分析结果。
其中,预设算法可以是卡尔曼滤波算法或者神经网络算法等。例如,当该预设算法为神经网络算法时,将第二SL网络信息中所包括的第一栅格覆盖范围内的UE的数量、第一栅格覆盖范围内的UE执行的V2X业务信息、第一栅格覆盖范围内的信道质量信息或者第一栅格覆盖范围内的道路信息等中的一项或多项作为神经网络算法的输入,输出至少一个栅格的网络资源分析结果。
该网络资源分析结果可以参阅上述步骤203中的相关描述。
在本申请实施例提供的方法中,网络设备接收N个栅格的信息,以及第一栅格相关的第二SL网络信息。因此,接入网设备可以基于栅格粒度向网络设备发送第二SL网络信息,网络设备可以得到基于栅格粒度的至少一个栅格的网络资源分析结果。因此,可以基于栅格粒度的网络资源分析结果,准确地调整该栅格覆盖范围内的UE的网络资源,进一步地,UE可以使用调整后的网络资源进行SL通信,提高UE进行SL通信的效率,降低UE进行SL通信的时延。并且,本申请实施例中栅格的粒度较小,例如,栅格的粒度可以小于小区的 粒度、扇区粒度等,因此,网络设备可以根据基于栅格的第二SL网络信息,得到基于栅格粒度的网络资源分析结果,得到的网络资源分析结果更准确,进一步地,基于该网络资源分析结果对UE的网络资源、V2X业务的通信参数或者V2X业务的QoS参数等进行调整时,可以根据更准确网络资源分析结果对UE的网络资源、V2X业务的通信参数或者V2X业务的QoS参数的调整,提高调整UE的网络资源、V2X业务的通信参数或者V2X业务的QoS参数的精度,实现对UE的网络资源、V2X业务的通信参数或者V2X业务的QoS参数的更准确地调整。
在一种可能的实现方式中,当网络设备为数据分析实体时,步骤303可以包括:数据分析实体对第二SL网络信息进行预处理,得到预处理SL网络信息。然后基于预处理SL网络信息、N个栅格的信息以及第一栅格的标识,对N个栅格中的至少一个栅格的网络资源进行分析,得到该至少一个栅格的网络资源分析结果。
其中,数据分析实体对第二SL网络信息进行预处理的方式可以参阅前述步骤203中接入网设备对第一SL网络信息进行预处理的方式,此处不再赘述。
在一种可能的实现方式中,在步骤303之后,上述方法还包括:
网络设备向其他网元发送该至少一个栅格的网络资源分析结果,例如,接入网设备、PCF实体或AF实体等,不予限制。
在一种可能的实现方式中,在步骤303之前或之后,上述方法还包括:网络设备接收来自接入网设备的第一请求,该第一请求用于请求获取该网络资源分析结果,且该第一请求中携带该至少一个栅格的信息,例如,该至少一个栅格的标识、覆盖范围信息等。在步骤303之后,或者,若网络设备在步骤303之后接收到第一请求,则在网络设备接收到第一请求之后,网络设备还将该网络资源分析结果发送至接入网设备。因此,本申请实施例中,可以由接入网设备根据需求向网络设备请求该至少一个栅格的网络资源分析结果,使得接入网设备可以根据该至少一个栅格的网络资源分析结果,对该至少一个栅格覆盖范围内的UE进行网络资源的调整或分配等。
在另一种可能的实现方式中,在步骤303之前或之后,上述方法还包括:网络设备还接收来自AF实体的第二请求,该第二请求用于请求获取该网络资源分析结果,且该第二请求中携带该至少一个栅格的信息,例如,该至少一个栅格的标识、覆盖范围信息等等。在步骤303之后,或者,若网络设备在步骤303之后接收到第二请求,则在网络设备接收到第一请求之后,网络设备还将该网络资源分析结果发送至AF实体。在本申请实施例中,可以由AF实体根据需求向网络设备请求该至少一个栅格的网络资源分析结果,使得AF实体可以根据该至少一个栅格的网络资源分析结果,调整该至少一个栅格覆盖范围内的UE的部分V2X业务的QoS参数等。
请参阅图4,本申请实施例提供了另一种数据处理方法,具体如下所述。
401、PCF实体对预设范围进行栅格划分,得到预设范围内的N个栅格的信息。
其中,PCF实体可以对预设范围进行栅格划分,得到N个栅格的信息,该N个栅格的信息可以参阅上述步骤201中的相关描述。
具体地,该PCF实体对预设范围进行划分的方式可以参阅上述步骤202的方式二中接 入网设备对预设范围进行划分,得到N个栅格的信息的相关描述,将其中的接入网设备替换为PCF实体即可,此处不再赘述。
402、PCF实体发送N个栅格的信息。
其中,PCF实体可以向其他网元发送该N个栅格的信息。该其他网元可以包括:AF实体、接入网设备或网络设备等,不予限制。
在本申请实施例提供的方法中,PCF实体可以对预设范围进行栅格划分,得到N个栅格,并将该N个栅格的信息发送至其他网元,使得其他网元可以获知栅格划分的结果。网络设备可以得到基于栅格粒度的至少一个栅格的网络资源分析结果,进而可以实现基于栅格的粒度,准确地调整UE的V2X业务的通信参数,使UE可以使用调整后的VX业务的通信参数进行V2X业务,提高进行V2X业务的效率,降低V2X业务的时延。
在一种可能的实现方式中,在步骤402之后,上述方法还包括:PCF实体接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果,该网络资源分析结果可以参阅上述步骤203中的相关描述。
并且,当该网络资源分析结果满足第二预设条件时,PCF实体可以向该至少一个栅格覆盖范围内的UE发送V2X业务的通信参数,该V2X业务的通信参数可以包括V2X业务的QoS参数、地址信息或者频段信息中的至少一项。
其中,该QoS参数可以包括以下的一种或多种:PC5服务质量标识(PC5QoS identifier,PQI),用于指示UE的QoS要求;PC5优先级信息(PC5priority level),用于指示V2X服务消息的发送优先级);PC5保障流比特率(guaranteed flow bite rate,GFBR);PC5最大流比特率(maximum flow bite rate,MFBR);数据包错误率(packet error rate),用于指示可以接收的数据包错误概率等。该QoS参数可以由PCF实体为该至少一个栅格覆盖范围内的UE生成,也可以是PCF实体接收来自一个或多个AF实体的该QoS参数,或者PCF实体接收来自一个或多个AF实体的该QoS参数中的部分参数。该地址信息可以包括UE在进行V2X业务时,可以使用的地址的信息,例如,该地址信息可以包括UE的其中一项V2X业务可以访问的具体地址。该频段信息即UE在进行V2X业务时,可以使用的频段的信息。
此外,当该网络资源分析结果满足第二预设条件时,PCF实体还可以向该至少一个栅格覆盖范围内的UE发送控制策略,该控制策略用于调整UE传输V2X业务的数据时使用的接口。例如,控制策略可以用于分配UE在第一频段使用PC5接口传输V2X业务的数据、在第二频段使用Uu口传输V2X业务的数据等,或者,UE在第一时间段可以使用PC5接口传输V2X业务的数据,在第二时间段可以使用Uu口传输V2X业务的数据等等。
该第二预设条件可以为:网络资源分析结果中的参数值处于第二预设范围内,或者,网络资源分析结果包括调整指示信息等。
其中,该调整指示信息可以是V2X业务的通信参数调整指示信息,该V2X业务的通信参数调整指示信息用于指示该至少一个栅格覆盖范围内的UE的V2X业务的通信参数需要调整。
其中,该第二预设条件与上述步骤203中所述的第一预设条件可以相同,也可以不相 同。
因此,在本申请实施方式中,PCF实体可以根据来自网络设备的至少一个栅格的网络资源分析结果,向该至少一个栅格覆盖范围内的UE下发V2X业务的通信参数,从而调整该至少一个栅格覆盖范围内的UE的V2X业务的通信参数,或者,PCF实体还可以向该至少一个栅格覆盖范围内的UE下发控制策略,从而控制该至少一个栅格覆盖范围内的UE进行V2X业务的数据传输时使用的接口。进一步地,UE可以根据PCF实体下发的V2X业务的通信参数或者控制策略,进行V2X业务,可以提高UE进行V2X业务的数据传输的效率,降低UE进行V2X业务的数据传输的时延。
请参阅图5,本申请实施例提供了另一种数据处理方法,具体如下所述。
501、AF实体对预设范围进行栅格划分,得到预设范围内的N个栅格的信息。
其中,AF实体可以对预设范围进行栅格划分,得到N个栅格的信息,该N个栅格的信息可以参阅上述201中相关的描述,不再赘述。
具体地,该AF实体对预设范围进行划分的方式可以与上述步骤202的方式二中接入网设备对预设范围进行划分,得到N个栅格的信息类似,将其中的接入网设备替换为AF实体即可,此处不再赘述。
502、AF实体发送N个栅格的信息。
其中,AF实体可以向其他网元发送该N个栅格的信息,该其他网元可以包括:接入网设备、NWDAF实体或PCF实体等,不予限制。
在本申请实施方式中,AF实体可以对预设范围进行栅格划分,得到N个栅格,并将该N个栅格的信息发送至其他网元,例如,网络设备、接入网设备等。使得其他网元可以获知栅格划分的结果。并且,网络设备可以得到基于栅格粒度的至少一个栅格的网络资源分析结果,进而可以实现基于栅格的粒度调整UE的V2X业务的QoS参数的调整。进一步地,UE可以使用调整后的V2X业务的QoS参数进行V2X业务,提高V2X业务的效率,降低V2X业务的时延。
在一种实现方式中,在步骤502之后,或者,在上述步骤502中所述的AF实体接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果之前,上述方法还包括:AF实体向网络设备发送第二请求。
其中,该第二请求用于请求获取所述网络资源分析结果,该第二请求中携带至少一个栅格的信息,例如,该至少一个栅格的标识、覆盖范围信息等等。
在一种可能的实现方式中,在步骤501之后,或者,在AF实体向网络设备发送第二请求之后,上述方法还包括:AF实体接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果。当该网络资源分析结果满足第三预设条件时,该AF实体向该至少一个栅格中进行该AF实体提供的V2X业务的UE,发送该V2X业务的QoS参数。该V2X业务的QoS参数可以参阅上述步骤402中的相关描述。
其中,该第三预设条件可以包括:网络资源分析结果中的参数值处于第三预设范围,或者,网络资源分析结果包括调整指示信息等。
其中,该第三预设条件可以与第一预设条件或第二预设条件相同,也可以不相同。
其中,该调整指示信息可以包括V2X业务的QoS参数调整指示信息。该V2X业务的QoS参数调整指示信息用于指示该至少一个栅格覆盖范围内的UE的V2X业务的QoS参数需要调整。
因此,在本申请实施方式中,AF实体可以根据来自网络设备的至少一个栅格的网络资源分析结果,对该至少一个栅格覆盖范围内的UE的V2X业务的QoS参数进行调整,使得UE可以使用与SL通信的信道质量更匹配的QoS参数进行V2X业务,使UE可以是用AF下发的V2X业务的QoS参数进行V2X业务。
在另一种实现方式中,当该网络资源分析结果满足第三预设条件时,AF实体也可以将该V2X业务的QoS参数通过NEF实体发送至PCF实体,由PCF实体将该V2X业务的QoS参数经过AMF实体发送至该至少一个栅格中进行该AF实体提供的V2X业务的UE,使AF实体通过PCF实体间接实现对该至少一个栅格覆盖范围内的UE的V2X业务的QoS参数的调整。
基于上述图2-5提供的数据处理的方法,下面对本申请提供的数据处理的方法进行更进一步地说明。
601、接入网设备进行地图栅格化。
其中,由接入网设备基于地图的信息,对预设范围进行栅格划分,得到预设范围内的N个栅格的信息,N为大于或等于1的正整数。其中,步骤601中的进行地图栅格化,可以参阅上述步骤202中方式二中的相关描述。
具体地,接入网设备在进行地图栅格化之后,得到N个栅格的信息。该N个栅格的信息可以参阅上述步骤201中的相关描述。
其中,该N个栅格中的每个栅格都有对应的标识,一个栅格可以与一个标识一一对应。每个栅格的标识可以是接入网设备在划分栅格时,即为每个栅格分配;也可以是在栅格划分完成之后,接入网设备再为每个栅格分配标识。具体地,每个栅格的标识的分配方式可以是按照预设的规则进行分配。例如,可以是按照栅格划分的顺序为每个栅格分配标识,也可以是随机为每个栅格分配标识,还可以是按照每个栅格的排列顺序为每个栅格分配标识等等。
其中,预设范围可以是接入网设备下的小区覆盖范围,也可以是接入网设备下的扇区覆盖范围,还可以是由接入网设备或者其他网元根据预设规则基于地图划定的范围,例如,该预设范围可以是地图上的道路区域。
其中,该N个栅格可以是接入网设备按照预设的大小对预设范围进行划分得到。例如,接入网设备可以按照预设长度、宽度或高度(海拔)等,对道路进行划分,得到N个栅格。该N个栅格中的每个栅格的覆盖范围可以小于预设范围。例如,每个栅格的覆盖范围可以小于接入网设备下的一个或多个小区的覆盖范围,或者,每个栅格的覆盖范围的大小小于接入网设备下的小区的平均覆盖范围大小等。
需要说明的是,每个栅格的形状可以是矩形、圆形、多边形等,每个栅格的形状可以相同,也可以不相同,具体可以根据实际应用场景进行调整。
在一个示例中,以该预设范围为地图中的道路为例进行说明。如图7A所示,接入网设备可以基于地图信息的道路信息进行栅格化处理,将道路划分为多个栅格。可以将道路的 宽度作为每个栅格的宽度,每个栅格的长度可以根据运营商的设定确定。可以理解为,接入网设备将地图上的道路进行分段,每一段道路即为一个栅格,每一段道路的长度可以由运营商设定。当栅格的宽度为道路的宽度,该宽度的值在不同的场景可能不同。例如,城市道路的车道宽度为3.5米,交叉路口分流车道每车道为2.3-2.5米,干线公路(包括高速公路)每车道为3.75米,路肩(高速公路紧急停车带)为1.5-2.5米等。并且,可能存在高架道路、隧道等场景。因此,在一些具体的应用场景中,每个栅格的覆盖范围信息还可以包括海拔。
在一个示例中,以上述预设范围为一个或多个基站下的小区为例进行说明。如图7B所示。其中,以一个基站为例,该基站下包括一个或多个小区,此处以三个小区进行说明。该基站可以对该三个小区的覆盖范围进行划分,得到多个栅格。其中,一个小区可以划分为一个或多个栅格,每个栅格的覆盖范围的大小不大于该基站下最小小区的覆盖范围的大小。
在一个示例中,以上述预设范围为一个或多个基站下的扇区为例进行说明。基站也可以基于其覆盖范围内的扇区的覆盖范围进行划分,将一个扇区划分为一个或多个栅格。如图7C所示。其中,一个基站下可以包括一个或多个扇区,此处以三个扇区进行说明。该基站可以对该三个扇区的覆盖范围进行划分,得到多个栅格。其中,一个扇区可以划分为一个或多个栅格,每个栅格的覆盖范围的大小不大于该基站下最小扇区的覆盖范围的大小。
在一种可能的实现方式中,当接入网设备为一个或多个基站时,接入网设备在划分并得到N个栅格的信息之后,可以将每个栅格与一个或多个基站下的一个或多个小区进行匹配。然后将栅格的信息保存至对应的小区的数据中。例如,小区A覆盖范围内包括栅格1、栅格2、栅格5,小区B覆盖范围内包括栅格3、栅格4以及栅格6,可以将栅格1、栅格2以及栅格5的标识保存至小区A的数据中,可以将栅格3、栅格4以及栅格5的标识保存至小区B的数据中等。此外,也可以由其他网元,例如,AMF实体、NEF实体等,对N个栅格与前述一个或多个小区进行匹配,过程与接入网设备对N个栅格与前述一个或多个小区进行匹配的方式类似,不再赘述。
在另一种可能的具体的应用场景中,在3GPP TS 36.331(5.10.13.2)中,基于地图进行了区域划分,得到一个或多个分区(zone)。然后可以将PC5资源与zone对应起来,例如,将PC5资源保存至对应的zone的相关数据中,具体步骤请参阅相关标准。本申请实施例中,可以由接入网设备、PCF实体或网络设备等,将栅格与zone进行匹配,将栅格与zone对应起来。具体地,可以将上述N个栅格中的每个栅格所处的zone的信息保存在每个栅格的信息中,或者,将每个栅格的信息,保存至每个栅格所处的zone的信息中等。
其中,本申请提供的栅格的覆盖范围的大小小于zone的平均覆盖范围的大小,或者,本申请提供的栅格的覆盖范围的大小小于zone的最小覆盖范围的大小。可以理解为,本申请实施例中基于地图划分得到的栅格,可以是zone的子集。例如,如图8所示,一个zone可以分为多个栅格。其中,每个栅格都有对应的PC5资源。并且,每个zone都有对应的zone标识号(identification,ID)。每个栅格的标识可以与zone ID关联起来。例如,每个栅格的标识中可以包含对应分区的zone ID。当后续需要对zone的覆盖范围进行调整 时,可以以栅格为粒度对分区的覆盖范围进行调整。如图9所示,相对于图8,图9中的一个或多个栅格,可以从zone A划分到zone B中。在对zone的覆盖范围进行调整时,只需要对zone内的栅格的标识进行调整,例如,增加或删除zone对应的栅格的标识等,而不需要重新对每个zone的经度以及纬度或长度等进行重新调整。可以降低调整zone的复杂度。
在一种具体的实现方式中,步骤601之后,上述方法还包括:接入网设备将该N个栅格的信息发送至其他网元,例如,PCF实体、数据分析实体、NWDAF实体或AF实体等,不予限制。
可选地,步骤601可以替换为步骤6011。
6011、PCF实体进行地图栅格化。
其中,上述步骤601中地图栅格化的步骤,也可以由PCF实体执行。PCF实体进行地图栅格化的步骤与步骤601中接入网设备进行地图栅格化的步骤类似,将步骤601中的接入网设备替换为PCF实体即可,不再赘述。
在一种具体的实现方式中,在步骤6011之后,上述方法还包括:PCF实体将该N个栅格的信息发送至其他网元,例如,接入网设备、NWDAF实体、数据分析实体或AF实体等,不予限制。
可选地,步骤601可以替换为步骤6011。
6012、AF实体进行地图栅格化。
上述步骤601中地图栅格化的步骤也可以由AF实体执行。AF实体进行地图栅格化的步骤与步骤601中接入网设备进行地图栅格化的步骤类似,将步骤601中的接入网设备替换为AF实体即可,不再赘述。
在一种具体的实现方式中,在步骤6012之后,上述方法还包括:AF实体将该N个栅格的信息发送至其他网元,例如,接入网设备、NWDAF实体、数据分析实体或PCF实体等,不予限制。
602、UE向接入网设备上报第一SL网络信息。
其中,第一SL网络信息可以参阅上述步骤202中的相关描述。
其中,UE可以通过无线资源控制(radio resource control,RRC)信令,向接入网设备上报该第一SL网络信息。
其中,UE上报第一SL网络信息,有多种方式,如下所述。
方式一:UE可以周期性地向接入网设备上报第一SL网络信息。
其中,上报第一SL网络信息的周期可以由PCF实体写入下发给UE的配置信息中,UE从该配置信息中读取该上报周期,然后根据该上报周期上报第一SL网络信息。或者,接入网设备在向UE下发的信令中,携带指示UE周期性向接入网设备上报第一SL网络信息的指示,以及上报周期,UE可以根据该信令,根据上报周期,周期性地向接入网设备上报第一SL网络信息。
例如,在UE向接入网设备或PCF实体发起V2X业务请求时,或者在UE周期性地进行配置更新或注册更新等流程中,PCF实体可以通过AMF实体向UE下发配置信息,该配置信 息中可以携带UE上报第一SL网络信息的周期。
又例如,接入网设备在向UE下发的无线资源控制(radio resource control,RRC)信令时,该RRC信令中携带指示UE周期性向接入网设备上报第一SL网络信息的指示,以及上报周期。
因此,在本方式中,UE可以周期性地上报第一SL网络信息,例如,UE每分钟向接入网设备上报f1次第一SL网络信息,使得接入网设备可以周期性获取到第一SL网络信息。进而,接入网设备也可以周期性地向网络设备发送第二SL网络信息,并周期性地接收来自网络设备的网络资源分析结果,从而实现接入网设备周期性地对栅格覆盖范围内的UE的网络资源的调整或分配。进一步地,使UE可以使用调整或分配的网络资源进行SL通信,提高UE进行SL通信的效率,降低UE进行SL通信的时延。
方式二:UE根据触发条件上报第一SL网络信息。
其中,接入网设备在向UE下发的信令中携带触发UE向接入网设备上报第一SL网络信息的触发条件的信息。
其中,该触发条件可以包括:CBR低于预设门限值,或者,当前信道质量无法满足当前通信需求,例如,UE进行SL通信的时延高于第一阈值,或UE进行SL通信的丢包率高于第二阈值等,无法满足V2X业务的需求。
具体地,接入网设备可以在向UE下发的RRC信令中携带该触发条件的信息。
因此,在本方式中,当UE确定CBR低于预设门限值,或者,UE监测到当前信道质量无法满足当前通信需求时,即可向接入网设备上报第一SL网络信息,使得接入网设备可以及时获取到UE进行SL通信时的通信质量的变化。
方式三:接入网设备在需要获取到第一SL网络信息时,直接向UE下发指示UE上报第一SL网络信息的上报指示信息。
进一步地,UE在接收到来自接入网设备的上报指示信息之后,即可向接入网设备上报第一SL网络信息。
因此,在方式三中,接入网设备可以根据需求通知UE上报第一SL网络信息,可以减少UE发送的数据量,降低UE的信令开销。
此外,在步骤602之后,上述方法还包括:第一SL网络信息中可以携带UE的位置信息,接入网根据该位置信息,确定UE处于第一栅格。例如,第一SL网络信息中携带UE所在位置的经度以及纬度,接入网设备可以根据UE所在位置的经度以及纬度,与上述每个栅格的经度以及纬度坐标,或者将上述第一SL网络信息中携带UE所在位置的经度以及纬度转换为平面坐标,与上述每个栅格的经度以及纬度经转换后的平面坐标进行对比,确定UE处于第一栅格中,该第一栅格包括于上述的N个栅格。
603、接入网设备进行数据预处理。
其中,本申请实施例中的步骤603为可选步骤。
接入网设备在接收到UE发送的第一SL网络信息之后,可以对该第一SL网络信息进行预处理,得到第二SL网络信息。
其中,预处理的具体步骤,以及第二SL网络信息可以参阅上述步骤203中的相关描述。
在一个示例中,若存在两个UE在第一频段、第一栅格以及第一时间段向接入网设备上报SL通信的第一SL网络信息,接入网设备可以对该两个UE在第一频段、第一栅格以及第一时间段上报的第一SL网络信息进行预处理,例如,对第一SL网络信息所包括的数据进行加权、平均等处理,从而得到预处理SL网络信息。因此,本申请实施例中,可以通过接入网设备对第一SL网络信息的预处理,降低第一SL网络信息的数据冗余量,提高网络设备进行数据分析的效率。
在一个示例中,若同一栅格中,存在多个UE上报其当前使用的或监测到的CBR,接入网设备将多个UE上报的CBR进行加权平均或其他的量化操作,得到每个栅格对应的一个CBR,从而降低同一栅格的CBR的冗余。
在一种可能的实现方式中,若存在多组第一SL网络信息,该多组第一SL网络信息中的每一组第一SL网络信息中可能携带对应的UE的不同的信息,例如,每个UE的位置的信息、每个UE执行的V2X业务的信息等,则针对每组第一SL网络信息中不同的信息,可以无需作预处理,直接将该信息包括于第二SL网络信息即可。
在一种可选的实施方式中,接入网设备周期性地对第一SL网络信息进行预处理,且对第一SL网络信息进行预处理的周期通常小于前述步骤602中UE上报第一SL网络信息的周期。例如,接入网设备可以每分钟对第一SL网络信息进行f2次预处理,该f2小于上述步骤602中的f1。
在另一种实现方式中,当数据分析实体独立于接入网设备部署时,步骤603也可以由数据分析实体执行,接入网设备在接收到第一SL网络信息之后,将该第一SL网络信息发送给数据分析实体。数据分析实体对第一SL网络信息进行预处理的过程与接入网设备对第一SL网络信息进行预处理的步骤类似,不再赘述。
604、接入网设备向网络设备发送第一栅格的标识以及第二SL网络信息。
其中,本申请实施例中的步骤604与上述步骤203类似,此处不再赘述。
此外,当由数据分析实体执行步骤603时,也可以由数据分析实体将该第一栅格的标识以及第二SL网络信息向NWDAF实体发送。
605、接入网设备向网络设备发送SL网络性能预测请求。
其中,接入网设备向网络设备发送的SL网络性能预测请求,即上述步骤203中所述的第一请求,具体参阅上述步骤203中的相关描述,此处不再赘述。
在一种可能的实现方式中,接入网设备可以通过同一消息发送SL网络性能预测请求、第一栅格的标识以及第二SL网络信息。
具体地,步骤605,可以理解为,若接入网设备需要对某些区域的SL网络性能进行预测时,可以将第二SL网络信息以及与需要进行SL网络性能预测的区域所属的第一栅格的标识发送至网络设备,以向网络设备请求获取至少一个栅格的网络资源分析结果,该至少一个栅格可以是第一栅格或者第一栅格及其附近的栅格。该网络资源分析结果可以用于接入网设备调整或分配UE所使用的网络资源。
在一种具体的实现方式中,接入网设备可以周期性地向网络设备发送SL网络性能预测请求,以请求至少一个栅格的网络资源分析结果,实现对该至少一个栅格内的UE所使用的 网络资源的实时调控。例如,接入网设备可以每分钟向网络设备发送f3次SL网络性能预测请求,f3小于上述步骤603中的f2。并且,接入网设备在发送SL网络性能预测请求时,携带当前周期内的第二SL网络信息,该第二SL网络信息请参阅上述步骤203中的相关描述。
在另一种具体的实现方式中,接入网设备可以根据触发事件向网络设备发送SL网络性能预测请求。该触发事件可以包括:UE向接入网设备请求分配网络资源,或者UE上报的CBR的值大于预设值,或者UE上报的道路信息车辆密度的值大于预设的车辆密度值等等。
具体地,当接入网设备可以通过同一消息发送SL网络性能预测请求、第一栅格的标识以及第二SL网络信息。其中,第二SL网络信息可以是前述步骤602中的第一SL网络信息,也可以是对第一SL网络信息进行预处理后的SL网络信息。
示例性地,对预处理后的SL网络信息与未处理的第一SL网络信息这两种场景进行示例性说明。
场景一、接入网设备向网络设备发送预处理后的SL网络信息。
具体地,当接入网设备向网络设备通过同一消息发送SL网络性能预测请求、第一栅格的标识以及第一SL网络信息经处理后的数据时,该消息的具体内容可以参阅表1。
Figure PCTCN2020094872-appb-000001
Figure PCTCN2020094872-appb-000002
表1
其中,接入网设备向网络设备请求的内容,即可以理解为SL网络性能预测请求,可以包括至少一栅格(包括表1中第一栅格于第一栅格附近的栅格)覆盖范围下SL通信支持的QoS等级,或者至少一栅格覆盖范围下的SL通信的拥塞程度等。
表1中的第一栅格的信息以及第一栅格附近栅格的信息,即可以包括第一栅格的标识以及第二SL网络信息。第一栅格附近栅格可以理解为与第一栅格相邻的栅格。
其中,第一栅格的信息可以包括时间戳、第一栅格的ID、UE进行SL通信的频段、信道质量参考信息与CBR信息(预处理后的数据)等。可选地,第一栅格的信息还包括第一栅格下的UE数量、该第一栅格覆盖范围内的UE的UE ID、第一栅格覆盖范围内UE的移动轨迹、第一栅格覆盖范围内的UE的V2X业务信息(例如,UE正在进行的V2X业务、V2X业务的信道占用量或者V2X业务的数据包的优先级等,参阅上述步骤202中的相关描述)、UE感知到的道路信息(例如,局部交通流密度、车辆行驶速度、温度、湿度、可见度等,参阅上述步骤202中的相关描述)等信息中的一项或者多项。其中,UE进行SL通信的频段、信道质量参考信息与CBR信息为预处理后的数据,预处理步骤参阅上述步骤203中的相关描述。第一栅格附近的栅格的信息与第一栅格的信息类似,不再赘述。
本场景一中,接入网设备可以向网络设备发送预处理后的SL网络信息,可以减少发送的数据的冗余量,提高数据发送效率。并且,网络设备在接收到预处理后的SL网络信息,因预处理后的SL网络信息的数据量少于未经预处理的SL网络信息的数据量,因此,网络设备可以基于更少的SL网络信息得到网络资源分析结果,可以减少网络设备的工作量,提高网络设备的工作效率。
场景二、接入网设备向网络设备发送未经预处理的SL网络信息。
当接入网设备向网络设备通过同一消息发送SL网络性能预测请求、第一栅格的标识以及未经预处理的第一SL网络信息时,该消息的具体内容可以参阅表2。
Figure PCTCN2020094872-appb-000003
Figure PCTCN2020094872-appb-000004
表2
其中,表2中所包括的内容与表1中所包括的内容类似,对于类似的内容,不作赘述。区别在于,表2中所携带的第一栅格以及第一栅格附近的栅格中每个栅格覆盖范围内的UE进行SL通信的频段、信道质量参考信息与CBR信息,为未经预处理的数据。
本场景二中,若接入网设备向网络设备发送未经预处理的SL网络信息,将可能携带与第一栅格相关的大量的第一SL网络信息。网络设备可以根据未经预处理的SL网络信息,更准确地获取到每个栅格下的网络资源的使用情况。在实际应用中,在发送SL性能预测请求时,SL网络性能消息中所携带的数据越准确,后续得到的网络资源分析结果也就越准确。
需要说明的是,本申请实施方式中的步骤605为可选步骤,即可以不执行步骤605,也 可以执行步骤605,不予限制。
可选地,上述步骤605也可以替换为6051。
6051、AF实体向网络设备发送SL网络性能预测请求。
上述步骤605也可以由AF实体执行。
其中,AF实体向网络设备发送的SL网络性能预测请求,即上述步骤502中的第二请求。该SL网络性能预测请求用于向网络设备请求至少一个栅格的网络资源分析结果。
其中,AF实体可能存在无法获取到至少一个栅格下的UE的SL网络信息的情况,因此,AF实体向网络设备发送的SL网络性能预测请求可以不携带第二SL网络信息,由接入网设备将第二SL网络信息发送至网络设备。
具体地,AF实体向网络设备发送SL网络性能预测请求的方式可以参阅上述步骤605中接入网设备向网络设备发送SL性能预测请求的方式。
一种具体的实现方式中,若AF实体上保存有N个栅格的信息,则AF实体向网络设备发送的SL网络性能预测请求中可以携带至少一个栅格的信息,例如,该至少一个栅格的标识、覆盖范围等。
另一种具体的实现方式中,当AF实体上未保存N个栅格的信息,则AF实体向网络设备发送的SL网络性能预测请求中,可以携带需要获取的网络资源分析结果对应的位置信息。例如,SL网络性能预测请求可以携带:请求预测的区域的经度以及纬度,或者,UE的单条或者多条路径的信息,或者,请求预测的范围的几何图形区域的坐标信息等。网络设备可以根据该SL网络性能预测请求中携带的UE的位置信息,确定AF实体请求获取的网络资源分析结果对应的至少一个栅格。因此,即使AF实体上不包括N个栅格的信息,也可以向网络设备发送所请求的区域的位置信息,实现向网络设备请求获取网络资源分析结果。
606、网络设备进行数据分析。
其中,本申请实施例中的步骤606可以参阅上述步骤303,此处不再赘述。
其中,触发网络设备进行数据分析的方式有多种,如下所述。
方式一:网络设备可以是在步骤605或6051之后,由SL网络性能预测请求触发网络设备进行数据分析。
其中,在方式一中,网络资源分析结果中所包括的内容,可以根据SL网络性能预测请求中所携带的请求的内容的不同而不同。
例如,若SL网络性能预测请求用于请求网络设备分析SL通信的拥塞情况,则该网络资源分析结果中携带SL通信的拥塞程度。若SL网络性能预测请求用于请求网络设备分析SL通信支持的QoS等级,则网络资源分析结果中可以包括SL通信支持的QoS等级。若SL网络性能预测请求用于请求网络设备分析SL通信中的部分QoS参数指标,则网络资源分析结果中可以包括,该至少一个栅格的可以满足V2X业务需求的QoS参数指标的指示,例如,网络资源分析结果可以包括时延或丢包率等指标,或者,网络资源分析结果可以直接包括是否满足V2X业务的QoS指标的指示等。
在一种可能的场景中,当SL网络性能预测请求为AF实体发送,而AF实体上并未保存上述N个栅格的信息,则SL网络性能预测请求中携带的是需要请求的位置的信息,网络设 备在接收到SL网络性能预测请求之后,根据该SL网络性能预测请求中携带的位置信息,确定该位置信息对应的至少一个栅格。进而对该至少一个栅格的网络资源进行分析,得到网络资源分析结果。
方式二:在步骤604之后,即可进行数据分析。
在方式二中,若接入网设备周期性地向网络设备发送第一栅格的标识以及与第一栅格相关的第二SL网络信息,则相应地,网络设备也可以周期性地基于该第一栅格的标识以及与第一栅格相关的第二SL网络信息对至少一个栅格的网络资源进行分析,得到至少一个栅格的网络资源分析结果。网络设备对至少一个栅格的网络资源进行分析的周期,可以根据接入网设备发送第一栅格的标识以及与第一栅格相关的第二SL网络信息的周期进行调整。
在一种示例中,接入网设备可以周期地向网络设备发送SL网络性能预测请求以及预设时间段内的第二SL网络信息。例如,接入网设备可以向网络设备发送5分钟内的第二SL网络信息。以使得网络设备可以基于SL网络性能预测请求以及预设时间段内的第二SL网络信息,得到该至少一个栅格的网络资源分析结果。该网络资源分析结果中可以包括未来预设时间段内该至少一个栅格覆盖范围内的SL通信的通信质量的信息。具体地,该网络设备可以根据预设算法,例如,卡尔曼滤波算法、神经网络算法等,将预设时间段采集到的第二SL网络信息作为输入,输出该至少一个栅格的网络资源分析结果,该网络资源分析结果中可以包括未来预设时间段内该至少一个栅格覆盖范围内的SL通信的通信质量的信息。该预设时间段可以由网络设备根据该预测算法确定,也可以由接入网设备直接确定。
因此,接入网设备可以向网络设备发送SL网络性能预测请求以及预设时间段内的第二SL网络信息,请求该至少一个栅格的网络资源分析结果,使得接入网设备可以基于预测得到的未来预设时间段内该至少一个栅格的网络资源分析结果,调整UE的网络资源。可以理解为,通过卡尔曼滤波算法或者神经网络算法等,基于栅格的粒度实现对SL通信的通信质量的分析或预测,进而可以基于对SL通信的通信质量的分析或预测的结果,准确地调整UE的网络资源,避免UE在进行SL通信时出现信道拥塞的情况。
607、网络设备向PCF实体发送网络资源分析结果。
其中,网络设备在获得至少一个栅格的网络资源分析结果之后,可以将该至少一个栅格的网络资源分析结果发送至PCF实体。
具体地,若网络设备周期性地对至少一个栅格的网络资源进行分析,则网络设备可以周期性地向PCF实体发送网络资源分析结果。
需要说明的是,本申请实施例中的步骤607为可选步骤,即网络设备也可以不向PCF实体发送至少一个栅格的网络资源分析结果。
608、网络设备向AF实体发送网络资源分析结果。
其中,网络设备在获得至少一个栅格的网络资源分析结果之后,可以将该至少一个栅格的网络资源分析结果发送至AF实体。
具体地,触发网络设备向AF实体发送网络资源分析结果的方式有多种,如下所述。
方式一:网络设备周期性地向AF实体发送网络资源分析结果。例如,若网络设备周期性地对至少一个栅格的网络资源进行分析,则网络设备可以周期性地向AF实体发送网络资 源分析结果。
方式二:网络设备的接收到来自AF实体的SL网络性能预测请求,将该网络资源分析结果发送至AF实体。
更具体地,网络设备可以通过NEF实体,将该网络资源分析结果转发至AF实体。
609、网络设备向接入网设备发送网络资源分析结果。
其中,网络设备在获得至少一个栅格的网络资源分析结果之后,可以将该至少一个栅格的网络资源分析结果发送至接入网设备。
具体地,触发网络设备向接入网设备发送网络资源分析结果的方式有多种,如下所述。
方式一:网络设备周期性地向接入网设备发送网络资源分析结果。例如,若网络设备周期性地对至少一个栅格的网络资源进行分析,则网络设备周期性地向接入网设备发送网络资源分析结果。
方式二:接入网设备向网络设备发送SL网络性能预测请求,网络设备将该网络资源分析结果发送至接入网设备。
610、接入网设备向UE发送网络资源的信息。
其中,该网络资源的信息为UE可用的网络资源的信息,或者,接入网设备为UE分配的网络资源的信息。当该网络资源的信息为UE可用的网络资源的信息时,该网络资源的信息可以由接入网设备通过SL无线承载配置向UE发送。当该网络资源信息为接入网设备为UE分配的网络资源的信息时,可以由接入网设备直接向该UE发送网络资源的信息。
其中,在接入网设备接收到来自网络设备的至少一个栅格的网络资源分析结果之后,当该网络资源分析结果满足第一预设条件时,接入网设备向该至少一个栅格覆盖范围内的UE发送SL无线承载配置;或者,当该网络资源分析结果满足第一预设条件时,接入网设备根据网络资源分析结果,为该至少一个栅格覆盖范围内的UE分配网络资源,并向UE发送分配的网络资源的信息。
步骤610可以参阅上述步骤203的相关描述,下面以一些具体的场景对步骤610进行更详细的说明。
例如,网络资源分析结果中携带至少一个栅格范围中的SL通信支持的QoS等级。对应的,第一预设条件为该网络资源分析结果中携带的QoS等级低于预设QoS等级。因此,当网络资源分析结果满足第一预设条件时,该至少一个栅格下的UE需要调整进行SL通信所使用的网络资源。接入网设备可以向该至少一个栅格下的UE下发SL无线承载,该SL无线承载中可以包括UE可用的网络资源的信息,使UE可以根据该SL无线承载选择可用的网络资源进行SL通信。
其中,接入网设备可以通过RRC信令,或者,系统信息块(system information block,SIB)消息,将该SL无线承载配置发送至UE。
通常,接入网设备可以向该至少一个栅格覆盖范围内的UE发送SL无线承载配置,通知UE可用的PC5资源。具体地,接入网设备可以根据每个UE的V2X业务的通信参数中所包括的PC5授权信息或者QoS参数等,为UE配置对应的PC5资源。例如,UE的QoS等级越高,则为UE分配的PC5资源也就更多;或者,UE被授权使用的PC5资源越多,则为UE 分配的可用的PC5资源也就更多。
又例如,若网络资源分析结果中携带表征至少一个栅格中的拥塞程度的值,第一预设条件可以为指示至少一个栅格中的拥塞程度的值超过预设值。则当该值超过预设值之后,接入网设备确定该网络资源分析结果满足第一预设条件,可以理解为至少一个栅格中的SL通信的拥塞程度较高,需要对该至少一个栅格覆盖范围内的UE在进行V2X通信业务时使用的网络资源进行调整。接入网设备可以根据该网络资源结果,为UE分配进行SL通信的网络资源,并将为UE分配进行SL通信的网络资源的信息下发至UE。进一步地,UE可以根据接入网设备为UE分配进行SL通信的网络资源的信息,更新网络资源配置,使用接入网设备为UE分配进行SL通信的网络资源进行SL通信。
在一种示例中,UE在进行V2X业务时可以使用的直接通信的频段为5905-5925MHz频段,也可以理解为,5905-5925MHz为LTE-V2X应用的车联网直接通信的工作频段。当道路上的车辆节点密度过大时,20MHz带宽的直通工作频段很容易发生信道拥塞的情况。当接入网设备确定网络资源分析结果满足第一预设条件时,可以理解为,当前SL通信的通信质量较差,或者出现了信道拥塞的情况。接入网设备可以向UE发送SL无线承载配置,通知UE可用的PC5资源,以使UE可以选择PC5资源进行通信,或者,接入网设备可以根据网络资源分析结果,为UE分配PC5资源。因此,本示例中,UE可以通过可用的PC5资源或分配的PC5资源进行SL通信,提高UE进行SL通信的通信效率,避免UE在进行SL通信时出现信道拥塞的情况。
通常,SL无线承载配置也可以理解为预配置的SL无线承载,即接入网设备根据网络设备分析得到的网络资源分析结果,预测出可能出现的SL通信的通信质量差或信道拥塞等情况,从而通过预配置的SL无线承载,避免UE在进行SL通信时出现通信质量差或信道拥塞等情况。
611、PCF实体向UE发送V2X业务的通信参数。
本申请实施例中的步骤611,可以参阅上述步骤402之后的相关描述,此处不再赘述。
其中,当至少一个栅格的网络资源分析结果满足第二预设条件时,则该至少一个栅格中的网络资源的通信质量较差,可能存在时延高、传输效率低等情况。因此,当网络资源分析结果满足第二预设条件时,PCF实体可以根据网络资源分析结果,向该至少一个栅格覆盖范围内的一个或多个UE发送V2X业务的通信参数,从而实现对该至少一个栅格覆盖范围内的一个或多个UE的V2X业务的通信参数的调整。
例如,若至少一个栅格中的SL通信的通信质量较差,SL通信支持的QoS等级降低,则PCF实体可以通过下发V2X业务的通信参数,降低该至少一个栅格范围内的UE的V2X业务的QoS等级,以适应SL通信的通信质量的变化,避免出现SL通信的信道拥塞。或者,PCF实体通过向UE下发V2X业务的通信参数,调整UE进行V2X业务时使用的频段等,从而避免UE在信道质量差的频段通信,提高UE进行SL通信的通信质量,降低UE的通信时延。
又例如,若至少一个栅格中的信道通信质量较好,SL通信支持的QoS等级提高,则PCF实体也可以相应地通过下发V2X业务的通信参数提高该至少一个栅格范围内的UE的V2X业务的QoS等级,以适应SL通信的通信质量,提高UE在SL通信的通信质量。或者,PCF实 体通过向UE下发V2X业务的通信参数,调整UE进行V2X业务时使用的频段等,从而使UE在信道质量较好的频段通信,也可以提高UE进行SL通信的通信质量,降低UE进行SL通信的时延。
612、AF实体向UE发送V2X业务的QoS参数。
本申请实施例中的步骤612,可以参阅上述步骤502中的相关描述,此处不再赘述。
本步骤所指的V2X业务为AF实体为UE提供的业务。例如,车辆共享传感器信息业务,车辆周期性广播自身位置、速度等状态信息业务,车辆转发其他车辆或路边设备的信息业务等等。
具体地,网络资源分析结果可以参阅上述步骤203的相关描述。
其中,当网络资源分析结果满足第三预设条件时,可以理解为,该至少一个栅格中的网络资源的通信质量较差,可能存在传输时延高、传输效率低等情况。因此,当网络资源分析结果满足第三预设条件时,AF实体可以根据网络资源分析结果,向该至少一个栅格覆盖范围内的一个或多个UE发送V2X业务的QoS参数,该QoS参数可以用于调整UE的V2X业务的QoS参数。
因此,AF实体可以通过基于栅格粒度的网络资源分析结果,实现对UE的V2X业务的QoS参数基于栅格的粒度进行调整,实现更准确地对UE的V2X业务的QoS参数的调整。
例如,若至少一个栅格中SL通信的通信质量较差,SL通信支持的QoS等级降低,则AF实体可以向该至少一个栅格范围内的UE下发V2X业务的QoS参数,降低该至少一个栅格范围内的UE的V2X业务的QoS等级。从而避免出现SL通信的信道拥塞的情况。
又例如,若至少一个栅格中的信道通信质量较好,SL通信支持的QoS等级提高。则AF实体可以向该至少一个栅格范围内的UE下发V2X业务的QoS参数,提高该至少一个栅格范围内的UE的V2X业务的QoS等级。从而提高UE进行SL通信的通信质量,降低UE的通信时延。
在一个示例中,AF实体接收到来自网络设备的至少一个栅格的网络资源分析结果之后,若该网络资源分析结果满足第三预设条件,则可以理解为该至少一个栅格覆盖范围内的PC5资源的通信质量可能较差,或出现信道拥塞等情况。因此,AF实体可以向该至少一个栅格的覆盖范围内,进行V2X业务的UE发送V2X业务的QoS参数。使得UE可以根据该V2X业务的QoS参数,配置自身所执行的V2X业务的QoS参数。因此,AF实体可以通过调整UE的V2X业务的QoS参数,使UE的V2X业务的QoS参数更适应SL通信的通信质量,提高UE进行SL通信的通信效率,降低UE的通信时延。
在一种具体的场景中,上述步骤611中,PCF实体向UE发送的V2X业务的通信参数中所包括的QoS参数,可以由一个或多个AF实体发送至PCF实体,然后由PCF实体发送至UE。具体地,该AF实体可以为V2X业务对应的实体。PCF实体向UE发送的V2X业务的通信参数中,可以包括UE的一个或多个V2X业务的通信参数,该一个或多个V2X业务的通信参数可以包括该一个或多个V2X业务的QoS参数。该一个或多个V2X业务的QoS参数可以由一个或多个V2X业务对应的AF实体通过NEF实体发送至PCF实体,然后由PCF实体发送至UE。
因此,在本申请实施方式中,由接入网设备、PCF实体或者AF实体中的其中一个进行地图栅格化,并将栅格化得到的N个栅格的信息通知其他网元。第一栅格覆盖范围内的UE可以向接入网设备上报第一SL网络信息,接入网设备可以向网络设备发送第一栅格的标识以及与第一栅格相关的第二SL网络信息。使得网络设备可以基于N个栅格的信息、第一栅格的标识以及第二SL网络信息,获得至少一个栅格的网络资源分析结果。并将该网络资源分析结果发送至接入网设备、PCF实体和/或AF实体,使得接入网设备、PCF实体和/或AF实体,可以对UE的网络资源、V2X业务的通信参数或V2X业务的QoS参数等进行调整,避免该至少一个栅格覆盖范围内的UE出现通信质量差或因SL通信的信道拥塞而无法通信等情况。
上述对本申请提供的数据处理的方法的具体流程进行了详细说明,下面对本申请提供的数据处理的方法的一些具体的应用场景进行说明。
场景一、由接入网设备进行地图栅格化。
请参阅图10,本申请提供的数据处理的方法另一种流程示意图,具体如下所述。
1001、接入网设备进行地图栅格化。
其中,在本申请实施方式中,由接入网设备进行地图栅格化,得到N个栅格的信息。该N个栅格的信息,请参阅上述步骤201中的相关描述。
例如,接入网设备在得到地图的信息之后,基于地图的信息将地图中的道路分为N段,即得到N个栅格。每个栅格的长度即该N段的长度,每个栅格的宽度即道路的宽度,或者,每个栅格的宽度大于道路的宽度。
当接入网设备为基站时,可能存在多个基站。每个基站可以对其覆盖范围内的道路进行栅格划分,多个基站进行栅格划分,即可得到N个栅格的信息。并且,基站在进行栅格划分时,每个栅格的覆盖范围的大小可以小于该基站下的最小小区的覆盖范围的大小,使得划分的栅格的粒度小于小区的粒度。或者,基站在进行栅格划分时,每个栅格的覆盖范围的大小可以小于该基站下的最小扇区的覆盖范围的大小,使得划分的栅格的粒度小于扇区的粒度。
具体地,每个栅格的形状可以是圆形、椭圆形、方形或者其他多边形等,每个栅格的形状可能并不相同。因此,每个栅格的覆盖范围信息所包括的内容也可能不同。例如,若栅格的形状为圆型,则该栅格的覆盖范围信息可以包括圆心的经度以及纬度、半径以及指示该栅格的形状为圆型的指示数据等。若栅格的形状为多边形,则该栅格的覆盖范围信息可以包括每个顶点的位置的经度以及纬度,或者,还包括指示该栅格的形状为多边形的指示数据等。
接入网设备进行地图栅格化的具体步骤可以参阅上述步骤601,此处不再赘述。
1002、接入网设备向NWDAF实体发送N个栅格的信息。
其中,接入网设备在进行地图栅格化,得到N个栅格的信息之后,可以将该N个栅格的信息发送至NWDAF实体。
1003、接入网设备向PCF实体发送N个栅格的信息。
其中,接入网设备在进行地图栅格化,得到N个栅格的信息之后,可以将该N个栅格 的信息发送至PCF实体。
1004、UE向接入网设备上报第一SL网络信息。
1005、接入网设备进行数据预处理。
其中,本申请实施例中的步骤1004-1005,可以参阅上述步骤602-603,此处不再赘述。
1006、接入网设备向NWDAF实体发送第二SL网络信息。
1007、接入网设备向NWDAF实体发送SL网络性能预测请求。
其中,上述步骤604-605中的网络设备可以为NWDAF实体,本申请实施例中的步骤1006-1007可以参阅上述步骤604-605,将步骤604-605中的网络设备替换为NWDAF实体即可,具体此处不再赘述。
1008、NWDAF实体进行数据分析。
其中,在本申请实施方式中,有NWDAF实体进行数据分析。具体的数据分析过程可以参阅上述步骤606,此处不再赘述。
1009、NWDAF实体向接入网设备发送网络资源分析结果。
其中,本申请实施例中的步骤1009可以参阅上述步骤609,此处不再赘述。
例如,在NWDAF实体进行数据分析,得到至少一个栅格的网络资源分析结果之后,向接入网设备发送网络资源分析结果。该网络资源分析结果可以理解为,在之后的某一段时间内,该至少一个栅格覆盖范围内的SL通信支持的QoS等级、拥塞程度或者QoS KPI情况等。
1010、NWDAF实体向PCF实体发送网络资源分析结果。
具体地,本申请实施例中的步骤1010可以参阅上述步骤607,此处不再赘述。
1011、接入网设备向UE发送网络资源的信息。
本申请实施例中的步骤1011可以参阅上述步骤610,此处不再赘述。
其中,在接入网设备接收到来自NWDAF实体的网络资源分析结果之后,若该网络资源分析结果满足第一预设条件。则可以理解为,在之后的某一段时间内,该至少一个栅格覆盖范围内的SL通信的通信质量差,例如,SL通信支持的QoS等级降低或信道拥塞程度高等。接入网设备可以为该至少一个栅格覆盖范围内的UE,或者,即将进入该至少一个栅格覆盖范围内的UE调整或分配PC5资源,使得UE可以使用可用的PC5资源进行通信。可以提高该至少一个栅格内的UE的通信效率,降低该至少一个栅格覆盖范围内的SL通信的信道拥塞程度。
通常,对于一些优先级较高、业务数据重要程度高或传输的数据量大的UE,接入网设备可以配置更多的PC5资源,使得可以保障这一类的UE的通信传输,提高通信传输的可靠性。
1012、PCF实体向UE下发控制策略以及V2X业务的通信参数。
本申请实施例中的步骤1012,可以参阅上述步骤611,此处不再赘述。
可以理解为,PCF实体根据网络资源分析结果,确定在之后的某一段时间内,该至少一个栅格覆盖范围内的SL通信的通信质量变化大,例如,SL通信支持的QoS等级降低、信道拥塞程度高等。因此,PCF实体也可以向至少一个栅格覆盖范围内的UE下发控制策略以 及V2X业务的通信参数。该控制策略可以用于通知UE,在哪些时段或频段或者使用的PC5接口或Uu接口进行V2X业务的数据传输。从而避免该至少一个栅格覆盖范围内的UE在同一时段或同一频段使用相同的接口通信,以降低该至少一个栅格覆盖的SL通信的信道拥塞程度。
通常,当SL通信支持的QoS等级较低时,PCF实体可以通过向UE下发V2X业务的通信参数,降低该至少一个栅格覆盖范围内的UE的V2X业务的QoS等级,或者,降低一些传输的数据重要程度较低的UE的V2X业务的QoS等级。当SL通信支持的QoS等级较高时,PCF实体也可以通过向UE下发V2X业务的通信参数,提高该至少一个栅格覆盖范围内的UE的V2X业务的QoS等级。
具体地,PCF实体可以经由AMF实体,通过下行的非接入层(Non-access stratum,NAS)消息,将该控制策略以及V2X业务的通信参数下发至该至少一个栅格覆盖范围内的UE,或者,即将进入该至少一个栅格覆盖范围内的UE。
此外,若接入网设备进行地图栅格化之后,未将N个栅格的信息发送至PCF实体,则NWDAF实体在向PCF实体发送至少一个栅格的网络资源分析结果时,可以携带该至少一个栅格的信息,例如,该至少一个栅格的标识覆盖范围信息等。此外,NWDAF实体也可以将N个栅格的信息发送至PCF实体;或者,PCF实体在接收到至少一个栅格的网络资源分析结果后,向接入网设备请求该N个栅格的信息等。
在本申请实施方式中,可以由接入网设备进行地图栅格化,并通知其他网元。并且,接入网设备还向NWDAF实体发送第二SL网络信息以及SL网络性能预测请求,使得NWDAF实体可以基于N个栅格的信息以及第二SL网络信息,获得至少一个栅格的网络资源分析结果。并将该网络资源分析结果发送至接入网设备、PCF实体,使得接入网设备活PCF实体可以基于栅格粒度的网络资源分析结果对UE的网络资源、V2X业务的通信参数等进行调整,避免该至少一个栅格覆盖范围内的UE出现SL通信的通信质量差、SL通信的信道拥塞等情况。
场景二、由PCF实体进行地图栅格化。
请参阅图11,本申请提供的数据处理的方法另一种流程示意图,具体如下所述。
1101、PCF实体进行地图栅格化。
在本申请实施方式中,由PCF实体进行地图栅格化,得到N个栅格的信息。
具体地,本申请实施例中的步骤1101,与上述步骤6011类似,此处不再赘述。
1102、PCF实体向接入网设备发送N个栅格的信息。
在PCF实体进行地图栅格化,得到N个栅格的信息之后,向接入网设备发送该N个栅格的信息,使接入网设备可以获取到该N个栅格的信息。
1103、PCF实体向NWDAF实体发送N个栅格的信息。
在PCF实体进行地图栅格化,得到N个栅格的信息之后,向NWDAF实体发送该N个栅格的信息,使得NWDAF实体可以获取到该N个栅格的信息。
上述步骤1102-1103中的N个栅格的信息可以参阅上述步骤601,此处不再赘述。
1104、UE向接入网设备上报第一SL网络信息。
1105、接入网设备进行数据预处理。
1106、接入网设备向NWDAF实体发送第二SL网络信息。
1107、接入网设备向NWDAF实体发送SL网络性能预测请求。
1108、NWDAF实体进行数据分析。
1109、NWDAF实体向接入网设备发送网络资源分析结果。
1110、NWDAF实体向PCF实体发送网络资源分析结果。
1111、接入网设备向UE发送网络资源的信息。
1112、PCF实体向UE下发控制策略以及V2X业务的通信参数。
本申请实施例中的步骤1104-1112与上述步骤1004-1012类似,此处不再赘述。
此外,本申请实施方式中,NWDAF实体也可以将网络资源分析结果发送至AF实体,具体请参阅上述步骤608与步骤612。
在本申请实施方式中,可以由PCF实体进行地图栅格化,并通知其他网元。由接入网设备向NWDAF实体发送第二SL网络信息以及SL网络性能预测请求,使得NWDAF实体可以基于N个栅格的信息以及第二SL网络信息,获得至少一个栅格的网络资源分析结果。并将该网络资源分析结果发送至接入网设备、PCF实体,使得接入网设备、PCF实体可以基于栅格粒度的网络资源分析结果对UE的网络资源、V2X业务的通信参数或者V2X业务的QoS参数等进行调整,避免该至少一个栅格覆盖范围内的UE出现SL通信的通信质量差、SL通信的信道拥塞等情况。
场景三、由AF实体进行地图栅格化。
请参阅图12,本申请提供的数据处理的方法另一种流程示意图,具体如下所述。
1201、AF实体进行地图栅格化。
具体地,本申请实施例中的步骤1201,与上述步骤6011类似,此处不再赘述。
1202、AF实体向PCF实体发送N个栅格的信息。
其中,AF实体进行地图栅格化,得到N个栅格的信息之后,向PCF实体发送N个栅格的信息,使得PCF实体可以获取到该N个栅格的信息。
1203、AF实体向NWDAF实体发送N个栅格的信息。
其中,AF实体进行地图栅格化,得到N个栅格的信息之后,向NWDAF实体发送N个栅格的信息,使得NWDAF实体可以获取到该N个栅格的信息。
1204、AF实体向接入网设备发送N个栅格的信息。
其中,AF实体进行地图栅格化,得到N个栅格的信息之后,向接入网设备发送N个栅格的信息,使得接入网设备可以获取到该N个栅格的信息。
需要说明的是,在本申请实施方式中,AF实体也可以不将该N个栅格的信息发送至PCF实体或者接入网设备,即步骤1202以及步骤1204为可选步骤。
1205、UE向接入网设备上报第一SL网络信息。
1206、接入网设备进行数据预处理。
1207、接入网设备向NWDAF实体发送第二SL网络信息。
本申请实施例中的步骤1205-1007与上述步骤1004-1006类似,此处不再赘述。
1208、AF实体向NWDAF实体发送SL网络性能预测请求。
其中,由AF实体向NWDAF实体发送SL网络性能预测请求,可以理解为上述步骤203中所述的第二请求。该SL网络性能预测请求用于请求从网络设备获取至少一个栅格的网络资源分析结果。
具体地,AF实体进行地图栅格化之后,即可得到N个栅格的信息,因此,AF可以在该SL网络性能预测请求中携带请求的至少一个栅格的信息,例如,该至少一个栅格的标识、覆盖范围信息等。
1209、NWDAF实体进行数据分析。
其中,NWDAF实体进行数据分析的具体过程可以参阅上述606,此处不再赘述。
在另一种具体的实现方式中,NWDAF实体在接收到来自AF的SL网络性能预测请求之后,因该SL网络性能预测请求中不携带第二SL网络信息,NWDAF实体还向接入网设备发送指示数据,指示接入网设备向NWDAF实体发送第二SL网络信息。使得NWDAF实体可以获取到第二SL网络信息,后续可以基于该第二SL网络信息进行数据分析。
在另一种具体的实现方式中,若AF实体未将N个栅格的信息发送至接入网设备,则NWDAF实体可以向接入网设备发送指示数据,在该指示数据中携带该N个栅格的信息,使得接入网设备可以获取到栅格划分的结果,并将第二SL网络信息与N个栅格中的第一栅格对应起来,将第二SL网络信息与第一栅格的标识发送至NWDAF实体。
更具体地,NWDAF实体向接入网设备发送指示数据可以包括:NWDAF实体将来自AF实体的SL网络性能预测请求中,请求预测的至少一个栅格的信息,或者,请求预测的区域的位置信息,通过指示数据发送至AMF实体。AMF实体查找该至少一个栅格的信息或者位置信息,对应的接入网设备,然后将该指示数据发送至接入网设备。使得接入网设备可以根据该指示数据,上报与该至少一个栅格中第一栅格相关的第二SL网络信息。该至少一个栅格可以包括:第一栅格,或者第一栅格以及与第一栅格相邻的栅格。
需要说明的是,本申请对步骤1208,与步骤1207的执行顺序不作限定,也可以先执行步骤1207,也可以先执行步骤1208,具体可以根据实际应用场景进行调整。
1210、NWDAF实体向接入网设备发送网络资源分析结果。
1211、NWDAF实体向PCF实体发送网络资源分析结果。
1212、接入网设备向UE发送网络资源的信息。
1213、PCF实体向UE下发控制策略以及V2X业务的通信参数。
1214、AF实体向UE发送V2X业务的QoS参数。
本申请实施例中的步骤1210-1214与上述步骤606-612类似,此处不再赘述。
在本申请实施方式中,由AF实体进行地图栅格化,并将栅格划分结果发送至其他网元,例如,接入网设备、PCF实体、NWDAF实体等。并且,AF实体还向NWDAF实体发送SL网络性能预测请求,NWDAF实体可以基于N个栅格的信息以及第二SL网络信息,获得至少一个栅格的网络资源分析结果。并将该网络资源分析结果发送至接入网设备、PCF实体,使得接入网设备、PCF实体可以基于栅格粒度的网络资源分析结果对UE的网络资源、V2X业务的通信参数或者V2X业务的QoS参数等进行调整,避免该至少一个栅格覆盖范围内的UE出 现SL通信的通信质量差、SL通信的信道拥塞等情况。
场景四、由数据分析实体进行地图栅格化。
请参阅图13,本申请提供的数据处理的方法另一种流程示意图,具体如下所述。
1301、数据分析实体进行地图栅格化。
其中,本申请实施方式中,数据分析实体相对于接入网设备独立部署,由数据分析实体进行地图栅格化,得到N个栅格的信息。该N个栅格的信息可以参阅上述步骤201中的相关描述,此处不再赘述。
具体地,本申请实施例中的步骤1301,与上述步骤601中的接入网设备进行地图栅格化的步骤类似,此处不再赘述,不同之处在于前述步骤601由接入网设备执行,步骤1301由数据分析实体执行。
1302、数据分析实体向PCF实体发送N个栅格的信息。
其中,数据分析实体进行地图栅格化,得到N个栅格的信息之后,向PCF实体发送N个栅格的信息,使得PCF实体可以获取到该N个栅格的信息。
1303、数据分析实体向NWDAF实体发送N个栅格的信息。
其中,数据分析实体进行地图栅格化,得到N个栅格的信息之后,向NWDAF实体发送N个栅格的信息,使得NWDAF实体可以获取到该N个栅格的信息。
1304、数据分析实体向接入网设备发送N个栅格的信息。
其中,数据分析实体进行地图栅格化,得到N个栅格的信息之后,向NWDAF发送N个栅格的信息,使得接入网设备可以获取到该N个栅格的信息。
1305、UE向接入网设备上报第一SL网络信息。
其中,本申请实施例中的步骤1305与上述步骤602类似,此处不再赘述。
1306、接入网设备向数据分析实体发送第一SL网络信息。
其中,在接收网设备接收UE上报的第一SL网络信息之后,接入网设备可以将该第一SL网络信息转发至数据分析实体,由数据分析实体进行后续的数据预处理。
1307、数据分析实体进行数据预处理。
具体地,数据分析实体进行数据预处理的过程与接入网设备进行数据预处理的过程类似,可以参阅上述步骤603。
1308、数据分析实体向NWDAF实体发送第二SL网络信息。
在数据分析实体进行数据预处理,得到第一栅格相关的第二SL网络信息时,数据分析实体可以将第一栅格的标识以及第二SL网络信息发送至NWDAF实体。具体地,第二SL网络信息可以参阅上述步骤203中相关的描述,此处不再赘述。
1309、数据分析实体向NWDAF实体发送SL网络性能预测请求。
其中,本申请实施方式中,由数据分析实体向NWDAF实体发送SL网络性能预测请求,该SL网络性能预测请求与上述步骤203描述的第一请求类似,此处不再赘述。
数据分析实体向NWDAF实体发送SL网络性能预测请求,与接入网向NWDAF实体发送SL网络性能预测请求的步骤类似,可以参阅上述步骤605。
并且,数据分析实体在进行预处理得到第二SL网络信息之后,也可以通过同一消息发 送第一栅格的标识、第二SL网络信息以及SL网络预测请求,以向NWDAF请求至少一个栅格的网络资源分析结果。该SL网络预测请求中还携带该至少一个栅格的信息,例如,该至少一个栅格的标识、覆盖范围信息等。
1310、NWDAF实体进行数据分析。
1311、NWDAF实体向接入网设备发送网络资源分析结果。
1312、NWDAF实体向PCF实体发送网络资源分析结果。
1313、接入网设备向UE发送网络资源的信息。
1314、PCF实体向UE下发控制策略以及V2X业务的通信参数。
本申请实施例中的步骤1310-1314与上述步骤1008-1012类似,此处不再赘述。
此外,本申请实施方式中,NWDAF实体也可以将网络资源分析结果发送至AF实体,具体请参阅上述步骤608与步骤612。
在本申请实施方式中,可以由数据分析实体进行地图栅格化,并通知其他网元。并且,还可以由数据分析实体进行数据预处理,降低接入网设备的工作量。数据分析实体还向NWDAF实体发送第二SL网络信息以及SL网络性能预测请求,使得NWDAF实体可以基于N个栅格的信息以及第二SL网络信息,获得至少一个栅格的网络资源分析结果。并将该网络资源分析结果发送至接入网设备、PCF实体,使得接入网设备、PCF实体基于栅格粒度的网络资源分析结果可以对UE的网络资源、V2X业务的通信参数或者V2X业务的QoS参数等进行调整,避免该至少一个栅格覆盖范围内的UE使用的网络资源出现通信质量差、SL通信的信道拥塞等情况。
场景五、由数据分析实体进行数据分析。
请参阅图14,本申请提供的数据处理的方法另一种流程示意图,具体如下所述。
1401、由接入网设备、数据分析实体、PCF实体或者AF实体中的一个进行地图栅格化。
其中,本申请实施方式中,可以由接入网设备、数据分析实体或者PCF实体中的一个,进行地图栅格化,得到N个栅格的信息,并将栅格化结果发送至其他网元。
例如,可以由接入网设备进行地图栅格化,并将N个栅格的信息发送给数据分析实体、PCF实体或者AF实体,具体参阅上述步骤1001-1003。也可以由数据分析实体进行地图栅格化,并将N个栅格的信息发送给接入网设备、PCF实体或者AF实体,具体参阅上述步骤1301-1304。也可以由PCF实体进行地图栅格化,并将得到的N个栅格的信息发送至接入网设备、数据分析实体或者AF实体,具体参阅步骤1101-1103。还可以由AF实体进行地图栅格化,并将N个栅格的信息发送给接入网设备、数据分析实体或PCF实体,具体请参阅步骤1201-1204。
1402、UE向接入网设备上报第一SL网络信息。
1403、接入网设备进行数据预处理。
1404、接入网设备向数据分析实体发送第二SL网络信息。
本申请实施例中的步骤1402-1404,可以参阅上述步骤602-604。
此外,本申请实施例中的步骤也可以替换为上述步骤1305-1307。
1405、接入网设备向数据分析实体发送SL网络性能预测请求。
其中,接入网设备向数据分析实体发送SL网络性能预测请求,用于向数据分析实体请求至少一个栅格的网络资源分析结果。其中,该SL网络性能预测请求可以理解为第一请求。该SL网络性能预测请求中携带至少一个栅格的信息。
具体地,本申请实施例中的步骤1405请参阅上述步骤605,此处不再赘述。
1406、数据分析实体进行数据分析。
其中,本申请实施方式中,由数据分析实体进行数据分析。
数据分析实体进行数据分析的步骤与上述步骤606类似,此处不再赘述。
1407、数据分析实体向接入网设备发送网络资源分析结果。
1408、数据分析实体向PCF实体发送网络资源分析结果。
1409、数据分析实体向AF实体发送网络资源分析结果。
1410、接入网设备向UE发送网络资源的信息。
1411、PCF实体向UE下发控制策略以及V2X业务的通信参数。
1412、AF实体向UE发送V2X业务的QoS参数。
本申请实施例中的步骤1210-1214与上述步骤606-612类似,将步骤606-612中的网络设备替换为数据分析实体即可,此处不再赘述。
在本申请实施方式中,由接入网设备、数据分析实体、PCF实体或者AF实体中的一个进行地图栅格化。接入网设备还向数据分析实体发送SL网络性能预测请求,数据分析实体可以基于N个栅格的信息以及第二SL网络信息,获得至少一个栅格的网络资源分析结果。并将该网络资源分析结果发送至接入网设备、PCF实体,使得接入网设备、PCF实体可以基于栅格粒度的网络资源分析结果对UE的网络资源、V2X业务的通信参数或V2X业务的QoS参数等进行调整,避免该至少一个栅格覆盖范围内的UE在进行SL通信时出现通信质量差、SL通信的信道拥塞等情况。
前述对本申请提供的方法进行了详细描述,下面基于上述的方法,对本申请实施例中提供的一种数据处理装置进行描述。请参阅图15,本申请实施例中数据处理装置的一个实施例,该数据处理装置可以为接入网设备,或位于接入网设备上的芯片或芯片系统,该数据处理装置可以用于执行图2-14中所示实施例中接入网设备执行的步骤,可以参考前述方法实施例中的相关描述。
该数据处理装置包括:收发单元1501以及处理单元1502。
收发单元,用于获取预设范围内的N个栅格的信息,所述N为大于或等于1的正整数;
收发单元,还用于接收来自用户设备UE的第一侧链路SL网络信息;
所述接入网设备根据所述第一SL网络信息,向网络设备发送第一栅格的标识以及所述第一栅格相关的第二SL网络信息,所述UE处于所述第一栅格,所述N个栅格包括所述第一栅格。
在一种可能的实现方式中,收发单元1501,具体用于:
接收来自策略和控制功能PCF实体的N个栅格的信息;或者,
接收来自数据分析实体的N个栅格的信息;或者,
接收来自应用功能AF实体的N个栅格的信息。
在一种可能的实现方式中,
处理单元1502,具体用于对预设范围进行栅格划分,得到预设范围内的N个栅格的信息。
在一种可能的实现方式中,收发单元1501,还用于:
向PCF实体发送N个栅格的信息;或者,
向网络设备发送N个栅格的信息。
在一种可能的实现方式中,
收发单元1501,还用于接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果;
收发单元1501,还用于当网络资源分析结果满足第一预设条件时,向至少一个栅格覆盖范围内的UE发送SL无线承载配置;或,
处理单元1502,还用于当网络资源分析结果满足第一预设条件时根据网络资源分析结果为至少一个栅格覆盖范围内的UE分配网络资源。
在一种可能的实现方式中,
收发单元1501,还用于向网络设备发送第一请求,第一请求用于请求获取网络资源分析结果;其中,第一请求中携带至少一个栅格的信息。
在一种可能的实现方式中,第一请求还携带有第二SL网络信息。
在一种可能的实现方式中,网络设备为数据分析实体或网络数据分析功能NWDAF实体。
在一种可能的实现方式中,N个栅格的信息包括:
N个栅格的标识和N个栅格的覆盖范围信息。
在一种可能的实现方式中,
处理单元1502,还用于为N个栅格中的每个栅格分配标识。
在一种可能的实现方式中,第一SL网络信息包括以下至少一项:UE的位置信息、信道质量信息、V2X业务信息或者道路信息。
在一种可能的实现方式中,
处理单元1502,还用于根据UE的位置和N个栅格的信息,确定UE处于第一栅格。
在一种可能的实现方式中,第一栅格的覆盖范围小于UE当前接入小区的覆盖范围。
请参阅图16,本申请实施例中提供了另一种数据处理装置,该数据处理装置可以为网络设备,或位于网络设备上的芯片或芯片系统,该数据处理装置可以用于执行图2-14中所示实施例中网络设备执行的步骤,可以参考前述方法实施例中的相关描述。
该数据处理装置包括:收发单元1601以及处理单元1602;
收发单元1601,用于获取预设范围内的N个栅格的信息,N为大于或等于1的正整数;
收发单元1601,还用于接收来自接入网设备的第一栅格的标识以及第一栅格相关的第二SL网络信息,N个栅格包括第一栅格;
处理单元1602,用于根据N个栅格的信息、第二SL网络信息以及第一栅格的标识,获得N个栅格中的至少一个栅格的网络资源分析结果,至少一个栅格包括第一栅格。
在一种可能的实现方式中,收发单元1601,具体用于:
网络设备接收来自PCF实体的N个栅格的信息;或者,
网络设备接收来自接入网设备的N个栅格的信息;或者,
网络设备接收来自AF实体的N个栅格的信息。
在一种可能的实现方式中,收发单元1601,还用于:
向接入网设备发送网络资源分析结果;或者,
向PCF实体发送网络资源分析结果;或者,
向AF实体发送网络资源分析结果。
在一种可能的实现方式中,收发单元1601,还用于:
接收来自接入网设备的第一请求,第一请求用于请求获取网络资源分析结果,第一请求中携带至少一个栅格的信息;或者,
接收来自AF实体的第二请求,第二请求用于请求获取网络资源分析结果,第二请求中携带至少一个栅格的信息。
在一种可能的实现方式中,网络设备为NWDAF实体或数据分析实体。
在一种可能的实现方式中,网络设备为数据分析实体,
处理单元1602,还用于对第二SL网络信息进行预处理,得到预处理SL网络信息;
处理单元1602,还用于根据N个栅格的信息、预处理SL网络信息以及第一栅格的标识,获得N个栅格中的至少一个栅格的网络资源分析结果。
在一种可能的实现方式中,
处理单元1602,还用于对预设范围进行栅格划分,得到预设范围内的N个栅格的信息。
请参阅图17,本申请实施例中提供了另一种数据处理装置,该数据处理装置可以为PCF实体,或位于PCF实体上的芯片或芯片系统,该数据处理装置可以用于执行图2-14中所示实施例中PCF实体执行的步骤,可以参考前述方法实施例中的相关描述。
该数据处理装置包括:收发单元1701以及处理单元1702;
处理单元1702,用于对预设范围进行栅格划分,得到预设范围内的N个栅格的信息,N为大于或等于1的正整数;
收发单元1701,用于发送N个栅格的信息。
在一种可能的实现方式中,收发单元1701,具体用于:
向接入网设备发送N个栅格的信息;或者,
向AF实体发送N个栅格的信息;或者,
向网络设备发送N个栅格的信息。
在一种可能的实现方式中,
收发单元1701,还用于接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果;
收发单元1701,还用于当网络资源分析结果满足第二预设条件时,向至少一个栅格覆盖范围内的UE发送V2X业务的通信参数,V2X业务的通信参数包括V2X业务的QoS参数、地址信息或者频段信息中的至少一项。
在一种可能的实现方式中,网络设备为数据分析实体或NWDAF实体。
请参阅图18,本申请实施例中提供了另一种数据处理装置,该数据处理装置可以为AF实体,或位于AF实体上的芯片或芯片系统,该数据处理装置可以用于执行图2-14中所示实施例中AF实体执行的步骤,可以参考前述方法实施例中的相关描述。
该数据处理装置包括:收发单元1801以及处理单元1802;
处理单元1802,用于对预设范围进行栅格划分,得到预设范围内的N个栅格的信息,N为大于或等于1的正整数;
收发单元1801,用于发送N个栅格的信息。
在一种可能的实现方式中,收发单元1801,具体用于:
向PCF实体发送N个栅格的信息;或者,
向接入网设备发送N个栅格的信息;或者,
向网络设备发送N个栅格的信息。
在一种可能的实现方式中,
收发单元1801,还用于接收来自网络设备的N个栅格中的至少一个栅格的网络资源分析结果;
收发单元1801,还用于当网络资源分析结果满足第三预设条件时向至少一个栅格覆盖范围内执行AF实体提供的V2X业务的UE发送V2X业务的QoS参数。
在一种可能的实现方式中,
AF实体向网络设备发送第二请求,第二请求用于请求获取网络资源分析结果,第二请求中携带至少一个栅格的信息。
在一种可能的实现方式中,网络设备为数据分析实体或NWDAF实体。
本申请还提供一种数据处理装置1900,请参阅图19,本申请实施例中数据处理装置一个实施例,该数据处理装置可以为接入网设备,或位于接入网设备上的芯片或芯片系统,该数据处理装置可以用于执行图2-14所示的任一实施例中接入网设备执行的步骤,可以参考上述方法实施例中的相关描述。
该数据处理装置1900包括:处理器1901、存储器1902以及输入输出设备1903。
一种可能的实现方式中,该处理器1901、存储器1902、输入输出设备1903分别与总线相连,该存储器中存储有计算机指令。
前述实施例中的收发单元1501则具体可以是本实施例中的输入输出设备1903,因此该输入输出设备1903的具体实现不再赘述。
前述实施例中的处理单元1502具体可以是本实施例中的处理器1901,因此该处理器1901的具体实现不再赘述。
一种实现方式中,数据处理装置1900可以包括相对于图19更多或更少的部件,本申请对此仅仅是示例性说明,并不作限定。
本申请还提供一种数据处理装置2000,请参阅图20,本申请实施例中数据处理装置一个实施例,该数据处理装置可以为网络设备,或位于网络设备上的芯片或芯片系统,该数据处理装置可以用于执行图2-14所示的任一实施例中网络设备执行的步骤,可以参考上述方法实施例中的相关描述。
该数据处理装置2000包括:处理器2001、存储器2002以及输入输出设备2003。
一种可能的实现方式中,该处理器2001、存储器2002、输入输出设备2003分别与总线相连,该存储器中存储有计算机指令。
前述实施例中的收发单元1601则具体可以是本实施例中的输入输出设备2003,因此该输入输出设备2003的具体实现不再赘述。
前述实施例中的处理单元1602具体可以是本实施例中的处理器2001,因此该处理器2001的具体实现不再赘述。
一种实现方式中,数据处理装置2000可以包括相对于图20更多或更少的部件,本申请对此仅仅是示例性说明,并不作限定。
本申请还提供一种数据处理装置2100,请参阅图21,本申请实施例中数据处理装置一个实施例,该数据处理装置可以为PCF实体,或位于PCF实体上的芯片或芯片系统,该数据处理装置可以用于执行图2-14所示的任一实施例中PCF实体执行的步骤,可以参考上述方法实施例中的相关描述。
该数据处理装置2100包括:处理器2101、存储器2102以及输入输出设备2103。
一种可能的实现方式中,该处理器2101、存储器2102、输入输出设备2103分别与总线相连,该存储器中存储有计算机指令。
前述实施例中的收发单元1701则具体可以是本实施例中的输入输出设备2103,因此该输入输出设备2103的具体实现不再赘述。
前述实施例中的处理单元1702具体可以是本实施例中的处理器2101,因此该处理器2101的具体实现不再赘述。
一种实现方式中,数据处理装置2100可以包括相对于图21更多或更少的部件,本申请对此仅仅是示例性说明,并不作限定。
本申请还提供一种数据处理装置2200,请参阅图22,本申请实施例中数据处理装置一个实施例,该数据处理装置可以为AF实体,或位于AF实体上的芯片或芯片系统,该数据处理装置可以用于执行图2-14所示的任一实施例中AF实体执行的步骤,可以参考上述方法实施例中的相关描述。
该数据处理装置2200包括:处理器2201、存储器2202以及输入输出设备2203。
一种可能的实现方式中,该处理器2201、存储器2202、输入输出设备2203分别与总线相连,该存储器中存储有计算机指令。
前述实施例中的收发单元1801则具体可以是本实施例中的输入输出设备2203,因此该输入输出设备2203的具体实现不再赘述。
前述实施例中的处理单元1802具体可以是本实施例中的处理器2201,因此该处理器2201的具体实现不再赘述。
一种实现方式中,数据处理装置2200可以包括相对于图22更多或更少的部件,本申请对此仅仅是示例性说明,并不作限定。
请参阅图23,本申请实施例还提供了一种通信系统,该通信网络包括:接入网设备、PCF实体以及网络设备。
该接入网设备,可以包括前述图15所示的数据处理装置,用于执行前述图2-14中所示的任一实施方式中接入网设备所执行的全部或部分步骤。
该网络设备,可以包括前述图16所示的数据处理装置,用于执行前述图2-14中所示的任一实施方式中网络设备所执行的全部或部分步骤。
该PCF实体,可以包括前述图17所示的数据处理装置,用于执行前述图4-14中所示的任一实施方式中PCF实体所执行的全部或部分步骤。
在一种可能的实施方式中,该通信系统还可以包括UE,该UE可以用于执行前述图2-14中所示的任一实施方式中UE所执行的全部或部分步骤。
请参阅图24,本申请实施例还提供了一种通信系统,该通信网络包括:接入网设备、PCF实体、网络设备以及AF实体。
该接入网设备,可以包括前述图15所示的数据处理装置,用于执行前述图2-14中所示的任一实施方式中接入网设备所执行的全部或部分步骤。
该网络设备,可以包括前述图16所示的数据处理装置,用于执行前述图2-14中所示的任一实施方式中网络设备所执行的全部或部分步骤。
该PCF实体,可以包括前述图17所示的数据处理装置,用于执行前述图2-14中所示的任一实施方式中PCF实体所执行的全部或部分步骤。
该AF实体,可以包括前述图18所示的数据处理装置,用于执行前述图2-14中所示的任一实施方式中AF实体所执行的全部或部分步骤。
在一种可能的实施方式中,该通信系统还可以包括UE,该UE可以用于执行前述图2-14中所示的任一实施方式中UE所执行的全部或部分步骤。
本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持数据处理装置实现上述方面中所涉及的功能,例如,例如发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在另一种可能的设计中,当该数据处理装置为终端设备、接入网设备、网络设备、AF实体或者PCF实体等内的芯片时,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使该终端设备、接入网设备、网络设备、AF实体或者PCF实体等内的芯片执行上述图2-14中任一项实施例中接入网设备、网络设备、PCF实体或AF实体执行的方法的步骤。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述终端设备、接入网设备、网络设备、AF实体或者PCF实体等内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中与数据处理装置相关的方法流程。对应的,该计算机可以为上述数据处理装置。该数据处理装置包括接入网设备、网络设备、PCF实 体或者AF实体。
本申请实施例还提供了一种计算机程序或包括计算机程序的一种计算机程序产品,该计算机程序在某一计算机上执行时,将会使所述计算机实现上述任一方法实施例中与数据处理装置相关的方法流程。对应的,该计算机可以为上述的数据处理装置。
在上述图2-14中各个实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,本申请中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请中的处理器的数量可以是一个,也可以是多个,具体可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。本申请实施例中的存储器的数量可以是一个,也可以是多个,具体可以根据实际应用场景调整,此处仅仅是示例性说明,并不作限定。
还需要说明的是,当数据处理装置包括处理器(或处理单元)与存储器时,本申请中的处理器可以是与存储器集成在一起的,也可以是处理器与存储器通过接口连接,具体可以根据实际应用场景调整,并不作限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者其他设备等)执行本申请图2-14中各个实施例所述方法的全部或部分步骤。
应理解,本申请中提及的存储介质或存储器可以包括易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (39)

  1. 一种数据处理的方法,其特征在于,包括:
    接入网设备获取预设范围内的N个栅格的信息,所述N为大于或等于1的正整数;
    所述接入网设备接收来自用户设备UE的第一侧链路SL网络信息;
    所述接入网设备根据所述第一SL网络信息,向网络设备发送第一栅格的标识以及所述第一栅格相关的第二SL网络信息,所述UE处于所述第一栅格,所述N个栅格包括所述第一栅格。
  2. 根据权利要求1所述的方法,其特征在于,所述接入网设备获取预设范围内的N个栅格的信息,包括:
    所述接入网设备接收来自策略和控制功能PCF实体的所述N个栅格的信息;或者,
    所述接入网设备接收来自数据分析实体的所述N个栅格的信息;或者,
    所述接入网设备接收来自应用功能AF实体的所述N个栅格的信息。
  3. 根据权利要求1所述的方法,其特征在于,所述接入网设备获取预设范围内的N个栅格的信息,包括:
    所述接入网设备对所述预设范围进行栅格划分,得到所述预设范围内的所述N个栅格的信息。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向PCF实体发送所述N个栅格的信息;或者,
    所述接入网设备向所述网络设备发送所述N个栅格的信息。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备接收来自所述网络设备的所述N个栅格中的至少一个栅格的网络资源分析结果;
    当所述网络资源分析结果满足第一预设条件时,所述接入网设备向所述至少一个栅格覆盖范围内的UE发送SL无线承载配置;或,
    当所述网络资源分析结果满足第一预设条件时,所述接入网设备根据所述网络资源分析结果为所述至少一个栅格覆盖范围内的UE分配网络资源。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述接入网设备向所述网络设备发送第一请求,所述第一请求用于请求获取所述网络资源分析结果;
    其中,所述第一请求中携带所述至少一个栅格的信息。
  7. 根据权利要求6所述的方法,其特征在于,所述第一请求还携带有所述第二SL网络信息。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述网络设备为数据分析实体或网络数据分析功能NWDAF实体。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述N个栅格的信息包括:
    所述N个栅格的标识和所述N个栅格的覆盖范围信息。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备为所述N个栅格中的每个栅格分配标识。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述第一SL网络信息包括以下至少一项:所述UE的位置信息、信道质量信息、V2X业务信息或者道路信息。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,所述方法还包括:
    所述接入网设备根据所述UE的位置和所述N个栅格的信息,确定所述UE处于所述第一栅格。
  13. 根据权利要求1-12中任一项所述的方法,其特征在于,所述第一栅格的覆盖范围小于所述UE当前接入小区的覆盖范围。
  14. 一种数据处理的方法,其特征在于,包括:
    网络设备获取预设范围内的N个栅格的信息,所述N为大于或等于1的正整数;
    所述网络设备接收来自接入网设备的第一栅格的标识以及所述第一栅格相关的第二SL网络信息,所述N个栅格包括所述第一栅格;
    所述网络设备根据所述N个栅格的信息、所述第二SL网络信息以及所述第一栅格的标识,获得所述N个栅格中的至少一个栅格的网络资源分析结果,所述至少一个栅格包括所述第一栅格。
  15. 根据权利要求14所述的方法,其特征在于,所述网络设备获取预设范围内的N个栅格的信息,包括:
    所述网络设备接收来自PCF实体的所述N个栅格的信息;或者,
    所述网络设备接收来自接入网设备的所述N个栅格的信息;或者,
    所述网络设备接收来自AF实体的所述N个栅格的信息。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述接入网设备发送所述网络资源分析结果;或者,
    所述网络设备向PCF实体发送所述网络资源分析结果;或者,
    所述网络设备向AF实体发送所述网络资源分析结果。
  17. 根据权利要求14-16中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收来自所述接入网设备的第一请求,所述第一请求用于请求获取所述网络资源分析结果,所述第一请求中携带所述至少一个栅格的信息;或者,
    所述网络设备接收来自AF实体的第二请求,所述第二请求用于请求获取所述网络资源分析结果,所述第二请求中携带所述至少一个栅格的信息。
  18. 根据权利要求14-17中任一项所述的方法,其特征在于,所述网络设备为NWDAF实体或数据分析实体。
  19. 根据权利要求14-18中任一项所述的方法,其特征在于,所述网络设备为数据分析实体,所述网络设备根据所述N个栅格的信息、所述第二SL网络信息以及所述第一栅格的标识,获得所述N个栅格中的至少一个栅格的网络资源分析结果,包括:
    所述网络设备对所述第二SL网络信息进行预处理,得到预处理SL网络信息;
    所述网络设备根据N个栅格的信息、所述预处理SL网络信息以及所述第一栅格的标识, 获得所述N个栅格中的至少一个栅格的网络资源分析结果。
  20. 根据权利要求14-19中任一项所述的方法,其特征在于,所述网络设备为数据分析实体,所述网络设备获取预设范围内的N个栅格的信息,还包括:
    所述网络设备对所述预设范围进行栅格划分,得到所述预设范围内的所述N个栅格的信息。
  21. 一种数据处理的方法,其特征在于,包括:
    策略和控制功能PCF实体对预设范围进行栅格划分,得到所述预设范围内的N个栅格的信息,所述N为大于或等于1的正整数;
    所述PCF实体发送所述N个栅格的信息。
  22. 根据权利要求21所述的方法,其特征在于,所述PCF实体发送所述N个栅格的信息,包括:
    所述PCF实体向接入网设备发送所述N个栅格的信息;或者,
    所述PCF实体向AF实体发送所述N个栅格的信息;或者,
    所述PCF实体向网络设备发送所述N个栅格的信息。
  23. 根据权利要求21或22所述的方法,其特征在于,所述方法还包括:
    所述PCF实体接收来自网络设备的所述N个栅格中的至少一个栅格的网络资源分析结果;
    当所述网络资源分析结果满足第二预设条件时,所述PCF实体向所述至少一个栅格覆盖范围内的UE发送V2X业务的通信参数,所述V2X业务的通信参数包括V2X业务的QoS参数、地址信息或者频段信息中的至少一项。
  24. 根据权利要求22或23所述的方法,其特征在于,所述网络设备为数据分析实体或NWDAF实体。
  25. 一种数据处理的方法,其特征在于,包括:
    AF实体对预设范围进行栅格划分,得到所述预设范围内的N个栅格的信息,所述N为大于或等于1的正整数;
    所述AF实体发送所述N个栅格的信息。
  26. 根据权利要求25所述的方法,其特征在于,所述AF实体发送所述N个栅格的信息,包括:
    所述AF实体向PCF实体发送所述N个栅格的信息;或者,
    所述AF实体向接入网设备发送所述N个栅格的信息;或者,
    所述AF实体向网络设备发送所述N个栅格的信息。
  27. 根据权利要求25或26所述的方法,其特征在于,所述方法还包括:
    所述AF实体接收来自网络设备的所述N个栅格中的至少一个栅格的网络资源分析结果;
    当所述网络资源分析结果满足第三预设条件时,所述AF实体向所述至少一个栅格覆盖范围内执行所述AF实体提供的V2X业务的UE发送V2X业务的QoS参数。
  28. 根据权利要求27所述的方法,其特征在于,所述方法还包括:
    所述AF实体向所述网络设备发送第二请求,所述第二请求用于请求获取所述网络资源分析结果,所述第二请求中携带所述至少一个栅格的信息。
  29. 根据权利要求25-28中任一项所述的方法,其特征在于,所述网络设备为数据分析实体或NWDAF实体。
  30. 一种数据处理装置,其特征在于,包括:处理器和存储器;
    所述存储器用于存储程序;
    所述处理器用于执行所述程序,以实现如权利要求1-13中任意一项所述的方法。
  31. 一种数据处理装置,其特征在于,包括:处理器和存储器;
    所述存储器用于存储程序;
    所述处理器用于执行所述程序,以实现如权利要求14-20中任意一项所述的方法。
  32. 一种数据处理装置,其特征在于,包括:处理器和存储器;
    所述存储器用于存储程序;
    所述处理器用于执行所述程序,以实现如权利要求21-24中任意一项所述的方法。
  33. 一种数据处理装置,其特征在于,包括:处理器和存储器;
    所述存储器用于存储程序;
    所述处理器用于执行所述程序,以实现如权利要求25-29中任意一项所述的方法。
  34. 一种通信系统,其特征在于,包括:接入网设备、网络设备以及PCF实体;
    所述接入网设备,用于实现如权利要求1-13中任意一项所述的方法;
    所述网络设备,用于实现如权利要求14-20中任意一项所述的方法;
    所述PCF实体,用于实现如权利要求21-24中任意一项所述的方法。
  35. 根据权利要求34所述的通信系统,其特征在于,所述通信系统还包括:AF实体;
    所述AF实体,用于实现如权利要求25-29中任意一项所述的方法。
  36. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得所述计算机执行如权利要求1至29中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至29中任一项所述的方法。
  38. 一种数据处理装置,包括处理器和存储器,其特征在于,所述处理器与存储器耦合,用于读取并执行所述存储器中存储的指令,实现如权利要求1-29中任一项的步骤。
  39. 如权利要求38所述的装置,其特征在于,所述数据处理装置为芯片或片上系统。
PCT/CN2020/094872 2019-07-12 2020-06-08 一种数据处理的方法、装置和系统 WO2021008270A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910631211.8A CN112218263B (zh) 2019-07-12 2019-07-12 一种数据处理的方法、装置和系统
CN201910631211.8 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021008270A1 true WO2021008270A1 (zh) 2021-01-21

Family

ID=74047900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094872 WO2021008270A1 (zh) 2019-07-12 2020-06-08 一种数据处理的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN112218263B (zh)
WO (1) WO2021008270A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067102A1 (zh) * 2022-09-30 2024-04-04 中兴通讯股份有限公司 目标误块率确定方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022160134A1 (zh) * 2021-01-27 2022-08-04 北京小米移动软件有限公司 无线网络的数据分析方法及装置、通信设备和存储介质
CN113726586B (zh) * 2021-10-20 2023-03-24 中国联合网络通信集团有限公司 网络切片部署方法、装置、服务器及计算机可读存储介质
CN118233875A (zh) * 2022-12-14 2024-06-21 中兴通讯股份有限公司 通信控制方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888638A (zh) * 2010-05-14 2010-11-17 北京邮电大学 基于同性质栅格分组的异构网络信息广播方法及系统
CN105873087A (zh) * 2015-01-22 2016-08-17 中国移动通信集团浙江有限公司 一种网络指标预测方法、装置及电子设备
CN106973406A (zh) * 2016-01-13 2017-07-21 亿阳信通股份有限公司 一种弱覆盖区域检测方法及系统
WO2018205921A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Precoder resource group allocation methods for mimo communication

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136699A2 (fr) * 2009-05-29 2010-12-02 France Telecom Technique de distribution d'un contenu vers un utilisateur
JP2015219319A (ja) * 2014-05-15 2015-12-07 デクセリアルズ株式会社 無機偏光板及びその製造方法
US10455587B2 (en) * 2014-12-05 2019-10-22 Lg Electronics Inc. Method and apparatus for terminal to transmit and receive signal using sidelinks between devices
CN107852727B (zh) * 2015-04-09 2022-01-18 夏普株式会社 对覆盖范围外无线终端进行侧链路直接发现资源池分配的方法及装置
WO2016172972A1 (zh) * 2015-04-30 2016-11-03 华为技术有限公司 一种资源调度方法、装置及系统
US10616864B2 (en) * 2015-08-07 2020-04-07 Sharp Kabushiki Kaisha Allocating resources for wireless sidelink direct communications
US11265894B2 (en) * 2016-05-23 2022-03-01 Qualcomm Incorporated Uplink transmission gaps in eMTC
US10383137B2 (en) * 2016-07-28 2019-08-13 Qualcomm Incorporated Mechanisms for signaling out-of-coverage sidelink devices in wireless communication
CN106844531B (zh) * 2016-12-29 2020-05-05 四创科技有限公司 一种基于网格的防汛指挥研判系统
CN108989986B (zh) * 2018-09-06 2020-09-04 西安电子科技大学 基于迭代分割空间法的Wi-Fi室内定位方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101888638A (zh) * 2010-05-14 2010-11-17 北京邮电大学 基于同性质栅格分组的异构网络信息广播方法及系统
CN105873087A (zh) * 2015-01-22 2016-08-17 中国移动通信集团浙江有限公司 一种网络指标预测方法、装置及电子设备
CN106973406A (zh) * 2016-01-13 2017-07-21 亿阳信通股份有限公司 一种弱覆盖区域检测方法及系统
WO2018205921A1 (en) * 2017-05-12 2018-11-15 Qualcomm Incorporated Precoder resource group allocation methods for mimo communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Sync raster structure to support both SCS-based and 100kHz channel raster for FR1 bands", 3GPP DRAFT; R4-1713777 CHANNELSYNCRASTER_FR1, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Reno, Nevada, USA; 20171127 - 20171201, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051375068 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024067102A1 (zh) * 2022-09-30 2024-04-04 中兴通讯股份有限公司 目标误块率确定方法及装置

Also Published As

Publication number Publication date
CN112218263A (zh) 2021-01-12
CN112218263B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2021008270A1 (zh) 一种数据处理的方法、装置和系统
US10932288B2 (en) Wireless device, radio network node and methods performed therein for handling communication between wireless devices in a wireless communication network
US11297525B2 (en) Allocation of data radio bearers for quality of service flows
JP6019233B2 (ja) 端末アクセス方法、システム及び端末
US11736974B2 (en) Wireless device, radio network node and methods performed therein
KR20210065174A (ko) 드라이브 테스트 방법 및 장치, 드라이브 테스트 제어 방법 및 장치, 설비, 저장매체
US20180213407A1 (en) Spectrum sharing method and device
Karoui et al. Performance comparison between LTE-V2X and ITS-G5 under realistic urban scenarios
US20210168647A1 (en) Method and apparatus for transmitting data and communication system
KR20230035038A (ko) 근접 기반 서비스 원격 및 중계 엔티티 서비스 품질 관리
Hegde et al. Artery-C: An OMNeT++ based discrete event simulation framework for cellular V2X
US20210127372A1 (en) Communication method and apparatus and communication system
US11606308B2 (en) Service aware admission control for IOT applications
CN107948964B (zh) 一种无线资源控制消息传输方法及装置
CN112556704B (zh) 路径规划方法及通信装置
JP2022544351A (ja) 解放されたリソースを利用する通信装置および通信方法
Sabella et al. A flexible and reconfigurable 5G networking architecture based on context and content information
TW202133653A (zh) 用於封包延遲額度受限方案的模式二資源(重新)選擇的通訊設備及通訊方法
JP2020520604A (ja) 無線通信ネットワークにおける無線デバイスの通信を可能にすること
Huq et al. On the benefits of clustered capillary networks for congestion control in machine type communications over LTE
CN113766575A (zh) 通信方法及通信设备
CN116097733A (zh) 接入网管理配置的方法、系统及装置
KR101886487B1 (ko) 3gpp lte-a 시스템에서 공공안전 사용자 우선순위 기반 시간 및 에너지 효율적인 d2d 검색 방법 및 장치
US11968561B2 (en) Dynamic service aware bandwidth reporting and messaging for mobility low latency transport
RU2787009C2 (ru) Способ связи и связанное устройство

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20840256

Country of ref document: EP

Kind code of ref document: A1