WO2021008219A1 - 检测模式控制电路 - Google Patents
检测模式控制电路 Download PDFInfo
- Publication number
- WO2021008219A1 WO2021008219A1 PCT/CN2020/090557 CN2020090557W WO2021008219A1 WO 2021008219 A1 WO2021008219 A1 WO 2021008219A1 CN 2020090557 W CN2020090557 W CN 2020090557W WO 2021008219 A1 WO2021008219 A1 WO 2021008219A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detection
- control signal
- module
- morphology
- interface
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/4455—Features of the external shape of the probe, e.g. ergonomic aspects
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
- A61B8/085—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4483—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
- A61B8/4494—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/485—Diagnostic techniques involving measuring strain or elastic properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/04—Programme control other than numerical control, i.e. in sequence controllers or logic controllers
Definitions
- the present invention relates to the technical field of medical detection equipment, in particular to a detection mode control circuit.
- liver elasticity information is a parameter that can be used to diagnose the degree of fibrosis of liver tissue.
- the instant elastography technology is a technique for quantitatively detecting the elastic modulus of tissues. This technique transmits low-frequency shear waves to the liver through the body surface, tracks the propagation of the shear waves in the tissue, and can then accurately and quantitatively calculate the elastic modulus of tissues. the amount.
- the tissue elastic modulus detection process is referred to as E-ultrasound detection.
- the above-mentioned solution has a drawback.
- the E-ultrasound probe needs to be replaced. Since it is impossible to ensure that the positions corresponding to the probes before and after the replacement are completely consistent during the process of replacing the probe, the deviation of the detection position will cause the deviation of the diagnostic data, which will affect the accuracy of the E-ultrasound detection.
- a detection mode control circuit includes: a morphology detection module, an elasticity detection module, and a switch module; the morphology detection module is connected to the switch module, and is used to generate a morphology detection control signal according to user instructions or system settings.
- the morphological detection control signal is transmitted to the switch module; the elasticity detection module is connected to the switch module, and is used to generate the elasticity detection control signal and the second control signal according to user instructions or system settings, and to combine the elasticity
- the detection control signal and the second control signal are transmitted to the switch module; the switch module is connected with the composite probe, and is used to receive the morphology detection control signal, the elasticity detection control signal and the second control signal, and according to the second control
- the signal transmits the morphological detection control signal to the composite probe to perform morphological detection, or controls the transmission of the elasticity detection control signal to the composite probe to perform elasticity detection according to the second control signal.
- the morphology detection module includes a first interface and a second interface, the morphology detection module is connected to the switch module through the first interface, and the morphology detection module is connected through the second interface.
- the interface is connected with the morphology detection probe; the morphology detection module is used to generate a morphology detection control signal and a first control signal according to user instructions or system settings; the first control signal controls the first interface and the second interface.
- the interface is turned on or off, and the morphology detection control signal is transmitted to the switch module through the first interface or the morphology detection control signal is transmitted to the morphology detection probe through the second interface to perform morphology detection.
- the morphology detection module includes a plurality of second interfaces.
- the detection mode control circuit further includes an expansion module connected to the morphology detection module through a second interface, the expansion module includes a plurality of output interfaces, and the plurality of output interfaces are respectively Connect with a morphology detection probe.
- the morphology detection module is further configured to generate a third control signal according to user instructions or system settings, and transmit the third control signal to the expansion module; the expansion module is based on the first Three control signals control a plurality of said output interfaces to be turned on or off.
- the third control signal controls each output interface of the expansion module to be turned on or off.
- the switch module is connected to the M array elements in the composite probe, and is used to control the conduction between the M array elements and the elasticity detection module or the morphology detection module;
- the composite probe has N array elements; among them, M is less than or equal to N; M and N are both positive integers.
- the switch module includes a relay array.
- the detection mode control circuit further includes: an input module; the input module is respectively connected to the morphology detection module and the elasticity detection module, and is used to obtain user instructions or store system setting information .
- the input module is configured to obtain user instructions after processing according to user input information.
- the detection mode control circuit includes a morphology detection module, an elasticity detection module, and a switch module; the morphology detection module generates a morphology detection control signal according to user instructions or system settings. And transmit the morphological detection control signal to the switch module.
- the elasticity detection module generates an elasticity detection control signal and a second control signal according to user instructions or system settings, and transmits them to the switch module.
- the switch module selectively transmits the morphology detection control signal or the elasticity detection control signal to the composite probe according to the control of the second control signal, and controls the composite probe to perform the morphology detection or the elasticity detection.
- the embodiment of the present invention controls a composite probe to perform morphological detection and elasticity detection through the detection mode control circuit, and uses a composite probe for detection to make the elastic detection position more accurate, and furthermore, the diagnostic data is more accurate.
- FIG. 1 is a schematic structural diagram of a detection mode control circuit provided by an embodiment of the present invention.
- the embodiment of the present invention discloses a mode detection control circuit.
- the morphology detection module is used to generate a morphology detection control signal according to user instructions or system settings, and transmit the morphology detection control signal to a switch module.
- the elasticity detection module generates an elasticity detection control signal and a second control signal according to user instructions or system settings.
- the second control signal controls the switch module to transmit the morphology detection control signal or elasticity detection control signal to the composite probe to perform morphology detection or elasticity detection.
- FIG. 1 is a schematic structural diagram of a detection mode control circuit provided by an embodiment of the present invention.
- a detection mode control circuit includes: a morphology detection module 100, an elasticity detection module 200, and a switch module 300; the morphology detection module 100 is connected to the switch module 300, and the morphology detection module 100 uses The morphology detection control signal is generated according to user instructions or system settings, and the morphology detection control signal is transmitted to the switch module 300; the elasticity detection module 200 is connected to the switch module 300, and is used to or The system is set to generate an elasticity detection control signal and a second control signal, and transmit the elasticity detection control signal and the second control signal to the switch module 300; the switch module 300 is connected to the composite probe 600; for receiving the form Control signal, elasticity detection control signal, and second control signal, and transmit the morphology detection control signal to the composite probe 600 according to the second control signal to perform morphology detection, or control the morphology detection according to the second control signal
- the elasticity detection control signal is transmitted to the composite probe 600 to perform elasticity detection.
- the morphology detection module 100 includes a first interface 110 and a second interface 120, the morphology detection module 100 is connected to the switch module 300 through the first interface 120, and the morphology detection module 100
- the module 100 is connected to the morphology detection probe 500 through the second interface 120; the morphology detection module 100 is used to generate a morphology detection control signal and a first control signal according to user instructions or system settings; the first control The signal controls the first interface 110 and the second interface 120 to be turned on or off, and the morphology detection control signal is transmitted to the switch module 300 through the first interface 110 or the morphology detection control signal is transmitted to the morphology through the second interface 120
- the scientific detection probe 200 performs morphological detection.
- the morphology detection module 100 when the user needs to use the morphology detection probe 500 to perform morphology detection, the morphology detection module 100 generates the morphology detection control signal and the first control signal according to user instructions or system settings.
- the user instruction can be a control instruction input by the receiving user via the host computer, or a control instruction sent via the network side.
- the system settings can be control commands stored in advance by the system. Morphological tests include: B-ultrasound, A-ultrasound, M-ultrasound, CT and MRI, etc.
- the morphological detection may be a B-ultrasound detection; the morphological detection probe may be a B-ultrasound probe.
- the first control signal includes: the first interface 110 on or off signal and the second interface 120 on or off signal.
- the first control signal controls the first interface 110 to be disconnected and the second interface 120 to conduct, that is, the morphology detection module 100 transmits the morphology detection control signal to the morphology detection probe through the second interface 120 500 performs morphological testing.
- the morphology detection echo signal is transmitted to the morphology detection module 100 through the second interface 120 for processing.
- the morphology detection module 100 receives the user's input information, and generates a morphology detection control signal according to the user's input information. First control signal.
- the first control signal controls the first interface 110 to be turned on and the second interface 120 to be turned off, that is, the morphology detection module 100 transmits the morphology detection control signal to the switch module 300 through the first interface 110.
- the elasticity detection module 200 receives user input information, generates elasticity detection control signals, motor drive signals, and second control signals according to the user input information, and transmits the elasticity detection control signals, motor drive signals, and second control signals to the switch module 300.
- Flexible testing includes: E-ultrasonic testing, etc.
- the switch module 300 receives the morphology detection control signal, the elasticity detection control signal, the motor drive signal, and the second control signal.
- the second control signal controls the switch module 300 to connect the morphological detection module 100 and the composite probe 600, that is, transmits the morphological detection control signal to the composite probe 600 to perform morphological detection.
- the morphological detection echo signal is transmitted to the morphological detection module 100 through the first interface 110 for processing.
- the second control signal controls the switch module 300 to connect the elasticity detection module 200 and the composite probe 600, that is, the elasticity detection control signal and the motor drive signal are transmitted to the composite probe 600 to drive the motor to vibrate and emit low frequency shears.
- the composite probe 600 After the composite probe 600 performs elasticity detection and obtains the elasticity detection echo signal, the elasticity detection echo signal is transmitted to the elasticity detection module 200 To process. More specifically, at the same time, only one of the first interface 110 and the second interface 120 is in the on state, and the other is in the off state. That is, when the morphological detection probe 500 is used for morphological detection, the composite probe 600 cannot perform morphological detection; when the composite probe 600 is used for morphological detection, the morphological detection probe 500 cannot perform morphological detection.
- the morphology detection module 100 includes multiple second interfaces 120, that is, the morphology detection module can be connected to multiple morphology detection probes 500 through the multiple second interfaces 120.
- the detection mode control circuit further includes an expansion module 400, which is connected to the morphology detection module 100 through a second interface 120, and the expansion module 400 includes a plurality of output interfaces, and a plurality of the output interfaces Connect 500 with a morphology detection probe respectively.
- an expansion module 400 which is connected to the morphology detection module 100 through a second interface 120, and the expansion module 400 includes a plurality of output interfaces, and a plurality of the output interfaces Connect 500 with a morphology detection probe respectively.
- the morphology detection module 100 is further configured to generate a third control signal according to user instructions or system settings, and transmit the third control signal to the expansion module 400; the expansion module 400 controls multiple output interface guides according to the third control signal On or off.
- the morphology detection module 100 transmits the morphology detection control signal to the expansion module 400 through the second interface 120, and the expansion module 400 controls each output interface guide according to the third control signal.
- the morphological detection control signal is transmitted to the morphological detection probe 500 corresponding to the conductive output interface through the conductive output interface to perform morphological detection.
- the expansion module 400 may be a device such as a hub that can divide one signal into multiple channels of the same signal.
- the switch module is connected to the M array elements in the composite probe, and is used to control the conduction between the M array elements and the elasticity detection module or the morphology detection module;
- the composite probe has N array elements; among them, M is less than or equal to N; M and N are both positive integers.
- the composite probe may include 128 array elements.
- the elasticity detection module or the morphology detection module is used, 16 of the array elements can be selected for detection, 64 array elements can be selected for detection, or 128 array elements can be selected for detection.
- the array elements are detected at the same time, and the specific number of used array elements can be adjusted accordingly according to the actual situation, which is not specifically limited in this embodiment.
- the switch module includes a relay array.
- the detection mode control circuit includes a morphology detection module, an elasticity detection module, and a switch module; the morphology detection module generates a morphology detection control signal according to user instructions or system settings. And transmit the morphological detection control signal to the switch module.
- the elasticity detection module generates an elasticity detection control signal and a second control signal according to user instructions or system settings, and transmits them to the switch module.
- the switch module selectively transmits the morphology detection control signal or the elasticity detection control signal to the composite probe according to the control of the second control signal, and controls the composite probe to perform the morphology detection or the elasticity detection.
- the embodiment of the present invention controls a composite probe to perform morphological detection and elasticity detection through the detection mode control circuit, and uses a composite probe for detection to make the elastic detection position more accurate, and furthermore, the diagnostic data is more accurate.
- the detection mode control circuit further includes: an input module 700; the input module 700 is respectively connected to the morphology detection module 100 and the elasticity detection module 200, and is used to obtain user input information.
- the input module is also used to generate user instructions according to user input information.
- the input module can be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, a handheld computer, and a mobile Internet device (Mobile Internet Devices, MID), PAD, HMI, and computer, etc., which can perform data processing and can perform man-machine Interactive electronic devices.
- the input module 700 is connected to the elastic detection module 200 through a USB (Universal Serial Bus) interface, and the input module 700 is connected to the morphology detection module 100 through a PCIE (High Speed Serial Computer Expansion Bus Standard) interface.
- USB Universal Serial Bus
- PCIE High Speed Serial Computer Expansion Bus Standard
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Animal Behavior & Ethology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Gynecology & Obstetrics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
Claims (10)
- 一种检测模式控制电路,其特征在于,包括:形态学检测模块、弹性检测模块以及开关模块;所述形态学检测模块与所述开关模块连接,用于根据用户指令或系统设定生成形态学检测控制信号并将所述形态学检测控制信号传输至所述开关模块;所述弹性检测模块与所述开关模块连接,用于根据用户指令或系统设定生成弹性检测控制信号以及第二控制信号,并将所述弹性检测控制信号以及第二控制信号传输至所述开关模块;所述开关模块与复合探头连接,用于接收所述形态学检测控制信号、所述弹性检测控制信号以及所述第二控制信号,并根据所述第二控制信号将所述形态学检测控制信号传输至所述复合探头以执行形态学检测,或根据所述第二控制信号控制将所述弹性检测控制信号传输至所述复合探头以执行弹性检测。
- 根据权利要求1所述的电路,其特征在于,所述形态学检测模块包括第一接口以及第二接口,所述形态学检测模块通过所述第一接口与所述开关模块连接,所述形态学检测模块通过所述第二接口与形态学检测探头连接;所述形态学检测模块用于根据用户指令或系统设定生成形态学检测控制信号以及第一控制信号;所述第一控制信号控制所述第一接口以及第二接口导通或断开,将形态学检测控制信号通过第一接口传输至开关模块或将形态学检测控制信号通过第二接口传输至形态学检测探头执行形态学检测。
- 根据权利要求2所述的电路,其特征在于,所述形态学检测模块包括多个第二接口。
- 根据权利要求2所述的电路,其特征在于,所述检测模式控制电路还包括扩展模块,所述扩展模块通过第二接口与形态学检测模块连接,所述扩展模块包括多个输出接口,多个所述输出接口分别与一个形态学检测探头连接。
- 根据权利要求4所述的电路,其特征在于,所述形态学检测模块还用于根据用户指令或系统设定生成第三控制 信号,并将第三控制信号传输至所述扩展模块;所述扩展模块根据所述第三控制信号控制多个所述输出接口导通或断开。
- 根据权利要求5所述的电路,其特征在于,所述第三控制信号控制所述扩展模块的各所述输出接口导通或者断开。
- 根据权利要求1所述的电路,其特征在于,所述开关模块与所述复合探头中的M个阵元相连,用于控制所述M个阵元与所述弹性检测模块或者所述形态学检测模块导通;所述复合探头共有N个阵元;其中,M小于等于N;M和N均为正整数。
- 根据权利要求7所述的电路,其特征在于,所述开关模块包括继电器阵列。
- 根据权利要求1所述的电路,其特征在于,所述检测模式控制电路还包括:输入模块;所述输入模块分别与所述形态学检测模块以及所述弹性检测模块连接,用于获取用户指令或者存储系统设定信息。
- 根据权利要求9所述的电路,其特征在于,所述输入模块,用于根据用户输入信息处理后得到用户指令。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR112022000727A BR112022000727A2 (pt) | 2019-07-15 | 2020-05-15 | Circuito de controle do modo de detecção |
EP20839570.7A EP4000532A4 (en) | 2019-07-15 | 2020-05-15 | DETECTION MODE CONTROL CIRCUIT |
JP2022502501A JP7393828B2 (ja) | 2019-07-15 | 2020-05-15 | 検出モード制御回路 |
US17/575,579 US20220133271A1 (en) | 2019-07-15 | 2022-01-13 | Detection mode control circuit |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910636228.2 | 2019-07-15 | ||
CN201910636228.2A CN110297436A (zh) | 2019-07-15 | 2019-07-15 | 检测模式控制电路 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/575,579 Continuation US20220133271A1 (en) | 2019-07-15 | 2022-01-13 | Detection mode control circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021008219A1 true WO2021008219A1 (zh) | 2021-01-21 |
Family
ID=68031099
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/090557 WO2021008219A1 (zh) | 2019-07-15 | 2020-05-15 | 检测模式控制电路 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220133271A1 (zh) |
EP (1) | EP4000532A4 (zh) |
JP (1) | JP7393828B2 (zh) |
CN (1) | CN110297436A (zh) |
BR (1) | BR112022000727A2 (zh) |
WO (1) | WO2021008219A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110297436A (zh) * | 2019-07-15 | 2019-10-01 | 无锡海斯凯尔医学技术有限公司 | 检测模式控制电路 |
KR102250219B1 (ko) * | 2020-09-15 | 2021-05-11 | 주식회사 아이도트 | 초음파 진단 시스템 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090112099A1 (en) * | 2007-10-19 | 2009-04-30 | Panasonic Corporation | Ultrasonic probe, charger, ultrasonic diagnostic apparatus and ultrasonic diagnostic system |
CN103300885A (zh) * | 2012-03-13 | 2013-09-18 | 株式会社东芝 | 超声波探头以及超声波诊断装置 |
CN103784166A (zh) * | 2014-03-03 | 2014-05-14 | 哈尔滨工业大学 | 多功能一体化数字超声诊断系统 |
CN103917889A (zh) * | 2011-09-12 | 2014-07-09 | B-K医疗公司 | 超声成像控制台 |
CN104302232A (zh) * | 2013-04-03 | 2015-01-21 | 日立阿洛卡医疗株式会社 | 超声波诊断装置以及弹性评价方法 |
CN106108947A (zh) * | 2016-07-18 | 2016-11-16 | 上海市第人民医院 | 一种自动控制超声诊断仪的系统 |
CN108056791A (zh) * | 2016-11-08 | 2018-05-22 | 柯尼卡美能达株式会社 | 超声波诊断装置的控制装置以及控制方法 |
CN108095763A (zh) * | 2018-01-18 | 2018-06-01 | 北京索瑞特医学技术有限公司 | 复合探头及测量系统 |
US20180310922A1 (en) * | 2016-11-18 | 2018-11-01 | Clarius Mobile Health Corp. | Methods and apparatus for performing at least three modes of ultrasound imaging using a single ultrasound transducer |
CN110297436A (zh) * | 2019-07-15 | 2019-10-01 | 无锡海斯凯尔医学技术有限公司 | 检测模式控制电路 |
CN210222508U (zh) * | 2019-07-15 | 2020-03-31 | 无锡海斯凯尔医学技术有限公司 | 检测模式控制电路 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1054891A (zh) * | 1990-03-14 | 1991-10-02 | 中国科学院电工研究所 | 多极液电冲击波源 |
CN2219001Y (zh) * | 1994-09-10 | 1996-01-31 | 中国人民解放军第四十四医院 | 一种供b超图像记录系统用的多路视频输入信号选通装置 |
US5904652A (en) * | 1995-06-29 | 1999-05-18 | Teratech Corporation | Ultrasound scan conversion with spatial dithering |
IL166408A0 (en) | 2005-01-20 | 2006-01-15 | Ultraview Ltd | Combined 2d pulse-echo ultrasound and optoacousticsignal for glaucoma treatment |
CN100579461C (zh) * | 2006-12-08 | 2010-01-13 | 温州医学院 | 多探头眼科超声诊断仪 |
CN101455575B (zh) * | 2007-12-10 | 2011-07-13 | 深圳迈瑞生物医疗电子股份有限公司 | 电子设备探头扩展装置及主机对扩展探头的控制方法 |
CN201299585Y (zh) * | 2008-12-04 | 2009-09-02 | 武汉思创电子有限公司 | 眼科超声诊断仪自适应多探头驱动装置 |
CN101810493B (zh) * | 2009-02-20 | 2013-04-17 | 深圳市一体医疗科技股份有限公司 | 一种肝脏多维超声弹性检测装置及其检测方法 |
CN103635829B (zh) | 2011-06-30 | 2016-04-27 | 皇家飞利浦有限公司 | 具有两个波束成形器阶段的二维超声诊断成像系统 |
CN202821626U (zh) * | 2012-08-04 | 2013-03-27 | 武汉兰卫医学检测实验室有限公司 | 面向社区医疗的医学临床检验系统 |
CN104107067A (zh) * | 2013-04-16 | 2014-10-22 | 深圳迈瑞生物医疗电子股份有限公司 | 一种支持多探头同步扫描的超声诊断设备及方法 |
EP3013243B1 (en) * | 2013-06-26 | 2018-09-19 | Koninklijke Philips N.V. | Elastography measurement system and method |
JP2014073411A (ja) | 2013-12-26 | 2014-04-24 | Canon Inc | 被検体情報処理装置 |
JP6386853B2 (ja) | 2014-09-26 | 2018-09-05 | 株式会社日立製作所 | 超音波診断装置 |
CN204789489U (zh) * | 2015-06-04 | 2015-11-18 | 汕头市超声仪器研究所有限公司 | 多通道超声波探伤仪的发射接收电路 |
CN105395218B (zh) * | 2015-11-10 | 2019-02-15 | 中国科学院声学研究所 | 超声弹性成像系统及方法 |
CN107198543B (zh) * | 2017-04-25 | 2019-09-27 | 华中科技大学 | 一种用于超声面阵探头的控制装置 |
CN208573753U (zh) * | 2018-01-18 | 2019-03-05 | 北京索瑞特医学技术有限公司 | 复合探头及测量系统 |
CN108095765A (zh) * | 2018-01-18 | 2018-06-01 | 北京索瑞特医学技术有限公司 | 复合探头及测量系统 |
-
2019
- 2019-07-15 CN CN201910636228.2A patent/CN110297436A/zh active Pending
-
2020
- 2020-05-15 WO PCT/CN2020/090557 patent/WO2021008219A1/zh unknown
- 2020-05-15 JP JP2022502501A patent/JP7393828B2/ja active Active
- 2020-05-15 BR BR112022000727A patent/BR112022000727A2/pt unknown
- 2020-05-15 EP EP20839570.7A patent/EP4000532A4/en active Pending
-
2022
- 2022-01-13 US US17/575,579 patent/US20220133271A1/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090112099A1 (en) * | 2007-10-19 | 2009-04-30 | Panasonic Corporation | Ultrasonic probe, charger, ultrasonic diagnostic apparatus and ultrasonic diagnostic system |
CN103917889A (zh) * | 2011-09-12 | 2014-07-09 | B-K医疗公司 | 超声成像控制台 |
CN103300885A (zh) * | 2012-03-13 | 2013-09-18 | 株式会社东芝 | 超声波探头以及超声波诊断装置 |
CN104302232A (zh) * | 2013-04-03 | 2015-01-21 | 日立阿洛卡医疗株式会社 | 超声波诊断装置以及弹性评价方法 |
CN103784166A (zh) * | 2014-03-03 | 2014-05-14 | 哈尔滨工业大学 | 多功能一体化数字超声诊断系统 |
CN106108947A (zh) * | 2016-07-18 | 2016-11-16 | 上海市第人民医院 | 一种自动控制超声诊断仪的系统 |
CN108056791A (zh) * | 2016-11-08 | 2018-05-22 | 柯尼卡美能达株式会社 | 超声波诊断装置的控制装置以及控制方法 |
US20180310922A1 (en) * | 2016-11-18 | 2018-11-01 | Clarius Mobile Health Corp. | Methods and apparatus for performing at least three modes of ultrasound imaging using a single ultrasound transducer |
CN108095763A (zh) * | 2018-01-18 | 2018-06-01 | 北京索瑞特医学技术有限公司 | 复合探头及测量系统 |
CN110297436A (zh) * | 2019-07-15 | 2019-10-01 | 无锡海斯凯尔医学技术有限公司 | 检测模式控制电路 |
CN210222508U (zh) * | 2019-07-15 | 2020-03-31 | 无锡海斯凯尔医学技术有限公司 | 检测模式控制电路 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4000532A4 * |
Also Published As
Publication number | Publication date |
---|---|
BR112022000727A2 (pt) | 2022-03-08 |
JP2022541469A (ja) | 2022-09-26 |
EP4000532A1 (en) | 2022-05-25 |
CN110297436A (zh) | 2019-10-01 |
JP7393828B2 (ja) | 2023-12-07 |
US20220133271A1 (en) | 2022-05-05 |
EP4000532A4 (en) | 2022-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220133271A1 (en) | Detection mode control circuit | |
US6440071B1 (en) | Peripheral ultrasound imaging system | |
CN102670247B (zh) | 超声波诊断设备和超声波图像产生方法 | |
JP2013172959A (ja) | 超音波撮像を行うための方法および装置 | |
US11224406B2 (en) | Ultrasound diagnosis apparatus and ultrasound probe maintenance apparatus | |
WO2021008217A9 (zh) | 组织成像和参数检测系统 | |
JP2014521435A (ja) | 超音波診断のためのプローブの無線通信方法及びそのための装置 | |
US20170168964A1 (en) | Hard drive disk indicator processing apparatus | |
JP7204261B2 (ja) | 超音波撮像装置 | |
CN210222508U (zh) | 检测模式控制电路 | |
CN112666561B (zh) | 超声扫查系统、设备、方法及终端 | |
RU2809907C2 (ru) | Схема управления режимом диагностирования | |
CN103565468B (zh) | 用于获得骨质状况信息的超声诊断设备及其方法 | |
CN205181384U (zh) | 弹性成像系统 | |
KR102455385B1 (ko) | 작동가능한 적응식 초음파 이미징 시스템 | |
CN110710988B (zh) | 检测模式控制电路 | |
CN112545557A (zh) | 超声探头扩展电路系统 | |
EP3603525B1 (en) | Ultrasonic imaging device and control method thereof | |
CN105342642B (zh) | 弹性成像系统和方法 | |
KR102179279B1 (ko) | 초음파 진단 시스템에서의 스위칭 장치 | |
CN215458143U (zh) | 用于弹性成像的复合设备和系统 | |
JP6294067B2 (ja) | 超音波診断装置 | |
WO2022107440A1 (ja) | 情報処理装置、情報処理方法、及びプログラム | |
CN111065337A (zh) | 一种超声语音控制的方法及超声设备 | |
JP2023117890A (ja) | 超音波診断装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20839570 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022502501 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112022000727 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2020839570 Country of ref document: EP Effective date: 20220215 |
|
ENP | Entry into the national phase |
Ref document number: 2020839570 Country of ref document: EP Effective date: 20220215 |
|
ENP | Entry into the national phase |
Ref document number: 112022000727 Country of ref document: BR Kind code of ref document: A2 Effective date: 20220114 |