WO2021008219A1 - 检测模式控制电路 - Google Patents

检测模式控制电路 Download PDF

Info

Publication number
WO2021008219A1
WO2021008219A1 PCT/CN2020/090557 CN2020090557W WO2021008219A1 WO 2021008219 A1 WO2021008219 A1 WO 2021008219A1 CN 2020090557 W CN2020090557 W CN 2020090557W WO 2021008219 A1 WO2021008219 A1 WO 2021008219A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
control signal
module
morphology
interface
Prior art date
Application number
PCT/CN2020/090557
Other languages
English (en)
French (fr)
Inventor
陈刚
焦建华
邵金华
孙锦
段后利
Original Assignee
无锡海斯凯尔医学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡海斯凯尔医学技术有限公司 filed Critical 无锡海斯凯尔医学技术有限公司
Priority to BR112022000727A priority Critical patent/BR112022000727A2/pt
Priority to EP20839570.7A priority patent/EP4000532A4/en
Priority to JP2022502501A priority patent/JP7393828B2/ja
Publication of WO2021008219A1 publication Critical patent/WO2021008219A1/zh
Priority to US17/575,579 priority patent/US20220133271A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4455Features of the external shape of the probe, e.g. ergonomic aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/085Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating body or organic structures, e.g. tumours, calculi, blood vessels, nodules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers

Definitions

  • the present invention relates to the technical field of medical detection equipment, in particular to a detection mode control circuit.
  • liver elasticity information is a parameter that can be used to diagnose the degree of fibrosis of liver tissue.
  • the instant elastography technology is a technique for quantitatively detecting the elastic modulus of tissues. This technique transmits low-frequency shear waves to the liver through the body surface, tracks the propagation of the shear waves in the tissue, and can then accurately and quantitatively calculate the elastic modulus of tissues. the amount.
  • the tissue elastic modulus detection process is referred to as E-ultrasound detection.
  • the above-mentioned solution has a drawback.
  • the E-ultrasound probe needs to be replaced. Since it is impossible to ensure that the positions corresponding to the probes before and after the replacement are completely consistent during the process of replacing the probe, the deviation of the detection position will cause the deviation of the diagnostic data, which will affect the accuracy of the E-ultrasound detection.
  • a detection mode control circuit includes: a morphology detection module, an elasticity detection module, and a switch module; the morphology detection module is connected to the switch module, and is used to generate a morphology detection control signal according to user instructions or system settings.
  • the morphological detection control signal is transmitted to the switch module; the elasticity detection module is connected to the switch module, and is used to generate the elasticity detection control signal and the second control signal according to user instructions or system settings, and to combine the elasticity
  • the detection control signal and the second control signal are transmitted to the switch module; the switch module is connected with the composite probe, and is used to receive the morphology detection control signal, the elasticity detection control signal and the second control signal, and according to the second control
  • the signal transmits the morphological detection control signal to the composite probe to perform morphological detection, or controls the transmission of the elasticity detection control signal to the composite probe to perform elasticity detection according to the second control signal.
  • the morphology detection module includes a first interface and a second interface, the morphology detection module is connected to the switch module through the first interface, and the morphology detection module is connected through the second interface.
  • the interface is connected with the morphology detection probe; the morphology detection module is used to generate a morphology detection control signal and a first control signal according to user instructions or system settings; the first control signal controls the first interface and the second interface.
  • the interface is turned on or off, and the morphology detection control signal is transmitted to the switch module through the first interface or the morphology detection control signal is transmitted to the morphology detection probe through the second interface to perform morphology detection.
  • the morphology detection module includes a plurality of second interfaces.
  • the detection mode control circuit further includes an expansion module connected to the morphology detection module through a second interface, the expansion module includes a plurality of output interfaces, and the plurality of output interfaces are respectively Connect with a morphology detection probe.
  • the morphology detection module is further configured to generate a third control signal according to user instructions or system settings, and transmit the third control signal to the expansion module; the expansion module is based on the first Three control signals control a plurality of said output interfaces to be turned on or off.
  • the third control signal controls each output interface of the expansion module to be turned on or off.
  • the switch module is connected to the M array elements in the composite probe, and is used to control the conduction between the M array elements and the elasticity detection module or the morphology detection module;
  • the composite probe has N array elements; among them, M is less than or equal to N; M and N are both positive integers.
  • the switch module includes a relay array.
  • the detection mode control circuit further includes: an input module; the input module is respectively connected to the morphology detection module and the elasticity detection module, and is used to obtain user instructions or store system setting information .
  • the input module is configured to obtain user instructions after processing according to user input information.
  • the detection mode control circuit includes a morphology detection module, an elasticity detection module, and a switch module; the morphology detection module generates a morphology detection control signal according to user instructions or system settings. And transmit the morphological detection control signal to the switch module.
  • the elasticity detection module generates an elasticity detection control signal and a second control signal according to user instructions or system settings, and transmits them to the switch module.
  • the switch module selectively transmits the morphology detection control signal or the elasticity detection control signal to the composite probe according to the control of the second control signal, and controls the composite probe to perform the morphology detection or the elasticity detection.
  • the embodiment of the present invention controls a composite probe to perform morphological detection and elasticity detection through the detection mode control circuit, and uses a composite probe for detection to make the elastic detection position more accurate, and furthermore, the diagnostic data is more accurate.
  • FIG. 1 is a schematic structural diagram of a detection mode control circuit provided by an embodiment of the present invention.
  • the embodiment of the present invention discloses a mode detection control circuit.
  • the morphology detection module is used to generate a morphology detection control signal according to user instructions or system settings, and transmit the morphology detection control signal to a switch module.
  • the elasticity detection module generates an elasticity detection control signal and a second control signal according to user instructions or system settings.
  • the second control signal controls the switch module to transmit the morphology detection control signal or elasticity detection control signal to the composite probe to perform morphology detection or elasticity detection.
  • FIG. 1 is a schematic structural diagram of a detection mode control circuit provided by an embodiment of the present invention.
  • a detection mode control circuit includes: a morphology detection module 100, an elasticity detection module 200, and a switch module 300; the morphology detection module 100 is connected to the switch module 300, and the morphology detection module 100 uses The morphology detection control signal is generated according to user instructions or system settings, and the morphology detection control signal is transmitted to the switch module 300; the elasticity detection module 200 is connected to the switch module 300, and is used to or The system is set to generate an elasticity detection control signal and a second control signal, and transmit the elasticity detection control signal and the second control signal to the switch module 300; the switch module 300 is connected to the composite probe 600; for receiving the form Control signal, elasticity detection control signal, and second control signal, and transmit the morphology detection control signal to the composite probe 600 according to the second control signal to perform morphology detection, or control the morphology detection according to the second control signal
  • the elasticity detection control signal is transmitted to the composite probe 600 to perform elasticity detection.
  • the morphology detection module 100 includes a first interface 110 and a second interface 120, the morphology detection module 100 is connected to the switch module 300 through the first interface 120, and the morphology detection module 100
  • the module 100 is connected to the morphology detection probe 500 through the second interface 120; the morphology detection module 100 is used to generate a morphology detection control signal and a first control signal according to user instructions or system settings; the first control The signal controls the first interface 110 and the second interface 120 to be turned on or off, and the morphology detection control signal is transmitted to the switch module 300 through the first interface 110 or the morphology detection control signal is transmitted to the morphology through the second interface 120
  • the scientific detection probe 200 performs morphological detection.
  • the morphology detection module 100 when the user needs to use the morphology detection probe 500 to perform morphology detection, the morphology detection module 100 generates the morphology detection control signal and the first control signal according to user instructions or system settings.
  • the user instruction can be a control instruction input by the receiving user via the host computer, or a control instruction sent via the network side.
  • the system settings can be control commands stored in advance by the system. Morphological tests include: B-ultrasound, A-ultrasound, M-ultrasound, CT and MRI, etc.
  • the morphological detection may be a B-ultrasound detection; the morphological detection probe may be a B-ultrasound probe.
  • the first control signal includes: the first interface 110 on or off signal and the second interface 120 on or off signal.
  • the first control signal controls the first interface 110 to be disconnected and the second interface 120 to conduct, that is, the morphology detection module 100 transmits the morphology detection control signal to the morphology detection probe through the second interface 120 500 performs morphological testing.
  • the morphology detection echo signal is transmitted to the morphology detection module 100 through the second interface 120 for processing.
  • the morphology detection module 100 receives the user's input information, and generates a morphology detection control signal according to the user's input information. First control signal.
  • the first control signal controls the first interface 110 to be turned on and the second interface 120 to be turned off, that is, the morphology detection module 100 transmits the morphology detection control signal to the switch module 300 through the first interface 110.
  • the elasticity detection module 200 receives user input information, generates elasticity detection control signals, motor drive signals, and second control signals according to the user input information, and transmits the elasticity detection control signals, motor drive signals, and second control signals to the switch module 300.
  • Flexible testing includes: E-ultrasonic testing, etc.
  • the switch module 300 receives the morphology detection control signal, the elasticity detection control signal, the motor drive signal, and the second control signal.
  • the second control signal controls the switch module 300 to connect the morphological detection module 100 and the composite probe 600, that is, transmits the morphological detection control signal to the composite probe 600 to perform morphological detection.
  • the morphological detection echo signal is transmitted to the morphological detection module 100 through the first interface 110 for processing.
  • the second control signal controls the switch module 300 to connect the elasticity detection module 200 and the composite probe 600, that is, the elasticity detection control signal and the motor drive signal are transmitted to the composite probe 600 to drive the motor to vibrate and emit low frequency shears.
  • the composite probe 600 After the composite probe 600 performs elasticity detection and obtains the elasticity detection echo signal, the elasticity detection echo signal is transmitted to the elasticity detection module 200 To process. More specifically, at the same time, only one of the first interface 110 and the second interface 120 is in the on state, and the other is in the off state. That is, when the morphological detection probe 500 is used for morphological detection, the composite probe 600 cannot perform morphological detection; when the composite probe 600 is used for morphological detection, the morphological detection probe 500 cannot perform morphological detection.
  • the morphology detection module 100 includes multiple second interfaces 120, that is, the morphology detection module can be connected to multiple morphology detection probes 500 through the multiple second interfaces 120.
  • the detection mode control circuit further includes an expansion module 400, which is connected to the morphology detection module 100 through a second interface 120, and the expansion module 400 includes a plurality of output interfaces, and a plurality of the output interfaces Connect 500 with a morphology detection probe respectively.
  • an expansion module 400 which is connected to the morphology detection module 100 through a second interface 120, and the expansion module 400 includes a plurality of output interfaces, and a plurality of the output interfaces Connect 500 with a morphology detection probe respectively.
  • the morphology detection module 100 is further configured to generate a third control signal according to user instructions or system settings, and transmit the third control signal to the expansion module 400; the expansion module 400 controls multiple output interface guides according to the third control signal On or off.
  • the morphology detection module 100 transmits the morphology detection control signal to the expansion module 400 through the second interface 120, and the expansion module 400 controls each output interface guide according to the third control signal.
  • the morphological detection control signal is transmitted to the morphological detection probe 500 corresponding to the conductive output interface through the conductive output interface to perform morphological detection.
  • the expansion module 400 may be a device such as a hub that can divide one signal into multiple channels of the same signal.
  • the switch module is connected to the M array elements in the composite probe, and is used to control the conduction between the M array elements and the elasticity detection module or the morphology detection module;
  • the composite probe has N array elements; among them, M is less than or equal to N; M and N are both positive integers.
  • the composite probe may include 128 array elements.
  • the elasticity detection module or the morphology detection module is used, 16 of the array elements can be selected for detection, 64 array elements can be selected for detection, or 128 array elements can be selected for detection.
  • the array elements are detected at the same time, and the specific number of used array elements can be adjusted accordingly according to the actual situation, which is not specifically limited in this embodiment.
  • the switch module includes a relay array.
  • the detection mode control circuit includes a morphology detection module, an elasticity detection module, and a switch module; the morphology detection module generates a morphology detection control signal according to user instructions or system settings. And transmit the morphological detection control signal to the switch module.
  • the elasticity detection module generates an elasticity detection control signal and a second control signal according to user instructions or system settings, and transmits them to the switch module.
  • the switch module selectively transmits the morphology detection control signal or the elasticity detection control signal to the composite probe according to the control of the second control signal, and controls the composite probe to perform the morphology detection or the elasticity detection.
  • the embodiment of the present invention controls a composite probe to perform morphological detection and elasticity detection through the detection mode control circuit, and uses a composite probe for detection to make the elastic detection position more accurate, and furthermore, the diagnostic data is more accurate.
  • the detection mode control circuit further includes: an input module 700; the input module 700 is respectively connected to the morphology detection module 100 and the elasticity detection module 200, and is used to obtain user input information.
  • the input module is also used to generate user instructions according to user input information.
  • the input module can be a smart phone (such as an Android phone, an iOS phone, etc.), a tablet computer, a handheld computer, and a mobile Internet device (Mobile Internet Devices, MID), PAD, HMI, and computer, etc., which can perform data processing and can perform man-machine Interactive electronic devices.
  • the input module 700 is connected to the elastic detection module 200 through a USB (Universal Serial Bus) interface, and the input module 700 is connected to the morphology detection module 100 through a PCIE (High Speed Serial Computer Expansion Bus Standard) interface.
  • USB Universal Serial Bus
  • PCIE High Speed Serial Computer Expansion Bus Standard

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Vascular Medicine (AREA)
  • Gynecology & Obstetrics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种检测模式控制电路,包括与形态学检测探头(500)连接的形态学检测模块(100),形态学检测模块(100)用于根据用户指令或系统设定生成形态学检测控制信号;还包括可与开关模块(300)连接的弹性检测模块(200),用于根据用户指令或系统设定生成弹性检测控制信号以及第二控制信号;其中的开关模块(300)与复合探头(600)连接,用于接收形态学检测控制信号、弹性检测控制信号以及第二控制信号,并根据第二控制信号控制复合探头(600)执行形态学检测,或根据第二控制信号控制复合探头(600)执行弹性检测。由此,实现利用一个复合探头执行形态学检测和弹性检测,使弹性检测位置更加精准,进一步的使诊断数据更加精确。

Description

检测模式控制电路 技术领域
本发明涉及医疗检测设备技术领域,特别是涉及一种检测模式控制电路。
背景技术
各种慢性肝病如病毒性肝炎(甲肝、乙肝、丙肝等)发展过程中会伴随着肝脏的纤维化,肝纤维化过程中会伴随着肝脏弹性的增加。因此,肝脏弹性信息是可用于诊断肝脏组织的纤维化程度的参数。瞬间弹性成像技术是一种定量检测组织弹性模量的技术,该技术通过体表向肝脏发射低频剪切波,追踪所述剪切波在组织中的传播,进而能够准确定量的计算组织弹性模量。所述组织弹性模量检测过程简称E超检测。
现有的一种较佳解决方案是,先进行组织形态学检测,例如B超、CT等,从而准确定位出待检测区域,排除例如肋骨、结缔组织、血管等的干扰,从而提高E超检测的准确度。
但是上述解决方案存在一个弊端,当通过形态学检测选取到合适的诊断位置和角度后,需更换E超探头。由于在更换探头的过程中不能够保证更换前后探头所对应的位置完全一致,而检测位置的偏移会导致诊断数据出现偏差,进而影响E超检测的准确度。
发明内容
基于此,有必要针对检测位置的偏移,导致诊断数据出现偏差,造成误诊的问题,提供一种检测模式控制电路。
一种检测模式控制电路,包括:形态学检测模块、弹性检测模块以及开关模块;所述形态学检测模块与所述开关模块连接,用于根据用户指令或系统设定生成形态学检测控制信号并将所述形态学检测控制信号传输至开关模块;所述弹性检测模块与所述开关模块连接,用于根据用户指令或系统设定生成弹性检测控制信号以及第二控制信号,并将所述弹性检测控制信号以及第二控制信号传输至开关模块;所述开关模块与复合探头连接,用于接收所述形态学检测控制信号、弹性检测控制信号以及第二控制 信号,并根据所述第二控制信号将形态学检测控制信号传输至复合探头执行形态学检测,或根据所述第二控制信号控制将弹性检测控制信号传输至复合探头执行弹性检测。
在其中一个实施例中,所述形态学检测模块包括第一接口以及第二接口,所述形态学检测模块通过所述第一接口与开关模块连接,所述形态学检测模块通过所述第二接口与形态学检测探头连接;所述形态学检测模块用于根据用户指令或系统设定生成形态学检测控制信号以及第一控制信号;所述第一控制信号控制所述第一接口以及第二接口导通或断开,将形态学检测控制信号通过第一接口传输至开关模块或将形态学检测控制信号通过第二接口传输至形态学检测探头执行形态学检测。
在其中一个实施例中,所述形态学检测模块包括多个第二接口。
在其中一个实施例中,所述检测模式控制电路还包括扩展模块,所述扩展模块通过第二接口与形态学检测模块连接,所述扩展模块包括多个输出接口,多个所述输出接口分别与一个形态学检测探头连接。
在其中一个实施例中,所述形态学检测模块还用于根据用户指令或系统设定生成第三控制信号,并将第三控制信号传输至所述扩展模块;所述扩展模块根据所述第三控制信号控制多个所述输出接口导通或断开。
在其中一个实施例中,所述第三控制信号控制所述扩展模块的各所述输出接口导通或者断开。
在其中一个实施例中,所述开关模块与所述复合探头中的M个阵元相连,用于控制所述M个阵元与所述弹性检测模块或者所述形态学检测模块导通;所述复合探头共有N个阵元;其中,M小于等于N;M和N均为正整数。
在其中一个实施例中,所述开关模块包括继电器阵列。
在其中一个实施例中,所述检测模式控制电路还包括:输入模块;所述输入模块分别与所述形态学检测模块以及所述弹性检测模块连接,用于获取用户指令或者存储系统设定信息。
在其中一个实施例中,所述输入模块,用于根据用户输入信息处理后得到用户指令。
本发明的一个实施例提供的检测模式控制电路包括形态学检测模块、 弹性检测模块以及开关模块;通过形态学检测模块根据用户指令或系统设定,生成形态学检测控制信号。并将所述形态学检测控制信号传输至开关模块。弹性检测模块根据用户指令或系统设定,生成弹性检测控制信号以及第二控制信号,并将其传输给开关模块。开关模块根据第二控制信号的控制选择性的将形态学检测控制信号或弹性检测控制信号传输至复合探头,控制复合探头执行形态学检测或弹性检测。本发明实施例通过检测模式控制电路,控制一个复合探头执行形态学检测和弹性检测,使用一个复合探头进行检测使弹性检测位置更加的精准,进一步的是诊断数据更加的精准。
附图说明
图1为本发明实施例提供的一种检测模式控制电路的结构示意图。
附图标记:100为形态学检测模块、110为第一接口、120为第二接口、200为弹性检测模块、300为开关模块、400为扩展模块、500为形态学检测探头、600为复合探头、700为输入模块。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例公开了一种模式检测控制电路,形态学检测模块用于根据用户指令或系统设定生成形态学检测控制信号,并将所述形态学检测控制信号传输至开关模块。弹性检测模块根据用户指令或系统设定生成弹性检测控制信号以及第二控制信号。第二控制信号控制开关模块将形态学检测控制信号或弹性检测控制信号传输至复合探头执行形态学检测或弹性检测。
请参阅图1,图1为本发明实施例提供的一种检测模式控制电路的结构示意图。
如图1所示,一种检测模式控制电路包括:形态学检测模块100、弹性检测模块200以及开关模块300;所述形态学检测模块100与开关模块300连接,所述形态学检测模块100用于根据用户指令或系统设定生成形 态学检测控制信号,并将所述形态学检测控制信号传输至开关模块300;所述弹性检测模块200与所述开关模块300连接,用于根据用户指令或系统设定生成弹性检测控制信号以及第二控制信号,并将所述弹性检测控制信号以及第二控制信号传输至开关模块300;所述开关模块300与复合探头600连接;用于接收所述形态学检测控制信号、弹性检测控制信号以及第二控制信号,并根据所述第二控制信号控制将形态学检测控制信号传输至复合探头600执行形态学检测,或根据所述第二控制信号控制将弹性检测控制信号传输至复合探头600执行弹性检测。
在其中一个实施例中,所述形态学检测模块100包括第一接口110以及第二接口120,所述形态学检测模块100通过所述第一接口120与开关模块300连接,所述形态学检测模块100通过所述第二接口120与形态学检测探头500连接;所述形态学检测模块100用于根据用户指令或系统设定生成形态学检测控制信号以及第一控制信号;所述第一控制信号控制所述第一接口110以及第二接口120导通或断开,将形态学检测控制信号通过第一接口110传输至开关模块300或将形态学检测控制信号通过第二接口120传输至形态学检测探头200执行形态学检测。
具体的,当用户需要使用形态学检测探头500执行形态学检测时,形态学检测模块100根据用户指令或系统设定生成形态学检测控制信号以及第一控制信号。其中,用户指令可以是接收用户经上位机输入的控制指令,也可以是经网络侧发来的控制指令等。系统设定可以为系统预先存储的控制指令。形态学检测包括:B超、A超、M超、CT以及MRI等。优选的,形态学检测可以为B超检测;形态学检测探头可以为:B超探头。第一控制信号包括:第一接口110导通或断开信号和第二接口120导通或断开信号。使用形态学检测探头时,第一控制信号控制第一接口110断开以及第二接口120导通,也即形态学检测模块100通过第二接口120将形态学检测控制信号传输至形态学检测探头500执行形态学检测。当形态学检测探头500检测得到形态学检测回波信号后,再将形态学检测回波信号通过第二接口120传输至形态学检测模块100进行处理。当用户需要使用复合探头600,先进行利用形态学检测进行定位,再对确定位置进行弹性检测时,形态学检测模块100接收用户的输入信息,并根据用户的输入信息生成形 态学检测控制信号以及第一控制信号。第一控制信号控制第一接口110导通以及第二接口120断开,也即形态学检测模块100通过第一接口110将形态学检测控制信号传输至开关模块300。弹性检测模块200接收用户的输入信息,并根据用户的输入信息生成弹性检测控制信号、电机驱动信号以及第二控制信号,并将弹性检测控制信号、电机驱动信号以及第二控制信号传输至开关模块300。弹性检测包括:E超检测等。开关模块300接收形态学检测控制信号、弹性检测控制信号、电机驱动信号以及第二控制信号。其中,当需要进行形态学检测定位时,第二控制信号控制开关模块300将形态学检测模块100与复合探头600导通,即将形态学检测控制信号传输至复合探头600执行形态学检测,当复合探头600执行形态学检测得到形态学检测回波信号后,再将形态学检测回波信号通过第一接口110传输至形态学检测模块100进行处理。当需要进行形态学检测时,第二控制信号控制开关模块300将弹性检测模块200与复合探头600导通,即将弹性检测控制信号以及电机驱动信号传输至复合探头600驱动电机振动产生并发射低频剪切波,产生并发射超声波对所述低频剪切波进行追踪,以执行弹性检测,当复合探头600执行弹性检测得到弹性检测回波信号后,再将弹性检测回波信号传输至弹性检测模块200进行处理。更具体的,在同一时间第一接口110与第二接口120中只有一个是处于导通状态,另一个处于断开状态。也就是当使用形态学检测探头500进行形态学检测时,复合探头600不能进行形态学检测;当使用复合探头600进行形态学检测时,形态学检测探头500不能进行形态学检测。
在其中一个实施例中,形态学检测模块100包括多个第二接口120,也即形态学检测模块能够通过多个第二接口120与多个形态学检测探头500连接。
优选的,所述检测模式控制电路还包括扩展模块400,所述扩展模块400通过第二接口120与形态学检测模块100连接,所述扩展模块400包括多个输出接口,多个所述输出接口分别与一个形态学检测探头连接500。
具体的,形态学检测模块100还用于根据用户指令或系统设定生成第三控制信号,并将第三控制信号传输至扩展模块400;扩展模块400根据第三控制信号控制多个输出接口导通或断开。当用户需要使用形态学检测 探头500执行形态学检测时,形态学检测模块100通过第二接口120将形态学检测控制信号传输至扩展模块400,扩展模块400根据第三控制信号控制各输出接口导通或者断开。通过导通的输出接口将形态学检测控制信号传输至与导通输出接口相应的形态学检测探头500执行形态学检测。当形态学检测探头500检测得到形态学检测回波信号后,再将形态学检测回波信号通过扩展模块400以及第二接口120传输至形态学检测模块100进行处理。其中扩展模块400可以为集线器等可以将一路信号分成多路相同信号的装置。
在其中一个实施例中,所述开关模块与所述复合探头中的M个阵元相连,用于控制所述M个阵元与所述弹性检测模块或者所述形态学检测模块导通;所述复合探头共有N个阵元;其中,M小于等于N;M和N均为正整数。
具体地,复合探头可以包括128个阵元,当进行弹性检测模块或者所述形态学检测模块时,可以选取其中16个阵元进行检测,也可以选取64个阵元进行检测,还可以128个阵元同时进行检测,具体使用阵元数量可以根据实际情况进行相应的调整,本实施例不做具体限定。
在其中一个实施例中,所述开关模块包括继电器阵列。
本发明的一个实施例提供的检测模式控制电路包括形态学检测模块、弹性检测模块以及开关模块;通过形态学检测模块根据用户指令或系统设定,生成形态学检测控制信号。并将所述形态学检测控制信号传输至开关模块。弹性检测模块根据用户指令或系统设定,生成弹性检测控制信号以及第二控制信号,并将其传输给开关模块。开关模块根据第二控制信号的控制选择性的将形态学检测控制信号或弹性检测控制信号传输至复合探头,控制复合探头执行形态学检测或弹性检测。本发明实施例通过检测模式控制电路,控制一个复合探头执行形态学检测和弹性检测,使用一个复合探头进行检测使弹性检测位置更加的精准,进一步的是诊断数据更加的精准。
优选的,所述检测模式控制电路还包括:输入模块700;所述输入模块700分别与所述形态学检测模块100以及所述弹性检测模块200连接,用于获取用户输入信息。所述输入模块,还用于根据用户输入信息生成用 户指令。
具体的,输入模块可以为智能手机(如Android手机、iOS手机等)、平板电脑、掌上电脑以及移动互联网设备(MobileInternetDevices,MID)、PAD、HMI以及电脑等,可以进行数据处理并且能够进行人机交互的电子设备。输入模块700通过USB(通用串行总线)接口与弹性检测模块200连接,输入模块700通过PCIE(高速串行计算机扩展总线标准)接口与形态学检测模块100连接。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种检测模式控制电路,其特征在于,包括:形态学检测模块、弹性检测模块以及开关模块;
    所述形态学检测模块与所述开关模块连接,用于根据用户指令或系统设定生成形态学检测控制信号并将所述形态学检测控制信号传输至所述开关模块;
    所述弹性检测模块与所述开关模块连接,用于根据用户指令或系统设定生成弹性检测控制信号以及第二控制信号,并将所述弹性检测控制信号以及第二控制信号传输至所述开关模块;
    所述开关模块与复合探头连接,用于接收所述形态学检测控制信号、所述弹性检测控制信号以及所述第二控制信号,并根据所述第二控制信号将所述形态学检测控制信号传输至所述复合探头以执行形态学检测,或根据所述第二控制信号控制将所述弹性检测控制信号传输至所述复合探头以执行弹性检测。
  2. 根据权利要求1所述的电路,其特征在于,
    所述形态学检测模块包括第一接口以及第二接口,所述形态学检测模块通过所述第一接口与所述开关模块连接,所述形态学检测模块通过所述第二接口与形态学检测探头连接;所述形态学检测模块用于根据用户指令或系统设定生成形态学检测控制信号以及第一控制信号;所述第一控制信号控制所述第一接口以及第二接口导通或断开,将形态学检测控制信号通过第一接口传输至开关模块或将形态学检测控制信号通过第二接口传输至形态学检测探头执行形态学检测。
  3. 根据权利要求2所述的电路,其特征在于,所述形态学检测模块包括多个第二接口。
  4. 根据权利要求2所述的电路,其特征在于,所述检测模式控制电路还包括扩展模块,所述扩展模块通过第二接口与形态学检测模块连接,所述扩展模块包括多个输出接口,多个所述输出接口分别与一个形态学检测探头连接。
  5. 根据权利要求4所述的电路,其特征在于,
    所述形态学检测模块还用于根据用户指令或系统设定生成第三控制 信号,并将第三控制信号传输至所述扩展模块;所述扩展模块根据所述第三控制信号控制多个所述输出接口导通或断开。
  6. 根据权利要求5所述的电路,其特征在于,
    所述第三控制信号控制所述扩展模块的各所述输出接口导通或者断开。
  7. 根据权利要求1所述的电路,其特征在于,所述开关模块与所述复合探头中的M个阵元相连,用于控制所述M个阵元与所述弹性检测模块或者所述形态学检测模块导通;
    所述复合探头共有N个阵元;其中,M小于等于N;M和N均为正整数。
  8. 根据权利要求7所述的电路,其特征在于,
    所述开关模块包括继电器阵列。
  9. 根据权利要求1所述的电路,其特征在于,所述检测模式控制电路还包括:输入模块;
    所述输入模块分别与所述形态学检测模块以及所述弹性检测模块连接,用于获取用户指令或者存储系统设定信息。
  10. 根据权利要求9所述的电路,其特征在于,所述输入模块,用于根据用户输入信息处理后得到用户指令。
PCT/CN2020/090557 2019-07-15 2020-05-15 检测模式控制电路 WO2021008219A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112022000727A BR112022000727A2 (pt) 2019-07-15 2020-05-15 Circuito de controle do modo de detecção
EP20839570.7A EP4000532A4 (en) 2019-07-15 2020-05-15 DETECTION MODE CONTROL CIRCUIT
JP2022502501A JP7393828B2 (ja) 2019-07-15 2020-05-15 検出モード制御回路
US17/575,579 US20220133271A1 (en) 2019-07-15 2022-01-13 Detection mode control circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910636228.2 2019-07-15
CN201910636228.2A CN110297436A (zh) 2019-07-15 2019-07-15 检测模式控制电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/575,579 Continuation US20220133271A1 (en) 2019-07-15 2022-01-13 Detection mode control circuit

Publications (1)

Publication Number Publication Date
WO2021008219A1 true WO2021008219A1 (zh) 2021-01-21

Family

ID=68031099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090557 WO2021008219A1 (zh) 2019-07-15 2020-05-15 检测模式控制电路

Country Status (6)

Country Link
US (1) US20220133271A1 (zh)
EP (1) EP4000532A4 (zh)
JP (1) JP7393828B2 (zh)
CN (1) CN110297436A (zh)
BR (1) BR112022000727A2 (zh)
WO (1) WO2021008219A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110297436A (zh) * 2019-07-15 2019-10-01 无锡海斯凯尔医学技术有限公司 检测模式控制电路
KR102250219B1 (ko) * 2020-09-15 2021-05-11 주식회사 아이도트 초음파 진단 시스템

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090112099A1 (en) * 2007-10-19 2009-04-30 Panasonic Corporation Ultrasonic probe, charger, ultrasonic diagnostic apparatus and ultrasonic diagnostic system
CN103300885A (zh) * 2012-03-13 2013-09-18 株式会社东芝 超声波探头以及超声波诊断装置
CN103784166A (zh) * 2014-03-03 2014-05-14 哈尔滨工业大学 多功能一体化数字超声诊断系统
CN103917889A (zh) * 2011-09-12 2014-07-09 B-K医疗公司 超声成像控制台
CN104302232A (zh) * 2013-04-03 2015-01-21 日立阿洛卡医疗株式会社 超声波诊断装置以及弹性评价方法
CN106108947A (zh) * 2016-07-18 2016-11-16 上海市第人民医院 一种自动控制超声诊断仪的系统
CN108056791A (zh) * 2016-11-08 2018-05-22 柯尼卡美能达株式会社 超声波诊断装置的控制装置以及控制方法
CN108095763A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
US20180310922A1 (en) * 2016-11-18 2018-11-01 Clarius Mobile Health Corp. Methods and apparatus for performing at least three modes of ultrasound imaging using a single ultrasound transducer
CN110297436A (zh) * 2019-07-15 2019-10-01 无锡海斯凯尔医学技术有限公司 检测模式控制电路
CN210222508U (zh) * 2019-07-15 2020-03-31 无锡海斯凯尔医学技术有限公司 检测模式控制电路

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1054891A (zh) * 1990-03-14 1991-10-02 中国科学院电工研究所 多极液电冲击波源
CN2219001Y (zh) * 1994-09-10 1996-01-31 中国人民解放军第四十四医院 一种供b超图像记录系统用的多路视频输入信号选通装置
US5904652A (en) * 1995-06-29 1999-05-18 Teratech Corporation Ultrasound scan conversion with spatial dithering
IL166408A0 (en) 2005-01-20 2006-01-15 Ultraview Ltd Combined 2d pulse-echo ultrasound and optoacousticsignal for glaucoma treatment
CN100579461C (zh) * 2006-12-08 2010-01-13 温州医学院 多探头眼科超声诊断仪
CN101455575B (zh) * 2007-12-10 2011-07-13 深圳迈瑞生物医疗电子股份有限公司 电子设备探头扩展装置及主机对扩展探头的控制方法
CN201299585Y (zh) * 2008-12-04 2009-09-02 武汉思创电子有限公司 眼科超声诊断仪自适应多探头驱动装置
CN101810493B (zh) * 2009-02-20 2013-04-17 深圳市一体医疗科技股份有限公司 一种肝脏多维超声弹性检测装置及其检测方法
CN103635829B (zh) 2011-06-30 2016-04-27 皇家飞利浦有限公司 具有两个波束成形器阶段的二维超声诊断成像系统
CN202821626U (zh) * 2012-08-04 2013-03-27 武汉兰卫医学检测实验室有限公司 面向社区医疗的医学临床检验系统
CN104107067A (zh) * 2013-04-16 2014-10-22 深圳迈瑞生物医疗电子股份有限公司 一种支持多探头同步扫描的超声诊断设备及方法
EP3013243B1 (en) * 2013-06-26 2018-09-19 Koninklijke Philips N.V. Elastography measurement system and method
JP2014073411A (ja) 2013-12-26 2014-04-24 Canon Inc 被検体情報処理装置
JP6386853B2 (ja) 2014-09-26 2018-09-05 株式会社日立製作所 超音波診断装置
CN204789489U (zh) * 2015-06-04 2015-11-18 汕头市超声仪器研究所有限公司 多通道超声波探伤仪的发射接收电路
CN105395218B (zh) * 2015-11-10 2019-02-15 中国科学院声学研究所 超声弹性成像系统及方法
CN107198543B (zh) * 2017-04-25 2019-09-27 华中科技大学 一种用于超声面阵探头的控制装置
CN208573753U (zh) * 2018-01-18 2019-03-05 北京索瑞特医学技术有限公司 复合探头及测量系统
CN108095765A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090112099A1 (en) * 2007-10-19 2009-04-30 Panasonic Corporation Ultrasonic probe, charger, ultrasonic diagnostic apparatus and ultrasonic diagnostic system
CN103917889A (zh) * 2011-09-12 2014-07-09 B-K医疗公司 超声成像控制台
CN103300885A (zh) * 2012-03-13 2013-09-18 株式会社东芝 超声波探头以及超声波诊断装置
CN104302232A (zh) * 2013-04-03 2015-01-21 日立阿洛卡医疗株式会社 超声波诊断装置以及弹性评价方法
CN103784166A (zh) * 2014-03-03 2014-05-14 哈尔滨工业大学 多功能一体化数字超声诊断系统
CN106108947A (zh) * 2016-07-18 2016-11-16 上海市第人民医院 一种自动控制超声诊断仪的系统
CN108056791A (zh) * 2016-11-08 2018-05-22 柯尼卡美能达株式会社 超声波诊断装置的控制装置以及控制方法
US20180310922A1 (en) * 2016-11-18 2018-11-01 Clarius Mobile Health Corp. Methods and apparatus for performing at least three modes of ultrasound imaging using a single ultrasound transducer
CN108095763A (zh) * 2018-01-18 2018-06-01 北京索瑞特医学技术有限公司 复合探头及测量系统
CN110297436A (zh) * 2019-07-15 2019-10-01 无锡海斯凯尔医学技术有限公司 检测模式控制电路
CN210222508U (zh) * 2019-07-15 2020-03-31 无锡海斯凯尔医学技术有限公司 检测模式控制电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4000532A4 *

Also Published As

Publication number Publication date
BR112022000727A2 (pt) 2022-03-08
JP2022541469A (ja) 2022-09-26
EP4000532A1 (en) 2022-05-25
CN110297436A (zh) 2019-10-01
JP7393828B2 (ja) 2023-12-07
US20220133271A1 (en) 2022-05-05
EP4000532A4 (en) 2022-09-14

Similar Documents

Publication Publication Date Title
US20220133271A1 (en) Detection mode control circuit
US6440071B1 (en) Peripheral ultrasound imaging system
CN102670247B (zh) 超声波诊断设备和超声波图像产生方法
JP2013172959A (ja) 超音波撮像を行うための方法および装置
US11224406B2 (en) Ultrasound diagnosis apparatus and ultrasound probe maintenance apparatus
WO2021008217A9 (zh) 组织成像和参数检测系统
JP2014521435A (ja) 超音波診断のためのプローブの無線通信方法及びそのための装置
US20170168964A1 (en) Hard drive disk indicator processing apparatus
JP7204261B2 (ja) 超音波撮像装置
CN210222508U (zh) 检测模式控制电路
CN112666561B (zh) 超声扫查系统、设备、方法及终端
RU2809907C2 (ru) Схема управления режимом диагностирования
CN103565468B (zh) 用于获得骨质状况信息的超声诊断设备及其方法
CN205181384U (zh) 弹性成像系统
KR102455385B1 (ko) 작동가능한 적응식 초음파 이미징 시스템
CN110710988B (zh) 检测模式控制电路
CN112545557A (zh) 超声探头扩展电路系统
EP3603525B1 (en) Ultrasonic imaging device and control method thereof
CN105342642B (zh) 弹性成像系统和方法
KR102179279B1 (ko) 초음파 진단 시스템에서의 스위칭 장치
CN215458143U (zh) 用于弹性成像的复合设备和系统
JP6294067B2 (ja) 超音波診断装置
WO2022107440A1 (ja) 情報処理装置、情報処理方法、及びプログラム
CN111065337A (zh) 一种超声语音控制的方法及超声设备
JP2023117890A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20839570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022502501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022000727

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020839570

Country of ref document: EP

Effective date: 20220215

ENP Entry into the national phase

Ref document number: 2020839570

Country of ref document: EP

Effective date: 20220215

ENP Entry into the national phase

Ref document number: 112022000727

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220114