WO2021007635A1 - Process for obtaining a freeze-dried composition of chitosan-based nanoparticles containing bromelain, freeze-dried composition of chitosan-based nanoparticles containing bromelain and use in the treatment of wounds - Google Patents

Process for obtaining a freeze-dried composition of chitosan-based nanoparticles containing bromelain, freeze-dried composition of chitosan-based nanoparticles containing bromelain and use in the treatment of wounds Download PDF

Info

Publication number
WO2021007635A1
WO2021007635A1 PCT/BR2020/050256 BR2020050256W WO2021007635A1 WO 2021007635 A1 WO2021007635 A1 WO 2021007635A1 BR 2020050256 W BR2020050256 W BR 2020050256W WO 2021007635 A1 WO2021007635 A1 WO 2021007635A1
Authority
WO
WIPO (PCT)
Prior art keywords
chitosan
bromelain
nanoparticles
composition
maltose
Prior art date
Application number
PCT/BR2020/050256
Other languages
French (fr)
Portuguese (pt)
Inventor
Janaína Artem ATAÍDE
Danilo Costa GERALDES
Laura de Oliveira NASCIMENTO
Priscila Gava MAZZOLA
Original Assignee
Universidade Estadual De Campinas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade Estadual De Campinas filed Critical Universidade Estadual De Campinas
Publication of WO2021007635A1 publication Critical patent/WO2021007635A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/716Glucans
    • A61K31/722Chitin, chitosan
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like

Definitions

  • the present invention relates to a process for obtaining a lyophilized composition of chitosan-based nanoparticles containing bromelain.
  • composition proved to be stable in relation to the enzymatic activity using sugars as lyoprotectants.
  • the referred composition does not contain organic solvents or chemical additives, as preservatives, being obtained by green process and based on natural and biocompatible excipients.
  • the present invention reveals its use in the preparation of a medicament to treat wounds.
  • Bromelain a complex of substances extracted mainly from pineapple (Ananas comosus L.) r is recognized for its anti-inflammatory, antithrombotic, fibrinolytic properties, antitumor activity and immunomodulatory effect. Based on Seligman's study that showed, in 1962, its action as an anti-inflammatory agent, several studies support the use of bromelain extracts in different conditions (Seligman, 1962; Taussig and Batkin, 1988;
  • bromelain acts by hydrolyzing devitalized tissue, both in vivo and in vitro, which increases the healing capacity.
  • Wounds are formed from the disruption of the integrity of the skin, mucous surfaces or organ tissues (Young and McNaught, 2011), and although skin lesions vary, they have a common mechanism for repair and healing. Wound healing is a regular biological process in the human body, since human skin has a natural ability to promote self-regeneration after damage (Guo and DiPietro, 2010; Pereira and Bártolo, 2016), and when triggered by a injury, this mechanism comprises an elaborate cascade of physiological events designed to finally heal the skin (Strondtbeck, 2001).
  • the first stage hemostasis, occurs immediately at the time of the injury and usually lasts a few hours.
  • the second stage inflammation, begins shortly after hemostasis and is usually completed within the first 24 to 72 hours after the injury; however, it can last up to 5-7 days after injury (Haas, 1995).
  • Proliferation and repair the third stage, typically occurs 1 to 3 weeks after injury.
  • the fourth and final stage, remodeling begins approximately 3 weeks after the injury and can take months to several years to reach physiological completion.
  • Winter concluded that hydrated wounds in piglets epithelize the skin twice as fast as wounds exposed to air (Winter, 1962).
  • Bioactive or biological dressings are also modern dressings and are produced from biomaterials, which play an important role in the healing process (Boateng et al., 2008; Dhivya et al., 2015). These dressings are known for their biocompatibility, biodegradability and non-toxic nature (Dhivya et al.,
  • bioactive dressings can be incorporated with active compounds, such as antimicrobials and growth factors, improving the healing process (Boateng et al., 2008; Dhivya et al., 2015).
  • bromelain Due to the characteristics exposed above, bromelain has potential applications in the cosmetic, pharmaceutical and food industries. However, the use of proteins as an active ingredient in pharmaceutical products is a challenge, due to its physical and chemical instability.
  • chitosan Due to its characteristics of adhesiveness, biocompatibility, biodegradability and low toxicity, chitosan is an attractive material for several uses, mainly in the pharmaceutical area.
  • This polysaccharide is used in modified drug delivery systems of various therapeutic classes, such as antibiotics, anti-inflammatories, antihypertensives, in addition to peptides and proteins (Bernkop-Schniirch, 2000; Flórea et al., 2006; Boonyo et al. ., 2007; Sandri et al., 2010).
  • the ease of adherence of chitosan, as well as its antifungal, bacteriostatic character and its permeability to oxygen are very attractive properties for topical use (Arguelles, 2004; Jayakumar et al., 2011).
  • the lyophilization process provides solid compositions without heating above room temperature, which provides the stability of the proteins present.
  • the solid state of low humidity prevents or decreases possible chemical, biological reactions and mechanical stress, which can result in stable compositions over the period of months to years without loss of the desired performance.
  • the present invention therefore aimed to encapsulate bromelain in chitosan nanoparticles and lyophilize the composition in order to increase enzymatic stability, in order to produce a drug to treat wounds.
  • Some state-of-the-art documents refer to natural assets for wound care. These assets known in the literature are propolis, Centella asiatica, P ⁇ nica granatum L, Rosmarinus officinalis L and Calendula officinalis, among others. Bromelain, whose properties also make it ideal for wound care, is extensively revised, Ataide et al. Natural actives for wound healing: a review. Phytotherapy Research, 2018.
  • Ekambaram et al. (2017) describes a multi-phase combined distribution system produced by coaxial electrospinning of different biocompatible polymers, with optimization of the ratio and specificity of the polymers for the specific function, using bromelain as a debridement and salviolic acid B as a stimulator of angiogenesis and reepithelization.
  • the in vitro release profile illustrated the sustained release of debridement protease and bioactive component in a timely manner.
  • the manufactured product showed angiogenic potential through the migration of endothelial cells in vitro and an increase in new capillaries from the existing blood vessel in response to a chicken in ovo chorioallantoic membrane assay. With the projected fiber, accelerated wound healing in vivo was also achieved in the full-thickness rat skin wound model.
  • the present invention addresses the problem of the stability of bromelain by proposing a composition in which the chitosan-bromelain nanoparticles are dried by lyophilization in the presence of lyoprotectant composition.
  • the present invention does not deal with chemically modified chitosan, which reduces the excipient cost and maintains the natural appeal of the composition.
  • CN 107475226 discloses a bromelain complex with a polyanionic polysaccharide (alginate, pectin, CMC, gum arabic or xanthan gum), and a polysaccharide or mixture may be used.
  • a polyanionic polysaccharide alginate, pectin, CMC, gum arabic or xanthan gum
  • the inventors complex bromelain with an anionic polysaccharide, thereby increasing its stability.
  • the drying process of the complex, its average size and characteristics is not detailed.
  • the present invention makes use of a polycationic polysaccharide (chitosan has a positive charge), in addition to forming and characterizing nanoparticles with bromelain.
  • CN 1834239 proposes a method for obtaining lyophilized bromelain powders.
  • the enzyme is extracted from the pineapple in stages that involve filtering the juice fruit, adsorption with zinc oxide, ultrafiltration and lyophilization.
  • the innovation is related to the purification method achieved by using zinc oxide, and is intended for application in possible oral compositions.
  • data on stability, storage and conditions under which lyophilization is carried out are not disclosed, although these impact the enzyme activity of the product.
  • the product consists of a pharmaceutical composition of bromelain encapsulated in chitosan, presented as dry powder (lyophilized), stable at room temperature for more than 90 days in relation to particle size and enzymatic activity.
  • Document RU 2677232 refers to a pharmaceutical composition of bromelain encapsulated in low and / or high molecular weight chitosan gel, in the form of macroparticles.
  • the bromelain is immobilized in 50 mM Tris-glycine buffer solution and pH 8, 5-9.0, incubated and the resulting precipitate is washed with 50 mM Tris-HCl buffer and pH 7.5.
  • the invention is intended for the treatment of wounds, providing macroscopic particles of varying sizes. However, it does not present data about the physicochemical characterization of the particles or even about the stability of the composition or the lyophilization conditions.
  • composition has a final pH between 8.5 and 9.0, unsuitable for use on the skin, pH 5.5.
  • the present invention differs in that it is a reproducible composition of lyophilized low molecular weight chitosan nanoparticles. Data on the stability of the composition, as well as the characterization of the nanoparticles, are provided and it has a pH compatible with that of the skin.
  • the present invention relates to a process for obtaining a lyophilized composition of chitosan-based nanoparticles containing bromelain.
  • composition proved to be stable in relation to the enzymatic activity using sugars as lyoprotectants.
  • the present invention reveals its use in the preparation of a medicine to treat wounds.
  • composition obtained in the form of lyophilized powder of nanostructured bromelain can be used as a final pharmaceutical form or as an active pharmaceutical ingredient incorporated in another product.
  • Figure 1 Scanning (A) and transmission (B) electron microscopy of chitosan-bromelain nanoparticles.
  • FIG. 1 Infrared spectra by Fourier transform (FTIR) of bromelain (black), chitosan nanoparticles (red) and chitosan-bromelain nanoparticles (green).
  • FTIR Fourier transform
  • Figure 7 Graphs of the main effect of factorial design relating the variables (inputs) studied in relation to the responses of mean particle size (A), polydispersity index (B), D 10 (C), D 50 (D), D 90 (D), zeta potential (F) and encapsulation efficiency in terms of proteins (G) and enzyme activity (H).
  • FIG. 8 Scanning electron microscopy of lyophilized powder with glycine (A), maltose (B) and after reconstitution with glycine (C) and maltose (D).
  • the present invention relates to the process of obtaining a lyophilized composition based on chitosan nanoparticles containing bromelain.
  • the present invention reveals its use in the preparation of a medicament to treat wounds.
  • composition obtained in the form of lyophilized nanostructured bromelain powder can be used as a final pharmaceutical form or as an active pharmaceutical ingredient incorporated in another product
  • step (b) Add a solution of bromelain at a concentration of 10mg / mL with stirring the solution obtained in step (a) until complete homogenization;
  • step (d) The mixture of the nanoparticles with the lyoprotectant obtained in step (d) stored in an ultrafreezer at -80 ° C;
  • step (e) The nanoparticles frozen at -80 ° C, obtained in step (e) were inserted into the lyophilizer with the shelf set at -45 ° C and maintained until reaching the same temperature as the shelf;
  • step (f) The nanoparticles of step (f) follow the drying ramp, increasing the temperature by 5 ° C from -45 ° C to +10 ° C;
  • the lyoprotectant is selected from small molecules, such as sugars or amino acids, maltose, glycine, preferably maltose.
  • step (g) the temperature is changed when the temperature of the composition reaches the temperature of the shelf, only advancing to the next step when the temperature of the formulation reaches the temperature of the shelf.
  • the nanoparticles obtained in step (c) of chitosan-bromelain have an average diameter of 84.5 to 100.9 nm, a polydispersity index of 0.18 to 0.23, a zeta potential of 21.9 to 27 , 1 mV and a particle concentration in the order of 1012 particles / mL. Still in step c, bromelain is encapsulated in chitosan nanoparticles and has an encapsulation efficiency of 83.4 to 97.8% of the protein concentration, which corresponds to an encapsulation efficiency of 75.5 to 81.6% enzyme activity.
  • the lyoprotectant in step (d) is in a concentration of 3% (m / v) in relation to the volume of the chitosan-bromelain nanoparticle solution.
  • the composition has a collapse temperature ranging from -56 ° C to - 28 ° C, preferably above -40 ° C, with the addition of maltose and glycine, respectively.
  • a lyophilized composition of chitosan-based nanoparticles containing lyophilized bromelain still obtained by the process as defined above and which comprises 0.9% to 1.0% bromelain, 0.9% to 1, 0% chitosan, 3% lyoprotectant.
  • the said composition comprises a lyoprotectant selected from small molecules, which may be sugars or amino acids such as maltose or glycine, preferably maltose.
  • composition object of the present invention comprises nanoparticles with an average diameter of 88.5 and 127.8 nm, a polydispersity index of 0.29 to 0.34, a zeta potential of 20.0 to 23.2 mV .
  • composition obtained by the process is in the form of lyophilized powder, has a maltose encapsulation efficiency of 96.3% to 98.8%, which is equivalent to an enzymatic activity of 73.3 to 99.5%.
  • stage Production of chitosan-bromelain nanoparticles
  • the chitosan solution was prepared in the following proportion 2.5 mg / mL of chitosan in 1% acetic acid, pH 5.0, and subsequently filtered through 0.45um membranes.
  • the TPP solution was prepared in the following proportion 0.5 mg / mL in ultrapure water, then filtered through a 0.22 ⁇ m membrane.
  • the TPP solution is 30% (w / w) in relation to the total amount of chitosan.
  • the nanoparticles were produced by the ionic crosslinking technique (Shu and Zhu, 2000), using sodium tripolyphosphate (TPP) as a crosslinking agent.
  • TPP sodium tripolyphosphate
  • a proportion of 30% (w / w) of TPP was used in relation to the total amount of chitosan, and agitation of 350 rpm.
  • the bromelain solution (10 mg / mL in water) was added under stirring at 350 rpm for 40 minutes, after dripping the TPP solution into the chitosan solution.
  • 1 ml of the bromelain solution was added to produce the bromelain-chitosan nanoparticles or 1 ml of distilled water to produce chitosan nanoparticles.
  • Nanoparticles with and without bromelain produced with different types of chitosan were physically characterized by DLS, zeta potential and NTA.
  • the average diameter and polydispersity index (PDI) of the nanoparticles were evaluated using the Zetasizer Nano ZS equipment (Malvern, United Kingdom). The average size and polydispersity index were determined by dynamic light scattering (DLS), while the zeta potential was measured by Doppler laser microelectrophoresis (Zetasizer Nano ZS, Malvern, United Kingdom).
  • the nanoparticles were ultracentrifuged (Centrifuge 5810R, Eppendorf, Germany) at 4,000g for 10 minutes, using 0.5 mL ultrafiltration devices with 100 kDa membrane (Amicon® Ultra 100k, Millipore, Germany) thus separating the bromelain that remained free from the encapsulated one.
  • Total protein concentration and enzyme activity were determined in the initial bromelain solution and in the filtrate (resulting from the described filtration), and the efficiency was calculated according to equation 1:
  • the initial bromelain solution showed 2.0 ⁇ 0.3 mg / mL of total protein and 23.3 ⁇ 1.6 U / mL. Protein concentration and enzyme activity were also determined in the resulting filtered solution (0.25 ⁇ 0.01 mg / mL and 4.5 ⁇ 0.6 U / mL, respectively) to calculate the encapsulation efficiency, which was 87.0 ⁇ 5.1% of the total protein, corresponding to 80.7 ⁇ 1.1% of the enzymatic activity of bromelain (Table 2).
  • chitosan-bromelain nanoparticles are unstable when stored in liquid form, and therefore lyophilization is an important process to increase the preservation of particle size for long-term storage (Fonte et al., 2016; Almalik et al., 2017) and the enzymatic activity of bromelain (Arakawa et al., 2001).
  • Step 2 Freeze-drying of the nanoparticles of bromelain quitosana-
  • Trealose, maltose and glycine were chosen as possible lyoprotectants, due to their collapse temperatures when alone in solution, with the collapse temperature being -24.3 °, -25.1 and -12.7 ° , respectively. Subsequently, they were dissolved in the suspension of chitosan-bromelain nanoparticles at a concentration of 3% (m / v), to evaluate their effect on the collapse temperature of the suspensions of chitosan-bromelain nanoparticles.
  • the collapse temperature of chitosan-bromelain nanoparticles with and without lyoprotectants was determined by a microscope attached to a lyophilization module, Lyostat 2, model FDCS 196 (Linkam Instruments, Surrey, United Kingdom), equipped with a liquid nitrogen freezing system (LNP94 / 2) and programmable temperature controller (TMS94, Linkam).
  • the chitosan-bromelain nanoparticles showed a collapse temperature of -56 ° C, which decreased to -49.3 ° C, -34.8 ° C and -28.0 ° C with the addition of trehalose, maltose and glycine, respectively .
  • Table 3 Collapse temperature of possible lyoprotectants in isolated solution and in nanoparticles.
  • the lyophilizates were reconstituted in distilled water to analyze the physical characteristics of the particles by dynamic light scattering (Table 4) and the encapsulation efficiency (Figure 5), which were considered outputs for factorial design.
  • Table 4 After lyophilization, glycine in a concentration of 3% (m / v) was able to keep the polydispersity index within the desirable values, however the zeta potential declined. On the other hand, maltose showed the opposite behavior, increasing the polydispersity index and showing little effect on the zeta potential.
  • Table 4 Size of nanoparticles, PDI and zeta potential before and after the lyophilization process (experimental design). The results are presented as mean ⁇ standard deviation of two compositions, measured three times each.
  • Z-ave mean particle size
  • PDI polydispersity index
  • control nanoparticle without lioprotector.
  • compositions containing 3% (w / v) of glycine and maltose as lyoprotectants were the most promising for stabilizing chitosan-bromelain nanoparticles.
  • a new batch of samples with these excipients was produced and lyophilized following the parameters previously determined.
  • the samples were characterized and submitted to a stability study. For this study, the dried samples were kept sealed in the lyophilization vials with plastic wrap and stored at room temperature (25 ° ⁇ 2 ° ) and refrigerator (5 ⁇ 2 o) protected from light.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Preparation (AREA)

Abstract

The present invention relates to a process for obtaining a freeze-dried composition of chitosan nanoparticles containing bromelain. Said composition was seen to be stable in relation to enzyme activity using small molecules, such as sugars or amino acids, as freeze-drying additives. In addition, the present invention discloses the use thereof in preparing a medication for treating wounds.

Description

PROCESSO DE OBTENÇÃO DE UMA COMPOSIÇÃO LIOFILIZADA DE NANOPARTÍCULAS A BASE DE QUITOSANA CONTENDO BROMELINA, COMPOSIÇÃO LIOFILIZADA DE NANOPARTÍCULAS A BASE DE QUITOSANA CONTENDO BROMELINA E USO NO TRATAMENTO DE FERIDAS PROCESS OF OBTAINING A LYOPHILIZED COMPOSITION OF CHITOSAN-BASED NANOPARTICLES CONTAINING BROMELINE, LYOPHILIZED COMPOSITION OF CHITOSAN-BASED NANOPARTICLES CONTAINING WASTE TREATMENT
Campo da invenção : Field of the invention:
[001] A presente invenção refere-se a um processo de obtenção de uma composição liofilizada de nanopartícuias a base de quitosana contendo bromelina. [001] The present invention relates to a process for obtaining a lyophilized composition of chitosan-based nanoparticles containing bromelain.
[002] Dita composição revelou-se estável em relação à atividade enzimática utilizando açúcares como lioprotetores . [002] Said composition proved to be stable in relation to the enzymatic activity using sugars as lyoprotectants.
[003] A composição referida não contém solventes orgânicos ou aditivos químicos, como conservantes, sendo obtida por processo verde e baseada em excipientes naturais e biocompatíveis . [003] The referred composition does not contain organic solvents or chemical additives, as preservatives, being obtained by green process and based on natural and biocompatible excipients.
[004] Adicionalmente, a presente invenção revela seu uso na preparação de um medicamento para tratar feridas. [004] Additionally, the present invention reveals its use in the preparation of a medicament to treat wounds.
Fundamentos da invenção: Fundamentals of the invention:
[005] A bromelina, um complexo de substâncias extraídas principalmente do abacaxi (Ananas comosus L.)r é reconhecida por suas propriedades anti-inflamatórias, antitrombóticas , fibrinolíticas , atividade antitumoral e efeito imunomodulatório . A partir do estudo de Seligman que mostrou, em 1962, sua ação como agente anti-inflamatório, vários estudos sustentam o uso de extratos de bromelina em diferentes condições (Seligman, 1962; Taussig e Batkin, 1988;[005] Bromelain, a complex of substances extracted mainly from pineapple (Ananas comosus L.) r is recognized for its anti-inflammatory, antithrombotic, fibrinolytic properties, antitumor activity and immunomodulatory effect. Based on Seligman's study that showed, in 1962, its action as an anti-inflammatory agent, several studies support the use of bromelain extracts in different conditions (Seligman, 1962; Taussig and Batkin, 1988;
Salas et al . , 2008; Chobotova et al . , 2010; Amid et al . ,Salas et al. , 2008; Chobotova et al. , 2010; Amid et al. ,
2011; Ferreira et al . , 2011) . Em particular, alguns estudos têm demonstrado o potencial uso da bromelina em processos de cicatrização . Maurer (2001) demonstrou que essa enzima possui benefícios para a cicatrização de feridas, especificamente reduzindo edema, hematomas e dor. Em queimaduras, a bromelina age hidrolisando o tecido desvitalizado, tanto in vivo quanto in vitro, o que aumenta a capacidade de cicatrização. 2011; Ferreira et al. , 2011). In particular, some studies have demonstrated the potential use of bromelain in healing processes. Maurer (2001) demonstrated that this enzyme has benefits for wound healing, specifically reducing edema, bruising and pain. In burns, bromelain acts by hydrolyzing devitalized tissue, both in vivo and in vitro, which increases the healing capacity.
[006] Feridas são formadas a partir do rompimento da integridade da pele, superfícies mucosas ou tecidos de órgãos (Young and McNaught, 2011), e embora as lesões na pele variem, elas possuem um mecanismo comum para reparo e cura. A cicatrização de feridas é um processo biológico regular no corpo humano, uma vez que a pele humana tem uma capacidade natural de promover a auto-regeneração após dano (Guo e DiPietro, 2010; Pereira e Bártolo, 2016), e quando desencadeado por uma lesão, este mecanismo compreende uma elaborada cascata de eventos fisiológicos projetados para finalmente curar a pele ( Strondtbeck, 2001) . [006] Wounds are formed from the disruption of the integrity of the skin, mucous surfaces or organ tissues (Young and McNaught, 2011), and although skin lesions vary, they have a common mechanism for repair and healing. Wound healing is a regular biological process in the human body, since human skin has a natural ability to promote self-regeneration after damage (Guo and DiPietro, 2010; Pereira and Bártolo, 2016), and when triggered by a injury, this mechanism comprises an elaborate cascade of physiological events designed to finally heal the skin (Strondtbeck, 2001).
[007] 0 primeiro estágio, a hemostasia, ocorre imediatamente no momento da lesão e geralmente dura algumas horas. O segundo estágio, a inflamação, começa logo após a hemostasia e geralmente é concluída dentro das primeiras 24 a 72 horas após a lesão; no entanto, pode durar até 5-7 dias após lesão (Haas, 1995) . Proliferação e reparação, a terceira fase, ocorre tipicamente 1 a 3 semanas após lesão. A quarta e última etapa, a remodelação, começa aproximadamente 3 semanas após a lesão e pode levar meses a vários anos para atingir a conclusão fisiológica. [008] Em 1962, Winter concluiu que feridas hidratadas em leitões epitelizam a pele duas vezes mais rápido do que as feridas expostas ao ar (Winter, 1962) . Desde então, muito se aprendeu sobre mecanismos de cura de feridas e fatores que os afetam (Cooper, 1990; Cuzzell e Stotts, 1990; Salas Campos et ai., 2005; Winter and Scales, 1963) . Atualmente, sabe-se que a cura é um processo complexo, que pode ser acelerado e melhorado pelo uso de técnicas, produtos e curativos (Cooper, 1990; Kumar et al . , 2007) . [007] The first stage, hemostasis, occurs immediately at the time of the injury and usually lasts a few hours. The second stage, inflammation, begins shortly after hemostasis and is usually completed within the first 24 to 72 hours after the injury; however, it can last up to 5-7 days after injury (Haas, 1995). Proliferation and repair, the third stage, typically occurs 1 to 3 weeks after injury. The fourth and final stage, remodeling, begins approximately 3 weeks after the injury and can take months to several years to reach physiological completion. [008] In 1962, Winter concluded that hydrated wounds in piglets epithelize the skin twice as fast as wounds exposed to air (Winter, 1962). Since then, much has been learned about wound healing mechanisms and factors that affect them (Cooper, 1990; Cuzzell and Stotts, 1990; Salas Campos et al., 2005; Winter and Scales, 1963). Currently, it is known that healing is a complex process, which can be accelerated and improved by the use of techniques, products and dressings (Cooper, 1990; Kumar et al., 2007).
[009] Curativos modernos foram desenvolvidos para facilitar o processo de cura ao invés de apenas cobrir o ferimento (Dhivya et al . , 2015), e sua característica essencial é reter e criar um ambiente úmido ao redor da ferida para facilitar sua cicatrização (Boateng et al . , 2008) . A maioria dos tratamentos modernos são curativos interativos, pois interagem com a ferida para proporcionar um ambiente ótimo na interface do curativo (Sarabahi, 2012) . Estes curativos interativos incluem filme e espuma semi- permeáveis, hidrofibras, hidrogéis, hidrocolóides e alginatos (Dhivya et al . , 2015; Sarabahi, 2012) . [009] Modern dressings were developed to facilitate the healing process instead of just covering the wound (Dhivya et al., 2015), and its essential feature is to retain and create a moist environment around the wound to facilitate its healing (Boateng et al., 2008). Most modern treatments are interactive dressings, as they interact with the wound to provide an optimal environment at the dressing interface (Sarabahi, 2012). These interactive dressings include semipermeable film and foam, hydrofibers, hydrogels, hydrocolloids and alginates (Dhivya et al., 2015; Sarabahi, 2012).
[010] Curativos bioativos ou biológicos também são curativos modernos e são produzidos a partir de biomateriais , que desempenham um papel importante no processo de cicatrização (Boateng et al . , 2008; Dhivya et al . , 2015) . Estes curativos são conhecidos pela sua biocompatibilidade, biodegradabilidade e natureza não-tóxica (Dhivya et al . , [010] Bioactive or biological dressings are also modern dressings and are produced from biomaterials, which play an important role in the healing process (Boateng et al., 2008; Dhivya et al., 2015). These dressings are known for their biocompatibility, biodegradability and non-toxic nature (Dhivya et al.,
2015), e sao derivados geralmente de tecidos naturais ou artificiais (Bartlett, 1981; Boateng et al . , 2008; Dhivya et al., 2015) . Em alguns casos, curativos bioativos podem ser incorporados com compostos ativos, como antimicrobianos e fatores de crescimento, melhorando o processo de cicatrização (Boateng et al . , 2008; Dhivya et al . , 2015) . 2015), and are generally derived from natural or artificial (Bartlett, 1981; Boateng et al., 2008; Dhivya et al., 2015). In some cases, bioactive dressings can be incorporated with active compounds, such as antimicrobials and growth factors, improving the healing process (Boateng et al., 2008; Dhivya et al., 2015).
[011] Devido às caracteristicas expostas acima, a bromelina tem aplicações potenciais nas indústrias cosmética, farmacêutica e de alimentos. No entanto, o uso de proteínas como ingrediente ativo em produtos farmacêuticos é um desafio, devido à sua instabilidade física e química. [011] Due to the characteristics exposed above, bromelain has potential applications in the cosmetic, pharmaceutical and food industries. However, the use of proteins as an active ingredient in pharmaceutical products is a challenge, due to its physical and chemical instability.
[012] Os processos as quais as proteínas são submetidas geram condições de estresse que podem levar à redução ou à perda da atividade biológica, ou até mesmo alterar seu potencial imunogênico ( Sanchez-Ruiz e Makhatadze, 2001) . Pereira et al . (2014) demonstraram que composições com bromelina, quando conservadas a 37 °C, perdiam quase toda sua atividade enzimática. Eles atribuíram este fato à auto- degradação (autólise ou autodigestão ) da bromelina, pois 37 °C tem sido considerada a temperatura ótima para sua atividade proteolítica (Pereira et al . , 2014) . [012] The processes to which proteins are subjected generate stress conditions that can lead to the reduction or loss of biological activity, or even alter their immunogenic potential (Sanchez-Ruiz and Makhatadze, 2001). Pereira et al. (2014) demonstrated that compositions with bromelain, when stored at 37 ° C, lost almost all of their enzymatic activity. They attributed this to the self-degradation (autolysis or self-digestion) of bromelain, as 37 ° C has been considered the optimal temperature for its proteolytic activity (Pereira et al., 2014).
[013] Nos últimos anos, o desenvolvimento de sistemas nanoparticulados biodegradáveis para a liberação de fármacos cresceu de modo significativo. Esses carreadores coloidais apresentam diversas vantagens, tais como possibilidade de proteção do ativo incorporado frente às degradações in vivo, relativa estabilidade nos fluidos biológicos e a capacidade de modulação da liberação do fármaco e, por isso, são considerados bastante promissores (Lemarchand et ai., 2004;[013] In recent years, the development of biodegradable nanoparticulate systems for drug delivery has grown significantly. These colloidal carriers have several advantages, such as the possibility of protecting the embedded asset against in vivo degradation, relative stability in biological fluids and the ability to modulate the release of the drug and, therefore, are considered quite promising (Lemarchand et al., 2004;
Le Droumaguet et ai., 2012) . Le Droumaguet et al., 2012).
[014] Devido a suas características de adesividade, biocompatibilidade, biodegradabilidade e baixa toxicidade, a quitosana é um material atraente para diversos usos, principalmente na área farmacêutica. Este polissacarídeo é usado em sistemas de liberação modificada de fármacos de diversas classes terapêuticas, tais como antibióticos, anti- inflamatórios, anti-hipertensivos , além de peptídeos e proteínas (Bernkop-Schniirch, 2000; Flórea et ai., 2006 ; Boonyo et ai., 2007; Sandri et ai., 2010) . A facilidade de adesão da quitosana, assim como seu caráter antifúngico, bacteriostático e sua permeabilidade ao oxigénio são propriedades muito atrativas para uso tópico (Arguelles, 2004; Jayakumar et ai., 2011) . [014] Due to its characteristics of adhesiveness, biocompatibility, biodegradability and low toxicity, chitosan is an attractive material for several uses, mainly in the pharmaceutical area. This polysaccharide is used in modified drug delivery systems of various therapeutic classes, such as antibiotics, anti-inflammatories, antihypertensives, in addition to peptides and proteins (Bernkop-Schniirch, 2000; Flórea et al., 2006; Boonyo et al. ., 2007; Sandri et al., 2010). The ease of adherence of chitosan, as well as its antifungal, bacteriostatic character and its permeability to oxygen are very attractive properties for topical use (Arguelles, 2004; Jayakumar et al., 2011).
[015] Sabe-se que o uso da quitosana para o tratamento de feridas e queimaduras tem sido estudado, com base em sua capacidade hemostática e seu efeito de aceleração no reparo de feridas com melhor efeito estético final. [015] It is known that the use of chitosan for the treatment of wounds and burns has been studied, based on its hemostatic capacity and its accelerating effect on wound repair with a better final aesthetic effect.
[016] Baseado no exposto acima, estudos anteriores mostraram instabilidade da bromelina quando aplicada diretamente como composições tópicas, mesmo quando armazenada em baixas temperaturas (Lourenço et ai., 2016; Pereira et ai., 2014; Spir et ai., 2015) . Logo, entende-se que essa enzima poderia se beneficiar da nanoestruturação baseada em quitosana para tais fins. [016] Based on the above, previous studies have shown instability of bromelain when applied directly as topical compositions, even when stored at low temperatures (Lourenço et al., 2016; Pereira et al., 2014; Spir et al., 2015). Therefore, it is understood that this enzyme could benefit from chitosan-based nanostructuring for such purposes.
[017] Por motivos económicos e de fabricaçao, um novo produto em uma composição líquida seria a alternativa mais simples, porém possíveis processos químicos, físicos e biológicos podem ocorrer de forma a prejudicar sua estabilidade e consequente desempenho. [017] For economic and manufacturing reasons, a new product in a liquid composition would be the simplest alternative, but possible chemical, physical and biological processes can occur in order to impair its stability and consequent performance.
[018] 0 processo de liofilização propicia composições sólidas sem aquecimento acima da temperatura ambiente, o que propicia a estabilidade das proteínas presentes. 0 estado sólido de baixa umidade evita ou diminui possíveis reações químicas, biológicas e stress mecânico, podendo resultar em composições estáveis durante o período de meses até anos sem perda do desempenho desejado. [018] The lyophilization process provides solid compositions without heating above room temperature, which provides the stability of the proteins present. The solid state of low humidity prevents or decreases possible chemical, biological reactions and mechanical stress, which can result in stable compositions over the period of months to years without loss of the desired performance.
[019] A presente invenção visou, portanto, encapsular a bromelina em nanopartícuias de quitosana e liofilizar a composição a fim de aumentar a estabilidade enzimática, com o objetivo de produzir um medicamento para tratar feridas. [019] The present invention therefore aimed to encapsulate bromelain in chitosan nanoparticles and lyophilize the composition in order to increase enzymatic stability, in order to produce a drug to treat wounds.
[020] Inesperadamente, foi revelado que o processo compreendendo o emprego de uma composição a base de nanopartícuias de quitosana-bromelina contendo 1ioprotetores , e liofilizada manteve parâmetros de partícula estáveis, resultando em um uma composição com curto tempo de reconstituição em água e maior taxa de incorporação da bromelina quando comparada com a forma líquida. [020] Unexpectedly, it was revealed that the process comprising the use of a composition based on chitosan-bromelain nanoparticles containing 1ioprotectants, and lyophilized maintained stable particle parameters, resulting in a composition with a short time of reconstitution in water and a higher rate incorporation of bromelain when compared to the liquid form.
Estado da técnica: State of the art:
[021] Alguns documentos do estado da técnica se referem à ativos naturais para tratamento de feridas. Esses ativos conhecidos na literatura são a própolis, a Centella asiatica, a Púnica granatum L, Rosmarinus officinalis L e Calendula officinalis, dentre outras. A bromelina, cujas propriedades também a tornam ideal para o tratamento de feridas, é extensamente revisada, Ataide et ai. Natural actives for wound healing: a review. Phytotherapy Research, 2018. [021] Some state-of-the-art documents refer to natural assets for wound care. These assets known in the literature are propolis, Centella asiatica, Púnica granatum L, Rosmarinus officinalis L and Calendula officinalis, among others. Bromelain, whose properties also make it ideal for wound care, is extensively revised, Ataide et al. Natural actives for wound healing: a review. Phytotherapy Research, 2018.
[022] Ekambaram et ai. (2017) descreve um sistema de distribuição combinada multifásica produzido por eletrofiação coaxial de diferentes polímeros biocompatíveis , com otimização da razão e especificidade dos polímeros para a função específica, usando bromelina como desbridante e ácido salviólico B como estimulador de angiogênese e reepitelização . 0 perfil in vitro de liberação ilustrou a liberação sustentada de protease desbridante e componente bioativo em tempo hábil. O produto fabricado mostrou potencial angiogênico através de migração de células endoteliais in vitro e aumento de novos capilares a partir do vaso sanguíneo existente em resposta a um ensaio de membrana corioalantóica de galinha in ovo. Com a fibra projetada também foi alcançada uma cicatrização acelerada de feridas in vivo no modelo de ferida de pele de rato de espessura total. [022] Ekambaram et al. (2017) describes a multi-phase combined distribution system produced by coaxial electrospinning of different biocompatible polymers, with optimization of the ratio and specificity of the polymers for the specific function, using bromelain as a debridement and salviolic acid B as a stimulator of angiogenesis and reepithelization. The in vitro release profile illustrated the sustained release of debridement protease and bioactive component in a timely manner. The manufactured product showed angiogenic potential through the migration of endothelial cells in vitro and an increase in new capillaries from the existing blood vessel in response to a chicken in ovo chorioallantoic membrane assay. With the projected fiber, accelerated wound healing in vivo was also achieved in the full-thickness rat skin wound model.
[023] Outros documentos remetem ao uso da bromelina associada à quitosana em nanopartícuias . [023] Other documents refer to the use of bromelain associated with chitosan in nanoparticles.
[024] O artigo "BROMELAIN-IMMOBILIZED AND LACTOBIONIC ACID-MODIFIED CHITOSAN NANOPARTÍCLES FOR ENHANCED DRUG PENETRATION IN TUMOR TISSUES" (2018) trata do uso de uma quitosana modificada com ácido lactobiônico, o que modifica suas propriedades. A quitosana modificada foi então usada para produzir uma dispersão de nanopartícuias contendo doxorubicina, que foram pósteriormente revestidas com bromelina para aumentar sua capacidade de penetração tumoral após degradação da matriz extracelular do tumor. Nesse trabalho não foi estudada a estabilidade da composição. Já a presente invenção trata da resolução do problema da estabilidade da bromelina propondo uma composição em que as nanoparticulas de quitosana-bromelina são secas por liofilização em presença de lioprotetorcomposição . Em adição, a presente invenção não trata de quitosana modificada quimicamente, o que diminui o custo de excipiente e mantém o apelo natural da composição. [024] The article "BROMELAIN-IMMOBILIZED AND LACTOBIONIC ACID-MODIFIED CHITOSAN NANOPART Í CLES FOR ENHANCED DRUG PENETRATION IN TUMOR TISSUES" (2018) deals with the use of a chitosan modified with lactobionic acid, which modifies its properties. The modified chitosan was then used to produce a dispersion of nanoparticles containing doxorubicin, which were post coated with bromelain O steriormente to increase their tumor penetration ability after degradation of the tumor extracellular matrix. In this work, the composition stability was not studied. The present invention, on the other hand, addresses the problem of the stability of bromelain by proposing a composition in which the chitosan-bromelain nanoparticles are dried by lyophilization in the presence of lyoprotectant composition. In addition, the present invention does not deal with chemically modified chitosan, which reduces the excipient cost and maintains the natural appeal of the composition.
[025] 0 documento CN 107475226 revela um complexo de bromelina com um polissacarideo polianiônico (alginato, pectina, CMC, goma arábica ou goma xantana) , podendo ser utilizado um polissacarideo ou uma mistura. De acordo com o resumo da patente, os inventores complexam a bromelina com um polissacarideo aniônico, aumentando assim sua estabilidade. Entretanto, o processo de secagem do complexo, seu tamanho médio e caracteristicas não é detalhado. Diferentemente do exposto, a presente invenção faz uso de um polissacarideo policatiônico (quitosana tem carga positiva), além de formar e caracterizar nanoparticulas com bromelina. [025] CN 107475226 discloses a bromelain complex with a polyanionic polysaccharide (alginate, pectin, CMC, gum arabic or xanthan gum), and a polysaccharide or mixture may be used. According to the patent summary, the inventors complex bromelain with an anionic polysaccharide, thereby increasing its stability. However, the drying process of the complex, its average size and characteristics is not detailed. Unlike the above, the present invention makes use of a polycationic polysaccharide (chitosan has a positive charge), in addition to forming and characterizing nanoparticles with bromelain.
[026] Alguns documentos do estado da técnica descrevem ainda a obtenção de pós liofilizados de bromelina. [026] Some state-of-the-art documents also describe obtaining lyophilized bromelain powders.
[027] No documento CN 1834239 é proposto um método para obtenção de pós liofilizados de bromelina. A enzima é extraída do abacaxi em etapas que envolvem filtraçao do suco da fruta, adsorçao com óxido de zinco, ultrafiltraçao e liofilização . A inovação é relativa ao método de purificação alcançado pelo uso do óxido de zinco, e se destina à aplicação em possíveis composições orais. Entretanto, dados sobre a estabilidade, armazenamento e condições em que a liofilização é realizada não são divulgados, embora estes impactem a atividade enzimática do produto. [027] CN 1834239 proposes a method for obtaining lyophilized bromelain powders. The enzyme is extracted from the pineapple in stages that involve filtering the juice fruit, adsorption with zinc oxide, ultrafiltration and lyophilization. The innovation is related to the purification method achieved by using zinc oxide, and is intended for application in possible oral compositions. However, data on stability, storage and conditions under which lyophilization is carried out are not disclosed, although these impact the enzyme activity of the product.
[028] Já na presente invenção, não há necessidade de purificação do extrato pois a bromelina é adquirida comercialmente em sua forma já purificada. Ademais, o produto consiste em uma composição farmacêutica de bromelina encapsulada em quitosana, apresentada como pó seco ( liofilizado) , estável em temperatura ambiente por mais de 90 dias em relação ao tamanho da partícula e atividade enzimática . [028] In the present invention, there is no need to purify the extract because bromelain is commercially acquired in its purified form. In addition, the product consists of a pharmaceutical composition of bromelain encapsulated in chitosan, presented as dry powder (lyophilized), stable at room temperature for more than 90 days in relation to particle size and enzymatic activity.
[029] Já o documento RU 2677232 refere-se a uma composição farmacêutica de bromelina encapsulada em gel de quitosana de baixo e/ou alto peso molecular, se apresentando na forma de macropartícuias . A bromelina é imobilizada em solução tampão Tris-glicina 50 mM e pH 8, 5-9,0, incubada e o precipitado resultante é lavado com tampão Tris-HCl 50 mM e pH 7,5. A invenção tem como destino o tratamento de feridas, proporcionando partículas macroscópicas de tamanhos variados. Entretanto, não apresenta dados acerca da caracterização físico-química das partículas ou mesmo sobre a estabilidade da composição ou das condições de liofilização. [029] Document RU 2677232 refers to a pharmaceutical composition of bromelain encapsulated in low and / or high molecular weight chitosan gel, in the form of macroparticles. The bromelain is immobilized in 50 mM Tris-glycine buffer solution and pH 8, 5-9.0, incubated and the resulting precipitate is washed with 50 mM Tris-HCl buffer and pH 7.5. The invention is intended for the treatment of wounds, providing macroscopic particles of varying sizes. However, it does not present data about the physicochemical characterization of the particles or even about the stability of the composition or the lyophilization conditions.
Adicionalmente, a composição possui pH final entre 8,5 e 9,0, inadequado para o uso na pele, de pH 5,5. Additionally, the composition has a final pH between 8.5 and 9.0, unsuitable for use on the skin, pH 5.5.
[030] A presente invenção se diferencia por se tratar de uma composição reprodutível de nanopartícuias de quitosana de baixo peso molecular liofilizadas . Dados sobre a estabilidade da composição, assim como a caracterização das nanopartícuias , são fornecidos e a mesma apresenta pH compatível com o da pele. [030] The present invention differs in that it is a reproducible composition of lyophilized low molecular weight chitosan nanoparticles. Data on the stability of the composition, as well as the characterization of the nanoparticles, are provided and it has a pH compatible with that of the skin.
[031] Sabe-se também que a adição de lioprotetores , dentre eles, os açúcares, são abordados no estado da técnica. Em particular, o artigo "FREEZE-DRYING OF NANOPARTÍCLES : FORMULATION, PROCESS AND STORAGE CONSIDERATIONS" (2006) compila informações sobre a liofilização de nanopartícuias . A maltose é mencionada para estabilização de vetores encapsulados com caprolactona, mas nenhuma referência é feita à sua atuação quanto à veiculação de proteínas. [031] It is also known that the addition of lyoprotectants, among them, sugars, are addressed in the state of the art. In particular, the article "FREEZE-DRYING OF NANOPARTYCLES: FORMULATION, PROCESS AND STORAGE CONSIDERATIONS" (2006) compiles information on the freeze-drying of nanoparticles. Maltose is mentioned for stabilizing vectors encapsulated with caprolactone, but no reference is made to its performance in terms of protein delivery.
[032] Portanto, nenhum documento descreve a liofilização das nanopartícuias de bromelina em base de quitosana com adição de maltose como lioprotetor, nem oferece extensas e detalhadas descrições do processo capaz de torná- lo reprodutível e aumentar a estabilidade enzimática. [032] Therefore, no document describes the lyophilization of bromelain nanoparticles on the basis of chitosan with the addition of maltose as a lyoprotectant, nor does it offer extensive and detailed descriptions of the process capable of making it reproducible and increasing enzymatic stability.
Breve descrição da invenção: Brief description of the invention:
[033] A presente invenção refere-se a um processo de obtenção de uma composição liofilizada de nanopartícuias a base de quitosana contendo bromelina. [033] The present invention relates to a process for obtaining a lyophilized composition of chitosan-based nanoparticles containing bromelain.
[034] Dita composição revelou-se estável em relação à atividade enzimática utilizando açúcares como lioprotetores. [034] Said composition proved to be stable in relation to the enzymatic activity using sugars as lyoprotectants.
[035] Adicionalmente, a presente invenção revela seu uso na preparação de um medicamento para tratar feridas. [035] Additionally, the present invention reveals its use in the preparation of a medicine to treat wounds.
[036] A composição obtida na forma de pó liofilizado de bromelina nanoestruturada pode ser usado como forma farmacêutica final ou ainda como ingrediente ativo farmacêutico incorporado em outro produto. [036] The composition obtained in the form of lyophilized powder of nanostructured bromelain can be used as a final pharmaceutical form or as an active pharmaceutical ingredient incorporated in another product.
Breve descrição das figuras: Brief description of the figures:
[037] Para obter uma completa visualização do objeto desta invenção, são apresentadas as figuras as quais se faz referência, conforme se segue: [037] To obtain a complete view of the object of this invention, the figures to which reference is made are presented, as follows:
Figura 1. Microscopia eletrónica de varredura (A) e de transmissão (B) das nanoparticulas de quitosana-bromelina . Figure 1. Scanning (A) and transmission (B) electron microscopy of chitosan-bromelain nanoparticles.
Figura 2. Espectros de Infravermelho por transformada de Fourier (FTIR) da bromelina (preto), nanoparticulas de quitosana (vermelho) e nanoparticulas de quitosana-bromelina (verde) . Figure 2. Infrared spectra by Fourier transform (FTIR) of bromelain (black), chitosan nanoparticles (red) and chitosan-bromelain nanoparticles (green).
Figura 3. Tamanho médio das nanoparticulas (A), índice de polidispersão (B) e potencial zeta (C) durante estudo de estabilidade acelerada, em que Chi = nanoparticulas de quitosana, Chi-brom = nanoparticulas de quitosana-bromelina. Barras de erro representam desvio padrão de três medições. Figure 3. Average size of the nanoparticles (A), polydispersion index (B) and zeta potential (C) during an accelerated stability study, in which Chi = chitosan nanoparticles, Chi-brom = chitosan-bromelain nanoparticles. Error bars represent standard deviation of three measurements.
Figura 4. Concentração de proteína (A) e atividade enzimática (B) na suspensão de nanoparticulas de quitosana- bromelina durante estudo de estabilidade acelerada, em que Chi-brom = nanoparticulas de quitosana-bromelina. Barras de erro representam desvio padrão de três medições. Figure 4. Protein concentration (A) and enzyme activity (B) in the suspension of chitosan-bromelain nanoparticles during an accelerated stability study, in which Chi-brom = chitosan-bromelain nanoparticles. Error bars represent standard deviation of three measurements.
Figura 5. Eficiência de encapsulação da bromelina nas nanoparticulas de acordo com a concentração de proteínas (A) e atividade enzimática (B) , em que Gly = glicina, Malt = maltose. As barras de erro representam o desvio padrão das três medições. Figure 5. Bromelain encapsulation efficiency in nanoparticles according to protein concentration (A) and enzymatic activity (B), where Gly = glycine, Malt = maltose. The error bars represent the standard deviation of the three measurements.
Figura 6. Gráfico de pareto do planejamento fatorial relacionando as variáveis (inputs) estudadas em relação as respostas de tamanho médio das partículas (A) , índice de polidispersividade (B) , Dio (C) , D50 (D) , D90 (E) , potencial zeta (F) e eficiência de encapsulação em termos de proteínas (G) e atividade enzimática (H) . Figure 6. Pareto graph of the factorial design relating the variables (inputs) studied in relation to the mean particle size responses (A), polydispersity index (B), Dio (C), D 50 (D), D 90 ( E), zeta potential (F) and encapsulation efficiency in terms of proteins (G) and enzyme activity (H).
Figura 7. Gráficos do efeito principal do planejamento fatorial relacionando as variáveis (inputs) estudadas em relação as respostas de tamanho médio de partículas (A) , índice de polidispersividade (B) , D10 (C) , D50 (D) , D90 (D) , potencial zeta (F) e eficiência de encapsulação em termos de proteínas (G) e atividade enzimática (H) . Figure 7. Graphs of the main effect of factorial design relating the variables (inputs) studied in relation to the responses of mean particle size (A), polydispersity index (B), D 10 (C), D 50 (D), D 90 (D), zeta potential (F) and encapsulation efficiency in terms of proteins (G) and enzyme activity (H).
Figura 8. Microscopia eletrónica de varredura do pó liofilizado com glicina (A) , maltose (B) e após reconstituição com glicina (C) e com maltose (D) . Figure 8. Scanning electron microscopy of lyophilized powder with glycine (A), maltose (B) and after reconstitution with glycine (C) and maltose (D).
Figura 9. Microscopia eletrónica de transmissão das amostras liofilizadas após reconstituição contendo glicina (A) e maltose (B) . Figure 9. Transmission electron microscopy of lyophilized samples after reconstitution containing glycine (A) and maltose (B).
Figura 10. Tamanho médio das nanopartícuias (A), índice de polidispersão (B) e potencial zeta (C) após reconstituição do liofilizado das nanopartícuias de quitosana-bromelina durante o estudo de estabilidade, em que Gly = glicina, Malt = maltose. Barras de erro representam desvio padrão de três medições . Figura 11. Concentração de proteína (A) e atividade enzimática (B) após reconstituição do liofilizado das nanopartícuias de quitosana-bromelina durante o estudo de estabilidade, em que Gly = glicina, Malt = maltose. Barras de erro representam desvio padrão de três medições. Figure 10. Average size of the nanoparticles (A), polydispersion index (B) and zeta potential (C) after reconstitution of the lyophilisate of the chitosan-bromelain nanoparticles during the stability study, where Gly = glycine, Malt = maltose. Error bars represent standard deviation of three measurements. Figure 11. Protein concentration (A) and enzyme activity (B) after reconstitution of the lyophilisate of the chitosan-bromelain nanoparticles during the stability study, where Gly = glycine, Malt = maltose. Error bars represent standard deviation of three measurements.
Figura 12. Gráfico da rampa de secagem utilizada durante o processo de liofilização da formulação. Figure 12. Graph of the drying ramp used during the lyophilization process of the formulation.
Descrição detalhada da invenção: Detailed description of the invention:
[038] A presente invenção refere-se ao processo de obtenção de uma composição liofilizada a base de nanopartícuias de quitosana contendo bromelina. [038] The present invention relates to the process of obtaining a lyophilized composition based on chitosan nanoparticles containing bromelain.
[039] Dita composição revelou-se estável em relação à atividade enzimática utilizando açúcares como lioprotetores . [039] Said composition proved to be stable in relation to the enzymatic activity using sugars as lyoprotectants.
[040] Adicionalmente, a presente invenção revela seu uso na preparação de um medicamento para tratar feridas. [040] Additionally, the present invention reveals its use in the preparation of a medicament to treat wounds.
[041] A composição obtida na forma de pó liofilizado de bromelina nanoestruturada pode ser usado como forma farmacêutica final ou ainda como ingrediente ativo farmacêutico incorporado em outro produto [041] The composition obtained in the form of lyophilized nanostructured bromelain powder can be used as a final pharmaceutical form or as an active pharmaceutical ingredient incorporated in another product
[042] Mais particularmente, o referido processo compreende etapas as quais são descritas como se segue: [042] More particularly, said process comprises steps which are described as follows:
i. Produção das nanopartícuias de quitosana-bromelina ii. 2) Liofilização das nanopartícuias de quitosana- bromelina . i. Production of chitosan-bromelain nanoparticles ii. 2) Freeze-drying of chitosan-bromelain nanoparticles.
[043] Cada uma das etapas é melhor descrita e definida a seguir: [043] Each of the steps is best described and defined below:
i. Produção das nanopartícuias de quitosana-bromelina a) Adicionar por gotejamento uma solução de TPP na concentração de 0,5 mg/mL a uma solução de quitosana na concentração de 2,5mg/mL sob agitação até completa homogeneização; i. Production of chitosan-bromelain nanoparticles a) Add by dripping a solution of TPP in the concentration of 0.5 mg / mL to a solution of chitosan in the concentration of 2.5 mg / mL with stirring until complete homogenization;
b) Adicionar uma solução de bromelina na concentração de lOmg/mL sob agitação a solução obtida na etapa (a) até completa homogeneização; b) Add a solution of bromelain at a concentration of 10mg / mL with stirring the solution obtained in step (a) until complete homogenization;
c) Obter as nanoparticulas de quitosana e bromelina; c) Obtain chitosan and bromelain nanoparticles;
ii. Liofilização das nanoparticulas de quitosana-bromelina d) Solubilizar o lioprotetor diretamente na solução de nanoparticulas obtidas na etapa (c); ii. Lyophilization of chitosan-bromelain nanoparticles d) Solubilize the lyoprotectant directly in the solution of nanoparticles obtained in step (c);
e) A mistura das nanoparticulas com lioprotetor obtida na etapa (d) armazenadas em ultrafreezer a temperatura de -80 °C; e) The mixture of the nanoparticles with the lyoprotectant obtained in step (d) stored in an ultrafreezer at -80 ° C;
f) As nanoparticulas congeladas a -80°C, obtidas na etapa (e) foram inseridas no liofilizador com a prateleira ambientada a -45 °C e mantidas até atingir a mesma temperatura da prateleira; f) The nanoparticles frozen at -80 ° C, obtained in step (e) were inserted into the lyophilizer with the shelf set at -45 ° C and maintained until reaching the same temperature as the shelf;
g) As nanoparticulas da etapa (f) seguem rampa de secagem aumentando-se 5°C da temperatura de -45 °C a +10 °C; g) The nanoparticles of step (f) follow the drying ramp, increasing the temperature by 5 ° C from -45 ° C to +10 ° C;
h) Obtenção da composição liofilizada de nanopart iculas a base de quitosana contendo bromelina. h) Obtaining the lyophilized composition of chitosan-based nanoparticles containing bromelain.
[044] Sendo que a proporção de quitosana, TPP, bromelina ser de 4:6:1 (v/v) . A agitação nas etapas (a) e (b) serem a 350rpm, e o tempo de duração etapa (b) ser de 40 min. [044] The proportion of chitosan, TPP, bromelain being 4: 6: 1 (v / v). The agitation in steps (a) and (b) will be at 350 rpm, and the duration time in step (b) will be 40 min.
[045] No referido processo, o lioprotetor é selecionado dentre pequenas moléculas, como açúcares ou aminoácidos, maltose, glicina, preferencialmente maltose. [045] In this process, the lyoprotectant is selected from small molecules, such as sugars or amino acids, maltose, glycine, preferably maltose.
[046] Na etapa (g) a temperatura é alterada quando a temperatura da composição atinge a temperatura da prateleira, apenas avançando para a próxima etapa quando a temperatura da formulação atinge a temperatura da prateleira. [046] In step (g) the temperature is changed when the temperature of the composition reaches the temperature of the shelf, only advancing to the next step when the temperature of the formulation reaches the temperature of the shelf.
[047] As nanoparticulas obtidas na etapa (c) de quitosana-bromelina apresentam diâmetro médio de 84,5 a 100,9 nm, um índice de polidispersão de 0,18 a 0,23, um potencial zeta de 21,9 a 27,1 mV e uma concentração de partículas na ordem de 1012 partículas/mL . Ainda na etapa c, a bromelina é encapsulada em nanoparticulas de quitosana e apresenta uma eficácia de encapsulação de 83,4 a 97,8% da concentração de proteínas, o que corresponde a uma eficiência de encapsulação de 75,5 a 81,6% da atividade enzimática. [047] The nanoparticles obtained in step (c) of chitosan-bromelain have an average diameter of 84.5 to 100.9 nm, a polydispersity index of 0.18 to 0.23, a zeta potential of 21.9 to 27 , 1 mV and a particle concentration in the order of 1012 particles / mL. Still in step c, bromelain is encapsulated in chitosan nanoparticles and has an encapsulation efficiency of 83.4 to 97.8% of the protein concentration, which corresponds to an encapsulation efficiency of 75.5 to 81.6% enzyme activity.
[048] Em uma modalidade da presente invenção na etapa (d) o lioprotetor está em uma concentração de 3% (m/v) em relação ao volume da solução de nanopartícuia de quitosana- bromelina . [048] In an embodiment of the present invention in step (d) the lyoprotectant is in a concentration of 3% (m / v) in relation to the volume of the chitosan-bromelain nanoparticle solution.
[049] No processo da presente invenção a composição apresenta uma temperatura de colapso que varia de -56 °C a - 28°C, preferivelmente acima de -40°C, com adição de maltose e glicina, respectivamente . [049] In the process of the present invention the composition has a collapse temperature ranging from -56 ° C to - 28 ° C, preferably above -40 ° C, with the addition of maltose and glycine, respectively.
[050] Ainda é objeto da presente invenção uma composição liofilizada de nanoparticulas a base de quitosana contendo bromelina liofilizada obtida pelo processo conforme processo definido anteriormente e que compreende 0,9% a 1,0% de bromelina, 0,9% a 1,0% de quitosana, 3% de lioprotetor. [051] A referida composição compreende um lioprotetor selecionado dentre pequenas moléculas, podendo ser açúcares ou aminoácidos como maltose ou glicina, preferencialmente maltose . [050] A lyophilized composition of chitosan-based nanoparticles containing lyophilized bromelain still obtained by the process as defined above and which comprises 0.9% to 1.0% bromelain, 0.9% to 1, 0% chitosan, 3% lyoprotectant. [051] The said composition comprises a lyoprotectant selected from small molecules, which may be sugars or amino acids such as maltose or glycine, preferably maltose.
[052] Adicionalmente a composição objeto da presente invenção compreende nanopartícuias com diâmetro médio de 88,5 e 127,8 nm, um índice de polidispersão de 0,29 a 0,34, um potencial zeta de 20,0 a 23,2 mV. [052] Additionally, the composition object of the present invention comprises nanoparticles with an average diameter of 88.5 and 127.8 nm, a polydispersity index of 0.29 to 0.34, a zeta potential of 20.0 to 23.2 mV .
[053] A composição obtida pelo processo está na forma de pó liofilizado, apresenta uma eficiência de encapsulação com maltose de 96,3% a 98,8%, o que equivale a uma atividade enzimática de 73,3 a 99,5%. [053] The composition obtained by the process is in the form of lyophilized powder, has a maltose encapsulation efficiency of 96.3% to 98.8%, which is equivalent to an enzymatic activity of 73.3 to 99.5%.
[054] Ainda é objeto da presente invenção o uso da composição obtida conforme definida no processo descrito no preparo de um medicamento para tratar feridas. [054] It is still an object of the present invention to use the composition obtained as defined in the process described in the preparation of a medication to treat wounds.
Exemplo de concretização: Example of embodiment:
1— etapa: Produção das nanopartículas de quitosana-bromelina 1— stage: Production of chitosan-bromelain nanoparticles
Materiais Materials
[055] Bromelina do caule de abacaxi, azocaseína, reagente de Bradford e quitosana de baixo peso molecular, preferencialmente 50,000-190,000 Da (baseado em viscosidade) sendo 75-85% deacetilada (número de catálogo 448869) foram adquiridos da Sigma-Aldrich® (St Louis, EUA) . Todos os outros reagentes foram adquiridos em grau analítico. Sendo que a azocaseína é o reagente utilizado no teste de atividade enzimática e o reagente de Bradford é o reagente utilizado no teste de concentração de proteínas. [056] A solução de bromelina foi preparada dissolvendo a bromelina em água destilada (10 mg/mL) e filtrando-a com membranas de 0,22 pm. [055] Pineapple stem bromelain, azocasein, Bradford reagent and low molecular weight chitosan, preferably 50,000-190,000 Da (based on viscosity) 75-85% deacetylated (catalog number 448869) were purchased from Sigma-Aldrich® (St Louis, USA). All other reagents were purchased analytically. As azocasein is the reagent used in the enzyme activity test and Bradford's reagent is the reagent used in the protein concentration test. [056] The bromelain solution was prepared by dissolving the bromelain in distilled water (10 mg / mL) and filtering it with 0.22 pm membranes.
[057] A solução de quitosana foi preparada na seguinte proporção 2,5 mg/mL de quitosana em ácido acético 1%, pH 5,0, sendo posteriormente filtrada em membranas de 0,45um. [057] The chitosan solution was prepared in the following proportion 2.5 mg / mL of chitosan in 1% acetic acid, pH 5.0, and subsequently filtered through 0.45um membranes.
[058] A solução de TPP foi preparada na seguinte proporção 0,5 mg/mL em água ultrapura, posteriormente filtrada em membrana de 0,22um. Sendo que a solução de TPP está a 30% (m/m) em relação à quantidade total de quitosana. [058] The TPP solution was prepared in the following proportion 0.5 mg / mL in ultrapure water, then filtered through a 0.22 µm membrane. The TPP solution is 30% (w / w) in relation to the total amount of chitosan.
[059] As nanopartícuias foram produzidas pela técnica de reticulação iônica (Shu e Zhu, 2000), utilizando o tripolifosfato de sódio (TPP) como agente reticulante. Foi utilizada uma proporção de 30% (m/m) de TPP em relação a quantidade total de quitosana, e agitação de 350 rpm. A solução de bromelina (10 mg/mL em água) foi adicionada sob agitação de 350 rpm durante 40 minutos, após o gotejamento da solução de TPP na solução de quitosana. Imediatamente após a adição de TPP, 1 ml da solução de bromelina foi adicionada para produzir as nanopartícuias de bromelina-quitosana ou 1 ml de água destilada para produzir nanopartícuias de quitosana . [059] The nanoparticles were produced by the ionic crosslinking technique (Shu and Zhu, 2000), using sodium tripolyphosphate (TPP) as a crosslinking agent. A proportion of 30% (w / w) of TPP was used in relation to the total amount of chitosan, and agitation of 350 rpm. The bromelain solution (10 mg / mL in water) was added under stirring at 350 rpm for 40 minutes, after dripping the TPP solution into the chitosan solution. Immediately after adding TPP, 1 ml of the bromelain solution was added to produce the bromelain-chitosan nanoparticles or 1 ml of distilled water to produce chitosan nanoparticles.
[060] Sendo que as proporções das soluções usadas na concretização da invenção, sem, no entanto, restringir a esta modalidade foram 4 mL de solução de quitosana + 6 mL de solução de TPP + 1 mL de solução de bromelina. [060] Since the proportions of the solutions used in carrying out the invention, without, however, restricting this modality, were 4 ml of chitosan solution + 6 ml of TPP solution + 1 ml of bromelain solution.
[061] As nanopartícuias com e sem bromelina produzidas com diferentes tipos de quitosana foram fisicamente caracterizadas por DLS, potencial zeta e NTA. [061] Nanoparticles with and without bromelain produced with different types of chitosan were physically characterized by DLS, zeta potential and NTA.
A . Distribuição do tamanho, índice de polidispersividade e potencial zeta THE . Size distribution, polydispersity index and zeta potential
[062] Foram avaliados o diâmetro médio e índice de polidispersividade (PDI) das nanopartícuias usando o equipamento Zetasizer Nano ZS (Malvern, Reino Unido) . O tamanho médio e o índice de polidispersividade foram determinados por dispersão de luz dinâmico (DLS), enquanto que o potencial zeta foi medido por microeletroforese de laser Doppler (Zetasizer Nano ZS, Malvern, Reino Unido) . [062] The average diameter and polydispersity index (PDI) of the nanoparticles were evaluated using the Zetasizer Nano ZS equipment (Malvern, United Kingdom). The average size and polydispersity index were determined by dynamic light scattering (DLS), while the zeta potential was measured by Doppler laser microelectrophoresis (Zetasizer Nano ZS, Malvern, United Kingdom).
[063] Todas as análises foram feitas em triplicata de leituras . [063] All analyzes were done in triplicate of readings.
[064] Por meio de medidas de DLS, as nanopartícuias de quitosana-bromelina mostraram um tamanho menor do que as nanopartícuias de quitosana e uma redução no potencial zeta (Tabela 1 ) . [064] Through DLS measurements, chitosan-bromelain nanoparticles showed a smaller size than chitosan nanoparticles and a reduction in zeta potential (Table 1).
Tabela 1 . Distribuição de tamanho das nanopartícuias de quitosana- bromelina. Os resultados são apresentados como média ± desvio padrão de três medidas. DLS = dispersão de luz dinâmico; NTA = análise de rastreamento de nanopartícuias ; Z-ave = tamanho médio, Dio = percentil 10%; D50 = percentil 50%; D90 = percentil 90%. Table 1. Size distribution of chitosan-bromelain nanoparticles. The results are presented as mean ± standard deviation of three measures. DLS = dynamic light scattering; NTA = nanoparticle tracking analysis; Z-ave = medium size, Dio = 10% percentile; D50 = 50% percentile; D90 = 90% percentile.
Figure imgf000020_0001
Figure imgf000020_0001
Figure imgf000021_0002
Figure imgf000021_0002
B . Eficiência de encapsulaçao B . Encapsulation efficiency
[065] Para a determinação da eficiência de encapsulação, as nanoparticulas foram ultracentrifugadas (Centrifuge 5810R, Eppendorf, Alemanha) a 4.000g por 10 minutos, utilizando dispositivos de ultrafiltração de 0,5 mL com membrana de 100 kDa (Amicon® Ultra 100k, Millipore, Alemanha) separando assim a bromelina que permaneceu livre da encapsulada. A concentração de proteínas totais e a atividade enzimática foram determinadas na solução inicial de bromelina e no filtrado (resultante da filtração descrita), e a eficiência foi calculada de acordo com a equação 1: [065] For the determination of encapsulation efficiency, the nanoparticles were ultracentrifuged (Centrifuge 5810R, Eppendorf, Germany) at 4,000g for 10 minutes, using 0.5 mL ultrafiltration devices with 100 kDa membrane (Amicon® Ultra 100k, Millipore, Germany) thus separating the bromelain that remained free from the encapsulated one. Total protein concentration and enzyme activity were determined in the initial bromelain solution and in the filtrate (resulting from the described filtration), and the efficiency was calculated according to equation 1:
Equaçao 1
Figure imgf000021_0001
Equation 1
Figure imgf000021_0001
[066] A solução inicial de bromelina apresentou 2,0 ± 0,3 mg/mL de proteína total e 23,3 ± 1,6 U/mL. A concentração de proteína e atividade enzimática também foram determinadas na solução filtrada resultante (0,25 ± 0,01 mg/mL e 4,5 ± 0,6 U/mL, respectivamente ) para o cálculo da eficiência de encapsulaçao, que foi de 87,0 ± 5,1% da proteína total, correspondente a 80,7 ± 1,1% da atividade enzimática da bromelina (Tabela 2) . [066] The initial bromelain solution showed 2.0 ± 0.3 mg / mL of total protein and 23.3 ± 1.6 U / mL. Protein concentration and enzyme activity were also determined in the resulting filtered solution (0.25 ± 0.01 mg / mL and 4.5 ± 0.6 U / mL, respectively) to calculate the encapsulation efficiency, which was 87.0 ± 5.1% of the total protein, corresponding to 80.7 ± 1.1% of the enzymatic activity of bromelain (Table 2).
Tabela 2 . Concentração de proteínas totais, atividade enzimática e eficiência de encapsulação da bromelina Table 2. Total protein concentration, enzyme activity and bromelain encapsulation efficiency
Figure imgf000022_0001
Figure imgf000022_0001
C. Microscopia eletrónica de varredura e de transmissão C. Scanning and transmission electron microscopy
[067] As características morfológicas das nanopartícuias de quitosana-bromelina foram observadas utilizando microscópio eletrónico de varredura Leo 440i com detector de energia dispersiva de raios X 6070 (LEO Electron Microscopy, Inglaterra) . Imagens de microscopia eletrónica de varredura foram obtidas usando uma tensão de aceleração de 15 kV. Antes da análise, as amostras foram secas a temperatura ambiente, sob vácuo, durante 24 horas e revestidas com ouro (92 A°) utilizando SC7620 Sputter Coater Polaron (VG Microtech, Inglaterra) . As partículas também foram observadas em microscópio eletrónico de transmissão (TEM JEOL-1400 Plus, 120kV), sendo que as grades foram preparadas por contraste negativo . [067] The morphological characteristics of chitosan-bromelain nanoparticles were observed using a Leo 440i scanning electron microscope with a 6070 X-ray dispersive energy detector (LEO Electron Microscopy, England). Scanning electron microscopy images were obtained using an acceleration voltage of 15 kV. Before analysis, the samples were dried at room temperature, under vacuum, for 24 hours and coated with gold (92 A °) using SC7620 Sputter Coater Polaron (VG Microtech, England). The particles were also observed in a transmission electron microscope (TEM JEOL-1400 Plus, 120kV), and the grids were prepared by negative contrast.
[068] Na imagem de microscopia eletrónica de varredura (Figura IA) , as nanopartícuias de quitosana-bromelina apresentaram formato esférico, superfície lisa e diâmetro de aproximadamente 1 pm, que foi maior que o tamanho obtido pelas medidas de DLS e NTA. Mostrando que mesmo um processo de secagem suave, em temperatura ambiente, pode levar à agregação de nanopartícuias , levando à formação de micropartícuias (Rampino et ai., 2013) . Já na imagem de microscopia eletrónica de transmissão (Figura 1), as partículas continuam apresentando formato esférico com diâmetro menor do que 50nm, porém é possível notar a presença de aglomerados com várias partículas unidas com aproximadamente lOOnm, o que é condizente com os resultados obtidos por DLS e NTA. [068] On scanning electron microscopy image (Figure IA), the chitosan-bromelain nanoparticles had a spherical shape, smooth surface and diameter of approximately 1 pm, which was larger than the size obtained by the DLS and NTA measurements. Showing that even a gentle drying process, at room temperature, can lead to the aggregation of nanoparticles, leading to the formation of microparticles (Rampino et al., 2013). In the transmission electron microscopy image (Figure 1), the particles continue to have a spherical shape with a diameter of less than 50nm, however it is possible to notice the presence of clusters with several particles joined with approximately 100nm, which is consistent with the results obtained by DLS and NTA.
D . Espectroscopia no Infravermelho com transformada de Fourier D. Infrared spectroscopy with Fourier transform
[069] Os espectros no infravermelho das nanopartícuias de quitosana e de quitosana-bromelina, e da bromelina livre (Figura 2), foram obtidos em espectrofotômetro de infravermelho com transformada de Fourier (Shimadzu Scientific Instruments, Modelo 8300, Japão), operando de 4000 a 650 crrr1, com resolução de 4 cm-1. Todas as medidas foram realizadas em triplicata. [069] Infrared spectra of chitosan and chitosan-bromelain nanoparticles, and free bromelain (Figure 2), were obtained from an infrared spectrophotometer with Fourier transform (Shimadzu Scientific Instruments, Model 8300, Japan), operating from 4000 at 650 crrr 1 , with a resolution of 4 cm -1 . All measurements were performed in triplicate.
[070] No espectro da bromelina (preto) pode ser observado um pico a 3280 cm-1 que corresponde a ligação peptídica enzimática. Também é possível observar pico em 1634 cm-1 indicativo de grupo C=0, e a 1515 crrr1 indicativo de grupo N-H, que confirmam a presença de aminoácidos. O pico em 1236 cm-1 pode ser atribuído a ligação C-N, em amina alifática (Devakate et al . , 2009; Soares et al . , 2012; Ataide et al . , 2017a; Ataide et al . , 2017b) . [070] In the spectrum of bromelain (black) a peak at 3280 cm-1 can be observed that corresponds to the enzymatic peptide bond. It is also possible to observe a peak at 1634 cm-1 indicative of group C = 0, and at 1515 crrr 1 indicative of NH group, which confirm the presence of amino acids. The peak in 1236 cm-1 can be attributed to the CN bond, in aliphatic amine (Devakate et al., 2009; Soares et al., 2012; Ataide et al., 2017a; Ataide et al., 2017b).
[071] Os espectros das nanopartícuias apresentam banda de absorção em torno de 3400 crrr1, equivalente a interação de hidrogénio e vibração O-H (Wu et al . , 2005), com maior intensidade na nanopartícuia de quitosana-bromelina quando comparado à nanopartícuia de quitosana. Em ambos espectros também se observa um pico em torno de 795 crrr1, que pode ser atribuído a presença de vibrações relacionadas a ligação entre fósforo e oxigénio (P-0 e P-O-P) (Knaul et al . , 1999;[071] The spectra of the nanoparticles show an absorption band around 3400 crrr 1 , equivalent to the interaction of hydrogen and OH vibration (Wu et al., 2005), with greater intensity in the chitosan-bromelain nanoparticle when compared to the chitosan nanoparticle . In both spectra there is also a peak around 795 crrr 1 , which can be attributed to the presence of vibrations related to the connection between phosphorus and oxygen (P-0 and POP) (Knaul et al., 1999;
Antoniou et al . , 2015) . Na nanopartícuia de quitosanaAntoniou et al. , 2015). In the chitosan nanoparticle
(vermelho) é possível observar o deslocamento dos picos de vibração C=0 de amida II e N-H de amina I, que indica a interação entre os grupos amino da quitosana com os grupos fosfato do TPP (Knaul et al . , 1999; Antoniou et al . , 2015) . Comparando essa mesma região da nanopartícuia de quitosana e da nanopartícuia de quitosana-bromelina (verde), nota-se um aumento de intensidade de ambos picos, o que pode ser atribuído a presença de bromelina, uma vez que a bromelina também absorve na mesma frequência (Devakate et al . , 2009;(red) it is possible to observe the displacement of the peaks of vibration C = 0 of amide II and NH of amine I, which indicates the interaction between the amino groups of chitosan with the phosphate groups of TPP (Knaul et al., 1999; Antoniou et al., 2015). Comparing this same region of the chitosan nanoparticle and the chitosan-bromelain nanoparticle (green), there is an increase in intensity of both peaks, which can be attributed to the presence of bromelain, since bromelain also absorbs at the same frequency (Devakate et al., 2009;
Soares et al . , 2012) . Além disso, mais uma vez é observado o deslocamento dos picos correspondentes ao grupo N-H, o que indica interação com o grupo amino. Soares et al. , 2012). In addition, again, the displacement of the peaks corresponding to the N-H group is observed, which indicates interaction with the amino group.
E. Estudos de estabilidade E. Stability studies
[072] Para o estudo de estabilidade das nanopartícuias foram preparadas solução de bromelina 10 mg/mL, e soluções de nanoparticulas de quitosana e de quitosana-bromelina . As 3 soluções foram acondicionadas em frascos de vidro e armazenadas em 4 condições: ambiente claro (27±2°C, com exposição a luz), ambiente escuro (27±2°C, protegido da luz), geladeira (5±2°C) e estufa (45±2°C) . Para o teste de estabilidade preliminar, as amostras foram avaliadas durante 15 dias seguidos, a partir do dia 0 (que foram preparadas e acondicionadas) . 0 teste de estabilidade acelerada foi feito em sequência, nas mesmas condições, avaliando as amostras nos dias 30, 45, 60, 90, 120, 150 e 180 (Anvisa, 2005) . [072] For the stability study of nanoparticles, 10 mg / mL bromelain solution and chitosan and chitosan-bromelain nanoparticles. The 3 solutions were conditioned in glass bottles and stored in 4 conditions: light environment (27 ± 2 ° C, with exposure to light), dark environment (27 ± 2 ° C, protected from light), refrigerator (5 ± 2 ° C) and greenhouse (45 ± 2 ° C). For the preliminary stability test, the samples were evaluated for 15 consecutive days, starting on day 0 (which were prepared and packaged). The accelerated stability test was performed in sequence, under the same conditions, evaluating the samples on days 30, 45, 60, 90, 120, 150 and 180 (Anvisa, 2005).
[073] Durante o estudo preliminar de estabilidade, parâmetros gerais, como valor de pH e caracteristicas macroscópicas foram avaliados. A suspensão de nanoparticulas de quitosana e quitosana-bromelina não apresentou alterações macroscópicas e de pH . Assim, as amostras continuaram no estudo de estabilidade acelerado. Após 7 dias de estudo (Figura 3), as nanoparticulas de quitosana-bromelina apresentaram um aumento significativo (p <0,05, teste T de Student) no diâmetro médio em todas as condições estudadas, acompanhado também de aumento significativo do índice de polidispersão e diminuição do potencial zeta. O aumento no tamanho de partícula é regularmente atribuído à aglomeração de partículas, que pode ser induzida pela adsorção de moléculas ativas nas nanoparticulas (Magenheim e Benita, 1991; Abdelwahed et al . , 2006) . [073] During the preliminary stability study, general parameters, such as pH value and macroscopic characteristics were evaluated. The suspension of chitosan and chitosan-bromelain nanoparticles did not show macroscopic and pH changes. Thus, the samples continued in the accelerated stability study. After 7 days of study (Figure 3), the chitosan-bromelain nanoparticles showed a significant increase (p <0.05, Student's T test) in the average diameter in all conditions studied, also accompanied by a significant increase in the polydispersion index and decreased zeta potential. The increase in particle size is regularly attributed to particle agglomeration, which can be induced by the adsorption of active molecules in the nanoparticles (Magenheim and Benita, 1991; Abdelwahed et al., 2006).
[074] A concentração de proteína e atividade enzimática também foram determinadas durante o estudo de estabilidade acelerada. As nanopartícuias de quitosana não apresentaram concentração proteica significativa e nem atividade enzimática em nenhum tempo ou condição estudada. As nanopartícuias de quitosana-bromelina mostraram uma diminuição na concentração de proteína e atividade enzimática (Figura 4) ao longo do tempo, onde a atividade enzimática diminuiu significativamente (p <0,05, teste T de Student) após 7 dias. Essa diminuição foi ligeiramente menos pronunciada quando as amostras foram armazenadas em baixas temperaturas (Figura 4), de acordo com resultados reportados por outros estudos que utilizaram a bromelina (Pereira et ai., 2014; Spir et al . , 2015; Lourenço et al . , 2016) . Diante desses resultados, as nanopartícuias de quitosana-bromelina são instáveis quando armazenadas em forma líquida, e, portanto, a liofilização é um processo importante para aumentar a preservação do tamanho das partículas para armazenamento a longo prazo (Fonte et al . , 2016; Almalik et al., 2017) e da atividade enzimática da bromelina (Arakawa et al. , 2001) . [074] Protein concentration and enzyme activity were also determined during the stability study accelerated. Chitosan nanoparticles did not show significant protein concentration or enzyme activity in any time or condition studied. Chitosan-bromelain nanoparticles showed a decrease in protein concentration and enzyme activity (Figure 4) over time, where enzyme activity decreased significantly (p <0.05, Student's T test) after 7 days. This decrease was slightly less pronounced when the samples were stored at low temperatures (Figure 4), according to results reported by other studies that used bromelain (Pereira et al., 2014; Spir et al., 2015; Lourenço et al. , 2016). Given these results, chitosan-bromelain nanoparticles are unstable when stored in liquid form, and therefore lyophilization is an important process to increase the preservation of particle size for long-term storage (Fonte et al., 2016; Almalik et al., 2017) and the enzymatic activity of bromelain (Arakawa et al., 2001).
2â etapa: Liofilização das nanopartícuias de quitosana- bromelina Step 2: Freeze-drying of the nanoparticles of bromelain quitosana-
A . Avaliação da adição de lioprotetores e temperatura de colapso THE . Assessment of lyoprotectant addition and collapse temperature
[075] Trealose, maltose e glicina foram escolhidas como possíveis lioprotetores, devido a suas temperaturas de colapso quando em sozinhos em solução, sendo que a temperatura de colapso foi de -24,3°, -25,1 e -12,7°, respectivamente . Posteriormente, foram dissolvidas na suspensão de nanoparticulas de quitosana-bromelina na concentração de 3% (m/v), para avaliar seu efeito na temperatura de colapso das suspensões de nanoparticulas de quitosana-bromelina. A temperatura de colapso das nanoparticulas de quitosana-bromelina com e sem lioprotetores foi determinada por um microscópio acoplado a um módulo de liofilização, Lyostat 2, modelo FDCS 196 (Linkam Instruments, Surrey, Reino Unido), equipado com sistema de congelamento de nitrogénio liquido (LNP94/2) e controlador de temperatura programável (TMS94, Linkam) . As nanoparticulas de quitosana- bromelina apresentaram uma temperatura de colapso de -56 °C, que diminuiu para -49,3°C, -34,8°C e -28,0°C com adição de trealose, maltose e glicina, respectivamente . [075] Trealose, maltose and glycine were chosen as possible lyoprotectants, due to their collapse temperatures when alone in solution, with the collapse temperature being -24.3 °, -25.1 and -12.7 ° , respectively. Subsequently, they were dissolved in the suspension of chitosan-bromelain nanoparticles at a concentration of 3% (m / v), to evaluate their effect on the collapse temperature of the suspensions of chitosan-bromelain nanoparticles. The collapse temperature of chitosan-bromelain nanoparticles with and without lyoprotectants was determined by a microscope attached to a lyophilization module, Lyostat 2, model FDCS 196 (Linkam Instruments, Surrey, United Kingdom), equipped with a liquid nitrogen freezing system (LNP94 / 2) and programmable temperature controller (TMS94, Linkam). The chitosan-bromelain nanoparticles showed a collapse temperature of -56 ° C, which decreased to -49.3 ° C, -34.8 ° C and -28.0 ° C with the addition of trehalose, maltose and glycine, respectively .
[076] Apesar dos dois açúcares (maltose e trealose) terem temperaturas de colapso próximas quando sozinhos (Tabela 3), foi inesperado o fato de resultarem em soluções com temperaturas de colapso tão diferentes, quando em conjunto com a dispersão de nanoparticulas . [076] Although the two sugars (maltose and trehalose) have close collapse temperatures when alone (Table 3), it was unexpected that they would result in solutions with such different collapse temperatures when in conjunction with the dispersion of nanoparticles.
Tabela 3 Temperatura de colapso dos possíveis lioprotetores em solução isolados e em nanoparticulas . Table 3 Collapse temperature of possible lyoprotectants in isolated solution and in nanoparticles.
Figure imgf000027_0001
[077] Em geral, o processo de liofilizaçao abaixo de
Figure imgf000027_0001
[077] In general, the freeze-drying process below
40°C não é aconselhável (Carpenter et al . , 1997; Tattini Jr et al . , 2006) e, assim, a maltose e a glicina foram avaliadas no planejamento fatorial como lioprotetores , uma vez que permitem que a liofilização se inicie a -40°C. 40 ° C is not advisable (Carpenter et al., 1997; Tattini Jr et al., 2006) and, thus, maltose and glycine were evaluated in factorial design as lyoprotectants, since they allow lyophilization to begin - 40 ° C.
B . Planejamento experimental do processo de liofilização B . Experimental planning of the lyophilization process
[078] Para otimizar a composição liofilizada, dos pontos experimentais, apenas com as nanoparticulas foi realizado um planejamento fatorial 23 com duplicata de quitosana-bromelina . As variáveis (inputs) avaliadas foram o tipo de lioprotetor (glicina ou maltose), a concentração de lioprotetor (3 ou 5%, m/v) e o próprio processo de liofilização (antes e após o processo) . As amostras foram submetidas ao congelamento rápido com nitrogénio liquido e liofilizadas no Lyostar 3 Freeze-Drier (SP Scientific, USA) . A secagem primária foi realizada aumentando-se 5°C da temperatura de -45°C a 10°C (Figura 12), esperando para que a temperatura dos vials atingisse a temperatura das prateleiras. Depois de secas as amostras foram reconstituídas com água destilada para o mesmo volume inicial e foram físico-quimicamente caracterizadas por dispersão de luz dinâmico e eficiência de encapsulação, que foram utilizados como respostas do planejamento fatorial. Os produtos liofilizados foram submetidos a análise termogravimétrica[078] To optimize the lyophilized composition, of the experimental points, only with the nanoparticles a factorial design 2 3 was carried out with chitosan-bromelain duplicate. The variables (inputs) evaluated were the type of lyoprotectant (glycine or maltose), the lyoprotectant concentration (3 or 5%, m / v) and the lyophilization process itself (before and after the process). The samples were subjected to rapid freezing with liquid nitrogen and lyophilized in Lyostar 3 Freeze-Drier (SP Scientific, USA). Primary drying was carried out by increasing the temperature from -45 ° C to 10 ° C by 5 ° C (Figure 12), waiting for the temperature of the vials to reach the temperature of the shelves. After drying, the samples were reconstituted with distilled water for the same initial volume and were physicochemically characterized by dynamic light scattering and encapsulation efficiency, which were used as factorial design responses. The lyophilized products were subjected to thermogravimetric analysis
(TGA-50M, Shimadzu, Japao) a fim de se determinar a umidade residual . As amostras de nanopartícuias secas foram precisamente pesadas (cerca de 10 mg) e foram então aquecidas a 10 °C/min de 25 °C até 300 °C, sob atmosfera de nitrogénio com um fluxo de vazão de 50 mL/min. A umidade residual foi determinada por perda de peso estável (%) a temperatura de cerca de 100°C (Sylvester et ai., 2018) . (TGA-50M, Shimadzu, Japan) in order to determine residual moisture. The samples of dried nanoparticles were precisely weighed (about 10 mg) and were then heated at 10 ° C / min from 25 ° C to 300 ° C, under a nitrogen atmosphere with a flow rate of 50 ml / min. Residual humidity was determined by stable weight loss (%) at a temperature of about 100 ° C (Sylvester et al., 2018).
[079] Todos os liofilizados tinham bom aspecto e não apresentaram encolhimento. As nanoparticulas com glicina e maltose foram imediatamente reconstituídas depois da adição de água e as soluções resultantes eram límpidas. Sem o lioprotetor, no entanto, a ressuspensão demorou mais de 20 segundos e as soluções ficaram levemente turvas, mesmo depois de agitadas em vórtex. Os pós liofilizados foram analisados por análise termogravimétrica para se determinar a umidade residual. As composições com glicina em concentração de 3% e 5% apresentaram 4,1% e 3,2% de perda de massa, respectivamente, enquanto as composições com maltose apresentaram 5,6% e 3,8%. Os liofilizados foram reconstituídos em água destilada para se analisar as características físicas das partículas por dispersão de luz dinâmico (Tabela 4) e a eficiência de encapsulação (Figura 5), que foram considerados outputs para o planejamento fatorial. Depois da liofilização, a glicina em concentração de 3% (m/v) conseguiu manter o índice de polidispersividade dentro dos valores desejáveis, porém o potencial zeta decaiu. Por outro lado, a maltose apresentou comportamento oposto, aumentando o índice de polidispersividade e demonstrando pouco efeito no potencial zeta. Tabela 4. Tamanho das nanopartícuias , PDI e potencial zeta antes e depois do processo de liofilização (planejamento experimental) . Os resultados são apresentados como média ± desvio padrão de duas composições, medidas três vezes cada. Z-ave = tamanho médio das partículas, PDI = índice de polidispersividade, controle=nanopartícuia sem lioprotetor. [079] All lyophilisates looked good and did not shrink. The nanoparticles with glycine and maltose were immediately reconstituted after adding water and the resulting solutions were clear. Without the lyoprotectant, however, resuspension took more than 20 seconds and the solutions were slightly cloudy, even after vortexing. Lyophilized powders were analyzed by thermogravimetric analysis to determine residual moisture. Compositions with glycine in concentration of 3% and 5% showed 4.1% and 3.2% of loss of mass, respectively, while the compositions with maltose presented 5.6% and 3.8%. The lyophilizates were reconstituted in distilled water to analyze the physical characteristics of the particles by dynamic light scattering (Table 4) and the encapsulation efficiency (Figure 5), which were considered outputs for factorial design. After lyophilization, glycine in a concentration of 3% (m / v) was able to keep the polydispersity index within the desirable values, however the zeta potential declined. On the other hand, maltose showed the opposite behavior, increasing the polydispersity index and showing little effect on the zeta potential. Table 4. Size of nanoparticles, PDI and zeta potential before and after the lyophilization process (experimental design). The results are presented as mean ± standard deviation of two compositions, measured three times each. Z-ave = mean particle size, PDI = polydispersity index, control = nanoparticle without lioprotector.
Figure imgf000030_0001
Figure imgf000030_0001
[080] A eficiência de encapsulação antes do processo de liofilização aumentou em termos de concentração de proteínas depois da adição de glicina e maltose, enquanto a eficiência de encapsulação em termos de atividade enzimática diminuiu depois da adição de glicina e aumentou depois da adição de maltose (Figura 5) . Depois da liofilização, foi possível observar um pequeno aumento na eficiência de encapsulação de proteínas para todas as amostras. A eficiência de encapsulação em termos de atividade enzimática também aumentou em todas as composiçoes. [081] As respostas (outputs) (tamanho médio das partículas, PDI, D10, D50, D90, potencial zeta e eficiência de encapsulação ) foram estatisticamente analisados utilizando-se diagramas de pareto (Figura 6), e os efeitos principais das variáveis nas respostas também foram analisados (Figura 7) . Os lioprotetores significativamente interferem em quase todas as respostas, excluindo-se potencial zeta e eficiência de encapsulação em termos de atividade enzimática. A glicina aumentou o tamanho médio das partículas aumentando os percentuais de distribuição D10, D50, D90, no entanto ela também diminuiu o índice de polidispersão, indicando uma distribuição de tamanho mais estreita. Por outro lado, a maltose diminuiu o tamanho médio das nanopartícuias e aumentou o índice de polidispersão. A concentração dos lioprotetores foi uma importante variável observada para o PDI, D10 e encapsulação de proteínas, sendo que baixas concentrações (3%, m/v) diminuem o PDI, aumentando o D10 e a encapsulação de proteínas. [080] The encapsulation efficiency before the lyophilization process increased in terms of protein concentration after the addition of glycine and maltose, while the encapsulation efficiency in terms of enzymatic activity decreased after the addition of glycine and increased after the addition of maltose (Figure 5). After lyophilization, it was possible to observe a small increase in the protein encapsulation efficiency for all samples. The encapsulation efficiency in terms of enzyme activity has also increased in all compositions. [081] The responses (outputs) (mean particle size, PDI, D10, D50, D90, zeta potential and encapsulation efficiency) were statistically analyzed using pareto diagrams (Figure 6), and the main effects of variables on responses were also analyzed (Figure 7). Lyoprotectants significantly interfere with almost all responses, excluding zeta potential and encapsulation efficiency in terms of enzyme activity. Glycine increased the average particle size by increasing the D10, D50, D90 distribution percentages, however it also decreased the polydispersity index, indicating a narrower size distribution. On the other hand, maltose decreased the average size of the nanoparticles and increased the polydispersity index. The concentration of lyoprotectants was an important variable observed for PDI, D10 and protein encapsulation, with low concentrations (3%, m / v) decreasing PDI, increasing D10 and protein encapsulation.
[082] Excluindo-se a encapsulação de proteínas, a liofilização afeta significativamente todas as respostas. 0 processo aumentou o tamanho médio das partículas através do aumento do percentil de distribuição, também aumentando a polidispersão e a encapsulação de atividade enzimática. 0 potencial zeta diminuiu com o processo de liofilização, o que poderia causar algum problema na estabilidade das nanopartícuias , que deve ser estudada. Considerando todos os efeitos, as composiçoes com glicina ou maltose a concentração de 3% (m/v) parecem ter potencial para melhor estabilizar as nanoparticulas de quitosana-bromelina . [082] Excluding protein encapsulation, lyophilization significantly affects all responses. The process increased the average particle size by increasing the percentile of distribution, also increasing the polydispersity and the encapsulation of enzymatic activity. The zeta potential decreased with the lyophilization process, which could cause some problem in the stability of the nanoparticles, which must be studied. Considering all the effects, the compositions with glycine or maltose the concentration 3% (w / v) seem to have the potential to better stabilize chitosan-bromelain nanoparticles.
C. Produção e caracterização das nanoparticulas liofilizadas C. Production and characterization of lyophilized nanoparticles
[083] Com base no planejamento fatorial, constatou-se que as composições contendo 3% (m/v) de glicina e maltose como lioprotetores foram as mais promissoras para estabilização das nanoparticulas de quitosana-bromelina. Sendo assim, um novo lote de amostras com esses excipientes foi produzido e liofilizado seguindo os parâmetros antes determinados. Imediatamente após o término do processo de liofilização, as amostras foram caracterizadas e submetidas a estudo de estabilidade. Para esse estudo, as amostras secas foram mantidas nos vials de liofilização vedados com filme plástico e armazenadas em temperatura ambiente (25°± 2o) e em geladeira (5o ± 2o) protegidas da luz. [083] Based on factorial design, it was found that compositions containing 3% (w / v) of glycine and maltose as lyoprotectants were the most promising for stabilizing chitosan-bromelain nanoparticles. Thus, a new batch of samples with these excipients was produced and lyophilized following the parameters previously determined. Immediately after the end of the lyophilization process, the samples were characterized and submitted to a stability study. For this study, the dried samples were kept sealed in the lyophilization vials with plastic wrap and stored at room temperature (25 ° ± 2 ° ) and refrigerator (5 ± 2 o) protected from light.
[084] As amostras foram caracterizadas quanto ao tamanho médio, índice de polidispersão e potencial zeta, antes e imediatamente após a liofilização (Tabela 5) . A adição de glicina aumentou o tamanho médio das nanoparticulas e o potencial zeta e diminuiu o índice de polidispersão quando comparado com as nanoparticulas sem adição de lioprotetores. Por outro lado, a adição de maltose apresenta efeito contrário, diminuindo o tamanho médio e o potencial zeta e aumentando o índice de polidispersão. Conforme observado no planejamento experimental, após o processo de liofilização o tamanho médio das nanoparticulas e o PDI aumentaram, enquanto que o potencial zeta diminuiu. A eficiência de encapsulação em todos os casos aumentou após o processo de liofilização . [084] The samples were characterized in terms of average size, polydispersity index and zeta potential, before and immediately after lyophilization (Table 5). The addition of glycine increased the average size of the nanoparticles and the zeta potential and decreased the polydispersity index when compared to the nanoparticles without the addition of lyoprotectants. On the other hand, the addition of maltose has the opposite effect, decreasing the average size and zeta potential and increasing the polydispersity index. As observed in the experimental design, after the lyophilization process the average size of the nanoparticles and the PDI increased, while the zeta potential decreased. The encapsulation efficiency in all cases increased after the lyophilization process.
Tabela 5 . Tamanho das nanoparticulas , PDI e potencial zeta antes e depois do processo de liofilização . Os resultados apresentados como média ± desvio padrão de duas composições, medidas três vezes cada. Z-ave = tamanho médio das partículas, PDI = índice de polidispersividade, EE Ptn = eficiência de encapsulaçao proteínas totais, EE Ativ eficiência de encapsulação atividade enzimática. Table 5. Size of nanoparticles, PDI and zeta potential before and after the lyophilization process. The results are presented as mean ± standard deviation of two compositions, measured three times each. Z-ave = mean particle size, PDI = polydispersity index, EE Ptn = total protein encapsulation efficiency, EE Activ encapsulation efficiency enzymatic activity.
Figure imgf000033_0001
Figure imgf000033_0001
[085] Após o término do processo de liofilização, a morfologia das amostras foi avaliada por microscopia eletrónica de varredura (Figura 8) na forma seca (Figura 8A e *B) e após reconstituição (Figura 8C e 8D) . Devido a limitação do equipamento, as amostras após reconstituição apresentam pequenos pontos, não sendo possível determinar adequadamente o limite das nanoparticulas . [085] After the lyophilization process was finished, the morphology of the samples was evaluated by scanning electron microscopy (Figure 8) in dry form (Figure 8A and * B) and after reconstitution (Figure 8C and 8D). Due to equipment limitation, samples after reconstitution have small dots, and it is not possible to determine the nanoparticles limit properly.
[086] As amostras reconstituídas também foram analisadas em microscópio eletrónico de transmissão (Figura 9) . Nessas imagens é possível notar que ambas partículas possuem formato esférico, sendo que as partículas liofilizadas com glicina apresentam maior diâmetro médio e uma distribuição de tamanho mais homogénea quando comparada com a composição contendo maltose. No entanto, a composição com maltose preservou mais as caracteristicas da suspensão inicial de nanoparticulas de quitosana-bromelina, ou seja, presença de aglomerados de aproximadamente lOOnm composto por várias partículas menores. [086] The reconstituted samples were also analyzed using a transmission electron microscope (Figure 9). In these images it is possible to notice that both particles have a spherical shape, and the particles lyophilized with glycine have a larger average diameter and a more homogeneous size distribution when compared to the composition containing maltose. However, the maltose composition preserved more the characteristics of the initial suspension of chitosan-bromelain nanoparticles, that is, the presence of agglomerates of approximately 100nm composed of several smaller particles.
[087] As amostras apresentaram umidade residual de 3.5% e 4.4% para as amostras com glicina e maltose respectivamente, que foram menores que os valores encontrados durante o plane amento, mas ainda superior ao limite recomendado de 2% (Abdelwahed et ai., 2006; Sylvester et ai., 2018) . Após 90 dias de estudo de estabilidade, a umidade residual das amostras com glicina aumentou para 6.2% e 7.6% quando armazenada em temperatura ambiente e em geladeira, respectivamente. Já as amostras de maltose apresentaram uma redução na umidade residual, que ficou em 2.4% e 1.8% quando armazenadas em temperatura ambiente e geladeira, respectivamente . [087] The samples showed residual moisture of 3.5% and 4.4% for the samples with glycine and maltose respectively, which were lower than the values found during planning, but still above the recommended limit of 2% (Abdelwahed et al., 2006; Sylvester et al., 2018). After 90 days of stability study, the residual humidity of the samples with glycine increased to 6.2% and 7.6% when stored at room temperature and in a refrigerator, respectively. The maltose samples showed a reduction in residual moisture, which was 2.4% and 1.8% when stored at room temperature and refrigerator, respectively.
[088] Nos dias 0, 30, 60 e 90, as amostras acondicionadas em temperatura ambiente e em geladeira foram reconstituídas com o mesmo volume inicial (3mL de água MilliQ) e foram acompanhadas quanto ao tamanho médio, índice de polidispersão e potencial zeta (Figura 10), e concentração de proteínas e atividade enzimática (Figura 11) . Apesar de apresentar o maior índice de polidispersão no início do estudo de estabilidade, a composição de nanoparticulas de quitosana-bromelina contendo maltose mantiveram os parâmetros de partícula estáveis durante todo o período de estudo (Figura 10), sendo que a composição armazenada em geladeira (5o ± 2o) apresentou os resultados mais estáveis. Por sua vez, as composições com glicina não foram estáveis, chegando a um PDI de 1.0 quando armazenadas em temperatura ambiente (25° ± 2o ) . [088] On days 0, 30, 60 and 90, samples stored at room temperature and in a refrigerator were reconstituted with the same initial volume (3mL of MilliQ water) and were monitored for mean size, polydispersity index and zeta potential ( Figure 10), and protein concentration and enzyme activity (Figure 11). Despite presenting the highest polydispersity index at the beginning of the stability study, the composition of nanoparticles of chitosan-bromelain containing maltose kept the particle parameters stable throughout the study period (Figure 10), with the composition stored in a refrigerator (5 o ± 2 o ) showing the most stable results. In turn, the compositions were not stable with glycine, reaching a PDI of 1.0 when stored at room temperature (25 ° ± 2 ° ).
[089] Quanto aos parâmetros relacionados a estabilidade da bromelina (atividade enzimática e proteínas totais), foi possível notar que a concentração de proteínas e atividade enzimática não apresentou alterações significativas no início e no final do estudo de estabilidade (dias 1 e 90), Figura 11. [089] As for the parameters related to the stability of bromelain (enzyme activity and total proteins), it was possible to notice that the protein concentration and enzyme activity did not show significant changes at the beginning and at the end of the stability study (days 1 and 90) Figure 11.

Claims

REIVINDICAÇÕES
1. Processo de obtenção de uma composição liofilizada de nanopartícuias a base de quitosana contendo bromelina, caracterizado pelo fato de que compreende as seguintes etapas : 1. Process of obtaining a lyophilized composition of chitosan-based nanoparticles containing bromelain, characterized by the fact that it comprises the following steps:
i. Produção das nanoparticulas de quitosana- bromelina i. Production of chitosan-bromelain nanoparticles
ii. Liofilização das nanoparticulas de quitosana- bromelina . ii. Lyophilization of chitosan-bromelain nanoparticles.
2. Processo de acordo com a reivindicação 1, caracterizado pelo fato de que compreende as seguintes etapas e subetapas: i. Produção das nanoparticulas de quitosana- bromelina 2. Process according to claim 1, characterized by the fact that it comprises the following steps and substeps: i. Production of chitosan-bromelain nanoparticles
a) Adicionar por gotejamento uma solução de TPP na concentração de 0,5 mg/mL a uma solução de quitosana na concentração de 2,5mg/mL sob agitação até completa homogeneização; a) Add by dripping a solution of TPP in the concentration of 0.5 mg / mL to a solution of chitosan in the concentration of 2.5 mg / mL with stirring until complete homogenization;
b) Adicionar uma solução de bromelina na concentração de lOmg/mL sob agitação a solução obtida na etapa (a) até completa homogeneização; b) Add a solution of bromelain at a concentration of 10mg / mL with stirring the solution obtained in step (a) until complete homogenization;
c) Obter as nanoparticulas de quitosana e bromelina; c) Obtain chitosan and bromelain nanoparticles;
ii. Liofilização das nanoparticulas de quitosana-bromelina d) Solubilizar o lioprotetor diretamente na solução de nanoparticulas obtidas na etapa (c); ii. Lyophilization of chitosan-bromelain nanoparticles d) Solubilize the lyoprotectant directly in the solution of nanoparticles obtained in step (c);
e) A mistura das nanoparticulas com lioprotetor obtida na etapa (d) armazenadas em ultrafreezer a temperatura de -80 °C; e) The mixture of the nanoparticles with the lyoprotectant obtained in step (d) stored in an ultrafreezer at -80 ° C;
f) As nanoparticulas congeladas a -80°C, obtidas na etapa (e) foram inseridas no liofilizador com a prateleira ambientada a -45 °C e mantidas até atingir a mesma temperatura da prateleira; f) The nanoparticles frozen at -80 ° C, obtained in step (e) were inserted into the lyophilizer with the shelf set at -45 ° C and maintained until reaching the same temperature as the shelf;
g) As nanoparticulas da etapa (f) seguem rampa de secagem aumentando-se 5°C da temperatura de -45 °C a +10 °C; g) The nanoparticles of step (f) follow the drying ramp, increasing the temperature by 5 ° C from -45 ° C to +10 ° C;
h) Obtenção da composição liofilizada de nanoparticulas a base de quitosana contendo bromelina. h) Obtaining the lyophilized composition of nanoparticles based on chitosan containing bromelain.
3. Processo de acordo com as reivindicações 1 e 2 caracterizado pela proporção de quitosana, TPP, bromelina ser de 4 : 6 : 1 (v/v) . Process according to claims 1 and 2, characterized in that the proportion of chitosan, TPP, bromelain is 4: 6: 1 (v / v).
4. Processo de acordo com as reivindicações 1 e 2 caracterizado pela agitação nas etapas (a) e (b) serem a 350rpm. Process according to claims 1 and 2, characterized by the agitation in steps (a) and (b) being at 350 rpm.
5. Processo de acordo com as reivindicações 1 e 4 caracterizado pela etapa (b) ter tempo de duração de 40 min. Process according to claims 1 and 4, characterized in that step (b) has a duration time of 40 min.
6. Processo de acordo com as reivindicações 1 e 2, caracterizado pelo fato do lioprotetor ser selecionado dentre pequenas moléculas, como açúcares ou aminoácidos, maltose, glicina, preferencialmente maltose. 6. Process according to claims 1 and 2, characterized in that the lyoprotectant is selected from small molecules, such as sugars or amino acids, maltose, glycine, preferably maltose.
7. Processo de acordo com as reivindicações 1 e 2, caracterizado pelo fato de na etapa (g) a temperatura ser alterada quando a temperatura da composição atinge a temperatura da prateleira. Process according to claims 1 and 2, characterized in that in step (g) the temperature changes when the temperature of the composition reaches the temperature of the shelf.
8. Processo de acordo com as reivindicações 1 e 2, caracterizado pelo fato de que na etapa (c) as nanoparticulas de quitosana-bromelina apresentam diâmetro médio de 84,5 a 100,9 nm, um índice de polidispersão de 0,18 a 0,23, um potencial zeta de 21,9 a 27,1 mV e uma concentração de partículas na ordem de 1012 partículas/mL . 8. Process according to claims 1 and 2, characterized by the fact that in step (c) the chitosan-bromelain nanoparticles have an average diameter of 84.5 to 100.9 nm, a polydispersity index of 0.18 to 0.23, a zeta potential of 21.9 to 27.1 mV and a concentration of particles in the order of 10 12 particles / mL.
9. Processo, de acordo com as reivindicações 1 e 2, caracterizado pelo fato de que adicionalmente na etapa c, a bromelina é encapsulada em nanopartícuias de quitosana e apresenta uma eficácia de encapsulação de 83,4 a 97,8% da concentração de proteínas, o que corresponde a uma eficiência de encapsulação de 75,5 a 81,6% da atividade enzimática. 9. Process, according to claims 1 and 2, characterized by the fact that additionally in step c, the bromelain is encapsulated in chitosan nanoparticles and has an encapsulation efficiency of 83.4 to 97.8% of the protein concentration, which corresponds to an encapsulation efficiency of 75.5 to 81.6% of the enzymatic activity.
10. Processo, de acordo com a reivindicações 1 e 2, caracterizado pelo fato de na etapa (d) o lioprotetor estar em uma concentração de 3% (m/v) em relação ao volume da solução de nanopartícuia de quitosana-bromelina . 10. Process, according to claims 1 and 2, characterized by the fact that in step (d) the lyoprotectant is in a concentration of 3% (m / v) in relation to the volume of the chitosan-bromelain nanoparticle solution.
11. Processo, de acordo com a reivindicação 10, caracterizado pelo fato de que apresenta uma temperatura de colapso que varia de -56°C a -28°C, preferivelmente acima de -40°C, com adição de maltose e glicina, respectivamente . 11. Process according to claim 10, characterized by the fact that it has a collapse temperature ranging from -56 ° C to -28 ° C, preferably above -40 ° C, with the addition of maltose and glycine, respectively .
12. Composição liofilizada de nanopartícuias a base de quitosana contendo bromelina liofilizada obtida pelo processo conforme processo definido nas reivindicações 1 a 11, caracterizada por compreender 0,9% a 1,0% de bromelina, 0,9% a 1,0% de quitosana, 3% de lioprotetor. 12. Lyophilized composition of chitosan-based nanoparticles containing lyophilized bromelain obtained by the process as defined in claims 1 to 11, characterized by comprising 0.9% to 1.0% bromelain, 0.9% to 1.0% of chitosan, 3% lyoprotectant.
13. Composição de acordo com a reivindicação 12 caracterizada pelo fato do lioprotetor ser selecionado dentre pequenas moléculas, podendo ser açúcares ou aminoácidos como maltose ou glicina, preferencialmente maltose. 13. Composition according to claim 12, characterized in that the lyoprotectant is selected from small molecules, which may be sugars or amino acids such as maltose or glycine, preferably maltose.
14. Composição de acordo com a reivindicação 12 caracterizada pelo fato de compreender nanopartícuias com diâmetro médio de 88,5 e 127,8 nm, um índice de polidispersão de 0,29 a 0,34, um potencial zeta de 20,0 a 23,2 mV. 14. Composition according to claim 12 characterized by the fact that it comprises nanoparticles with an average diameter of 88.5 and 127.8 nm, a polydispersity index of 0.29 to 0.34, a zeta potential of 20.0 to 23 , 2 mV.
15. Composição de acordo com a reivindicação 12 caracterizada pelo fato de que está na forma de pó liofilizado. 15. Composition according to claim 12 characterized by the fact that it is in the form of lyophilized powder.
16. Composição de acordo com a reivindicação 12, caracterizada pelo fato de que apresenta uma eficiência de encapsulação com maltose de 96,3% a 98,8%, o que equivale a uma atividade enzimática de 73,3 a 99,5%. 16. Composition according to claim 12, characterized by the fact that it presents a maltose encapsulation efficiency of 96.3% to 98.8%, which is equivalent to an enzymatic activity of 73.3 to 99.5%.
17. Uso da composição obtida conforme definida nas reivindicações de 1 a 11, caracterizada por ser no preparo de um medicamento para tratar feridas. 17. Use of the composition obtained as defined in claims 1 to 11, characterized in that it is in the preparation of a medicine to treat wounds.
18. Uso da composição obtida conforme definida nas reivindicações de 12 a 16, caracterizada por ser no preparo de um medicamento para tratar feridas. 18. Use of the composition obtained as defined in claims 12 to 16, characterized in that it is in the preparation of a medicine to treat wounds.
PCT/BR2020/050256 2019-07-13 2020-07-13 Process for obtaining a freeze-dried composition of chitosan-based nanoparticles containing bromelain, freeze-dried composition of chitosan-based nanoparticles containing bromelain and use in the treatment of wounds WO2021007635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102019014520-0A BR102019014520A2 (en) 2019-07-13 2019-07-13 process of obtaining lyophilized composition of chitosan-based nanoparticles containing bromelain, lyophilized composition of chitosan-based nanoparticles containing bromelain and use in the treatment of wounds
BRBR102019014520-0 2019-07-13

Publications (1)

Publication Number Publication Date
WO2021007635A1 true WO2021007635A1 (en) 2021-01-21

Family

ID=74209601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2020/050256 WO2021007635A1 (en) 2019-07-13 2020-07-13 Process for obtaining a freeze-dried composition of chitosan-based nanoparticles containing bromelain, freeze-dried composition of chitosan-based nanoparticles containing bromelain and use in the treatment of wounds

Country Status (2)

Country Link
BR (1) BR102019014520A2 (en)
WO (1) WO2021007635A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107265A (en) * 2021-11-05 2022-03-01 罗钰玲 Process for extracting bromelain

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155689A1 (en) * 2008-06-24 2009-12-30 Micropharma Limited Nitric oxide device and method for wound healing, treatment of dermatological disorders and microbial infections

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155689A1 (en) * 2008-06-24 2009-12-30 Micropharma Limited Nitric oxide device and method for wound healing, treatment of dermatological disorders and microbial infections

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Bromelina: Enzimas proteolíticas do abacaxi", IBEROQUIMICA - BULA DA BROMELINA, 28 September 2020 (2020-09-28), pages 1 - 3, XP009526331, Retrieved from the Internet <URL:https://www.iberomagistral.com.br/Arquivos/Insumo/arquivo-170128.pdf> [retrieved on 20170405] *
ATAIDE JANAíNA ARTEM; GéRIOS ELOAH FAVERO; MAZZOLA PRISCILA GAVA; SOUTO ELIANA B.: "Bromelain-loaded nanoparticles: A comprehensive review of the state of the art", ADVANCES IN COLLOID AND INTERFACE SCIENCE, ELSEVIER, NL, vol. 254, 27 March 2018 (2018-03-27), NL, pages 48 - 55, XP085385875, ISSN: 0001-8686, DOI: 10.1016/j.cis.2018.03.006 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114107265A (en) * 2021-11-05 2022-03-01 罗钰玲 Process for extracting bromelain
CN114107265B (en) * 2021-11-05 2023-12-01 罗钰玲 Process for extracting bromelain

Also Published As

Publication number Publication date
BR102019014520A2 (en) 2021-01-26

Similar Documents

Publication Publication Date Title
Mohamed et al. Colchicine mesoporous silica nanoparticles/hydrogel composite loaded cotton patches as a new encapsulator system for transdermal osteoarthritis management
Dehkordi et al. Nanocrystalline cellulose–hyaluronic acid composite enriched with GM-CSF loaded chitosan nanoparticles for enhanced wound healing
Li et al. In situ injectable nano-composite hydrogel composed of curcumin, N, O-carboxymethyl chitosan and oxidized alginate for wound healing application
AU2014224594B2 (en) Powder formulation comprising thrombin and fibrinogen
ES2216543T3 (en) GLUCURONOGLUCAN POLYMER COMPLEXES.
JP4959326B2 (en) Hyaluronic acid nanoparticles
EP3088008A1 (en) Aqueous dispersion for solidifying serum and blood
ES2383846T3 (en) Pharmaceutical composition comprising S-nitrosoglutathione and a polysaccharide
Farhadian et al. Chitosan/gelatin as a new nano-carrier system for calcium hydroxide delivery in endodontic applications: Development, characterization and process optimization
IL268980B (en) Albumin-free botulinum toxin formulations
JPWO2012063947A1 (en) Gel sheet containing lipid peptide type gelling agent and polymer compound
Badri et al. Biodegradable polymer based nanoparticles: dermal and transdermal drug delivery
Noreen et al. Natural polysaccharide-based biodegradable polymeric platforms for transdermal drug delivery system: A critical analysis
Ataide et al. Freeze-dried chitosan nanoparticles to stabilize and deliver bromelain
EP3023105B1 (en) Lipid nanoparticles for healing wounds
WO2021007635A1 (en) Process for obtaining a freeze-dried composition of chitosan-based nanoparticles containing bromelain, freeze-dried composition of chitosan-based nanoparticles containing bromelain and use in the treatment of wounds
KR20150128481A (en) Composition for application of skin comprising of extracellular matrix and thermo sensitive macromolecule
US20090022799A1 (en) Compositions that contain beta-glucan to be used for the prevention and treatment of disease and methods for their use
JP2012500274A (en) Topical hydrogel composition
CN104983722A (en) Spraying film forming agent composition used for removing skin scars and preparation method of composition
JP2016530272A (en) Local drug patch containing microspheres
Prasanthi et al. A brief review on chitosan and application in biomedical field
US11684587B2 (en) Composition comprising amino acid polymers and a bioactive agent and method of preparing thereof
ES2708976T3 (en) Procedure to produce EMD of increased stability
Nanda et al. Preparation and characterization of chitosan lactate nanoparticles for the nasal delivery of enalaprilat

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20841004

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20841004

Country of ref document: EP

Kind code of ref document: A1