WO2021006524A1 - 차세대 이동 통신 시스템에서 밴드위스 파트 별로 최대 mimo 레이어 갯수를 설정하는 방법 및 장치 - Google Patents

차세대 이동 통신 시스템에서 밴드위스 파트 별로 최대 mimo 레이어 갯수를 설정하는 방법 및 장치 Download PDF

Info

Publication number
WO2021006524A1
WO2021006524A1 PCT/KR2020/008521 KR2020008521W WO2021006524A1 WO 2021006524 A1 WO2021006524 A1 WO 2021006524A1 KR 2020008521 W KR2020008521 W KR 2020008521W WO 2021006524 A1 WO2021006524 A1 WO 2021006524A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
mimo layers
information
maximum number
terminal
Prior art date
Application number
PCT/KR2020/008521
Other languages
English (en)
French (fr)
Inventor
진승리
김성훈
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US17/625,703 priority Critical patent/US20220287025A1/en
Publication of WO2021006524A1 publication Critical patent/WO2021006524A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a method and apparatus for setting the maximum number of multiple-input-multiple-output (MIMO) layers for each bandwidth part (BWP) in a next-generation mobile communication system.
  • MIMO multiple-input-multiple-output
  • a 5G communication system or a pre-5G communication system is called a Beyond 4G Network communication system or an LTE system and a Post LTE system.
  • the 5G communication system is being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Giga (60 GHz) band).
  • mmWave ultra-high frequency
  • ACM advanced coding modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Small Cell Superposition Coding
  • advanced access technologies such as Filter Bank Multi Carrier (FBMC), NOMA (non orthogonal multiple access), and sparse code multiple access (SCMA) have been developed.
  • FBMC Filter Bank Multi Carrier
  • NOMA non orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • M2M Machine to machine
  • MTC Machine Type Communication
  • a 5G communication system to an IoT network.
  • technologies such as sensor network, machine to machine (M2M), and MTC (Machine Type Communication) are implemented by techniques such as beamforming, MIMO, and array antenna.
  • M2M machine to machine
  • MTC Machine Type Communication
  • beamforming MIMO
  • array antenna MIMO
  • cloud RAN cloud radio access network
  • the present invention is part of a technology for reducing power consumption of a terminal in an NR system, and enables the maximum number of MIMO layers currently set for each serving cell to be set for each bandwidth part (BWP). That is, in the current NR system, if the number of MIMO layers applied to a specific serving cell is set, the corresponding limit is applied to all BWPs, and in a specific BWP, even if a low data rate and a small number of MIMO layers are desired to be applied, the number of MIMO layers set for each cell is limited. Should be applied as it is.
  • a limit according to the BWP supporting the maximum number of MIMO layers in the cell or set the number of MIMO layers smaller than the BWP supporting the maximum number of MIMO layers in all cells.
  • a specific BWP can support more MIMO layers, but only has limited performance.
  • a method of a terminal in a communication system for achieving the above-described technical problem includes: checking a downlink bandwidth part (BWP) activated for the terminal; Checking whether information on the number of first maximum multi-input-multi-output (MIMO) layers related to the activated downlink bandwidth portion has been received from the base station; And when receiving information on the number of first maximum MIMO layers related to the activated downlink bandwidth portion, receiving downlink data based on the number of first maximum MIMO layers, wherein the first maximum MIMO The information on the number of layers may be set for each BWP set in the terminal.
  • BWP downlink bandwidth part
  • MIMO multi-input-multi-output
  • a method of a terminal in a communication system includes: receiving information on a second maximum number of MIMO layers from the base station; And when information on the number of first maximum MIMO layers related to the activated downlink bandwidth portion is not received, receiving downlink data based on the second maximum number of MIMO layers.
  • the information on the second maximum number of MIMO layers may be set for each serving cell of the terminal.
  • the number of first maximum MIMO layers may be less than or equal to the number of second maximum MIMO layers.
  • information on the number of first MIMO layers may be received through radio resource control (RRC) signaling.
  • RRC radio resource control
  • a method of a base station of a communication system includes: checking a downlink bandwidth part (BWP) activated for a terminal; Checking whether information on the number of first maximum multi-input-multi-output layers related to the activated downlink bandwidth portion has been transmitted to the terminal; And transmitting downlink data based on the number of first maximum MIMO layers when information on the number of first maximum MIMO layers related to the activated downlink bandwidth portion is transmitted, wherein the first maximum MIMO Information on the number of layers may be set for each BWP set in the terminal.
  • BWP downlink bandwidth part
  • the terminal according to an embodiment of the present invention, the transceiver; And a first maximum number of multi-input-multi-output (MIMO) layers related to the activated downlink bandwidth part from the base station by checking the active downlink bandwidth part (BWP) for the terminal.
  • MIMO multi-input-multi-output
  • BWP active downlink bandwidth part
  • the base station according to an embodiment of the present invention, the transceiver; And check the active downlink bandwidth part (BWP) for the terminal, and information on the number of first maximum multi-input-multi-output layers related to the activated downlink bandwidth part. It is configured to transmit downlink data based on the first maximum number of MIMO layers when it is checked whether it has been transmitted to the terminal and when information on the first maximum MIMO layer number related to the activated downlink bandwidth part is transmitted. It includes a control unit, and the information on the first maximum number of MIMO layers may be set for each BWP set in the terminal.
  • BWP active downlink bandwidth part
  • FIG. 1 is a diagram illustrating a structure of an LTE system referred to for description of the present invention.
  • FIG. 2 is a diagram showing a radio protocol structure in an LTE system referred to for description of the present invention.
  • FIG. 3 is a diagram showing the structure of a next-generation mobile communication system to which the present invention is applied.
  • FIG. 4 is a diagram showing a radio protocol structure of a next-generation mobile communication system to which the present invention can be applied.
  • FIG. 5 is a diagram illustrating a system capable of setting the maximum number of MIMO layers for each BWP in the NR system applied to the present invention.
  • Embodiment 6 is a diagram showing an overall signal flow applied to Embodiment 1 proposed by the present invention.
  • FIG. 7A is a diagram illustrating a part of a method for setting the maximum number of MIMO layers for a specific downlink BWP by limiting the number of cell-based MIMO layers in Embodiment 1 proposed by the present invention.
  • FIG. 7B is a diagram illustrating a remaining part of a method for setting the maximum number of MIMO layers for a specific downlink BWP by limiting the number of cell-based MIMO layers in Embodiment 1 proposed by the present invention.
  • FIG. 8A is a diagram illustrating a part of a method for setting the maximum number of MIMO layers for a specific uplink BWP by limiting the number of cell-based MIMO layers in Embodiment 1 proposed by the present invention.
  • FIG. 8B is a diagram illustrating a remaining part of a method for setting the maximum number of MIMO layers for a specific uplink BWP by limiting the number of cell-based MIMO layers in Embodiment 1 proposed by the present invention.
  • FIG. 9 is a diagram showing the overall signal flow applied to the second embodiment proposed by the present invention.
  • FIG. 10 is a diagram illustrating a method for setting the maximum number of MIMO layers for a specific downlink BWP by limiting the number of cell-based MIMO layers in Embodiment 2 proposed by the present invention.
  • FIG. 11 is a diagram illustrating a method for setting the maximum number of MIMO layers for a specific uplink BWP by limiting the number of cell-based MIMO layers in Embodiment 2 proposed by the present invention.
  • FIG. 12 is a diagram illustrating an operation of a base station applied to the entire embodiment proposed in the present invention.
  • FIG. 13 is a block diagram showing an internal structure of a terminal to which the present invention is applied.
  • FIG. 14 is a block diagram showing the configuration of a base station according to the present invention.
  • the present invention uses terms and names defined in the 3GPP 3rd Generation Partnership Project Long Term Evolution (LTE) standard, or modified terms and names based thereon.
  • LTE 3rd Generation Partnership Project Long Term Evolution
  • the present invention is not limited by the terms and names, and can be applied equally to systems conforming to other standards. That is, as a system to which the present invention is applied, the entire mobile communication system, in particular, the LTE system and the NR system may be applied.
  • FIG. 1 is a diagram illustrating a structure of an LTE system referred to for description of the present invention.
  • a next-generation base station (Evolved Node B, hereinafter, eNB, Node B or base station) (1-05, 1-10, 1-15, 1-20) and It consists of a Mobility Management Entity (MME, 1-25) and a Serving-Gateway (S-GW, 1-30).
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • the user equipment (User Equipment, hereinafter referred to as UE or terminal) 1-35 accesses an external network through the eNBs 1-05 to 1-20 and the S-GW 1-30.
  • UE User Equipment
  • the eNBs 1-05 to 1-20 correspond to the existing Node B of the UMTS system.
  • the eNB is connected to the UE (1-35) through a radio channel and performs a more complex role than the existing Node B.
  • all user traffic including real-time services such as VoIP (Voice over IP) through the Internet protocol, are serviced through a shared channel, so status information such as buffer status, available transmission power status, and channel status of UEs
  • VoIP Voice over IP
  • a device that collects and performs scheduling is required, and the eNB (1-05 ⁇ 1-20) is in charge of this.
  • One eNB typically controls multiple cells.
  • the LTE system uses, for example, an orthogonal frequency division multiplexing (OFDM) in a 20 MHz bandwidth as a radio access technology.
  • OFDM orthogonal frequency division multiplexing
  • AMC adaptive modulation and coding method
  • the S-GW 1-30 is a device that provides a data bearer, and creates or removes a data bearer under the control of the MME 1-25.
  • the MME is a device responsible for various control functions as well as mobility management functions for a terminal, and is connected to a plurality of base stations.
  • FIG. 2 is a diagram showing a radio protocol structure in an LTE system referred to for description of the present invention.
  • the radio protocol of the LTE system is PDCP (Packet Data Convergence Protocol 2-05, 2-40), RLC (Radio Link Control 2-10, 2-35), MAC (Medium Access Control 2-15, 2-30).
  • PDCP (2-05, 2-40) is in charge of operations such as IP header compression/restore.
  • IP header compression/restore The main functions of PDCP are summarized as follows.
  • Radio Link Control (hereinafter referred to as RLC) (2-10, 2-35) performs an ARQ operation by reconfiguring a PDCP packet data unit (PDU) to an appropriate size.
  • RLC Radio Link Control
  • the MACs 2-15 and 2-30 are connected to several RLC layer devices configured in one terminal, and perform an operation of multiplexing RLC PDUs to MAC PDUs and demultiplexing RLC PDUs from MAC PDUs.
  • the main functions of MAC are summarized as follows.
  • the physical layer (2-20, 2-25) channel-codes and modulates upper layer data, converts it into OFDM symbols, and transmits it to the radio channel, or demodulates OFDM symbols received through the radio channel and decodes the channel and delivers it to the upper layer. Do the action.
  • FIG. 3 is a diagram showing the structure of a next-generation mobile communication system to which the present invention is applied.
  • a radio access network of a next-generation mobile communication system includes a next-generation base station (New Radio Node B, hereinafter NR NB or NR gNB, 3-10) and a New Radio Core Network (NR CN, 3-05). ).
  • a user terminal (New Radio User Equipment, hereinafter referred to as NR UE or terminal, 3-15) accesses an external network through the NR gNB 3-10 and NR CN 3-05.
  • the NR gNB (3-10) corresponds to the eNB (Evolved Node B) of the existing LTE system.
  • the NR gNB is connected to the NR UE (3-15) through a radio channel, and can provide a service superior to that of the existing Node B.
  • a device for scheduling since all user traffic is serviced through a shared channel, a device for scheduling by collecting state information such as buffer status, available transmission power status, and channel status of UEs is required. (3-10) is in charge.
  • One NR gNB typically controls multiple cells.
  • a beamforming technology may be additionally grafted by using Orthogonal Frequency Division Multiplexing (OFDM) as a wireless access technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • AMC adaptive modulation and coding method
  • the NR CN (3-05) performs functions such as mobility support, bearer setup, and QoS setup.
  • the NR CN is a device in charge of various control functions as well as a mobility management function for a terminal, and is connected to a plurality of base stations.
  • the next-generation mobile communication system can be interworked with the existing LTE system, and the NR CN is connected to the MME (3-25) through a network interface.
  • the MME is connected to the existing eNB (3-30).
  • FIG. 4 is a diagram showing a radio protocol structure of a next-generation mobile communication system to which the present invention can be applied.
  • the radio protocol of the next-generation mobile communication system is NR SDAP (4-01, 4-45), NR PDCP (4-05, 4-40), NR RLC (4-10) in the terminal and the NR base station, respectively. , 4-35), NR MAC (4-15, 4-30).
  • NR SDAP (4-01, 4-45) may include some of the following functions.
  • the UE may be configured with an RRC message to set whether to use the header of the SDAP layer device or the function of the SDAP layer device for each PDCP layer device, bearer or logical channel, and the SDAP header. If is set, the UE uses the NAS QoS reflective configuration 1-bit indicator (NAS reflective QoS) in the SDAP header and the AS QoS reflective configuration 1-bit indicator (AS reflective QoS) to map the QoS flow and data bearer of the uplink and downlink. Can be instructed to update or reset.
  • the SDAP header may include QoS flow ID information indicating QoS. The QoS information may be used as data processing priority, scheduling information, etc. to support smooth service.
  • NR PDCP (4-05, 4-40) may include some of the following functions.
  • the reordering function of the NR PDCP device refers to a function of rearranging the PDCP PDUs received from the lower layer in order based on the PDCP sequence number (SN), and the function of delivering data to the upper layer in the rearranged order. It may include, or may include a function of immediately delivering without considering the order, may include a function of recording lost PDCP PDUs by rearranging the order, and reporting the status of lost PDCP PDUs It may include a function of performing the transmission side, and may include a function of requesting retransmission of lost PDCP PDUs.
  • SN PDCP sequence number
  • the main functions of the NR RLC (4-10, 4-35) may include some of the following functions.
  • the in-sequence delivery function of the NR RLC device refers to the function of delivering RLC SDUs received from the lower layer to the upper layer in order, and originally, one RLC SDU is divided into several RLC SDUs and received. If so, it may include a function of reassembling and delivering it, and may include a function of rearranging the received RLC PDUs based on RLC sequence number (SN) or PDCP sequence number (SN), and rearranging the order It may include a function of recording lost RLC PDUs, may include a function of reporting a status of lost RLC PDUs to a transmitting side, and a function of requesting retransmission of lost RLC PDUs.
  • SN RLC sequence number
  • SN PDCP sequence number
  • If there is a lost RLC SDU it may include a function of transferring only RLC SDUs before the lost RLC SDU to a higher layer in order, or if a predetermined timer expires even if there is a lost RLC SDU, the timer It may include a function of delivering all RLC SDUs received before the start of the system in order to the upper layer, or if a predetermined timer expires even if there is a lost RLC SDU, all RLC SDUs received so far are sequentially transferred to the upper layer. It may include the ability to deliver.
  • RLC PDUs may be processed in the order in which they are received (regardless of the order of serial number and sequence number, in the order of arrival) and delivered to the PDCP device regardless of the order (Out-of sequence delivery). Segments stored in a buffer or to be received in the future may be received, reconstructed into one complete RLC PDU, processed, and delivered to the PDCP device.
  • the NR RLC layer may not include a concatenation function, and the function may be performed by the NR MAC layer or may be replaced with a multiplexing function of the NR MAC layer.
  • the out-of-sequence delivery function of the NR RLC device refers to a function of directly delivering RLC SDUs received from the lower layer to the upper layer regardless of the order, and originally, one RLC SDU is When it is divided into SDUs and received, it may include a function of reassembling and transmitting them, and includes a function of storing the RLC SN or PDCP SN of the received RLC PDUs, sorting the order, and recording the lost RLC PDUs. I can.
  • the NR MACs 4-15 and 4-30 may be connected to several NR RLC layer devices configured in one terminal, and the main functions of the NR MAC may include some of the following functions.
  • Multiplexing/demultiplexing of MAC SDUs Multiplexing/demultiplexing of MAC SDUs
  • the NR PHY layer (4-20, 4-25) channel-codes and modulates upper layer data, makes it into OFDM symbols, and transmits it to the wireless channel, or demodulates and channel-decodes the OFDM symbol received through the radio channel to the upper layer. You can perform the transfer operation.
  • FIG. 5 is a diagram illustrating a system capable of setting the maximum number of MIMO layers for each bandwidth part (BWP) in the NR system applied to the present invention.
  • the drawing is a diagram for an entire scenario applied to the general aspect of the present invention, and the main features of the present invention are described by showing the difference with the existing NR system.
  • the technology for applying a partial frequency band (BWP, BandWidth Part) described in the present invention means that one terminal performs communication using only a partial frequency bandwidth among the system bandwidth used by one cell. it means.
  • NR since NR will support a wide range of frequency bands (e.g., 400 MHz bandwidth) compared to LTE, it may be a burden on implementation for terminals that satisfy all the system frequency bandwidths, and some terminals Even if only a small range of frequency bandwidth is supported, there may be no problem.
  • the BWP is used for terminal manufacturing cost reduction or terminal power saving.
  • the BWP may be set by the base station only for a terminal that supports it (up to four BWPs are set in the existing NR system). In the NR system, the following additional BWPs are defined according to specific functions and purposes in the BWP.
  • the initial BWP may be generated separately from the BWP that may be set up to four in the serving cell, or may be set to one of other BWPs.
  • the default BWP is defined only for downlink and may not be defined for uplink.
  • the first NR system refers to an existing NR system, and in the case of the first NR system, the maximum number of MIMO layers is set for each serving cell. That is, in the case of the first NR system, for all terminals using the NR base station (gNB, 5-05) as a serving cell, the base station 5-05 determines the maximum number of MIMO layers for uplink data transmission in the serving cell. Commonly set.
  • the maximum number of MIMO layers of the serving cell set by the base station may be independently indicated to have different values in uplink (UL) and downlink (downlink, DL) (may be set to the same value. ).
  • the maximum number of MIMO layers for a specific BWP is set differently from the maximum number of MIMO layers set for other BWPs. It is characterized in that it can be applied. From the terminal perspective, if the maximum number of MIMO layers applied to a specific downlink BWP becomes smaller than the previously set value for each cell, the terminal can reduce the number of receiving MIMO layers required for monitoring as the number of MIMO layers for data reception decreases. And, thereby, it is possible to reduce the received power.
  • the terminal can reduce the actual number of MIMO layers transmitted as the number of MIMO layers for data transmission decreases, This can reduce the transmission power. That is, the second NR system proposed by the present invention can reduce the power consumption of the terminal by adjusting the maximum number of MIMO layers for a specific BWP.
  • the specific BWP is an initial BWP (intial BWP), a default BWP (default ), may be one or both of the first active BWP (first active BWP).
  • the downlink defalt BWP is set to BWP#1, but this is for illustration only and does not limit the scope of the present invention.
  • the solution proposed by the present invention below lists methods for supporting the second NR system defined in FIG. 5, and an operation in uplink and downlink is classified and described for each embodiment.
  • a method of limiting and setting the maximum number of MIMO layers for a specific BWP (initial BWP, defalt BWP, first active BWP) among BWPs set in a serving cell is considered.
  • it may be considered to limit the number of MIMO layers for the default BWP. This is because a scenario that supports basic performance by limiting the number of maximum MIMO layers set in other BWPs is suitable for the case of returning to the default BWP, which is a fallback BWP, for the terminal operation. If the intial BWP and the default BWP are the same, the maximum number of MIMO layers can be applied to both BWPs.
  • the main technical proposals in Example 1 are summarized below.
  • the maximum number of MIMO layers is set for both BWPs.
  • the maximum number of MIMO layers is set in the default BWP.
  • Embodiment 6 is a diagram showing an overall signal flow applied to Embodiment 1 proposed by the present invention.
  • the maximum number of MIMO layers may be limited and set for a specific BWP (one BWP of initial BWP, defalt BWP, and first active BWP or a combination of a plurality of BWPs) among BWPs set in the serving cell.
  • a new parameter (setting the maximum number of MIMO layers for a specific BWP) provided in the RRC reconfiguration message may be provided for each serving cell.
  • a terminal 6-01 in an RRC IDLE state can camp on a cell 6-02 through a cell selection procedure and prepare a service with the cell (6-05).
  • the camp-on state is a state in which the terminal receives system information from a corresponding serving cell, and connection establishment through paging and terminal data generation is possible.
  • the UE performs an RRC connection procedure with the serving cell, and data transmission/reception with the corresponding serving cell is possible.
  • the base station can deliver an RRC message (UECapabilityInquiry) requesting the terminal capability to the terminal in the connected state, and in response to this, the terminal receives the UECapabilityInformation message to the base station in step 6-20. Deliver.
  • RRC message UECapabilityInquiry
  • the UE capability information RRC message may include total capabilities of the UE, such as physical region capability, protocol region capability, and supported frequency band information.
  • information indicating whether the maximum number of MIMO layers can be set for each BWP supported by the terminal in the second NR system may be added.
  • the UE capability may be independently signaled for each uplink and downlink, or may be signaled to simultaneously indicate support for uplink and downlink.
  • signaling is possible in one of the following ways.
  • a method of signaling support for each component carrier (CC) within the band in a band within a band combination (per CC per band per band combination): Include the information in FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC
  • information indicating the UE capability includes a 1-bit indicator indicating that a different value can be indicated in a specific BWP for the maximum number of MIMO layers indicated for each serving cell, or different from the maximum number of MIMO layers indicated for each serving cell.
  • the maximum number of MIMO layers supported by a terminal supporting each BWP may be indicated as information.
  • the signaling may be performed independently of the uplink or downlink or may be performed in common.
  • the maximum number of MIMO layers for uplink and downlink in a serving cell is provided for each component carrier (CC) within a corresponding band in a band within a band combination as follows.
  • the codebook-based, not terminal capability for the overall uplink transmission belonging to a specific BWP in the future UE capability for non-PUSCH transmission of may be additionally included.
  • mimo-CB-PUSCH SEQUENCE ⁇
  • the base station that has received the terminal capability information through the above step (6-20) can check whether the corresponding terminal can receive the maximum number of MIMO layers differently for each BWP, and if the corresponding base station is able to transmit uplink and downlink data per BWP. If it supports setting the maximum number of MIMO layers for this, setting information for this is set and transmitted to the terminal by including it in an RRC reconfiguration message (RRCReconfiguration) in step 6-25.
  • the RRC message may include configuration information for secondary cells, and in particular, BWP configuration information for each serving cell may be included.
  • ⁇ BWP detailed setting information bandwidth information, location in the frequency domain, PDSCH and PUSCH setting information, etc.
  • Method 1 Apply to all Initial BWP, Default BWP, and First Active BWP.
  • the terminal Upon receiving the RRC reconfiguration information, the terminal transmits the RRCReconfigurationComplete message to the base station as a confirmation message indicating that the RRC message has been received in steps 6-30. If the terminal has received the maximum number of MIMO layers (maxMIMO-Layer2, maxMIMO-Layer3) applied to a specific BWP from the base station in steps 6-25, the terminal operates in the corresponding BWP according to the configuration information, the corresponding up-down direction The maximum number of MIMO layers in the link BWP is set according to the set parameters (6-35), and data transmission/reception is prepared and performed (6-45). Through this, the maximum number of MIMO layers applied to a specific downlink BWP becomes smaller than a previously set value for each cell.
  • the UE can reduce the number of reception MIMO layers required for monitoring, thereby reducing reception power.
  • the uplink BWP if the maximum number of MIMO layers becomes smaller than the previously set value for each cell, the UE can reduce the actual number of MIMO layers transmitted as the number of MIMO layers for data transmission decreases. Transmission power can be reduced.
  • the specific BWP may be one of an initial BWP (intial BWP), a default BWP, and a first active BWP (first active BWP), or a combination thereof.
  • the following conditions can be added to the standard at the same time as the newly introduced parameters. That is, the method of applying maxMIMO-Layer is also different depending on whether maxMIMO-Layer2 and maxMIMO-Layer3 are set.
  • MIMO layer can be set for each BWP
  • maxMIMO-Layer is applied to all BWPs in the serving cell.
  • the UE is the TBS (transport block size) size required for transmission and reception based on the maximum number of MIMO layers per BWP of the uplink and downlink determined in steps 6-35, the number of physical resource blocks (PRBs), and modulation orders. To decide. That is, the data block size actually applied to transmission/reception is determined.
  • TBS transport block size
  • the terminal performs data transmission/reception based on the values set in the steps.
  • data transmission is performed by applying the parameter determined in the above steps, and in the case of downlink reception, monitoring and reception are also performed based on the set number of MIMO layers.
  • the terminal can reduce power consumption by performing transmission/reception through a smaller MIMO layer in a specific BWP.
  • FIG. 7a, 7b, 8a, and 8b below are diagrams for more clearly explaining the terminal operation (downlink and uplink operation, respectively) in Embodiment 1 described in FIG. 6, and the overall system and signal flow are shown in FIG. The description of can be applied as it is. That is, in the following figures 7a, 7b, 8a, and 8b, the new operating conditions and features of the terminal are mainly described, and the content described in FIG. 6 may be repeated or omitted, but it is noted that even if omitted, the corresponding content may be applied as it is. .
  • FIG. 7A is a diagram showing a part of a method for setting the maximum number of MIMO layers for a specific downlink BWP by limiting the number of cell-based MIMO layers in Embodiment 1 proposed in the present invention
  • FIG. 7A the remaining part of a method of setting the maximum number of MIMO layers for a specific downlink BWP by limiting the number of cell-based maximum MIMO layers is shown.
  • the first embodiment is characterized by limiting the number of MIMO layers for a specific BWP (one BWP or a combination of a plurality of BWPs among the BWPs set in the serving cell). To do.
  • a new parameter (setting the maximum number of MIMO layers for a specific BWP) provided in the RRC reconfiguration message may be provided for each serving cell.
  • the UE in the RRC connected state receives and reports the UECapabilityInformation message in steps 7-05 in response to the UECapabilityEnquriy from the base station.
  • the UE capability information RRC message may include total capabilities of the UE, such as physical region capability, protocol region capability, and supported frequency band information.
  • information indicating whether the maximum number of MIMO layers can be set for each BWP supported by the terminal in the second NR system may be added.
  • the UE capability may be independently signaled for each uplink and downlink, or may be signaled to simultaneously indicate support for uplink and downlink. In addition, signaling is possible in one of the following ways.
  • a method of signaling support for each component carrier (CC) within the band in a band within a band combination (per CC per band per band combination): Include the information in FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC
  • information indicating the UE capability includes a 1-bit indicator indicating that a different value can be indicated in a specific BWP for the maximum number of MIMO layers indicated for each serving cell, or different from the maximum number of MIMO layers indicated for each serving cell.
  • the maximum number of MIMO layers supported by a terminal supporting each BWP may be indicated as information.
  • the signaling may be performed independently of the uplink or downlink or may be performed in common.
  • the base station receiving the terminal capability information in the above step can check whether the corresponding terminal can be set differently for the maximum number of MIMO layers for each BWP, and if the corresponding base station sets the maximum number of MIMO layers for uplink data transmission per BWP If it supports, setting information for this may be set and included in the RRC reconfiguration message (RRCReconfiguration).
  • the UE may receive the RRC reconfiguration message, and the received RRC message may include configuration information for secondary cells, and in particular, the following BWP configuration information for each serving cell is included. I can.
  • ⁇ BWP detailed setting information bandwidth information, location in the frequency domain, PDSCH and PUSCH setting information, etc.
  • Method 1 Apply to all Initial BWP, Default BWP, and First Active BWP.
  • steps 7-15 and below the terminal operation is performed to prepare for downlink data reception by applying the RRC message and parameters received in the step.
  • the configuration of the maximum MIMO layer of the terminal for receiving downlink data and preparation for reception of the actual physical data block is dealt with, and the operation of the uplink terminal will be described separately in FIG.
  • operations 7-15 or less in this drawing and operations 8-15 or less in FIG. 8 are simultaneously applied and performed to the terminal.
  • step 7-15 the terminal is applied to a specific BWP along with the maximum number of MIMO layers configuration parameter (maxMIMO-Layer) configured in downlink for each serving cell (pdsch-ServingCellConfig) in the RRC reconfiguration message received in step 7-10. It is checked whether the maximum number of MIMO layers setting parameter (maxMIMO-Layer2) is signaled.
  • the specific BWP to which the maxMIMO-Layer2 is applied may be as follows.
  • Method 1 Apply to all Initial BWP, Default BWP, and First Active BWP.
  • Method 3 is applied among the above methods, and when the default BWP is the same as the initial BWP, the same setting is applied to the initial BWP.
  • maxMIMO-Layer2 is applied to Method 1 or Method 2
  • the maximum number of MIMO layers for the corresponding BWP may be set as it is according to whether maxMIMO-Layer2 is indicated.
  • the maximum applicable to the downlink First Active BWP in the serving cell in the RRC reconfiguration message received in the step (7-10) in step 7-15 It is also checked whether or not the MIMO layer number setting parameter (maxMIMO-Layer3) is signaled.
  • the maxMIMO-Layer3 parameter may be set independently from the maxMIMO-Layer2 parameter, but in the present invention, it is assumed that the maxMIMO-Layer2 parameter may be set as an option only under conditions in which the maxMIMO-Layer2 parameter is set.
  • the UE is in the configuration included in the RRC control message received in step 7-10 in step 7-20. It checks whether the default BWP is set in the serving cell. If the default BWP configuration is included, the terminal checks whether the currently operating downlink BWP is the default BWP in steps 7-25. If the currently operating downlink BWP is the default BWP, the UE sets the maximum number of MIMO layers for the default BWP, which is the current downlink BWP, to maxMIMO-Layer2 in step 7-30 and applies it.
  • the terminal checks whether the currently operating downlink BWP is the default BWP in steps 7-25. If the currently operating downlink BWP is the default BWP, the UE sets the maximum number of MIMO layers for the default BWP, which is the current downlink BWP, to maxMIMO-Layer2 in step 7-30 and applies it.
  • the UE determines the maximum TBS (transport block size) size required for data reception by applying the set maximum number of MIMO layers, number of PRBs, and modulation order. That is, the maximum value of the data block size that is actually applied to reception is determined.
  • the UE In order to receive downlink data, the UE must prepare MIMO layers as many as the maximum number of MIMO layers determined in the above steps for data reception, and prepare the data reception block to reach the maximum TBS size. Thereafter, in steps 7-40, the UE performs downlink data reception based on the values set in the steps. Through this, power consumption can be reduced by performing reception in a smaller MIMO layer compared to other BWPs of the serving cell in a specific BWP.
  • the UE sets and applies the maximum number of MIMO layers for the current downlink BWP as maxMIMO-Layer in steps 7-45. If the current downlink BWP is the first active BWP in this step, the maximum number of MIMO layers is set to maxMIMO-Layer3 and applied.
  • the UE determines the maximum TBS (transport block size) size required for data reception by applying the set maximum number of MIMO layers, number of PRBs, and modulation order. That is, the maximum value of the data block size that is actually applied to reception is determined. Thereafter, in steps 7-55, the UE performs downlink data reception based on the values set in the steps. Through this, power consumption can be reduced by performing reception in a smaller MIMO layer compared to other BWPs of the serving cell in a specific BWP.
  • the terminal checks whether the downlink BWP currently operating in step 7-60 is the initial BWP. If the currently operating downlink BWP is the initial BWP, in steps 7-65, the maximum number of MIMO layers for the current downlink BWP, the initial BWP, is set to maxMIMO-Layer2 and applied. This is because if the default BWP is not set, the downlink initial BWP is determined as the default BWP. In steps 7-70, the UE determines the maximum size of a transport block size (TBS) required for data reception by applying the set maximum number of MIMO layers, number of PRBs, and modulation order.
  • TBS transport block size
  • the maximum value of the data block size that is actually applied to reception is determined. Thereafter, in steps 7-75, the UE performs downlink data reception based on the values set in the steps. Through this, power consumption can be reduced by performing reception in a smaller MIMO layer compared to other BWPs of the serving cell in a specific BWP.
  • the maximum number of MIMO layers for the current downlink BWP is set as maxMIMO-Layer in steps 7-80 and applied.
  • the maximum number of MIMO layers for the corresponding BWP is set to maxMIMO-Layer3 and applied.
  • the UE determines the maximum TBS (transport block size) size required for data reception by applying the set maximum number of MIMO layers, number of PRBs, and modulation order. That is, the maximum value of the data block size that is actually applied to reception is determined.
  • the UE performs downlink data reception based on the values set in the steps.
  • power consumption can be reduced by performing reception in a smaller MIMO layer compared to other BWPs of the serving cell in a specific BWP.
  • the maxMIMO-Layer3 parameter does not exist in the present invention.
  • maxMIMO-Layer3 may be set independently of maxMIMO-Layer2.
  • the UE sets and applies the maximum number of MIMO layers for the current downlink BWP as maxMIMO-Layer. If the currently operating downlink BWP is the first active BWP, the maximum number of MIMO layers for the corresponding BWP is set to maxMIMO-Layer3 and applied. However, as described above, the maxMIMO-Layer3 parameter does not exist at this stage.
  • step 7-100 the UE determines the maximum TBS (transport block size) size required for data reception by applying the set maximum number of MIMO layers, number of PRBs, and modulation order. That is, the maximum value of the data block size that is actually applied to reception is determined. Thereafter, in steps 7-105, the UE performs downlink data reception based on the values set in the steps. Through this, power consumption can be reduced by performing reception in a smaller MIMO layer compared to other BWPs of the serving cell in a specific BWP.
  • TBS transport block size
  • FIG. 8A is a diagram showing a part of a method for setting the maximum number of MIMO layers for a specific uplink BWP by limiting the number of cell-based MIMO layers in Embodiment 1 proposed in the present invention, and FIG. In the proposed embodiment 1, the remaining part of a method of setting the maximum number of MIMO layers for a specific uplink BWP by limiting the number of cell-based maximum MIMO layers is shown.
  • the first embodiment is characterized by limiting the number of MIMO layers for a specific BWP (one BWP or a combination of a plurality of BWPs among the BWPs set in the serving cell). To do.
  • a new parameter (setting the maximum number of MIMO layers for a specific BWP) provided in the RRC reconfiguration message may be provided for each serving cell.
  • the UE in the RRC connected state receives and reports the UECapabilityInformation message in steps 8-05 in response to the UECapabilityEnquriy from the base station.
  • the UE capability information RRC message may include total capabilities of the UE, such as physical region capability, protocol region capability, and supported frequency band information.
  • information indicating whether the maximum number of MIMO layers can be set for each BWP supported by the terminal in the second NR system may be added.
  • the UE capability may be independently signaled for each uplink and downlink, or may be signaled to simultaneously indicate support for uplink and downlink. In addition, signaling is possible in one of the following ways.
  • a method of signaling support for each component carrier (CC) within the band in a band within a band combination (per CC per band per band combination): Include the information in FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC
  • information indicating the UE capability includes a 1-bit indicator indicating that a different value can be indicated in a specific BWP for the maximum number of MIMO layers indicated for each serving cell, or different from the maximum number of MIMO layers indicated for each serving cell.
  • the maximum number of MIMO layers supported by a terminal supporting each BWP may be indicated as information.
  • the signaling may be performed independently of the uplink or downlink or may be performed in common.
  • the base station receiving the terminal capability information in the above step can check whether the corresponding terminal can be set differently for the maximum number of MIMO layers for each BWP, and if the corresponding base station sets the maximum number of MIMO layers for uplink data transmission per BWP If it supports, setting information for this may be set and included in the RRC reconfiguration message (RRCReconfiguration).
  • the UE may receive the RRC reconfiguration message, and the received RRC message may include configuration information for secondary cells, and in particular, the following BWP configuration information for each serving cell is included. I can.
  • ⁇ BWP detailed setting information bandwidth information, location in the frequency domain, PDSCH and PUSCH setting information, etc.
  • Method 1 Apply to all Initial BWP, Default BWP, and First Active BWP.
  • the UE operations in steps 8-15 and below perform an operation of preparing for uplink data transmission by applying the RRC message and parameters received in the step.
  • the configuration of the maximum MIMO layer of the terminal for uplink data transmission and preparation for transmission of the actual physical data block is dealt with, and the operation of the downlink terminal is separately described in FIG. 7.
  • operations 8-15 in this drawing and operations 7-15 in FIG. 7 are simultaneously applied and performed to the terminal.
  • the UE is applied to a specific BWP along with the maximum number of MIMO layers configuration parameter (maxMIMO-Layer) configured in downlink per serving cell (pdsch-ServingCellConfig) in the RRC reconfiguration message received in step 8-10. It is checked whether the maximum number of MIMO layers setting parameter (maxMIMO-Layer2) is signaled.
  • the specific BWP to which the maxMIMO-Layer2 is applied may be as follows.
  • Method 1 Apply to all Initial BWP, Default BWP, and First Active BWP.
  • Method 3 is applied among the above methods, and when the default BWP is the same as the downlink initial BWP, the same configuration is applied to not only the downlink initial BWP but also the uplink initial BWP.
  • maxMIMO-Layer2 is applied to Method 1 or Method 2
  • the maximum number of MIMO layers for the corresponding BWP may be set as it is according to whether maxMIMO-Layer2 is indicated.
  • Method 3 is applied (applicable to Method 2), the maximum applicable to the uplink First Active BWP in the serving cell in the RRC reconfiguration message received in the step (8-10) in step 8-15.
  • the MIMO layer number setting parameter (maxMIMO-Layer3) is signaled.
  • the maxMIMO-Layer3 parameter may be set independently from the maxMIMO-Layer2 parameter, but in the present invention, it is assumed that the maxMIMO-Layer2 parameter may be set as an option only under conditions in which the maxMIMO-Layer2 parameter is set.
  • the UE is in the configuration included in the RRC control message received in steps 8-10 in steps 8-20. It checks whether the default BWP is set in the serving cell. If the default BWP configuration is included, the UE always applies the maximum number of MIMO layers (maxMIMO-Layer) applied to the entire serving cell to the currently operating uplink BWP in steps 8-25. This is because the default BWP is set only for downlink, and there is no corresponding concept in uplink, and because it means that the base station sets maxMIMO-Layer2 only for the default BWP, optimization is not applied to other uplink BWPs.
  • the UE sets and applies the maximum number of MIMO layers for the current uplink BWP as maxMIMO-Layer.
  • the UE determines the maximum TBS (transport block size) size required for uplink data transmission by applying the set maximum number of MIMO layers, number of PRBs, and modulation order. That is, the maximum value of the data block size actually applied to data transmission is determined.
  • the UE should prepare MIMO layers as many as the maximum number of MIMO layers determined in the above steps for data transmission, and prepare the data transmission block to reach the maximum TBS size.
  • steps 8-35 the UE transmits uplink data based on the values set in the steps.
  • the terminal checks whether the uplink BWP currently operating in step 8-40 is the initial BWP. If the currently operating uplink BWP is the initial BWP, in steps 8-45, the maximum number of MIMO layers for the current uplink BWP, the initial BWP, is set to maxMIMO-Layer2 and applied. This is because when the default BWP is not set, the downlink initial BWP is determined as the default BWP, and the uplink initial BWP can also apply a rule applied to the default BWP according to this.
  • the rule applied to the default BWP can be applied to the downlink initial BWP, and the corresponding uplink The rule is applied to the initial BWP.
  • the UE determines the maximum TBS (transport block size) size required for data transmission by applying the set maximum number of MIMO layers, number of PRBs, and modulation order. That is, the maximum value of the data block size that is actually applied to reception is determined. Thereafter, in steps 8-55, the UE performs uplink data transmission based on the values set in the steps. Through this, power consumption can be reduced by performing reception in a smaller MIMO layer compared to other BWPs of the serving cell in a specific BWP.
  • the maximum number of MIMO layers for the current uplink BWP is set as maxMIMO-Layer in step 8-60 and applied.
  • the maximum number of MIMO layers for the corresponding BWP is set to maxMIMO-Layer3 and applied.
  • the UE determines the maximum TBS (transport block size) size required for data transmission by applying the set maximum number of MIMO layers, number of PRBs, and modulation order. That is, the maximum value of the data block size actually applied to data transmission is determined.
  • steps 8-70 the UE performs uplink data transmission based on the values set in the steps.
  • power consumption can be reduced by performing data transmission through a smaller MIMO layer in a specific BWP compared to other BWPs of the serving cell.
  • the maxMIMO-Layer3 parameter does not exist in the present invention.
  • maxMIMO-Layer3 may be set independently of maxMIMO-Layer2.
  • the UE sets and applies the maximum number of MIMO layers for the current uplink BWP as maxMIMO-Layer. If the currently operating uplink BWP is the first active BWP, the maximum number of MIMO layers for the corresponding BWP is set to maxMIMO-Layer3 and applied. However, as described above, the maxMIMO-Layer3 parameter does not exist in this step.
  • the UE determines the maximum size of the transport block size (TBS) required for data transmission by applying the set maximum number of MIMO layers, the number of PRBs, and the modulation order. That is, the maximum value of the data block size actually applied to data transmission is determined. Thereafter, in steps 8-85, the UE performs uplink data transmission based on the values obtained in the above steps. Through this, data transmission is performed in a smaller MIMO layer in a specific BWP than in other BWPs of the serving cell, thereby reducing power consumption.
  • TBS transport block size
  • FIG. 9 is a diagram showing the overall signal flow applied to the second embodiment proposed by the present invention.
  • the maximum number of MIMO layers may be limited and set for any BWP among the BWPs set in the serving cell. This is characterized in that, in that all BWPs can have different settings (maximum number of MIMO layers) than other BWPs existing in the serving cell, setting the maximum number of MIMO layers for each BWP can be applied more flexibly.
  • a terminal 9-01 in an RRC IDLE state can camp on a cell 9-02 through a cell selection procedure and prepare a service with the cell (9-05).
  • the camp-on state is a state in which the terminal receives system information from a corresponding serving cell, and connection establishment through paging and terminal data generation is possible.
  • the UE performs an RRC connection procedure with the serving cell, and data transmission/reception with the corresponding serving cell is possible.
  • the base station can deliver an RRC message (UECapabilityInquiry) requesting the terminal capability to the terminal in the connected state, and in response to this, the terminal receives a UECapabilityInformation message to the base station in step 9-20. Deliver.
  • RRC message UECapabilityInquiry
  • the UE capability information RRC message may include total capabilities of the UE, such as physical region capability, protocol region capability, and supported frequency band information.
  • information indicating whether the maximum number of MIMO layers can be set for each BWP supported by the terminal in the second NR system may be added.
  • the UE capability may be independently signaled for each uplink and downlink, or may be signaled to simultaneously indicate support for uplink and downlink.
  • signaling is possible in one of the following ways.
  • a method of signaling support for each component carrier (CC) within the band in a band within a band combination (per CC per band per band combination): Include the information in FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC
  • information indicating the UE capability includes only a 1-bit indicator indicating that a different value can be indicated in a specific BWP for the maximum number of MIMO layers indicated for each serving cell, or the maximum number of MIMO layers indicated for each serving cell Unlike that, the maximum number of MIMO layers supported by a terminal supporting each BWP may be indicated by information.
  • the signaling may be performed independently of the uplink or downlink or may be performed in common.
  • the maximum number of MIMO layers for uplink and downlink in a serving cell is provided for each component carrier (CC) within a corresponding band in a band within a band combination as follows.
  • the codebook-based, not terminal capability for the overall uplink transmission belonging to a specific BWP in the future UE capability for non-PUSCH transmission of may be additionally included.
  • mimo-CB-PUSCH SEQUENCE ⁇
  • the base station that has received the terminal capability information through the above step (9-20) can check whether the corresponding terminal can receive the maximum number of MIMO layers differently for each BWP, and if the base station is able to transmit the uplink and downlink data per BWP If it supports setting the maximum number of MIMO layers for, in steps 9-25, the configuration information for this is included in an RRC reconfiguration message (RRCReconfiguration) and transmitted to the terminal.
  • the RRC message may include configuration information for secondary cells, and in particular, BWP configuration information for each serving cell may be included.
  • ⁇ BWP detailed setting information bandwidth information, location in the frequency domain, PDSCH and PUSCH setting information, etc.
  • the terminal Upon receiving the RRC reconfiguration information, the terminal transmits an RRCReconfigurationComplete message to the base station as a confirmation message indicating that the RRC message has been received in steps 9-30. If the terminal has received the maximum number of MIMO layer setting information (maxMIMO-LayerBWP) applied to an arbitrary BWP from the base station in steps 9-25, the terminal operates in the corresponding BWP according to the corresponding configuration information, in the uplink BWP. The maximum number of MIMO layers of is set according to the set parameters (9-35), and data transmission/reception is prepared and performed (9-40). Through this, the maximum number of MIMO layers applied to any downlink BWP becomes smaller than a previously set value for each cell.
  • the UE can reduce the number of reception MIMO layers required for monitoring, thereby reducing reception power.
  • the UE can reduce the actual number of MIMO layers transmitted as the number of MIMO layers for data transmission decreases. Transmission power can be reduced.
  • the UE is the TBS (transport block size) size required for transmission and reception based on the maximum number of MIMO layers per BWP of the uplink and downlink determined in steps 9-35, the number of physical resource blocks (PRBs), and modulation orders. To decide. That is, the data block size actually applied to transmission/reception is determined.
  • TBS transport block size
  • the terminal transmits and receives data based on the values set in the steps.
  • data transmission is performed by applying the parameter determined in the above steps, and in the case of downlink reception, monitoring and reception are also performed based on the set number of MIMO layers.
  • the terminal can reduce power consumption by performing transmission/reception in a smaller MIMO layer in an arbitrary BWP.
  • FIG. 10 is a diagram illustrating a method of setting the maximum number of MIMO layers for a downlink BWP by limiting the number of cell-based maximum MIMO layers in Embodiment 2 proposed by the present invention.
  • the second embodiment is characterized by a method of limiting and setting the maximum number of MIMO layers for an arbitrary BWP among BWPs set in a serving cell. This is characterized in that, in that all BWPs can have different settings (maximum number of MIMO layers) than other BWPs existing in the serving cell, setting the maximum number of MIMO layers for each BWP can be applied more flexibly.
  • the base station may transmit an RRC message (UECapabilityInquiry) requesting the terminal capability to the terminal in the RRC connected state, and in response to this, the terminal sends a UECapabilityInformation message to the base station in step 10-05. It is received and delivered.
  • the UE capability information RRC message may include total capabilities of the UE, such as physical region capability, protocol region capability, and supported frequency band information.
  • information indicating whether the maximum number of MIMO layers can be set for each BWP supported by the terminal in the second NR system may be added.
  • the UE capability may be independently signaled for each uplink and downlink, or may be signaled to simultaneously indicate support for uplink and downlink. In addition, signaling is possible in one of the following ways.
  • a method of signaling support for each component carrier (CC) within the band in a band within a band combination (per CC per band per band combination): Include the information in FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC
  • information indicating the UE capability includes only a 1-bit indicator indicating that a different value can be indicated in a specific BWP for the maximum number of MIMO layers indicated for each serving cell, or the maximum number of MIMO layers indicated for each serving cell Unlike that, the maximum number of MIMO layers supported by a terminal supporting each BWP may be indicated by information.
  • the signaling may be performed independently of the uplink or downlink or may be performed in common.
  • the maximum number of MIMO layers for uplink and downlink in a serving cell is provided for each component carrier (CC) within a corresponding band in a band within a band combination as follows.
  • the codebook-based, not terminal capability for the overall uplink transmission belonging to a specific BWP in the future UE capability for non-PUSCH transmission of may be additionally included.
  • the base station receiving the terminal capability information in the above step can check whether the corresponding terminal can be set differently for the maximum number of MIMO layers for each BWP, and if the corresponding base station sets the maximum number of MIMO layers for uplink data transmission per BWP If it supports, the configuration information for this is set and transmitted to the terminal by including it in an RRC reconfiguration message, and the terminal receives it in step 10-10.
  • the RRC message may include configuration information for secondary cells, and in particular, BWP configuration information for each serving cell may be included.
  • ⁇ BWP detailed setting information bandwidth information, location in the frequency domain, PDSCH and PUSCH setting information, etc.
  • step 10-15 the UE determines whether the maximum number of MIMO layers applied to any downlink BWP (first MIMO parameter: maxMIMO-LayerBWP) is set in the RRC control message received from the base station in step 10-10. Confirm. If the terminal receives the maxMIMO-LayerBWP parameter configuration information for the downlink BWP through the RRC message, in step 10-20, the terminal operates in the corresponding downlink BWP according to the configuration information, for the corresponding BWP. The first MIMO parameter maxMIMO-LayerBWP is set and applied.
  • first MIMO parameter maxMIMO-LayerBWP is set and applied.
  • the size of a transport block size (TBS) required for transmission and reception is determined based on the maximum number of MIMO layers per BWP of the downlink, the number of physical resource blocks (PRBs), and the modulation order determined in step 10-25. That is, the data block size actually applied to transmission/reception is determined. That is, the maximum number of MIMO layers in the uplink and downlink BWP is set according to the set parameters (10-25), and data transmission/reception is prepared and performed (10-30). Through this, the maximum number of MIMO layers applied to the set downlink BWP becomes smaller than the previously set value for each serving cell. As the number of MIMO layers for data reception decreases, the UE can reduce the number of reception MIMO layers required for monitoring, thereby reducing reception power.
  • TBS transport block size
  • the UE performs monitoring and data reception based on the number of MIMO layers set in the steps.
  • a series of procedures for transmitting and receiving data is not different from the existing NR system, but according to the application of the present invention, the terminal can reduce power consumption by performing transmission and reception in a smaller MIMO layer in an arbitrary BWP.
  • the terminal determines the TBS (transport block size) size required for transmission and reception based on the maximum number of downlink MIMO layers per BWP, the number of physical resource blocks (PRBs), and modulation orders determined in steps 10-35. Is done. That is, the data block size actually applied to transmission/reception is determined. Thereafter, in steps 10-45, the UE performs monitoring and data reception based on the number of MIMO layers set in the steps.
  • TBS transport block size
  • FIG. 11 is a diagram illustrating a method of setting the maximum number of MIMO layers for an arbitrary uplink BWP by limiting the number of cell-based MIMO layers in Embodiment 2 proposed by the present invention.
  • the second embodiment is characterized by a method of limiting and setting the maximum number of MIMO layers for an arbitrary BWP among BWPs set in a serving cell. This is characterized in that it can be flexibly applied in that all BWPs can have different settings (maximum number of MIMO layers) than other BWPs present in the serving cell.
  • the base station may transmit an RRC message (UECapabilityEnquiry) requesting the terminal capability to the terminal in the RRC connected state, and in response to this, the terminal sends a UECapabilityInformation message to the base station in steps 11-05. It is received and delivered.
  • the UE capability information RRC message may include total capabilities of the UE, such as physical region capability, protocol region capability, and supported frequency band information.
  • information indicating whether the maximum number of MIMO layers can be set for each BWP supported by the terminal in the second NR system may be added.
  • the UE capability may be independently signaled for each uplink and downlink, or may be signaled to simultaneously indicate support for uplink and downlink. In addition, signaling is possible in one of the following ways.
  • a method of signaling support for each component carrier (CC) within the band in a band within a band combination (per CC per band per band combination): Include the information in FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC
  • information indicating the UE capability includes only a 1-bit indicator indicating that a different value can be indicated in a specific BWP for the maximum number of MIMO layers indicated for each serving cell, or the maximum number of MIMO layers indicated for each serving cell Unlike that, the maximum number of MIMO layers supported by a terminal supporting each BWP may be indicated by information.
  • the signaling may be performed independently of the uplink or downlink or may be performed in common.
  • the maximum number of MIMO layers for uplink and downlink in a serving cell is provided for each component carrier (CC) within a corresponding band in a band within a band combination as follows.
  • the codebook-based, not terminal capability for the overall uplink transmission belonging to a specific BWP in the future UE capability for non-PUSCH transmission of may be additionally included.
  • the base station receiving the terminal capability information in the above step can check whether the corresponding terminal can be set differently for the maximum number of MIMO layers for each BWP, and if the corresponding base station sets the maximum number of MIMO layers for uplink data transmission per BWP If it supports, the configuration information for this is set and transmitted to the terminal by including it in an RRC reconfiguration message, and the terminal receives it in step 11-10.
  • the RRC message may include configuration information for secondary cells, and in particular, BWP configuration information for each serving cell may be included.
  • ⁇ BWP detailed setting information bandwidth information, location in the frequency domain, PDSCH and PUSCH setting information, etc.
  • the UE operations in steps 11-15 and below perform an operation of preparing for uplink data reception by applying the RRC message and parameters received in the step.
  • the configuration of the maximum MIMO layer of the terminal for uplink data transmission and preparation for transmission of the actual physical data block is dealt with, and the operation of the downlink terminal will be described separately in FIG.
  • operations 11-15 in this drawing and operations 10-15 in FIG. 10 are simultaneously applied and performed to the terminal.
  • the UE determines whether the maximum number of MIMO layers applied to any uplink BWP (first MIMO parameter: maxMIMO-LayerBWP) is set in the RRC control message received from the base station in steps 11-10. Confirm. If the terminal receives the maxMIMO-LayerBWP parameter setting information through the RRC message, in steps 11-20, when the terminal operates in a corresponding uplink BWP according to the corresponding setting information, the first MIMO parameter for the corresponding BWP Set and apply maxMIMO-LayerBWP.
  • first MIMO parameter maxMIMO-LayerBWP
  • the size of a transport block size (TBS) required for transmission/reception is determined based on the maximum number of MIMO layers per BWP of uplink, the number of physical resource blocks (PRBs), and modulation orders determined in steps 11-25. That is, the data block size actually applied to transmission/reception is determined. That is, the maximum number of MIMO layers in the corresponding uplink BWP is set according to the set parameters (11-25), and data transmission/reception is prepared and performed (11-30). Through this, the maximum number of MIMO layers applied to the configured uplink BWP becomes smaller than the previously set value for each serving cell. As the number of MIMO layers for data reception decreases, the UE can reduce the number of transmission MIMO layers required for data transmission, thereby reducing data transmission power.
  • TBS transport block size
  • the UE performs data transmission based on the number of MIMO layers set in the steps.
  • a series of procedures for transmitting and receiving data is not different from the existing NR system, but according to the application of the present invention, the terminal can reduce power consumption by performing transmission and reception in a smaller MIMO layer in an arbitrary BWP.
  • steps 11-15 if the UE does not receive maxMIMO-LayerBWP parameter configuration information for the uplink BWP through the RRC message, in steps 11-35, the UE 2nd MIMO for all uplink BWPs present in the serving cell. Set and apply the parameter maxMIMO-Layer.
  • steps 11-40 the UE determines the TBS (transport block size) size required for transmission and reception based on the maximum number of MIMO layers per BWP of uplink, the number of physical resource blocks (PRBs), and modulation orders determined in steps 11-35. Is done. That is, the data block size actually applied to transmission/reception is determined.
  • steps 11-45 the UE performs data transmission based on the number of MIMO layers set in the steps.
  • a series of procedures for transmitting and receiving data is not different from the existing NR system, but according to the application of the present invention, the terminal can reduce power consumption by performing transmission and reception in a smaller MIMO layer in an arbitrary BWP.
  • FIG. 12 is a diagram illustrating an operation of a base station applied to the entire embodiment proposed in the present invention.
  • the operation of the base station in this drawing describes the structure of the operation of the base station applied to the first and second embodiments, and the detailed description has been described in detail with reference to FIGS. 6 and 9 for each embodiment.
  • the base station may deliver an RRC message (UECapabilityEnquiry) requesting terminal capability information to a connected terminal, and receives a UECapabilityInformation message in response thereto.
  • the UE capability information message may include UE capability information indicating whether or not the UE can perform different configuration of the maximum number of MIMO layers for each specific uplink BWP.Based on this information, the base station gives the UE the maximum per uplink BWP. It can be determined whether the number of MIMO layers can be set differently.
  • the base station sets the maxMIMO-Layers parameter for each uplink and downlink in order to set the number of MIMO layers applied to all BWPs in the serving cell, and applied to the entire serving cell for a specific BWP according to the UE capability.
  • a value having a value different from the maxMIMO-Layers may be set.
  • the base station configuration in this step is applied differently in the specific configuration method in the first and second embodiments, and has been described in detail in the description of the first and second embodiments of the present invention.
  • the base station transmits an RRC reconfiguration message containing parameter information set in the step to the terminal.
  • the base station applies the set parameters to set parameters required for uplink and downlink data transmission and reception, and prepares for data transmission and reception. That is, the TBS (transport block size) size required for transmission and reception is determined based on the maximum number of MIMO layers per BWP of the uplink and downlink, the number of physical resource blocks (PRBs), and the modulation order, and the size of the data block actually applied to transmission and reception is determined. Is determined. Thereafter, data transmission is performed based on the number of MIMO layers set in the above steps. A series of procedures for transmitting and receiving data is not different from the existing NR system, but according to the application of the present invention, the terminal can reduce power consumption by performing transmission and reception in a smaller MIMO layer in a random BWP.
  • the TBS transport block size
  • PRBs physical resource blocks
  • FIG. 13 is a block diagram showing an internal structure of a terminal to which the present invention is applied.
  • the terminal includes a radio frequency (RF) processing unit 13-10, a baseband processing unit 13-20, a storage unit 13-30, and a control unit 13-40. .
  • RF radio frequency
  • the RF processing unit 13-10 performs a function for transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the RF processing unit 13-10 up-converts the baseband signal provided from the baseband processing unit 13-20 into an RF band signal and transmits it through an antenna, and the RF band signal received through the antenna Is down-converted to a baseband signal.
  • the RF processing unit 13-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), and the like. I can. In the drawing, only one antenna is shown, but the terminal may include a plurality of antennas.
  • the RF processing unit 13-10 may include a plurality of RF chains. Furthermore, the RF processing unit 13-10 may perform beamforming. For the beamforming, the RF processing unit 13-10 may adjust a phase and a magnitude of each of signals transmitted/received through a plurality of antennas or antenna elements. In addition, the RF processing unit may perform MIMO, and may receive multiple layers when performing the MIMO operation.
  • the baseband processing unit 13-20 performs a function of converting between a baseband signal and a bit stream according to the physical layer standard of the system. For example, when transmitting data, the baseband processing unit 13-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processing unit 13-20 restores a received bit sequence through demodulation and decoding of the baseband signal provided from the RF processing unit 13-10. For example, in the case of the OFDM (orthogonal frequency division multiplexing) method, when transmitting data, the baseband processing unit 13-20 generates complex symbols by encoding and modulating a transmission bit stream, and subcarriers the complex symbols.
  • OFDM orthogonal frequency division multiplexing
  • OFDM symbols are constructed through an inverse fast Fourier transform (IFFT) operation and a cyclic prefix (CP) insertion.
  • IFFT inverse fast Fourier transform
  • CP cyclic prefix
  • the baseband processing unit 13-20 divides the baseband signal provided from the RF processing unit 13-10 in units of OFDM symbols, and applies a fast Fourier transform (FFT) operation to subcarriers. After reconstructing the mapped signals, the received bit stream is restored through demodulation and decoding.
  • FFT fast Fourier transform
  • the baseband processing unit 13-20 and the RF processing unit 13-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 13-20 and the RF processing unit 13-10 may be referred to as a transmission unit, a reception unit, a transmission/reception unit, or a communication unit. Furthermore, at least one of the baseband processing unit 13-20 and the RF processing unit 13-10 may include a plurality of communication modules to support a plurality of different wireless access technologies. In addition, at least one of the baseband processing unit 13-20 and the RF processing unit 13-10 may include different communication modules to process signals of different frequency bands. For example, the different wireless access technologies may include a wireless LAN (eg, IEEE 802.11), a cellular network (eg, LTE), and the like. In addition, the different frequency bands may include a super high frequency (SHF) (eg, 2.NRHz, NRhz) band, and a millimeter wave (eg, 60GHz) band.
  • SHF super high frequency
  • the storage unit 13-30 stores data such as a basic program, an application program, and setting information for the operation of the terminal.
  • the storage unit 13-30 may store information related to a second access node that performs wireless communication using a second wireless access technology.
  • the storage unit 13-30 provides stored data according to the request of the control unit 13-40.
  • the controller 13-40 controls overall operations of the terminal.
  • the control unit 13-40 transmits and receives signals through the baseband processing unit 13-20 and the RF processing unit 13-10.
  • the control unit 13-40 writes and reads data in the storage unit 13-40.
  • the control unit 13-40 may include at least one processor.
  • the control unit 13-40 may include a communication processor (CP) that controls communication and an application processor (AP) that controls an upper layer such as an application program.
  • CP communication processor
  • AP application processor
  • FIG. 14 is a block diagram showing the configuration of a base station according to the present invention.
  • the base station includes an RF processing unit 14-10, a baseband processing unit 14-20, a backhaul communication unit 14-30, a storage unit 14-40, and a control unit 14-50. Consists of including.
  • the RF processing unit 14-10 performs a function of transmitting and receiving a signal through a wireless channel such as band conversion and amplification of a signal. That is, the RF processing unit 14-10 up-converts the baseband signal provided from the baseband processing unit 14-20 into an RF band signal and transmits it through an antenna, and the RF band signal received through the antenna Is down-converted to a baseband signal.
  • the RF processing unit 14-10 may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a DAC, an ADC, and the like. In the drawing, only one antenna is shown, but the first access node may include a plurality of antennas.
  • the RF processing unit 14-10 may include a plurality of RF chains. Furthermore, the RF processing unit 14-10 may perform beamforming. For the beamforming, the RF processing unit 14-10 may adjust a phase and a magnitude of each of signals transmitted and received through a plurality of antennas or antenna elements. The RF processor may perform a downlink MIMO operation by transmitting one or more layers.
  • the baseband processing unit 14-20 performs a function of converting between a baseband signal and a bit string according to the physical layer standard of the first wireless access technology. For example, when transmitting data, the baseband processing unit 14-20 generates complex symbols by encoding and modulating a transmission bit stream. In addition, when receiving data, the baseband processing unit 14-20 restores a received bit stream through demodulation and decoding of the baseband signal provided from the RF processing unit 14-10. For example, in the case of the OFDM scheme, when transmitting data, the baseband processing unit 14-20 generates complex symbols by encoding and modulating a transmission bit stream, mapping the complex symbols to subcarriers, and then IFFT OFDM symbols are configured through calculation and CP insertion.
  • the baseband processing unit 14-20 divides the baseband signal provided from the RF processing unit 14-10 in units of OFDM symbols, and reconstructs signals mapped to subcarriers through FFT operation. After that, the received bit stream is restored through demodulation and decoding.
  • the baseband processing unit 14-20 and the RF processing unit 14-10 transmit and receive signals as described above. Accordingly, the baseband processing unit 14-20 and the RF processing unit 14-10 may be referred to as a transmission unit, a reception unit, a transmission/reception unit, a communication unit, or a wireless communication unit.
  • the backhaul communication unit 14-30 provides an interface for performing communication with other nodes in the network. That is, the backhaul communication unit 14-30 converts a bit stream transmitted from the main station to another node, for example, an auxiliary base station, a core network, etc., into a physical signal, and converts the physical signal received from the other node into a bit. Convert to heat
  • the storage unit 14-40 stores data such as a basic program, an application program, and setting information for the operation of the main station.
  • the storage unit 14-40 may store information on bearers allocated to the connected terminal and measurement results reported from the connected terminal.
  • the storage unit 14-40 may store information that is a criterion for determining whether to provide multiple connections to the terminal or to stop. Further, the storage unit 14-40 provides stored data according to the request of the control unit 14-50.
  • the controller 14-50 controls overall operations of the main station. For example, the control unit 14-50 transmits and receives a signal through the baseband processing unit 14-20 and the RF processing unit 14-10 or through the backhaul communication unit 14-30. In addition, the control unit 14-50 writes and reads data in the storage unit 14-40. To this end, the control unit 14-50 may include at least one processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 또한, 본 개시는 차세대 이동 통신 시스템에서 밴드위스 파트 별로 최대 MIMO 레이어 갯수를 설정하는 방법 및 장치를 제공한다.

Description

차세대 이동 통신 시스템에서 밴드위스 파트 별로 최대 MIMO 레이어 갯수를 설정하는 방법 및 장치
본 발명은 차세대 이동통신 시스템에서 밴드위스 파트(Bandwidth part, BWP) 별로 최대 다중입출력(Multiple-Input-Multiple-Output, MIMO) 레이어(Layer) 개수를 설정하기 위한 방법 및 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
또한, 5G 통신 시스템에 있어서 단말의 전력 소모를 줄이기 위한 기술이 연구되고 있다.
본 발명은 NR 시스템에서 단말의 전력 소모를 줄이기 위한 기술의 일환으로써, 현재 서빙 셀별로 설정되어 있는 최대 MIMO layer 갯수를 밴드위스 파트(bandwidth part, BWP) 별로 설정할 수 있도록 한다. 즉, 현재 NR 시스템에서는 특정 서빙 셀에 적용되는 MIMO layer 갯수가 설정되면 모든 BWP에 해당 제한이 적용되고, 특정 BWP에서는 낮은 데이터율과 적은 MIMO layer 갯수를 적용하고 싶더라도 셀별로 설정된 MIMO layer 갯수 제한을 그대로 적용해야 한다. 즉, 셀 내에 최대 MIMO layer 갯수를 지원하는 BWP에 맞춰서 제한을 걸거나, 최대 MIMO layer 갯수를 지원하는 BWP보다 작은 값의 MIMO layer 갯수를 전체 셀에 설정할 수 있다. 이럴 경우 특정 BWP에서는 보다 많은 MIMO layer를 지원할 수 있지만 제한된 성능만을 가질 수 밖에 없다.
전술한 기술적 과제를 달성하기 위한 본 발명의 일 실시 예에 따른 통신 시스템의 단말의 방법은, 상기 단말에 대해 활성화된 하향링크 대역폭 부분(BWP: bandwidth part)을 확인하는 단계; 기지국으로부터 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 다중입출력(MIMO: multi-input-multi-output) 레이어 개수에 대한 정보를 수신하였는지 여부를 확인하는 단계; 및 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 수신한 경우, 상기 제1 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 수신하는 단계를 포함하고, 상기 제1 최대 MIMO 레이어 개수에 대한 정보는 상기 단말에 설정된 BWP 별로 설정될 수 있다.일 실시 예에 따르면, 통신 시스템의 단말의 방법은 상기 기지국으로부터 제2 최대 MIMO 레이어 개수에 대한 정보를 수신하는 단계; 및 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 수신하지 않은 경우, 상기 제2 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 수신하는 단계를 더 포함할 수 있다.
일 실시 예에 따르면, 상기 제2 최대 MIMO 레이어 개수에 대한 정보는 상기 단말의 서빙 셀 별로 설정될 수 있다.
일 실시 예에 따르면, 상기 제1 최대 MIMO 레이어 개수는 상기 제2 최대 MIMO 레이어 개수보다 작거나 같을 수 있다.
일 실시 예에 따르면, 상기 제1 MIMO 레이어 개수에 대한 정보는 무선 자원 제어(RRC: radio resource control) 시그널링을 통해 수신될 수 있다.
또한, 본 발명의 일 실시 예에 따른 통신 시스템의 기지국의 방법은, 단말에 대해 활성화된 하향링크 대역폭 부분(BWP: bandwidth part)을 확인하는 단계; 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 다중입출력(multi-input-multi-output) 레이어 개수에 대한 정보를 상기 단말에게 송신하였는지 여부를 확인하는 단계; 및 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 송신한 경우, 상기 제1 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 송신하는 단계를 포함하고, 상기 제1 최대 MIMO 레이어 개수에 대한 정보는 상기 단말에 설정된 BWP 별로 설정될 수 있다.
또한, 본 발명의 일 실시 예에 따른 단말은, 송수신부; 및 상기 단말에 대해 활성화된 하향링크 대역폭 부분(BWP: bandwidth part)을 확인하고, 기지국으로부터 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 다중입출력(MIMO: multi-input-multi-output) 레이어 개수에 대한 정보를 수신하였는지 여부를 확인하고, 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 수신한 경우, 상기 제1 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 수신하도록 구성되는 제어부를 포함하고, 상기 제1 최대 MIMO 레이어 개수에 대한 정보는 상기 단말에 설정된 BWP 별로 설정될 수 있다.
또한, 본 발명의 일 실시 예에 따른 기지국은, 송수신부; 및 단말에 대해 활성화된 하향링크 대역폭 부분(BWP: bandwidth part)을 확인하고, 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 다중입출력(multi-input-multi-output) 레이어 개수에 대한 정보를 상기 단말에게 송신하였는지 여부를 확인하고, 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 송신한 경우, 상기 제1 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 송신하도록 구성되는 제어부를 포함하고, 상기 제1 최대 MIMO 레이어 개수에 대한 정보는 상기 단말에 설정된 BWP 별로 설정될 수 있다.
차세대 이동 통신 시스템에서 특정 서빙셀에 일괄적으로 적용되던 최대 MIMO layer 갯수 설정을 상하향링크의 BWP 별로 설정하거나, 특정 BWP, 예를 들어 초기 BWP 혹은 기본 BWP에 최대 MIMNO layer 갯수 제한을 설정할 수 있게 됨으로써, 특정 BWP에 대해 다른 BWP에 적용되는 MIMO layer 갯수보다 적은 값을 설정할 수 있다. 이를 통해 단말이 특정 BWP에서 동작시 송수신 전력 감소를 달성할 수 있다.
도 1은 본 발명의 설명을 위해 참고로 하는 LTE 시스템의 구조를 도시하는 도면이다.
도 2는 본 발명의 설명을 위해 참고로 하는 LTE 시스템에서의 무선 프로토콜 구조를 나타낸 도면이다.
도 3은 본 발명이 적용되는 차세대 이동 통신 시스템의 구조를 도시하는 도면이다.
도 4는 본 발명이 적용될 수 있는 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다.
도 5는 본 발명에 적용되는 NR 시스템에서 BWP별로 최대 MIMO 레이어 갯수를 설정할 수 있는 시스템을 도시한 도면이다.
도 6은 본 발명에서 제안하는 실시 예 1에 적용되는 전체 신호 흐름을 도시한 도면이다.
도 7a는 본 발명에서 제안하는 실시 예 1에서 특정 하향링크 BWP에 대한 최대 MIMO 레이어 갯수를 셀 기반의 최대 MIMO 레이어 갯수보다 제한하여 설정하는 방법의 일부를 도시한 도면이다.
도 7b는 본 발명에서 제안하는 실시 예 1에서 특정 하향링크 BWP에 대한 최대 MIMO 레이어 개수를 셀 기반의 최대 MIMO 레이어 개수보다 제한하여 설정하는 방법의 나머지 일부를 도시한 도면이다.
도 8a는 본 발명에서 제안하는 실시 예 1에서 특정 상향링크 BWP에 대한 최대 MIMO 레이어 갯수를 셀 기반의 최대 MIMO 레이어 갯수보다 제한하여 설정하는 방법의 일부를 도시한 도면이다.
도 8b는 본 발명에서 제안하는 실시 예 1에서 특정 상향링크 BWP에 대한 최대 MIMO 레이어 개수를 셀 기반의 최대 MIMO 레이어 개수보다 제한하여 설정하는 방법의 나머지 일부를 도시한 도면이다.
도 9는 본 발명에서 제안하는 실시 예 2에 적용되는 전체 신호 흐름을 도시한 도면이다.
도 10은 본 발명에서 제안하는 실시 예 2에서 특정 하향링크 BWP에 대한 최대 MIMO 레이어 갯수를 셀 기반의 최대 MIMO 레이어 갯수보다 제한하여 설정하는 방법을 도시한 도면이다.
도 11은 본 발명에서 제안하는 실시 예 2에서 특정 상향링크 BWP에 대한 최대 MIMO 레이어 갯수를 셀 기반의 최대 MIMO 레이어 갯수보다 제한하여 설정하는 방법을 도시한 도면이다.
도 12는 본 발명에서 제안하는 실시 예 전체에 적용되는 기지국 동작을 도시한 도면이다.
도 13은 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다.
도 14는 본 발명에 따른 기지국의 구성을 나타낸 블록도이다.
이하 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명하기에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 본 발명은 3GPP LTE(3rd Generation Partnership Project Long Term Evolution) 규격에서 정의하고 있는 용어 및 명칭들, 혹은 이를 기반으로 변형한 용어 및 명칭들을 사용한다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하게 적용될 수 있다. 즉, 본 발명이 적용되는 시스템으로는 이동통신 시스템 전반, 특히 LTE 시스템, NR 시스템 전체가 적용될 수 있다.
도 1은 본 발명의 설명을 위해 참고로 하는 LTE 시스템의 구조를 도시하는 도면이다.
도 1을 참조하면, 도시한 바와 같이 LTE 시스템의 무선 액세스 네트워크는 차세대 기지국(Evolved Node B, 이하 eNB, Node B 또는 기지국)(1-05, 1-10, 1-15, 1-20)과 MME(Mobility Management Entity, 1-25) 및 S-GW(Serving-Gateway, 1-30)로 구성된다. 사용자 단말(User Equipment, 이하 UE 또는 단말)(1-35)은 eNB(1-05~1-20) 및 S-GW(1-30)를 통해 외부 네트워크에 접속한다.
도 1에서 eNB(1-05~1-20)는 UMTS 시스템의 기존 노드 B에 대응된다. eNB는 UE(1-35)와 무선 채널로 연결되며 기존 노드 B 보다 복잡한 역할을 수행한다. LTE 시스템에서는 인터넷 프로토콜을 통한 VoIP(Voice over IP)와 같은 실시간 서비스를 비롯한 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 eNB(1-05~1-20)가 담당한다. 하나의 eNB는 통상 다수의 셀들을 제어한다. 예컨대, 100 Mbps의 전송 속도를 구현하기 위해서 LTE 시스템은 예컨대, 20 MHz 대역폭에서 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 사용한다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. S-GW(1-30)는 데이터 베어러를 제공하는 장치이며, MME(1-25)의 제어에 따라서 데이터 베어러를 생성하거나 제거한다. MME는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국 들과 연결된다.
도 2는 본 발명의 설명을 위해 참고로 하는 LTE 시스템에서의 무선 프로토콜 구조를 나타낸 도면이다.
도 2를 참조하면, LTE 시스템의 무선 프로토콜은 단말과 eNB에서 각각 PDCP(Packet Data Convergence Protocol 2-05, 2-40), RLC(Radio Link Control 2-10, 2-35), MAC(Medium Access Control 2-15, 2-30)으로 이루어진다. PDCP(2-05, 2-40)는 IP header 압축/복원 등의 동작을 담당한다. PDCP의 주요 기능은 하기와 같이 요약된다.
- header 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs at PDCP re-establishment procedure for RLC AM)
- 순서 재정렬 기능(For split bearers in DC (only support for RLC AM): PDCP PDU routing for transmission and PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs at PDCP re-establishment procedure for RLC AM)
- 재전송 기능(Retransmission of PDCP SDUs at handover and, for split bearers in DC, of PDCP PDUs at PDCP data-recovery procedure, for RLC AM)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
무선 링크 제어(Radio Link Control, 이하 RLC라고 한다)(2-10, 2-35)는 PDCP PDU(Packet Data Unit)를 적절한 크기로 재구성해서 ARQ 동작 등을 수행한다. RLC의 주요 기능은 하기와 같이 요약된다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ (only for AM data transfer))
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs (only for UM and AM data transfer))
- 재분할 기능(Re-segmentation of RLC data PDUs (only for AM data transfer))
- 순서 재정렬 기능(Reordering of RLC data PDUs (only for UM and AM data transfer)
- 중복 탐지 기능(Duplicate detection (only for UM and AM data transfer))
- 오류 탐지 기능(Protocol error detection (only for AM data transfer))
- RLC SDU 삭제 기능(RLC SDU discard (only for UM and AM data transfer))
- RLC 재수립 기능(RLC re-establishment)
MAC(2-15, 2-30)은 한 단말에 구성된 여러 RLC 계층 장치들과 연결되며, RLC PDU들을 MAC PDU에 다중화하고 MAC PDU로부터 RLC PDU들을 역다중화하는 동작을 수행한다. MAC의 주요 기능은 하기와 같이 요약된다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs belonging to one or different logical channels into/from transport blocks (TB) delivered to/from the physical layer on transport channels)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
물리 계층(2-20, 2-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 한다.
도 3은 본 발명이 적용되는 차세대 이동 통신 시스템의 구조를 도시하는 도면이다.
도 3을 참조하면, 도시한 바와 같이 차세대 이동 통신 시스템의 무선 액세스 네트워크는 차세대 기지국(New Radio Node B, 이하 NR NB 혹은 NR gNB, 3-10)과 NR CN(New Radio Core Network, 3-05)로 구성된다. 사용자 단말(New Radio User Equipment, 이하 NR UE 또는 단말, 3-15)은 NR gNB(3-10) 및 NR CN(3-05)를 통해 외부 네트워크에 접속한다.
도 3에서 NR gNB(3-10)는 기존 LTE 시스템의 eNB(Evolved Node B)에 대응된다. NR gNB는 NR UE(3-15)와 무선 채널로 연결되며 기존 노드 B 보다 더 월등한 서비스를 제공해줄 수 있다. 차세대 이동 통신 시스템에서는 모든 사용자 트래픽이 공용 채널(shared channel)을 통해 서비스되므로, UE들의 버퍼 상태, 가용 전송 전력 상태, 채널 상태 등의 상태 정보를 취합해서 스케줄링을 하는 장치가 필요하며, 이를 NR gNB(3-10)가 담당한다. 하나의 NR gNB는 통상 다수의 셀들을 제어한다. 기존 LTE 대비 초고속 데이터 전송을 구현하기 위해서 기존 최대 대역폭 이상을 가질 수 있고, 직교 주파수 분할 다중 방식(Orthogonal Frequency Division Multiplexing, 이하 OFDM이라 한다)을 무선 접속 기술로 하여 추가적으로 빔포밍 기술이 접목될 수 있다. 또한 단말의 채널 상태에 맞춰 변조 방식(modulation scheme)과 채널 코딩률(channel coding rate)을 결정하는 적응 변조 코딩(Adaptive Modulation & Coding, 이하 AMC라 한다) 방식을 적용한다. NR CN (3-05)는 이동성 지원, 베어러 설정, QoS 설정 등의 기능을 수행한다. NR CN는 단말에 대한 이동성 관리 기능은 물론 각종 제어 기능을 담당하는 장치로 다수의 기지국들과 연결된다. 또한 차세대 이동 통신 시스템은 기존 LTE 시스템과도 연동될 수 있으며, NR CN이 MME(3-25)와 네트워크 인터페이스를 통해 연결된다. MME는 기존 기지국인 eNB(3-30)과 연결된다.
도 4는 본 발명이 적용될 수 있는 차세대 이동통신 시스템의 무선 프로토콜 구조를 나타낸 도면이다.
도 4를 참조하면, 차세대 이동통신 시스템의 무선 프로토콜은 단말과 NR 기지국에서 각각 NR SDAP(4-01, 4-45), NR PDCP(4-05, 4-40), NR RLC(4-10, 4-35), NR MAC(4-15, 4-30)으로 이루어진다.
NR SDAP(4-01, 4-45)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 사용자 데이터의 전달 기능(transfer of user plane data)
- 상향 링크와 하향 링크에 대해서 QoS flow와 데이터 베어러의 맵핑 기능(mapping between a QoS flow and a DRB for both DL and UL)
- 상향 링크와 하향 링크에 대해서 QoS flow ID의 마킹 기능(marking QoS flow ID in both DL and UL packets)
- 상향 링크 SDAP PDU들에 대해서 relective QoS flow를 데이터 베어러에 맵핑시키는 기능 (reflective QoS flow to DRB mapping for the UL SDAP PDUs).
상기 SDAP 계층 장치에 대해 단말은 RRC 메시지로 각 PDCP 계층 장치 별로 혹은 베어러 별로 혹은 로지컬 채널 별로 SDAP 계층 장치의 헤더를 사용할 지 여부 혹은 SDAP 계층 장치의 기능을 사용할 지 여부를 설정 받을 수 있으며, SDAP 헤더가 설정된 경우, SDAP 헤더의 NAS QoS 반영 설정 1비트 지시자(NAS reflective QoS)와 AS QoS 반영 설정 1비트 지시자(AS reflective QoS)로 단말이 상향 링크와 하향 링크의 QoS flow와 데이터 베어러에 대한 맵핑 정보를 갱신 혹은 재설정할 수 있도록 지시할 수 있다. 상기 SDAP 헤더는 QoS를 나타내는 QoS flow ID 정보를 포함할 수 있다. 상기 QoS 정보는 원할한 서비스를 지원하기 위한 데이터 처리 우선 순위, 스케쥴링 정보 등으로 사용될 수 있다.
NR PDCP (4-05, 4-40)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 헤더 압축 및 압축 해제 기능(Header compression and decompression: ROHC only)
- 사용자 데이터 전송 기능 (Transfer of user data)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능 (Out-of-sequence delivery of upper layer PDUs)
- 순서 재정렬 기능(PDCP PDU reordering for reception)
- 중복 탐지 기능(Duplicate detection of lower layer SDUs)
- 재전송 기능(Retransmission of PDCP SDUs)
- 암호화 및 복호화 기능(Ciphering and deciphering)
- 타이머 기반 SDU 삭제 기능(Timer-based SDU discard in uplink.)
상기에서 NR PDCP 장치의 순서 재정렬 기능(reordering)은 하위 계층에서 수신한 PDCP PDU들을 PDCP SN(sequence number)을 기반으로 순서대로 재정렬하는 기능을 말하며, 재정렬된 순서대로 데이터를 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 순서를 고려하지 않고, 바로 전달하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 PDCP PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 PDCP PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있다.
NR RLC(4-10, 4-35)의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 데이터 전송 기능(Transfer of upper layer PDUs)
- 순차적 전달 기능(In-sequence delivery of upper layer PDUs)
- 비순차적 전달 기능(Out-of-sequence delivery of upper layer PDUs)
- ARQ 기능(Error Correction through ARQ)
- 접합, 분할, 재조립 기능(Concatenation, segmentation and reassembly of RLC SDUs)
- 재분할 기능(Re-segmentation of RLC data PDUs)
- 순서 재정렬 기능(Reordering of RLC data PDUs)
- 중복 탐지 기능(Duplicate detection)
- 오류 탐지 기능(Protocol error detection)
- RLC SDU 삭제 기능(RLC SDU discard)
- RLC 재수립 기능(RLC re-establishment)
상기에서 NR RLC 장치의 순차적 전달 기능(In-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들을 RLC SN(sequence number) 혹은 PDCP SN(sequence number)를 기준으로 재정렬하는 기능을 포함할 수 있으며, 순서를 재정렬하여 유실된 RLC PDU들을 기록하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 상태 보고를 송신 측에 하는 기능을 포함할 수 있으며, 유실된 RLC PDU들에 대한 재전송을 요청하는 기능을 포함할 수 있으며, 유실된 RLC SDU가 있을 경우, 유실된 RLC SDU 이전까지의 RLC SDU들만을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 타이머가 시작되기 전에 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있으며, 혹은 유실된 RLC SDU가 있어도 소정의 타이머가 만료되었다면 현재까지 수신된 모든 RLC SDU들을 순서대로 상위 계층에 전달하는 기능을 포함할 수 있다. 또한 상기에서 RLC PDU들을 수신하는 순서대로 (일련번호, Sequence number의 순서와 상관없이, 도착하는 순으로) 처리하여 PDCP 장치로 순서와 상관없이(Out-of sequence delivery) 전달할 수도 있으며, segment 인 경우에는 버퍼에 저장되어 있거나 추후에 수신될 segment들을 수신하여 온전한 하나의 RLC PDU로 재구성한 후, 처리하여 PDCP 장치로 전달할 수 있다. 상기 NR RLC 계층은 접합(Concatenation) 기능을 포함하지 않을 수 있고 상기 기능을 NR MAC 계층에서 수행하거나 NR MAC 계층의 다중화(multiplexing) 기능으로 대체할 수 있다.
상기에서 NR RLC 장치의 비순차적 전달 기능(Out-of-sequence delivery)은 하위 계층으로부터 수신한 RLC SDU들을 순서와 상관없이 바로 상위 계층으로 전달하는 기능을 말하며, 원래 하나의 RLC SDU가 여러 개의 RLC SDU들로 분할되어 수신된 경우, 이를 재조립하여 전달하는 기능을 포함할 수 있으며, 수신한 RLC PDU들의 RLC SN 혹은 PDCP SN을 저장하고 순서를 정렬하여 유실된 RLC PDU들을 기록해두는 기능을 포함할 수 있다.
NR MAC(4-15, 4-30)은 한 단말에 구성된 여러 NR RLC 계층 장치들과 연결될 수 있으며, NR MAC의 주요 기능은 다음의 기능들 중 일부를 포함할 수 있다.
- 맵핑 기능(Mapping between logical channels and transport channels)
- 다중화 및 역다중화 기능(Multiplexing/demultiplexing of MAC SDUs)
- 스케쥴링 정보 보고 기능(Scheduling information reporting)
- HARQ 기능(Error correction through HARQ)
- 로지컬 채널 간 우선 순위 조절 기능(Priority handling between logical channels of one UE)
- 단말간 우선 순위 조절 기능(Priority handling between UEs by means of dynamic scheduling)
- MBMS 서비스 확인 기능(MBMS service identification)
- 전송 포맷 선택 기능(Transport format selection)
- 패딩 기능(Padding)
NR PHY 계층(4-20, 4-25)은 상위 계층 데이터를 채널 코딩 및 변조하고, OFDM 심벌로 만들어서 무선 채널로 전송하거나, 무선 채널을 통해 수신한 OFDM 심벌을 복조하고 채널 디코딩해서 상위 계층으로 전달하는 동작을 수행할 수 있다.
도 5는 본 발명에 적용되는 NR 시스템에서 BWP(bandwidth part)별로 최대 MIMO 레이어 갯수를 설정할 수 있는 시스템을 도시한 도면이다. 해당 도면은 본 발명의 전반에 적용되는 전체 시나리오를 위한 도면이며, 기존 NR 시스템과의 차이점을 같이 보여줌으로써 본 발명의 주요 특징을 설명한다. 또한, 본 발명에서 설명하는 부분적인 주파수 대역(BWP, BandWidth Part) 적용 기술이란, 한 단말이 한 셀에 의해 이용되는 시스템 주파수 대역폭(system bandwidth) 중, 일부 주파수 대역폭만을 이용하여 통신을 수행하는 것을 의미한다. 기본적으로 NR에서는 LTE와 비교해서 넓은 범위의 주파수 대역(예를 들어 400MHz 대역폭)을 지원할 것이기 때문에, 해당 시스템 주파수 대역폭을 모두 만족하는 단말을 위해서는 구현 상에 부담이 될 수 있고, 일부 단말의 경우에는 작은 범위의 주파수 대역폭만을 지원해도 문제가 없을 수 있다. 상기 BWP은 단말 제조 비용 절감 혹은 단말 절전 목적으로 이용된다. 상기 BWP는 이를 지원하는 단말에 한해 기지국에 의해 설정(기존 NR 시스템은 최대 4개까지의 BWP가 설정)될 수 있다. NR 시스템에서는 상기 BWP에서도 특정 기능 및 목적에 따라 하기와 같은 추가적인 BWP가 정의된다.
Figure PCTKR2020008521-appb-I000001
참고로 상기 initial BWP는 서빙 셀 내에 최대 4개까지 설정될 수 있는 BWP와 별개로 생성될 수 있으며, 혹은 다른 BWP 중 하나로 설정될 수 있다. 또한, default BWP는 하향링크에 대해서만 정의되고, 상향링크에 대해서는 정의되지 않을 수 있다.
도 5를 참조하면, NR 기지국(gNB, 5-05)을 서빙 셀로하는 RRC 연결 상태의 NR 단말(5-10)이 NR 데이터 서비스를 수행하는 일반적인 NR 네트워크 시스템을 고려한다. 본 발명에 있어서 제 1 NR 시스템은 기존의 NR 시스템을 의미하며, 이러한 제 1 NR 시스템의 경우 서빙 셀별로 최대 MIMO 레이어 갯수가 설정되는 것을 특징으로 한다. 즉, 제 1 NR 시스템의 경우, NR 기지국(gNB, 5-05)을 서빙 셀로하는 모든 단말에 대해, 기지국(5-05)은 해당 서빙 셀내에서의 상하향링크 데이터 전송에 대한 최대 MIMO 레이어 갯수를 공통으로 설정한다. 이를 다르게 해석하면, 5-25에서처럼 서빙 셀의 하향링크 전체 BWP에 대해 공통의 최대 MIMO 레이어 갯수에 대한 설정(최대 MIMO 레이어 갯수 = 8)이 적용될 수 있다. 마찬가지로 5-30에서처럼 서빙 셀의 하향링크 전체 BWP에 대해 공통의 최대 MIMO 레이어 갯수에 대한 설정(최대 MIMO 레이어 갯수 = 4)이 적용될 수 있다. 참고로 기지국이 설정하는 상기 서빙 셀의 최대 MIMO 레이어 갯수는 상향링크(Uplink, UL)와 하향링크(Downlink, DL)에서 서로 다른 값을 가지도록 독립적으로 지시될 수 있다(같은 값으로 설정할 수도 있음).
이하 본 발명에서 제안하는 제 2 NR 시스템은 기존의 서빙 셀별로 최대 MIMO 레이어 갯수를 설정하는 제 1 NR 시스템과는 달리 특정 BWP에 대한 최대 MIMO 레이어 갯수를 다른 BWP에 설정된 최대 MIMO 레이어 갯수와 다르게 설정하고 적용할 수 있는 것을 특징으로 한다. 단말 관점에서 특정 하향링크 BWP에 적용되는 최대 MIMO 레이어 갯수가 이전에 셀별로 설정된 값보다 작아지게 되면, 단말은 데이터 수신을 위한 MIMO layer의 갯수가 줄어듬에 따라 모니터링에 필요한 수신 MIMO layer 갯수를 줄일 수 있고, 이로인해 수신 전력을 줄일 수 있다. 또한, 단말은 상향링크 BWP에 대해서도 최대 MIMO 레이어 갯수가 이전에 셀별로 설정된 값보다 작아지게 되면, 단말은 데이터 송신을 위한 MIMO layer의 갯수가 줄어듬에 따라 전송하는 실제 MIMO layer 갯수를 줄일 수 있고, 이로인해 송신 전력을 줄일 수 있다. 즉, 본 발명에서 제안하는 제 2 NR 시스템은, 특정 BWP에 대한 최대 MIMO 레이어 갯수를 조절함으로써, 단말의 전력 소모를 줄일 수 있다.상기에서 특정 BWP는 초기 BWP (intial BWP), 기본 BWP(default), 초기 활성화 BWP(first active BWP) 중의 하나 혹은 모두 일 수 있다.
도 5-35 에서는 서빙 셀에 설정된 하향링크 BWP들 중에서 특정 BWP인 하향링크인 BWP#0 (initial BWP)와 BWP#1 (default BWP)에 서빙 셀별로 설정된 최대 MIMO 레이어 갯수보다 적은 값을 설정(최대 MIMO 레이어 갯수 = 4)할 수 있음을 보이는 예시이다. 마찬가지로 도 5-40 에서는 서빙 셀에 설정된 상향링크 BWP들 중에서 특정 BWP인 상향링크인 BWP#0 (initial BWP)에 서빙 셀별로 설정된 최대 MIMO 레이어 갯수보다 적은 값을 설정(최대 MIMO 레이어 갯수 = 2)하는 경우이다. 본 예시에서는 하향링크 defalt BWP가 BWP#1로 설정된 상황을 가정했으나, 이는 예시를 위한 것일 뿐 본 발명의 범위를 제한하지 않는다.
이하의 본 발명에서 제안하는 해결책은 도 5에서 정의한 제 2 NR 시스템을 지원하기 위한 방법들을 나열하며, 상향링크와 하향링크에서의 동작을 실시 예 별로 구분하여 설명한다. 이하 실시 예 1에서는 서빙 셀내에 설정된 BWP 중에서도 특정 BWP (initial BWP, defalt BWP, first active BWP)에 대해 최대 MIMO 레이어 갯수를 제한하여 설정하는 방법을 고려한다. 해당 실시 예 1에서는 특히 default BWP에 대해 MIMO 레이어 갯수를 제한하는 것이 고려될 수 있다. 이는 단말 동작상 fallback BWP인 default BWP로 돌아갈 경우에 대해서는 다른 BWP에 설정된 최대 MIMO 레이어 갯수보다 제한하여 기본적인 성능을 지원하는 시나리오가 적합하기 때문이다. 만약 intial BWP와 default BWP가 같은 경우에 대해서는 두 BWP 모두에 최대 MIMO 레이어 갯수 제한을 적용할 수 있도록 한다. 하기에 실시 예 1에서의 주요 기술 제안을 정리한다.
- Initial BWP와 default BWP가 같을 경우, 두 BWP 모두에 최대 MIMO 레이어 갯수 제한 설정
- Initial BWP와 default BWP가 다를 경우, default BWP에 최대 MIMO 레이어 갯수 제한 설정
- First active BWP에 최대 MIMO 레이어 갯수 제한 설정하는 방법 (optional)
이하 실시 예 2에서는 전체 BWP들 각각에 대한 최대 MIMO 레이어 갯수 제한 설정을 유연하게 적용하기 위해 특정 BWP로 한정하지 않고, 어떤 BWP에도 적용가능할 수 있는 해결책을 제안한다. 이는 모든 BWP에 대해서 최대 MIMO 레이어 갯수가 설정 가능한 구조를 만들고, 기지국이 이를 설정하는 방안이다.
도 6은 본 발명에서 제안하는 실시 예 1에 적용되는 전체 신호 흐름을 도시한 도면이다.
앞서 설명했듯이, 실시 예 1에 따르면 서빙 셀내에 설정된 BWP 중에서도 특정 BWP (initial BWP, defalt BWP, first active BWP 중 하나의 BWP 혹은 복수의 BWP 조합)에 대해 최대 MIMO 레이어 갯수를 제한하여 설정할 수 있다. 또한, RRC 재설정 메시지에서 제공되는 새로운 파라미터 (특정 BWP를 위한 최대 MIMO 레이어 갯수 설정)가 서빙 셀별로 제공될 수 있다.
도 6을 참조하면, RRC IDLE 상태의 단말(6-01)은 셀 선택 절차를 통해 임의의 셀(6-02)에 대해 캠프 온 하고 해당 셀과의 서비스를 준비할 수 있다(6-05). 상기 캠프 온 상태란 단말이 해당 서빙 셀로부터 시스템 정보를 수신하며, 페이징을 통한 연결 설정 및 단말 데이터 발생 등으로 인한 연결 설정이 가능한 상태이다. 상기의 이유로 6-10 단계에서 단말은 서빙 셀과 RRC 연결 절차를 수행하고, 해당 서빙 셀과의 데이터 송수신이 가능해진다. 6-15 단계에서 기지국은 연결 상태의 단말에게 단말 능력을 요청하는 RRC 메시지(UECapabilityEnquiry)를 전달할 수 잇고, 이에 대한 응답으로 6-20 단계에서 단말은 기지국에게 단말 능력 정보(UECapabilityInformation) 메시지를 수납해서 전달한다. 상기 단말 능력 정보 RRC 메시지에는 단말이 지원하는 물리영역 능력, 프로토콜 영역 능력, 지원하는 주파수 밴드 정보 등의 단말의 전체 능력이 포함될 수 있다. 특히, 본 발명에서는 기존 제 1 NR 시스템에서의 단말 능력에 추가로, 제 2 NR 시스템에서 단말이 지원하는 BWP 별로 최대 MIMO 레이어 개수 설정이 가능한지 여부를 지시하는 정보가 추가될 수 있다. 상기 단말 능력은 상향링크와 하향링크별로 독립적으로 시그널링될 수도 있으며, 혹은 상하향링크에 대한 지원을 동시에 지시하도록 시그널링될 수 있다. 또한, 시그널링은 하기의 방법 중 하나로 가능하다.
1. 지원 여부를 단말 별 시그널링하는 방법 (per UE)
2. 지원 여부를 밴드 조합별로 시그널링하는 방법 (per band combination)
3. 지원 여부를 밴드 조합내의 밴드별로 시그널링하는 방법 (per band per band combination)
4. 지원 여부를 밴드 조합내의 밴드에서 해당 밴드내의 각 component carrier (CC) 별로 시그널링하는 방법 (per CC per band per band combination): FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC 내에 해당 정보 포함
상기에서 단말 능력을 지시하는 정보로는 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수에 대해 특정 BWP에서 다른 값을 지시할 수 있음을 나타내는 1bit 지시자가 포함되거나, 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수와 다르게 BWP별로 지원하는 단말이 지원하는 최대 MIMO 레이어 갯수가 정보로 지시될 수 있다. 이때, 해당 시그널링은 상하향링크 독립적으로 수행되거나 공통으로 수행될 수 있다. 참고로 현재 NR 표준에는 하기와 같이 서빙 셀내의 상하향링크에 대한 최대 MIMO 레이어 갯수가 밴드 조합내의 밴드에서 해당 밴드내의 각 component carrier (CC) 별로 제공된다. 또한, 조금더 자세히 살펴보면, 상향링크(PUSCH)에 대해서는 최대 MIMO 레이어 갯수가 코드북 기반의 전송일 때 독립적으로 보고될 수 있기때문에, 추후 특정 BWP에 속한 상향링크 전송 전반에 대한 단말능력이 아니라 코드북 기반의 PUSCH 전송이 아닌 경우에 대한 단말 능력이 추가로 포함될 수도 있다.
FeatureSetDownlinkPerCC ::= SEQUENCE {
supportedSubcarrierSpacingDL SubcarrierSpacing,
supportedBandwidthDL SupportedBandwidth,
channelBW-90mhz ENUMERATED {supported} OPTIONAL,
maxNumberMIMO-LayersPDSCH MIMO-LayersDL OPTIONAL,
supportedModulationOrderDL ModulationOrder OPTIONAL
}
FeatureSetUplinkPerCC ::= SEQUENCE {
supportedSubcarrierSpacingUL SubcarrierSpacing,
supportedBandwidthUL SupportedBandwidth,
channelBW-90mhz ENUMERATED {supported} OPTIONAL,
mimo-CB-PUSCH SEQUENCE {
maxNumberMIMO-LayersCB-PUSCH MIMO-LayersUL OPTIONAL,
maxNumberSRS-ResourcePerSet INTEGER (1..2)
} OPTIONAL,
maxNumberMIMO-LayersNonCB-PUSCH MIMO-LayersUL OPTIONAL,
supportedModulationOrderUL ModulationOrder OPTIONAL
}
상기의 단계(6-20)을 통해 단말 능력 정보를 수신한 기지국은 해당 단말이 BWP별로 최대 MIMO 레이어 갯수를 다르게 설정받을 수 있는지 여부를 확인할 수 있으며, 만약 해당 기지국이 BWP별 상하향링크 데이터 전송에 대한 최대 MIMO 레이어 갯수 설정을 지원한다면, 이를 위한 설정 정보를 세팅하여 6-25 단계에서 RRC 재설정 메시지(RRCReconfiguration)에 포함하여 단말에게 전달한다. 상기 RRC 메시지에는 보조 셀(Secondary cell)들에 대한 설정정보가 포함될 수 있으며, 특히 서빙 셀 별로 하기와 같은 BWP 설정 정보가 포함될 수 있다.
- 상하향링크 BWP별 설정 정보 (pdsch-config, pusch-config)
■ BWP 인덱스
■ BWP 세부 설정 정보: bandwidth 정보, 주파수 영역에서의 위치, PDSCH 및 PUSCH 설정 정보 등
- 서빙 셀 당 하기와 같은 하나의 BWP 관련 정보
■ Default BWP 인덱스
■ First Active BWP 인덱스
■ Initial BWP 설정 정보 (bandwidth 정보, 주파수 영역에서의 위치 등)
■ Inactivity-BWP 타이머 정보 (default BWP로의 회기를 위한 타이머)
- 서빙 셀에 적용되는 공통의 설정 정보
(상향링크 및 하향링크에 별도로 시그널링: pdsch-ServingCellConfig와 pusch-ServingCellConfig)
서빙 셀 전체 BWP에 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer)
특정 BWP에 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer2): 해당 파라미터는 하기와 같은 특정 BWP에 적용될 수 있음
◆ 방법 1: Initial BWP, Default BWP, First Active BWP 전체에 적용.
◆ 방법 2: Initial BWP, Default BWP에 적용
◆ 방법 3: Default BWP에만 적용
■ (optional) 상기의 방법 2 혹은 방법 3이 적용될 경우 First Active BWP에만 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer3)
상기의 RRC 재설정 정보를 수신받은 단말은 6-30 단계에서 해당 RRC 메시지를 수신하였다는 확인 메시지로 RRCReconfigurationComplete 메시지를 기지국에게 전달한다. 단말은 상기 6-25 단계에서 기지국으로부터 특정 BWP에 적용되는 최대 MIMO 레이어 갯수 설정 정보(maxMIMO-Layer2, maxMIMO-Layer3)를 수신하였다면 단말은 해당 설정 정보에 따라 해당하는 BWP에서 동작할 경우, 해당 상하향링크 BWP에서의 최대 MIMO 레이어 갯수를 설정된 파라미터 맞게 세팅하고(6-35), 데이터 송수신을 준비 및 수행한다(6-45). 이를 통해 특정 하향링크 BWP에 적용되는 최대 MIMO 레이어 갯수가 이전에 셀별로 설정된 값보다 작아지게 된다. 단말은 데이터 수신을 위한 MIMO layer의 갯수가 줄어듬에 따라 모니터링에 필요한 수신 MIMO 레이어 갯수를 줄일 수 있고, 이로인해 수신 전력을 줄일 수 있다. 단말은 상향링크 BWP에 대해서도 최대 MIMO 레이어 갯수가 이전에 셀별로 설정된 값보다 작아지게 되면, 단말은 데이터 송신을 위한 MIMO 레이어의 갯수가 줄어듬에 따라 전송하는 실제 MIMO 레이어 갯수를 줄일 수 있고, 이로인해 송신 전력을 줄일 수 있다. 또한, 상기에서 특정 BWP는 초기 BWP (intial BWP), 기본 BWP(default), 초기 활성화 BWP(first active BWP) 중의 하나 혹은 이들의 조합일 수 있다.
특히 표준에는 새로 도입되는 파라미터와 동시에 아래와 같은 조건이 추가될 수 있다. 즉, maxMIMO-Layer2와 maxMIMO-Layer3 설정 여부에 따라 maxMIMO-Layer를 적용하는 방법도 달라진다.
- maxMIMO-Layer2와 maxMIMO-Layer3 설정될 경우: BWP 별 MIMO 레이어 설정 가능
- maxMIMO-Layer2와 maxMIMO-Layer3 설정안 될 경우: 서빙 셀 내의 모든 BWP에 maxMIMO-Layer 적용.
- 상향링크
maxMIMO-Layers
Indicates the maximum MIMO layer to be used for PUSCH in all BWPs of this serving cell. (see TS 38.212 [17], clause 5.4.2.1) if maxMIMO-Layers2 or maxMIMO-Layers3 are not configured. Indicates the maximum MIMO layer to be used for PUSCH in all BWPs except default BWP if maxMIMO-Layer2 is configured.
maxMIMO-Layers2
Indicates the maximum MIMO layer to be used for PUSCH in default BWP of this serving cell. (see TS 38.212 [17], clause 5.4.2.1).
maxMIMO-Layers3
Indicates the maximum MIMO layer to be used for PUSCH in first active BWP of this serving cell. (see TS 38.212 [17], clause 5.4.2.1).
- 하향링크
maxMIMO-Layers
Indicates the maximum MIMO layer to be used for PDSCH in all BWPs of this serving cell. (see TS 38.212 [17], clause 5.4.2.1) if maxMIMO-Layers2 or maxMIMO-Layers3 are not configured. Indicates the maximum MIMO layer to be used for PDSCH in all BWPs except default BWP if maxMIMO-Layer2 is configured.
maxMIMO-Layers2
Indicates the maximum MIMO layer to be used for PDSCH in default BWP of this serving cell. (see TS 38.212 [17], clause 5.4.2.1).
maxMIMO-Layers3
Indicates the maximum MIMO layer to be used for PDSCH in first active BWP of this serving cell. (see TS 38.212 [17], clause 5.4.2.1).
특히, 6-40 단계에서 단말은 6-35 단계에서 결정된 상하향링크의 BWP별 최대 MIMO 레이어 갯수와 PRB(physical resource block) 갯수, modulation 오더 등을 기반으로 해서 송수신에 필요한 TBS (transport block size) 사이즈를 결정하게 된다. 즉, 실제로 송수신에 적용되는 데이터 블록 사이즈가 결정된다.
이후 6-45 단계에서 단말은 상기 단계들에서 설정된 값을 기반으로 데이터 송수신을 수행한다. 상향링크 전송의 경우, 상기 단계들에서 결정된 파라미터를 적용해서 데이터 전송을 수행하고, 하향링크 수신의 경우도, 설정된 MIMO 레이어 갯수를 기반으로 모니터링 및 수신을 수행하게 된다. 본 발명이 적용됨에 따라 단말은 특정 BWP에서 더 작은 MIMO 레이어로 송수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
하기의 도면 7a, 7b와 8a, 8b는 상기 도면 6에서 설명한 실시 예 1에서 단말 동작(각각 하향링크와 상향링크 동작) 부분을 더욱 명확히 설명하기 위한 도면이며, 전반적인 시스템 및 신호 흐름은 도 6에서의 설명이 그대로 적용될 수 있다. 즉, 하기 도면 7a, 7b와 8a, 8b에서 단말의 새로운 동작 조건 및 특징을 위주로 설명하고, 도 6에서 설명한 내용이 반복되거나 생략될 수 있지만, 만약 생략되더라도 해당 내용이 그대로 적용될 수 있음을 참고한다.
도 7a는 본 발명에서 제안하는 실시 예 1에서 특정 하향링크 BWP에 대한 최대 MIMO 레이어 갯수를 셀 기반의 최대 MIMO 레이어 갯수보다 제한하여 설정하는 방법의 일부를 도시한 도면이고, 도 7b는 본 발명에서 제안하는 실시 예 1에서 특정 하향링크 BWP에 대한 최대 MIMO 레이어 개수를 셀 기반의 최대 MIMO 레이어 개수보다 제한하여 설정하는 방법의 나머지 일부를 도시한 도면이다.
앞서 설명했듯이, 본 실시 예 1은 서빙 셀내에 설정된 BWP 중에서도 특정 BWP (initial BWP, defalt BWP, first active BWP 중 하나의 BWP 혹은 복수의 BWP 조합)에 대해 최대 MIMO 레이어 갯수를 제한하여 설정하는 것을 특징으로 한다. 또한, RRC 재설정 메시지에서 제공되는 새로운 파라미터 (특정 BWP를 위한 최대 MIMO 레이어 갯수 설정)가 서빙 셀별로 제공될 수 있다.
RRC 연결 상태의 단말은 기지국으로부터 단말능력 요청 메시지(UECapabilityEnquriy)에 대한 응답으로 7-05 단계에서 단말 능력 정보(UECapabilityInformation) 메시지를 수납해서 보고한다. 상기 단말 능력 정보 RRC 메시지에는 단말이 지원하는 물리영역 능력, 프로토콜 영역 능력, 지원하는 주파수 밴드 정보 등의 단말의 전체 능력이 포함될 수 있다. 특히, 본 발명에서는 기존 제 1 NR 시스템에서의 단말 능력에 추가로, 제 2 NR 시스템에서 단말이 지원하는 BWP 별로 최대 MIMO 레이어 개수 설정이 가능한지 여부를 지시하는 정보가 추가될 수 있다. 상기 단말 능력은 상향링크와 하향링크별로 독립적으로 시그널링될 수도 있으며, 혹은 상하향링크에 대한 지원을 동시에 지시하도록 시그널링될 수 있다. 또한, 시그널링은 하기의 방법 중 하나로 가능하다.
1. 지원 여부를 단말 별로 시그널링하는 방법 (per UE)
2. 지원 여부를 밴드 조합별로 시그널링하는 방법 (per band combination)
3. 지원 여부를 밴드 조합내의 밴드별로 시그널링하는 방법 (per band per band combination)
4. 지원 여부를 밴드 조합내의 밴드에서 해당 밴드내의 각 component carrier (CC) 별로 시그널링하는 방법 (per CC per band per band combination): FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC 내에 해당 정보 포함
상기에서 단말 능력을 지시하는 정보로는 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수에 대해 특정 BWP에서 다른 값을 지시할 수 있음을 나타내는 1bit 지시자가 포함되거나, 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수와 다르게 BWP별로 지원하는 단말이 지원하는 최대 MIMO 레이어 갯수가 정보로 지시될 수 있다. 이때, 해당 시그널링은 상하향링크 독립적으로 수행되거나 공통으로 수행될 수 있다.
상기의 단계에서 단말 능력 정보를 수신한 기지국은 해당 단말이 BWP별로 최대 MIMO 레이어 갯수를 다르게 설정받을 수 있는지 여부를 확인할 수 있으며, 만약 해당 기지국이 BWP별 상하향링크 데이터 전송에 대한 최대 MIMO 레이어 갯수 설정을 지원한다면, 이를 위한 설정 정보를 세팅하여 RRC 재설정 메시지(RRCReconfiguration)에 포함할 수 있다. 7-10 단계에서 단말은 상기의 RRC 재설정 메시지를 수신할 수 있으며 수신한 RRC 메시지에는 보조 셀(Secondary cell)들에 대한 설정정보가 포함될 수 있으며, 특히 서빙 셀 별로 하기와 같은 BWP 설정 정보가 포함될 수 있다.
- 상하향링크 BWP별 설정 정보 (pdsch-config, pusch-config)
■ BWP 인덱스
■ BWP 세부 설정 정보: bandwidth 정보, 주파수 영역에서의 위치, PDSCH 및 PUSCH 설정 정보 등
- 서빙 셀 당 하기와 같은 하나의 BWP 관련 정보
■ Default BWP 인덱스
■ First Active BWP 인덱스
■ Initial BWP 설정 정보 (bandwidth 정보, 주파수 영역에서의 위치 등)
■ Inactivity-BWP 타이머 정보 (default BWP로의 회기를 위한 타이머)
- 서빙 셀에 적용되는 공통의 설정 정보
(상향링크 및 하향링크에 별도로 시그널링: pdsch-ServingCellConfig와 pusch-ServingCellConfig)
■ 서빙 셀 전체 BWP에 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer)
특정 BWP에 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer2): 해당 파라미터는 하기와 같은 특정 BWP에 적용될 수 있음
◆ 방법 1: Initial BWP, Default BWP, First Active BWP 전체에 적용.
◆ 방법 2: Initial BWP, Default BWP에 적용
◆ 방법 3: Default BWP에만 적용
■ (optional) 상기의 방법 2 혹은 방법 3이 적용될 경우 First Active BWP에만 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer3)
7-15 단계 이하의 단말 동작은 상기 단계에서 수신한 RRC 메시지와 파라미터들을 적용해서 하향링크 데이터 수신을 위한 준비를 하는 동작을 수행한다. 본 도면의 이하 동작에서는 실시 예 1의 동작 중에서도 하향링크 데이터 수신을 위한 단말의 최대 MIMO 레이어 설정 및 실제 물리적인 데이터 블락의 수신 준비를 다루게 되며, 상향링크 단말 동작은 도면 8에서 따로 설명한다. 하지만 본 도면의 7-15 이하 동작과 도면 8에서의 8-15 이하 동작은 단말에게 동시에 적용되고 수행되는 동작임을 분명히 한다.
7-15 단계에서 단말은 상기 7-10 단계에서 수신한 RRC 재설정 메시지에서 서빙 셀별로 하향링크에 설정(pdsch-ServingCellConfig)되는 최대 MIMO 레이어 갯수 설정 파라미터(maxMIMO-Layer)와 함께 특정 BWP에 적용되는 최대 MIMO 레이어 갯수 설정 파라미터(maxMIMO-Layer2)를 시그널링하는지 여부를 확인한다. 또한 상기의 maxMIMO-Layer2가 적용되는 특정 BWP는 하기와 같은 경우가 가능하다.
◆ 방법 1: Initial BWP, Default BWP, First Active BWP 전체에 적용.
◆ 방법 2: Initial BWP, Default BWP에 적용
◆ 방법 3: Default BWP에만 적용
본 도면에서는 상기의 방법들 중에서 방법 3이 적용되는 것을 기본으로 하면서, default BWP가 initial BWP와 같을 경우에는 initial BWP에도 같은 설정이 적용되는 방법을 설명한다. 또한, 본 도면에서 명시하지 않았지만, 만약 maxMIMO-Layer2가 방법 1 혹은 방법 2에 적용된다면, maxMIMO-Layer2의 지시 여부에 따라 해당 BWP에 대한 최대 MIMO 레이어 갯수 설정이 그대로 적용될 수 있다. 또한, 방법 3이 적용되는 본 도면(방법 2에 대해서도 적용가능)에서는 추가적으로 7-15 단계에서 상기 단계(7-10)에서 수신한 RRC 재설정 메시지에서 서빙 셀내의 하향링크 First Active BWP에 적용가능한 최대 MIMO 레이어 갯수 설정 파라미터(maxMIMO-Layer3)를 시그널링하는지 여부를 같이 체크한다. 상기의 maxMIMO-Layer3 파라미터는 maxMIMO-Layer2 파라미터와 독립적으로 설정될 수도 있으나, 본 발명에서는 maxMIMO-Layer2 파라미터가 설정되는 조건하에서만 옵션으로 설정될 수 있음을 가정한다.
7-15 단계에서 서빙 셀의 하향링크 설정정보(pdsch-ServingCellConfig)에 maxMIMO-Layer2 파라미터가 설정되어 있는 경우, 단말은 7-20 단계에서 7-10 단계에서 수신한 RRC 제어 메시지에 포함된 설정에서 해당 서빙 셀에 default BWP가 설정되었는지 여부를 확인한다. 만약 default BWP 설정이 포함되어 있는 경우, 단말은 7-25 단계에서 현재 동작하고 있는 하향링크 BWP가 default BWP인지 여부를 확인한다. 만약 현재 동작하고 있는 하향링크 BWP가 default BWP인 경우, 단말은 7-30 단계에서 현재 하향링크 BWP인 default BWP에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer2 로 설정하고 적용한다. 7-35 단계에서 단말은 설정된 최대 MIMO 레이어 갯수, PRB 갯수, modulation 오더 등을 적용해서 데이터 수신에 필요한 TBS (transport block size) 사이즈의 최대치를 결정하게 된다. 즉, 실제로 수신에 적용되는 데이터 블록 사이즈의 최대값이 결정된다. 단말은 하향링크 데이터 수신을 위해 상기 단계들에서 결정된 최대 MIMO 레이어 갯수만큼의 MIMO 레이어를 데이터 수신을 위해 준비시켜둬야하며 데이터 수신 블록이 최대 TBS 사이즈까지 될 수 있도록 준비하여야 한다. 이후 7-40 단계에서 단말은 상기 단계들에서 설정된 값을 기반으로 하향링크 데이터 수신을 수행한다. 이를 통해 특정 BWP에서 서빙 셀의 다른 BWP에서와 비교해서 더 작은 MIMO 레이어로 수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
7-25 단계에서 현재 동작하고 있는 하향링크 BWP가 default BWP가 아닌 경우, 단말은 7-45 단계에서 현재 하향링크 BWP에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer 로 설정하고 적용한다. 만약 이 단계에서 현재 하향링크 BWP가 first active BWP인 경우에는 최대 MIMO 레이어 갯수를 maxMIMO-Layer3 로 설정하고 적용한다. 7-50 단계에서 단말은 설정된 최대 MIMO 레이어 갯수, PRB 갯수, modulation 오더 등을 적용해서 데이터 수신에 필요한 TBS (transport block size) 사이즈의 최대치를 결정하게 된다. 즉, 실제로 수신에 적용되는 데이터 블록 사이즈의 최대값이 결정된다. 이후 7-55 단계에서 단말은 상기 단계들에서 설정된 값을 기반으로 하향링크 데이터 수신을 수행한다. 이를 통해 특정 BWP에서 서빙 셀의 다른 BWP에서와 비교해서 더 작은 MIMO 레이어로 수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
도 7-20 단계에서 default BWP 설정이 포함되어 있지 않은 경우, 단말은 7-60 단계에서 현재 동작하고 있는 하향링크 BWP가 initial BWP인지 여부를 확인한다. 만약 현재 동작하고 있는 하향링크 BWP가 initial BWP인 경우, 7-65 단계에서 현재 하향링크 BWP인 initial BWP에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer2 로 설정하고 적용한다. 이는 default BWP가 설정되지 않은 경우에는 하향링크 initial BWP가 default BWP로 결정되기 때문이다. 7-70 단계에서 단말은 설정된 최대 MIMO 레이어 갯수, PRB 갯수, modulation 오더 등을 적용해서 데이터 수신에 필요한 TBS (transport block size) 사이즈의 최대치를 결정하게 된다. 즉, 실제로 수신에 적용되는 데이터 블록 사이즈의 최대값이 결정된다. 이후 7-75 단계에서 단말은 상기 단계들에서 설정된 값을 기반으로 하향링크 데이터 수신을 수행한다. 이를 통해 특정 BWP에서 서빙 셀의 다른 BWP에서와 비교해서 더 작은 MIMO 레이어로 수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
만약 7-60 단계에서 현재 동작하고 있는 하향링크 BWP가 initial BWP가 아닌 경우, 7-80 단계에서 현재 하향링크 BWP 에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer 로 설정하고 적용한다. 또한, 현재 동작하는 하향링크 BWP가 first active BWP인 경우에는 해당 BWP 에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer3로 설정하고 적용한다. 7-85 단계에서 단말은 설정된 최대 MIMO 레이어 갯수, PRB 갯수, modulation 오더 등을 적용해서 데이터 수신에 필요한 TBS (transport block size) 사이즈의 최대치를 결정하게 된다. 즉, 실제로 수신에 적용되는 데이터 블록 사이즈의 최대값이 결정된다. 이후 7-90 단계에서 단말은 상기 단계들에서 설정된 값을 기반으로 하향링크 데이터 수신을 수행한다. 이를 통해 특정 BWP에서 서빙 셀의 다른 BWP에서와 비교해서 더 작은 MIMO 레이어로 수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
다시 돌아가서, 도 7-15 단계에서 서빙 셀의 하향링크 설정정보(pdsch-ServingCellConfig)에 maxMIMO-Layer2 파라미터가 설정되어 있지 않은 경우, 이 경우 본 발명에서는 maxMIMO-Layer3 파라미터도 존재하지 않는다. 참고로 앞서 설명했듯이 maxMIMO-Layer3은 maxMIMO-Layer2와 독립적으로 설정될 수도 있다. 7-95 단계에서 단말은 현재 하향링크 BWP에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer 로 설정하고 적용한다. 만약, 현재 동작하는 하향링크 BWP가 first active BWP인 경우에는 해당 BWP에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer3로 설정하고 적용한다. 하지만 앞서 설명했듯이, 본 단계에서는 maxMIMO-Layer3 파라미터도 존재하지 않는다. 7-100 단계에서 단말은 설정된 최대 MIMO 레이어 갯수, PRB 갯수, modulation 오더 등을 적용해서 데이터 수신에 필요한 TBS (transport block size) 사이즈의 최대치를 결정하게 된다. 즉, 실제로 수신에 적용되는 데이터 블록 사이즈의 최대값이 결정된다. 이후 7-105 단계에서 단말은 상기 단계들에서 설정된 값을 기반으로 하향링크 데이터 수신을 수행한다. 이를 통해 특정 BWP에서 서빙 셀의 다른 BWP에서와 비교해서 더 작은 MIMO 레이어로 수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
도 8a는 본 발명에서 제안하는 실시 예 1에서 특정 상향링크 BWP에 대한 최대 MIMO 레이어 갯수를 셀 기반의 최대 MIMO 레이어 갯수보다 제한하여 설정하는 방법의 일부를 도시한 도면이고, 도 8b는 본 발명에서 제안하는 실시 예 1에서 특정 상향링크 BWP에 대한 최대 MIMO 레이어 개수를 셀 기반의 최대 MIMO 레이어 개수보다 제한하여 설정하는 방법의 나머지 일부를 도시한 도면이다.
앞서 설명했듯이, 본 실시 예 1은 서빙 셀내에 설정된 BWP 중에서도 특정 BWP (initial BWP, defalt BWP, first active BWP 중 하나의 BWP 혹은 복수의 BWP 조합)에 대해 최대 MIMO 레이어 갯수를 제한하여 설정하는것을 특징으로 한다. 또한, RRC 재설정 메시지에서 제공되는 새로운 파라미터 (특정 BWP를 위한 최대 MIMO 레이어 갯수 설정)가 서빙 셀별로 제공될 수 있다.
RRC 연결 상태의 단말은 기지국으로부터 단말능력 요청 메시지(UECapabilityEnquriy)에 대한 응답으로 8-05 단계에서 단말 능력 정보(UECapabilityInformation) 메시지를 수납해서 보고한다. 상기 단말 능력 정보 RRC 메시지에는 단말이 지원하는 물리영역 능력, 프로토콜 영역 능력, 지원하는 주파수 밴드 정보 등의 단말의 전체 능력이 포함될 수 있다. 특히, 본 발명에서는 기존 제 1 NR 시스템에서의 단말 능력에 추가로, 제 2 NR 시스템에서 단말이 지원하는 BWP 별로 최대 MIMO 레이어 개수 설정이 가능한지 여부를 지시하는 정보가 추가될 수 있다. 상기 단말 능력은 상향링크와 하향링크별로 독립적으로 시그널링될 수도 있으며, 혹은 상하향링크에 대한 지원을 동시에 지시하도록 시그널링될 수 있다. 또한, 시그널링은 하기의 방법 중 하나로 가능하다.
1. 지원 여부를 단말 별로 시그널링하는 방법 (per UE)
2. 지원 여부를 밴드 조합별로 시그널링하는 방법 (per band combination)
3. 지원 여부를 밴드 조합내의 밴드별로 시그널링하는 방법 (per band per band combination)
4. 지원 여부를 밴드 조합내의 밴드에서 해당 밴드내의 각 component carrier (CC) 별로 시그널링하는 방법 (per CC per band per band combination): FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC 내에 해당 정보 포함
상기에서 단말 능력을 지시하는 정보로는 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수에 대해 특정 BWP에서 다른 값을 지시할 수 있음을 나타내는 1bit 지시자가 포함되거나, 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수와 다르게 BWP별로 지원하는 단말이 지원하는 최대 MIMO 레이어 갯수가 정보로 지시될 수 있다. 이때, 해당 시그널링은 상하향링크 독립적으로 수행되거나 공통으로 수행될 수 있다.
상기의 단계에서 단말 능력 정보를 수신한 기지국은 해당 단말이 BWP별로 최대 MIMO 레이어 갯수를 다르게 설정받을 수 있는지 여부를 확인할 수 있으며, 만약 해당 기지국이 BWP별 상하향링크 데이터 전송에 대한 최대 MIMO 레이어 갯수 설정을 지원한다면, 이를 위한 설정 정보를 세팅하여 RRC 재설정 메시지(RRCReconfiguration)에 포함할 수 있다. 8-10 단계에서 단말은 상기의 RRC 재설정 메시지를 수신할 수 있으며 수신한 RRC 메시지에는 보조 셀(Secondary cell)들에 대한 설정정보가 포함될 수 있으며, 특히 서빙 셀 별로 하기와 같은 BWP 설정 정보가 포함될 수 있다.
- 상하향링크 BWP별 설정 정보 (pdsch-config, pusch-config)
■ BWP 인덱스
■ BWP 세부 설정 정보: bandwidth 정보, 주파수 영역에서의 위치, PDSCH 및 PUSCH 설정 정보 등
- 서빙 셀 당 하기와 같은 하나의 BWP 관련 정보
■ Default BWP 인덱스
■ First Active BWP 인덱스
■ Initial BWP 설정 정보 (bandwidth 정보, 주파수 영역에서의 위치 등)
■ Inactivity-BWP 타이머 정보 (default BWP로의 회기를 위한 타이머)
- 서빙 셀에 적용되는 공통의 설정 정보
(상향링크 및 하향링크에 별도로 시그널링: pdsch-ServingCellConfig와 pusch-ServingCellConfig)
■ 서빙 셀 전체 BWP에 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer)
■ 특정 BWP에 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer2): 해당 파라미터는 하기와 같은 특정 BWP에 적용될 수 있음
◆ 방법 1: Initial BWP, Default BWP, First Active BWP 전체에 적용.
◆ 방법 2: Initial BWP, Default BWP에 적용
◆ 방법 3: Default BWP에만 적용
■ (optional) 상기의 방법 2 혹은 방법 3이 적용될 경우 First Active BWP에만 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer3)
8-15 단계 이하의 단말 동작은 상기 단계에서 수신한 RRC 메시지와 파라미터들을 적용해서 상향링크 데이터 전송을 위한 준비를 하는 동작을 수행한다. 본 도면의 이하 동작에서는 실시 예 1의 동작 중에서도 상향링크 데이터 전송을 위한 단말의 최대 MIMO 레이어 설정 및 실제 물리적인 데이터 블락의 전송 준비를 다루게 되며, 하향링크 단말 동작은 도면 7에서 따로 설명한다. 하지만 본 도면의 8-15 이하 동작과 도면 7에서의 7-15 이하 동작은 단말에게 동시에 적용되고 수행되는 동작임을 분명히 한다.
8-15 단계에서 단말은 상기 8-10 단계에서 수신한 RRC 재설정 메시지에서 서빙 셀별로 하향링크에 설정(pdsch-ServingCellConfig)되는 최대 MIMO 레이어 갯수 설정 파라미터(maxMIMO-Layer)와 함께 특정 BWP에 적용되는 최대 MIMO 레이어 갯수 설정 파라미터(maxMIMO-Layer2)를 시그널링하는지 여부를 확인한다. 또한 상기의 maxMIMO-Layer2가 적용되는 특정 BWP는 하기와 같은 경우가 가능하다.
◆ 방법 1: Initial BWP, Default BWP, First Active BWP 전체에 적용.
◆ 방법 2: Initial BWP, Default BWP에 적용
◆ 방법 3: Default BWP에만 적용
본 도면에서는 상기의 방법들 중에서 방법 3이 적용되는 것을 기본으로 하면서, default BWP가 하향링크 initial BWP와 같을 경우에는 하향링크 initial BWP 뿐만아니라 상향링크 initial BWP에도 같은 설정이 적용되는 방법을 설명한다. 또한, 본 도면에서 명시하지 않았지만, 만약 maxMIMO-Layer2가 방법 1 혹은 방법 2에 적용된다면, maxMIMO-Layer2의 지시 여부에 따라 해당 BWP에 대한 최대 MIMO 레이어 갯수 설정이 그대로 적용될 수 있다. 또한, 방법 3이 적용되는 본 도면(방법 2에 대해서도 적용가능)에서는 추가적으로 8-15 단계에서 상기 단계(8-10)에서 수신한 RRC 재설정 메시지에서 서빙 셀내의 상향링크 First Active BWP에 적용가능한 최대 MIMO 레이어 갯수 설정 파라미터(maxMIMO-Layer3)를 시그널링하는지 여부를 같이 체크한다. 상기의 maxMIMO-Layer3 파라미터는 maxMIMO-Layer2 파라미터와 독립적으로 설정될 수도 있으나, 본 발명에서는 maxMIMO-Layer2 파라미터가 설정되는 조건하에서만 옵션으로 설정될 수 있음을 가정한다.
8-15 단계에서 서빙 셀의 상향링크 설정정보(pusch-ServingCellConfig)에 maxMIMO-Layer2 파라미터가 설정되어 있는 경우, 단말은 8-20 단계에서 8-10 단계에서 수신한 RRC 제어 메시지에 포함된 설정에서 해당 서빙 셀에 default BWP가 설정되었는지 여부를 확인한다. 만약 default BWP 설정이 포함되어 있는 경우, 단말은 8-25 단계에서 현재 동작하고 있는 상향링크 BWP에 대해서는 항상 서빙 셀 전체에 적용되는 최대 MIMO 레이어 갯수(maxMIMO-Layer)를 적용한다. 이는 default BWP는 하향링크에 대해서만 설정되고, 상향링크에는 해당 개념이 존재하지 않기때문이며, 기지국이 default BWP 용으로만 maxMIMO-Layer2를 설정한다는 의미이기 때문에 다른 상향링크 BWP에는 최적화를 적용하지 않는다. 즉, 8-25 단계에서 단말은 현재 상향링크 BWP에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer로 설정하고 적용한다. 8-30 단계에서 단말은 설정된 최대 MIMO 레이어 갯수, PRB 갯수, modulation 오더 등을 적용해서 상향링크 데이터 전송에 필요한 TBS (transport block size) 사이즈의 최대치를 결정하게 된다. 즉, 실제로 데이터 전송에 적용되는 데이터 블록 사이즈의 최대값이 결정된다. 단말은 상향링크 데이터 전송을 위해 상기 단계들에서 결정된 최대 MIMO 레이어 갯수만큼의 MIMO 레이어를 데이터 전송을 위해 준비시켜둬야하며 데이터 전송 블록이 최대 TBS 사이즈까지 될 수 있도록 준비하여야 한다. 이후 8-35 단계에서 단말은 상기 단계들에서 설정된 값을 기반으로 상향링크 데이터 송신을 수행한다. 이를 통해 특정 BWP에서 서빙 셀의 다른 BWP에서와 비교해서 더 작은 MIMO 레이어로 데이터 전송을 수행하게 됨으로써 전력 소모를 줄일 수 있다. 하지만 default BWP에 대한 설정 여부와 상관없이 항상 initial BWP에 대해서만 MIMO 레이어 갯수 제한을 적용하는 경우, 상기의 8-25, 8-30, 8-35 동작은 수행되지 않고 이후의 동작만을 수행할 수 있다.
도 8-20 단계에서 default BWP 설정이 포함되어 있지 않은 경우, 단말은 8-40 단계에서 현재 동작하고 있는 상향링크 BWP가 initial BWP인지 여부를 확인한다. 만약 현재 동작하고 있는 상향링크 BWP가 initial BWP인 경우, 8-45 단계에서 현재 상향링크 BWP인 initial BWP에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer2 로 설정하고 적용한다. 이는 default BWP가 설정되지 않은 경우에는 하향링크 initial BWP가 default BWP로 결정되고, 상향링크 initial BWP도 이에 준해서 default BWP에 적용되는 규칙을 적용할 수 있기 때문이다. 즉, 상향링크는 default BWP가 존재하지 않기 때문에 default BWP가 하향링크 initial BWP와 같은 경우, 본 실시 예 1은 default BWP에 적용되는 규칙을 하향링크 initial BWP에 적용할 수 있으며, 이와 대응되는 상향링크 initial BWP에 해당 규칙을 적용한다. 8-50 단계에서 단말은 설정된 최대 MIMO 레이어 갯수, PRB 갯수, modulation 오더 등을 적용해서 데이터 전송에 필요한 TBS (transport block size) 사이즈의 최대치를 결정하게 된다. 즉, 실제로 수신에 적용되는 데이터 블록 사이즈의 최대값이 결정된다. 이후 8-55 단계에서 단말은 상기 단계들에서 설정된 값을 기반으로 상향링크 데이터 전송을 수행한다. 이를 통해 특정 BWP에서 서빙 셀의 다른 BWP에서와 비교해서 더 작은 MIMO 레이어로 수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
만약 8-40 단계에서 현재 동작하고 있는 상향링크 BWP가 initial BWP가 아닌 경우, 8-60 단계에서 현재 상향링크 BWP에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer 로 설정하고 적용한다. 또한, 현재 동작하는 상향링크 BWP가 first active BWP인 경우에는 해당 BWP 에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer3로 설정하고 적용한다. 8-65 단계에서 단말은 설정된 최대 MIMO 레이어 갯수, PRB 갯수, modulation 오더 등을 적용해서 데이터 전송에 필요한 TBS (transport block size) 사이즈의 최대치를 결정하게 된다. 즉, 실제로 데이터 전송에 적용되는 데이터 블록 사이즈의 최대값이 결정된다. 이후 8-70 단계에서 단말은 상기 단계들에서 설정된 값을 기반으로 상향링크 데이터 전송을 수행한다. 이를 통해 특정 BWP에서 서빙 셀의 다른 BWP에서와 비교해서 더 작은 MIMO 레이어로 데이터 전송을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
다시 돌아가서, 도 8-15 단계에서 서빙 셀의 상향링크 설정정보(pusch-ServingCellConfig)에 maxMIMO-Layer2 파라미터가 설정되어 있지 않은 경우, 이 경우 본 발명에서는 maxMIMO-Layer3 파라미터도 존재하지 않는다. 참고로 앞서 설명했듯이 maxMIMO-Layer3은 maxMIMO-Layer2와 독립적으로 설정될 수도 있다. 8-75 단계에서 단말은 현재 상향링크 BWP에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer 로 설정하고 적용한다. 만약, 현재 동작하는 상향링크 BWP가 first active BWP인 경우에는 해당 BWP 에 대한 최대 MIMO 레이어 갯수를 maxMIMO-Layer3로 설정하고 적용한다. 하지만 앞서 설명했듯이, 본 단계에서는 maxMIMO-Layer3 파라미터도 존재하지 않는다. 8-80 단계에서 단말은 설정된 최대 MIMO 레이어 갯수, PRB 갯수, modulation 오더 등을 적용해서 데이터 전송에 필요한 TBS (transport block size) 사이즈의 최대치를 결정하게 된다. 즉, 실제로 데이터 전송에 적용되는 데이터 블록 사이즈의 최대값이 결정된다. 이후 8-85 단계에서 단말은 상기 단계들에서 된 값을 기반으로 상향링크 데이터 전송을 수행한다. 이를 통해 특정 BWP에서 서빙 셀의 다른 BWP에서와 비교해서 더 작은 MIMO 레이어로 데이터 전송을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
도 9는 본 발명에서 제안하는 실시 예 2에 적용되는 전체 신호 흐름을 도시한 도면이다.
앞서 설명했듯이, 실시 예 2에 따르면 서빙 셀내에 설정된 BWP 중에서 임의의 BWP에 대해 최대 MIMO 레이어 갯수를 제한하여 설정할 수 있다. 이는 모든 BWP가 서빙 셀 내에 존재하는 다른 BWP와 다른 설정(최대 MIMO 레이어 갯수)을 가질 수 있다는 점에서, 각 BWP에 대한 최대 MIMO 레이어 개수 설정이 보다 유연하게 적용될 수 있다는 것을 특징으로 한다.
도 9를 참조하면, RRC IDLE 상태의 단말(9-01)은 셀 선택 절차를 통해 임의의 셀(9-02)에 대해 캠프 온 하고 해당 셀과의 서비스를 준비할 수 있다(9-05). 상기 캠프 온 상태란 단말이 해당 서빙 셀로부터 시스템 정보를 수신하며, 페이징을 통한 연결 설정 및 단말 데이터 발생 등으로 인한 연결 설정이 가능한 상태이다. 상기의 이유로 9-10 단계에서 단말은 서빙 셀과 RRC 연결 절차를 수행하고, 해당 서빙 셀과의 데이터 송수신이 가능해진다. 9-15 단계에서 기지국은 연결 상태의 단말에게 단말 능력을 요청하는 RRC 메시지(UECapabilityEnquiry)를 전달할 수 잇고, 이에 대한 응답으로 9-20 단계에서 단말은 기지국에게 단말 능력 정보(UECapabilityInformation) 메시지를 수납해서 전달한다. 상기 단말 능력 정보 RRC 메시지에는 단말이 지원하는 물리영역 능력, 프로토콜 영역 능력, 지원하는 주파수 밴드 정보 등의 단말의 전체 능력이 포함될 수 있다. 특히, 본 발명에서는 기존 제 1 NR 시스템에서의 단말 능력에 추가로, 제 2 NR 시스템에서 단말이 지원하는 BWP 별로 최대 MIMO 레이어 개수 설정이 가능한지 여부를 지시하는 정보가 추가될 수 있다. 상기 단말 능력은 상향링크와 하향링크별로 독립적으로 시그널링될 수도 있으며, 혹은 상하향링크에 대한 지원을 동시에 지시하도록 시그널링될 수 있다. 또한, 시그널링은 하기의 방법 중 하나로 가능하다.
1. 지원 여부를 단말 별 시그널링하는 방법 (per UE)
2. 지원 여부를 밴드 조합별로 시그널링하는 방법 (per band combination)
3. 지원 여부를 밴드 조합내의 밴드별로 시그널링하는 방법 (per band per band combination)
4. 지원 여부를 밴드 조합내의 밴드에서 해당 밴드내의 각 component carrier (CC) 별로 시그널링하는 방법 (per CC per band per band combination): FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC 내에 해당 정보 포함
상기에서 단말 능력을 지시하는 정보로는 단지, 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수에 대해 특정 BWP에서 다른 값을 지시할 수 있음을 나타내는 1bit 지시자가 포함되거나, 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수와 다르게 BWP별로 지원하는 단말이 지원하는 최대 MIMO 레이어 갯수가 정보로 지시될 수 있다. 이때, 해당 시그널링은 상하향링크 독립적으로 수행되거나 공통으로 수행될 수 있다. 참고로 현재 NR 표준에는 하기와 같이 서빙 셀내의 상하향링크에 대한 최대 MIMO 레이어 갯수가 밴드 조합내의 밴드에서 해당 밴드내의 각 component carrier (CC) 별로 제공된다. 또한, 조금더 자세히 살펴보면, 상향링크(PUSCH)에 대해서는 최대 MIMO 레이어 갯수가 코드북 기반의 전송일 때 독립적으로 보고될 수 있기때문에, 추후 특정 BWP에 속한 상향링크 전송 전반에 대한 단말능력이 아니라 코드북 기반의 PUSCH 전송이 아닌 경우에 대한 단말 능력이 추가로 포함될 수도 있다.
FeatureSetDownlinkPerCC ::= SEQUENCE {
supportedSubcarrierSpacingDL SubcarrierSpacing,
supportedBandwidthDL SupportedBandwidth,
channelBW-90mhz ENUMERATED {supported} OPTIONAL,
maxNumberMIMO-LayersPDSCH MIMO-LayersDL OPTIONAL,
supportedModulationOrderDL ModulationOrder OPTIONAL
}
FeatureSetUplinkPerCC ::= SEQUENCE {
supportedSubcarrierSpacingUL SubcarrierSpacing,
supportedBandwidthUL SupportedBandwidth,
channelBW-90mhz ENUMERATED {supported} OPTIONAL,
mimo-CB-PUSCH SEQUENCE {
maxNumberMIMO-LayersCB-PUSCH MIMO-LayersUL OPTIONAL,
maxNumberSRS-ResourcePerSet INTEGER (1..2)
} OPTIONAL,
maxNumberMIMO-LayersNonCB-PUSCH MIMO-LayersUL OPTIONAL,
supportedModulationOrderUL ModulationOrder OPTIONAL
}
상기의 단계(9-20)을 통해 단말 능력 정보를 수신한 기지국은 해당 단말이 BWP별로 최대 MIMO 레이어 갯수를 다르게 설정받을 수 있는지 여부를 확인할 수 있으며, 만약 해당 기지국이 BWP별 상하향링크 데이터 전송에 대한 최대 MIMO 레이어 갯수 설정을 지원한다면, 9-25 단계에서 이를 위한 설정 정보를 RRC 재설정 메시지(RRCReconfiguration)에 포함하여 단말에게 전달한다. 상기 RRC 메시지에는 보조 셀(Secondary cell)들에 대한 설정정보가 포함될 수 있으며, 특히 서빙 셀 별로 하기와 같은 BWP 설정 정보가 포함될 수 있다.
- 상하향링크 BWP별 설정 정보 (pdsch-config, pusch-config)
■ BWP 인덱스
■ BWP 세부 설정 정보: bandwidth 정보, 주파수 영역에서의 위치, PDSCH 및 PUSCH 설정 정보 등
maxMIMO-LayersBWP (제 1 maxMIMO 파라미터)
- 서빙 셀 당 하기와 같은 하나의 BWP 관련 정보
■ Default BWP 인덱스
■ First Active BWP 인덱스
■ Initial BWP 설정 정보 (bandwidth 정보, 주파수 영역에서의 위치 등)
■ Inactivity-BWP 타이머 정보 (default BWP로의 회기를 위한 타이머)
- 서빙 셀에 적용되는 공통의 설정 정보
(상향링크 및 하향링크에 별도로 시그널링: pdsch-ServingCellConfig와 pusch-ServingCellConfig)
■ 서빙 셀 전체 BWP에 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer: 제 2 MIMO 파라미터)
상기의 RRC 재설정 정보를 수신받은 단말은 9-30 단계에서 해당 RRC 메시지를 수신하였다는 확인 메시지로 RRCReconfigurationComplete 메시지를 기지국에게 전달한다. 단말은 상기 9-25 단계에서 기지국으로부터 임의의 BWP에 적용되는 최대 MIMO 레이어 갯수 설정 정보(maxMIMO-LayerBWP)를 수신하였다면 단말은 해당 설정 정보에 따라 해당하는 BWP에서 동작할 경우, 해당 상하향링크 BWP에서의 최대 MIMO 레이어 갯수를 설정된 파라미터 맞게 세팅하고(9-35), 데이터 송수신을 준비 및 수행한다(9-40). 이를 통해 임의의 하향링크 BWP에 적용되는 최대 MIMO 레이어 갯수가 이전에 셀별로 설정된 값보다 작아지게 된다. 단말은 데이터 수신을 위한 MIMO layer의 갯수가 줄어듬에 따라 모니터링에 필요한 수신 MIMO 레이어 갯수를 줄일 수 있고, 이로인해 수신 전력을 줄일 수 있다. 단말은 상향링크 BWP에 대해서도 최대 MIMO 레이어 갯수가 이전에 셀별로 설정된 값보다 작아지게 되면, 단말은 데이터 송신을 위한 MIMO 레이어의 갯수가 줄어듬에 따라 전송하는 실제 MIMO 레이어 갯수를 줄일 수 있고, 이로인해 송신 전력을 줄일 수 있다.
특히 표준에는 새로 도입되는 파라미터와 동시에 아래와 같은 조건이 추가될 수 있다.
- 상향링크
maxMIMO-Layers
Indicates the maximum MIMO layer to be used for PUSCH in BWPs of this serving cell. (see TS 38.212 [17], clause 5.4.2.1) for which maxMIMO-LayersBWP is not configured.
maxMIMO-LayersBWP
Indicates the maximum MIMO layer to be used for PUSCH in the BWP of this serving cell. (see TS 38.212 [17], clause 5.4.2.1). If absent, maxMIMO-Layers of the serving cell is applied
- 하향링크
maxMIMO-Layers
Indicates the maximum MIMO layer to be used for PDSCH in BWPs of this serving cell. (see TS 38.212 [17], clause 5.4.2.1) for which maxMIMO-LayersBWP is not configured.
maxMIMO-LayersBWP
Indicates the maximum MIMO layer to be used for PDSCH in the BWP of this serving cell. (see TS 38.212 [17], clause 5.4.2.1). If absent, maxMIMO-Layers of the serving cell is applied
특히, 9-40 단계에서 단말은 9-35 단계에서 결정된 상하향링크의 BWP별 최대 MIMO 레이어 갯수와 PRB(physical resource block) 갯수, modulation 오더 등을 기반으로 해서 송수신에 필요한 TBS (transport block size) 사이즈를 결정하게 된다. 즉, 실제로 송수신에 적용되는 데이터 블록 사이즈가 결정된다.
이후 9-45 단계에서 단말은 상기 단계들에서 설정된 값을 기반으로 데이터 송수신을 수행한다. 상향링크 전송의 경우, 상기 단계들에서 결정된 파라미터를 적용해서 데이터 전송을 수행하고, 하향링크 수신의 경우도, 설정된 MIMO 레이어 갯수를 기반으로 모니터링 및 수신을 수행하게 된다. 본 발명이 적용됨에 따라 단말은 임의의 BWP에서 더 작은 MIMO 레이어로 송수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
도 10은 본 발명에서 제안하는 실시 예 2에서 임의의 하향링크 BWP에 대한 최대 MIMO 레이어 갯수를 셀 기반의 최대 MIMO 레이어 갯수보다 제한하여 설정하는 방법을 도시한 도면이다.
앞서 설명했듯이, 본 실시 예 2는 서빙 셀내에 설정된 BWP 중에서 임의의 BWP에 대해 최대 MIMO 레이어 갯수를 제한하여 설정하는 방법을 특징으로 한다. 이는 모든 BWP가 서빙 셀 내에 존재하는 다른 BWP와 다른 설정(최대 MIMO 레이어 갯수)을 가질 수 있다는 점에서, 각 BWP에 대한 최대 MIMO 레이어 개수 설정이 보다 유연하게 적용될 수 있다는 것을 특징으로 한다.
도 10을 참조하면, RRC 연결 상태의 단말에게 기지국은 단말 능력을 요청하는 RRC 메시지(UECapabilityEnquiry)를 전달할 수 있고, 이에 대한 응답으로 10-05 단계에서 단말은 기지국에게 단말 능력 정보(UECapabilityInformation) 메시지를 수납해서 전달한다. 상기 단말 능력 정보 RRC 메시지에는 단말이 지원하는 물리영역 능력, 프로토콜 영역 능력, 지원하는 주파수 밴드 정보 등의 단말의 전체 능력이 포함될 수 있다. 특히, 본 발명에서는 기존 제 1 NR 시스템에서의 단말 능력에 추가로, 제 2 NR 시스템에서 단말이 지원하는 BWP 별로 최대 MIMO 레이어 개수 설정이 가능한지 여부를 지시하는 정보가 추가될 수 있다. 상기 단말 능력은 상향링크와 하향링크별로 독립적으로 시그널링될 수도 있으며, 혹은 상하향링크에 대한 지원을 동시에 지시하도록 시그널링될 수 있다. 또한, 시그널링은 하기의 방법 중 하나로 가능하다.
1. 지원 여부를 단말 별 시그널링하는 방법 (per UE)
2. 지원 여부를 밴드 조합별로 시그널링하는 방법 (per band combination)
3. 지원 여부를 밴드 조합내의 밴드별로 시그널링하는 방법 (per band per band combination)
4. 지원 여부를 밴드 조합내의 밴드에서 해당 밴드내의 각 component carrier (CC) 별로 시그널링하는 방법 (per CC per band per band combination): FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC 내에 해당 정보 포함
상기에서 단말 능력을 지시하는 정보로는 단지, 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수에 대해 특정 BWP에서 다른 값을 지시할 수 있음을 나타내는 1bit 지시자가 포함되거나, 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수와 다르게 BWP별로 지원하는 단말이 지원하는 최대 MIMO 레이어 갯수가 정보로 지시될 수 있다. 이때, 해당 시그널링은 상하향링크 독립적으로 수행되거나 공통으로 수행될 수 있다. 참고로 현재 NR 표준에는 하기와 같이 서빙 셀내의 상하향링크에 대한 최대 MIMO 레이어 갯수가 밴드 조합내의 밴드에서 해당 밴드내의 각 component carrier (CC) 별로 제공된다. 또한, 조금더 자세히 살펴보면, 상향링크(PUSCH)에 대해서는 최대 MIMO 레이어 갯수가 코드북 기반의 전송일 때 독립적으로 보고될 수 있기때문에, 추후 특정 BWP에 속한 상향링크 전송 전반에 대한 단말능력이 아니라 코드북 기반의 PUSCH 전송이 아닌 경우에 대한 단말 능력이 추가로 포함될 수도 있다.
상기의 단계에서 단말 능력 정보를 수신한 기지국은 해당 단말이 BWP별로 최대 MIMO 레이어 갯수를 다르게 설정받을 수 있는지 여부를 확인할 수 있으며, 만약 해당 기지국이 BWP별 상하향링크 데이터 전송에 대한 최대 MIMO 레이어 갯수 설정을 지원한다면, 이를 위한 설정 정보를 세팅하여 RRC 재설정 메시지(RRCReconfiguration)에 포함하여 단말에게 전달하고, 10-10 단계에서 단말은 이를 수신한다. 상기 RRC 메시지에는 보조 셀(Secondary cell)들에 대한 설정 정보가 포함될 수 있으며, 특히 서빙 셀 별로 하기와 같은 BWP 설정 정보가 포함될 수 있다.
- 상하향링크 BWP별 설정 정보 (pdsch-config, pusch-config)
■ BWP 인덱스
■ BWP 세부 설정 정보: bandwidth 정보, 주파수 영역에서의 위치, PDSCH 및 PUSCH 설정 정보 등
maxMIMO-LayersBWP (제 1 maxMIMO 파라미터)
- 서빙 셀 당 하기와 같은 하나의 BWP 관련 정보
■ Default BWP 인덱스
■ First Active BWP 인덱스
■ Initial BWP 설정 정보 (bandwidth 정보, 주파수 영역에서의 위치 등)
■ Inactivity-BWP 타이머 정보 (default BWP로의 회기를 위한 타이머)
- 서빙 셀에 적용되는 공통의 설정 정보
(상향링크 및 하향링크에 별도로 시그널링: pdsch-ServingCellConfig와 pusch-ServingCellConfig)
■ 서빙 셀 전체 BWP에 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer: 제 2 MIMO 파라미터)
10-15 단계 이하의 단말 동작은 상기 단계에서 수신한 RRC 메시지와 파라미터들을 적용해서 하향링크 데이터 수신을 위한 준비를 하는 동작을 수행한다. 본 도면의 이하 동작에서는 실시 예 2의 동작 중에서도 하향링크 데이터 수신을 위한 단말의 최대 MIMO 레이어 설정 및 실제 물리적인 데이터 블락의 수신 준비를 다루게 되며, 상향링크 단말 동작은 도면 11에서 따로 설명한다. 하지만 본 도면의 10-15 이하 동작과 도면 11에서의 11-15 이하 동작은 단말에게 동시에 적용되고 수행되는 동작임을 분명히 한다.
10-15 단계에서 단말은 10-10 단계에서 기지국으로부터 수신한 RRC 제어 메시지에 임의의 하향링크 BWP에 적용되는 최대 MIMO 레이어 갯수 설정 정보(제 1 MIMO 파라미터: maxMIMO-LayerBWP)가 설정되어 있는지 여부를 확인한다. 만약 단말이 상기 RRC 메시지를 통해 하향링크 BWP에 대한 maxMIMO-LayerBWP 파마리터 설정 정보를 수신하였다면, 10-20 단계에서 단말은 해당 설정 정보에 따라 해당하는 하향링크 BWP에서 동작할 경우, 해당 BWP에 대해 제 1 MIMO 파라미터인 maxMIMO-LayerBWP를 설정하고 적용한다. 10-25 단계에서 결정된 하향링크의 BWP별 최대 MIMO 레이어 갯수와 PRB(physical resource block) 갯수, modulation 오더 등을 기반으로 해서 송수신에 필요한 TBS (transport block size) 사이즈를 결정하게 된다. 즉, 실제로 송수신에 적용되는 데이터 블록 사이즈가 결정된다. 즉, 해당 상하향링크 BWP에서의 최대 MIMO 레이어 갯수를 설정된 파라미터 맞게 세팅하고(10-25), 데이터 송수신을 준비 및 수행한다(10-30). 이를 통해 설정된 하향링크 BWP에 적용되는 최대 MIMO 레이어 갯수가 이전에 서빙 셀별로 설정된 값보다 작아지게 된다. 단말은 데이터 수신을 위한 MIMO layer의 갯수가 줄어듬에 따라 모니터링에 필요한 수신 MIMO 레이어 갯수를 줄일 수 있고, 이로인해 수신 전력을 줄일 수 있다. 이후 10-30 단계에서 단말은 상기 단계들에서 설정된 MIMO 레이어 갯수를 기반으로 모니터링 및 데이터 수신을 수행하게 된다. 데이터 송수신을 하는 일련의 절차는 기존 NR 시스템과 차별이 없으나 본 발명이 적용됨에 따라 단말은 임의의 BWP에서 더 작은 MIMO 레이어로 송수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
10-15 단계에서 단말이 상기 RRC 메시지를 통해 하향링크 BWP에 대한 maxMIMO-LayerBWP 파마리터 설정 정보를 수신하지 않았다면, 10-35 단계에서 단말은 서빙 셀에 존재는 모든 하향링크 BWP에 대해 제 2 MIMO 파라미터인 maxMIMO-Layer를 설정하고 적용한다. 10-40 단계에서 단말은 10-35 단계에서 결정된 하향링크의 BWP별 최대 MIMO 레이어 갯수와 PRB(physical resource block) 갯수, modulation 오더 등을 기반으로 해서 송수신에 필요한 TBS (transport block size) 사이즈를 결정하게 된다. 즉, 실제로 송수신에 적용되는 데이터 블록 사이즈가 결정된다. 이후 10-45 단계에서 단말은 상기 단계들에서 설정된 MIMO 레이어 갯수를 기반으로 모니터링 및 데이터 수신을 수행하게 된다. 데이터 송수신을 하는 일련의 절차는 기존 NR 시스템과 차별이 없으나 본 발명이 적용됨에 따라 단말은 임의의 BWP에서 더 작은 MIMO 레이어로 송수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
도 11은 본 발명에서 제안하는 실시 예 2에서 임의의 상향링크 BWP에 대한 최대 MIMO 레이어 갯수를 셀 기반의 최대 MIMO 레이어 갯수보다 제한하여 설정하는 방법을 도시한 도면이다.
앞서 설명했듯이, 본 실시 예 2는 서빙 셀내에 설정된 BWP 중에서 임의의 BWP에 대해 최대 MIMO 레이어 갯수를 제한하여 설정하는 방법을 특징으로 한다. 이는 모든 BWP가 서빙 셀 내에 존재하는 다른 BWP와 다른 설정(최대 MIMO 레이어 갯수)을 가질 수 있다는 점에서, 유연하게 적용될 수 있다는 것을 특징으로 한다.
도 11을 참조하면, RRC 연결 상태의 단말에게 기지국은 단말 능력을 요청하는 RRC 메시지(UECapabilityEnquiry)를 전달할 수 있고, 이에 대한 응답으로 11-05 단계에서 단말은 기지국에게 단말 능력 정보(UECapabilityInformation) 메시지를 수납해서 전달한다. 상기 단말 능력 정보 RRC 메시지에는 단말이 지원하는 물리영역 능력, 프로토콜 영역 능력, 지원하는 주파수 밴드 정보 등의 단말의 전체 능력이 포함될 수 있다. 특히, 본 발명에서는 기존 제 1 NR 시스템에서의 단말 능력에 추가로, 제 2 NR 시스템에서 단말이 지원하는 BWP 별로 최대 MIMO 레이어 개수 설정이 가능한지 여부를 지시하는 정보가 추가될 수 있다. 상기 단말 능력은 상향링크와 하향링크별로 독립적으로 시그널링될 수도 있으며, 혹은 상하향링크에 대한 지원을 동시에 지시하도록 시그널링될 수 있다. 또한, 시그널링은 하기의 방법 중 하나로 가능하다.
1. 지원 여부를 단말 별 시그널링하는 방법 (per UE)
2. 지원 여부를 밴드 조합별로 시그널링하는 방법 (per band combination)
3. 지원 여부를 밴드 조합내의 밴드별로 시그널링하는 방법 (per band per band combination)
4. 지원 여부를 밴드 조합내의 밴드에서 해당 밴드내의 각 component carrier (CC) 별로 시그널링하는 방법 (per CC per band per band combination): FeatureSetDownlinkPerCC, FeatureSetUPlinkPerCC 내에 해당 정보 포함
상기에서 단말 능력을 지시하는 정보로는 단지, 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수에 대해 특정 BWP에서 다른 값을 지시할 수 있음을 나타내는 1bit 지시자가 포함되거나, 서빙 셀 별로 지시되는 최대 MIMO 레이어 개수와 다르게 BWP별로 지원하는 단말이 지원하는 최대 MIMO 레이어 갯수가 정보로 지시될 수 있다. 이때, 해당 시그널링은 상하향링크 독립적으로 수행되거나 공통으로 수행될 수 있다. 참고로 현재 NR 표준에는 하기와 같이 서빙 셀내의 상하향링크에 대한 최대 MIMO 레이어 갯수가 밴드 조합내의 밴드에서 해당 밴드내의 각 component carrier (CC) 별로 제공된다. 또한, 조금더 자세히 살펴보면, 상향링크(PUSCH)에 대해서는 최대 MIMO 레이어 갯수가 코드북 기반의 전송일 때 독립적으로 보고될 수 있기때문에, 추후 특정 BWP에 속한 상향링크 전송 전반에 대한 단말능력이 아니라 코드북 기반의 PUSCH 전송이 아닌 경우에 대한 단말 능력이 추가로 포함될 수도 있다.
상기의 단계에서 단말 능력 정보를 수신한 기지국은 해당 단말이 BWP별로 최대 MIMO 레이어 갯수를 다르게 설정받을 수 있는지 여부를 확인할 수 있으며, 만약 해당 기지국이 BWP별 상하향링크 데이터 전송에 대한 최대 MIMO 레이어 갯수 설정을 지원한다면, 이를 위한 설정 정보를 세팅하여 RRC 재설정 메시지(RRCReconfiguration)에 포함하여 단말에게 전달하고, 11-10 단계에서 단말은 이를 수신한다. 상기 RRC 메시지에는 보조 셀(Secondary cell)들에 대한 설정 정보가 포함될 수 있으며, 특히 서빙 셀 별로 하기와 같은 BWP 설정 정보가 포함될 수 있다.
- 상하향링크 BWP별 설정 정보 (pdsch-config, pusch-config)
■ BWP 인덱스
■ BWP 세부 설정 정보: bandwidth 정보, 주파수 영역에서의 위치, PDSCH 및 PUSCH 설정 정보 등
maxMIMO-LayersBWP (제 1 maxMIMO 파라미터)
- 서빙 셀 당 하기와 같은 하나의 BWP 관련 정보
■ Default BWP 인덱스
■ First Active BWP 인덱스
■ Initial BWP 설정 정보 (bandwidth 정보, 주파수 영역에서의 위치 등)
■ Inactivity-BWP 타이머 정보 (default BWP로의 회기를 위한 타이머)
- 서빙 셀에 적용되는 공통의 설정 정보
(상향링크 및 하향링크에 별도로 시그널링: pdsch-ServingCellConfig와 pusch-ServingCellConfig)
■ 서빙 셀 전체 BWP에 적용되는 최대 MIMO 레이어 갯수 (maxMIMO-Layer: 제 2 MIMO 파라미터)
11-15 단계 이하의 단말 동작은 상기 단계에서 수신한 RRC 메시지와 파라미터들을 적용해서 상향링크 데이터 수신을 위한 준비를 하는 동작을 수행한다. 본 도면의 이하 동작에서는 실시 예 2의 동작 중에서도 상향링크 데이터 전송을 위한 단말의 최대 MIMO 레이어 설정 및 실제 물리적인 데이터 블락의 전송 준비를 다루게 되며, 하향링크 단말 동작은 도면 10에서 따로 설명한다. 하지만 본 도면의 11-15 이하 동작과 도면 10에서의 10-15 이하 동작은 단말에게 동시에 적용되고 수행되는 동작임을 분명히 한다.
11-15 단계에서 단말은 11-10 단계에서 기지국으로부터 수신한 RRC 제어 메시지에 임의의 상향링크 BWP에 적용되는 최대 MIMO 레이어 갯수 설정 정보(제 1 MIMO 파라미터: maxMIMO-LayerBWP)가 설정되어 있는지 여부를 확인한다. 만약 단말이 상기 RRC 메시지를 통해 maxMIMO-LayerBWP 파마리터 설정 정보를 수신하였다면, 11-20 단계에서 단말은 해당 설정 정보에 따라 해당하는 상향링크 BWP에서 동작할 경우, 해당 BWP에 대해 제 1 MIMO 파라미터인 maxMIMO-LayerBWP를 설정하고 적용한다. 11-25 단계에서 결정된 상향링크의 BWP별 최대 MIMO 레이어 갯수와 PRB(physical resource block) 갯수, modulation 오더 등을 기반으로 해서 송수신에 필요한 TBS (transport block size) 사이즈를 결정하게 된다. 즉, 실제로 송수신에 적용되는 데이터 블록 사이즈가 결정된다. 즉, 해당 상향링크 BWP에서의 최대 MIMO 레이어 갯수를 설정된 파라미터 맞게 세팅하고(11-25), 데이터 송수신을 준비 및 수행한다(11-30). 이를 통해 설정된 상향링크 BWP에 적용되는 최대 MIMO 레이어 갯수가 이전에 서빙 셀별로 설정된 값보다 작아지게 된다. 단말은 데이터 수신을 위한 MIMO layer의 갯수가 줄어듬에 따라 데이터 전송에 필요한 전송 MIMO 레이어 갯수를 줄일 수 있고, 이로인해 데이터 전송 전력을 줄일 수 있다. 이후 11-30 단계에서 단말은 상기 단계들에서 설정된 MIMO 레이어 갯수를 기반으로 데이터 전송을 수행하게 된다. 데이터 송수신을 하는 일련의 절차는 기존 NR 시스템과 차별이 없으나 본 발명이 적용됨에 따라 단말은 임의의 BWP에서 더 작은 MIMO 레이어로 송수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
11-15 단계에서 단말이 상기 RRC 메시지를 통해 상향링크 BWP 에 대한 maxMIMO-LayerBWP 파마리터 설정 정보를 수신하지 않았다면, 11-35 단계에서 단말은 서빙 셀에 존재는 모든 상향링크 BWP에 대해 제 2 MIMO 파라미터인 maxMIMO-Layer를 설정하고 적용한다. 11-40 단계에서 단말은 11-35 단계에서 결정된 상향링크의 BWP별 최대 MIMO 레이어 갯수와 PRB(physical resource block) 갯수, modulation 오더 등을 기반으로 해서 송수신에 필요한 TBS (transport block size) 사이즈를 결정하게 된다. 즉, 실제로 송수신에 적용되는 데이터 블록 사이즈가 결정된다. 이후 11-45 단계에서 단말은 상기 단계들에서 설정된 MIMO 레이어 갯수를 기반으로 데이터 전송을 수행하게 된다. 데이터 송수신을 하는 일련의 절차는 기존 NR 시스템과 차별이 없으나 본 발명이 적용됨에 따라 단말은 임의의 BWP에서 더 작은 MIMO 레이어로 송수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
도 12는 본 발명에서 제안하는 실시 예 전체에 적용되는 기지국 동작을 도시한 도면이다
본 도면의 기지국 동작은 실시 예 1 및 실시 예 2 전체에 적용되는 기지국 동작의 구조를 설명하며, 자세한 설명은 각 실시 예별로 도 6과 도 9에서 자세히 설명하였다.
도 12-05 단계에서 기지국은 연결 상태의 단말에게 단말 능력 정보를 요청하는 RRC 메시지 (UECapabilityEnquiry)를 전달할 수 있고, 이에 대한 응답으로 단말 능력 정보(UECapabilityInformation) 메시지를 수신한다. 상기 단말 능력 정보 메시지에는 단말이 특정 상하향링크 BWP 별로 최대 MIMO 레이어 갯수 설정을 다르게 수행할 수 있는지 여부를 지시하는 단말능력 정보가 포함될 수 있으며, 기지국은 이 정보를 기반으로 단말에게 상하향링크 BWP 별로 최대 MIMO 레이어 갯수를 다르게 설정할 수 있을지 여부를 판단할 수 있다.
도 12-10 단계에서 기지국은 서빙 셀에 존재하는 모든 BWP에 적용되는 MIMO 레이어 갯수 설정을 위해 maxMIMO-Layers 파라미터를 상하항링크별로 설정하고, 단말 능력에 따라 특정 BWP에 대해 서빙 셀 전체에 적용되던 상기 maxMIMO-Layers와 다른 값을 가지는 값을 설정할 수 있다. 이 단계에서의 기지국 설정은 실시 예 1과 실시 예 2에서 구체적인 설정 방법이 다르게 적용되며, 본 발명의 실시 예 1과 실시 예 2 설명 부분에서 자세히 설명하였다. 도 12-15 단계에서 기지국은 상기 단계에서 설정된 파라미터 정보를 수납한 RRC 재설정 메시지를 단말에게 전달한다.
도 12-20 단계에서 기지국은 상기 설정된 파라미터를 적용해서 상하향링크 데이터 송수신에 필요한 파라미터를 세팅하고 데이터 송수신을 준비한다. 즉, 상하향링크의 BWP별 최대 MIMO 레이어 갯수와 PRB(physical resource block) 갯수, modulation 오더 등을 기반으로 해서 송수신에 필요한 TBS (transport block size) 사이즈를 결정하고, 실제로 송수신에 적용되는 데이터 블록 사이즈가 결정된다. 이후 상기 단계들에서 설정된 MIMO 레이어 갯수를 기반으로 데이터 전송을 수행하게 된다. 데이터 송수신을 하는 일련의 절차는 기존 NR 시스템과 차별이 없으나 본 발명이 적용됨에 따라 단말은 임의의 BWP에서 더 작은 MIMO 레이어로 송수신을 수행하게 됨으로써 전력 소모를 줄일 수 있다.
도 13은 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다.
상기 도면을 참고하면, 상기 단말은 RF(Radio Frequency)처리부(13-10), 기저대역(baseband)처리부(13-20), 저장부(13-30), 제어부(13-40)를 포함한다.
상기 RF처리부(13-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(13-10)는 상기 기저대역처리부(13-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF처리부(13-10)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(digital to analog convertor), ADC(analog to digital convertor) 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 단말은 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(13-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(13-10)는 빔포밍(beamforming)을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(13-10)는 다수의 안테나들 또는 안테나 요소(element)들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 또한 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다.
상기 기저대역처리부(13-20)은 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부(13-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(13-20)은 상기 RF처리부(13-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM(orthogonal frequency division multiplexing) 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(13-20)는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT(inverse fast Fourier transform) 연산 및 CP(cyclic prefix) 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(13-20)은 상기 RF처리부(13-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT(fast Fourier transform) 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다.
상기 기저대역처리부(13-20) 및 상기 RF처리부(13-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부(13-20) 및 상기 RF처리부(13-10)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 나아가, 상기 기저대역처리부(13-20) 및 상기 RF처리부(13-10) 중 적어도 하나는 서로 다른 다수의 무선 접속 기술들을 지원하기 위해 다수의 통신 모듈들을 포함할 수 있다. 또한, 상기 기저대역처리부(13-20) 및 상기 RF처리부(13-10) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 상기 서로 다른 무선 접속 기술들은 무선 랜(예: IEEE 802.11), 셀룰러 망(예: LTE) 등을 포함할 수 있다. 또한, 상기 서로 다른 주파수 대역들은 극고단파(SHF:super high frequency)(예: 2.NRHz, NRhz) 대역, mm파(millimeter wave)(예: 60GHz) 대역을 포함할 수 있다.
상기 저장부(13-30)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(13-30)는 제2무선 접속 기술을 이용하여 무선 통신을 수행하는 제2접속 노드에 관련된 정보를 저장할 수 있다. 그리고, 상기 저장부(13-30)는 상기 제어부(13-40)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(13-40)는 상기 단말의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(13-40)는 상기 기저대역처리부(13-20) 및 상기 RF처리부(13-10)을 통해 신호를 송수신한다. 또한, 상기 제어부(13-40)는 상기 저장부(13-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(13-40)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부(13-40)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다.
도 14는 본 발명에 따른 기지국의 구성을 나타낸 블록도이다.
상기 도면에 도시된 바와 같이, 상기 기지국은 RF처리부(14-10), 기저대역처리부(14-20), 백홀통신부(14-30), 저장부(14-40), 제어부(14-50)를 포함하여 구성된다.
상기 RF처리부(14-10)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부(14-10)는 상기 기저대역처리부(14-20)로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 예를 들어, 상기 RF처리부(14-10)는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상기 도면에서, 하나의 안테나만이 도시되었으나, 상기 제1접속 노드는 다수의 안테나들을 구비할 수 있다. 또한, 상기 RF처리부(14-10)는 다수의 RF 체인들을 포함할 수 있다. 나아가, 상기 RF처리부(14-10)는 빔포밍을 수행할 수 있다. 상기 빔포밍을 위해, 상기 RF처리부(14-10)는 다수의 안테나들 또는 안테나 요소들을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다. 상기 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다.
상기 기저대역처리부(14-20)는 제1무선 접속 기술의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부(14-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(14-20)은 상기 RF처리부(14-10)로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 예를 들어, OFDM 방식에 따르는 경우, 데이터 송신 시, 상기 기저대역처리부(14-20)은 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성하고, 상기 복소 심벌들을 부반송파들에 매핑한 후, IFFT 연산 및 CP 삽입을 통해 OFDM 심벌들을 구성한다. 또한, 데이터 수신 시, 상기 기저대역처리부(14-20)은 상기 RF처리부(14-10)로부터 제공되는 기저대역 신호를 OFDM 심벌 단위로 분할하고, FFT 연산을 통해 부반송파들에 매핑된 신호들을 복원한 후, 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 기저대역처리부(14-20) 및 상기 RF처리부(14-10)는 상술한 바와 같이 신호를 송신 및 수신한다. 이에 따라, 상기 기저대역처리부(14-20) 및 상기 RF처리부(14-10)는 송신부, 수신부, 송수신부, 통신부 또는 무선 통신부로 지칭될 수 있다.
상기 백홀통신부(14-30)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 상기 백홀통신부(14-30)는 상기 주기지국에서 다른 노드, 예를 들어, 보조기지국, 코어망 등으로 송신되는 비트열을 물리적 신호로 변환하고, 상기 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.
상기 저장부(14-40)는 상기 주기지국의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부(14-40)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부(14-40)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부(14-40)는 상기 제어부(14-50)의 요청에 따라 저장된 데이터를 제공한다.
상기 제어부(14-50)는 상기 주기지국의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부(14-50)는 상기 기저대역처리부(14-20) 및 상기 RF처리부(14-10)을 통해 또는 상기 백홀통신부(14-30)을 통해 신호를 송수신한다. 또한, 상기 제어부(14-50)는 상기 저장부(14-40)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(14-50)는 적어도 하나의 프로세서를 포함할 수 있다.

Claims (15)

  1. 통신 시스템의 단말의 방법에 있어서,
    상기 단말에 대해 활성화된 하향링크 대역폭 부분(BWP: bandwidth part)을 확인하는 단계;
    기지국으로부터 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 다중입출력(MIMO: multi-input-multi-output) 레이어 개수에 대한 정보를 수신하였는지 여부를 확인하는 단계; 및
    상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 수신한 경우, 상기 제1 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 수신하는 단계를 포함하고,
    상기 제1 최대 MIMO 레이어 개수에 대한 정보는 상기 단말에 설정된 BWP 별로 설정되는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 기지국으로부터 제2 최대 MIMO 레이어 개수에 대한 정보를 수신하는 단계; 및
    상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 수신하지 않은 경우, 상기 제2 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 수신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  3. 제2항에 있어서,
    상기 제2 최대 MIMO 레이어 개수에 대한 정보는 상기 단말의 서빙 셀 별로 설정되는 것을 특징으로 하는 방법.
  4. 제2항에 있어서,
    상기 제1 최대 MIMO 레이어 개수는 상기 제2 최대 MIMO 레이어 개수보다 작거나 같은 것을 특징으로 하는 방법.
  5. 제1항에 있어서,
    상기 제1 MIMO 레이어 개수에 대한 정보는 무선 자원 제어(RRC: radio resource control) 시그널링을 통해 수신되는 것을 특징으로 하는 방법.
  6. 통신 시스템의 기지국의 방법에 있어서,
    단말에 대해 활성화된 하향링크 대역폭 부분(BWP: bandwidth part)을 확인하는 단계;
    상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 다중입출력(multi-input-multi-output) 레이어 개수에 대한 정보를 상기 단말에게 송신하였는지 여부를 확인하는 단계; 및
    상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 송신한 경우, 상기 제1 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 송신하는 단계를 포함하고,
    상기 제1 최대 MIMO 레이어 개수에 대한 정보는 상기 단말에 설정된 BWP 별로 설정되는 것을 특징으로 하는 방법.
  7. 제6항에 있어서,
    제2 최대 MIMO 레이어 개수에 대한 정보를 상기 단말로 송신하는 단계; 및
    상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 송신하지 않은 경우, 상기 제2 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 송신하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  8. 제7항에 있어서,
    상기 제2 최대 MIMO 레이어 개수에 대한 정보는 상기 단말의 서빙 셀 별로 설정되는 것을 특징으로 하는 방법.
  9. 제7항에 있어서,
    상기 제1 최대 MIMO 레이어 개수는 상기 제2 최대 MIMO 레이어 개수보다 작거나 같은 것을 특징으로 하는 방법.
  10. 제1항에 있어서,
    상기 제1 MIMO 레이어 개수에 대한 정보는 무선 자원 제어(RRC: radio resource control) 시그널링을 통해 송신되는 것을 특징으로 하는 방법.
  11. 통신 시스템의 단말에 있어서,
    송수신부; 및
    상기 단말에 대해 활성화된 하향링크 대역폭 부분(BWP: bandwidth part)을 확인하고, 기지국으로부터 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 다중입출력(MIMO: multi-input-multi-output) 레이어 개수에 대한 정보를 수신하였는지 여부를 확인하고, 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 수신한 경우, 상기 제1 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 수신하도록 구성되는 제어부를 포함하고,
    상기 제1 최대 MIMO 레이어 개수에 대한 정보는 상기 단말에 설정된 BWP 별로 설정되는 것을 특징으로 하는 단말.
  12. 제11항에 있어서,
    상기 제어부는, 상기 기지국으로부터 제2 최대 MIMO 레이어 개수에 대한 정보를 수신하고, 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 수신하지 않은 경우, 상기 제2 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 수신하도록 더 구성되는 것을 특징으로 하는 단말.
  13. 제12항에 있어서,
    상기 제2 최대 MIMO 레이어 개수에 대한 정보는 상기 단말의 서빙 셀 별로 설정되고, 상기 제1 최대 MIMO 레이어 개수는 상기 제2 최대 MIMO 레이어 개수보다 작거나 같은 것을 특징으로 하는 단말.
  14. 통신 시스템의 기지국에 있어서,
    송수신부; 및
    단말에 대해 활성화된 하향링크 대역폭 부분(BWP: bandwidth part)을 확인하고, 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 다중입출력(multi-input-multi-output) 레이어 개수에 대한 정보를 상기 단말에게 송신하였는지 여부를 확인하고, 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 송신한 경우, 상기 제1 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 송신하도록 구성되는 제어부를 포함하고,
    상기 제1 최대 MIMO 레이어 개수에 대한 정보는 상기 단말에 설정된 BWP 별로 설정되는 것을 특징으로 하는 기지국.
  15. 제14항에 있어서,
    상기 제어부는, 제2 최대 MIMO 레이어 개수에 대한 정보를 상기 단말로 송신하고, 상기 활성화된 하향링크 대역폭 부분과 관련된 제1 최대 MIMO 레이어 개수에 대한 정보를 송신하지 않은 경우, 상기 제2 최대 MIMO 레이어 개수를 기반으로 하향링크 데이터를 송신하도록 더 구성되고,
    상기 제2 최대 MIMO 레이어 개수에 대한 정보는 상기 단말의 서빙 셀 별로 설정되고, 상기 제1 최대 MIMO 레이어 개수는 상기 제2 최대 MIMO 레이어 개수보다 작거나 같은 것을 특징으로 하는 기지국.
PCT/KR2020/008521 2019-07-11 2020-06-30 차세대 이동 통신 시스템에서 밴드위스 파트 별로 최대 mimo 레이어 갯수를 설정하는 방법 및 장치 WO2021006524A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/625,703 US20220287025A1 (en) 2019-07-11 2020-06-30 Method and device for setting maximum number of mimo layers for each bandwidth part in next-generation mobile communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190084071A KR20210007497A (ko) 2019-07-11 2019-07-11 차세대 이동 통신 시스템에서 밴드위스 파트 별로 최대 mimo 레이어 갯수를 설정하는 방법 및 장치
KR10-2019-0084071 2019-07-11

Publications (1)

Publication Number Publication Date
WO2021006524A1 true WO2021006524A1 (ko) 2021-01-14

Family

ID=74114585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008521 WO2021006524A1 (ko) 2019-07-11 2020-06-30 차세대 이동 통신 시스템에서 밴드위스 파트 별로 최대 mimo 레이어 갯수를 설정하는 방법 및 장치

Country Status (3)

Country Link
US (1) US20220287025A1 (ko)
KR (1) KR20210007497A (ko)
WO (1) WO2021006524A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022228663A1 (en) * 2021-04-28 2022-11-03 Telefonaktiebolaget Lm Ericsson (Publ) Determination of uplink mimo transmission state for a ue

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3883282A4 (en) * 2018-11-15 2022-07-27 NTT DoCoMo, Inc. USER EQUIPMENT AND BASE STATION DEVICE
EP3891899A1 (en) * 2019-08-28 2021-10-13 Ofinno, LLC Adaptation of multiple antenna transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182000A1 (en) * 2017-11-13 2019-06-13 Nec Corporation Radio terminal, radio access networ node, and method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200100178A1 (en) * 2018-09-25 2020-03-26 Apple Inc. Controlling MIMO Layers for UE Power Saving

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190182000A1 (en) * 2017-11-13 2019-06-13 Nec Corporation Radio terminal, radio access networ node, and method therefor

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Power saving scheme with UE adaptation to maximum MIMO layer", 3GPP DRAFT; R2-1903127, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Xian, China; 20190408 - 20190412, 29 March 2019 (2019-03-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051692405 *
ERICSSON: "Discussion on MIMO layers", 3GPP DRAFT; R1-1905471 DISCUSSION ON MIMO LAYERS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi'an, China; 20190408 - 20190412, 3 April 2019 (2019-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051707539 *
LG ELECTRONICS: "Discussions on triggering adaptation of UE power consumption characteristics", 3GPP DRAFT; R1-1900600, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Taipei, Taiwan; 20190121 - 20190125, 11 January 2019 (2019-01-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 11, XP051576142 *
QUALCOMM INCORPORATED: "Potential Techniques for UE Power Saving", 3GPP DRAFT; R1-1903016, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN-WG1, 1 March 2019 (2019-03-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 33, XP051600713 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022228663A1 (en) * 2021-04-28 2022-11-03 Telefonaktiebolaget Lm Ericsson (Publ) Determination of uplink mimo transmission state for a ue

Also Published As

Publication number Publication date
KR20210007497A (ko) 2021-01-20
US20220287025A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2019225888A1 (ko) 차세대 이동통신 시스템에서 sdap 제어 pdu를 구분해서 처리하는 방법 및 장치
WO2019194605A1 (en) Method and apparatus for efficiently providing access control configuration information in next-generation wireless communication system
WO2020197295A1 (en) Method and apparatus for processing pdcp control data in system supporting high-reliability low-latency service
WO2019031883A1 (ko) 무선 통신 시스템에서 pdcp 재수립 방법 및 장치
WO2018230964A1 (ko) 차세대 이동 통신 시스템에서 네트워크 요청 기반 버퍼 상태 보고를 처리하는 방법 및 장치
WO2020032702A1 (en) Method and apparatus for configuring network connection in mobile communication system
WO2020209541A1 (ko) 무선 통신 시스템에서 단말 능력 보고 방법 및 장치
WO2020166957A1 (ko) 차세대 이동통신 시스템에서 v2x 통신을 위한 방법 및 장치
WO2020197361A1 (en) Method and apparatus for handover without interruption of transmission and reception of data in next-generation mobile communication system
WO2021006524A1 (ko) 차세대 이동 통신 시스템에서 밴드위스 파트 별로 최대 mimo 레이어 갯수를 설정하는 방법 및 장치
WO2021029730A1 (ko) 차세대 이동 통신 시스템에서 복수 개의 sim을 지원하는 단말의 페이징 송수신 방법 및 장치
WO2020060207A1 (ko) 무선 통신 시스템에서 데이터를 송수신하는 방법 및 장치
WO2019135649A1 (ko) 무선 통신 시스템에서 개선된 통신 성능을 위한 방법 및 장치
WO2020122509A1 (ko) 무선 통신 시스템에서 조건부 핸드오버의 실패 타이머 운용방법
WO2020166906A1 (en) Methods and apparatuses for transmitting and receiving data in wireless communication system
WO2020263028A1 (en) Device and method for performing handover in wireless communication system
WO2022086227A1 (ko) 무선 통신 시스템에서 복수 개의 심을 지원하는 단말을 지원하는 방법 및 장치
WO2021145746A1 (en) Method and apparatus for providing frequency band list in wireless communication system
WO2021010688A1 (ko) 무선 통신 시스템에서 차량 통신을 지원하기 위한 장치 및 방법
WO2018226024A1 (ko) 차세대 이동통신 시스템에서 pdcp 장치 및 sdap 장치를 설정하는 방법 및 장치
WO2020060245A1 (en) Method and apparatus for identifying security key in next generation mobile communication system
WO2022025528A1 (ko) 차세대 이동 통신 시스템에서 무결성 보호 또는 검증 절차로 인한 단말 프로세싱 부하를 줄이는 방법 및 장치
WO2020111745A1 (en) Method and apparatus for inter-node coordination for auto neighbor relation
WO2020009414A1 (ko) 이동 통신 시스템에서 통신 방법 및 장치
WO2020197259A1 (ko) 무선 통신 시스템에서 복수 개의 rlc 계층 장치의 활성화를 제어하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837832

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837832

Country of ref document: EP

Kind code of ref document: A1