WO2021006245A1 - Method for producing ethylene, and method for producing polymer - Google Patents

Method for producing ethylene, and method for producing polymer Download PDF

Info

Publication number
WO2021006245A1
WO2021006245A1 PCT/JP2020/026426 JP2020026426W WO2021006245A1 WO 2021006245 A1 WO2021006245 A1 WO 2021006245A1 JP 2020026426 W JP2020026426 W JP 2020026426W WO 2021006245 A1 WO2021006245 A1 WO 2021006245A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene
ethanol
carbon atoms
raw material
volume
Prior art date
Application number
PCT/JP2020/026426
Other languages
French (fr)
Japanese (ja)
Inventor
周知 佐藤
憲男 沼田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2021530689A priority Critical patent/JPWO2021006245A1/ja
Publication of WO2021006245A1 publication Critical patent/WO2021006245A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/24Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms by elimination of water
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene

Definitions

  • the present invention relates to a method for producing ethylene from raw material ethanol containing ethanol derived from waste, and a method for producing a polymer using ethylene obtained by the production method as a raw material.
  • ethylene is produced from naphtha, crude oil, natural gas, etc. as raw materials.
  • Ethylene is required to have high purity due to the polymerization reaction and the quality requirements of the polymer.
  • ethylene polymerization by the high pressure method ethylene having a purity of 99.9% or more is used. Therefore, conventionally, a technique of purifying a raw material olefin such as ethylene and then polymerizing the raw material olefin is known.
  • Patent Document 1 a raw material olefin containing carbon dioxide as an impurity is brought into contact with a hybrid adsorbent composed of a mixture of active alumina and zeolite to purify the raw material olefin, and then the purified olefin is brought into contact with a transition metal complex catalyst.
  • a transition metal complex catalyst Described is an invention relating to a method for polymerizing an olefin, which comprises polymerizing the mixture.
  • a metallocene catalyst having few drawbacks of the conventionally used Ziegler-Natta catalyst has been developed, the metallocene catalyst is extremely sensitive to impurities in the raw material olefin, and naphtha and crude oil.
  • Patent Document 1 Industrial ethylene obtained by using natural gas, etc. contains carbon dioxide of about several ppm (volume) to several hundred ppm (volume), and carbon dioxide has an adverse effect as a catalytic poison in the polymerization of metallocene catalysts. It is stated to bring.
  • the invention described in Patent Document 1 is an economical, simple and efficient removal of carbon dioxide using the hybrid adsorbent, thereby performing impurities in olefin polymerization using a transition metal complex catalyst such as a metallocene catalyst. It is described that the decrease in catalytic activity due to the above can be sufficiently suppressed, and the polymer can be industrially stably produced with high productivity.
  • the present invention provides a method for producing ethylene in which the polymerization reaction of ethylene proceeds appropriately and the quality of the obtained polymer is good even when ethylene is produced using ethanol derived from waste as a raw material. Is an issue.
  • the gist of the present invention is the following [1] to [8].
  • An ethylene production step of obtaining an ethylene-containing product containing ethylene from raw material ethanol containing ethanol derived from waste, and It comprises at least one of a first purification step of purifying the raw material ethanol prior to the ethylene production step and a second purification step of purifying the ethylene-containing product after the ethylene production step. Ethylene production method.
  • the first purification step is carried out from the raw material ethanol by an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, an alcohol having 3 to 10 carbon atoms, and carbon.
  • the second purification step is carried out from the ethylene-containing product to an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, and an alcohol having 3 to 10 carbon atoms.
  • [4] The method for producing ethylene according to the above [2] or [3], wherein the aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms contains propylene.
  • [5] The production of ethylene according to any one of the above [2] to [4], wherein the aliphatic saturated hydrocarbon having 3 to 14 carbon atoms contains an aliphatic saturated hydrocarbon having 6 to 14 carbon atoms.
  • Method. [6] The method for producing ethylene according to any one of the above [2] to [5], wherein the alcohol having 3 to 10 carbon atoms contains 2-propanol.
  • [7] The method for producing ethylene according to any one of the above [2] to [6], wherein the ether having 3 to 10 carbon atoms contains dibutyl ether.
  • a method for producing a polymer which comprises a polymerization step of polymerizing a monomer containing ethylene produced by the method according to any one of the above [1] to [7] to obtain a polymer.
  • the polymerization reaction of ethylene proceeds favorably and the quality of the obtained polymer is good.
  • the present invention comprises an ethylene production step of obtaining an ethylene-containing product containing ethylene from a raw material ethanol containing ethanol derived from waste, a first purification step of purifying the raw material ethanol, and ethylene production before the ethylene production step. It comprises at least one of the second purification steps of purifying the ethylene-containing product after the step.
  • the ethylene polymerization reaction proceeds appropriately even when ethanol derived from waste is used as a raw material, and the polymer The quality of the obtained polymer is improved, for example, the molecular weight of the polymer is sufficiently high.
  • the raw material ethanol used as a raw material in the present invention contains ethanol derived from waste.
  • Waste-derived ethanol is produced from waste-derived gas obtained by burning or thermally decomposing waste.
  • the waste may be industrial waste such as industrial solid waste, general waste such as urban solid waste (MSW), plastic waste, garbage, waste tires, biomass waste, food waste. , Building materials, wood, wood chips, fibers, papers and other flammable substances. Of these, municipal solid waste (MSW) is preferred.
  • the waste-derived gas is preferably converted to ethanol by either gas-utilizing microorganisms or metal catalysts.
  • the waste-derived gas is preferably a synthetic gas containing carbon monoxide and hydrogen.
  • Syngas is subjected to a raw material gas generation step of producing a raw material gas by gasifying waste, and further, various pollutants, dust particles, impurities, unfavorable amounts of compounds, etc. are identified from the generated raw material gas. It can be obtained by performing a synthetic gas purification step of removing or reducing the substance of.
  • a gasification furnace For gasification of waste in the raw material gas generation step, for example, a gasification furnace may be used.
  • the gasification furnace is a furnace that burns (incompletely burns) a carbon source, and examples thereof include a shaft furnace, a kiln furnace, a fluidized bed furnace, a gasification reforming furnace, and a plasma gasification furnace.
  • the temperature at which the waste is gasified into the raw material gas is not particularly limited, but is usually 100 to 2500 ° C, preferably 200 to 2100 ° C.
  • the raw material gas obtained by gasifying the waste may contain carbon monoxide and hydrogen, but may further contain carbon dioxide, oxygen and nitrogen. Further, the raw material gas may further contain components such as soot, tar, nitrogen compound, sulfur compound, phosphorus compound and organic compound.
  • the raw material gas typically contains carbon monoxide in an amount of 0.1% by volume or more and 80% by volume or less, and hydrogen in an amount of 0.1% by volume or more and 80% by volume or less. Further, it is preferable that carbon dioxide is contained in an amount of 0.1% by volume or more and 70% by volume or less.
  • the raw material gas is carbon monoxide by performing heat treatment (commonly known as gasification) to burn (incompletely burn) the waste, that is, by partially oxidizing the waste, but there is no particular limitation, but 0. It is preferable that the gas is produced as a gas containing 1% by volume or more, preferably 10% by volume or more, and more preferably 20% by volume or more.
  • the raw material gas may be a synthetic gas by removing or reducing specific substances such as various pollutants, dust particles, impurities, and an unfavorable amount of compounds.
  • synthetic gas by microbial fermentation, substances unfavorable for stable culture of microorganisms and unfavorable amounts of compounds are reduced or removed from the raw material gas, and the content of each component contained in the raw material gas is contained. Is preferably in a range suitable for stable culture of microorganisms.
  • a water content separator consisting of a gas chiller, a low temperature separation method (deep cooling method) separation device, a fine particle separation device for separating fine particles such as soot represented by various filters of cyclone and bag filter, Water-soluble impurity separation device such as scrubber, desulfurization device (sulfide separation device), membrane separation type separation device, deoxidizer, pressure swing adsorption type separation device (PSA), temperature swing adsorption type separation device (TSA) , Pressure-temperature swing adsorption type separation device (PTSA), separation device using activated carbon, deoxidizing catalyst, specifically, one or more of separation devices using copper catalyst or palladium catalyst, etc. It is advisable to purify the raw material gas by performing the treatment using the above to obtain a synthetic gas.
  • PSA pressure swing adsorption type separation device
  • TSA temperature swing adsorption type separation device
  • PTSA Pressure-temperature swing adsorption type separation device
  • a pressure swing adsorption type separator filled with a regenerated adsorbent containing zeolite can be used to adsorb the carbon dioxide gas in the synthetic gas to the regenerated adsorbent to reduce the carbon dioxide gas concentration in the synthetic gas. preferable.
  • the obtained synthetic gas may contain at least carbon monoxide and hydrogen as essential components, and may further contain carbon dioxide and nitrogen.
  • the carbon monoxide concentration in the synthetic gas is usually 20% by volume or more and 80% by volume or less, preferably 25% by volume or more and 50% by volume, based on the total concentration of carbon monoxide, carbon dioxide, hydrogen and nitrogen in the synthetic gas. By volume or less, more preferably 30% by volume or more and 45% by volume or less.
  • the hydrogen concentration in the synthetic gas is usually 10% by volume or more and 80% by volume or less, preferably 30% by volume or more and 55% by volume, based on the total concentration of carbon monoxide, carbon dioxide, hydrogen and nitrogen in the synthetic gas. It is more preferably 30% by volume or more and 50% by volume or less.
  • the carbon dioxide concentration in the synthetic gas is not particularly limited, but is usually 0.1% by volume or more and 40% by volume or less, preferably 0, with respect to the total concentration of carbon dioxide, carbon dioxide, hydrogen and nitrogen in the synthetic gas. .3% by volume or more and 30% by volume or less.
  • the carbon dioxide concentration is particularly preferably lowered when ethanol is produced by microbial fermentation, and from such a viewpoint, it is more preferably 0.5% by volume or more and 25% by volume or less.
  • the concentration of nitrogen in the synthetic gas is usually 40% by volume or less, preferably 1% by volume or more and 20% by volume or less, based on the total concentration of carbon monoxide, carbon dioxide, hydrogen and nitrogen in the synthetic gas. More preferably, it is 5% by volume or more and 15% by volume or less.
  • the concentrations of carbon monoxide, carbon dioxide, hydrogen and nitrogen in the synthetic gas can be adjusted by appropriately changing the combustion conditions such as the type of waste, the gasification temperature in the raw material gas generation process, and the oxygen concentration of the supply gas during gasification. , Can be in a predetermined range. For example, if you want to change the concentration of carbon monoxide or hydrogen, change to waste with a high ratio of hydrocarbons (carbon and hydrogen) such as waste plastic, and if you want to reduce the nitrogen concentration, change the oxygen concentration in the raw material gas generation process. There is a method of supplying high gas. Further, at least one of the raw material gas and the synthetic gas may be appropriately adjusted in concentration of each component of carbon monoxide, carbon dioxide, hydrogen and nitrogen.
  • At least one of these components may be added to the raw material gas or the synthetic gas.
  • the amount added is, for example, less than 50% by volume, preferably less than 30% by volume, and more preferably less than 10% by volume, based on the total amount of the raw material gas or the synthetic gas.
  • Syngas is converted to ethanol in the ethanol conversion step.
  • the synthetic gas may be converted to ethanol by either a gas-utilizing microorganism or a metal catalyst as described above, but it is preferably converted by a gas-utilizing microorganism.
  • a synthetic gas is supplied to a microbial fermenter, and the synthetic gas is microbially fermented in the microbial fermenter to produce ethanol.
  • the microbial fermentation tank is preferably a continuous fermentation apparatus.
  • any shape of the microbial fermenter can be used, and examples thereof include a stirring type, an airlift type, a bubble tower type, a loop type, an open bond type, and a photobio type.
  • the microbial fermenter is used.
  • a known loop reactor having a main tank portion and a reflux portion can be preferably used.
  • the synthetic gas to be supplied to the microbial fermenter the synthetic gas obtained through the above-mentioned synthetic gas purification step may be used as it is as the synthetic gas, or another predetermined gas may be added and then supplied.
  • another predetermined gas for example, at least one selected from the group consisting of sulfur compounds such as sulfur dioxide, phosphorus compounds, and nitrogen compounds can be mentioned.
  • the synthetic gas and the microbial culture solution may be continuously supplied to the microbial fermenter, but it is not necessary to supply the synthetic gas and the microbial culture solution at the same time, and the microbial fermenter to which the microbial culture solution has been supplied in advance is used.
  • Syngas may be supplied. It is known that certain anaerobic microorganisms produce ethanol and the like from substrate gases such as syngas by fermentation, and these gas-utilizing microorganisms are cultivated in a liquid medium. For example, a liquid medium and gas-utilizing bacteria may be supplied and contained, and the synthetic gas may be supplied into the microbial fermentation tank while stirring the liquid medium in this state. As a result, gas-utilizing bacteria can be cultivated in a liquid medium, and ethanol can be produced from the synthetic gas by the fermentation action thereof.
  • the temperature of the medium may be any temperature, but is preferably about 30 to 45 ° C, more preferably about 33 to 42 ° C, and even more preferably 36.5 to 37.
  • the temperature can be about 5 ° C.
  • the culturing time is preferably 1 hour or longer in continuous culturing, more preferably 7 days or longer, particularly preferably 30 days or longer, most preferably 60 days or longer, and although the upper limit is not particularly set, equipment maintenance, etc. From the viewpoint, it is preferably 720 days or less, more preferably 365 days or less.
  • the culture time means the time from the addition of the inoculum to the culture tank until the total amount of the culture solution in the culture tank is discharged.
  • the microorganisms (species) contained in the microbial culture solution are not particularly limited as long as ethanol can be produced by microbial fermentation of synthetic gas using carbon monoxide as a main raw material.
  • the microorganism (species) is preferably one that produces ethanol from syngas by the fermentation action of gas-utilizing bacteria, and particularly preferably a microorganism having a metabolic pathway of acetyl-COA.
  • the gas-utilizing bacteria the genus Clostridium is more preferable, and Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium aceticum, and Clostridium carboxydilance. Clostridium carboxidivorans), Moorella thermoacetica, Acetobacterium woodii and the like. Of these, Clostridium autoethanogenum is particularly preferred.
  • the medium used for culturing the above-mentioned microorganisms is not particularly limited as long as it has an appropriate composition according to the bacteria, but is not particularly limited, but is the main component water and nutrients dissolved or dispersed in the water (for example, vitamins, etc.). It is a liquid containing (phosphoric acid, etc.).
  • the composition of such a medium is prepared so that gas-utilizing bacteria can grow well. For example, when the genus Clostridium is used as a microorganism, "0907" to "00099" of US Patent Application Publication No. 2017/260552 can be referred to.
  • a culture solution containing ethanol (ethanol-containing culture solution) is obtained.
  • the ethanol-containing culture is then subjected to a separation step.
  • the separation step for example, the ethanol-containing culture solution is heated to 23 to 500 ° C. under the condition of 0.01 to 1000 kPa (absolute pressure) to obtain a liquid or solid component containing microorganisms and a gas component containing ethanol. It is good to separate.
  • the above separation step from the viewpoint of efficiently separating a liquid or solid component containing microorganisms, their carcasses, proteins derived from microorganisms, etc., and a gas component containing ethanol, it is more preferable under the condition of 10 to 200 kPa.
  • the ethanol-containing culture solution under conditions of 50 to 150 kPa, more preferably under normal pressure, preferably at a temperature of 50 to 200 ° C, more preferably at a temperature of 80 ° C to 180 ° C, still more preferably at a temperature of 100 to 150 ° C. Perform heating.
  • the ethanol-containing gas component obtained in the above separation step may be liquefied by condensation to obtain an ethanol-containing liquid.
  • the apparatus used in the liquefaction step is not particularly limited, but it is preferable to use a heat exchanger, particularly a condenser (condenser).
  • a condenser condenser
  • Examples of the condenser include a water-cooled type, an air-cooled type, an evaporation type, and the like, and the water-cooled type is preferable among them.
  • the condenser may have one stage or a plurality of stages.
  • the separation step instead of separating the liquid or solid component containing microorganisms and the gas component containing ethanol as described above, the solid component containing microorganisms and the liquid component containing ethanol (ethanol-containing liquid) are separated. Separation may be performed by a solid-liquid separation device such as a solid-liquid separation filter device.
  • a pre-purification step of further purifying the ethanol-containing liquid may be performed.
  • the pre-stage purification step means a purification step performed before the first purification step described later. Further, when the ethanol-containing liquid obtained by the microbial fermentation has already been removed of components such as microorganisms, the pre-purification step may be performed without going through the above-mentioned separation step.
  • the first-stage purification step is a step of separating the ethanol-containing liquid into a distillate having a high ethanol concentration and a canned liquid having a low ethanol concentration.
  • the equipment used in the purification process is, for example, a distillation apparatus, a treatment apparatus containing a permeation vaporization membrane, a treatment apparatus containing a zeolite membrane, a treatment apparatus for removing a low boiling point substance having a boiling point lower than that of ethanol, and a high boiling point substance having a boiling point higher than that of ethanol.
  • a processing device for removing the boiling point a processing device containing an ion exchange membrane, and the like. These devices may be used alone or in combination of two or more.
  • a distillation apparatus or membrane separation can be preferably used, and a distillation apparatus is more preferable.
  • a zeolite membrane can be preferably used as the membrane separation.
  • the temperature in the distillation apparatus during the distillation of ethanol is not particularly limited, but is preferably 110 ° C. or lower, and more preferably about 70 to 105 ° C. By setting the temperature in the distillation apparatus to the above range, separation of ethanol and other components, that is, distillation of ethanol can be performed more reliably.
  • an ethanol-containing liquid is introduced into a distillation apparatus equipped with a heater using steam at 100 ° C. or higher, the temperature at the bottom of the distillation column is raised to 90 ° C. or higher within 30 minutes, and then the ethanol is described above. It is advisable to introduce the containing liquid from the central part of the distillation column. Further, in the heating distillation using a distillation apparatus, it is preferable to carry out the distillation step within ⁇ 15 ° C. in the temperature difference between the bottom portion, the middle portion of the column and the top portion of the column. When the temperature difference is within ⁇ 15 ° C., it becomes easy to obtain high-purity ethanol.
  • the distillation temperature difference is preferably ⁇ 13 ° C, more preferably ⁇ 11 ° C. With these distillation temperature differences, separation from other components, that is, purification by distillation of ethanol can be performed more reliably.
  • the pressure in the distillation apparatus at the time of distillation of ethanol may be normal pressure, but is preferably less than atmospheric pressure, more preferably about 60 to 95 kPa (absolute pressure).
  • Ethanol obtained through the first-stage purification step is used as a raw material for obtaining an ethylene-containing product in the ethylene production step described later.
  • "Ethanol” used as a raw material in the present invention does not mean pure ethanol as a compound (chemical formula: ethanol represented by CH 3 CH 2 OH), but is a composition containing impurities, and is "raw material ethanol”. Also called. Impurities are contained in the raw material ethanol produced through each of the above steps, and most of them are waste-derived compounds.
  • the raw material ethanol may be produced from synthetic gas using a metal catalyst as described above.
  • the metal catalyst include a hydroactive metal or an aggregate of a hydroactive metal and a coactive metal.
  • the active metal hydride may be any metal conventionally known as a metal capable of synthesizing ethanol from a mixed gas.
  • alkali metals such as lithium and sodium, manganese, renium and the like are included in Group 7 of the periodic table.
  • alkali metals such as lithium and sodium, manganese, renium and the like are included in Group 7 of the periodic table.
  • examples thereof include elements belonging to Group 8 of the periodic table such as ruthenium, elements belonging to Group 9 of the periodic table such as cobalt and rhodium, and elements belonging to Group 10 of the periodic table such as nickel and palladium.
  • One of these hydrogenated active metals may be used alone, or two or more thereof may be used in combination.
  • the hydrogenated active metal rhodium or ruthenium, such as a combination of rhodium, manganese and lithium, a combination of ruthenium, renium and sodium, is used because the CO conversion rate is further improved and the selectivity of ethanol is improved.
  • a combination of an alkali metal and another hydrogenated active metal is preferable.
  • the coactive metal examples include titanium, magnesium, vanadium and the like. Since the coactive metal is supported in addition to the hydrogenated active metal, the CO conversion rate and the ethanol selectivity can be further increased.
  • a rhodium-based catalyst is preferable.
  • a metal catalyst other than the rhodium-based catalyst may be used in combination.
  • other metal catalysts include copper alone or a catalyst in which copper and a transition metal other than copper are supported on a carrier. When a metal catalyst is used, a product containing acetaldehyde or acetic acid in addition to ethanol is usually obtained. Therefore, the product may be used as a raw material ethanol through a pre-purification step such as distillation.
  • the pre-stage purification step may be omitted. That is, after ethanol production, both the pre-stage purification step and the first purification step described later may not be performed as the purification step, or only the first purification step may be performed. In this case, the above-mentioned ethanol-containing liquid becomes the raw material ethanol, and it is preferable that the first purification step is carried out by a distillation apparatus or membrane separation, and heat distillation using a distillation apparatus is particularly preferable. As mentioned above. Of course, when the second purification step is performed, both the pre-stage purification step and the first purification step may be omitted. However, it is preferable to carry out the first-stage purification step, and it is more preferable to carry out the first purification step in combination.
  • the raw material ethanol has an ethanol purity (that is, ethanol content) of, for example, 85% by volume or more.
  • ethanol purity that is, ethanol content
  • the polymerization reaction using ethylene as a raw material proceeds suitably by going through at least one of the first and second purification steps, and the polymer obtained from ethylene
  • the quality is good.
  • the ethanol purity of the raw material ethanol is preferably 90% by volume or more, more preferably 95% by volume or more, still more preferably 99.5% by volume or more.
  • the raw material ethanol may have an ethanol purity of less than 100% by volume.
  • a commercially available product may be used as long as it contains ethanol derived from waste.
  • the raw material ethanol is converted from ethanol to ethylene by an ethylene production step, whereby an ethylene-containing product is obtained. Specifically, the raw material ethanol may be brought into contact with the catalyst to be converted into ethylene. The raw material ethanol is converted to ethylene by a dehydration reaction.
  • the catalyst used is not limited as long as it can convert ethanol to ethylene, but is limited to zeolite, modified zeolite such as P-modified zeolite, silica-alumina, alumina, silicate-ized, titanized, zirconated or fluorinated.
  • modified zeolite such as P-modified zeolite
  • silica-alumina alumina
  • silicate-ized titanized, zirconated or fluorinated
  • fluorinated examples thereof include acid catalysts such as alumina and silicoaluminophosphate (hereinafter, these may be collectively referred to as "zeolite or alumina-based catalysts").
  • zeolite or alumina-based catalysts a heteropolyacid-supported catalyst and the like can also be mentioned.
  • zeolite those containing at least one kind of 10-membered ring in the structure are advantageous, and have a microporous material composed of silicon, aluminum, oxygen and boron as an optional component, and specifically, MFI (ZSM-). 5, Silicalite-1, Boronite C, TS-1), MEL (ZSM-11, Silicalite-2, Boralite D, TS-2, SSZ-46), FER (Ferrier Zeolite, FU-9, ZSM-35) ), MTT (ZSM-23), MWW (MCM-22, PSH-3, ITQ-1, MCM-49), TON (ZSM-22, Theta-1, NU-10), EUO (ZSM-50, EU) -1), MFS (ZSM-57), ZSM-48 and the like.
  • a zeolite having a Si / Al ratio of 10 or more is preferable.
  • Zeolites having a Si / Al ratio of 10 or more preferably have a Si / Al ratio of 100 or more, and preferably contain at least one selected from MFI and MEL.
  • the zeolite is also preferably a dealuminated zeolite.
  • a dealuminated zeolites it is advantageous to remove about 10% by weight of aluminum. It is advantageous to perform this dealumination by steaming and then leaching as needed. It is advantageous that the zeolite and the dealuminated zeolite are basically H-type.
  • at least one selected from metal compensating ions such as Na, Mg, Ca, La, Ni, Ce, Zn and Co can be contained.
  • the zeolite is mixed with a binder, preferably an inorganic binder, and formed into a desired shape such as pellets.
  • the binder is selected to be durable to the temperature and other conditions used in the dehydration process of the present invention.
  • Binders are at least one inorganic material selected from gels containing clay, silica, metal silicates, metal oxides (eg ZrO 2 ) or mixtures of silica and metal oxides.
  • the P-modified zeolite is a phosphorus-modified zeolite.
  • the phosphorus-modified zeolite is, for example, a zeolite having a microporous initial atomic ratio Si / Al ratio of 4 to 500, specifically, MFI, MOR, MEL, clinoptilolite, FER, MWW, TON, EUO. , MFS, ZSM-48 and the like.
  • the initial atomic ratio Si / Al ratio is preferably 100 or less, and more preferably 4 to 30.
  • the P-modified zeolite of this production method can also be obtained based on an inexpensive zeolite having a low Si / Al ratio (30 or less).
  • the P-modified zeolite can also be further modified with at least one metal selected from Mg, Ca, La, Ni, Ce, Zn, Co, Ag, Fe, and Cu.
  • the phosphorus atom content in the P-modified zeolite is at least 0.05% by mass, preferably 0.3 to 7% by mass, which is advantageous. Further, it is advantageous that at least 10% by mass of aluminum is extracted and removed from the zeolite by leaching with respect to the zeolite as a raw material.
  • the catalyst using the P-modified zeolite may be the P-modified zeolite itself as a catalyst, or a compounded P-modified zeolite in which the P-modified zeolite and other materials are combined.
  • the compounding type can improve the hardness or catalytic activity of the catalyst.
  • the material that can be mixed with the P-modified zeolite include various inert or catalytically active materials, and various binder materials. Specific examples include kaolin, other clay-like compositions, various forms of rare earth metals, phosphates, alumina or alumina sol, titania, zirconia, quartz, silica or silica sol and mixtures thereof.
  • the catalyst can be molded into pellets, spheres, extruded into other shapes, or spray dried particles.
  • the amount of P-modified zeolite contained in the final catalyst product is 10 to 90% by mass, preferably 20 to 70% by mass of the total catalyst.
  • a preferred example of the P-modified zeolite is silicoaluminophosphate, more preferably silicoaluminophosphate of the AEL group, and a typical example thereof is SAPO-11.
  • SAPO-11 is based on ALPO-11 and has an Al / P ratio of basically 1 atom / atom.
  • alumina particularly ⁇ -alumina
  • silicate, zirconeated, titanated or fluorinated alumina is generally characterized by having a wide range of acid intensity distributions and Lewis-type and Bronsted-type acid sites.
  • activated alumina may be used as the alumina.
  • Alumina also preferably improves the selectivity of the catalyst by precipitating silicon, zirconium, titanium, fluorite, etc. on the surface. That is, the selectivity of the catalyst may be improved by silicate-forming, zirconating, or titanating.
  • Suitable commercially available alumina, preferably eta or gamma alumina, having a surface area of 10 to 500 m 2 / g and an alkali content of 0.5% or less may be used for producing such a catalyst. Further, it is preferable to add silicon, zirconium, titanium and the like in a total amount of 0.05 to 10% by mass.
  • Addition of these metals may be carried out at the time of producing alumina, may be carried out in addition to alumina after production, and these metals may be added in the form of precursors. Further, the fluorinated alumina itself is known and can be produced according to the prior art.
  • heteropolyacid-supported catalyst comprises a heteropolyacid supported on a suitable catalyst carrier.
  • heteropoly acid is in the form of a free acid or alkali metal salt, alkaline earth metal salt, ammonium salt, bulky cation salt, and / or metal salt (in these cases, the salt is a complete or partial salt).
  • a heteropolyacid compound in the form of a heteropolyate such as (which may be any salt).
  • Heteropolyacid anions typically contain 12-18 oxygen-bonded polyvalent metal atoms known as peripheral atoms that surround one or more central atoms in a symmetrical manner.
  • Peripheral atoms are appropriately selected from molybdenum, tungsten, vanadium, niobium, tantalum, and combinations thereof.
  • the central atom is preferably silicon or phosphorus. Further, the central atom is any one selected from the atoms of groups I to VIII in the periodic table of the element, for example, copper, beryllium, zinc, cobalt, nickel, boron, aluminum, gallium, iron, cerium and arsenic.
  • Suitable heteropolyacids include Keggin, Wells-Dawson and Anderson-Evans-Perlov heteropolyacids.
  • the heteropolyacid component of the heteropolyacid-supported catalyst is preferably heteropolytungstic acid, which is a heteropolyacid whose peripheral atom is a tungsten atom.
  • Preferred heteropolytungstic acid is any one whose main component is a Keggin or Wells-Dawson structure.
  • suitable heteropolytungstic acids are 18-phosphotungstic acid (H 6 [P 2 W 18 O 62 ] ⁇ xH 2 O), 12-phosphotungstic acid (H 3 [PW 12 O 40 ] ⁇ xH 2 O).
  • 12-Tungstic acid H 4 [SiW 12 O 40 ] ⁇ xH 2 O
  • cesium hydrogen silicate Cs 3 H [SiW 12 O 40 ] ⁇ xH 2 O
  • monopotassium phosphotungstic acid KH 5 [P 2 W 18 O 62 ] ⁇ xH 2 O
  • monosodium 12- caity tungstic acid NaK 3 [SiW 12 O 40 ] ⁇ xH 2 O
  • potassium phosphotungstic acid K 6 [P 2 W 18 O) 62 ] ⁇ xH 2 O
  • the heteropolyacid component of the heteropolyacid-bearing catalyst is silicate-tungstic acid, phosphotungstic acid, and mixtures thereof, such as 12-ca-tungstic acid (H 4 [SiW 12 O 40 ] ⁇ xH 2 O), 12 -Selected from phosphotungstic acid (H 3 [PW 12 O 40 ] ⁇ xH 2 O) and mixtures thereof. More preferably, the heteropolyacid is silicate tungstic acid, and most preferably the heteropolyacid is 12-cay tungstic acid.
  • the molecular weight of the heteropolyacid is preferably more than 700 and less than 8500, more preferably more than 2800 and less than 6000. Such heteropolyacids also include these dimerization complexes.
  • the catalyst carrier used in the heteropolyacid-supported catalyst may be any suitable catalyst carrier known in the art.
  • Suitable raw materials for catalyst carriers include mordenite (eg montmorillonite), clay, bentonite, diatomaceous soil, titania, activated carbon, alumina, silica, silica-alumina, silica-titania cogel, silica-zirconia cogel, carbon coated alumina, zeolite, zinc oxide. , And flame thermal decomposition oxides are included.
  • a silica-based catalyst carrier such as a silica gel carrier and a carrier produced by flame hydrolysis of SiCl4 is preferable.
  • the shape of the catalyst carrier is not particularly limited, and may be, for example, a powder form, a granular form, a pelletized form, a spherical form, or an extruded form.
  • the raw material ethanol is not particularly limited, but is preferably converted into ethylene by contacting the catalyst in the gas phase. Further, the raw material ethanol may be further mixed with water, and an optional component may be appropriately mixed in addition to the raw material ethanol and water, and one or both of water and the optional component is a gas together with the raw material ethanol. It is good to bring it into contact with the catalyst.
  • a reaction vessel is filled with a catalyst, and the reaction vessel filled with the catalyst is supplied with raw material ethanol or raw material ethanol and at least one selected from water and other optional components as a gas, and a gas phase is supplied. It is advisable to discharge the ethylene-containing product from the reaction vessel in the gas phase by performing a dehydration reaction. If ethanol remains in the gas discharged from the reaction vessel, the ethanol-containing component may be separated from the ethylene-containing product and the ethanol-containing component may be supplied to the reaction vessel again.
  • the temperature of the reaction vessel is, for example, 280 to 600 ° C, preferably 300 to 550 ° C, and more preferably 330 to 530 ° C.
  • the pressure (absolute pressure) of the reaction vessel is, for example, 50 kPa to 3 MPa, preferably 50 kPa to 1 MPa, and more preferably 0.12 MPa to 0.65 MPa.
  • the temperature of the reaction vessel is, for example, 170 ° C. or higher, preferably 180 to 270 ° C., more preferably 190 to 260 ° C., and further preferably 200 to 250 ° C. Is.
  • the pressure is preferably in the range of 0.1 to 4.5 MPa, more preferably 1.0 to 3.5 MPa, and even more preferably 1.0 to 2.8 MPa.
  • the heteropolyacid-supported catalyst is heated to a temperature of 220 ° C. or higher and kept at that temperature for a sufficient period of time before coming into contact with the raw material ethanol. The bound water may be removed from.
  • the second purification step when the second purification step is performed, the ethylene-containing product purified by the second purification step is referred to as "ethylene" produced by the production method of the present invention, and the second purification step is performed.
  • the purification step of is omitted, the ethylene-containing product obtained in the ethylene production step is referred to as "ethylene” produced by the production method of the present invention.
  • the "ethylene” produced by the production method of the present invention may be composed of ethylene alone, or may be a composition containing impurities that are inevitably mixed even after being synthesized or purified.
  • the raw material ethanol is composed of an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, an alcohol having 3 to 10 carbon atoms, and 3 to 10 carbon atoms. It is preferable to remove at least one organic compound selected from the ether.
  • the waste contains various components, and therefore, the raw material ethanol produced from the waste contains various organic compounds. Further, among the organic compounds, the organic compound having the above carbon number often remains in the raw material ethanol obtained through various steps.
  • the produced ethylene-containing product has an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, and an aliphatic saturated hydrocarbon having 3 to 10 carbon atoms. It is preferable to remove at least one selected from alcohol, a specific organic compound consisting of an ether having 3 to 10 carbon atoms, carbon monoxide, and oxygen.
  • the “removal” referred to in the first and second purification steps includes not only a mode in which the target substance is completely removed from the raw material ethanol or ethylene-containing product, but also a mode in which the content of the target substance is reduced.
  • the ethylene polymerization reaction can be suitably promoted by removing hydrocarbons, alcohols and ethers having a specific carbon number, and also.
  • the quality of the obtained polymer is also easily improved.
  • Carbon monoxide and oxygen have high electronegativity and may inhibit the polymerization reaction in the polymerization reaction of ethylene.
  • a specific catalyst such as a Ziegler-Natta catalyst
  • oxygen can be a polymerization initiator in radical polymerization such as high-pressure polymerization, the polymerization may run out of control due to a large amount of oxygen. Therefore, by removing carbon monoxide and oxygen from the ethylene-containing composition in the second purification step, it is possible to prevent the ethylene polymerization reaction from being inhibited by these.
  • the ethylene produced in the present invention preferably has a carbon monoxide content of 1% by volume or less by removing carbon monoxide.
  • a carbon monoxide content of 1% by volume or less by removing carbon monoxide.
  • the content of carbon monoxide is more preferably 0.5% by volume or less, and further preferably 0.1% by volume or less.
  • the ethylene produced in the present invention does not have to contain carbon monoxide at all, and therefore, the lower limit of the content of carbon monoxide is 0% by volume.
  • the ethylene produced in the present invention preferably has an oxygen content of 1% by volume or less due to the removal of oxygen.
  • the oxygen content is more preferably 0.5% by volume or less, and further preferably 0.1% by volume or less.
  • the ethylene produced in the present invention does not have to contain oxygen at all, and therefore, the lower limit of the oxygen content is 0% by volume.
  • Aliphatic unsaturated hydrocarbons having 3 to 14 carbon atoms may be removed in the first purification step, the second purification step, or both, but the carbon number 3 to 14 carbon atoms removed in any of the steps.
  • the aliphatic unsaturated hydrocarbon preferably contains propylene.
  • propylene When propylene is contained in ethylene, when the polymerization reaction is carried out using the ethylene, propylene becomes a branched chain of the polymer, so that the branched chain can be reduced by removing the propylene. Therefore, as will be described later, it is particularly preferable to remove it when it is desired to reduce the branched chains of the polymer, such as when producing high-density polyethylene (HDPE) from ethylene.
  • HDPE high-density polyethylene
  • the ethylene produced in the present invention preferably has a propylene content of 1% by volume or less by removing propylene.
  • a propylene content of 1% by volume or less By setting the volume to 1% by volume or less, the effect of reducing the number of branched chains can be exhibited.
  • the content of propylene is more preferably 0.5% by volume or less, and further preferably 0.1% by volume or less.
  • the ethylene produced in the present invention does not have to contain propylene at all, and therefore, the lower limit of the content of propylene is 0% by volume.
  • the aliphatic saturated hydrocarbon having 3 to 14 carbon atoms may be removed in the first purification step, the second purification step, or both, but the carbon number 3 to 14 is removed in any of the steps. It is preferable that the aliphatic saturated hydrocarbon of the above contains an aliphatic saturated hydrocarbon having 6 to 14 carbon atoms.
  • the aliphatic saturated hydrocarbon having 6 to 14 carbon atoms may be linear or may have at least one of a branched structure and a cyclic structure, but is preferably linear.
  • aliphatic saturated hydrocarbons having 6 to 14 carbon atoms are at least one selected from n-hexane, n-heptane, n-octane, n-decane, n-dodecane, and n-tetradecane. Is preferable. These aliphatic saturated hydrocarbons having a relatively large number of carbon atoms (6 to 14 carbon atoms) are contained in a relatively large amount in the raw material ethanol derived from waste. On the other hand, these aliphatic saturated hydrocarbons are highly compatible with fats and oils contained in foods, and when the polymer produced from ethylene produced in the present invention is used as a packaging material for foods, it becomes a food.
  • the aliphatic saturated hydrocarbon having 3 to 14 carbon atoms removed in any of the above steps is an aliphatic saturated hydrocarbon having 10 to 14 carbon atoms from the viewpoint of being contained in a large amount in the raw material ethanol derived from waste. It is preferable to include it.
  • the ethylene produced in the present invention has an aliphatic saturated hydrocarbon content of 6 to 14 carbon atoms of 0.3% by volume or less by removing the aliphatic saturated hydrocarbon having 6 to 14 carbon atoms. It is preferably 0.2% by volume or less, and more preferably 0.1% by volume or less. Further, the ethylene produced in the present invention may not contain any aliphatic saturated hydrocarbon having 6 to 14 carbon atoms, and therefore, the lower limit of the content of the aliphatic saturated hydrocarbon having 6 to 14 carbon atoms. Is 0% by volume.
  • the alcohol having 3 to 10 carbon atoms may be removed in the first purification step, the second purification step, or both of them, but the alcohol having 3 to 10 carbon atoms removed in any of the steps may be used.
  • at least one selected from 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol is included.
  • These alcohols are contained in a relatively large amount in the raw material ethanol derived from waste, and by removing these alcohols in the first purification step, the second purification step, or both of them, polymerization using ethylene, which will be described later, is carried out. The reaction can proceed favorably, and the quality of the obtained polymer can be easily improved.
  • the alcohol having 3 to 10 carbon atoms removed in any of the above steps contains 2-propanol.
  • 2-propanol is contained in ethylene, when the polymerization reaction is carried out using that ethylene, 2-propanol becomes a branched chain of the polymer. Therefore, removing 2-propanol reduces the branched chain in the polymer. be able to. Therefore, it is particularly preferable to remove 2-propanol when it is desired to reduce the branched chains of the polymer, such as when producing high-density polyethylene (HDPE) from ethylene, as will be described later.
  • HDPE high-density polyethylene
  • the ethylene produced in the present invention preferably has a 2-propanol content of 0.3% by volume or less by removing 2-propanol.
  • the content of 2-propanol is more preferably 0.1% by volume or less, still more preferably 0.05% by volume or less.
  • the ethylene produced in the present invention does not have to contain 2-propanol at all, and therefore, the lower limit of the content of 2-propanol is 0% by volume.
  • Ethers having 3 to 10 carbon atoms may be removed in the first purification step, the second purification step, or both, but ethers having 3 to 10 carbon atoms removed in any of the steps may include, for example, ethers having 3 to 10 carbon atoms. , Diethyl ether, at least one selected from dibutyl ether. These ethers are contained in a relatively large amount as compared with the raw material ethanol derived from waste, and by removing these ethers in the first purification step, the second purification step, or both of them, a polymerization reaction using ethylene, which will be described later, is carried out. Is preferably carried out, and the quality of the obtained polymer is also easily improved.
  • the ether having 3 to 10 carbon atoms removed in any of the above steps preferably contains dibutyl ether. Since dibutyl ether is a volatile organic compound (VOC), it is advantageous in that removing dibutyl ether can reduce the risk of adverse effects such as health risks caused by VOC.
  • VOC volatile organic compound
  • the ethylene produced in the present invention preferably has a dibutyl ether content of 0.3% by volume or less due to the removal of dibutyl ether.
  • the content of dibutyl ether is more preferably 0.1% by volume or less, and further preferably 0.05% by volume or less.
  • the ethylene produced in the present invention does not have to contain dibutyl ether at all, and therefore, the lower limit of the content of dibutyl ether is 0% by volume.
  • water is produced by the dehydration reaction in the ethylene production step, it is preferable that at least water is removed in the second purification step. Further, since unreacted ethanol generally remains in the ethylene-containing product produced in the ethylene production step, it is preferable to remove the unreacted ethanol as well. By removing water and ethanol, the polymerization reaction using ethylene, which will be described later, can be suitably carried out, and the quality of the obtained polymer can be easily improved.
  • the ethylene produced in the present invention preferably has a water content of 0.3% by volume or less because water is removed in the second purification step.
  • the content is 0.3% by volume or less, the polymerization reaction using ethylene can be easily carried out, and the quality of the obtained polymer can be easily improved.
  • the water content is more preferably 0.1% by volume or less, and further preferably 0.05% by volume or less.
  • the ethylene produced in the present invention does not have to contain water at all, and therefore, the lower limit of the water content is 0% by volume.
  • the ethylene produced in the present invention preferably has an ethanol content of 0.3% by volume or less by removing ethanol in the second purification step.
  • the content is 0.3% by volume or less, the polymerization reaction using ethylene can be easily carried out, and the quality of the obtained polymer can be easily improved.
  • the content of ethanol is more preferably 0.1% by volume or less, further preferably 0.05% by volume or less.
  • the ethylene produced in the present invention does not have to contain ethanol at all, and therefore, the lower limit of the ethanol content is 0% by volume.
  • the ethylene produced in the present invention is generally a gas, and ethylene, which is the gas, is used as an inorganic gas (oxygen, carbon monoxide, etc.) and an organic gas using GC-TCD and GC-FID.
  • ethylene which is the gas
  • GC-TCD oxygen, carbon monoxide, etc.
  • GC-FID GC-FID
  • the purification methods in each of the first and second purification steps include a water separator consisting of a gas chiller, a separator using an adsorbent such as activated carbon, a pressure swing adsorption type separator (PSA), and a temperature swing adsorption type.
  • a water separator consisting of a gas chiller, a separator using an adsorbent such as activated carbon, a pressure swing adsorption type separator (PSA), and a temperature swing adsorption type.
  • PSA pressure swing adsorption type separator
  • TSA pressure-temperature swing adsorption type separator
  • PTSA pressure-temperature swing adsorption type separator
  • low temperature separation method deep cooling method
  • water-soluble impurity separator such as scrubber
  • desulfurization device desulfurization device
  • membrane separation examples thereof include a type separation device, a distillation device, a separation device having chromatography, and a solution absorption device.
  • the solution absorption device is a device including an absorption solution that selectively absorbs a predetermined gas component by contacting the gas, and an alkaline solution such as an amine solution may be used as the absorption solution.
  • an alkaline solution such as an amine solution
  • carbon dioxide and the like in the gasified raw material ethanol can be absorbed.
  • an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, an alcohol having 3 to 10 carbon atoms, and 3 to 10 carbon atoms It is preferable that one of the ethers of the above is removed, but it is more preferable that one having a relatively large number of carbon atoms is removed, and in particular, an aliphatic unsaturated hydrocarbon having 6 to 14 carbon atoms is removed. Is preferable.
  • the organic compound having a large number of carbon atoms can be easily removed in the first purification step due to the difference in molecular weight from ethanol, and by removing the organic compound, the reaction in the ethylene production step can be more appropriately proceeded.
  • the method for removing the aliphatic unsaturated hydrocarbon having 6 to 14 carbon atoms is not particularly limited, but it is preferable to remove the aliphatic unsaturated hydrocarbon by a separator having chromatography. As the chromatography, reverse phase chromatography or the like may be used. Further, it may be removed by a distillation apparatus, adsorption of activated carbon or the like.
  • the second purification step it is preferable that either the water produced in the ethylene production step or the unreacted ethanol is removed, and it is preferable that both of them are removed. Further, in the second purification step, as described above, it is preferable to remove at least one selected from the specific organic compound, carbon monoxide, and oxygen, and the specific organic compound has a relatively low molecular weight and is low. It is more preferable that the molecular weight organic compound (for example, having 3 to 5 carbon atoms) is removed.
  • the first purification step aliphatic saturated hydrocarbons having 6 to 14 carbon atoms are removed, and in the second purification step, in addition to water and unreacted ethanol, a specific low molecular weight having a relatively low molecular weight is specified. It is more preferable that at least the molecular weight organic compound is removed, and it is also preferable that carbon monoxide and oxygen are further removed in addition to these in the second purification step. It is more preferred that the particular organic compound removed in the second purification step specifically comprises at least one selected from low molecular weight alcohols such as 2-propanol and low molecular weight ethers such as diethyl ether. ..
  • the specific organic compound removed in the second purification step further contains, in addition to these, a low molecular weight aliphatic unsaturated hydrocarbon such as propylene. That is, in the second purification step, it is more preferable that propanol and diethyl ether are removed as the low molecular weight organic compound, and it is particularly preferable that propylene is further removed in addition to these.
  • Low molecular weight organic compounds can be efficiently removed from ethylene together with unreacted ethanol, carbon monoxide, oxygen and the like by using a specific separation device.
  • diethyl ether can be a raw material for producing ethylene together with ethanol in the ethylene production step.
  • the ratio is a ratio to the raw material ethanol in the first purification step and to the ethylene-containing product in the second purification step.
  • the second purification step is not particularly limited, but it is preferable to perform purification by a separation device of a low temperature separation method.
  • a method of solidifying ethylene to separate it by a condenser using a refrigerant (chiller) cooled to a temperature below the melting point of ethylene (-170 ° C. or lower at normal pressure) can be mentioned.
  • substances such as water, carbon dioxide, ethanol and other organic compounds having a melting point higher than that of ethylene are removed by using a condenser in the previous stage having a refrigerant temperature higher than that of the above condenser. It is good.
  • the condensers in the first stage include, for example, a first condenser in which the temperature of the refrigerant is relatively high (for example, 0 to 25 ° C. at normal pressure) and a second condenser in which the temperature of the refrigerant is lower than that of the first condenser. It may be used in combination with a vessel (for example, ⁇ 50 to ⁇ 90 ° C. at normal pressure). Further, the condenser may be of any form, and the ethylene-containing product of the gas phase may be brought into contact with a metal tube or the like through which the refrigerant is passed, or the refrigerant and the ethylene-containing product may be brought into direct contact with each other. ..
  • the ethylene produced in the present invention can be used for various purposes, but is preferably used in a polymerization step for producing a polymer containing a structural unit derived from ethylene.
  • a monomer containing ethylene is polymerized to obtain a polymer.
  • the polymer may be homopolyethylene obtained by polymerizing ethylene alone, or may be a copolymer obtained by polymerizing ethylene and a monomer component other than ethylene.
  • the polymer is preferably a polyethylene resin such as low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and ultrahigh molecular weight polyethylene (UHMWPE).
  • LDPE low density polyethylene
  • HDPE high density polyethylene
  • LLDPE linear low density polyethylene
  • UHMWPE ultrahigh molecular weight polyethylene
  • any polymer containing a structural unit derived from ethylene may be used, and for example, it may be a copolymer with a monomer other than ethylene.
  • the monomer other than ethylene is not particularly limited, but propylene, 1-butene, 2-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene, vinyl acetate, methyl acrylate, Ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, acrylic nitrile, vinyl fluoride, vinyl chloride, vinyl bromide, tetrafluoroethylene, diethyl maleate, Examples thereof include diethyl fumarate and carbon monoxide.
  • copolymers include ethylene vinyl acetate copolymer (EVA), methyl ethylene acrylate copolymer, ethyl ethylene (meth) acrylate copolymer, ethylene (meth) acrylate copolymer, and ethylene propylene.
  • EVA ethylene vinyl acetate copolymer
  • methyl ethylene acrylate copolymer methyl ethylene acrylate copolymer
  • ethyl ethylene (meth) acrylate copolymer ethylene (meth) acrylate copolymer
  • ethylene propylene examples thereof include rubber (EPM) and ethylene propylene diene rubber (EPDM).
  • Low-density polyethylene has a short-chain branch and a long-chain branch in terms of molecular structure, and has a density of 0.910 g / cm 3 or more and less than 0.942 g / cm 3 , and typically has a density of 0.930 g / cm / cm. It is cm 3 or less.
  • High-density polyethylene is polyethylene having few branches due to its molecular structure and a density of 0.942 g / cm 3 or more.
  • polyethylene having a density of 0.930 g / cm 3 or more and less than 0.942 g / cm 3 may be referred to as medium density polyethylene.
  • the linear low-density polyethylene is generally a copolymer of ethylene and a small amount of ⁇ -olefin other than ethylene, and examples of the ⁇ -olefin other than ethylene include ⁇ -olefins having 3 to 10 carbon atoms. Specific examples thereof include propylene, butene-1, penten-1, 4-methyl-pentene-1, hexene-1, octene-1, and decene-1.
  • the density of the linear low density polyethylene is less than 0.942 g / cm 3 , typically less than 0.930 g / cm 3 , and for example 0.880 g / cm 3 or more, typically 0.880 g / cm 3. It is 0.910 g / cm 3 or more.
  • Ultra high molecular weight polyethylene is a polyethylene having a larger molecular weight than general polyethylene, for example, a polyethylene resin having a weight average molecular weight of 400,000 or more, preferably a weight average molecular weight of 1 million or more.
  • the ultra-high molecular weight polyethylene has good mechanical strength due to the high weight average molecular weight.
  • the weight average molecular weight of the ultra-high molecular weight polyethylene is preferably 7 million or less, more preferably 4 million or less, from the viewpoint of easiness of polymerization.
  • the weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the ultra high molecular weight polyethylene may be an ethylene homopolymer, or may be a copolymer of ethylene and an ⁇ -olefin other than ethylene.
  • the ⁇ -olefins other than ethylene are as described in the above LLDPE.
  • Ethylene can be polymerized in the presence of a radical initiator, for example, to form a polyethylene resin.
  • the radical initiator includes, but is not limited to, an oxygen-based initiator such as an organic peroxide, a peroxy ester, a dialkyl peroxide, or a combination thereof.
  • Specific examples of the radical initiator are not particularly limited, but are t-butylperoxypivalate, di-t-butylperoxide (DTBP), t-butylperoxyacetate (TBPO), and t-butylperoxy-2-ethylhexano. Includes ate, t-butylperoxyneodecanoate (PND), t-butylperoxyoctoate, and any combination of two or more of these.
  • Ethylene can also be made into a polyethylene resin by polymerizing in the presence of a catalyst such as a redox catalyst.
  • a catalyst such as a redox catalyst.
  • the redox catalyst include Ziegler-Natta catalyst, metallocene catalyst, Philips catalyst, standard catalyst and the like.
  • the Ziegler-Natta catalyst for example, a triethylaluminum-titanium tetrachloride solid composite is used.
  • the Ziegler-Natta catalyst is, for example, a titanium trichloride composition obtained by reducing titanium tetrachloride with an organoaluminum compound and further treating it with various electron donors and electron acceptors, an organoaluminum compound, and an aromatic. It may be combined with a carboxylic acid ester, or titanium halide may be brought into contact with titanium tetrachloride and various electron donors to form a supported catalyst.
  • the metallocene catalyst examples include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between ⁇ -electron unsaturated compounds. More specifically, one or more cyclopentadienyl rings or their analogs are present as ligands in tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum. Examples of the compound.
  • the Ziegler-Natta catalyst and the metallocene catalyst may be used in combination with specific co-catalysts (co-catalysts). Specific examples of the co-catalyst include methylaluminoxane (MAO) and boron-based compounds.
  • the Phillips catalyst is, for example, a catalyst system containing a chromium compound such as chromium oxide.
  • a chromium compound such as chromium oxide.
  • solid oxides such as silica, alumina, silica-alumina, and silica-titania are combined with chromium trioxide, chromic acid ester, and the like.
  • the standard catalyst is a known catalyst using molybdenum oxide, and examples thereof include gamma-alumina and molybdenum oxide.
  • ethylene polymerization method As an ethylene polymerization method, a high pressure method can be mentioned when a radical initiator is used.
  • ethylene may be polymerized in an environment of 1000 to 4000 atm and 100 to 350 ° C. using, for example, a multi-stage gas compressor. Then, the residual monomer is separated and cooled to obtain it.
  • Ethylene can be produced by the high pressure method to produce low density polyethylene (LDPE).
  • ethylene should be polymerized by the low pressure method or medium pressure method.
  • catalysts such as Ziegler-Natta catalysts, metallocene catalysts, Philips catalysts, and standard catalysts
  • ethylene should be polymerized by the low pressure method or medium pressure method.
  • these catalysts it is preferable to use any of a liquid phase polymerization method, a gas phase polymerization method, and a suspension polymerization method.
  • HDPE can be produced by polymerizing ethylene by a low pressure method or a medium pressure method using these catalysts.
  • LLDPE can also be produced by copolymerizing ethylene with a small amount of ⁇ -olefin other than ethylene using these catalysts.
  • an ultra-high molecular weight polyethylene can be obtained by carrying out polymerization for a long period of time by a low-pressure suspension polymerization method.
  • the ethanol-containing culture solution obtained in the above ethanol conversion step is solid-liquid separated using a solid-liquid separation filter device under the conditions of a culture solution introduction pressure of 200 kPa or more and a temperature of 37 ° C. to obtain an ethanol-containing solution. It was.
  • the ethanol-containing liquid was introduced into a distillation apparatus equipped with a heater using steam at 170 ° C. After raising the temperature of the bottom of the distillation column to 101 ° C. within 8 to 15 minutes, the ethanol-containing liquid was introduced from the center of the distillation column, and during continuous operation, the bottom of the column was 101 ° C. and the center of the column was 99 ° C. The crown was continuously operated at 91 ° C. under the condition of 15 seconds / L to obtain purified ethanol.
  • the pressure inside the distillation column was 60 to 95 kPa (absolute pressure).
  • the purified ethanol (raw material ethanol) had an ethanol purity of 90% by volume or more.
  • the obtained ethanol is purified by reverse phase chromatography to remove mainly aliphatic saturated hydrocarbons having 6 to 14 carbon atoms.
  • a product containing ethylene is produced from the raw material ethanol purified in the first purification step. Specifically, the reaction tube is filled with an activated alumina catalyst, and the temperature is adjusted to 525 ° C. and the pressure is adjusted to 0.5 MPaG. The ethanol obtained in the first purification step is supplied to the reaction tube and subjected to a vapor phase dehydration reaction to produce an ethylene-containing product containing ethylene.
  • a first condenser cooled to 5 ° C., a second condenser cooled to ⁇ 70 ° C., and a third condenser cooled to ⁇ 170 ° C. were arranged in this order, and the ethylene-containing product produced above was added thereto. Purified ethylene is produced by sequentially bubbling the products.
  • the first condenser removes mainly water
  • the second condenser mainly removes unreacted ethanol, 2-propanol and diethyl ether
  • the third condenser mainly removes propylene and carbon monoxide. And remove oxygen.
  • the co-catalysts modified methylaluminoxane (MMAO), Ziegler-Natta catalyst, and toluene are added. After stirring at room temperature under normal pressure, the temperature is raised to 50 ° C., ethylene is supplied and polymerization is carried out to produce a polyethylene resin (HDPE).
  • HDPE polyethylene resin
  • the polyethylene produced in this example can preferably proceed with the polymerization activity in the ethylene polymerization reaction, and can improve the quality of the obtained polymer.
  • polyethylene polymerized using commercially available high-purity ethylene can have the same molecular weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for producing ethylene according to the present invention includes: an ethylene production step for obtaining an ethylene-containing product that contains ethylene from raw ethanol containing waste-derived ethanol; and at least one of a first purification step for purifying the raw ethanol before the ethylene production step and a second purification step for purifying the ethylene-containing product after the ethylene production step.

Description

エチレンの製造方法、及び重合体の製造方法Ethylene production method and polymer production method
 本発明は、廃棄物由来のエタノールを含む原料エタノールからエチレンを製造するエチレンの製造方法、及びその製造方法で得られたエチレンを原料として重合体を製造する重合体の製造方法に関する。 The present invention relates to a method for producing ethylene from raw material ethanol containing ethanol derived from waste, and a method for producing a polymer using ethylene obtained by the production method as a raw material.
 従来、エチレンは、ナフサ、原油、天然ガス等を原料として製造される。エチレンは、重合反応および重合体の品質上の要求から高い純度が要求されている。例えば、高圧法によるエチレン重合では、99.9%以上の純度のエチレンが用いられる。そのため、従来、エチレンなどの原料オレフィンを精製した後、原料オレフィンを重合する技術が知られている。 Conventionally, ethylene is produced from naphtha, crude oil, natural gas, etc. as raw materials. Ethylene is required to have high purity due to the polymerization reaction and the quality requirements of the polymer. For example, in ethylene polymerization by the high pressure method, ethylene having a purity of 99.9% or more is used. Therefore, conventionally, a technique of purifying a raw material olefin such as ethylene and then polymerizing the raw material olefin is known.
 例えば、特許文献1では、二酸化炭素を不純物として含有する、原料オレフィンを活性アルミナとゼオライトの混合物からなるハイブリッド系吸着剤と接触させ、原料オレフィンを精製した後に、精製オレフィンを遷移金属錯体触媒に接触させて重合することを特徴とする、オレフィンの重合方法に係る発明が記載されている。
 特許文献1によれば、従来使用されているチーグラー・ナッタ触媒が有する欠点が少ないメタロセン触媒が開発されていること、メタロセン触媒は原料オレフィン中の不純物に対して極めて敏感であること、ナフサ、原油、天然ガス等を用いて得られる工業用エチレン中には数ppm(容量)~数百ppm(容量)程度の二酸化炭素が含まれること、二酸化炭素は、メタロセン触媒の重合において触媒毒として悪影響をもたらすことが記載されている。そして、特許文献1に記載の発明は、前記ハイブリッド系吸着剤を用いて経済的で、簡易かつ効率的に二酸化炭素を除去することで、メタロセン触媒等の遷移金属錯体触媒によるオレフィン重合において、不純物による触媒活性の低下を十分に抑止でき、高い生産性で重合体を工業的に安定して生産することが可能となることが記載されている。
For example, in Patent Document 1, a raw material olefin containing carbon dioxide as an impurity is brought into contact with a hybrid adsorbent composed of a mixture of active alumina and zeolite to purify the raw material olefin, and then the purified olefin is brought into contact with a transition metal complex catalyst. Described is an invention relating to a method for polymerizing an olefin, which comprises polymerizing the mixture.
According to Patent Document 1, a metallocene catalyst having few drawbacks of the conventionally used Ziegler-Natta catalyst has been developed, the metallocene catalyst is extremely sensitive to impurities in the raw material olefin, and naphtha and crude oil. , Industrial ethylene obtained by using natural gas, etc. contains carbon dioxide of about several ppm (volume) to several hundred ppm (volume), and carbon dioxide has an adverse effect as a catalytic poison in the polymerization of metallocene catalysts. It is stated to bring. The invention described in Patent Document 1 is an economical, simple and efficient removal of carbon dioxide using the hybrid adsorbent, thereby performing impurities in olefin polymerization using a transition metal complex catalyst such as a metallocene catalyst. It is described that the decrease in catalytic activity due to the above can be sufficiently suppressed, and the polymer can be industrially stably produced with high productivity.
 近年、カーボンニュートラルや炭素循環の重要性が議論されているところ、サトウキビ等から製造されるバイオエタノール、廃棄物由来のエタノール等が研究されている。このうち、バイオエタノールは、食料競合や生物多様性の観点から問題があり、廃棄物由来のエタノールが注目されつつある。 In recent years, the importance of carbon neutrality and carbon cycle has been discussed, and bioethanol produced from sugar cane, etc., ethanol derived from waste, etc. are being studied. Of these, bioethanol has problems from the viewpoint of food competition and biodiversity, and waste-derived ethanol is drawing attention.
特開2017-137464号公報JP-A-2017-137464
 しかしながら、廃棄物由来のエタノールを原料として、従来技術を適用して、エチレン、さらにそのエチレンを用いて重合体を製造すると、従来の工業用エチレンとは由来が異なるため、重合反応が適切に進行せず、また、重合体の品質が十分でない場合があることが判明した。 However, when ethylene is produced using ethanol derived from waste as a raw material and ethylene, and then a polymer is produced using the ethylene, the polymerization reaction proceeds appropriately because the origin is different from that of conventional industrial ethylene. It was also found that the quality of the polymer may not be sufficient.
 そこで、本発明は、廃棄物由来のエタノールを原料としてエチレンを製造した場合でも、エチレンの重合反応が適切に進行し、かつ得られる重合体の品質が良好となるエチレンの製造方法を提供することを課題とする。 Therefore, the present invention provides a method for producing ethylene in which the polymerization reaction of ethylene proceeds appropriately and the quality of the obtained polymer is good even when ethylene is produced using ethanol derived from waste as a raw material. Is an issue.
 本発明は、以下の[1]~[8]を要旨とする。
[1]廃棄物由来のエタノールを含む原料エタノールから、エチレンを含むエチレン含有生成物を得るエチレン生成工程と、
前記エチレン生成工程の前に、前記原料エタノールを精製する第1の精製工程、及び前記エチレン生成工程の後に前記エチレン含有生成物を精製する第2の精製工程の少なくともいずれかとを含む、
 エチレンの製造方法。
[2]前記第1の精製工程が、前記原料エタノールから炭素数3~14の脂肪族不飽和炭化水素、炭素数3~14の脂肪族飽和炭化水素、炭素数3~10のアルコール、及び炭素数3~10のエーテルからなる群から選択される少なくとも1つを除去することを含む、上記[1]に記載のエチレンの製造方法。
[3]前記第2の精製工程が、前記エチレン含有生成物から炭素数3~14の脂肪族不飽和炭化水素、炭素数3~14の脂肪族飽和炭化水素、炭素数3~10のアルコール、炭素数3~10のエーテル、一酸化炭素、及び酸素からなる群から選択される少なくとも1つを除去することを含む、上記[1]又は[2]に記載のエチレンの製造方法。
[4]前記炭素数3~14の脂肪族不飽和炭化水素が、プロピレンを含む、上記[2]または[3]に記載のエチレンの製造方法。
[5]前記炭素数3~14の脂肪族飽和炭化水素が、炭素数6~14の脂肪族飽和炭化水素を含む、上記[2]~[4]のいずれか1項に記載のエチレンの製造方法。
[6]前記炭素数3~10のアルコールが、2-プロパノールを含む、上記[2]~[5]のいずれか1項に記載のエチレンの製造方法。
[7]前記炭素数3~10のエーテルが、ジブチルエーテルを含む、上記[2]~[6]のいずれか1項に記載のエチレンの製造方法。
[8]上記[1]~[7]のいずれか1項に記載の方法で製造されるエチレンを含むモノマーを重合して重合体を得る重合工程を含む、重合体の製造方法。
The gist of the present invention is the following [1] to [8].
[1] An ethylene production step of obtaining an ethylene-containing product containing ethylene from raw material ethanol containing ethanol derived from waste, and
It comprises at least one of a first purification step of purifying the raw material ethanol prior to the ethylene production step and a second purification step of purifying the ethylene-containing product after the ethylene production step.
Ethylene production method.
[2] The first purification step is carried out from the raw material ethanol by an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, an alcohol having 3 to 10 carbon atoms, and carbon. The method for producing ethylene according to the above [1], which comprises removing at least one selected from the group consisting of the ethers of the number 3 to 10.
[3] The second purification step is carried out from the ethylene-containing product to an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, and an alcohol having 3 to 10 carbon atoms. The method for producing ethylene according to the above [1] or [2], which comprises removing at least one selected from the group consisting of ether having 3 to 10 carbon atoms, carbon monoxide, and oxygen.
[4] The method for producing ethylene according to the above [2] or [3], wherein the aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms contains propylene.
[5] The production of ethylene according to any one of the above [2] to [4], wherein the aliphatic saturated hydrocarbon having 3 to 14 carbon atoms contains an aliphatic saturated hydrocarbon having 6 to 14 carbon atoms. Method.
[6] The method for producing ethylene according to any one of the above [2] to [5], wherein the alcohol having 3 to 10 carbon atoms contains 2-propanol.
[7] The method for producing ethylene according to any one of the above [2] to [6], wherein the ether having 3 to 10 carbon atoms contains dibutyl ether.
[8] A method for producing a polymer, which comprises a polymerization step of polymerizing a monomer containing ethylene produced by the method according to any one of the above [1] to [7] to obtain a polymer.
 本発明によれば、廃棄物由来のエタノールを原料としてエチレンを製造した場合でも、エチレンの重合反応が好適に進行し、かつ得られる重合体の品質が良好となる。 According to the present invention, even when ethylene is produced from ethanol derived from waste as a raw material, the polymerization reaction of ethylene proceeds favorably and the quality of the obtained polymer is good.
 以下、本発明について、実施形態を参照して説明する。
 本発明は、廃棄物由来のエタノールを含む原料エタノールから、エチレンを含むエチレン含有生成物を得るエチレン生成工程と、エチレン生成工程の前に、原料エタノールを精製する第1の精製工程、及びエチレン生成工程の後にエチレン含有生成物を精製する第2の精製工程の少なくともいずれかとを含むものである。
 本発明においては、エチレン生成工程の前、後、又はこれら両方に精製工程を行うことで、廃棄物由来のエタノールを原料とした場合でも、エチレンの重合反応が適切に進行し、かつ、重合体の分子量が十分に高くなるなど得られる重合体の品質が良好となる。
Hereinafter, the present invention will be described with reference to embodiments.
The present invention comprises an ethylene production step of obtaining an ethylene-containing product containing ethylene from a raw material ethanol containing ethanol derived from waste, a first purification step of purifying the raw material ethanol, and ethylene production before the ethylene production step. It comprises at least one of the second purification steps of purifying the ethylene-containing product after the step.
In the present invention, by performing the purification step before, after, or both of the ethylene production steps, the ethylene polymerization reaction proceeds appropriately even when ethanol derived from waste is used as a raw material, and the polymer The quality of the obtained polymer is improved, for example, the molecular weight of the polymer is sufficiently high.
 以下、本発明について詳細に説明する。
[原料エタノール]
 本発明で原料として使用する原料エタノールは、廃棄物由来のエタノールを含むものである。廃棄物由来のエタノールは、廃棄物を燃焼、熱分解などさせることで得られる廃棄物由来ガスから生成される。
 廃棄物としては、産業固形廃棄物などの産業廃棄物でもよいし、都市固形廃棄物(MSW)などの一般廃棄物でもよく、プラスチック廃棄物、生ゴミ、廃棄タイヤ、バイオマス廃棄物、食料廃棄物、建築資材、木材、木質チップ、繊維、紙類等の可燃性物質が挙げられる。これらのなかでは、都市固形廃棄物(MSW)が好ましい。
 廃棄物由来ガスは、好ましくはガス資化性微生物又は金属触媒のいずれかにより、エタノールに変換される。
Hereinafter, the present invention will be described in detail.
[Ingredient ethanol]
The raw material ethanol used as a raw material in the present invention contains ethanol derived from waste. Waste-derived ethanol is produced from waste-derived gas obtained by burning or thermally decomposing waste.
The waste may be industrial waste such as industrial solid waste, general waste such as urban solid waste (MSW), plastic waste, garbage, waste tires, biomass waste, food waste. , Building materials, wood, wood chips, fibers, papers and other flammable substances. Of these, municipal solid waste (MSW) is preferred.
The waste-derived gas is preferably converted to ethanol by either gas-utilizing microorganisms or metal catalysts.
 廃棄物由来ガスは、好ましくは一酸化炭素及び水素を含む合成ガスである。以下、廃棄物由来ガスが合成ガスである場合の例を詳細に説明する。合成ガスは、廃棄物をガス化させることによって原料ガスを生成する原料ガス生成工程を行い、さらに、生成された原料ガスから様々な汚染物質、ばいじん粒子、不純物、好ましくない量の化合物等の特定の物質を、除去ないし低減させる合成ガス精製工程を行うことで得ることができる。 The waste-derived gas is preferably a synthetic gas containing carbon monoxide and hydrogen. Hereinafter, an example in which the waste-derived gas is a synthetic gas will be described in detail. Syngas is subjected to a raw material gas generation step of producing a raw material gas by gasifying waste, and further, various pollutants, dust particles, impurities, unfavorable amounts of compounds, etc. are identified from the generated raw material gas. It can be obtained by performing a synthetic gas purification step of removing or reducing the substance of.
(原料ガス生成工程)
 原料ガス生成工程において廃棄物のガス化は、例えばガス化炉を用いるとよい。ガス化炉は、炭素源を燃焼(不完全燃焼)させる炉であり、例えば、シャフト炉、キルン炉、流動床炉、ガス化改質炉、プラズマガス化炉等が挙げられる。廃棄物を原料ガスにガス化する際の温度は、特に制限されるものではないが、通常100~2500℃であり、好ましくは200~2100℃である。
(Raw material gas generation process)
For gasification of waste in the raw material gas generation step, for example, a gasification furnace may be used. The gasification furnace is a furnace that burns (incompletely burns) a carbon source, and examples thereof include a shaft furnace, a kiln furnace, a fluidized bed furnace, a gasification reforming furnace, and a plasma gasification furnace. The temperature at which the waste is gasified into the raw material gas is not particularly limited, but is usually 100 to 2500 ° C, preferably 200 to 2100 ° C.
 廃棄物をガス化して得られる原料ガスは、一酸化炭素および水素を含むとよいが、二酸化炭素、酸素、窒素をさらに含んでもよい。また、原料ガスは、スス、タール、窒素化合物、硫黄化合物、リン系化合物、有機化合物等の成分をさらに含んでもよい。原料ガスは、典型的には、一酸化炭素を0.1体積%以上80体積%以下、水素を0.1体積%以上80体積%以下含む。また、二酸化炭素を0.1体積%以上70体積%以下含むとよい。 The raw material gas obtained by gasifying the waste may contain carbon monoxide and hydrogen, but may further contain carbon dioxide, oxygen and nitrogen. Further, the raw material gas may further contain components such as soot, tar, nitrogen compound, sulfur compound, phosphorus compound and organic compound. The raw material gas typically contains carbon monoxide in an amount of 0.1% by volume or more and 80% by volume or less, and hydrogen in an amount of 0.1% by volume or more and 80% by volume or less. Further, it is preferable that carbon dioxide is contained in an amount of 0.1% by volume or more and 70% by volume or less.
 原料ガスは、廃棄物を燃焼(不完全燃焼)させる熱処理(通称:ガス化)を行うことにより、即ち、廃棄物を部分酸化させることにより、一酸化炭素を、特に制限はないが、0.1体積%以上、好ましくは10体積%以上、より好ましくは20体積%以上含むガスとして生成されるとよい。 The raw material gas is carbon monoxide by performing heat treatment (commonly known as gasification) to burn (incompletely burn) the waste, that is, by partially oxidizing the waste, but there is no particular limitation, but 0. It is preferable that the gas is produced as a gas containing 1% by volume or more, preferably 10% by volume or more, and more preferably 20% by volume or more.
(合成ガス精製工程)
 原料ガスは、上記の通り様々な汚染物質、ばいじん粒子、不純物、好ましくない量の化合物等の特定の物質を除去ないし低減することで合成ガスとするとよい。合成ガスを微生物発酵によりにエタノールを得る場合には、原料ガスから、微生物の安定培養に好ましくない物質や、好ましくない量の化合物等を低減ないし除去し、原料ガスに含まれる各成分の含有量が微生物の安定培養に好適な範囲となるようにしておくことが好ましい。また、合成ガスより金属触媒を用いてエタノールを得る場合にも、金属触媒を失活させる物質を低減ないし除去するとよい。
(Syngas purification process)
As described above, the raw material gas may be a synthetic gas by removing or reducing specific substances such as various pollutants, dust particles, impurities, and an unfavorable amount of compounds. When ethanol is obtained from synthetic gas by microbial fermentation, substances unfavorable for stable culture of microorganisms and unfavorable amounts of compounds are reduced or removed from the raw material gas, and the content of each component contained in the raw material gas is contained. Is preferably in a range suitable for stable culture of microorganisms. Also, when ethanol is obtained from synthetic gas using a metal catalyst, it is preferable to reduce or remove substances that inactivate the metal catalyst.
 合成ガス精製工程では、例えば、ガスチラーなどよりなる水分分離装置、低温分離方式(深冷方式)の分離装置、サイクロン、バグフィルターの各種フィルターで代表されるススなどの微粒子を分離する微粒子分離装置、スクラバーなどの水溶性不純物分離装置、脱硫装置(硫化物分離装置)、膜分離方式の分離装置、脱酸素装置、圧力スイング吸着方式の分離装置(PSA)、温度スイング吸着方式の分離装置(TSA)、圧力温度スイング吸着方式の分離装置(PTSA)、活性炭を用いた分離装置、脱酸素触媒、具体的には、銅触媒またはパラジウム触媒を用いた分離装置等のうちの1種または2種以上などを用いて処理を行うことで原料ガスを精製して、合成ガスを得るとよい。 In the synthetic gas refining process, for example, a water content separator consisting of a gas chiller, a low temperature separation method (deep cooling method) separation device, a fine particle separation device for separating fine particles such as soot represented by various filters of cyclone and bag filter, Water-soluble impurity separation device such as scrubber, desulfurization device (sulfide separation device), membrane separation type separation device, deoxidizer, pressure swing adsorption type separation device (PSA), temperature swing adsorption type separation device (TSA) , Pressure-temperature swing adsorption type separation device (PTSA), separation device using activated carbon, deoxidizing catalyst, specifically, one or more of separation devices using copper catalyst or palladium catalyst, etc. It is advisable to purify the raw material gas by performing the treatment using the above to obtain a synthetic gas.
 また、微生物発酵によりにエタノールを得る場合には、原料ガス中の二酸化炭素ガス濃度を低減させることが好ましい。例えば、ゼオライトを含む再生吸着材を充填した圧力スイング吸着方式の分離装置を用いて、合成ガス中の二酸化炭素ガスを再生吸着材に吸着させ、合成ガス中の二酸化炭素ガス濃度を低減することが好ましい。 Further, when ethanol is obtained by microbial fermentation, it is preferable to reduce the concentration of carbon dioxide gas in the raw material gas. For example, a pressure swing adsorption type separator filled with a regenerated adsorbent containing zeolite can be used to adsorb the carbon dioxide gas in the synthetic gas to the regenerated adsorbent to reduce the carbon dioxide gas concentration in the synthetic gas. preferable.
 得られる合成ガスは、上記のとおり少なくとも一酸化炭素及び水素を必須成分として含み、二酸化炭素、窒素をさらに含むとよい。合成ガス中の一酸化炭素濃度は、合成ガス中の一酸化炭素、二酸化炭素、水素および窒素の合計濃度に対して、通常20体積%以上80体積%以下であり、好ましくは25体積%以上50体積%以下であり、より好ましくは30体積%以上45体積%以下である。
 合成ガス中の水素濃度は、合成ガス中の一酸化炭素、二酸化炭素、水素および窒素の合計濃度に対して、通常10体積%以上80体積%以下であり、好ましくは30体積%以上55体積%以下であり、より好ましくは30体積%以上50体積%以下である。
As described above, the obtained synthetic gas may contain at least carbon monoxide and hydrogen as essential components, and may further contain carbon dioxide and nitrogen. The carbon monoxide concentration in the synthetic gas is usually 20% by volume or more and 80% by volume or less, preferably 25% by volume or more and 50% by volume, based on the total concentration of carbon monoxide, carbon dioxide, hydrogen and nitrogen in the synthetic gas. By volume or less, more preferably 30% by volume or more and 45% by volume or less.
The hydrogen concentration in the synthetic gas is usually 10% by volume or more and 80% by volume or less, preferably 30% by volume or more and 55% by volume, based on the total concentration of carbon monoxide, carbon dioxide, hydrogen and nitrogen in the synthetic gas. It is more preferably 30% by volume or more and 50% by volume or less.
 合成ガス中の二酸化炭素濃度は、特に限定されないが、合成ガス中の一酸化炭素、二酸化炭素、水素および窒素の合計濃度に対して、通常0.1体積%以上40体積%以下、好ましくは0.3体積%以上30体積%以下である。二酸化炭素濃度は、微生物発酵により、エタノール生成を行う場合に二酸化炭素濃度を低くすることが特に好ましく、そのような観点から、より好ましくは0.5体積%以上25体積%以下である。
 合成ガス中の窒素濃度は、合成ガス中の一酸化炭素、二酸化炭素、水素および窒素の合計濃度に対して、通常40体積%以下であり、好ましくは1体積%以上20体積%以下であり、より好ましくは5体積%以上15体積%以下である。
The carbon dioxide concentration in the synthetic gas is not particularly limited, but is usually 0.1% by volume or more and 40% by volume or less, preferably 0, with respect to the total concentration of carbon dioxide, carbon dioxide, hydrogen and nitrogen in the synthetic gas. .3% by volume or more and 30% by volume or less. The carbon dioxide concentration is particularly preferably lowered when ethanol is produced by microbial fermentation, and from such a viewpoint, it is more preferably 0.5% by volume or more and 25% by volume or less.
The concentration of nitrogen in the synthetic gas is usually 40% by volume or less, preferably 1% by volume or more and 20% by volume or less, based on the total concentration of carbon monoxide, carbon dioxide, hydrogen and nitrogen in the synthetic gas. More preferably, it is 5% by volume or more and 15% by volume or less.
 合成ガスにおける一酸化炭素、二酸化炭素、水素および窒素の濃度は、廃棄物の種類、原料ガス生成工程におけるガス化温度、ガス化時の供給ガスの酸素濃度等の燃焼条件を適宜変更することで、所定の範囲とすることができる。
 例えば、一酸化炭素や水素濃度を変更したい場合は、廃プラ等の炭化水素(炭素および水素)の比率が高い廃棄物に変更し、窒素濃度を低下させたい場合は原料ガス生成工程において酸素濃度の高いガスを供給する方法等がある。
 さらに、原料ガス及び合成ガスの少なくともいずれかは、一酸化炭素、二酸化炭素、水素および窒素の各成分の濃度調整を適宜行ってもよい。濃度調整は、これら成分の少なくとも1種を原料ガス又は合成ガスに添加するとよい。添加量は、原料ガス又は合成ガスの全量に対して、例えば50体積%未満、好ましくは30体積%未満、より好ましくは10体積%未満である。
The concentrations of carbon monoxide, carbon dioxide, hydrogen and nitrogen in the synthetic gas can be adjusted by appropriately changing the combustion conditions such as the type of waste, the gasification temperature in the raw material gas generation process, and the oxygen concentration of the supply gas during gasification. , Can be in a predetermined range.
For example, if you want to change the concentration of carbon monoxide or hydrogen, change to waste with a high ratio of hydrocarbons (carbon and hydrogen) such as waste plastic, and if you want to reduce the nitrogen concentration, change the oxygen concentration in the raw material gas generation process. There is a method of supplying high gas.
Further, at least one of the raw material gas and the synthetic gas may be appropriately adjusted in concentration of each component of carbon monoxide, carbon dioxide, hydrogen and nitrogen. For concentration adjustment, at least one of these components may be added to the raw material gas or the synthetic gas. The amount added is, for example, less than 50% by volume, preferably less than 30% by volume, and more preferably less than 10% by volume, based on the total amount of the raw material gas or the synthetic gas.
(エタノール変換工程)
 合成ガスは、エタノール変換工程においてエタノールに変換される。合成ガスは、エタノール変換工程において、上記のとおりガス資化性微生物又は金属触媒のいずれかにより、エタノールに変換させるとよいが、ガス資化性微生物により変換させることが好ましい。ガス資化性微生物を用いて、エタノールに変換する場合、微生物発酵槽に合成ガスを供給し、微生物発酵槽にて合成ガスを微生物発酵させて、エタノールを製造する。微生物発酵槽は、連続発酵装置とすることが好ましい。
(Ethanol conversion process)
Syngas is converted to ethanol in the ethanol conversion step. In the ethanol conversion step, the synthetic gas may be converted to ethanol by either a gas-utilizing microorganism or a metal catalyst as described above, but it is preferably converted by a gas-utilizing microorganism. When converting to ethanol using a gas-utilizing microorganism, a synthetic gas is supplied to a microbial fermenter, and the synthetic gas is microbially fermented in the microbial fermenter to produce ethanol. The microbial fermentation tank is preferably a continuous fermentation apparatus.
 一般に、微生物発酵槽は任意の形状のものを用いることができ、撹拌型、エアリフト型、気泡塔型、ループ型、オープンボンド型、フォトバイオ型が挙げられるが、本発明においては、微生物発酵槽が、主槽部と還流部とを有する公知のループリアクターを好適に用いることができる。
 微生物発酵槽に供給する合成ガスは、上記した合成ガス精製工程を経て得られた合成ガスをそのまま合成ガスとして用いてもよいし、別の所定のガスを追加してから供給してもよい。別の所定のガスとして、例えば二酸化硫黄等の硫黄化合物、リン化合物、および窒素化合物からなる群から選択される少なくとも1種が挙げられる。
Generally, any shape of the microbial fermenter can be used, and examples thereof include a stirring type, an airlift type, a bubble tower type, a loop type, an open bond type, and a photobio type. In the present invention, the microbial fermenter is used. However, a known loop reactor having a main tank portion and a reflux portion can be preferably used.
As the synthetic gas to be supplied to the microbial fermenter, the synthetic gas obtained through the above-mentioned synthetic gas purification step may be used as it is as the synthetic gas, or another predetermined gas may be added and then supplied. As another predetermined gas, for example, at least one selected from the group consisting of sulfur compounds such as sulfur dioxide, phosphorus compounds, and nitrogen compounds can be mentioned.
 微生物発酵槽には、合成ガスと微生物培養液とが連続的に供給されてもよいが、合成ガスと微生物培養液とを同時に供給する必要はなく、予め微生物培養液を供給した微生物発酵槽に合成ガスを供給してもよい。ある種の嫌気性微生物は、発酵作用によって、合成ガス等の基質ガスから、エタノール等を生成することが知られており、この種のガス資化性微生物は、液状の培地で培養される。例えば、液状の培地とガス資化性細菌とを供給して収容しておき、この状態で液状の培地を撹拌しつつ、微生物発酵槽内に合成ガスを供給してもよい。これにより、液状の培地中でガス資化性細菌を培養して、その発酵作用により合成ガスからエタノールを生成することができる。 The synthetic gas and the microbial culture solution may be continuously supplied to the microbial fermenter, but it is not necessary to supply the synthetic gas and the microbial culture solution at the same time, and the microbial fermenter to which the microbial culture solution has been supplied in advance is used. Syngas may be supplied. It is known that certain anaerobic microorganisms produce ethanol and the like from substrate gases such as syngas by fermentation, and these gas-utilizing microorganisms are cultivated in a liquid medium. For example, a liquid medium and gas-utilizing bacteria may be supplied and contained, and the synthetic gas may be supplied into the microbial fermentation tank while stirring the liquid medium in this state. As a result, gas-utilizing bacteria can be cultivated in a liquid medium, and ethanol can be produced from the synthetic gas by the fermentation action thereof.
 微生物発酵槽において、培地の温度(培養温度)は、任意の温度を採用してよいが、好ましくは30~45℃程度、より好ましくは33~42℃程度、さらに好ましくは36.5~37.5℃程度とすることができる。また、培養時間は、好ましくは連続培養で1時間以上、より好ましくは7日以上、特に好ましくは30日以上、最も好ましくは60日以上であり、上限は特に設定されないが設備の定修等の観点から720日以下が好ましく、より好ましくは365日以下である。なお、培養時間とは、種菌を培養槽に添加してから、培養槽内の培養液を全量排出するまでの時間を意味するものとする。 In the microbial fermentation tank, the temperature of the medium (culture temperature) may be any temperature, but is preferably about 30 to 45 ° C, more preferably about 33 to 42 ° C, and even more preferably 36.5 to 37. The temperature can be about 5 ° C. The culturing time is preferably 1 hour or longer in continuous culturing, more preferably 7 days or longer, particularly preferably 30 days or longer, most preferably 60 days or longer, and although the upper limit is not particularly set, equipment maintenance, etc. From the viewpoint, it is preferably 720 days or less, more preferably 365 days or less. In addition, the culture time means the time from the addition of the inoculum to the culture tank until the total amount of the culture solution in the culture tank is discharged.
 微生物培養液に含まれる微生物(種)は、一酸化炭素を主たる原料として合成ガスを微生物発酵させることによってエタノールを製造できるものであれば、特に限定されない。例えば、微生物(種)は、ガス資化性細菌の発酵作用によって、合成ガスからエタノールを生成するものであること、特にアセチルCOAの代謝経路を有する微生物であることが好ましい。ガス資化性細菌のなかでも、クロストリジウム(Clostridium)属がより好ましく、クロストリジウム・オートエタノゲナム(Clostridium autoethanogenum)、クロストリジウム・ユングダリイ(Clostridium ljungdahlii)、クロストリジウム・アセチクム(Clostridium aceticum)、クロストリジウム・カルボキシジボランス(Clostridium carboxidivorans)、ムーレラ・サーモアセチカ(Moorella thermoacetica)、アセトバクテリウム・ウッディイ(Acetobacterium woodii)等が挙げられる。これらのなかでもクロストリジウム・オートエタノゲナムが特に好ましい。 The microorganisms (species) contained in the microbial culture solution are not particularly limited as long as ethanol can be produced by microbial fermentation of synthetic gas using carbon monoxide as a main raw material. For example, the microorganism (species) is preferably one that produces ethanol from syngas by the fermentation action of gas-utilizing bacteria, and particularly preferably a microorganism having a metabolic pathway of acetyl-COA. Among the gas-utilizing bacteria, the genus Clostridium is more preferable, and Clostridium autoethanogenum, Clostridium ljungdahlii, Clostridium aceticum, and Clostridium carboxydilance. Clostridium carboxidivorans), Moorella thermoacetica, Acetobacterium woodii and the like. Of these, Clostridium autoethanogenum is particularly preferred.
 上記した微生物(種)を培養する際に用いる培地は、菌に応じた適切な組成であれば特に限定されないが、主成分の水と、この水に溶解または分散された栄養分(例えば、ビタミン、リン酸等)とを含有する液体である。このような培地の組成は、ガス資化性細菌が良好に成育し得るように調製される。例えば、微生物にクロストリジウム属を用いる場合の培地は、米国特許出願公開第2017/260552号明細書の「0097」~「0099」等を参考にすることができる。 The medium used for culturing the above-mentioned microorganisms (species) is not particularly limited as long as it has an appropriate composition according to the bacteria, but is not particularly limited, but is the main component water and nutrients dissolved or dispersed in the water (for example, vitamins, etc.). It is a liquid containing (phosphoric acid, etc.). The composition of such a medium is prepared so that gas-utilizing bacteria can grow well. For example, when the genus Clostridium is used as a microorganism, "0907" to "00099" of US Patent Application Publication No. 2017/260552 can be referred to.
 微生物発酵により、エタノールを含有する培養液(エタノール含有培養液)が得られる。エタノールを含有する培養液は、次いで分離工程に付される。
 分離工程では、例えば、エタノール含有培養液を、0.01~1000kPa(絶対圧)の条件下、23~500℃に加熱して、微生物を含む液体ないし固体成分と、エタノールを含む気体成分とに分離するとよい。このような分離工程を実施することにより、後述するエタノールの分離精製時の蒸留操作において、蒸留装置内で発泡が生じなくなるため、連続的に蒸留操作を行うことができる。また、後述する分離精製時に効率的にエタノールの分離精製を行うことができる。
By microbial fermentation, a culture solution containing ethanol (ethanol-containing culture solution) is obtained. The ethanol-containing culture is then subjected to a separation step.
In the separation step, for example, the ethanol-containing culture solution is heated to 23 to 500 ° C. under the condition of 0.01 to 1000 kPa (absolute pressure) to obtain a liquid or solid component containing microorganisms and a gas component containing ethanol. It is good to separate. By carrying out such a separation step, in the distillation operation at the time of separation and purification of ethanol, which will be described later, foaming does not occur in the distillation apparatus, so that the distillation operation can be continuously performed. In addition, ethanol can be efficiently separated and purified at the time of separation and purification described later.
 上記分離工程では、微生物やその死骸、微生物由来のタンパク質等が含まれる液体ないし固体成分と、エタノールを含む気体成分とに効率的に分離する観点から、好ましくは10~200kPaの条件下、より好ましくは50~150kPaの条件下、さらに好ましくは常圧下で、好ましくは50~200℃の温度、より好ましくは80℃~180℃の温度、さらに好ましくは100~150℃の温度でエタノール含有培養液の加熱を行う。
 上記分離工程で得られたエタノールを含む気体成分は、凝縮により液化してエタノール含有液とするとよい。液化工程で用いられる装置は、特に限定されないが、熱交換器、特にコンデンサー(凝縮器)を用いることが好ましい。凝縮器の例としては、水冷式、空冷式、蒸発式等が挙げられ、それらのなかでも水冷式が好ましい。凝縮器は一段でもよいし、複数段からなるものでもよい。
In the above separation step, from the viewpoint of efficiently separating a liquid or solid component containing microorganisms, their carcasses, proteins derived from microorganisms, etc., and a gas component containing ethanol, it is more preferable under the condition of 10 to 200 kPa. Of the ethanol-containing culture solution under conditions of 50 to 150 kPa, more preferably under normal pressure, preferably at a temperature of 50 to 200 ° C, more preferably at a temperature of 80 ° C to 180 ° C, still more preferably at a temperature of 100 to 150 ° C. Perform heating.
The ethanol-containing gas component obtained in the above separation step may be liquefied by condensation to obtain an ethanol-containing liquid. The apparatus used in the liquefaction step is not particularly limited, but it is preferable to use a heat exchanger, particularly a condenser (condenser). Examples of the condenser include a water-cooled type, an air-cooled type, an evaporation type, and the like, and the water-cooled type is preferable among them. The condenser may have one stage or a plurality of stages.
 また、分離工程では、上記したように微生物を含む液体ないし固体成分と、エタノールを含む気体成分とに分離する代わりに、微生物を含む固体成分とエタノールを含む液体成分(エタノール含有液)とを、固液分離フィルター装置などの固液分離装置により分離してもよい。 Further, in the separation step, instead of separating the liquid or solid component containing microorganisms and the gas component containing ethanol as described above, the solid component containing microorganisms and the liquid component containing ethanol (ethanol-containing liquid) are separated. Separation may be performed by a solid-liquid separation device such as a solid-liquid separation filter device.
 分離工程の後、エタノール含有液をさらに精製する前段精製工程を行うとよい。前段精製工程は、後述する第1の精製工程の前段に行う精製工程を意味する。また、微生物発酵で得られたエタノール含有液が、微生物等の成分が既に除去されている場合に、上記した分離工程を経ないで前段精製工程を行ってもよい。
 前段精製工程は、エタノール含有液を、エタノールの濃度を高めた留出液と、エタノールの濃度を低下させた缶出液とに分離する工程である。精製工程に用いられる装置は、例えば、蒸留装置、浸透気化膜を含む処理装置、ゼオライト膜を含む処理装置、エタノールより沸点の低い低沸点物質を除去する処理装置、エタノールより沸点の高い高沸点物質を除去する処理装置、イオン交換膜を含む処理装置等が挙げられる。これらの装置は単独でまたは2種以上を組み合わせてもよい。単位操作としては、蒸留装置又は膜分離を好適に用いることができ、蒸留装置がより好ましい。また、膜分離としては、ゼオライト膜を好適に用いることができる。
After the separation step, a pre-purification step of further purifying the ethanol-containing liquid may be performed. The pre-stage purification step means a purification step performed before the first purification step described later. Further, when the ethanol-containing liquid obtained by the microbial fermentation has already been removed of components such as microorganisms, the pre-purification step may be performed without going through the above-mentioned separation step.
The first-stage purification step is a step of separating the ethanol-containing liquid into a distillate having a high ethanol concentration and a canned liquid having a low ethanol concentration. The equipment used in the purification process is, for example, a distillation apparatus, a treatment apparatus containing a permeation vaporization membrane, a treatment apparatus containing a zeolite membrane, a treatment apparatus for removing a low boiling point substance having a boiling point lower than that of ethanol, and a high boiling point substance having a boiling point higher than that of ethanol. Examples thereof include a processing device for removing the boiling point, a processing device containing an ion exchange membrane, and the like. These devices may be used alone or in combination of two or more. As a unit operation, a distillation apparatus or membrane separation can be preferably used, and a distillation apparatus is more preferable. Further, as the membrane separation, a zeolite membrane can be preferably used.
 蒸留装置を用いる場合には加熱蒸留を行う。加熱蒸留では、所望のエタノールを留出液として、高純度で得ることができる。エタノールの蒸留時における蒸留装置内の温度は、特に限定されないが、110℃以下であることが好ましく、70~105℃程度であることがより好ましい。蒸留装置内の温度を前記範囲に設定することにより、エタノールとその他の成分との分離、即ち、エタノールの蒸留をより確実に行うことができる。 When using a distillation device, perform heat distillation. In heat distillation, desired ethanol can be obtained as a distillate with high purity. The temperature in the distillation apparatus during the distillation of ethanol is not particularly limited, but is preferably 110 ° C. or lower, and more preferably about 70 to 105 ° C. By setting the temperature in the distillation apparatus to the above range, separation of ethanol and other components, that is, distillation of ethanol can be performed more reliably.
 加熱蒸留においては、エタノール含有液を、100℃以上のスチームを用いた加熱器を備えた蒸留装置に導入し、蒸留塔底部の温度を30分以内に90℃以上まで上昇させた後、上記エタノール含有液を蒸留塔中部から導入して行うとよい。また、蒸留装置を用いた加熱蒸留では、塔底部、塔中部、頭頂部の各部の温度差が、±15℃以内にて蒸留工程を行うことが好ましい。温度差が±15℃以内では、高純度のエタノールを得やすくなる。蒸留温度差は、好ましくは±13℃であり、より好ましくは±11℃である。これらの蒸留温度差であれば、その他の成分との分離、即ち、エタノールの蒸留による精製をより確実に行うことができる。 In heat distillation, an ethanol-containing liquid is introduced into a distillation apparatus equipped with a heater using steam at 100 ° C. or higher, the temperature at the bottom of the distillation column is raised to 90 ° C. or higher within 30 minutes, and then the ethanol is described above. It is advisable to introduce the containing liquid from the central part of the distillation column. Further, in the heating distillation using a distillation apparatus, it is preferable to carry out the distillation step within ± 15 ° C. in the temperature difference between the bottom portion, the middle portion of the column and the top portion of the column. When the temperature difference is within ± 15 ° C., it becomes easy to obtain high-purity ethanol. The distillation temperature difference is preferably ± 13 ° C, more preferably ± 11 ° C. With these distillation temperature differences, separation from other components, that is, purification by distillation of ethanol can be performed more reliably.
 エタノールの蒸留時における蒸留装置内の圧力は、常圧であってもよいが、好ましくは大気圧未満、より好ましくは60~95kPa(絶対圧)程度である。蒸留装置内の圧力を前記範囲に設定することにより、エタノールの分離効率を向上させること、ひいてはエタノールの収率を向上させることができる。 The pressure in the distillation apparatus at the time of distillation of ethanol may be normal pressure, but is preferably less than atmospheric pressure, more preferably about 60 to 95 kPa (absolute pressure). By setting the pressure in the distillation apparatus within the above range, the separation efficiency of ethanol can be improved, and thus the yield of ethanol can be improved.
 上記前段精製工程を経て得られたエタノールは、後述するエチレン生成工程において、エチレン含有生成物を得るための原料として使用される。本発明において原料として使用される「エタノール」は、化合物として純粋なエタノール(化学式:CHCHOHで表されるエタノール)を意味するものではなく、不純物を含む組成物であり、「原料エタノール」ともいう。不純物は、上記した各工程を経て製造された原料エタノールに含まれるものであり、その多くは廃棄物由来の化合物である。 Ethanol obtained through the first-stage purification step is used as a raw material for obtaining an ethylene-containing product in the ethylene production step described later. "Ethanol" used as a raw material in the present invention does not mean pure ethanol as a compound (chemical formula: ethanol represented by CH 3 CH 2 OH), but is a composition containing impurities, and is "raw material ethanol". Also called. Impurities are contained in the raw material ethanol produced through each of the above steps, and most of them are waste-derived compounds.
 また、原料エタノールは、上記の通り、金属触媒を用いて合成ガスより生成されてもよい。金属触媒としては、水素化活性金属、又は水素化活性金属と助活性金属との集合物が挙げられる。水素化活性金属としては、従来、混合ガスからエタノールを合成できる金属として知られているものであればよく、例えば、リチウム、ナトリウム等のアルカリ金属、マンガン、レニウム等、周期表の第7族に属する元素、ルテニウム等、周期表の第8族に属する元素、コバルト、ロジウム等の周期表の第9族に属する元素、ニッケル、パラジウム等の周期表の第10族に属する元素等が挙げられる。
 これらの水素化活性金属は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。水素化活性金属としては、CO転化率のさらなる向上、エタノールの選択率が向上する点から、ロジウム、マンガン及びリチウムを組み合わせたものや、ルテニウム、レニウム及びナトリウムを組み合わせたもの等、ロジウム又はルテニウムとアルカリ金属とその他の水素化活性金属とを組み合わせたものが好ましい。
Further, the raw material ethanol may be produced from synthetic gas using a metal catalyst as described above. Examples of the metal catalyst include a hydroactive metal or an aggregate of a hydroactive metal and a coactive metal. The active metal hydride may be any metal conventionally known as a metal capable of synthesizing ethanol from a mixed gas. For example, alkali metals such as lithium and sodium, manganese, renium and the like are included in Group 7 of the periodic table. Examples thereof include elements belonging to Group 8 of the periodic table such as ruthenium, elements belonging to Group 9 of the periodic table such as cobalt and rhodium, and elements belonging to Group 10 of the periodic table such as nickel and palladium.
One of these hydrogenated active metals may be used alone, or two or more thereof may be used in combination. As the hydrogenated active metal, rhodium or ruthenium, such as a combination of rhodium, manganese and lithium, a combination of ruthenium, renium and sodium, is used because the CO conversion rate is further improved and the selectivity of ethanol is improved. A combination of an alkali metal and another hydrogenated active metal is preferable.
 助活性金属としては、例えば、チタン、マグネシウム、バナジウム等が挙げられる。水素化活性金属に加えて助活性金属が担持されていることで、CO転化率やエタノール選択率などをより高めることができる。
 金属触媒としては、ロジウム系触媒が好ましい。ロジウム系触媒は、ロジウム系触媒以外の他の金属触媒を併用してもよい。他の金属触媒としては、銅単独又は銅と銅以外の遷移金属とが担体に担持された触媒が挙げられる。
 金属触媒を使用する場合には、通常はエタノールに加えてアセトアルデヒドや酢酸を含む生成物が得られるので、該生成物は、蒸留などの前段精製工程を経て原料エタノールとされるとよい。
Examples of the coactive metal include titanium, magnesium, vanadium and the like. Since the coactive metal is supported in addition to the hydrogenated active metal, the CO conversion rate and the ethanol selectivity can be further increased.
As the metal catalyst, a rhodium-based catalyst is preferable. As the rhodium-based catalyst, a metal catalyst other than the rhodium-based catalyst may be used in combination. Examples of other metal catalysts include copper alone or a catalyst in which copper and a transition metal other than copper are supported on a carrier.
When a metal catalyst is used, a product containing acetaldehyde or acetic acid in addition to ethanol is usually obtained. Therefore, the product may be used as a raw material ethanol through a pre-purification step such as distillation.
 なお、前段精製工程を省略してもよい。すなわち、エタノール生成後、精製工程として、前段精製工程と、後述する第1の精製工程の両方を行わなくてもよく、第1の精製工程のみ行ってもよい。この場合、上記したエタノール含有液が、原料エタノールとなり、第1の精製工程は、蒸留装置又は膜分離で行うことが好適であり、蒸留装置を用いた加熱蒸留が特に好ましく、加熱蒸留の詳細は上記したとおりである。もちろん、第2の精製工程を行う場合には、前段精製工程と第1の精製工程の両方を省略してもよい。ただし、前段精製工程を行うほうが好ましく、合わせて第1の精製工程を行うことがより好ましい。 The pre-stage purification step may be omitted. That is, after ethanol production, both the pre-stage purification step and the first purification step described later may not be performed as the purification step, or only the first purification step may be performed. In this case, the above-mentioned ethanol-containing liquid becomes the raw material ethanol, and it is preferable that the first purification step is carried out by a distillation apparatus or membrane separation, and heat distillation using a distillation apparatus is particularly preferable. As mentioned above. Of course, when the second purification step is performed, both the pre-stage purification step and the first purification step may be omitted. However, it is preferable to carry out the first-stage purification step, and it is more preferable to carry out the first purification step in combination.
 原料エタノールは、エタノール純度(すなわち、エタノール含有量)が、例えば85容量%以上である。エタノール純度が上記下限値以上であると、第1及び第2の精製工程の少なくともいずれかを経ることで、エチレンを原料とした重合反応が好適に進行し、また、エチレンから得られる重合体の品質が良好となる。原料エタノールのエタノール純度は、好ましくは90容量%以上、より好ましくは95容量%以上、さらに好ましくは99.5容量%以上である。また、原料エタノールは、エタノール純度が100容量%未満であればよい。
 また、原料エタノールは、廃棄物由来のエタノールを含むものであれば、市販品を使用してもよい。
The raw material ethanol has an ethanol purity (that is, ethanol content) of, for example, 85% by volume or more. When the ethanol purity is equal to or higher than the above lower limit value, the polymerization reaction using ethylene as a raw material proceeds suitably by going through at least one of the first and second purification steps, and the polymer obtained from ethylene The quality is good. The ethanol purity of the raw material ethanol is preferably 90% by volume or more, more preferably 95% by volume or more, still more preferably 99.5% by volume or more. Further, the raw material ethanol may have an ethanol purity of less than 100% by volume.
Further, as the raw material ethanol, a commercially available product may be used as long as it contains ethanol derived from waste.
[エチレン生成工程]
 原料エタノールは、エチレン生成工程によりエタノールをエチレンに変換させ、それにより、エチレン含有生成物が得られる。具体的には、原料エタノールを触媒に接触させて、エチレンに変換させればよい。原料エタノールは、脱水反応によりエチレンに変換される。
[Ethylene production process]
The raw material ethanol is converted from ethanol to ethylene by an ethylene production step, whereby an ethylene-containing product is obtained. Specifically, the raw material ethanol may be brought into contact with the catalyst to be converted into ethylene. The raw material ethanol is converted to ethylene by a dehydration reaction.
 使用する触媒としては、エタノールをエチレンに変換できる触媒であれば限定されないが、ゼオライト、P改質ゼオライトなどの改質ゼオライト、シリカ-アルミナ、アルミナ、シリケート化、チタネート化、ジルコネート化またはフッ素化したアルミナ、シリコアルミノホスフェートなどの酸触媒(以下、これらを総称して「ゼオライト又はアルミナ系触媒」ともいうことがある)が挙げられる。また、ヘテロポリ酸担持触媒なども挙げられる。 The catalyst used is not limited as long as it can convert ethanol to ethylene, but is limited to zeolite, modified zeolite such as P-modified zeolite, silica-alumina, alumina, silicate-ized, titanized, zirconated or fluorinated. Examples thereof include acid catalysts such as alumina and silicoaluminophosphate (hereinafter, these may be collectively referred to as "zeolite or alumina-based catalysts"). In addition, a heteropolyacid-supported catalyst and the like can also be mentioned.
 ゼオライトとしては、少なくとも一種の10員環を構造中に含むものが有利であり、珪素、アルミニウム、酸素および任意成分としての硼素から成るミクロポーラス材料を有し、具体的には、MFI(ZSM-5、シリカライト-1、ボラライトC、TS-1)、MEL(ZSM-11、シリカライト-2、ボラライトD、TS-2、SSZ-46)、FER(フェリエ沸石、FU-9、ZSM-35)、MTT(ZSM-23)、MWW(MCM-22、PSH-3、ITQ-1、MCM-49)、TON(ZSM-22、Theta-1、NU-10)、EUO(ZSM-50、EU-1)、MFS(ZSM-57)、ZSM-48などが挙げられる。 As the zeolite, those containing at least one kind of 10-membered ring in the structure are advantageous, and have a microporous material composed of silicon, aluminum, oxygen and boron as an optional component, and specifically, MFI (ZSM-). 5, Silicalite-1, Boronite C, TS-1), MEL (ZSM-11, Silicalite-2, Boralite D, TS-2, SSZ-46), FER (Ferrier Zeolite, FU-9, ZSM-35) ), MTT (ZSM-23), MWW (MCM-22, PSH-3, ITQ-1, MCM-49), TON (ZSM-22, Theta-1, NU-10), EUO (ZSM-50, EU) -1), MFS (ZSM-57), ZSM-48 and the like.
 ゼオライトとしては、Si/Al比が10以上であるゼオライトが好ましい。Si/Al比が10以上であるゼオライトは、Si/Al比が100以上であることが好ましく、また、好ましくはMFI及びMELから選択される少なくとも1種を含む。 As the zeolite, a zeolite having a Si / Al ratio of 10 or more is preferable. Zeolites having a Si / Al ratio of 10 or more preferably have a Si / Al ratio of 100 or more, and preferably contain at least one selected from MFI and MEL.
 また、ゼオライトは、脱アルミニウム化したゼオライトも好ましい。脱アルミニウム化したゼオライトでは、約10質量%のアルミニウムを除去するのが有利である。この脱アルミニウム化はスチーム処理で行い、その後に必要に応じて浸出(leaching)するのが有利である。
 ゼオライト、及び脱アルミニウム化したゼオライトは、基本的にH型であるのが有利である。また、副成分(約50%以下の成分)として、金属補償イオン、例えばNa、Mg、Ca、La、Ni、Ce、Zn、Coから選択される少なくとも1種を含むことができる。
The zeolite is also preferably a dealuminated zeolite. For dealuminated zeolites, it is advantageous to remove about 10% by weight of aluminum. It is advantageous to perform this dealumination by steaming and then leaching as needed.
It is advantageous that the zeolite and the dealuminated zeolite are basically H-type. Further, as a sub-component (component of about 50% or less), at least one selected from metal compensating ions such as Na, Mg, Ca, La, Ni, Ce, Zn and Co can be contained.
 ゼオライトは、バインダ、好ましくは無機バインダと混合され、ペレット状などの所望の形状に成形される。バインダは本発明の脱水プロセスで使用する温度、その他の条件に耐久性のあるものが選ばれる。バインダはクレー、シリカ、金属シリケート、金属酸化物(例えばZrO2)またはシリカと金属酸化物との混合物を含むゲルから選択される少なくとも1種の無機材料である。 The zeolite is mixed with a binder, preferably an inorganic binder, and formed into a desired shape such as pellets. The binder is selected to be durable to the temperature and other conditions used in the dehydration process of the present invention. Binders are at least one inorganic material selected from gels containing clay, silica, metal silicates, metal oxides (eg ZrO 2 ) or mixtures of silica and metal oxides.
 P改質ゼオライトは、燐改質(phosphorus modified)ゼオライトである。エチレン生成工程では、P改質ゼオライトを使用する態様も好ましい。燐改質ゼオライトは、例えば初期の原子比Si/Al比が4~500であるミクロポーラスを有するゼオライト、具体的には、MFI、MOR、MEL、クリノプチロライト、FER、MWW、TON、EUO、MFS、ZSM-48などをベースにして製造できる。初期の原子比Si/Al比は、100以下であることが好ましく、4~30であることがより好ましい。本製法のP改質ゼオライトは、Si/Al比が低い(30以下の)安価なゼオライトをベースにしても得ることができる。 The P-modified zeolite is a phosphorus-modified zeolite. In the ethylene production step, it is also preferable to use P-modified zeolite. The phosphorus-modified zeolite is, for example, a zeolite having a microporous initial atomic ratio Si / Al ratio of 4 to 500, specifically, MFI, MOR, MEL, clinoptilolite, FER, MWW, TON, EUO. , MFS, ZSM-48 and the like. The initial atomic ratio Si / Al ratio is preferably 100 or less, and more preferably 4 to 30. The P-modified zeolite of this production method can also be obtained based on an inexpensive zeolite having a low Si / Al ratio (30 or less).
 また、P改質ゼオライトにおいても、Mg、Ca、La、Ni、Ce、Zn、Co、Ag、Fe、及びCuから選択される少なくとも1種の金属でさらに改質することができる。
 P改質ゼオライトにおけるリン原子含有率は、少なくとも0.05質量%であり、好ましくは0.3~7質量%であるのが有利である。
 また、原料となるゼオライトに対して、浸出によって少なくとも10質量%のアルミニウムがゼオライトから抽出および除去されているのが有利である。
Further, the P-modified zeolite can also be further modified with at least one metal selected from Mg, Ca, La, Ni, Ce, Zn, Co, Ag, Fe, and Cu.
The phosphorus atom content in the P-modified zeolite is at least 0.05% by mass, preferably 0.3 to 7% by mass, which is advantageous.
Further, it is advantageous that at least 10% by mass of aluminum is extracted and removed from the zeolite by leaching with respect to the zeolite as a raw material.
 P改質ゼオライトを用いた触媒は、P改質ゼオライト自体を触媒にしてもよいし、P改質ゼオライトと他の材料を組合せた配合型のP改質ゼオライトにしてもよい。配合型とすることで、触媒の硬度又は触媒活性などを改善できる。
 P改質ゼオライトと混合できる材料としては、種々の不活性若しくは触媒活性材料、又は種々の結合剤材料などが挙げられる。具体的には、カオリン、その他のクレーのような組成物、各種形態の希土類金属、燐酸塩、アルミナまたはアルミナゾル、チタニア、ジルコニア、石英、シリカまたはシリカゾルおよびこれらの混合物が挙げられる。これらの成分は触媒および配合触媒の圧縮強度の増加に有効である。触媒はペレット、球に成形したり、その他の形状に押出したり、噴霧乾燥粒子にすることができる。最終触媒生成物中に含まれるP改質ゼオライトの量は全触媒の10~90質量%、好ましくは全触媒の20~70質量%である。
 P改質ゼオライトの好適な例は、シリコアルミノホスフェートであり、より好ましくはAELグループのシリコアルミノホスフェートであり、その代表的な例はSAPO-11である。SAPO-11はALPO-11をベースにし、Al/P比は基本的に1原子/原子である。合成中に珪素先駆体を加えてALPO骨格中に珪素を挿入することで、10員環のゼオライトのミクロポアの表面に酸サイトができる。珪素の含有量は0.1~10原子%である(Al+P+Siは100)。
The catalyst using the P-modified zeolite may be the P-modified zeolite itself as a catalyst, or a compounded P-modified zeolite in which the P-modified zeolite and other materials are combined. The compounding type can improve the hardness or catalytic activity of the catalyst.
Examples of the material that can be mixed with the P-modified zeolite include various inert or catalytically active materials, and various binder materials. Specific examples include kaolin, other clay-like compositions, various forms of rare earth metals, phosphates, alumina or alumina sol, titania, zirconia, quartz, silica or silica sol and mixtures thereof. These components are effective in increasing the compressive strength of the catalyst and compounding catalyst. The catalyst can be molded into pellets, spheres, extruded into other shapes, or spray dried particles. The amount of P-modified zeolite contained in the final catalyst product is 10 to 90% by mass, preferably 20 to 70% by mass of the total catalyst.
A preferred example of the P-modified zeolite is silicoaluminophosphate, more preferably silicoaluminophosphate of the AEL group, and a typical example thereof is SAPO-11. SAPO-11 is based on ALPO-11 and has an Al / P ratio of basically 1 atom / atom. By adding a silicon precursor during synthesis and inserting silicon into the ALPO skeleton, acid sites are formed on the surface of the micropores of the 10-membered zeolite. The silicon content is 0.1 to 10 atomic% (Al + P + Si is 100).
 エチレン生成工程における触媒としてアルミナ(特にγ-アルミナ)を使用する態様も好ましい。また、シリケート化、ジルコネート化、チタネート化またはフッ素化されたアルミナを使用することも好ましい。アルミナは、一般に広範囲の酸強度分布とルイス-タイプおよびブロンステッド(Bronsted)タイプの酸サイトを有するという特徴を有する。アルミナとしては、活性アルミナを使用するとよい。 It is also preferable to use alumina (particularly γ-alumina) as a catalyst in the ethylene production step. It is also preferred to use silicate, zirconeated, titanated or fluorinated alumina. Alumina is generally characterized by having a wide range of acid intensity distributions and Lewis-type and Bronsted-type acid sites. As the alumina, activated alumina may be used.
 アルミナは、表面上に珪素、ジルコニウム、チタン、蛍石などを析出させることで触媒の選択性を向上させることも好ましい。すなわち、シリケート化、ジルコネート化、チタネート化することで触媒の選択性を向上させてもよい。このような触媒の製造には、適当な市販のアルミナ、好ましくは表面積が10~500m2/gでアルカリ含有量が0.5%以下のイータまたはガンマ・アルミナを使用するとよい。また、珪素、ジルコニウム、チタンなどを合計で0.05~10質量%で加えて調製されるとよい。これらの金属の添加はアルミナ製造時に行ってもよいし、製造後のアルミナに加えて行うこともでき、またこれら金属は、前駆体の形態で加えてもよい。また、フッ素化アルミナ自体は公知であり、従来技術に従って製造できる。 Alumina also preferably improves the selectivity of the catalyst by precipitating silicon, zirconium, titanium, fluorite, etc. on the surface. That is, the selectivity of the catalyst may be improved by silicate-forming, zirconating, or titanating. Suitable commercially available alumina, preferably eta or gamma alumina, having a surface area of 10 to 500 m 2 / g and an alkali content of 0.5% or less may be used for producing such a catalyst. Further, it is preferable to add silicon, zirconium, titanium and the like in a total amount of 0.05 to 10% by mass. Addition of these metals may be carried out at the time of producing alumina, may be carried out in addition to alumina after production, and these metals may be added in the form of precursors. Further, the fluorinated alumina itself is known and can be produced according to the prior art.
 エチレン生成工程では、触媒としてヘテロポリ酸担持触媒を使用する態様も好ましい。ヘテロポリ酸担持触媒は、適当な触媒担体上に担持されたヘテロポリ酸を含む。用語「ヘテロポリ酸」は、遊離酸の形態又はアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、嵩高なカチオンの塩、及び/又は金属塩(これらの場合、塩は完全な塩又は部分的な塩のいずれであってもよい)などのヘテロポリ酸塩の形態にある、ヘテロポリ酸化合物を指す。
 ヘテロポリ酸のアニオンは、典型的には、1種又は複数種の中心原子を対称的様式で取り巻く周辺原子として知られる、12~18個の酸素が結合した多価金属原子を含む。周辺原子は、モリブデン、タングステン、バナジウム、ニオブ、タンタル、及びそれらの組合せから適当に選択される。中心原子は、好ましくはケイ素又はリンである。また、中心原子は、元素の周期表中のI~VIII族の原子から選択される任意の1つ、例えば、銅、ベリリウム、亜鉛、コバルト、ニッケル、ホウ素、アルミニウム、ガリウム、鉄、セリウム、ヒ素、アンチモン、ビスマス、クロム、ロジウム、ケイ素、ゲルマニウム、スズ、チタン、ジルコニウム、バナジウム、イオウ、テルル、マンガンニッケル、白金、トリウム、ハフニウム、テルル及びヨウ素などを含むことができる。適当なヘテロポリ酸としては、Keggin、Wells-Dawson及びAnderson-Evans-Perloffヘテロポリ酸が挙げられる。
In the ethylene production step, it is also preferable to use a heteropolyacid-supported catalyst as a catalyst. The heteropolyacid-supported catalyst comprises a heteropolyacid supported on a suitable catalyst carrier. The term "heteropoly acid" is in the form of a free acid or alkali metal salt, alkaline earth metal salt, ammonium salt, bulky cation salt, and / or metal salt (in these cases, the salt is a complete or partial salt). Refers to a heteropolyacid compound in the form of a heteropolyate such as (which may be any salt).
Heteropolyacid anions typically contain 12-18 oxygen-bonded polyvalent metal atoms known as peripheral atoms that surround one or more central atoms in a symmetrical manner. Peripheral atoms are appropriately selected from molybdenum, tungsten, vanadium, niobium, tantalum, and combinations thereof. The central atom is preferably silicon or phosphorus. Further, the central atom is any one selected from the atoms of groups I to VIII in the periodic table of the element, for example, copper, beryllium, zinc, cobalt, nickel, boron, aluminum, gallium, iron, cerium and arsenic. , Antimony, bismuth, chromium, rhodium, silicon, germanium, tin, titanium, zirconium, vanadium, sulfur, tellurium, manganese nickel, platinum, thorium, hafnium, tellurium, iodine and the like. Suitable heteropolyacids include Keggin, Wells-Dawson and Anderson-Evans-Perlov heteropolyacids.
 ヘテロポリ酸担持触媒のヘテロポリ酸成分は、好ましくは、ヘテロポリタングステン酸であり、それは、周辺原子がタングステン原子であるヘテロポリ酸である。好ましいヘテロポリタングステン酸は、Keggin又はWells-Dawson構造を主成分とする任意のものである。
 適当なヘテロポリタングステン酸の例として、18-リンタングステン酸(H[P1862]・xHO)、12-リンタングステン酸(H[PW1240]・xHO)、12-ケイタングステン酸(H[SiW1240]・xHO)、ケイタングステン酸セシウム水素(CsH[SiW1240]・xHO)、リンタングステン酸一カリウム(KH[P1862]・xHO)、12-ケイタングステン酸一ナトリウム(NaK[SiW1240]・xHO)、及びカリウムリンタングステン酸(K[P1862]・xHO)が挙げられる。2種以上の異なるヘテロポリタングステン酸及び塩の混合物も使用することができる。
The heteropolyacid component of the heteropolyacid-supported catalyst is preferably heteropolytungstic acid, which is a heteropolyacid whose peripheral atom is a tungsten atom. Preferred heteropolytungstic acid is any one whose main component is a Keggin or Wells-Dawson structure.
Examples of suitable heteropolytungstic acids are 18-phosphotungstic acid (H 6 [P 2 W 18 O 62 ] · xH 2 O), 12-phosphotungstic acid (H 3 [PW 12 O 40 ] · xH 2 O). , 12-Tungstic acid (H 4 [SiW 12 O 40 ] · xH 2 O), cesium hydrogen silicate (Cs 3 H [SiW 12 O 40 ] · xH 2 O), monopotassium phosphotungstic acid (KH 5) [P 2 W 18 O 62 ] · xH 2 O), monosodium 12- caity tungstic acid (NaK 3 [SiW 12 O 40 ] · xH 2 O), and potassium phosphotungstic acid (K 6 [P 2 W 18 O) 62 ] ・ xH 2 O) can be mentioned. Mixtures of two or more different heteropolytungstic acids and salts can also be used.
 より好ましくは、ヘテロポリ酸担持触媒のヘテロポリ酸成分は、ケイタングステン酸、リンタングステン酸、及びそれらの混合物、例えば、12-ケイタングステン酸(H[SiW1240]・xHO)、12-リンタングステン酸(H[PW1240]・xHO)、及びそれらの混合物から選択される。さらに好ましくは、ヘテロポリ酸は、ケイタングステン酸であり、最も好ましくはヘテロポリ酸は12-ケイタングステン酸である。 More preferably, the heteropolyacid component of the heteropolyacid-bearing catalyst is silicate-tungstic acid, phosphotungstic acid, and mixtures thereof, such as 12-ca-tungstic acid (H 4 [SiW 12 O 40 ] · xH 2 O), 12 -Selected from phosphotungstic acid (H 3 [PW 12 O 40 ] · xH 2 O) and mixtures thereof. More preferably, the heteropolyacid is silicate tungstic acid, and most preferably the heteropolyacid is 12-cay tungstic acid.
 ヘテロポリ酸の分子量は、好ましくは700を超えて8500未満、より好ましくは2800を超えて6000未満である。そのようなヘテロポリ酸はこれらの二量化錯体も含む。 The molecular weight of the heteropolyacid is preferably more than 700 and less than 8500, more preferably more than 2800 and less than 6000. Such heteropolyacids also include these dimerization complexes.
 ヘテロポリ酸担持触媒で使用する触媒担体は、当技術分野において知られた任意の適当な触媒担体であってよい。触媒担体に適当な原料として、モルデナイト(例えばモンモリロナイト)、粘土、ベントナイト、珪藻土、チタニア、活性炭、アルミナ、シリカ、シリカ-アルミナ、シリカ-チタニアコゲル、シリカ-ジルコニアコゲル、炭素コートアルミナ、ゼオライト、酸化亜鉛、及び炎熱分解酸化物が含まれる。シリカゲル担体及びSiCl4の火炎加水分解により製造された担体などのシリカを主成分とする触媒担体が好ましい。
 触媒担体の形状は、特に限定されず、例えば、粉末形態、顆粒状形態、ペレット化形態、球状形態、又は押し出された形態であってよい。
The catalyst carrier used in the heteropolyacid-supported catalyst may be any suitable catalyst carrier known in the art. Suitable raw materials for catalyst carriers include mordenite (eg montmorillonite), clay, bentonite, diatomaceous soil, titania, activated carbon, alumina, silica, silica-alumina, silica-titania cogel, silica-zirconia cogel, carbon coated alumina, zeolite, zinc oxide. , And flame thermal decomposition oxides are included. A silica-based catalyst carrier such as a silica gel carrier and a carrier produced by flame hydrolysis of SiCl4 is preferable.
The shape of the catalyst carrier is not particularly limited, and may be, for example, a powder form, a granular form, a pelletized form, a spherical form, or an extruded form.
 原料エタノールは、特に限定されないが、気相にて触媒に接触してエチレンに変換されることが好ましい。また、原料エタノールは、さらに水と混合されてもよく、また、原料エタノール及び水以外にも適宜任意成分が混合されてもよく、水及び任意成分の一方又はこれらの両方は、原料エタノールとともにガスとして触媒に接触させるとよい。
 触媒を例えば反応容器に充填して、その触媒を充填した反応容器に、原料エタノール、又は、原料エタノールと、水及びその他の任意成分から選択される少なくとも1種とをガスとして供給し、気相脱水反応をすることで、反応容器から気相でエチレン含有生成物を排出させるとよい。反応容器から排出されるガスにエタノールが残る場合には、エチレン含有生成物からエタノールを含む成分を分離して、そのエタノールを含む成分を再度反応容器に供給してもよい。
The raw material ethanol is not particularly limited, but is preferably converted into ethylene by contacting the catalyst in the gas phase. Further, the raw material ethanol may be further mixed with water, and an optional component may be appropriately mixed in addition to the raw material ethanol and water, and one or both of water and the optional component is a gas together with the raw material ethanol. It is good to bring it into contact with the catalyst.
For example, a reaction vessel is filled with a catalyst, and the reaction vessel filled with the catalyst is supplied with raw material ethanol or raw material ethanol and at least one selected from water and other optional components as a gas, and a gas phase is supplied. It is advisable to discharge the ethylene-containing product from the reaction vessel in the gas phase by performing a dehydration reaction. If ethanol remains in the gas discharged from the reaction vessel, the ethanol-containing component may be separated from the ethylene-containing product and the ethanol-containing component may be supplied to the reaction vessel again.
 ゼオライト又はアルミナ系触媒の場合、反応容器の温度は例えば280~600℃、好ましくは300~550℃、より好ましくは330~530℃である。また、反応容器の圧力(絶対圧力)は、例えば50kPa~3MPa、好ましくは50kPa~1MPa、さらに好ましくは0.12MPa~0.65MPaである。 In the case of a zeolite or alumina-based catalyst, the temperature of the reaction vessel is, for example, 280 to 600 ° C, preferably 300 to 550 ° C, and more preferably 330 to 530 ° C. The pressure (absolute pressure) of the reaction vessel is, for example, 50 kPa to 3 MPa, preferably 50 kPa to 1 MPa, and more preferably 0.12 MPa to 0.65 MPa.
 また、ヘテロポリ酸担持触媒の場合、反応容器の温度は例えば170℃以上、好ましくは180~270℃の範囲内、より好ましくは190~260℃の範囲内、さらに好ましくは200~250℃の範囲内である。また、圧力は、好ましくは0.1~4.5MPa、より好ましくは1.0~3.5MPa、さらに好ましくは1.0~2.8MPaの範囲内の圧力である。
 なお、ヘテロポリ酸担持触媒の場合には、原料エタノールと接触する前に、ヘテロポリ酸担持触媒を220℃以上の温度に加熱し、その温度で十分な時間保つことでヘテロポリ酸担持触媒のヘテロポリ酸成分から結合水を除去してもよい。
In the case of a heteropolyacid-supported catalyst, the temperature of the reaction vessel is, for example, 170 ° C. or higher, preferably 180 to 270 ° C., more preferably 190 to 260 ° C., and further preferably 200 to 250 ° C. Is. The pressure is preferably in the range of 0.1 to 4.5 MPa, more preferably 1.0 to 3.5 MPa, and even more preferably 1.0 to 2.8 MPa.
In the case of a heteropolyacid-supported catalyst, the heteropolyacid-supported catalyst is heated to a temperature of 220 ° C. or higher and kept at that temperature for a sufficient period of time before coming into contact with the raw material ethanol. The bound water may be removed from.
[第1及び第2の精製工程]
 本発明のエチレンの製造方法では、上記のとおり、エチレン生成工程の前に、原料エタノールを精製する第1の精製工程、又は、エチレン生成工程の後にエチレン含有生成物を精製する第2の精製工程の少なくともいずれかを行う。また、好ましくは第1及び第2の精製工程の両方を行う。
 なお、本明細書では、第2の精製工程が行われる場合には、第2の精製工程により精製されたエチレン含有生成物を、本発明の製造方法で製造される「エチレン」とし、第2の精製工程が省略される場合には、エチレン生成工程で得られたエチレン含有生成物を、本発明の製造方法で製造される「エチレン」とする。本発明の製造方法で製造される「エチレン」は、エチレン単独からなるものでもよいが、合成ないし精製を経ても不可避的に混入される不純物を含む組成物であってもよい。
[First and second purification steps]
In the method for producing ethylene of the present invention, as described above, a first purification step of purifying the raw material ethanol before the ethylene production step, or a second purification step of purifying the ethylene-containing product after the ethylene production step. Do at least one of the above. Also, preferably, both the first and second purification steps are performed.
In the present specification, when the second purification step is performed, the ethylene-containing product purified by the second purification step is referred to as "ethylene" produced by the production method of the present invention, and the second purification step is performed. When the purification step of is omitted, the ethylene-containing product obtained in the ethylene production step is referred to as "ethylene" produced by the production method of the present invention. The "ethylene" produced by the production method of the present invention may be composed of ethylene alone, or may be a composition containing impurities that are inevitably mixed even after being synthesized or purified.
 第1の精製工程では、原料エタノールから炭素数3~14の脂肪族不飽和炭化水素、炭素数3~14の脂肪族飽和炭化水素、炭素数3~10のアルコール、及び炭素数3~10のエーテルから選択される少なくとも1つの有機化合物を除去することが好ましい。
 廃棄物には、様々な成分が含まれ、そのため、廃棄物から生成された原料エタノールには、様々な有機化合物が含有される。また、有機化合物のうち、上記炭素数の有機化合物は、様々な工程を経て得られた原料エタノールに残存していることが多い。原料エタノールにこのような有機化合物が残存していると、エチレン生成工程における脱水反応や、さらに後段のエチレンを使用した重合反応を阻害したり、エチレンから得られる重合体の品質を低下させたりすることがある。したがって、第1の精製工程において、特定の炭素数の炭化水素やアルコール、エーテルを除去することで、エチレンの重合反応を好適に進行させ、また、得られる重合体の品質も良好にしやすくなる。
In the first purification step, the raw material ethanol is composed of an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, an alcohol having 3 to 10 carbon atoms, and 3 to 10 carbon atoms. It is preferable to remove at least one organic compound selected from the ether.
The waste contains various components, and therefore, the raw material ethanol produced from the waste contains various organic compounds. Further, among the organic compounds, the organic compound having the above carbon number often remains in the raw material ethanol obtained through various steps. If such an organic compound remains in the raw material ethanol, it inhibits the dehydration reaction in the ethylene production step and the polymerization reaction using ethylene in the subsequent stage, and deteriorates the quality of the polymer obtained from ethylene. Sometimes. Therefore, by removing hydrocarbons, alcohols, and ethers having a specific carbon number in the first purification step, the polymerization reaction of ethylene can be suitably promoted, and the quality of the obtained polymer can be easily improved.
 一方で、第2の精製工程では、生成されたエチレン含有生成物から、炭素数3~14の脂肪族不飽和炭化水素、炭素数3~14の脂肪族飽和炭化水素、炭素数3~10のアルコール、及び炭素数3~10のエーテルからなる特定の有機化合物、一酸化炭素、並びに酸素から選択される少なくとも1つを除去することが好ましい。
 なお、第1及び第2の精製工程でいう「除去」とは、原料エタノール又はエチレン含有生成物から対象物質を完全に除く態様のみならず、対象物質の含有量を低減する態様も含まれる。
On the other hand, in the second purification step, the produced ethylene-containing product has an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, and an aliphatic saturated hydrocarbon having 3 to 10 carbon atoms. It is preferable to remove at least one selected from alcohol, a specific organic compound consisting of an ether having 3 to 10 carbon atoms, carbon monoxide, and oxygen.
The “removal” referred to in the first and second purification steps includes not only a mode in which the target substance is completely removed from the raw material ethanol or ethylene-containing product, but also a mode in which the content of the target substance is reduced.
 第2の精製工程においても、上記第1の精製工程の説明で述べたとおり、特定の炭素数の炭化水素やアルコール、エーテルを除去することで、エチレンの重合反応を好適に進行させ、また、得られる重合体の品質も良好にしやすくなる。
 一酸化炭素及び酸素は、電気陰性度が高く、エチレンの重合反応において重合反応を阻害することがある。例えば、チーグラー・ナッタ触媒等の特定の触媒を用いた場合に、重合反応を阻害することがある。また、酸素は、高圧重合などのラジカル重合では重合開始剤になり得るため、酸素が多く含まれることで重合が暴走することなどもある。そのため、第2の精製工程において、一酸化炭素や酸素をエチレン含有組成物から取り除くことで、これらによりエチレンの重合反応が阻害されることを防止できる。
Also in the second purification step, as described in the description of the first purification step, the ethylene polymerization reaction can be suitably promoted by removing hydrocarbons, alcohols and ethers having a specific carbon number, and also. The quality of the obtained polymer is also easily improved.
Carbon monoxide and oxygen have high electronegativity and may inhibit the polymerization reaction in the polymerization reaction of ethylene. For example, when a specific catalyst such as a Ziegler-Natta catalyst is used, the polymerization reaction may be inhibited. Further, since oxygen can be a polymerization initiator in radical polymerization such as high-pressure polymerization, the polymerization may run out of control due to a large amount of oxygen. Therefore, by removing carbon monoxide and oxygen from the ethylene-containing composition in the second purification step, it is possible to prevent the ethylene polymerization reaction from being inhibited by these.
 本発明で製造されたエチレンは、一酸化炭素が除去されることで、一酸化炭素の含有量が、1体積%以下となることが好ましい。1体積%以下とすることで、エチレンを用いた重合反応において、重合反応が一酸化炭素によって阻害されることを防止できる。そのような観点から、一酸化炭素の含有量は、0.5体積%以下がより好ましく、0.1体積%以下がさらに好ましい。また、本発明で製造されたエチレンは、一酸化炭素が全く含有していなくてもよく、したがって、一酸化炭素の含有量の下限は、0体積%である。 The ethylene produced in the present invention preferably has a carbon monoxide content of 1% by volume or less by removing carbon monoxide. By setting the content to 1% by volume or less, it is possible to prevent the polymerization reaction from being inhibited by carbon monoxide in the polymerization reaction using ethylene. From such a viewpoint, the content of carbon monoxide is more preferably 0.5% by volume or less, and further preferably 0.1% by volume or less. Further, the ethylene produced in the present invention does not have to contain carbon monoxide at all, and therefore, the lower limit of the content of carbon monoxide is 0% by volume.
 本発明で製造されたエチレンは、酸素が除去されることで、酸素の含有量が、1体積%以下となることが好ましい。1体積%以下とすることで、エチレンを用いた重合反応において、重合反応が酸素によって阻害されることを防止できる。そのような観点から、酸素の含有量は、0.5体積%以下がより好ましく、0.1体積%以下がさらに好ましい。また、本発明で製造されたエチレンは、酸素を全く含有していなくてもよく、したがって、酸素の含有量の下限は、0体積%である。 The ethylene produced in the present invention preferably has an oxygen content of 1% by volume or less due to the removal of oxygen. By setting the content to 1% by volume or less, it is possible to prevent the polymerization reaction from being inhibited by oxygen in the polymerization reaction using ethylene. From such a viewpoint, the oxygen content is more preferably 0.5% by volume or less, and further preferably 0.1% by volume or less. Further, the ethylene produced in the present invention does not have to contain oxygen at all, and therefore, the lower limit of the oxygen content is 0% by volume.
 炭素数3~14の脂肪族不飽和炭化水素は、第1の精製工程、第2の精製工程、又はこれらの両方で取り除かれるとよいが、いずれかの工程で取り除かれる炭素数3~14の脂肪族不飽和炭化水素には、プロピレンが含まれることが好ましい。プロピレンがエチレンに含まれると、そのエチレンを用いて重合反応を行う場合、プロピレンが重合体の分岐鎖となるので、プロピレンを除去することで分岐鎖を少なくすることができる。したがって、エチレンから後述するように、高密度ポリエチレン(HDPE)を製造する場合など、重合体の分岐鎖を少なくしたい場合に除去することが特に好適である。 Aliphatic unsaturated hydrocarbons having 3 to 14 carbon atoms may be removed in the first purification step, the second purification step, or both, but the carbon number 3 to 14 carbon atoms removed in any of the steps. The aliphatic unsaturated hydrocarbon preferably contains propylene. When propylene is contained in ethylene, when the polymerization reaction is carried out using the ethylene, propylene becomes a branched chain of the polymer, so that the branched chain can be reduced by removing the propylene. Therefore, as will be described later, it is particularly preferable to remove it when it is desired to reduce the branched chains of the polymer, such as when producing high-density polyethylene (HDPE) from ethylene.
 本発明で製造されたエチレンは、プロピレンが除去されることで、プロピレンの含有量が、1体積%以下となることが好ましい。1体積%以下とすることで、分岐鎖を少なくする効果を発揮できる。そのような観点から、プロピレンの含有量は、0.5体積%以下がより好ましく、0.1体積%以下がさらに好ましい。また、本発明で製造されたエチレンは、プロピレンが全く含有していなくてもよく、したがって、プロピレンの含有量の下限は、0体積%である。 The ethylene produced in the present invention preferably has a propylene content of 1% by volume or less by removing propylene. By setting the volume to 1% by volume or less, the effect of reducing the number of branched chains can be exhibited. From such a viewpoint, the content of propylene is more preferably 0.5% by volume or less, and further preferably 0.1% by volume or less. Further, the ethylene produced in the present invention does not have to contain propylene at all, and therefore, the lower limit of the content of propylene is 0% by volume.
 また、炭素数3~14の脂肪族飽和炭化水素は、第1の精製工程、第2の精製工程、又はこれらの両方で取り除かれるとよいが、いずれかの工程で取り除かれる炭素数3~14の脂肪族飽和炭化水素には、炭素数6~14の脂肪族飽和炭化水素が含まれることが好ましい。炭素数6~14の脂肪族飽和炭化水素は、直鎖状でもよいし、分岐構造及び環状構造の少なくともいずれかを有してもよいが、直鎖状であることが好ましい。炭素数6~14の脂肪族飽和炭化水素の具体例として、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、n-ドデカン、およびn-テトラデカンから選択される少なくとも1種であることが好ましい。
 これら比較的炭素数が大きい(炭素数6~14)脂肪族飽和炭化水素は、廃棄物由来の原料エタノールには比較的多く含まれる。一方で、これら脂肪族飽和炭化水素は、食品に含まれる油脂成分との相溶性が高く、本発明で製造されるエチレンから生成される重合体を食品用途で包装材などに使用すると、食品への流出が懸念される。そのため、比較的炭素数が大きい脂肪族飽和炭化水素を取り除くことで、食品安全上好ましい。
 また、上記したいずれかの工程で取り除かれる炭素数3~14の脂肪族飽和炭化水素は、廃棄物由来の原料エタノールに多く含有される観点から、炭素数10~14の脂肪族飽和炭化水素を含むことが好ましい。
Further, the aliphatic saturated hydrocarbon having 3 to 14 carbon atoms may be removed in the first purification step, the second purification step, or both, but the carbon number 3 to 14 is removed in any of the steps. It is preferable that the aliphatic saturated hydrocarbon of the above contains an aliphatic saturated hydrocarbon having 6 to 14 carbon atoms. The aliphatic saturated hydrocarbon having 6 to 14 carbon atoms may be linear or may have at least one of a branched structure and a cyclic structure, but is preferably linear. Specific examples of aliphatic saturated hydrocarbons having 6 to 14 carbon atoms are at least one selected from n-hexane, n-heptane, n-octane, n-decane, n-dodecane, and n-tetradecane. Is preferable.
These aliphatic saturated hydrocarbons having a relatively large number of carbon atoms (6 to 14 carbon atoms) are contained in a relatively large amount in the raw material ethanol derived from waste. On the other hand, these aliphatic saturated hydrocarbons are highly compatible with fats and oils contained in foods, and when the polymer produced from ethylene produced in the present invention is used as a packaging material for foods, it becomes a food. There is concern about the outflow of Therefore, it is preferable in terms of food safety to remove aliphatic saturated hydrocarbons having a relatively large number of carbon atoms.
Further, the aliphatic saturated hydrocarbon having 3 to 14 carbon atoms removed in any of the above steps is an aliphatic saturated hydrocarbon having 10 to 14 carbon atoms from the viewpoint of being contained in a large amount in the raw material ethanol derived from waste. It is preferable to include it.
 本発明で製造されるエチレンは、炭素数6~14の脂肪族飽和炭化水素が除去されることで、炭素数6~14の脂肪族飽和炭化水素の含有量が、0.3体積%以下となることが好ましく、0.2体積%以下がより好ましく、0.1体積%以下であることがより好ましい。また、本発明で製造されたエチレンは、炭素数6~14の脂肪族飽和炭化水素が全く含有していなくてもよく、したがって、炭素数6~14の脂肪族飽和炭化水素の含有量の下限は、0体積%である。 The ethylene produced in the present invention has an aliphatic saturated hydrocarbon content of 6 to 14 carbon atoms of 0.3% by volume or less by removing the aliphatic saturated hydrocarbon having 6 to 14 carbon atoms. It is preferably 0.2% by volume or less, and more preferably 0.1% by volume or less. Further, the ethylene produced in the present invention may not contain any aliphatic saturated hydrocarbon having 6 to 14 carbon atoms, and therefore, the lower limit of the content of the aliphatic saturated hydrocarbon having 6 to 14 carbon atoms. Is 0% by volume.
 また、炭素数3~10のアルコールは、第1の精製工程、第2の精製工程、又はこれらの両方で取り除かれるとよいが、いずれかの工程で取り除かれる炭素数3~10のアルコールには、例えば、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、tert-ブタノールから選択される少なくとも1種が含まれる。これらアルコールは、廃棄物由来の原料エタノールに比較的多く含まれ、第1の精製工程、第2の精製工程、又はこれらの両方でこれらアルコールが除去されることで、後述するエチレンを用いた重合反応を好適に進行させ、また、得られる重合体の品質も良好にしやすくなる。 Further, the alcohol having 3 to 10 carbon atoms may be removed in the first purification step, the second purification step, or both of them, but the alcohol having 3 to 10 carbon atoms removed in any of the steps may be used. For example, at least one selected from 1-propanol, 2-propanol, 1-butanol, 2-butanol, and tert-butanol is included. These alcohols are contained in a relatively large amount in the raw material ethanol derived from waste, and by removing these alcohols in the first purification step, the second purification step, or both of them, polymerization using ethylene, which will be described later, is carried out. The reaction can proceed favorably, and the quality of the obtained polymer can be easily improved.
 また、上記したいずれかの工程で取り除かれる炭素数3~10のアルコールには、2-プロパノールが含まれることが好ましい。2-プロパノールがエチレンに含まれると、そのエチレンを用いて重合反応を行う場合、2-プロパノールが重合体の分岐鎖となるので、2-プロパノールを除去することで重合体における分岐鎖を少なくすることができる。したがって、エチレンから後述するように、高密度ポリエチレン(HDPE)を製造する場合など、重合体の分岐鎖を少なくしたい場合に2-プロパノールを除去することが特に好適である。 Further, it is preferable that the alcohol having 3 to 10 carbon atoms removed in any of the above steps contains 2-propanol. When 2-propanol is contained in ethylene, when the polymerization reaction is carried out using that ethylene, 2-propanol becomes a branched chain of the polymer. Therefore, removing 2-propanol reduces the branched chain in the polymer. be able to. Therefore, it is particularly preferable to remove 2-propanol when it is desired to reduce the branched chains of the polymer, such as when producing high-density polyethylene (HDPE) from ethylene, as will be described later.
 本発明で製造されたエチレンは、2-プロパノールが除去されることで、2-プロパノールの含有量が、0.3体積%以下となることが好ましい。0.3体積%以下とすることで、分岐鎖を少なくする効果を発揮しやすくなる。そのような観点から、2-プロパノールの含有量は、0.1体積%以下がより好ましく、0.05体積%以下がさらに好ましい。また、本発明で製造されたエチレンは、2-プロパノールが全く含有していなくてもよく、したがって、2-プロパノールの含有量の下限は、0体積%である。 The ethylene produced in the present invention preferably has a 2-propanol content of 0.3% by volume or less by removing 2-propanol. By setting the volume to 0.3% by volume or less, the effect of reducing the number of branched chains can be easily exerted. From such a viewpoint, the content of 2-propanol is more preferably 0.1% by volume or less, still more preferably 0.05% by volume or less. Further, the ethylene produced in the present invention does not have to contain 2-propanol at all, and therefore, the lower limit of the content of 2-propanol is 0% by volume.
 炭素数3~10のエーテルは、第1の精製工程、第2の精製工程、又はこれらの両方で取り除かれるとよいが、いずれかの工程で取り除かれる炭素数3~10のエーテルには、例えば、ジエチルエーテル、ジブチルエーテルから選択される少なくとも1種が含まれる。これらエーテルは、廃棄物由来の原料エタノールに比較多く含まれ、第1の精製工程、第2の精製工程、又はこれらの両方でこれらエーテルが除去されることで、後述するエチレンを用いた重合反応を好適に進行させ、また、得られる重合体の品質も良好にしやすくなる。 Ethers having 3 to 10 carbon atoms may be removed in the first purification step, the second purification step, or both, but ethers having 3 to 10 carbon atoms removed in any of the steps may include, for example, ethers having 3 to 10 carbon atoms. , Diethyl ether, at least one selected from dibutyl ether. These ethers are contained in a relatively large amount as compared with the raw material ethanol derived from waste, and by removing these ethers in the first purification step, the second purification step, or both of them, a polymerization reaction using ethylene, which will be described later, is carried out. Is preferably carried out, and the quality of the obtained polymer is also easily improved.
 上記したいずれかの工程で取り除かれる炭素数3~10のエーテルは、ジブチルエーテルを含むことが好ましい。ジブチルエーテルは揮発性有機化合物(VOC)であることからジブチルエーテルを除くことで、VOCにより生じうる健康リスク等の悪影響の危険性を低減できるという点において有益である。 The ether having 3 to 10 carbon atoms removed in any of the above steps preferably contains dibutyl ether. Since dibutyl ether is a volatile organic compound (VOC), it is advantageous in that removing dibutyl ether can reduce the risk of adverse effects such as health risks caused by VOC.
 本発明で製造されたエチレンは、ジブチルエーテルが除去されることで、ジブチルエーテルの含有量が、0.3体積%以下となることが好ましい。0.3体積%以下とすることで、健康リスク等の悪影響の危険性を低減できるという効果を発揮しやすくなる。そのような観点から、ジブチルエーテルの含有量は、0.1体積%以下がより好ましく、0.05体積%以下がさらに好ましい。また、本発明で製造されたエチレンは、ジブチルエーテルが全く含有していなくてもよく、したがって、ジブチルエーテルの含有量の下限は、0体積%である。 The ethylene produced in the present invention preferably has a dibutyl ether content of 0.3% by volume or less due to the removal of dibutyl ether. By setting the volume to 0.3% by volume or less, the effect of reducing the risk of adverse effects such as health risks can be easily exerted. From such a viewpoint, the content of dibutyl ether is more preferably 0.1% by volume or less, and further preferably 0.05% by volume or less. Further, the ethylene produced in the present invention does not have to contain dibutyl ether at all, and therefore, the lower limit of the content of dibutyl ether is 0% by volume.
 また、エチレン生成工程では、脱水反応により水が生成されるので、第2の精製工程にいて、少なくとも水が除去されることが好ましい。また、エチレン生成工程で生成されたエチレン含有生成物には、未反応のエタノールも一般的に残存するので、未反応のエタノールも除去することが好ましい。水やエタノールが除去されることで、後述するエチレンを用いた重合反応を好適に進行させ、また、得られる重合体の品質も良好にしやすくなる。 Further, since water is produced by the dehydration reaction in the ethylene production step, it is preferable that at least water is removed in the second purification step. Further, since unreacted ethanol generally remains in the ethylene-containing product produced in the ethylene production step, it is preferable to remove the unreacted ethanol as well. By removing water and ethanol, the polymerization reaction using ethylene, which will be described later, can be suitably carried out, and the quality of the obtained polymer can be easily improved.
 本発明で製造されたエチレンは、第2の精製工程において水が除去されることで、水の含有量が、0.3体積%以下であることが好ましい。0.3体積%以下とすることで、エチレンを用いた重合反応を好適に進行させやすくなり、また、得られる重合体の品質も良好にしやすくなる。そのような観点から、水の含有量は、0.1体積%以下がより好ましく、0.05体積%以下がさらに好ましい。また、本発明で製造されたエチレンは、水を全く含有していなくてもよく、したがって、水の含有量の下限は、0体積%である。 The ethylene produced in the present invention preferably has a water content of 0.3% by volume or less because water is removed in the second purification step. When the content is 0.3% by volume or less, the polymerization reaction using ethylene can be easily carried out, and the quality of the obtained polymer can be easily improved. From such a viewpoint, the water content is more preferably 0.1% by volume or less, and further preferably 0.05% by volume or less. Further, the ethylene produced in the present invention does not have to contain water at all, and therefore, the lower limit of the water content is 0% by volume.
 本発明で製造されたエチレンは、第2の精製工程においてエタノールが除去されることで、エタノールの含有量が、0.3体積%以下となることが好ましい。0.3体積%以下とすることで、エチレンを用いた重合反応を好適に進行させやすくなり、また、得られる重合体の品質も良好にしやすくなる。そのような観点から、エタノールの含有量は、0.1体積%以下がより好ましく、0.05体積%以下がさらに好ましい。また、本発明で製造されたエチレンは、エタノールを全く含有していなくてもよく、したがって、エタノールの含有量の下限は、0体積%である。 The ethylene produced in the present invention preferably has an ethanol content of 0.3% by volume or less by removing ethanol in the second purification step. When the content is 0.3% by volume or less, the polymerization reaction using ethylene can be easily carried out, and the quality of the obtained polymer can be easily improved. From such a viewpoint, the content of ethanol is more preferably 0.1% by volume or less, further preferably 0.05% by volume or less. Further, the ethylene produced in the present invention does not have to contain ethanol at all, and therefore, the lower limit of the ethanol content is 0% by volume.
 なお、本発明で製造されるエチレンは、一般的に気体であり、その気体であるエチレンをGC-TCD及びGC-FIDを用いて、各無機ガス(酸素、一酸化炭素など)と、有機物ガスとを分析することで、上記各成分の体積%を測定できる。 The ethylene produced in the present invention is generally a gas, and ethylene, which is the gas, is used as an inorganic gas (oxygen, carbon monoxide, etc.) and an organic gas using GC-TCD and GC-FID. By analyzing and, the volume% of each of the above components can be measured.
 第1及び第2の精製工程それぞれにおける精製方法としては、ガスチラーなどよりなる水分分離装置、活性炭などの吸着剤を用いた分離装置、圧力スイング吸着方式の分離装置(PSA)、温度スイング吸着方式の分離装置(TSA)、圧力温度スイング吸着方式の分離装置(PTSA)、低温分離方式(深冷方式)の分離装置、スクラバーなどの水溶性不純物分離装置、脱硫装置(硫化物分離装置)、膜分離方式の分離装置、蒸留装置、クロマトグラフィーを有する分離装置、溶液吸収装置などが挙げられる。 The purification methods in each of the first and second purification steps include a water separator consisting of a gas chiller, a separator using an adsorbent such as activated carbon, a pressure swing adsorption type separator (PSA), and a temperature swing adsorption type. Separator (TSA), pressure-temperature swing adsorption type separator (PTSA), low temperature separation method (deep cooling method) separation device, water-soluble impurity separator such as scrubber, desulfurization device (sulfide separation device), membrane separation Examples thereof include a type separation device, a distillation device, a separation device having chromatography, and a solution absorption device.
 低温分離方式としては、種々の形態を使用できるが、例えば、凝縮器を使用したものが挙げられる。溶液吸収装置は、ガスを接触させることで所定のガス成分を選択的に吸収する吸収溶液を備える装置であり、吸収溶液として、アミン溶液などのアルカリ性溶液などを使用するとよい。例えば、第1の精製工程においてアルカリ性溶液を使用すると、ガス化された原料エタノール中の二酸化炭素などを吸収できる。 As the low temperature separation method, various forms can be used, and for example, a condenser is used. The solution absorption device is a device including an absorption solution that selectively absorbs a predetermined gas component by contacting the gas, and an alkaline solution such as an amine solution may be used as the absorption solution. For example, when an alkaline solution is used in the first purification step, carbon dioxide and the like in the gasified raw material ethanol can be absorbed.
 第1の精製工程では、上記のとおり、炭素数3~14の脂肪族不飽和炭化水素、炭素数3~14の脂肪族飽和炭化水素、炭素数3~10のアルコール、及び炭素数3~10のエーテルのうちいずれかが除去されることが好ましいが、中では、比較的炭素数の大きいものが除去されることがより好ましく、特に炭素数6~14の脂肪族不飽和炭化水素が除去されることが好ましい。炭素数の大きい有機化合物は、エタノールとの分子量の違いから、第1の精製工程に簡便に除去しやすく、また、除去することでエチレン生成工程における反応をより適切に進行させやすくなる。
 第1の精製工程において、炭素数6~14の脂肪族不飽和炭化水素を除去する方法は、特に限定されないが、クロマトグラフィーを有する分離装置により除去されるとよい。クロマトグラフィーとしては、逆相クロマトグラフィーなどを使用するとよい。さらに、蒸留装置、活性炭吸着などにより除去してもよい。
In the first purification step, as described above, an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, an alcohol having 3 to 10 carbon atoms, and 3 to 10 carbon atoms It is preferable that one of the ethers of the above is removed, but it is more preferable that one having a relatively large number of carbon atoms is removed, and in particular, an aliphatic unsaturated hydrocarbon having 6 to 14 carbon atoms is removed. Is preferable. The organic compound having a large number of carbon atoms can be easily removed in the first purification step due to the difference in molecular weight from ethanol, and by removing the organic compound, the reaction in the ethylene production step can be more appropriately proceeded.
In the first purification step, the method for removing the aliphatic unsaturated hydrocarbon having 6 to 14 carbon atoms is not particularly limited, but it is preferable to remove the aliphatic unsaturated hydrocarbon by a separator having chromatography. As the chromatography, reverse phase chromatography or the like may be used. Further, it may be removed by a distillation apparatus, adsorption of activated carbon or the like.
 第2の精製工程では、エチレン生成工程において生成された水、及び未反応エタノールのいずれか一方が除去されることが好ましく、これらの両方が除去されることが好ましい。また、第2の精製工程では、上記のとおり、特定の有機化合物、一酸化炭素、及び酸素から選択される少なくとも1つを除去することが好ましく、特定の有機化合物は、比較的分子量の低い低分子量有機化合物(例えば、炭素数が3~5)が除去されることがより好ましい。すなわち、第1の精製工程において、炭素数6~14の脂肪族飽和炭化水素が除去されるとともに、第2の精製工程において、水及び未反応のエタノールに加え、比較的分子量の低い特定の低分子量有機化合物が少なくとも除去されることがより好ましく、第2の精製工程においては、これらに加えてさらに一酸化炭素、及び酸素が除去されることも好ましい。
 第2の精製工程において除去される特定の有機化合物には、具体的には、2-プロパノールなどの低分子量アルコール、ジエチルエーテルなどの低分子量エーテルから選択される少なくとも1つが含まれることがさらに好ましい。また、第2の精製工程において除去される特定の有機化合物には、これらに加えて、プロピレンなどの低分子量の脂肪族不飽和炭化水素などもさらに含まれることがよりさらに好ましい。すなわち、第2の精製工程では、低分子量有機化合物として、プロパノール及びジエチルエーテルが除去されることがよりさらに好ましく、これらに加えてさらに、プロピレンが除去されることが特に好ましい。
 低分子量有機化合物は、特定の分離装置を使用することで、未反応のエタノール、一酸化炭素、酸素などとともに効率的にエチレンから除去できる。
 また、ジエチルエーテルは、エチレン生成工程においてはエタノールと共にエチレンを生成する原料になり得る。したがって、ジエチルエーテルは、第1の精製工程よりも、第2の精製工程において多い割合で除去することが好ましい。なお、割合とは、第1の精製工程では原料エタノール、第2の精製工程ではエチレン含有生成物に対する割合である。
In the second purification step, it is preferable that either the water produced in the ethylene production step or the unreacted ethanol is removed, and it is preferable that both of them are removed. Further, in the second purification step, as described above, it is preferable to remove at least one selected from the specific organic compound, carbon monoxide, and oxygen, and the specific organic compound has a relatively low molecular weight and is low. It is more preferable that the molecular weight organic compound (for example, having 3 to 5 carbon atoms) is removed. That is, in the first purification step, aliphatic saturated hydrocarbons having 6 to 14 carbon atoms are removed, and in the second purification step, in addition to water and unreacted ethanol, a specific low molecular weight having a relatively low molecular weight is specified. It is more preferable that at least the molecular weight organic compound is removed, and it is also preferable that carbon monoxide and oxygen are further removed in addition to these in the second purification step.
It is more preferred that the particular organic compound removed in the second purification step specifically comprises at least one selected from low molecular weight alcohols such as 2-propanol and low molecular weight ethers such as diethyl ether. .. Further, it is more preferable that the specific organic compound removed in the second purification step further contains, in addition to these, a low molecular weight aliphatic unsaturated hydrocarbon such as propylene. That is, in the second purification step, it is more preferable that propanol and diethyl ether are removed as the low molecular weight organic compound, and it is particularly preferable that propylene is further removed in addition to these.
Low molecular weight organic compounds can be efficiently removed from ethylene together with unreacted ethanol, carbon monoxide, oxygen and the like by using a specific separation device.
Further, diethyl ether can be a raw material for producing ethylene together with ethanol in the ethylene production step. Therefore, it is preferable to remove diethyl ether in a larger proportion in the second purification step than in the first purification step. The ratio is a ratio to the raw material ethanol in the first purification step and to the ethylene-containing product in the second purification step.
 第2の精製工程では、特に限定されないが、好ましくは低温分離方式の分離装置により精製を行うとよい。具体的には、エチレンの融点以下(常圧では-170℃以下)に冷却された冷媒(チラー)を用いた凝縮器により、エチレンを固化させてエチレンを分離する方法が挙げられる。
 この場合、エチレンよりも融点が高い水、二酸化炭素、エタノールその他の有機化合物などの物質は、冷媒の温度が上記凝縮器よりも高い1又は2以上の前段の凝縮器を用いて、取り除いておくとよい。前段の凝縮器としては、例えば、冷媒の温度が比較的高い(例えば、常圧では0~25℃)第1の凝縮器と、第1の凝縮器よりも冷媒の温度が低い第2の凝縮器(例えば、常圧では-50~-90℃)とを組み合わせて使用してもよい。
 また、凝縮器はいかなる形態のものでもよく、冷媒が通された金属管などに、気相のエチレン含有生成物を接触させてもよいし、冷媒とエチレン含有生成物を直接接触させてもよい。
The second purification step is not particularly limited, but it is preferable to perform purification by a separation device of a low temperature separation method. Specifically, a method of solidifying ethylene to separate it by a condenser using a refrigerant (chiller) cooled to a temperature below the melting point of ethylene (-170 ° C. or lower at normal pressure) can be mentioned.
In this case, substances such as water, carbon dioxide, ethanol and other organic compounds having a melting point higher than that of ethylene are removed by using a condenser in the previous stage having a refrigerant temperature higher than that of the above condenser. It is good. The condensers in the first stage include, for example, a first condenser in which the temperature of the refrigerant is relatively high (for example, 0 to 25 ° C. at normal pressure) and a second condenser in which the temperature of the refrigerant is lower than that of the first condenser. It may be used in combination with a vessel (for example, −50 to −90 ° C. at normal pressure).
Further, the condenser may be of any form, and the ethylene-containing product of the gas phase may be brought into contact with a metal tube or the like through which the refrigerant is passed, or the refrigerant and the ethylene-containing product may be brought into direct contact with each other. ..
[重合体の製造方法]
 本発明で製造されたエチレンは、様々な用途に使用可能であるが、好ましくは、エチレン由来の構成単位を含む重合体を製造する重合工程に供される。重合工程では、エチレンを含むモノマーを重合して重合体が得られる。重合体は、エチレン単体を重合して得られたホモポリエチレンでもよいが、エチレンとエチレン以外のモノマー成分を重合した共重合体でもよい。
[Method for producing polymer]
The ethylene produced in the present invention can be used for various purposes, but is preferably used in a polymerization step for producing a polymer containing a structural unit derived from ethylene. In the polymerization step, a monomer containing ethylene is polymerized to obtain a polymer. The polymer may be homopolyethylene obtained by polymerizing ethylene alone, or may be a copolymer obtained by polymerizing ethylene and a monomer component other than ethylene.
 重合体は、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)、直鎖状低密度ポリエチレン(LLDPE)、超高分子量ポリエチレン(UHMWPE)などのポリエチレン樹脂が好ましい。
 また、エチレン由来の構成単位を含む重合体であればこれら以外でもよく、例えば、エチレン以外のモノマーとの共重合体であってもよい。当該エチレン以外のモノマーとしては、特に制限されないが、プロピレン、1-ブテン、2-ブテン、イソブテン、1-ペンテン、1-へキセン、1-へプテン、1-オクテン、酢酸ビニル、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、アクリルニトリル、フッ化ビニル、塩化ビニル、臭化ビニル、テトラフルオロエチレン、マレイン酸ジエチル、フマル酸ジエチル、一酸化炭素等が挙げられる。具体的な共重合体としては、エチレン酢酸ビニル共重合体(EVA)、エチレンアクリル酸メチル共重合体、エチレン(メタ)アクリル酸エチル共重合体、エチレン(メタ)アクリル酸共重合体、エチレンプロピレンゴム(EPM)、エチレンプロピレンジエンゴム(EPDM)等が挙げられる。
The polymer is preferably a polyethylene resin such as low density polyethylene (LDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), and ultrahigh molecular weight polyethylene (UHMWPE).
Further, any polymer containing a structural unit derived from ethylene may be used, and for example, it may be a copolymer with a monomer other than ethylene. The monomer other than ethylene is not particularly limited, but propylene, 1-butene, 2-butene, isobutene, 1-pentene, 1-hexene, 1-heptene, 1-octene, vinyl acetate, methyl acrylate, Ethyl acrylate, propyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, acrylic nitrile, vinyl fluoride, vinyl chloride, vinyl bromide, tetrafluoroethylene, diethyl maleate, Examples thereof include diethyl fumarate and carbon monoxide. Specific copolymers include ethylene vinyl acetate copolymer (EVA), methyl ethylene acrylate copolymer, ethyl ethylene (meth) acrylate copolymer, ethylene (meth) acrylate copolymer, and ethylene propylene. Examples thereof include rubber (EPM) and ethylene propylene diene rubber (EPDM).
 低密度ポリエチレンは、分子構造上、短鎖分岐と長鎖分岐とを有し、密度が0.910g/cm以上0.942g/cm未満であり、典型的には密度が0.930g/cm以下である。高密度ポリエチレンは、分子構造上分岐が少なく、密度が0.942g/cm以上のポリエチレンである。なお、密度が0.930g/cm以上0.942g/cm未満のポリエチレンを中密度ポリエチレンと呼ぶ場合がある。
 直鎖状低密度ポリエチレンは、一般的にエチレンと、少量のエチレン以外のα-オレフィンとの共重合体であり、エチレン以外のα-オレフィンとしては、炭素数3~10のα-オレフィンが挙げられ、具体的には、プロピレン、ブテン-1、ペンテン-1、4-メチル-ペンテン-1、ヘキセン-1、オクテン-1、デセン-1等が挙げられる。直鎖状低密度ポリエチレンの密度は0.942g/cm未満であり、典型的には密度は0.930g/cm以下であり、また、例えば0.880g/cm以上、典型的には0.910g/cm以上である。
Low-density polyethylene has a short-chain branch and a long-chain branch in terms of molecular structure, and has a density of 0.910 g / cm 3 or more and less than 0.942 g / cm 3 , and typically has a density of 0.930 g / cm / cm. It is cm 3 or less. High-density polyethylene is polyethylene having few branches due to its molecular structure and a density of 0.942 g / cm 3 or more. In addition, polyethylene having a density of 0.930 g / cm 3 or more and less than 0.942 g / cm 3 may be referred to as medium density polyethylene.
The linear low-density polyethylene is generally a copolymer of ethylene and a small amount of α-olefin other than ethylene, and examples of the α-olefin other than ethylene include α-olefins having 3 to 10 carbon atoms. Specific examples thereof include propylene, butene-1, penten-1, 4-methyl-pentene-1, hexene-1, octene-1, and decene-1. The density of the linear low density polyethylene is less than 0.942 g / cm 3 , typically less than 0.930 g / cm 3 , and for example 0.880 g / cm 3 or more, typically 0.880 g / cm 3. It is 0.910 g / cm 3 or more.
 超高分子量ポリエチレン(UHMWPE)は、一般的なポリエチレンよりも分子量が大きいポリエチレンであり、例えば重量平均分子量が40万以上のポリエチレン樹脂であり、好ましくは重量平均分子量が100万以上である。超高分子量ポリエチレンは、重量平均分子量が高くなることで各種の機械強度が良好となる。また、超高分子量ポリエチレンの重量平均分子量は、重合の容易性の観点などから、700万以下が好ましく、400万以下がさらに好ましい。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)により測定した標準ポリスチレン換算の重量平均分子量である。
 超高分子量ポリエチレン(UHMWPE)は、エチレン単独重合体であってもよいが、エチレンとエチレン以外のα-オレフィンとの共重合体であってもよい。エチレン以外のα-オレフィンは、上記LLDPEで述べたとおりである。
Ultra high molecular weight polyethylene (UHMWPE) is a polyethylene having a larger molecular weight than general polyethylene, for example, a polyethylene resin having a weight average molecular weight of 400,000 or more, preferably a weight average molecular weight of 1 million or more. The ultra-high molecular weight polyethylene has good mechanical strength due to the high weight average molecular weight. Further, the weight average molecular weight of the ultra-high molecular weight polyethylene is preferably 7 million or less, more preferably 4 million or less, from the viewpoint of easiness of polymerization. The weight average molecular weight is a standard polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
The ultra high molecular weight polyethylene (UHMWPE) may be an ethylene homopolymer, or may be a copolymer of ethylene and an α-olefin other than ethylene. The α-olefins other than ethylene are as described in the above LLDPE.
 エチレンは、例えばラジカル開始剤存在下に重合してポリエチレン樹脂とすることができる。ラジカル開始剤としては、特に限定されないが、有機過酸化物、ペルオキシエステル、ジアルキルペルオキシド、またはそれらの組み合わせなどの酸素ベースの開始剤を含む。ラジカル開始剤の具体例としては、特に限定されないが、t-ブチルペルオキシピバレート、di-t-ブチルペルオキシド(DTBP)、t-ブチルペルオキシアセテート(TBPO)、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシネオデカノエート(PND)、t-ブチルペルオキシオクトエート、およびこれらの任意の2以上の組み合わせが挙げられる。 Ethylene can be polymerized in the presence of a radical initiator, for example, to form a polyethylene resin. The radical initiator includes, but is not limited to, an oxygen-based initiator such as an organic peroxide, a peroxy ester, a dialkyl peroxide, or a combination thereof. Specific examples of the radical initiator are not particularly limited, but are t-butylperoxypivalate, di-t-butylperoxide (DTBP), t-butylperoxyacetate (TBPO), and t-butylperoxy-2-ethylhexano. Includes ate, t-butylperoxyneodecanoate (PND), t-butylperoxyoctoate, and any combination of two or more of these.
 また、エチレンは、レドックス触媒などの触媒存在下に重合することでポリエチレン樹脂とすることもできる。レドックス触媒としては、チーグラー・ナッタ触媒、メタロセン触媒、フィリップス触媒、スタンダード触媒などが挙げられる。 Ethylene can also be made into a polyethylene resin by polymerizing in the presence of a catalyst such as a redox catalyst. Examples of the redox catalyst include Ziegler-Natta catalyst, metallocene catalyst, Philips catalyst, standard catalyst and the like.
 チーグラー・ナッタ触媒としては、例えばトリエチルアルミニウム-四塩化チタン固体複合物を使用する。チーグラー・ナッタ触媒は、例えば、四塩化チタンを有機アルミニウム化合物で還元し、更に各種の電子供与体及び電子受容体で処理して得られた三塩化チタン組成物と、有機アルミニウム化合物と、芳香族カルボン酸エステルとを組み合わせてもよいし、ハロゲン化マグネシウムに四塩化チタンと各種の電子供与体を接触させ担持型触媒としてもよい。
 メタロセン触媒としては、例えば、遷移金属をπ電子系の不飽和化合物で挟んだ構造を有するビス(シクロペンタジエニル)金属錯体等の化合物が挙げられる。より具体的には、チタン、ジルコニウム、ニッケル、パラジウム、ハフニウム、及び白金等の四価の遷移金属に、1又は2以上のシクロペンタジエニル環又はその類縁体がリガンド(配位子)として存在する化合物が挙げられる。
 チーグラー・ナッタ触媒及びメタロセン触媒は、それぞれ特定の共触媒(助触媒)と組み合わせて使用してもよい。具体的な共触媒としては、メチルアルミノキサン(MAO)、ホウ素系化合物等が挙げられる。
As the Ziegler-Natta catalyst, for example, a triethylaluminum-titanium tetrachloride solid composite is used. The Ziegler-Natta catalyst is, for example, a titanium trichloride composition obtained by reducing titanium tetrachloride with an organoaluminum compound and further treating it with various electron donors and electron acceptors, an organoaluminum compound, and an aromatic. It may be combined with a carboxylic acid ester, or titanium halide may be brought into contact with titanium tetrachloride and various electron donors to form a supported catalyst.
Examples of the metallocene catalyst include compounds such as a bis (cyclopentadienyl) metal complex having a structure in which a transition metal is sandwiched between π-electron unsaturated compounds. More specifically, one or more cyclopentadienyl rings or their analogs are present as ligands in tetravalent transition metals such as titanium, zirconium, nickel, palladium, hafnium, and platinum. Examples of the compound.
The Ziegler-Natta catalyst and the metallocene catalyst may be used in combination with specific co-catalysts (co-catalysts). Specific examples of the co-catalyst include methylaluminoxane (MAO) and boron-based compounds.
 フィリップス触媒としては、たとえば酸化クロム等のクロム化合物を含む触媒系であり、具体的には、シリカ、アルミナ、シリカ-アルミナ、シリカ-チタニア等の固体酸化物に、三酸化クロム、クロム酸エステル等のクロム化合物を担持した触媒を例示することができる。
 また、スタンダード触媒としては、酸化モリブデンを使用した公知の触媒であり、例えば、ガンマ-アルミナ・酸化モリブデンなどが挙げられる。
The Phillips catalyst is, for example, a catalyst system containing a chromium compound such as chromium oxide. Specifically, solid oxides such as silica, alumina, silica-alumina, and silica-titania are combined with chromium trioxide, chromic acid ester, and the like. An example of a catalyst carrying the chromium compound of.
The standard catalyst is a known catalyst using molybdenum oxide, and examples thereof include gamma-alumina and molybdenum oxide.
 エチレンの重合法としては、ラジカル開始剤を使用する場合には、高圧法が挙げられる。高圧法では、エチレンを1000~4000気圧、100~350℃の環境下で、例えば多段ガス圧縮機を用いて重合するとよい。その後、残留モノマーを分離し、冷却して得られる。エチレンは、高圧法により製造されることで、低密度ポリエチレン(LDPE)が製造できる。 As an ethylene polymerization method, a high pressure method can be mentioned when a radical initiator is used. In the high pressure method, ethylene may be polymerized in an environment of 1000 to 4000 atm and 100 to 350 ° C. using, for example, a multi-stage gas compressor. Then, the residual monomer is separated and cooled to obtain it. Ethylene can be produced by the high pressure method to produce low density polyethylene (LDPE).
 チーグラー・ナッタ触媒、メタロセン触媒、フィリップス触媒、スタンダード触媒などの触媒を使用する場合には、エチレンは、低圧法、中圧法で重合を行うとよい。これら触媒を使用する場合には、液相重合法、気相重合法、懸濁重合法のいずれで行うことが好ましい。これら触媒を使用し、低圧法又は中圧法でエチレンを重合することでHDPEを製造できる。また、これら触媒を使用して、エチレンと、エチレン以外の若干量のα-オレフィンを共重合することで、LLDPEも製造することができる。さらに、例えば低圧の懸濁重合法により、長期間重合を行うことで超高分子量ポリエチレンを得ることができる。 When using catalysts such as Ziegler-Natta catalysts, metallocene catalysts, Philips catalysts, and standard catalysts, ethylene should be polymerized by the low pressure method or medium pressure method. When these catalysts are used, it is preferable to use any of a liquid phase polymerization method, a gas phase polymerization method, and a suspension polymerization method. HDPE can be produced by polymerizing ethylene by a low pressure method or a medium pressure method using these catalysts. LLDPE can also be produced by copolymerizing ethylene with a small amount of α-olefin other than ethylene using these catalysts. Further, for example, an ultra-high molecular weight polyethylene can be obtained by carrying out polymerization for a long period of time by a low-pressure suspension polymerization method.
 本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
 <原料エタノールの製造>
(原料ガス生成工程)
 ごみ焼却設備で一般廃棄物を燃焼した後に排出されるガスを用いた。原料ガスの成分は、一酸化炭素約30体積%、二酸化炭素約30体積%、水素約30体積%および窒素は約10体積%であった。
<Manufacturing of raw material ethanol>
(Raw material gas generation process)
The gas discharged after burning general waste in a waste incineration facility was used. The components of the raw material gas were about 30% by volume of carbon monoxide, about 30% by volume of carbon dioxide, about 30% by volume of hydrogen, and about 10% by volume of nitrogen.
(合成ガス精製工程)
 上記にて製造された原料ガスを、圧力スイング吸着方式の分離装置(PSA)を用いて、ガス温度を80℃まで加温した条件にて、合成ガス中に含まれている二酸化炭素を、60~80体積%除去した後、150℃のスチームを用いた二重管式熱交換器にて、ガスの昇温と25℃の冷却水を用いた二重管式熱交換器を用いて再冷却を行い、不純物を析出させ析出した不純物をフィルターで除去することにより、合成ガスを製造した。
(Syngas purification process)
Under the condition that the raw material gas produced above is heated to 80 ° C. using a pressure swing adsorption type separator (PSA), the carbon dioxide contained in the synthetic gas is 60. After removing ~ 80% by volume, recool using a double-tube heat exchanger using steam at 150 ° C to raise the gas and using a double-tube heat exchanger using cooling water at 25 ° C. A synthetic gas was produced by precipitating impurities and removing the precipitated impurities with a filter.
(エタノール変換工程)
 主反応器、合成ガス供給孔、および排出孔を備えた、クロストリジウム・オートエタノゲナム(微生物)の種菌と、菌培養用の液状培地(リン化合物、窒素化合物および各種ミネラル等を適切量含む)を充填した連続発酵装置(微生物発酵槽)に、上記のようにして得られた合成ガスを連続的に供給し、37℃で培養(微生物発酵)を連続300時間行った。その後、排出孔からエタノールを含有する培養液を約8000L抜き出した。
(Ethanol conversion process)
Inoculum of Clostridium autoethanogenum (microorganism) equipped with a main reactor, synthetic gas supply hole, and discharge hole, and a liquid medium for culturing the bacteria (including appropriate amounts of phosphorus compound, nitrogen compound, various minerals, etc.) The synthetic gas obtained as described above was continuously supplied to the filled continuous fermentation apparatus (microbial fermentation tank), and culturing at 37 ° C. (microorganism fermentation) was continuously carried out for 300 hours. Then, about 8000 L of the culture solution containing ethanol was extracted from the discharge hole.
(分離工程)
 上記エタノール変換工程で得られた、エタノールを含有する培養液を、固液分離フィルター装置を用いて培養液導入圧200kPa以上、温度37℃の条件にて固液分離して、エタノール含有液を得た。
(Separation process)
The ethanol-containing culture solution obtained in the above ethanol conversion step is solid-liquid separated using a solid-liquid separation filter device under the conditions of a culture solution introduction pressure of 200 kPa or more and a temperature of 37 ° C. to obtain an ethanol-containing solution. It was.
(前段精製工程)
 続いて、エタノール含有液を、170℃のスチームを用いた加熱器を備えた蒸留装置に導入した。蒸留塔底部の温度を8~15分以内に101℃まで上昇させた後、上記エタノール含有液を蒸留塔中部から導入し、連続運転時においては、塔底部を101℃、塔中部を99℃、頭頂部を91℃にて、15秒/Lの条件にて連続運転し、精製されたエタノールを得た。蒸留塔内部の圧力は60~95kPa(絶対圧)であった。精製されたエタノール(原料エタノール)は、エタノール純度が90容量%以上であった。
(Pre-stage purification process)
Subsequently, the ethanol-containing liquid was introduced into a distillation apparatus equipped with a heater using steam at 170 ° C. After raising the temperature of the bottom of the distillation column to 101 ° C. within 8 to 15 minutes, the ethanol-containing liquid was introduced from the center of the distillation column, and during continuous operation, the bottom of the column was 101 ° C. and the center of the column was 99 ° C. The crown was continuously operated at 91 ° C. under the condition of 15 seconds / L to obtain purified ethanol. The pressure inside the distillation column was 60 to 95 kPa (absolute pressure). The purified ethanol (raw material ethanol) had an ethanol purity of 90% by volume or more.
(第1の精製工程)
 得られたエタノールを逆相クロマトグラフィーにより精製し、主に炭素数6~14の脂肪族飽和炭化水素を除去する。
(First purification step)
The obtained ethanol is purified by reverse phase chromatography to remove mainly aliphatic saturated hydrocarbons having 6 to 14 carbon atoms.
(エチレン生成工程)
 第1の精製工程で精製された原料エタノールからエチレンを含む生成物を製造する。
 具体的には、活性アルミナ触媒を反応管に充填し、温度525℃、圧力0.5MPaGに調整する。第1の精製工程で得られるエタノールを反応管に供給し、気相脱水反応をすることで、エチレンを含むエチレン含有生成物を製造する。
(Ethylene production process)
A product containing ethylene is produced from the raw material ethanol purified in the first purification step.
Specifically, the reaction tube is filled with an activated alumina catalyst, and the temperature is adjusted to 525 ° C. and the pressure is adjusted to 0.5 MPaG. The ethanol obtained in the first purification step is supplied to the reaction tube and subjected to a vapor phase dehydration reaction to produce an ethylene-containing product containing ethylene.
(第2の精製工程)
 5℃に冷却した第1の凝縮器、-70℃に冷却した第2の凝縮器、及び-170℃に冷却した第3の凝縮器をこの順に配置して、これらに上記で製造したエチレン含有生成物を順次バブリングすることで精製したエチレンを製造する。第1の凝縮器で主に水を除去し、第2の凝縮器で主に未反応のエタノール、2-プロパノール、ジエチルエーテルを除去し、第3の凝縮器で主にプロピレン、一酸化炭素、及び酸素を除去する。
(Second purification step)
A first condenser cooled to 5 ° C., a second condenser cooled to −70 ° C., and a third condenser cooled to −170 ° C. were arranged in this order, and the ethylene-containing product produced above was added thereto. Purified ethylene is produced by sequentially bubbling the products. The first condenser removes mainly water, the second condenser mainly removes unreacted ethanol, 2-propanol and diethyl ether, and the third condenser mainly removes propylene and carbon monoxide. And remove oxygen.
(ポリエチレン樹脂の製造)
 反応管を窒素置換した後、助触媒である修飾メチルアルミノキサン(MMAO)、チーグラー・ナッタ触媒、およびトルエンを添加する。常圧下に室温で撹拌した後、50℃まで昇温し、エチレンを供給して重合を行うことで、ポリエチレン樹脂(HDPE)を製造する。
 本実施例で製造されるポリエチレンは、第1及び第2の精製工程を経ることで、エチレンの重合反応における重合活性が好適に進行し、かつ得られる重合体の品質を良好にできる。比較として市販高純度のエチレンを用いて重合されたポリエチレンとしても、分子量は同等のものができる。

 
(Manufacturing of polyethylene resin)
After substituting the reaction tube with nitrogen, the co-catalysts modified methylaluminoxane (MMAO), Ziegler-Natta catalyst, and toluene are added. After stirring at room temperature under normal pressure, the temperature is raised to 50 ° C., ethylene is supplied and polymerization is carried out to produce a polyethylene resin (HDPE).
By going through the first and second purification steps, the polyethylene produced in this example can preferably proceed with the polymerization activity in the ethylene polymerization reaction, and can improve the quality of the obtained polymer. For comparison, polyethylene polymerized using commercially available high-purity ethylene can have the same molecular weight.

Claims (8)

  1.  廃棄物由来のエタノールを含む原料エタノールから、エチレンを含むエチレン含有生成物を得るエチレン生成工程と、
    前記エチレン生成工程の前に、前記原料エタノールを精製する第1の精製工程、及び前記エチレン生成工程の後に前記エチレン含有生成物を精製する第2の精製工程の少なくともいずれかとを含む、
     エチレンの製造方法。
    An ethylene production process for obtaining an ethylene-containing product containing ethylene from raw material ethanol containing ethanol derived from waste.
    It comprises at least one of a first purification step of purifying the raw material ethanol prior to the ethylene production step and a second purification step of purifying the ethylene-containing product after the ethylene production step.
    Ethylene production method.
  2.  前記第1の精製工程が、前記原料エタノールから炭素数3~14の脂肪族不飽和炭化水素、炭素数3~14の脂肪族飽和炭化水素、炭素数3~10のアルコール、及び炭素数3~10のエーテルからなる群から選択される少なくとも1つを除去することを含む、請求項1に記載のエチレンの製造方法。 The first purification step is carried out from the raw material ethanol by an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, an alcohol having 3 to 10 carbon atoms, and 3 to 3 carbon atoms. The method for producing ethylene according to claim 1, which comprises removing at least one selected from the group consisting of 10 ethers.
  3.  前記第2の精製工程が、前記エチレン含有生成物から炭素数3~14の脂肪族不飽和炭化水素、炭素数3~14の脂肪族飽和炭化水素、炭素数3~10のアルコール、炭素数3~10のエーテル、一酸化炭素、及び酸素からなる群から選択される少なくとも1つを除去することを含む、請求項1又は2に記載のエチレンの製造方法。 The second purification step is performed on the ethylene-containing product from an aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms, an aliphatic saturated hydrocarbon having 3 to 14 carbon atoms, an alcohol having 3 to 10 carbon atoms, and 3 carbon atoms. The method for producing ethylene according to claim 1 or 2, which comprises removing at least one selected from the group consisting of ether, carbon monoxide, and oxygen of -10.
  4.  前記炭素数3~14の脂肪族不飽和炭化水素が、プロピレンを含む、請求項2または3に記載のエチレンの製造方法。 The method for producing ethylene according to claim 2 or 3, wherein the aliphatic unsaturated hydrocarbon having 3 to 14 carbon atoms contains propylene.
  5.  前記炭素数3~14の脂肪族飽和炭化水素が、炭素数6~14の脂肪族飽和炭化水素を含む、請求項2~4のいずれか1項に記載のエチレンの製造方法。 The method for producing ethylene according to any one of claims 2 to 4, wherein the aliphatic saturated hydrocarbon having 3 to 14 carbon atoms contains an aliphatic saturated hydrocarbon having 6 to 14 carbon atoms.
  6. 前記炭素数3~10のアルコールが、2-プロパノールを含む、請求項2~5のいずれか1項に記載のエチレンの製造方法。 The method for producing ethylene according to any one of claims 2 to 5, wherein the alcohol having 3 to 10 carbon atoms contains 2-propanol.
  7.  前記炭素数3~10のエーテルが、ジブチルエーテルを含む、請求項2~6のいずれか1項に記載のエチレンの製造方法。 The method for producing ethylene according to any one of claims 2 to 6, wherein the ether having 3 to 10 carbon atoms contains dibutyl ether.
  8.  請求項1~7のいずれか1項に記載の方法で製造されるエチレンを含むモノマーを重合して重合体を得る重合工程を含む、重合体の製造方法。 A method for producing a polymer, which comprises a polymerization step of polymerizing a monomer containing ethylene produced by the method according to any one of claims 1 to 7 to obtain a polymer.
PCT/JP2020/026426 2019-07-05 2020-07-06 Method for producing ethylene, and method for producing polymer WO2021006245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021530689A JPWO2021006245A1 (en) 2019-07-05 2020-07-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-126307 2019-07-05
JP2019126307 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021006245A1 true WO2021006245A1 (en) 2021-01-14

Family

ID=74113776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026426 WO2021006245A1 (en) 2019-07-05 2020-07-06 Method for producing ethylene, and method for producing polymer

Country Status (2)

Country Link
JP (1) JPWO2021006245A1 (en)
WO (1) WO2021006245A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004833A1 (en) * 2022-06-30 2024-01-04 住友化学株式会社 Method for producing c2-c8 unsaturated hydrocarbon, method for producing c2-c8 unsaturated hydrocarbon mixture, method for producing olefin-based polymer, method for producing compound, method for producing polymer, olefin-based polymer, and polymer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838220A (en) * 1981-03-13 1983-03-05 ペトロレオ・ブラシレイロ・ソシエダ・アノニマ−ペトロブラス Low molecular alcohol dehydration
JP2009517448A (en) * 2005-11-29 2009-04-30 ビーピー ケミカルズ リミテッド Process for producing ethylene
JP2010030902A (en) * 2006-11-21 2010-02-12 Mitsui Chemicals Inc Method for producing ethylene
JP2012001441A (en) * 2010-06-14 2012-01-05 Sekisui Chem Co Ltd Method for producing ethanol and system for producing ethanol
US20130157322A1 (en) * 2010-08-26 2013-06-20 Lanzatech New Zealand Limited Process for producing ethanol and ethylene via fermentation
JP2017137464A (en) * 2016-02-05 2017-08-10 日本ポリプロ株式会社 Olefin polymerization method by refined olefin
JP2019048783A (en) * 2017-09-11 2019-03-28 アース製薬株式会社 Flying pest tracking inhibitor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5838220A (en) * 1981-03-13 1983-03-05 ペトロレオ・ブラシレイロ・ソシエダ・アノニマ−ペトロブラス Low molecular alcohol dehydration
JP2009517448A (en) * 2005-11-29 2009-04-30 ビーピー ケミカルズ リミテッド Process for producing ethylene
JP2010030902A (en) * 2006-11-21 2010-02-12 Mitsui Chemicals Inc Method for producing ethylene
JP2012001441A (en) * 2010-06-14 2012-01-05 Sekisui Chem Co Ltd Method for producing ethanol and system for producing ethanol
US20130157322A1 (en) * 2010-08-26 2013-06-20 Lanzatech New Zealand Limited Process for producing ethanol and ethylene via fermentation
JP2017137464A (en) * 2016-02-05 2017-08-10 日本ポリプロ株式会社 Olefin polymerization method by refined olefin
JP2019048783A (en) * 2017-09-11 2019-03-28 アース製薬株式会社 Flying pest tracking inhibitor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The first public release of a pilot plant that turns 'garbage' into ethanol", 17 April 2018 (2018-04-17), pages 1 - 4, Retrieved from the Internet <URL:https://kyodonewsprwire.jp/prwfile/release/M104863/201804162973/_prw_0R1f1_6UCQsC40.pdf> *
SEKISUI CHEMICAL CO., LTD.: "Established the world's first innovative production technology to convert "garbage" into "ethanol"", 6 December 2017 (2017-12-06), pages 1 - 3, XP055783389, Retrieved from the Internet <URL:https://www.sekisui.co.jp/news/2017/1314802_29186.html> *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004833A1 (en) * 2022-06-30 2024-01-04 住友化学株式会社 Method for producing c2-c8 unsaturated hydrocarbon, method for producing c2-c8 unsaturated hydrocarbon mixture, method for producing olefin-based polymer, method for producing compound, method for producing polymer, olefin-based polymer, and polymer

Also Published As

Publication number Publication date
JPWO2021006245A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
KR101649997B1 (en) Integrated process for the production of ethylene-butylene copolymer, an ethylene-butylene copolymer and the use of ethylene and 1-butylene, as comonomer, sourced from renewable natural raw materials
TWI522092B (en) Acrylic acid and water-absorbing polymer structures based upon renewable raw materials and process for their preparation
TW200911739A (en) Process for the preparation of alkylene glycol
WO2008062709A1 (en) Method for producing ethylene
JP7422210B2 (en) Bio-based liquefied petroleum gas production
WO2021006245A1 (en) Method for producing ethylene, and method for producing polymer
CN102448923A (en) Method for crystallizing (meth)acrylic acid and method for regulating content of polymerization inhibitor in (meth)acrylic acid product
JP6789404B2 (en) Manufacturing method of organic substances
WO2016064853A1 (en) Selective partial hydrogenation of beta-farnesene
US20240141088A1 (en) Ethanol
WO2021006226A1 (en) Method for determining origin of carbon source of chemical substance
WO2024004833A1 (en) Method for producing c2-c8 unsaturated hydrocarbon, method for producing c2-c8 unsaturated hydrocarbon mixture, method for producing olefin-based polymer, method for producing compound, method for producing polymer, olefin-based polymer, and polymer
JP7339737B2 (en) ethanol
JP7323307B2 (en) ethanol
JP7323305B2 (en) ethanol
JP7339751B2 (en) ethanol
JP7323306B2 (en) ethanol
JP7339750B2 (en) ethanol
JP2021004192A (en) ethanol
JP2021004190A (en) ethanol
JP2021004189A (en) ethanol
JP2021004191A (en) ethanol
JP2023160834A (en) ethanol

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836515

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530689

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20836515

Country of ref document: EP

Kind code of ref document: A1