WO2021006189A1 - Image generation device, image generation method, and image generation program - Google Patents

Image generation device, image generation method, and image generation program Download PDF

Info

Publication number
WO2021006189A1
WO2021006189A1 PCT/JP2020/026091 JP2020026091W WO2021006189A1 WO 2021006189 A1 WO2021006189 A1 WO 2021006189A1 JP 2020026091 W JP2020026091 W JP 2020026091W WO 2021006189 A1 WO2021006189 A1 WO 2021006189A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
feature amount
parameters
renderer
image generation
Prior art date
Application number
PCT/JP2020/026091
Other languages
French (fr)
Japanese (ja)
Inventor
五十嵐 健夫
承鐸 盧
昌彦 足立
高橋 健一
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2021006189A1 publication Critical patent/WO2021006189A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics

Definitions

  • the present invention relates to an image generator, an image generation method, and an image generation program.
  • Non-Patent Document 1 “Computer Graphics” technology.
  • Non-Patent Document 2 “inverse rendering” that estimates the parameters of a renderer that reproduces a given reference image. Research is being conducted (Non-Patent Document 2).
  • the present invention provides an image generation device, an image generation method, and an image generation program that calculate image generation parameters that reproduce the image of the reference model.
  • the image generator includes a renderer control unit that causes a renderer to render an image of a model according to a plurality of parameters, a first feature amount that is an image feature amount, and an image feature amount of a reference model. It is provided with a feature amount calculation unit that calculates each of a certain second feature amount, and an update unit that updates a plurality of parameters so as to reduce the difference between the first feature amount and the second feature amount.
  • image generation that reproduces the image of the reference model by updating a plurality of parameters so as to reduce the difference between the feature amount of the image of the reference model and the feature amount of the rendered image.
  • the parameters can be calculated.
  • the renderer control unit may specify a rendering rule for procedural modeling by the plurality of parameters, and have the renderer render an image of the model based on the rendering rule.
  • procedural modeling that reproduces the image of the reference model by updating a plurality of parameters so as to reduce the difference between the feature amount of the image of the reference model and the feature amount of the rendered image. Parameters can be calculated.
  • the renderer may be a 3D renderer that renders an image of a 3D model based on rendering rules.
  • the update unit may update a plurality of parameters so as to satisfy predetermined constraint conditions regarding the plurality of parameters.
  • the feature amount calculation unit may include a pre-learned convolutional neural network.
  • the features of the image can be appropriately captured by using the pre-learned convolutional neural network as the feature amount extractor.
  • the updater minimizes the loss function for evaluating the difference between the first feature and the second feature using at least one of particle swarm optimization, covariance matrix adaptive evolution strategy, and Bayesian optimization. Multiple parameters may be updated so as to be.
  • the optimum parameters can be calculated globally, and the image of the reference model can be reproduced.
  • An image generation method is to cause a renderer to render an image of a model according to a plurality of parameters, a first feature amount which is an image feature amount, and an image feature amount of a reference model. It includes calculating each of the second feature amount and updating a plurality of parameters so as to reduce the difference between the first feature amount and the second feature amount.
  • image generation that reproduces the image of the reference model by updating a plurality of parameters so as to reduce the difference between the feature amount of the image of the reference model and the feature amount of the rendered image.
  • the parameters can be calculated.
  • the image generation program is a renderer control unit that causes a renderer to render a model image according to a plurality of parameters in a calculation unit provided in the image generation device, and a first feature that is an image feature amount.
  • the feature amount calculation unit that calculates the amount and the second feature amount that is the feature amount of the image of the reference model, and a plurality of parameters are updated so as to reduce the difference between the first feature amount and the second feature amount. It functions as an update unit.
  • image generation that reproduces the image of the reference model by updating a plurality of parameters so as to reduce the difference between the feature amount of the image of the reference model and the feature amount of the rendered image.
  • the parameters can be calculated.
  • an image generation device an image generation method, and an image generation program that calculate image generation parameters that reproduce the image of the reference model.
  • FIG. 1 is a diagram showing a functional block of the image generation device 10 according to the embodiment of the present invention.
  • the image generation device 10 includes a renderer control unit 11, a renderer 12, a feature amount calculation unit 13, a storage unit 14, and an update unit 15.
  • the renderer control unit 11 causes the renderer 12 to render an image of the model according to a plurality of parameters.
  • the renderer control unit 11 causes the renderer 12 to render the model image according to parameters such as brightness, contrast, and color temperature, and causes the renderer 12 to render the model image according to the parameters related to the image quality adjustment function of the renderer 12. You can do it.
  • the renderer control unit 11 may specify a rendering rule for procedural modeling by a plurality of parameters, and cause the renderer 12 to render an image of the model based on the rendering rule.
  • the rendering rule is a rule used in the procedural modeling function of the renderer 12, and includes a rendering algorithm specified by a plurality of parameters.
  • the renderer 12 is a 3D renderer that renders an image of a 3D model based on rendering rules specified by a plurality of parameters.
  • the renderer 12 may be composed of a commercially available general-purpose rendering engine.
  • the feature amount calculation unit 13 calculates the first feature amount, which is the feature amount of the image rendered by the renderer 12, and the second feature amount, which is the feature amount of the image of the reference model (reference image 14a).
  • the feature amount calculation unit 13 may include a pre-learned convolutional neural network (CNN: Convolutional Neural Network) 13a.
  • CNN13a may be composed of, for example, VGGNet (Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, arXiv: 1409.1556, 2014).
  • the feature calculation unit 13 is described in Leon Gatys, Alexander S Ecker, and Matthias Bethge, “Texture Synthesis Using Convolutional Neural Networks”, Advances in Neural Information Processing Systems 28, Curran Associates, Inc., 262.
  • the Gram matrix of the feature map calculated by CNN13a may be calculated as the feature amount. In this way, by using the pre-learned convolutional neural network as the feature amount extractor, the features of the image can be appropriately captured.
  • the storage unit 14 stores the reference image 14a.
  • the reference image 14a is an image of the reference model and is a target of image generation by the renderer 12.
  • the reference model can be anything, for example fur.
  • the update unit 15 updates a plurality of parameters so as to reduce the difference between the first feature amount and the second feature amount.
  • the second feature amount which is the feature amount of the reference image 14a
  • the update unit 15 makes the first feature amount, which is the feature amount of the image rendered by the renderer 12, closer to the second feature amount.
  • Update multiple parameters that specify rendering rules. In this way, procedural modeling parameters that reproduce the image of the reference model by updating a plurality of parameters so as to reduce the difference between the feature amount of the image of the reference model and the feature amount of the rendered image. Can be calculated. As a result, the calculation cost can be significantly reduced as compared with the case where a plurality of parameters are completely searched, for example.
  • the update unit 15 may update a plurality of parameters so as to satisfy a predetermined constraint condition regarding the plurality of parameters. For example, when a plurality of parameters include the thickness of the root of the hair and the thickness of the tip of the hair, the update unit 15 sets a constraint condition so that the thickness of the tip of the hair is equal to or less than the thickness of the root of the hair. You may impose. Further, the update unit 15 may impose a constraint condition for setting an upper limit and a lower limit for each of the plurality of parameters. In this way, the search space for a plurality of parameters can be narrowed, and the parameters for procedural modeling that reproduce the image of the reference model can be calculated at higher speed.
  • the updater 15 minimizes the loss function for evaluating the difference between the first feature and the second feature by using at least one of particle swarm optimization, covariance matrix adaptive evolution strategy, and Bayesian optimization.
  • multiple parameters may be updated.
  • Particle swarm optimization, covariance matrix adaptive evolution strategy, and Bayesian optimization are all algorithms that can be applied without calculating partial derivatives based on the parameters of the loss function.
  • particle swarm optimization, covariance matrix adaptive evolution strategy, and Bayesian optimization are not algorithms for finding local optimal solutions, but algorithms for finding global optimal solutions. In this way, even if the loss function is not differentiable with respect to the parameters, the optimum parameters can be calculated globally, and the image of the reference model can be reproduced.
  • FIG. 2 is a conceptual diagram of parameter optimization processing by the image generation device 10 according to the present embodiment.
  • the image generation device 10 specifies a rendering rule by a plurality of parameters p dst , and generates an image I dst of the model by the renderer 12. Further, the image generation device 10 stores the reference image I ref .
  • Image generation apparatus 10 CNN13a by calculating a first characteristic amount x dst is a feature quantity of the image I dst, a second feature quantity x ref is a feature quantity of the reference image I ref. Then, the difference between the first feature amount x dst and the second feature amount x ref is evaluated by the loss function (Loss).
  • the loss function may be, for example,
  • 2 are L2 norms.
  • the image generator 10 updates a plurality of parameters p dst so as to minimize the loss function, for example using particle swarm optimization.
  • the image generation device 10 repeatedly repeats the above parameter update process, determines a plurality of optimized parameter p dst * when a predetermined condition is satisfied, and determines a plurality of optimized parameter p dst * . It is used to cause the renderer 12 to render an image of the model.
  • the predetermined condition may be that the value of the loss function is equal to or less than the threshold value, or that the number of epochs (the number of repetitions of the parameter update process) is equal to or greater than the predetermined number of times.
  • FIG. 3 is a diagram showing a physical configuration of the image generation device 10 according to the present embodiment.
  • the image generation device 10 includes a CPU (Central Processing Unit) 10a corresponding to a calculation unit, a RAM (Random Access Memory) 10b corresponding to a storage unit, a ROM (Read only Memory) 10c corresponding to a storage unit, and a communication unit. It has a 10d, an input unit 10e, and a display unit 10f. Each of these configurations is connected to each other via a bus so that data can be transmitted and received. In this example, the case where the image generation device 10 is composed of one computer will be described, but the image generation device 10 may be realized by combining a plurality of computers. Further, the configuration shown in FIG. 3 is an example, and the image generation device 10 may have configurations other than these, or may not have a part of these configurations.
  • the image generation device 10 may have, for example, a GPU (Graphical Processing Unit).
  • the CPU 10a is a control unit that controls execution of a program stored in the RAM 10b or ROM 10c, calculates data, and processes data.
  • the CPU 10a is a calculation unit that executes a program (image generation program) that optimizes the parameters of procedural modeling so as to reproduce the image of the reference model.
  • the CPU 10a receives various data from the input unit 10e and the communication unit 10d, displays the calculation result of the data on the display unit 10f, and stores the data in the RAM 10b.
  • the RAM 10b is a storage unit in which data can be rewritten, and may be composed of, for example, a semiconductor storage element.
  • the RAM 10b may store data such as a program executed by the CPU 10a and a reference image. It should be noted that these are examples, and data other than these may be stored in the RAM 10b, or a part of these may not be stored.
  • the ROM 10c is a storage unit capable of reading data, and may be composed of, for example, a semiconductor storage element.
  • the ROM 10c may store, for example, an image generation program or data that is not rewritten.
  • the communication unit 10d is an interface for connecting the image generator 10 to another device.
  • the communication unit 10d may be connected to a communication network such as the Internet.
  • the input unit 10e receives data input from the user, and may include, for example, a keyboard and a touch panel.
  • the display unit 10f visually displays the calculation result by the CPU 10a, and may be configured by, for example, an LCD (Liquid Crystal Display).
  • the display unit 10f may display, for example, a reference image, procedural modeling parameter values, and a rendered image.
  • the image generation program may be stored in a storage medium readable by a computer such as RAM 10b or ROM 10c and provided, or may be provided via a communication network connected by the communication unit 10d.
  • the CPU 10a executes the image generation program to realize various operations described with reference to FIG. It should be noted that these physical configurations are examples and do not necessarily have to be independent configurations.
  • the image generation device 10 may include an LSI (Large-Scale Integration) in which the CPU 10a, the RAM 10b, and the ROM 10c are integrated.
  • FIG. 4 is an example of the image I ref of the reference model referred to by the image generator 10 according to the present embodiment.
  • the image I ref of the reference model is an image of fur cut out to a size of 10 cm ⁇ 10 cm.
  • the shooting conditions of the image I ref may be arbitrarily adjusted in advance.
  • the image I ref may be an image of the reference model (fur in this example) taken from diagonally above. By shooting the reference model from diagonally above, the three-dimensional features of the reference model can be captured in a single image.
  • the image generator 10 may use a plurality of image I refs for a single reference model.
  • FIG. 5 is an example of the image IDst generated by the image generator 10 according to the present embodiment.
  • the parameter update process is repeated 20 times by the image generation device 10, a plurality of optimized parameters p dst * are calculated, and a renderer is used using the plurality of optimized parameters p dst *. It is an image rendered by 12.
  • the image generator 10 obtains an image that is visually realistic so that it is almost indistinguishable from the actual image I ref .
  • FIG. 6 is an example of the parameters estimated by the image generator 10 according to the present embodiment.
  • 15 parameters in procedural modeling are calculated by the image generator 10.
  • the vertical axis of the graph shown in the figure is the number of the 15 parameters, and the horizontal axis is the value of the parameter.
  • the values obtained by standardizing the 15 parameters from 0 to 1 are shown.
  • the points indicated by black circles in the graph of FIG. 6 indicate the values of the parameters obtained by trial and error so as to reproduce the reference image by a procedural modeling expert.
  • the points indicated by white circles in the graph of FIG. 6 indicate the values of the parameters calculated so as to reproduce the reference image by the image generation device 10 according to the present embodiment.
  • the 15 parameters there are those in which the parameters obtained by the expert and the parameters calculated by the image generation device 10 are almost the same and are significantly different.
  • any parameter set produces an image similar to the reference image, so the values of multiple parameters that reproduce the reference image may not be unique, and the area of parameter space that corresponds to the reference image is It is suggested that it has a certain extent.
  • FIG. 7 is a flowchart of the parameter optimization process executed by the image generation device 10 according to the present embodiment.
  • the image generation device 10 calculates a second feature amount, which is a feature amount of the reference image (S10).
  • the image generation device 10 initializes a plurality of parameters for designating the rendering rule (S11).
  • the image generation device 10 may be initialized by setting a plurality of parameters to predetermined default values, or may be initialized by randomly selecting a plurality of parameters.
  • the image generation device 10 specifies a rendering rule by a plurality of parameters, and renders the model image by the renderer 12 based on the rendering rule (S12). Then, the image generation device 10 calculates the first feature amount, which is the feature amount of the rendered image (S13).
  • the image generation device 10 updates a plurality of parameters so as to reduce the difference between the first feature amount and the second feature amount by particle swarm optimization (S14).
  • the image generation device 10 may update a plurality of parameters by other algorithms such as a covariance matrix adaptive evolution strategy and Bayesian optimization.
  • the image generator 10 executes the processes S12 to S14 again and updates a plurality of parameters.
  • the image generation device 10 ends the parameter optimization process.
  • the learning end condition is a condition that the number of epochs (the number of times the processes S12 to S14 are executed) is equal to or more than a predetermined number of times, or the difference between the first feature amount and the second feature amount is a predetermined value or less. It may be.
  • the image generator 10 can generate an image of a fur-clad 3D model having an arbitrary three-dimensional shape by using a plurality of parameters calculated to reproduce the fur reference model.
  • the image generation device 10 generates a visually realistic 3D model image. be able to.
  • 10 ... Image generator 10a ... CPU, 10b ... RAM, 10c ... ROM, 10d ... Communication unit, 10e ... Input unit, 10f ... Display unit, 11 ... Renderer control unit, 12 ... Renderer, 13 ... Feature amount calculation unit, 13a ... CNN, 14 ... storage unit, 14a ... reference image, 15 ... update unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Image Generation (AREA)

Abstract

Provided are an image generation device, an image generation method, and an image generation program for calculating parameters for generating an image which reproduces an image of a reference model. An image generation device 10 is provided with: a renderer control unit 11 for, in accordance with a plurality of parameters, causing a renderer 12 to render an image of a model; a feature amount calculation unit 13 for calculating a first feature amount that is a feature amount of the image and a second feature amount that is a feature amount of an image of a reference model; and an update unit 15 for updating the plurality of parameters such that a difference between the first feature amount and the second feature amount is reduced.

Description

画像生成装置、画像生成方法及び画像生成プログラムImage generator, image generation method and image generation program 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年7月8日に出願された日本出願番号2019-127078号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese application No. 2019-127878 filed on July 8, 2019, and the contents of the description are incorporated herein by reference.
 本発明は、画像生成装置、画像生成方法及び画像生成プログラムに関する。 The present invention relates to an image generator, an image generation method, and an image generation program.
 従来、CG(Computer Graphics)技術を用いて様々なモデルの画像が生成されている。また、近年、ニューラルネットワークを用いて画像のスタイルを絵画風に変換する研究が行われたり(下記非特許文献1)、与えられた参照画像を再現するレンダラのパラメータを推定する「インバースレンダリング」の研究が行われたりしている(非特許文献2)。 Conventionally, images of various models have been generated using CG (Computer Graphics) technology. In recent years, research has been conducted to convert the style of an image into a painting style using a neural network (Non-Patent Document 1 below), and "inverse rendering" that estimates the parameters of a renderer that reproduces a given reference image. Research is being conducted (Non-Patent Document 2).
 しかしながら、例えば毛皮のように、視覚的に現実感のある画像を生成することが難しいモデルも存在する。そのため、従来、プロシージャルモデリングの熟練者が、参照モデルの画像とレンダリングした画像とを見比べながら、プロシージャルモデリングのパラメータの調整とレンダリングを繰り返して、現実感のある画像が生成されるように試行錯誤することがある。
 このように、一般的に、画像生成の条件を定める複数のパラメータを調整して、生成される画像を目標とする画像に近づけることは、熟練者であっても長時間を要する。
However, there are some models, such as fur, where it is difficult to generate a visually realistic image. Therefore, conventionally, a procedural modeling expert tries to generate a realistic image by repeatedly adjusting and rendering the parameters of the procedural modeling while comparing the image of the reference model with the rendered image. It may be a mistake.
As described above, in general, it takes a long time even for an expert to adjust a plurality of parameters that determine the conditions for image generation to bring the generated image closer to the target image.
 そこで、本発明は、参照モデルの画像を再現するような画像生成のパラメータを算出する画像生成装置、画像生成方法及び画像生成プログラムを提供する。 Therefore, the present invention provides an image generation device, an image generation method, and an image generation program that calculate image generation parameters that reproduce the image of the reference model.
 本発明の一態様に係る画像生成装置は、複数のパラメータに従って、レンダラにモデルの画像をレンダリングさせるレンダラ制御部と、画像の特徴量である第1特徴量と、参照モデルの画像の特徴量である第2特徴量とをそれぞれ算出する特徴量算出部と、第1特徴量と第2特徴量との差異を小さくするように、複数のパラメータを更新する更新部と、を備える。 The image generator according to one aspect of the present invention includes a renderer control unit that causes a renderer to render an image of a model according to a plurality of parameters, a first feature amount that is an image feature amount, and an image feature amount of a reference model. It is provided with a feature amount calculation unit that calculates each of a certain second feature amount, and an update unit that updates a plurality of parameters so as to reduce the difference between the first feature amount and the second feature amount.
 この態様によれば、参照モデルの画像の特徴量と、レンダリングした画像の特徴量との差異を小さくするように複数のパラメータを更新することで、参照モデルの画像を再現するような画像生成のパラメータを算出することができる。 According to this aspect, image generation that reproduces the image of the reference model by updating a plurality of parameters so as to reduce the difference between the feature amount of the image of the reference model and the feature amount of the rendered image. The parameters can be calculated.
 上記態様において、レンダラ制御部は、前記複数のパラメータによってプロシージャルモデリングのレンダリング規則を指定し、前記レンダリング規則に基づいて前記レンダラに前記モデルの画像をレンダリングさせてもよい。 In the above aspect, the renderer control unit may specify a rendering rule for procedural modeling by the plurality of parameters, and have the renderer render an image of the model based on the rendering rule.
 この態様によれば、参照モデルの画像の特徴量と、レンダリングした画像の特徴量との差異を小さくするように複数のパラメータを更新することで、参照モデルの画像を再現するようなプロシージャルモデリングのパラメータを算出することができる。 According to this aspect, procedural modeling that reproduces the image of the reference model by updating a plurality of parameters so as to reduce the difference between the feature amount of the image of the reference model and the feature amount of the rendered image. Parameters can be calculated.
 上記態様において、レンダラは、レンダリング規則に基づいて3Dモデルの画像をレンダリングする3Dレンダラであってもよい。 In the above aspect, the renderer may be a 3D renderer that renders an image of a 3D model based on rendering rules.
 この態様によれば、参照モデルの画像を再現するようなプロシージャルモデリングのパラメータを算出し、参照モデルに類似する3Dモデルの画像をレンダリングすることができる。 According to this aspect, it is possible to calculate the parameters of procedural modeling that reproduce the image of the reference model and render the image of the 3D model similar to the reference model.
 上記態様において、更新部は、複数のパラメータに関する所定の制約条件を満たすように、複数のパラメータを更新してもよい。 In the above aspect, the update unit may update a plurality of parameters so as to satisfy predetermined constraint conditions regarding the plurality of parameters.
 この態様によれば、複数のパラメータの探索空間を狭めて、参照モデルの画像を再現するようなパラメータをより高速に算出することができる。 According to this aspect, it is possible to narrow the search space for a plurality of parameters and calculate the parameters that reproduce the image of the reference model at a higher speed.
 上記態様において、特徴量算出部は、事前学習済みの畳み込みニューラルネットワークを含んでもよい。 In the above aspect, the feature amount calculation unit may include a pre-learned convolutional neural network.
 この態様によれば、事前学習済みの畳み込みニューラルネットワークを特徴量抽出器として用いることで画像の特徴を適切に捉えることができる。 According to this aspect, the features of the image can be appropriately captured by using the pre-learned convolutional neural network as the feature amount extractor.
 上記態様において、更新部は、第1特徴量と第2特徴量との差異を評価する損失関数を、粒子群最適化、共分散行列適応進化戦略及びベイズ最適化の少なくともいずれかを用いて最小化するように、複数のパラメータを更新してもよい。 In the above embodiment, the updater minimizes the loss function for evaluating the difference between the first feature and the second feature using at least one of particle swarm optimization, covariance matrix adaptive evolution strategy, and Bayesian optimization. Multiple parameters may be updated so as to be.
 この態様によれば、損失関数がパラメータに関して微分可能でなくても、大域的に最適なパラメータを算出することができ、参照モデルの画像を再現することができる。 According to this aspect, even if the loss function is not differentiable with respect to the parameters, the optimum parameters can be calculated globally, and the image of the reference model can be reproduced.
 本発明の他の態様に係る画像生成方法は、複数のパラメータに従って、レンダラにモデルの画像をレンダリングさせることと、画像の特徴量である第1特徴量と、参照モデルの画像の特徴量である第2特徴量とをそれぞれ算出することと、第1特徴量と第2特徴量との差異を小さくするように、複数のパラメータを更新することと、を含む。 An image generation method according to another aspect of the present invention is to cause a renderer to render an image of a model according to a plurality of parameters, a first feature amount which is an image feature amount, and an image feature amount of a reference model. It includes calculating each of the second feature amount and updating a plurality of parameters so as to reduce the difference between the first feature amount and the second feature amount.
 この態様によれば、参照モデルの画像の特徴量と、レンダリングした画像の特徴量との差異を小さくするように複数のパラメータを更新することで、参照モデルの画像を再現するような画像生成のパラメータを算出することができる。 According to this aspect, image generation that reproduces the image of the reference model by updating a plurality of parameters so as to reduce the difference between the feature amount of the image of the reference model and the feature amount of the rendered image. The parameters can be calculated.
 本発明の他の態様に係る画像生成プログラムは、画像生成装置に備えられた演算部を、複数のパラメータに従って、レンダラにモデルの画像をレンダリングさせるレンダラ制御部、画像の特徴量である第1特徴量と、参照モデルの画像の特徴量である第2特徴量とをそれぞれ算出する特徴量算出部、及び第1特徴量と第2特徴量との差異を小さくするように、複数のパラメータを更新する更新部、として機能させる。 The image generation program according to another aspect of the present invention is a renderer control unit that causes a renderer to render a model image according to a plurality of parameters in a calculation unit provided in the image generation device, and a first feature that is an image feature amount. The feature amount calculation unit that calculates the amount and the second feature amount that is the feature amount of the image of the reference model, and a plurality of parameters are updated so as to reduce the difference between the first feature amount and the second feature amount. It functions as an update unit.
 この態様によれば、参照モデルの画像の特徴量と、レンダリングした画像の特徴量との差異を小さくするように複数のパラメータを更新することで、参照モデルの画像を再現するような画像生成のパラメータを算出することができる。 According to this aspect, image generation that reproduces the image of the reference model by updating a plurality of parameters so as to reduce the difference between the feature amount of the image of the reference model and the feature amount of the rendered image. The parameters can be calculated.
 本発明によれば、参照モデルの画像を再現するような画像生成のパラメータを算出する画像生成装置、画像生成方法及び画像生成プログラムを提供することができる。 According to the present invention, it is possible to provide an image generation device, an image generation method, and an image generation program that calculate image generation parameters that reproduce the image of the reference model.
本発明の実施形態に係る画像生成装置の機能ブロックを示す図である。It is a figure which shows the functional block of the image generation apparatus which concerns on embodiment of this invention. 本実施形態に係る画像生成装置によるパラメータ最適化処理の概念図である。It is a conceptual diagram of the parameter optimization processing by the image generation apparatus which concerns on this embodiment. 本実施形態に係る画像生成装置の物理的構成を示す図である。It is a figure which shows the physical structure of the image generation apparatus which concerns on this embodiment. 本実施形態に係る画像生成装置により参照される参照モデルの画像の一例である。This is an example of an image of a reference model referred to by the image generator according to the present embodiment. 本実施形態に係る画像生成装置により生成された画像の一例である。This is an example of an image generated by the image generator according to the present embodiment. 本実施形態に係る画像生成装置により推定されたパラメータの一例である。This is an example of the parameters estimated by the image generator according to the present embodiment. 本実施形態に係る画像生成装置により実行されるパラメータ最適化処理のフローチャートである。It is a flowchart of the parameter optimization processing executed by the image generation apparatus which concerns on this embodiment.
 添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 An embodiment of the present invention will be described with reference to the accompanying drawings. In each figure, those having the same reference numerals have the same or similar configurations.
 図1は、本発明の実施形態に係る画像生成装置10の機能ブロックを示す図である。画像生成装置10は、レンダラ制御部11、レンダラ12、特徴量算出部13、記憶部14及び更新部15を備える。 FIG. 1 is a diagram showing a functional block of the image generation device 10 according to the embodiment of the present invention. The image generation device 10 includes a renderer control unit 11, a renderer 12, a feature amount calculation unit 13, a storage unit 14, and an update unit 15.
 レンダラ制御部11は、複数のパラメータに従って、レンダラ12にモデルの画像をレンダリングさせる。レンダラ制御部11は、例えば、輝度、コントラスト及び色温度等のパラメータに従って、レンダラ12にモデルの画像をレンダリングさせたり、レンダラ12の画質調整機能に関するパラメータに従って、レンダラ12にモデルの画像をレンダリングさせたりしてよい。 The renderer control unit 11 causes the renderer 12 to render an image of the model according to a plurality of parameters. The renderer control unit 11 causes the renderer 12 to render the model image according to parameters such as brightness, contrast, and color temperature, and causes the renderer 12 to render the model image according to the parameters related to the image quality adjustment function of the renderer 12. You can do it.
 また、レンダラ制御部11は、複数のパラメータによってプロシージャルモデリングのレンダリング規則を指定し、レンダリング規則に基づいてレンダラ12にモデルの画像をレンダリングさせてよい。ここで、レンダリング規則は、レンダラ12のプロシージャルモデリング機能において用いられる規則であり、複数のパラメータによって指定されるレンダリングアルゴリズムを含む。 Further, the renderer control unit 11 may specify a rendering rule for procedural modeling by a plurality of parameters, and cause the renderer 12 to render an image of the model based on the rendering rule. Here, the rendering rule is a rule used in the procedural modeling function of the renderer 12, and includes a rendering algorithm specified by a plurality of parameters.
 本実施形態において、レンダラ12は、複数のパラメータによって指定されるレンダリング規則に基づいて3Dモデルの画像をレンダリングする3Dレンダラである。レンダラ12は、市販されている汎用のレンダリングエンジンで構成されてよい。 In the present embodiment, the renderer 12 is a 3D renderer that renders an image of a 3D model based on rendering rules specified by a plurality of parameters. The renderer 12 may be composed of a commercially available general-purpose rendering engine.
 特徴量算出部13は、レンダラ12によってレンダリングされた画像の特徴量である第1特徴量と、参照モデルの画像(参照画像14a)の特徴量である第2特徴量とをそれぞれ算出する。 The feature amount calculation unit 13 calculates the first feature amount, which is the feature amount of the image rendered by the renderer 12, and the second feature amount, which is the feature amount of the image of the reference model (reference image 14a).
 特徴量算出部13は、事前学習済みの畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)13aを含んでよい。CNN13aは、例えば、VGGNet(Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, arXiv:1409.1556, 2014)で構成されてよい。特徴量算出部13は、Leon Gatys, Alexander S Ecker, and Matthias Bethge, “Texture Synthesis Using Convolutional Neural Networks”, Advances in Neural Information Processing Systems 28, Curran Associates, Inc., 262-270.に説明されているように、CNN13aによって算出される特徴マップのグラム行列を特徴量として算出してよい。このように、事前学習済みの畳み込みニューラルネットワークを特徴量抽出器として用いることで画像の特徴を適切に捉えることができる。 The feature amount calculation unit 13 may include a pre-learned convolutional neural network (CNN: Convolutional Neural Network) 13a. CNN13a may be composed of, for example, VGGNet (Karen Simonyan and Andrew Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, arXiv: 1409.1556, 2014). The feature calculation unit 13 is described in Leon Gatys, Alexander S Ecker, and Matthias Bethge, “Texture Synthesis Using Convolutional Neural Networks”, Advances in Neural Information Processing Systems 28, Curran Associates, Inc., 262. As described above, the Gram matrix of the feature map calculated by CNN13a may be calculated as the feature amount. In this way, by using the pre-learned convolutional neural network as the feature amount extractor, the features of the image can be appropriately captured.
 記憶部14は、参照画像14aを記憶する。参照画像14aは、参照モデルの画像であり、レンダラ12による画像生成の目標となる。参照モデルは、任意の物であってよいが、例えば、毛皮であってよい。 The storage unit 14 stores the reference image 14a. The reference image 14a is an image of the reference model and is a target of image generation by the renderer 12. The reference model can be anything, for example fur.
 更新部15は、第1特徴量と第2特徴量との差異を小さくするように、複数のパラメータを更新する。ここで、参照画像14aの特徴量である第2特徴量は固定されており、更新部15は、レンダラ12によってレンダリングされた画像の特徴量である第1特徴量が第2特徴量に近づくように、レンダリング規則を指定する複数のパラメータを更新する。このように、参照モデルの画像の特徴量と、レンダリングした画像の特徴量との差異を小さくするように複数のパラメータを更新することで、参照モデルの画像を再現するようなプロシージャルモデリングのパラメータを算出することができる。これにより、例えば複数のパラメータを全探索する場合に比べて計算コストを大幅に低減させることができる。 The update unit 15 updates a plurality of parameters so as to reduce the difference between the first feature amount and the second feature amount. Here, the second feature amount, which is the feature amount of the reference image 14a, is fixed, and the update unit 15 makes the first feature amount, which is the feature amount of the image rendered by the renderer 12, closer to the second feature amount. Update multiple parameters that specify rendering rules. In this way, procedural modeling parameters that reproduce the image of the reference model by updating a plurality of parameters so as to reduce the difference between the feature amount of the image of the reference model and the feature amount of the rendered image. Can be calculated. As a result, the calculation cost can be significantly reduced as compared with the case where a plurality of parameters are completely searched, for example.
 更新部15は、複数のパラメータに関する所定の制約条件を満たすように、複数のパラメータを更新してもよい。更新部15は、例えば、複数のパラメータが、毛の根元の太さ及び毛の先端の太さを含む場合、毛の先端の太さが毛の根元の太さ以下となるように制約条件を課してよい。また、更新部15は、複数のパラメータそれぞれに上限と下限を設ける制約条件を課してよい。このようにして、複数のパラメータの探索空間を狭めて、参照モデルの画像を再現するようなプロシージャルモデリングのパラメータをより高速に算出することができる。 The update unit 15 may update a plurality of parameters so as to satisfy a predetermined constraint condition regarding the plurality of parameters. For example, when a plurality of parameters include the thickness of the root of the hair and the thickness of the tip of the hair, the update unit 15 sets a constraint condition so that the thickness of the tip of the hair is equal to or less than the thickness of the root of the hair. You may impose. Further, the update unit 15 may impose a constraint condition for setting an upper limit and a lower limit for each of the plurality of parameters. In this way, the search space for a plurality of parameters can be narrowed, and the parameters for procedural modeling that reproduce the image of the reference model can be calculated at higher speed.
 更新部15は、第1特徴量と第2特徴量との差異を評価する損失関数を、粒子群最適化、共分散行列適応進化戦略及びベイズ最適化の少なくともいずれかを用いて最小化するように、複数のパラメータを更新してよい。粒子群最適化、共分散行列適応進化戦略及びベイズ最適化は、いずれも損失関数のパラメータによる偏微分を算出することなく適用できるアルゴリズムである。また、粒子群最適化、共分散行列適応進化戦略及びベイズ最適化は、局所最適解を求めるアルゴリズムではなく、大域的な最適解を求めるアルゴリズムである。このように、損失関数がパラメータに関して微分可能でなくても、大域的に最適なパラメータを算出することができ、参照モデルの画像を再現することができる。 The updater 15 minimizes the loss function for evaluating the difference between the first feature and the second feature by using at least one of particle swarm optimization, covariance matrix adaptive evolution strategy, and Bayesian optimization. In addition, multiple parameters may be updated. Particle swarm optimization, covariance matrix adaptive evolution strategy, and Bayesian optimization are all algorithms that can be applied without calculating partial derivatives based on the parameters of the loss function. In addition, particle swarm optimization, covariance matrix adaptive evolution strategy, and Bayesian optimization are not algorithms for finding local optimal solutions, but algorithms for finding global optimal solutions. In this way, even if the loss function is not differentiable with respect to the parameters, the optimum parameters can be calculated globally, and the image of the reference model can be reproduced.
 図2は、本実施形態に係る画像生成装置10によるパラメータ最適化処理の概念図である。画像生成装置10は、複数のパラメータpdstによってレンダリング規則を指定し、レンダラ12によってモデルの画像Idstを生成する。また、画像生成装置10は、参照画像Irefを記憶している。 FIG. 2 is a conceptual diagram of parameter optimization processing by the image generation device 10 according to the present embodiment. The image generation device 10 specifies a rendering rule by a plurality of parameters p dst , and generates an image I dst of the model by the renderer 12. Further, the image generation device 10 stores the reference image I ref .
 画像生成装置10は、CNN13aによって、画像Idstの特徴量である第1特徴量xdstと、参照画像Irefの特徴量である第2特徴量xrefとを算出する。そして、損失関数(Loss)によって、第1特徴量xdstと第2特徴量xrefの差異を評価する。ここで、損失関数は、例えば、||xdst-xref||であってよい。ここで、||・||は、L2ノルムである。 Image generation apparatus 10, CNN13a by calculating a first characteristic amount x dst is a feature quantity of the image I dst, a second feature quantity x ref is a feature quantity of the reference image I ref. Then, the difference between the first feature amount x dst and the second feature amount x ref is evaluated by the loss function (Loss). Here, the loss function may be, for example, || x dst −x ref || 2 . Here, || and || 2 are L2 norms.
 画像生成装置10は、例えば粒子群最適化を用いて、損失関数を最小化するように複数のパラメータpdstを更新する。画像生成装置10は、以上のパラメータ更新処理を繰り返し行って、所定の条件を満たした場合に、最適化された複数のパラメータpdst を決定し、最適化された複数のパラメータpdst を用いて、レンダラ12にモデルの画像をレンダリングさせる。ここで、所定の条件は、損失関数の値が閾値以下となることであったり、エポック数(パラメータ更新処理の繰り返し回数)が所定回数以上となることであったりしてよい。 The image generator 10 updates a plurality of parameters p dst so as to minimize the loss function, for example using particle swarm optimization. The image generation device 10 repeatedly repeats the above parameter update process, determines a plurality of optimized parameter p dst * when a predetermined condition is satisfied, and determines a plurality of optimized parameter p dst * . It is used to cause the renderer 12 to render an image of the model. Here, the predetermined condition may be that the value of the loss function is equal to or less than the threshold value, or that the number of epochs (the number of repetitions of the parameter update process) is equal to or greater than the predetermined number of times.
 図3は、本実施形態に係る画像生成装置10の物理的構成を示す図である。画像生成装置10は、演算部に相当するCPU(Central Processing Unit)10aと、記憶部に相当するRAM(Random Access Memory)10bと、記憶部に相当するROM(Read only Memory)10cと、通信部10dと、入力部10eと、表示部10fと、を有する。これらの各構成は、バスを介して相互にデータ送受信可能に接続される。なお、本例では画像生成装置10が一台のコンピュータで構成される場合について説明するが、画像生成装置10は、複数のコンピュータが組み合わされて実現されてもよい。また、図3で示す構成は一例であり、画像生成装置10はこれら以外の構成を有してもよいし、これらの構成のうち一部を有さなくてもよい。画像生成装置10は、例えば、GPU(Graphical Processing Unit)を有してもよい。 FIG. 3 is a diagram showing a physical configuration of the image generation device 10 according to the present embodiment. The image generation device 10 includes a CPU (Central Processing Unit) 10a corresponding to a calculation unit, a RAM (Random Access Memory) 10b corresponding to a storage unit, a ROM (Read only Memory) 10c corresponding to a storage unit, and a communication unit. It has a 10d, an input unit 10e, and a display unit 10f. Each of these configurations is connected to each other via a bus so that data can be transmitted and received. In this example, the case where the image generation device 10 is composed of one computer will be described, but the image generation device 10 may be realized by combining a plurality of computers. Further, the configuration shown in FIG. 3 is an example, and the image generation device 10 may have configurations other than these, or may not have a part of these configurations. The image generation device 10 may have, for example, a GPU (Graphical Processing Unit).
 CPU10aは、RAM10b又はROM10cに記憶されたプログラムの実行に関する制御やデータの演算、加工を行う制御部である。CPU10aは、参照モデルの画像を再現するようにプロシージャルモデリングのパラメータを最適化するプログラム(画像生成プログラム)を実行する演算部である。CPU10aは、入力部10eや通信部10dから種々のデータを受け取り、データの演算結果を表示部10fに表示したり、RAM10bに格納したりする。 The CPU 10a is a control unit that controls execution of a program stored in the RAM 10b or ROM 10c, calculates data, and processes data. The CPU 10a is a calculation unit that executes a program (image generation program) that optimizes the parameters of procedural modeling so as to reproduce the image of the reference model. The CPU 10a receives various data from the input unit 10e and the communication unit 10d, displays the calculation result of the data on the display unit 10f, and stores the data in the RAM 10b.
 RAM10bは、記憶部のうちデータの書き換えが可能なものであり、例えば半導体記憶素子で構成されてよい。RAM10bは、CPU10aが実行するプログラム、参照画像といったデータを記憶してよい。なお、これらは例示であって、RAM10bには、これら以外のデータが記憶されていてもよいし、これらの一部が記憶されていなくてもよい。 The RAM 10b is a storage unit in which data can be rewritten, and may be composed of, for example, a semiconductor storage element. The RAM 10b may store data such as a program executed by the CPU 10a and a reference image. It should be noted that these are examples, and data other than these may be stored in the RAM 10b, or a part of these may not be stored.
 ROM10cは、記憶部のうちデータの読み出しが可能なものであり、例えば半導体記憶素子で構成されてよい。ROM10cは、例えば画像生成プログラムや、書き換えが行われないデータを記憶してよい。 The ROM 10c is a storage unit capable of reading data, and may be composed of, for example, a semiconductor storage element. The ROM 10c may store, for example, an image generation program or data that is not rewritten.
 通信部10dは、画像生成装置10を他の機器に接続するインターフェースである。通信部10dは、インターネット等の通信ネットワークに接続されてよい。 The communication unit 10d is an interface for connecting the image generator 10 to another device. The communication unit 10d may be connected to a communication network such as the Internet.
 入力部10eは、ユーザからデータの入力を受け付けるものであり、例えば、キーボード及びタッチパネルを含んでよい。 The input unit 10e receives data input from the user, and may include, for example, a keyboard and a touch panel.
 表示部10fは、CPU10aによる演算結果を視覚的に表示するものであり、例えば、LCD(Liquid Crystal Display)により構成されてよい。表示部10fは、例えば、参照画像、プロシージャルモデリングのパラメータの値及びレンダリングされた画像を表示してよい。 The display unit 10f visually displays the calculation result by the CPU 10a, and may be configured by, for example, an LCD (Liquid Crystal Display). The display unit 10f may display, for example, a reference image, procedural modeling parameter values, and a rendered image.
 画像生成プログラムは、RAM10bやROM10c等のコンピュータによって読み取り可能な記憶媒体に記憶されて提供されてもよいし、通信部10dにより接続される通信ネットワークを介して提供されてもよい。画像生成装置10では、CPU10aが画像生成プログラムを実行することにより、図2を用いて説明した様々な動作が実現される。なお、これらの物理的な構成は例示であって、必ずしも独立した構成でなくてもよい。例えば、画像生成装置10は、CPU10aとRAM10bやROM10cが一体化したLSI(Large-Scale Integration)を備えていてもよい。 The image generation program may be stored in a storage medium readable by a computer such as RAM 10b or ROM 10c and provided, or may be provided via a communication network connected by the communication unit 10d. In the image generation device 10, the CPU 10a executes the image generation program to realize various operations described with reference to FIG. It should be noted that these physical configurations are examples and do not necessarily have to be independent configurations. For example, the image generation device 10 may include an LSI (Large-Scale Integration) in which the CPU 10a, the RAM 10b, and the ROM 10c are integrated.
 図4は、本実施形態に係る画像生成装置10により参照される参照モデルの画像Irefの一例である。参照モデルの画像Irefは、10cm×10cmに切り取られた毛皮の画像である。画像Irefの撮影条件は、予め任意に調整されてよい。また、画像Irefは、参照モデル(本例では毛皮)を斜め上方から撮影した画像であってよい。参照モデルを斜め上方から撮影することで、一枚の画像で参照モデルの立体的な特徴を捉えることができる。もっとも、画像生成装置10は、単一の参照モデルについて複数枚の画像Irefを用いてもよい。 FIG. 4 is an example of the image I ref of the reference model referred to by the image generator 10 according to the present embodiment. The image I ref of the reference model is an image of fur cut out to a size of 10 cm × 10 cm. The shooting conditions of the image I ref may be arbitrarily adjusted in advance. Further, the image I ref may be an image of the reference model (fur in this example) taken from diagonally above. By shooting the reference model from diagonally above, the three-dimensional features of the reference model can be captured in a single image. However, the image generator 10 may use a plurality of image I refs for a single reference model.
 図5は、本実施形態に係る画像生成装置10により生成された画像Idstの一例である。生成された画像Idstは、画像生成装置10によってパラメータ更新処理を20回繰り返し行い、最適化された複数のパラメータpdst を算出し、最適化された複数のパラメータpdst を用いてレンダラ12によってレンダリングされた画像である。同図に示すように、画像生成装置10によって、実物の画像Irefとほとんど見分けがつかないほどに、視覚的に現実感のある画像が得られる。 FIG. 5 is an example of the image IDst generated by the image generator 10 according to the present embodiment. For the generated image I dst , the parameter update process is repeated 20 times by the image generation device 10, a plurality of optimized parameters p dst * are calculated, and a renderer is used using the plurality of optimized parameters p dst *. It is an image rendered by 12. As shown in the figure, the image generator 10 obtains an image that is visually realistic so that it is almost indistinguishable from the actual image I ref .
 図6は、本実施形態に係る画像生成装置10により推定されたパラメータの一例である。本例では、プロシージャルモデリングにおける15のパラメータを画像生成装置10により算出している。同図に示すグラフの縦軸は、15のパラメータの番号であり、横軸はパラメータの値である。なお、同図では、15のパラメータを0~1に規格化した値を示している。 FIG. 6 is an example of the parameters estimated by the image generator 10 according to the present embodiment. In this example, 15 parameters in procedural modeling are calculated by the image generator 10. The vertical axis of the graph shown in the figure is the number of the 15 parameters, and the horizontal axis is the value of the parameter. In the figure, the values obtained by standardizing the 15 parameters from 0 to 1 are shown.
 図6のグラフ中に黒丸で示す点は、プロシージャルモデリングの熟練者が、参照画像を再現するように試行錯誤で求めたパラメータの値を示している。一方、図6のグラフ中に白丸で示す点は、本実施形態に係る画像生成装置10によって、参照画像を再現するように算出されたパラメータの値を示している。15のパラメータの中には、熟練者が求めたパラメータと画像生成装置10により算出されたパラメータがほとんど同じものと、大きくことなっているものがある。結果的にいずれのパラメータセットでも参照画像に類似する画像が生成されることから、参照画像を再現する複数のパラメータの値は一意でない可能性があり、参照画像に対応するパラメータ空間の領域は、ある程度の広がりを持っていることが示唆される。 The points indicated by black circles in the graph of FIG. 6 indicate the values of the parameters obtained by trial and error so as to reproduce the reference image by a procedural modeling expert. On the other hand, the points indicated by white circles in the graph of FIG. 6 indicate the values of the parameters calculated so as to reproduce the reference image by the image generation device 10 according to the present embodiment. Among the 15 parameters, there are those in which the parameters obtained by the expert and the parameters calculated by the image generation device 10 are almost the same and are significantly different. As a result, any parameter set produces an image similar to the reference image, so the values of multiple parameters that reproduce the reference image may not be unique, and the area of parameter space that corresponds to the reference image is It is suggested that it has a certain extent.
 図7は、本実施形態に係る画像生成装置10により実行されるパラメータ最適化処理のフローチャートである。はじめに、画像生成装置10は、参照画像の特徴量である第2特徴量を算出する(S10)。そして、画像生成装置10は、レンダリング規則を指定する複数のパラメータを初期設定する(S11)。画像生成装置10は、複数のパラメータを所定のデフォルト値とすることで初期設定してもよいし、複数のパラメータをランダムに選択することで初期設定してもよい。 FIG. 7 is a flowchart of the parameter optimization process executed by the image generation device 10 according to the present embodiment. First, the image generation device 10 calculates a second feature amount, which is a feature amount of the reference image (S10). Then, the image generation device 10 initializes a plurality of parameters for designating the rendering rule (S11). The image generation device 10 may be initialized by setting a plurality of parameters to predetermined default values, or may be initialized by randomly selecting a plurality of parameters.
 次に、画像生成装置10は、複数のパラメータによってレンダリング規則を指定し、レンダリング規則に基づいてレンダラ12によってモデルの画像をレンダリングする(S12)。そして、画像生成装置10は、レンダリングされた画像の特徴量である第1特徴量を算出する(S13)。 Next, the image generation device 10 specifies a rendering rule by a plurality of parameters, and renders the model image by the renderer 12 based on the rendering rule (S12). Then, the image generation device 10 calculates the first feature amount, which is the feature amount of the rendered image (S13).
 その後、画像生成装置10は、粒子群最適化によって、第1特徴量と第2特徴量との差異を小さくするように、複数のパラメータを更新する(S14)。なお、画像生成装置10は、共分散行列適応進化戦略やベイズ最適化等の他のアルゴリズムによって複数のパラメータを更新してもよい。 After that, the image generation device 10 updates a plurality of parameters so as to reduce the difference between the first feature amount and the second feature amount by particle swarm optimization (S14). The image generation device 10 may update a plurality of parameters by other algorithms such as a covariance matrix adaptive evolution strategy and Bayesian optimization.
 学習終了条件を満たさない場合(S15:NO)、画像生成装置10は、処理S12~S14を再び実行し、複数のパラメータを更新する。一方、学習終了条件を満たす場合(S15:YES)、画像生成装置10は、パラメータ最適化処理を終了する。ここで、学習終了条件は、エポック数(処理S12~S14を実行した回数)が所定回数以上であるかという条件であったり、第1特徴量と第2特徴量との差異が所定値以下となることであったりしてよい。 If the learning end condition is not satisfied (S15: NO), the image generator 10 executes the processes S12 to S14 again and updates a plurality of parameters. On the other hand, when the learning end condition is satisfied (S15: YES), the image generation device 10 ends the parameter optimization process. Here, the learning end condition is a condition that the number of epochs (the number of times the processes S12 to S14 are executed) is equal to or more than a predetermined number of times, or the difference between the first feature amount and the second feature amount is a predetermined value or less. It may be.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are for facilitating the understanding of the present invention, and are not for limiting and interpreting the present invention. Each element included in the embodiment and its arrangement, material, condition, shape, size, etc. are not limited to those exemplified, and can be changed as appropriate. In addition, the configurations shown in different embodiments can be partially replaced or combined.
 例えば、画像生成装置10は、毛皮の参照モデルを再現するように算出した複数のパラメータを用いて、任意の3次元形状を有する、毛皮をまとった3Dモデルの画像を生成することができる。同様に、従来再現が困難であった表面模様や表面形状を有する物体であっても、本実施形態に係る画像生成装置10によれば、視覚的に現実感のある3Dモデルの画像を生成することができる。 For example, the image generator 10 can generate an image of a fur-clad 3D model having an arbitrary three-dimensional shape by using a plurality of parameters calculated to reproduce the fur reference model. Similarly, even if an object has a surface pattern or surface shape that has been difficult to reproduce in the past, the image generation device 10 according to the present embodiment generates a visually realistic 3D model image. be able to.
 10…画像生成装置、10a…CPU、10b…RAM、10c…ROM、10d…通信部、10e…入力部、10f…表示部、11…レンダラ制御部、12…レンダラ、13…特徴量算出部、13a…CNN、14…記憶部、14a…参照画像、15…更新部
 
10 ... Image generator, 10a ... CPU, 10b ... RAM, 10c ... ROM, 10d ... Communication unit, 10e ... Input unit, 10f ... Display unit, 11 ... Renderer control unit, 12 ... Renderer, 13 ... Feature amount calculation unit, 13a ... CNN, 14 ... storage unit, 14a ... reference image, 15 ... update unit

Claims (8)

  1.  複数のパラメータに従って、レンダラにモデルの画像をレンダリングさせるレンダラ制御部と、
     前記画像の特徴量である第1特徴量と、参照モデルの画像の特徴量である第2特徴量とをそれぞれ算出する特徴量算出部と、
     前記第1特徴量と前記第2特徴量との差異を小さくするように、前記複数のパラメータを更新する更新部と、
     を備える画像生成装置。
    A renderer control that lets the renderer render the model image according to multiple parameters,
    A feature amount calculation unit that calculates the first feature amount, which is the feature amount of the image, and the second feature amount, which is the feature amount of the image of the reference model, respectively.
    An update unit that updates the plurality of parameters so as to reduce the difference between the first feature amount and the second feature amount.
    An image generator comprising.
  2.  前記レンダラ制御部は、前記複数のパラメータによってプロシージャルモデリングのレンダリング規則を指定し、前記レンダリング規則に基づいて前記レンダラに前記モデルの画像をレンダリングさせる、
     請求項1に記載の画像生成装置。
    The renderer control unit specifies rendering rules for procedural modeling by the plurality of parameters, and causes the renderer to render an image of the model based on the rendering rules.
    The image generator according to claim 1.
  3.  前記レンダラは、前記レンダリング規則に基づいて3Dモデルの画像をレンダリングする3Dレンダラである、
     請求項2に記載の画像生成装置。
    The renderer is a 3D renderer that renders an image of a 3D model based on the rendering rules.
    The image generator according to claim 2.
  4.  前記更新部は、前記複数のパラメータに関する所定の制約条件を満たすように、前記複数のパラメータを更新する、
     請求項1から3のいずれか一項に記載の画像生成装置。
    The update unit updates the plurality of parameters so as to satisfy predetermined constraint conditions relating to the plurality of parameters.
    The image generator according to any one of claims 1 to 3.
  5.  前記特徴量算出部は、事前学習済みの畳み込みニューラルネットワークを含む、
     請求項1から4のいずれか一項に記載の画像生成装置。
    The feature calculation unit includes a pre-learned convolutional neural network.
    The image generator according to any one of claims 1 to 4.
  6.  前記更新部は、前記第1特徴量と前記第2特徴量との差異を評価する損失関数を、粒子群最適化、共分散行列適応進化戦略及びベイズ最適化の少なくともいずれかを用いて最小化するように、前記複数のパラメータを更新する、
     請求項1から5のいずれか一項に記載の画像生成装置。
    The updater minimizes the loss function for evaluating the difference between the first feature and the second feature using at least one of particle swarm optimization, covariance matrix adaptive evolution strategy, and Bayesian optimization. Update the plurality of parameters so as to
    The image generator according to any one of claims 1 to 5.
  7.  複数のパラメータに従って、レンダラにモデルの画像をレンダリングさせることと、
     前記画像の特徴量である第1特徴量と、参照モデルの画像の特徴量である第2特徴量とをそれぞれ算出することと、
     前記第1特徴量と前記第2特徴量との差異を小さくするように、前記複数のパラメータを更新することと、
     を含む画像生成方法。
    Having the renderer render the image of the model according to multiple parameters,
    Calculation of the first feature amount, which is the feature amount of the image, and the second feature amount, which is the feature amount of the image of the reference model, respectively.
    By updating the plurality of parameters so as to reduce the difference between the first feature amount and the second feature amount,
    Image generation method including.
  8.  画像生成装置に備えられた演算部を、
     複数のパラメータに従って、レンダラにモデルの画像をレンダリングさせるレンダラ制御部、
     前記画像の特徴量である第1特徴量と、参照モデルの画像の特徴量である第2特徴量とをそれぞれ算出する特徴量算出部、及び
     前記第1特徴量と前記第2特徴量との差異を小さくするように、前記複数のパラメータを更新する更新部、
     として機能させる画像生成プログラム。
    The arithmetic unit provided in the image generator
    Renderer control, which causes the renderer to render the model image according to multiple parameters,
    A feature amount calculation unit that calculates the first feature amount, which is the feature amount of the image, and the second feature amount, which is the feature amount of the image of the reference model, and the first feature amount and the second feature amount. An update unit that updates the plurality of parameters so as to reduce the difference.
    An image generation program that functions as.
PCT/JP2020/026091 2019-07-08 2020-07-02 Image generation device, image generation method, and image generation program WO2021006189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019127078 2019-07-08
JP2019-127078 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021006189A1 true WO2021006189A1 (en) 2021-01-14

Family

ID=74114150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026091 WO2021006189A1 (en) 2019-07-08 2020-07-02 Image generation device, image generation method, and image generation program

Country Status (1)

Country Link
WO (1) WO2021006189A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7058434B1 (en) * 2021-07-07 2022-04-22 株式会社エクサウィザーズ Generation method, information processing device, program, and information processing system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190087985A1 (en) * 2017-09-06 2019-03-21 Nvidia Corporation Differentiable rendering pipeline for inverse graphics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190087985A1 (en) * 2017-09-06 2019-03-21 Nvidia Corporation Differentiable rendering pipeline for inverse graphics

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KONDO, KUNIO ET AL.: "2-2 Technical Trends of Interactive Contents Design and Game Producing", THE JOURNAL OF THE INSTITUTE OF IMAGE INFORMATION AND TELEVISION ENGINEERS, vol. 68, no. 2, 1 February 2014 (2014-02-01), pages 121 - 124, XP055784983 *
SAKURAI, KAISEI AND MIYATA KAZUNORI: "Representation of an aggregate composed of staple fibers", IPSJ SIG TECHNICAL REPORT 2012 (HEISEI 24), vol. 2012 -CG, no. 7, 15 August 2012 (2012-08-15), pages 1 - 6, XP055783558 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7058434B1 (en) * 2021-07-07 2022-04-22 株式会社エクサウィザーズ Generation method, information processing device, program, and information processing system

Similar Documents

Publication Publication Date Title
Tan et al. Improved ArtGAN for conditional synthesis of natural image and artwork
JP7009614B2 (en) Deep Neural Network Normalization Methods and Devices, Instruments, and Storage Media
JP6504590B2 (en) System and computer implemented method for semantic segmentation of images and non-transitory computer readable medium
WO2021027759A1 (en) Facial image processing
JP2022505657A (en) Posture fluctuation 3D facial attribute generation
JP2022503647A (en) Cross-domain image conversion
Li et al. Exploring compositional high order pattern potentials for structured output learning
US11189096B2 (en) Apparatus, system and method for data generation
JP2019032820A (en) Data set for learning functions with image as input
US20170256098A1 (en) Three Dimensional Facial Expression Generation
CN115618098B (en) Cold-chain logistics recommendation method and device based on knowledge enhancement and cavity convolution
CN114925849A (en) Federal learning optimization method on graph data
JP2022036918A (en) Uv mapping on 3d object with the use of artificial intelligence
TW202209266A (en) 3d data system and 3d data generation method
CN112927339A (en) Graphic rendering method and device, storage medium and electronic equipment
WO2021006189A1 (en) Image generation device, image generation method, and image generation program
CN112883806B (en) Video style migration method and device based on neural network, computer equipment and storage medium
Xing et al. SVGDreamer: Text Guided SVG Generation with Diffusion Model
US9665955B1 (en) Pose-space shape fitting
WO2021256135A1 (en) Control device, method, and program
Levinski et al. Interactive function-based shape modeling for cyberworlds
EP3872768A1 (en) Method for processing two-dimensional image and device for executing method
JP5071900B2 (en) Image generating apparatus and method
KR20210071024A (en) Morph Target Animation
JP2020087310A (en) Learning method, learning device, program and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836019

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP