WO2021006166A1 - Computer tomography device and examination vehicle - Google Patents

Computer tomography device and examination vehicle Download PDF

Info

Publication number
WO2021006166A1
WO2021006166A1 PCT/JP2020/025950 JP2020025950W WO2021006166A1 WO 2021006166 A1 WO2021006166 A1 WO 2021006166A1 JP 2020025950 W JP2020025950 W JP 2020025950W WO 2021006166 A1 WO2021006166 A1 WO 2021006166A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating portion
detector
rotating
gantry
light source
Prior art date
Application number
PCT/JP2020/025950
Other languages
French (fr)
Japanese (ja)
Inventor
雫石 誠
Original Assignee
雫石 誠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 雫石 誠 filed Critical 雫石 誠
Priority to JP2020569218A priority Critical patent/JP6858317B1/en
Publication of WO2021006166A1 publication Critical patent/WO2021006166A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling

Definitions

  • the present invention relates to a computer tomography apparatus capable of undergoing an examination while a subject is standing or sitting, and a mobile examination vehicle equipped with the computer tomography apparatus.
  • An X-ray computed tomography (CT) device is a gantry including a rotating part that rotates around an image object, a berth moving device that moves a berth on which a subject is placed so as to pass inside the gantry in the axial direction. It is composed of a slip ring that enables electrical connection with the rotating unit, an operation including an image drawing unit that processes image data transferred to the outside via the slip ring, and a monitor unit. Inside the rotating unit, there is a detector consisting of an aggregate of a large number of image sensors, a circuit board that processes signals from the detector, an X-ray generator located opposite to an imaging object such as a subject, and cooling. It has a built-in fan, high-voltage power supply circuit, etc.
  • the CT device is a large, heavy, and expensive diagnostic imaging device.
  • vehicles equipped with an X-ray inspection device or the like are known, but in order to secure a stroke area, it is inevitable that the vehicle itself becomes large, and each subject enters the vehicle and undergoes an inspection. It took a long time, and it was difficult to efficiently perform imaging tests on a large number of subjects.
  • CT equipment such as X-ray computer tomography equipment
  • Various unsolved technical problems remain as factors for increasing the size or cost of CT equipment, and no effective breakthrough has yet been found.
  • medical vehicles equipped with X-ray equipment also called X-ray vehicles in Japan
  • the rotating part in the gantry contains an X-ray source, a detector, a detector signal processing circuit, an X-ray source drive control circuit, an air cooling fan, and the like.
  • the X-ray source, the X-ray source drive control circuit, the air-cooled fan, etc. are heavy, and the moment of inertia and heavy objects when these are rotated at a speed of 0.5 rotations or more per second on the circumference in the gantry. It is necessary to minimize the harmful effects such as vibration and noise caused by rotation.
  • the above-mentioned X-ray source, detector, detector signal processing circuit, X-ray source drive control circuit, air-cooling fan, etc. are reduced in size and weight, and are equivalent to or equal to the conventional one. It is necessary to realize the above shooting performance.
  • an electrical contact means called a slip ring for supplying power or reading the output signal of the detector or the like to the outside is adopted.
  • a slip ring for supplying power or reading the output signal of the detector or the like to the outside.
  • the slip ring In order to ensure the electrical connection by the slip ring, it is necessary to keep the number of revolutions low and the number of signal lines to be low.
  • a method of serializing a parallel signal and reading it out via a slip ring is adopted.
  • the transmission frequency rises when a large amount of imaging data is serially transmitted, it is necessary to develop a dedicated semiconductor device such as a high-speed line buffer element, and it is inevitable that power consumption and heat generation will increase as the transmission frequency rises. ..
  • the structure is shifting to a structure in which the slice width is widened.
  • the X-ray generator will become larger.
  • the light receiving area of the detector used is increased, that is, the number of pixels is increased, and further high-speed and large-capacity data transmission and external recording are performed. High-speed real-time recording on media is required.
  • the present invention comprises a gantry having a rotating portion that rotates about the body axis direction, and a control unit that processes and displays image data sent from the gantry.
  • a CT device with a built-in light source and light source drive control circuit in the rotating part, and the central axis is in the vertical direction, and the rotating part and the fixed part surrounding the rotating part are combined in the vertical direction to form the rotating part.
  • a CT device in which magnets or electromagnetic induction means for generating a magnetic field are arranged close to each other at positions where the fixed portions face each other.
  • the CT apparatus is a CT device in which the rotating portion is located above the fixed portion at the facing position and magnets are attached to the rotating portion and the fixed portion so that the same polarities face each other at the facing positions.
  • the CT device is a CT device in which the rotating portion is located below the fixed portion at the facing position and magnets are attached to the rotating portion and the fixed portion so that different polarities face each other at the facing position.
  • it is a CT device in which the rotating portion is located above the fixed portion at the facing position, the rotating portion has a magnet at the facing position, and the electromagnetic induction means is arranged at the fixed portion.
  • it is a CT device in which the rotating portion is located below the fixed portion at the facing position, the rotating portion has a magnet at the facing position, and the electromagnetic induction means is arranged at the fixed portion.
  • the CT device is a CT device having a drive motor for rotating the rotating portion and a timing belt for transmitting the rotational torque of the drive motor to the rotating portion.
  • the CT device has a gear structure having different numbers of teeth to transmit the rotational torque of the drive motor that rotates the rotating portion to the rotating portion on the rotation shaft of the drive motor and the circumference of the rotating portion.
  • a direct drive motor structure is used in which the rotating portion is a rotor and the fixing portion is a stator.
  • the rotating portion is a CT device having at least a light source, a light source drive control circuit, and a secondary battery for driving them.
  • the CT device has a detector, a detector drive control circuit, and a digital signal processing circuit for processing the output signal of the detector built in the rotating unit.
  • the CT apparatus has a built-in semiconductor image memory for recording the data obtained from the detector.
  • a CT device having a detector on the inner circumference of the fixed portion facing the outer peripheral portion of the rotating portion is preferable. Further, the CT apparatus has an opening in the rotating portion, which is a portion facing the rotating portion of the light source across the rotation center and exposes the light receiving surface of the detector by passing the emitted light from the light source.
  • the CT apparatus in which the detector is formed on a silicon semiconductor substrate and the longitudinal direction of the peripheral circuit block formed on the same semiconductor substrate is parallel to the normal direction of the circumference having the central axis as the rotation axis. And. Further, the CT device has a light receiving surface of the detector curved about the central axis.
  • a lithium ion battery is used as the secondary battery.
  • a large-capacity semiconductor memory for example, a non-volatile memory such as a NAND flash memory is used as the image memory.
  • the light source is an X-ray light source or a near infrared (NIR) light source.
  • NIR near infrared
  • the light source is an X-ray light source
  • the electron beam generating portion of the X-ray light source is formed of carbon nanostructures.
  • the detector is preferably a silicon semiconductor detector, and has a structure in which an AD conversion circuit is formed in the silicon semiconductor detector.
  • the detector is either a photomultiplier tube type detector, an avalanche diode (APD) type detector, or a photon counting type detector.
  • a radiation shielding optical fiber plate is formed on the upper part of the detector, or a radiation scintillator is further laminated on the radiation shielding optical fiber plate.
  • a CT device in which the gantry moves in the central axis direction is such that the stage on which the subject stands or the chair on which the subject sits moves in the central axis direction with respect to the stationary gantry.
  • any of the above light source, secondary battery, detector, or semiconductor image memory has a cartridge structure, and the light source, secondary battery, detector, or semiconductor image memory having a cartridge structure is individually inserted or inserted into the rotating portion.
  • a CT device having a cartridge opening for removal.
  • the host is electrically connected by facing the rotating unit interface and mechanically contacting the rotating unit in a stopped state, or by electromagnetically coupling in a non-contact state by the interaction of an electromagnetic field.
  • a CT device having an interface in a fixed portion around a rotating portion.
  • the rotating unit interface and the host interface are CT devices that face each other in the central axis direction or in a radial direction close to the central axis.
  • the CT device has a structure in which the rotating portion interface is formed as a ring-shaped electrode over the entire circumference of the annulus on the side surface side of the rotating portion and is connected to the host interface composed of convex connection terminals.
  • the CT device has a wireless communication interface in the rotating unit that transmits data inside the semiconductor image memory to the outside of the rotating unit.
  • the CT device has a wireless interface for transmitting and receiving a control signal for controlling the imaging operation of the gantry by wireless communication in a fixed portion or a rotating portion inside the control unit and the gantry.
  • the host is electrically connected by facing the rotating unit interface and mechanically contacting the rotating unit in a stopped state, or by electromagnetically coupling in a non-contact state by the interaction of an electromagnetic field.
  • a CT device having an interface in a fixed portion around a rotating portion.
  • the rotating unit interface and the host interface are CT devices that face each other in the central axis direction or in a radial direction close to the central axis.
  • the CT device has a structure in which the rotating portion interface is formed as a ring-shaped electrode over the entire circumference of the annulus on the side surface side of the rotating portion and is connected to the host interface composed of convex connection terminals.
  • the CT device has a wireless communication interface in the rotating unit that transmits data inside the semiconductor image memory to the outside of the rotating unit.
  • the CT device has a control unit and a CT device inside the gantry that transmits and receives control signals for controlling the imaging operation of the gantry by wireless communication.
  • the rotating part When the rotating part is stopped, it rotates the host interface that is electrically connected by facing the rotating part interface and mechanically contacting it, or by electromagnetically coupling it in a non-contact state due to the interaction of an electromagnetic field.
  • It is a CT device provided in a fixed portion around the portion.
  • the rotating unit interface and the host interface are CT devices that face each other in the central axis direction or in a radial direction close to the central axis.
  • the CT device has a structure in which the rotating portion interface is formed as a ring-shaped electrode over the entire circumference of the annulus on the side surface side of the rotating portion and is connected to the host interface composed of convex connection terminals.
  • the CT device has a wireless interface for transmitting and receiving control signals for controlling the imaging operation of the gantry by wireless communication in the control unit and the rotating unit.
  • the structure is such that the rotating unit interface and the host interface face each other at a predetermined position within the movement range of the gantry.
  • the predetermined position is at the end point of the movement range of the gantry.
  • the rotating unit interface and the host interface are close to each other in the vertical direction and face each other.
  • the rotating unit interface and the host interface are close to each other in the central axis direction and face each other.
  • the rotating unit interface and the host interface are electrically connected by mechanically contacting each other at a predetermined position.
  • it is a non-contact interface in which the rotating unit interface and the host interface are close to each other at a predetermined position and electrically connected by the interaction of an electromagnetic field in a non-contact state.
  • a driving means for moving the gantry in the central axis direction is provided inside the gantry.
  • a drive motor for rotating the rotating portion is provided inside the gantry.
  • the cradle is provided at the top or bottom of the column, and the cradle is provided with a host interface. Further, the cradle is provided with an inspection probe for inspecting and calibrating the rotating part or a holding means for holding a standard sample. Alternatively, the cradle has a hold mechanism for holding and fixing the rotating portion at a predetermined position, or a cooling mechanism for cooling.
  • a medical examination or inspection vehicle equipped with the above CT device is a medical examination or inspection vehicle located on the side surface portion or the rear side surface portion of the vehicle. Further, it is assumed that the air pressure in one section occupied by the CT device inside the inspection vehicle is lower than the air pressure in the other sections inside the inspection vehicle and the moving passage. Alternatively, the medical examination or inspection vehicle having a ventilation means for exhausting the air in the section where the CT device is installed to the outside of the vehicle.
  • the medical examination or inspection vehicle in which the power source for driving the CT device is a fuel cell using hydrogen gas.
  • the CT device Since the CT device has been made smaller and lighter, and the power consumption has been reduced, and the stroke area has been eliminated by the vertical movement of the gantry section, the space for installing the CT device, the building and power supply, the construction of air conditioning equipment, etc. Maintenance costs can be significantly reduced. Furthermore, since the number of slip rings and brushes for making electrical connections with them can be reduced or eliminated, the frequency of sparks and failures associated with power supply with a large amount of current can be significantly reduced and reliability is reduced. Can be improved. In addition, permanent magnets or electromagnets are placed on the rotating part and the fixed part, and the magnetic force that repels or attracts each other can be used to reduce the load that the weight of the rotating part applies to mechanical parts such as ball bearings.
  • the rotating portion can be easily rotated at a high speed of, for example, 2 to 10 rotations per second.
  • a CMOS type detector with an integrated signal processing circuit using on-chip or laminated elements and an X-ray source using carbon nanostructures can be used, a CT equipped with a gantry unit with low noise and low power consumption can be used.
  • the device can be realized.
  • a small photomultiplier tube or other high-sensitivity detector can be used, so that the radiation exposure dose of the subject can be reduced.
  • the gantry since the components inside the gantry, such as the X-ray source, X-ray detector, and secondary battery, have a cartridge structure, the gantry itself does not need to be disassembled and repaired, and only the defective part is extracted and new. By inserting components, the time and cost required for repairs can be significantly reduced. In addition, inventory of maintenance parts to maintain optimum equipment performance at all times, or annual maintenance costs and equipment downtime can be significantly reduced. Further, the inspection vehicle for medical examination equipped with the CT device according to the present invention enables quick and accurate initial diagnosis in a remote place, a disaster-occurring area, or the like.
  • (A) is a perspective view of the CT device 100 according to the embodiment, and (b) is a side view perspective view of the inspection vehicle 500 according to the embodiment.
  • (A) is an XY plan view seen from the Z-axis direction for explaining the structure of the fixed portion 24 and the rotating portion 23 inside the gantry 5.
  • (B) is an XY plan view seen from the direction opposite to the central axis 1 in order to explain the structure of the fixed portion 24 and the rotating portion 23 inside the gantry 5.
  • (C) is a perspective view for explaining another rotation drive structure of the rotation part 23.
  • (A) is a cross-sectional structure view of the gantry 5 as viewed from the X-axis or Y-axis direction.
  • (B) to (e) are cross-sectional views for explaining a modified example of the structure of the portion A surrounded by the broken line in (a).
  • (A) is a plan view seen from the Z-axis direction for explaining the internal structure of the rotating portion 23 inside the gantry 5.
  • (B) is a circuit configuration diagram for explaining the inside of the rotating portion 23, particularly the detector and its peripheral circuits.
  • (C) It is a circuit block diagram for demonstrating the inside of the rotating part 23, particularly the X generation part and a high voltage drive circuit.
  • (A) is a plan view of the gantry portion of the CT device 200 according to the modified example of the CT device 100 as viewed from the Z-axis direction.
  • (B) and (c) are cross-sectional structural views viewed from the X-axis or Y-axis direction for explaining the structure of the gantry portion of the CT device according to the modified example of the CT device 200.
  • (A) is a XY plan view of the CT device 300 according to a modification of the CT device 200, particularly the gantry portion viewed from the Z-axis direction, and
  • (b) is a cross-sectional structure view also seen from the X-axis or Y-axis direction.
  • (c) is an enlarged view of a portion B surrounded by a broken line in (a).
  • (D) is a plan view when the direction of the opening 28 is viewed from the X-ray source 25 m in order to explain the opening 28 formed in the rotating portion 23, and the opening 28 is arranged in the fixed portion 24. A part of the plurality of detector units 30 is visible.
  • (A) is a plan view of a CMOS type solid-state image sensor 30-1, which is a detector unit suitable for the detector unit 30 used in the CT apparatus 300.
  • (B) is another detector unit suitable for the detector unit 30 used in the CT apparatus 300, and the CMOS type solid-state image sensor 30-2 is arranged so as to face each other so that the light receiving regions are in close contact with each other. It is a plan view of.
  • (C) is an enlarged cross-sectional view for explaining the cross-sectional structure of the CMOS type solid-state image sensor 30-2 in (b).
  • (A) is a side view of the image pickup apparatus 400 according to the embodiment as viewed from the X-axis direction
  • (b) is a block diagram for explaining the circuit configuration of the wireless power feeding portion in the non-contact interface portions (10 and 12). is there.
  • the state before the secondary battery (27 m) having a removable cartridge structure was connected to the cartridge holder 22 in the cradle was attached to the cartridge holder 22 from the X-axis direction.
  • FIG. 1 It is a conceptual diagram which looked at the state before taking in the charged secondary battery (27 m) into a gantry from the Y-axis direction.
  • (A) and (b) are side views of the inspection vehicle 600 and the inspection vehicle 700 according to the modified example of the inspection vehicle 500, respectively.
  • (C) and (d) are plan views seen from the Z-axis direction of the inspection vehicle 600 and the inspection vehicle 700 according to the modified example of the inspection vehicle 500, respectively.
  • (A) and (b) are side views of the inspection vehicle 800 and the inspection vehicle 900 according to the modified example of the inspection vehicle 500, respectively.
  • (C) is a flowchart for explaining the driving method of the inspection vehicle 800.
  • FIG. 1A is a perspective view of the CT device 100 according to the embodiment.
  • the Z-axis direction coincides with the horizontal plane, that is, the direction of gravity. Therefore, the moving direction of the gantry 5 is also the vertical direction, that is, the Z-axis direction.
  • the CT device 100 has a vertical sleeper that determines the standing position of the subject, or a portion 3 called a back plate.
  • a motor or the like for pulling up or lowering the gantry 5 is built in either the ceiling portion (9-1) of the CT device or the bottom portion (9-2) on which the subject rides.
  • the ceiling portion and the bottom portion are the end points of the gantry 5, and may be referred to as a cradle as described later.
  • Two columns 7-1 and 7-2 for holding the cradle and the gantry 5 are provided.
  • the miniaturization and weight reduction of the gantry portion according to the present invention facilitates the vertical movement of the gantry, and the subject undergoes a CT examination while standing or sitting on a chair. Will be possible. Further, it becomes easy to mount the CT device on the vehicle and actually use the CT device installed in the vehicle at the moving destination. This is because with the conventional CT device, it is necessary to secure the sleeper itself and the space for moving the sleeper in the horizontal direction, that is, the stroke area in the vehicle, and it is difficult to miniaturize the inspection vehicle equipped with the CT device. ..
  • FIG. 1B is a side view of the inspection vehicle 500 according to the embodiment.
  • the height direction of the vehicle that is, the vertical direction is the Z axis
  • the above-mentioned CT device 100 shown by a broken line is mounted.
  • the examination vehicle can be miniaturized and the examination time per person can be shortened.
  • At the rear of the vehicle there is an entrance and a passage (neither shown) for entering the inside of the inspection vehicle 500, and the inside of the vehicle can be entered using the stairs or the step stool 17. Further, as will be described later, in order to utilize natural energy, for example, a solar panel 13 is provided.
  • FIG. 2A is a plan view of the gantry 5 as viewed from the Z-axis direction.
  • a fixing portion 24 is combined around the rotating portion 23 via a ball bearing or the like (not shown).
  • the rotating unit 23 is rotated around the central shaft 1 by a rotating unit rotating belt (or called a timing belt) 21 and a rotating unit drive motor 19.
  • FIG. 2B is a plan view of the gantry 5 as viewed from the Z-axis direction, but FIG. 2A is a plan view of the gantry 5 as viewed from the opposite side of the central axis 1.
  • the rotating unit 23 includes a light source, for example, an X-ray generating unit 25, a light source driving circuit 29, a detector array 31, a detector peripheral circuit 33, a detector drive control circuit 41, and a ring-shaped electrode attached around the rotating unit. It has 6S.
  • the fixed portion 24 has a convex contact terminal 4S that can be electrically connected to the ring-shaped electrode 6S, and transfers electric power or a signal by a so-called slip ring structure.
  • the X-rays 26 emitted from the X-ray generator 25 pass through the subject (not shown) and reach the detector array 31.
  • FIG. 2C is a side view for explaining an example of a rotating structure different from that of FIGS. 2A and 2B with respect to the rotating portion 23.
  • the rotating unit drive motor 19m and the rotating unit 23g are combined by a gear structure without using the rotating unit rotating belt, and the rotational torque of the rotating unit driving motor 19m is transmitted to the gears 19g and the gears on the outer periphery of the rotating unit 23g.
  • the number of teeth of the gear 19g is less than the number of teeth on the outer circumference of the rotating portion 23g.
  • a direct drive (DD) motor structure may be formed in which the rotating portion 23 is a rotor and the inner circumference of the gantry 5 surrounding the rotor is a stator.
  • the rotating portion 23 and the fixing portion 24 are combined in the vertical direction via a plurality of ball bearings 50 arranged in an annular shape.
  • the rotating portion 23 is rotated by an external motor (not shown) via the timing belt 21.
  • the permanent magnets 34-1 and 34-2 are paired with each other so that the rotating portion 23 and the fixed portion 24 face each other and have the same polarity (that is, the north poles or the south poles face each other). Is arranged (to do).
  • Each of the permanent magnets 34-1 and 34-2 may be a single donut-shaped permanent magnet, or may have a structure in which a plurality of magnets are arranged on the circumference.
  • the permanent magnet for example, a neodymium magnet, a samarium-cobalt magnet, a ferrite magnet, or the like can be used.
  • the rotating portion 23 can be easily rotated at a high speed of, for example, 2 to 10 rotations per second.
  • it is set in the range of about 0.1 to 5 mm (mm). To.
  • FIG. 3 (b) to 3 (e) are partially enlarged views for explaining a modified example using magnetic force repulsion and suction in the broken line portion A in FIG. 3 (a).
  • FIG. 3B has a structure in which magnets having the same polarity face each other, such as S poles or N poles, as already described in FIG. 3A. As shown in the figure, when the rotating portion 23-1 is located above the fixed portion 24-1, the rotating portion 23-1 is lifted in the direction against gravity by the repulsive force between the magnets.
  • FIG. 3C shows a structure in which the S pole and the N pole face each other, and as shown in the figure, when the rotating portion 23-2 is located below the fixed portion 24-2, the rotating portion 23-2 is a magnet.
  • FIG. 3D has a structure in which the above FIGS. 3B and 3C are combined, and the fixing portion 24-2 is located above the rotating portion 23-2 and rotates due to the attractive force between the magnets. A force that pulls up the portion 23-2 in the direction against gravity acts.
  • the fixed portion 24-1 is located below the rotating portion 23-2, and the repulsive force between the magnets exerts a force that lifts the rotating portion 23-2 in the direction against gravity.
  • a magnet 34 is attached to the rotating portion 23-3, and an electromagnet 32 in which a coil 36 is wound around an iron core is attached to a fixed portion 24-3 at a position facing the magnet 34.
  • the magnetic force induced in the electromagnet 32 is controlled by the power supply 42 and the amplifier (Amp.) 46.
  • a gap sensor 44 is attached to control the height of the rotating portion 23-3 in the Z-axis direction.
  • FIG. 4A is a plan view showing components and the like when viewed from the Z-axis direction for explaining the internal structure of the rotating portion 23 inside the gantry 5.
  • light sources such as an X-ray generator 25, a light source drive circuit 29, a detector array 31, a detector peripheral circuit 33, a detector drive control circuit 41, and a digital signal processing circuit (not shown).
  • It has a semiconductor image memory 35, a secondary battery 27, and a rotating unit interface 2-2.
  • the X-ray generator 25, the secondary battery 27, and the semiconductor image memory 35 preferably have a cartridge structure that can be easily inserted and removed individually from the rotating unit 23, respectively.
  • the cartridge and the rotating portion 23 can be electrically conductive by contacting the metal terminals.
  • the rotating unit interface 2-2 may be a non-contact interface described later or an electrical contact with a conductive electrode.
  • the X-ray beam 26 emitted from the X-ray generating unit 25 passes through the subject (not shown) standing along the back plate 3 and reaches the detector array 31.
  • a weight balance adjusting unit for adjusting the weight balance during rotation of the rotating unit may be provided.
  • an X-ray generator using a carbon nanomaterial such as carbon nanotube (CNT) as a field electron emission source may be used for the X-ray generator 25.
  • the carbon nanomaterial is used as the cold cathode material, preheating is not required, and compared to the case of using a conventional X-ray tube, it is possible to reduce the size and power consumption, and the high voltage control circuit 29 can be downsized and the cooling fan. This is because the size of the cooling fan itself can be reduced or the cooling fan itself can be eliminated.
  • the structure in which the detector array 31 is built in the rotating portion 23 has been described. However, as will be described later, the detector array 31 is not inside the rotating portion 23 but the rotating portion 23. The structure may be arranged so as to cover the entire inner circumference of the fixed portion of the surrounding gantry 5. In this case, it is not necessary to arrange the detector peripheral circuit, the semiconductor image memory, etc. in the rotating portion in the gantry, and the rotating portion is further reduced in weight.
  • FIG. 4B is a circuit block diagram for explaining the inside of the rotating portion 23, particularly the detector 31 and its peripheral circuits 33 and the like.
  • the peripheral circuit 33 includes a detector drive control circuit 41, a signal amplification / analog-to-digital (AD) conversion circuit 43, a signal scanning / control circuit 45, a digital signal processing circuit 47, a parallel serial conversion circuit 49, and the like.
  • a plurality of detector units 30 are regularly arranged in an arc shape or in the Z-axis direction in order to increase the number of slices in the detector array 31.
  • the detector unit 30 includes a small electron multiplier type detector (for example, "micro PMT element” manufactured by Hamamatsu Photonics Co., Ltd.), an amplification type detector using an avalanche effect (APD), a photomultiplier type detector, and the like.
  • a high-sensitivity detector can also be used.
  • CMOS type detector in which an analog-to-digital (AD) conversion circuit, a signal processing circuit, or the like is on-chip can be used, high-speed and low-noise readout can be realized. Since these detector units have high sensitivity or low noise, the amount of X-ray irradiation (exposure) is reduced, or high-speed scanning in the Z-axis direction by short-time pulse irradiation becomes easy.
  • the detector unit 30 has a structure having a scintillator layer that converts incident X-rays into visible light corresponding to a band gap of a semiconductor material used for the detector unit 30, for example, silicon (Si). May be good.
  • the detector signal output from the detector array 31 is converted into digital data (for example, 16 bits) by the signal amplification / AD conversion circuit 43, and sent to the digital signal processing circuit 47 via the signal scanning / control circuit 45.
  • the necessary image processing is added.
  • a semiconductor image memory 35 is built in the rotating unit 23 in order to directly record the image data sent from the digital signal processing circuit 47. Since parallel recording can be performed directly in the semiconductor image memory 35 via the bus line 38 without parallel serial conversion, high-speed writing to the semiconductor non-volatile memory becomes possible.
  • the semiconductor image memory 35 a semiconductor non-volatile memory such as a NAND flash memory is suitable.
  • the image data stored in the DRAM which is a semiconductor image memory
  • the wireless communication interface can be displayed on the monitor screen via the wireless communication interface.
  • high-speed, large-capacity communication interface (5G, etc.) technology that has become widespread in recent years.
  • the parallel serial conversion circuit 49 may output the serial data to the rotating unit interface 2-2.
  • Serialization also has the effect of reducing the number of terminals in the host interface 2-1.
  • the electrical connection means including the host interface 2-1 and the rotating part interface 2-2, there are a plurality of connectors inside the rotating part interface 2-2 of the rotating part 23, and the shape thereof is a concave receiving structure ( Concave connection terminal 6).
  • Concave connection terminal 6 there are the same number of convex connection terminals 4 on the side of the host interface 2-1.
  • the pixel arrangement pitch is 50 microns ( ⁇ m) in length and width
  • the scanning speed in the body axis (Z-axis) direction can be increased, so that the amount of X-ray exposure can be reduced without increasing the number of slices, and the pixels.
  • it is also effective for photographing constantly moving organs such as the heart.
  • FIG. 4C is a block diagram for explaining the X-ray generating unit 25 and the light source driving circuit 29 inside the rotating unit 23.
  • the X-ray generating section 25 of the cartridge structure is composed of a carbon nanomaterial electron beam generating cold cathode 25C and an anode target 25A.
  • the light source drive circuit 29 is composed of a voltage booster circuit 29-1 and a high voltage control circuit 29-2.
  • the light source drive circuit 29 is a transformerless compact, lightweight, low power consumption high voltage power supply unit by using a switching power supply and a power semiconductor.
  • the secondary battery 27 having a cartridge structure for example, a lithium ion battery can be used.
  • the DC voltage of the lithium-ion battery 27 can be boosted by the light source drive circuit 29, and the timing-controlled high-voltage pulse can be applied to the X-ray generator 25.
  • the lithium-ion battery 27 can be charged via the rotating unit interface 2-2 and the host interface 2-1 when the rotating unit 23 is stationary by using a battery remaining amount detection circuit and a charging circuit (not shown).
  • FIG. 5A is a plan view of the CT device 200 according to the modified example of the CT device 100, particularly the structure inside the gantry as viewed from the Z-axis direction
  • FIG. 5B is a plan view of the CT device 200 according to the modified example of the CT device 200. It is sectional drawing seen from the X-axis or Y-axis direction of the gantry part 5-2 in 1
  • an X-ray light source unit 25 m having a cartridge structure, a secondary battery 27 m, a high voltage control circuit 29 m, etc.
  • the rotating unit 23 is built in the rotating unit 23, while the rotating unit A large number of detector units 30 mounted on the entire circumference inside the annular fixing portion 24 having a center at the same position as the rotation center are built in.
  • the fixing portion 24 is fixed to the outer peripheral portion 5-2 of the gantry and is located inside the rotating portion 23 on the XY plane view. Further, a rotation drive motor 19 and a timing belt 21 for rotating the rotating portion 23 are shown. Further, inside the gantry moving carriage 11, in addition to the rotary drive motor 19, a semiconductor image memory 35 m having a cartridge structure and a detector drive control circuit 41 m are built in. As shown in FIG.
  • the fixing portion 24 is provided so that the X-rays (broken line arrows) emitted from the X-ray light source portion 25m in the gantry 5-1 are not obstructed by the fixing portion 24.
  • a structure shifted in the Z-axis direction with respect to the mounting position of the detector unit 30 is adopted.
  • FIG. 5C is a cross-sectional view for explaining the internal structure of the CT device according to the modified example of the CT device 200, particularly the gantry 5-2.
  • a fixed portion 24 and a rotating portion 23 are incorporated in the gantry 5-2.
  • the difference from the structure shown in FIG. 5B is that the diameter of the rotating portion 23 containing the X-ray light source 25 m is smaller than the diameter of the inner peripheral portion of the fixed portion 24, and therefore the X-ray light source 25 m emits light.
  • the X-rays reach the detector 30 without being hindered by the fixed portion 24.
  • FIG. 6A is a plan view of the CT apparatus 300 according to the embodiment as viewed from the Z-axis direction for explaining the structure in the gantry.
  • the fixing portions 24 are combined so as to surround the outer circumference of the rotating portion 23.
  • a detector (not shown) is arranged on the inner circumference of the fixed portion 24 over the entire circumference.
  • the rotating unit 23 incorporates an X-ray generating unit 25 m, a light source drive circuit (not shown), a secondary battery, and the like.
  • An opening 28 shown by a broken line is formed in the rotating portion 23, and X-rays emitted from the X-ray generating portion can be transmitted or passed through. That is, the influence on the intensity and the traveling direction of the X-ray beam 26 can be reduced.
  • FIG. 6B is a cross-sectional view of the structure of the gantry 5-2 as viewed from the X-axis or Y-axis direction.
  • the detector 30 is arranged along the inner circumference of the fixed portion 24, and the X-ray 26 that has passed through the opening 28 reaches the detector 30.
  • a fiber optic plate that selectively shields or collimates X-rays, an X-ray scintillator, or the like can be laminated on the upper part of the detector 30.
  • FIG. 6 (c) is an enlarged view seen from the Z-axis direction for explaining the structure of the portion related to the broken line portion B in FIG. 6 (a).
  • the detectors 30 are closely arranged so that the longitudinal direction of the detector 30 is parallel to the Z axis. That is, it is a plan view when the opening 28 is viewed from the X-ray generating portion 25m toward the same portion using FIG. 6D. Since the pixel arrays of the plurality of detectors 30 attached to the fixed portion 24 are exposed to the X-ray light source 25 m by the opening 28 formed in the rotating portion 23, the irradiation X-rays can be detected without being shielded. It enables X-ray exposure to the vessel 30.
  • FIG. 7A shows a structure in which a plurality of detectors 30-1 are closely arranged along the inner circumference of the fixing portion 24 so as to surround the rotation center axis 1.
  • the detector 30-1 includes a vertical shift register 30-12, a horizontal shift register, a signal reading circuit 30-13, and the like along two opposite sides of a light receiving region in which a large number of pixels 30-11 are arranged.
  • the peripheral circuits of the above are arranged, and the remaining two opposite sides are the ends of the light receiving region.
  • the boundary line in which the plurality of detectors 30-1 are in contact is 30-14, and the arrangement pitch of each pixel 30-11 sandwiching this boundary line is inside the light receiving region that does not touch the boundary line 30-14 in the same direction. It is desirable that it is equal to the arrangement pitch of pixels 30-11.
  • the plurality of detectors 30-1 have the above peripheral circuits formed along two sides where the detectors 30-1 are not adjacent to each other. This is to obtain a continuous pixel signal in the rotation direction of the rotating portion.
  • the element size of the detector 30-1 is large, but for example, the so-called medium format size (44 mm ⁇ 33 mm), full size (36 mm ⁇ 24 mm), which are widely used in digital cameras and the like.
  • the structure and manufacturing method of the CMOS type image sensor such as APS size (23 mm ⁇ 15 mm) can be diverted, or the design suitable for the structure of the CT apparatus of the present invention can be used.
  • a plurality of detectors 30-2 are closely arranged along the inner circumference of the fixing portion 24 so as to surround the rotation center axis 1, and further detect in the direction of the rotation center axis 1.
  • Disclosed is a structure in which the number of pixels in the body axis (Z axis) direction is increased by arranging the device 30-2. As a result, the slice width can be expanded about twice.
  • the boundary line 30-24 of the detector 30-2, which is in close contact with the left and right sides, is important in the drawing. This is because it is desirable that the arrangement pitch of each pixel 30-21 having a boundary line sandwiching 30-24 equal to the arrangement pitch of other pixels 30-21 that do not touch the boundary line 30-24 in the same direction.
  • the horizontal and vertical scanning circuits and the signal readout circuits ((30-22, 30-23) have the arrangement pitch of each pixel 30-11 on the three sides of the detector 30-2 as described above. In order not to interfere with the circuit, the circuit is arranged on one side of the detector 30-2.
  • FIG. 7 (c) is a cross-sectional view for explaining the structure of the detector 30-2 shown in FIG. 7 (b).
  • the detector 30-2 is a CMOS type solid-state image sensor having a back-illuminated structure, and a scintillator layer 39 is laminated on the back surface side. It is sufficient that the thickness of the silicon substrate used in this CMOS type solid-state image sensor is about 5 to 10 microns ( ⁇ m). This is because the incident X-rays are converted into visible light in the scintillator layer and then read out as an electric signal via the pixel 30-21.
  • the wiring layer 30-26 is arranged on the front side of the detector 30-2, and the horizontal and vertical scanning circuits, signal readout circuits ((30-22, 30-23), and connection terminals 30-25) are arranged in the area C surrounded by the broken line.
  • a shielding member 40 for protecting and mitigating the integrated circuit from X-ray damage is arranged above the area C (30-22, 30-23).
  • FIG. 8A is a side view of the CT device 400 as viewed from the X-axis direction.
  • the CT device 400 is composed of columns 7-1 and 7-2, a ceiling portion (9-3) of the CT device 400, and a bottom portion (9-4) on which the subject rides. Since the ceiling portion (9-3) has the functions described below, it can also be called a cradle. In addition, the bottom (9-4) on which the subject rides can also be called a cradle or a stage on which the subject rides.
  • gantry 5 that can move in the Z-axis direction is attached between the ceiling portion (9-3) and the bottom portion (9-4) on which the subject rides.
  • a rotating portion 23 that can be rotated by a rotary drive motor 19, and the rotation central axis 1 thereof is shown in the drawing.
  • a cartridge structure component (not shown) is used inside the rotating portion 23. It has wheels 15 and a gantry traction motor 14 for moving the gantry 5 in the Z-axis direction.
  • the electrical connection means 10 for exchanging an electric signal or electric power with the rotating portion 23 in the gantry is connected to the gantry storage portion 37 of the cradle 9-3 with the electrical connection means 12 Are arranged in the rotating portion 23 in the gantry so as to face each other with the electrical connecting means 10.
  • These can supply non-contact power in a state of facing each other and close to each other, for example, charging a lithium ion battery or the like inside the rotating unit 23, or exchanging data or a signal between the rotating unit 23 and the cradle side. it can.
  • the back plate 3 that determines the position of the subject is inserted in the hollow portion of the gantry 5 in the Z-axis direction.
  • a sample holding portion 20 is provided inside the gantry storage portion 37 of the cradle 9-3.
  • the sample is, for example, an object to be measured for preliminarily testing whether or not the detector and the light source unit inside the rotating unit 23 are functioning normally, and is called a standard sample or a phantom.
  • an inspection probe (not shown) for the purpose of inspection or calibration of the rotating portion 23 may be provided in the cradle.
  • a supply port 16 for cooling gas for example, air or nitrogen gas, in order to lower the temperature inside the gantry 5, while the rotating portion 23 fits into the supply port 16.
  • An opening 18 provided in the rotating portion 23 is provided.
  • the gantry portion can be protected from impact even when the CT device is moved by a vehicle or the like and used at a destination.
  • the cradle 9-3 can be provided with functions necessary for stable driving of the gantry or maintenance such as safety and performance.
  • FIG. 8B is a block diagram for explaining an example of a circuit configuration related to electromagnetic induction type wireless power feeding in the non-contact interface units (10 and 12).
  • the circuit configuration of the interface 10 on the cradle side consists of an AC / DC converter (10-3) that converts commercial power (10-2) to direct current, and a high-frequency inverter (10-4) that outputs high-frequency square waves. ), A waveform conversion circuit (10-5) that converts this into a sinusoidal wave, an isolation transformer (10-6) for ensuring safety, and the like are connected to the primary coil L1 (10-1).
  • the secondary coil L2 (12-1) is loaded with a load such as a secondary battery (12-2) via a rectifying smoothing circuit (12-4) that returns high frequencies to direct current, a backflow blocking diode ((12-3), etc.). ) Etc.
  • a wireless communication method (not shown) based on near-field magnetic field coupling is used for transmitting and receiving control signals or image data, etc., and is rapidly becoming widespread in recent years. It is also possible to transmit high-speed, large-capacity CT image data using a high-speed, large-capacity communication method (for example, 5G) because the data transfer speed can be increased by giga (G) bits / second or more.
  • a method in which the wireless power supply and the wireless communication are performed using the same coil or antenna.
  • a method of driving the CT device 400 according to the embodiment will be described. After the movement of the gantry 5 and the start of rotation of the rotating portion 23, imaging by X-ray irradiation is started.
  • the digital data obtained from the detector array 31 is recorded in the semiconductor image memory in real time. As described with reference to FIG. 2B, the digital data can be recorded in the image memory (35) as it is without the need for parallel serial conversion.
  • the gantry stops at a predetermined position the data recorded in the image memory 35 is read from the rotating unit interface 12 via the clay-side interface 10, and after the image reconstruction process in the operation / control unit, the gantry is reconstructed. It is displayed on the monitor and returns to the standby state. At the same time, or during standby, the lithium ion battery (27) is charged to complete a series of imaging drive sequences.
  • the secondary battery is a secondary battery 27 m having a cartridge structure and is inserted into the insertion space 27f.
  • the gantry storage portion 37 of the cradle 9-5 is provided with a cartridge holder 22, and when the gantry 5 is stored in the gantry storage portion 37, the secondary battery 27m is coupled to the cartridge holder 22.
  • FIG. 8D is a cross-sectional view of the rotating portion 23 in FIG. 8C when the rotating portion 23 is rotated 90 degrees about the central axis 1.
  • the secondary battery 27m is not inserted in the second secondary battery insertion space 27f inside the gantry 5, while the cartridge holder 22 inside the gantry storage portion 37 of the cradle 9-4 is charged.
  • the next battery 27m is attached. Therefore, when the gantry 5 is stored in the gantry storage unit 37, the charged secondary battery 27 m can be inserted into the secondary battery insertion space 27f in the gantry.
  • FIG. 9 (a) and 9 (b) are side views of the medical inspection vehicle 600 and the medical inspection vehicle 700 according to the embodiment, respectively.
  • the height direction of the vehicle that is, the vertical direction coincides with the Z axis of the CT device 100.
  • the CT device 100 is described for simplification of the description, but any of the CT devices 200 to 400 already described may be used.
  • FIG. 9A the CT device 100 is located behind the inspection vehicle, and the subject can enter the CT device by opening the door 48 provided on the rear side surface of the vehicle.
  • the door 48 is provided on the left or right side surface of the vehicle, and the subject can enter the CT device from either the left or right side surface of the vehicle.
  • a solar panel 13 In both cases of FIGS. 9A and 9B, a solar panel 13, a staircase or a step 17 is provided.
  • 9 (c) and 9 (d) show XY plan views when the inspection vehicles 600 and 700 are viewed from above.
  • the subject can directly enter the CT device 100 arranged in the section 63-3 in the inspection vehicle 600 from the rear part of the vehicle.
  • the inspection vehicle 700 (d) the subject can directly enter the CT device 100 arranged in the section 63-3 in the inspection vehicle 700 from the side surface of the vehicle.
  • the subject shall be examined by a CT device without going through other examinations and examination areas (63-1, 63-2, etc.) other than the waiting room and changing room, and the in-car passage 64, etc. Can be done.
  • the atmospheric pressure of the section (63-3) where the CT device 100 is installed or the place where the subject is located is set from the atmospheric pressure of other examination or examination sections (63-1, 63-2, etc.) or the passage 64 in the vehicle.
  • the risk of infection can be further reduced by keeping the pressure low (negative pressure).
  • a forced ventilation means ventilation fan, etc.
  • another examination or examination section (63-). 1, 63-2, etc.) and the structure will be lower than the air pressure in the in-vehicle passage 64.
  • FIG. 10A is a block diagram of a main part for explaining the power supply configuration of the medical vehicle 800 according to the embodiment, particularly centering on the vehicle drive motor 77, the CT device 100, and the like.
  • the medical vehicle 800 includes a hydrogen storage tank 75, and uses hydrogen gas to supply the electric energy generated in the fuel cell 73 to the vehicle drive motor 77. Further, it has a vehicle regenerative braking circuit 79 that recovers the regenerative energy associated with the moving vehicle braking of the medical vehicle 800, that is, the deceleration.
  • the main power source of the CT device is supplied from the fuel cell 73 via the cradle 7.
  • the secondary battery inside the gantry 5 can be charged from the vehicle regenerative braking circuit 79 via the cradle 7, for example.
  • the solar panel 13 makes it possible to use solar energy and charge the lithium ion battery 74 and the like inside the vehicle.
  • the fuel cell 73 consumes only hydrogen (H2) and air (Air), and emits only water (H2O). Therefore, there is no problem of harmful exhaust gas, noise, vibration, etc., and there is an advantage that medical activities such as medical examination can be continued without harming the subject, medical staff, and the like.
  • the structure in which the part for performing the inspection or medical treatment and the part for driving the vehicle are integrated has been described, but as shown in FIG. 10B, the vehicle for performing the inspection or medical treatment Needless to say, the structure may be such that the 910B is towed by another movable vehicle 910A.
  • the vehicle 910B for performing the inspection or medical practice may have a method of receiving power supply from the driving movable vehicle 910A, or a structure in which a power supply unit such as a fuel cell is built in the vehicle 910B.
  • the driveable vehicle 910A can separate the vehicle 910B performing the inspection or medical treatment, and tow the vehicle performing another inspection or medical treatment to go to another destination.
  • the medical vehicle 800 or 900 facilitates inspections, medical activities, etc. by going to remote areas, areas affected by earthquakes, typhoons, etc., developing countries, and other places where power supply and refueling cannot be expected.
  • the medical vehicle 800 or 900 will be moved into an outdoor tent or inside a building such as an evacuation center to continue examination and medical treatment activities for 24 hours. This is because the energy efficiency of the fuel cell 73 is high, and the spare hydrogen storage tank enables the continuation of medical activities for a long time.
  • the fuel cell 73 mainly supplies electric power to the vehicle drive motor 77 after the medical vehicle 500 starts moving and before using a medical device such as a CT at the destination.
  • the fuel cell 73 mainly supplies electric power to medical equipment such as a CT device, and it is not necessary to supply electric power to the vehicle drive motor 77. Further, while the medical vehicle 800 or 900 is moving, the secondary battery or the like built in the CT device can be charged from the vehicle regenerative braking circuit 79.
  • Different medical fields such as orthopedics, cardiology, gastroenterology, etc. and different by replacing the gantry part, the light source part and the detector cartridge, or adding the gantry for PET or the gantry using near infrared light as the light source.
  • Multi-imaging diagnosis for light source energy is realized in one CT device.
  • it can be widely used for animal and plant inspections, industrial measurements, and the like.

Abstract

[Problem] To facilitate movement or installation of a CT device and reduce maintenance load such as repair and replacement of used parts by reducing the size, weight, and power consumption of an X-ray CT and solving the stroke region of the X-ray CT. Furthermore, to facilitate mounting of the X-ray CT device, and achieve an examination vehicle capable of preventing in-hospital infection. [Solution] This CT device has a gantry that has a rotational part rotating around a body axis direction as a center axis and is movable in the vertical direction, wherein permanent magnets or electromagnets are installed between the rotational part and a fixed part so as to face each other. Furthermore, in this examination vehicle on which the CT device in mounted, the entrance of the CT device is provide to a side surface section of a vehicle body or to a rear side surface section of the vehicle body.

Description

コンピュータトモグラフィー装置及び検診車両Computer tomography equipment and examination vehicle
本発明は被験者が立ったまま、或いは座った状態で検査を受けることができるコンピュータトモグラフィー装置とこれを搭載した移動検診車両等に関する。 The present invention relates to a computer tomography apparatus capable of undergoing an examination while a subject is standing or sitting, and a mobile examination vehicle equipped with the computer tomography apparatus.
X線コンピュータトモグラフィー(CT)装置は、撮像対象物の周囲を回転する回転部を含むガントリ、ガントリの内側を通過するように被験者を載せた寝台を体軸方向に前進又は後退させる寝台移動装置、回転部と電気的接続を可能にするスリップリング、及びスリップリングを介し外部に転送された画像データを処理する画像描出部等を含む操作及びモニター部等から構成されている。回転部の内部には、多数の撮像素子の集合体からなる検出器、検出器からの信号を処理する回路基板、被験者等の撮像対象物を挟んで対向する位置にあるX線発生部、冷却ファン、高電圧電源回路等が内蔵されている。CT装置は大型、高重量かつ高額な画像診断機器であって、CT装置本体を設置する建物、電源、及び空調設備等の設置費用に加え、常時機器の性能を最適に保つための維持管理費も大きな負担となっている。そのためCT装置の設置場所を変えるために移動し、或いは戸外で使用することには様々な困難が伴う。従来、X線検査装置等を搭載した車両が知られているが、ストローク領域を確保するために車両自体の大型化が避けられず、また被検者が一人ずつ車内に入り検査を受けるため検査時間が長くなり、多数の被験者に対する画像検査を効率的に行うことが困難であった。 An X-ray computed tomography (CT) device is a gantry including a rotating part that rotates around an image object, a berth moving device that moves a berth on which a subject is placed so as to pass inside the gantry in the axial direction. It is composed of a slip ring that enables electrical connection with the rotating unit, an operation including an image drawing unit that processes image data transferred to the outside via the slip ring, and a monitor unit. Inside the rotating unit, there is a detector consisting of an aggregate of a large number of image sensors, a circuit board that processes signals from the detector, an X-ray generator located opposite to an imaging object such as a subject, and cooling. It has a built-in fan, high-voltage power supply circuit, etc. The CT device is a large, heavy, and expensive diagnostic imaging device. In addition to the installation cost of the building, power supply, air conditioner, etc. where the CT device body is installed, the maintenance cost to maintain the optimum performance of the device at all times. Is also a heavy burden. Therefore, there are various difficulties in moving the CT device to change the installation location or using it outdoors. Conventionally, vehicles equipped with an X-ray inspection device or the like are known, but in order to secure a stroke area, it is inevitable that the vehicle itself becomes large, and each subject enters the vehicle and undergoes an inspection. It took a long time, and it was difficult to efficiently perform imaging tests on a large number of subjects.
X線コンピュータトモグラフィー装置等のCT装置を小型・低価格化することにより、広く世界中の人々の健康維持に寄与する。特に癌その他の疾病を早期に発見し、増大する医療費を削減にすることが望まれる。また、開発途上国、その他遠隔地や過疎地域にあっても、最新かつ高水準の医療サービスを提供することにより、自然災害や地域紛争の結果生じた医療格差を解消する必要がある。CT装置の大型化、或いは高額化する要因には、様々な未解決の技術的課題が残されており、未だ有効な打開策が見出されていない。また、X線機器等を搭載した医療車両(日本ではレントゲン車とも呼ばれる)では、大人数の被験者に対するスクリーニングを第一の目的としており、何らかの疑わしき所見が認められた場合には後日、改めて専門の病院、或いは検査機関に出向きCT装置等による精密検査を受ける必要がある。しかし、高齢者や過疎地に住む受診者にとっては、再度精密検査を受けることは時間的、肉体的、或いは経済的負担が極めて大きいのが実情である。車両等の移動手段においてCT装置を使用するには、CT装置そのものの小型・軽量化に加え、必要とするスペースの削減、特に寝台の水平移動のためのストローク領域の確保が必須となる。さらに、被検者が一人ずつ車内に入り寝台上に横になるため、一人当たりの検査時間も長くなり、多数の被験者に対するCT検査を効率的に行うことが困難であるという課題がある。また、他の医療機器等を車両に搭載する余地を拡大するために、CT装置及び被験者に供するスペースの最小化、及び検査と診断の迅速化も解決すべき課題である。さらに、近年、世界的な感染症の蔓延、所謂パンデミックの脅威が深刻化している。このような感染症にり患している可能性のある被験者を従来通り、病院或いは検査施設においてCT検査を受けさせることは、他の患者や医療スタッフに感染を広げるリスクが避けられない。そのため、例えば、新型コロナウイルス感染症等に起因した初期の肺炎を早期に発見するため患者のいる場所において多くの患者にCT撮影を実施することが阻害されるという課題がある。 By reducing the size and price of CT equipment such as X-ray computer tomography equipment, we will contribute to maintaining the health of people all over the world. In particular, it is desirable to detect cancer and other diseases at an early stage and reduce the increasing medical costs. It is also necessary to eliminate medical disparities resulting from natural disasters and regional conflicts by providing the latest and highest standards of medical services, even in developing countries and other remote and depopulated areas. Various unsolved technical problems remain as factors for increasing the size or cost of CT equipment, and no effective breakthrough has yet been found. In addition, medical vehicles equipped with X-ray equipment (also called X-ray vehicles in Japan) have the primary purpose of screening a large number of subjects, and if any suspicious findings are found, they will be specialized again at a later date. It is necessary to go to a hospital or an inspection institution to undergo a detailed examination using a CT device or the like. However, for the elderly and those who live in depopulated areas, the fact is that it is extremely time-consuming, physical, or financially burdensome to undergo a detailed examination again. In order to use the CT device in a moving means such as a vehicle, it is essential to reduce the size and weight of the CT device itself, reduce the required space, and secure a stroke area for horizontal movement of the bed. Further, since each subject enters the vehicle and lays down on the bed, the examination time per person becomes long, and there is a problem that it is difficult to efficiently perform CT examinations on a large number of subjects. Further, in order to expand the room for mounting other medical devices and the like on the vehicle, the minimization of the space provided for the CT device and the subject, and the speeding up of the examination and diagnosis are also issues to be solved. Furthermore, in recent years, the worldwide spread of infectious diseases, the so-called pandemic threat, has become more serious. Having a subject who may be suffering from such an infection undergo a CT examination at a hospital or laboratory as before inevitably risks spreading the infection to other patients and medical staff. Therefore, for example, in order to detect early pneumonia caused by a new type of coronavirus infection or the like at an early stage, there is a problem that it is hindered from performing CT imaging on many patients in a place where there are patients.
上記車両等の移動手段においてCT装置を使用するには、CT装置の小型・軽量化が課題となる。ガントリ内の回転部には、X線源、検出器、検出器信号処理回路、X線源駆動制御回路、空冷ファン等を内蔵する。しかし、X線源、X線源駆動制御回路、空冷ファン等は高重量であり、これらをガントリ内の円周上において毎秒0.5回転以上の速度で回転させる場合の慣性モーメントや重量物の回転に伴う振動、騒音等の弊害を最小限にする必要がある。また、車両内においてCT装置本体が占有する面積と使用時のストローク領域を削減する必要がある。CT装置の小型化を阻害する要因の一つは、ガントリの小型・軽量化が困難な点にある。ガラス基板を使用した検出器の大面積化、即ち、スライス幅の拡大とこれに対応するX線光源と高電圧電源、これらを冷却する空冷ファン等の大型化のためである。これら大型化、高重量化、単位時間あたりのデータ伝送量の増大により、回転部の回転速度は高々毎秒0.5~2回転程度に制限されている。大電流を、スリップリングを介し回転部に供給することが困難であり、回転に伴う振動や騒音、或いはガントリ内の回転部と固定部の間に挿入されたボールベアリング等の機械部品の耐久性劣化や潤滑の問題があるためである。従って、CT装置の小型・軽量化のために、上記X線源、検出器、検出器信号処理回路、X線源駆動制御回路、空冷ファン等を小型化、軽量化し、かつ従来と同等或いはそれ以上の撮影性能を実現する必要がある。 In order to use the CT device in the means of transportation such as the vehicle, it is an issue to reduce the size and weight of the CT device. The rotating part in the gantry contains an X-ray source, a detector, a detector signal processing circuit, an X-ray source drive control circuit, an air cooling fan, and the like. However, the X-ray source, the X-ray source drive control circuit, the air-cooled fan, etc. are heavy, and the moment of inertia and heavy objects when these are rotated at a speed of 0.5 rotations or more per second on the circumference in the gantry. It is necessary to minimize the harmful effects such as vibration and noise caused by rotation. In addition, it is necessary to reduce the area occupied by the CT apparatus main body and the stroke area during use in the vehicle. One of the factors that hinders the miniaturization of CT devices is that it is difficult to reduce the size and weight of the gantry. This is to increase the area of the detector using the glass substrate, that is, to increase the slice width, the corresponding X-ray light source, the high voltage power supply, and the air cooling fan for cooling them. Due to the increase in size, weight, and data transmission amount per unit time, the rotation speed of the rotating portion is limited to about 0.5 to 2 rotations per second at most. It is difficult to supply a large current to the rotating part via a slip ring, and vibration and noise due to rotation, or the durability of mechanical parts such as ball bearings inserted between the rotating part and the fixed part in the gantry. This is because there are problems of deterioration and lubrication. Therefore, in order to reduce the size and weight of the CT device, the above-mentioned X-ray source, detector, detector signal processing circuit, X-ray source drive control circuit, air-cooling fan, etc. are reduced in size and weight, and are equivalent to or equal to the conventional one. It is necessary to realize the above shooting performance.
上述の通り、検出器等がガントリの内部で体軸方向を中心に回転するため、電源供給、或いは検出器等の出力信号を外部に読み出すためのスリップリングと呼ばれる電気的接触手段が採用されている。スリップリングによる電気的接続を確実にするには、回転数を低く抑え、かつ信号線本数を少なくする必要がある。信号線本数を少なくするためには、パラレル信号をシリアル化しスリップリングを介し読み出す方法が採用されている。しかし、大量の撮像データをシリアル伝送すると伝送周波数が上昇するため、高速のラインバッファ素子など専用半導体素子を開発する必要があり、さらに伝送周波数の上昇に伴う消費電力や発熱の増大も避けられない。近年、X線パルス照射による露光領域を体軸方向に拡大するため、スライス幅を広げた構造に移行しつつある。その結果、ガントリ自体の高重量化に加え、X線発生装置の大型化も避けられない。また、体軸方向の受光領域(即ちスライス数)を拡大するために、使用する検出器の受光面積を増加、即ち、画素数の増大を伴い、さらに高速かつ大容量のデータ伝送と外部の記録媒体への高速リアルタイム記録が求められる。しかし、大量の撮像データの伝送には伝送周波数の上昇が避けられず、高速のラインバッファ素子など専用半導体素子を開発する必要がある。加えて、伝送周波数の上昇に伴う消費電力や発熱の増大も避けられない。例えば、スライス数が64の場合、1ギガバイト/秒を超えるデータ処理速度が求められる。大量のデータをリアルタイムで高速記録するには、例えば、RAID(Redundant Arrays of Independent Disks)のような複数台のハードディスクを組み合わせて使用する必要がある。このような、伝送周波数の増大に伴う弊害を軽減、或いは除去することも解決すべき課題である。 As described above, since the detector or the like rotates around the body axis direction inside the gantry, an electrical contact means called a slip ring for supplying power or reading the output signal of the detector or the like to the outside is adopted. There is. In order to ensure the electrical connection by the slip ring, it is necessary to keep the number of revolutions low and the number of signal lines to be low. In order to reduce the number of signal lines, a method of serializing a parallel signal and reading it out via a slip ring is adopted. However, since the transmission frequency rises when a large amount of imaging data is serially transmitted, it is necessary to develop a dedicated semiconductor device such as a high-speed line buffer element, and it is inevitable that power consumption and heat generation will increase as the transmission frequency rises. .. In recent years, in order to expand the exposure area by X-ray pulse irradiation in the body axis direction, the structure is shifting to a structure in which the slice width is widened. As a result, in addition to increasing the weight of the gantry itself, it is inevitable that the X-ray generator will become larger. Further, in order to expand the light receiving area (that is, the number of slices) in the body axis direction, the light receiving area of the detector used is increased, that is, the number of pixels is increased, and further high-speed and large-capacity data transmission and external recording are performed. High-speed real-time recording on media is required. However, an increase in transmission frequency is unavoidable for the transmission of a large amount of imaging data, and it is necessary to develop a dedicated semiconductor element such as a high-speed line buffer element. In addition, it is inevitable that power consumption and heat generation will increase as the transmission frequency rises. For example, when the number of slices is 64, a data processing speed exceeding 1 gigabyte / sec is required. In order to record a large amount of data in real time at high speed, it is necessary to use a combination of a plurality of hard disks such as RAID (Redundant Arrays of Independent Disks). It is also a problem to be solved to reduce or eliminate such an adverse effect due to an increase in the transmission frequency.
同様に、スリップリングを介した電力の供給にも解決すべき課題が残されている。上述の如く、近年、スライス幅の拡大に伴い、X線源の大型化、即ち管電流の増大に伴い高電圧発生回路等を含むX線源駆動制御回路に供給する電流量も増大する傾向にある。その結果、スリップリングは、ブラシに対し高速かつ滑らせながら大きな電流を流す必要があり、接触面が発熱し焼き付きの原因となる。そのため、スリップリングやブラシの表面研磨や部材の定期的交換等のメンテナンスが必須である。他方、戸外或いは遠隔地においてCT装置を稼働させる場合、大容量かつ安定した商用電力の供給は期待できない。自家発電装置や車両の電源等による電源供給を前提とする使用環境に適合することも解決すべき課題である。上述のCT装置の小型・軽量化、低消費電量化により、CT装置自体の大幅な電力消費の抑制を実現する。加えて、車両等による戸外での使用を考慮し、修理、或いは定期的なメンテナンス負荷の軽減等も解決すべき課題である。 Similarly, there are still problems to be solved in the supply of electric power via the slip ring. As described above, in recent years, as the slice width has increased, the size of the X-ray source has increased, that is, the amount of current supplied to the X-ray source drive control circuit including the high-voltage generation circuit has tended to increase as the tube current increases. is there. As a result, the slip ring needs to pass a large current while sliding at high speed with respect to the brush, and the contact surface generates heat and causes seizure. Therefore, maintenance such as surface polishing of slip rings and brushes and regular replacement of members is essential. On the other hand, when the CT device is operated outdoors or in a remote place, a large capacity and stable supply of commercial power cannot be expected. It is also an issue to be solved to adapt to the usage environment that is premised on power supply by private power generation equipment or vehicle power supply. By reducing the size and weight of the CT device and reducing the power consumption described above, it is possible to significantly reduce the power consumption of the CT device itself. In addition, considering the outdoor use by vehicles and the like, repairs or reduction of regular maintenance load are also issues to be solved.
本発明は、体軸方向を中心軸として回転する回転部を有するガントリ、及びガントリから送られてきた画像データを処理表示する制御部から構成される。少なくとも、回転部には光源、光源駆動制御回路を内蔵するCT装置であって、さらに中心軸が鉛直方向であり、かつ回転部と回転部を取り囲む固定部が鉛直方向に組み合わされ、回転部と固定部が対面する位置にそれぞれ磁石、又は磁場を発生する電磁誘導手段を近接し対向するように配置したCT装置とする。 The present invention comprises a gantry having a rotating portion that rotates about the body axis direction, and a control unit that processes and displays image data sent from the gantry. At least, it is a CT device with a built-in light source and light source drive control circuit in the rotating part, and the central axis is in the vertical direction, and the rotating part and the fixed part surrounding the rotating part are combined in the vertical direction to form the rotating part. A CT device in which magnets or electromagnetic induction means for generating a magnetic field are arranged close to each other at positions where the fixed portions face each other.
好ましくは、上記対面する位置において回転部が固定部の上部に位置し、かつ対面する位置において回転部と固定部にそれぞれ互いに同じ極性が対向するように磁石を取り付けたCT装置とする。或いは、対面する位置において回転部が固定部の下部に位置し、かつ対面する位置において回転部と固定部にそれぞれ互いに異なる極性が対向するように磁石を取り付けたCT装置とする。 Preferably, the CT apparatus is a CT device in which the rotating portion is located above the fixed portion at the facing position and magnets are attached to the rotating portion and the fixed portion so that the same polarities face each other at the facing positions. Alternatively, the CT device is a CT device in which the rotating portion is located below the fixed portion at the facing position and magnets are attached to the rotating portion and the fixed portion so that different polarities face each other at the facing position.
好ましくは、対面する位置において回転部が固定部の上部に位置し、かつ対面する位置において回転部に磁石を有し、固定部に電磁誘導手段を配置したCT装置とする。或いは、対面する位置において回転部が固定部の下部に位置し、かつ前記対面する位置において回転部に磁石を有し、固定部に電磁誘導手段を配置したCT装置とする。 Preferably, it is a CT device in which the rotating portion is located above the fixed portion at the facing position, the rotating portion has a magnet at the facing position, and the electromagnetic induction means is arranged at the fixed portion. Alternatively, it is a CT device in which the rotating portion is located below the fixed portion at the facing position, the rotating portion has a magnet at the facing position, and the electromagnetic induction means is arranged at the fixed portion.
好ましくは、回転部を回転点させる駆動モータ、駆動モータの回転トルクを回転部に伝達するタイミングベルトを有するCT装置とする。或いは、回転部を回転点させる駆動モータの回転トルクを回転部に伝達する互いに歯数の異なる歯車構造を駆動モータの回転軸と回転部の円周上に有するCT装置とする。或いは、回転部をロータ、固定部を固定子とするダイレクトドライブモータ構造とする。 Preferably, it is a CT device having a drive motor for rotating the rotating portion and a timing belt for transmitting the rotational torque of the drive motor to the rotating portion. Alternatively, the CT device has a gear structure having different numbers of teeth to transmit the rotational torque of the drive motor that rotates the rotating portion to the rotating portion on the rotation shaft of the drive motor and the circumference of the rotating portion. Alternatively, a direct drive motor structure is used in which the rotating portion is a rotor and the fixing portion is a stator.
好ましくは、回転部には少なくとも光源、光源駆動制御回路、及びこれらを駆動する二次電池を内蔵するCT装置とする。さらに、回転部に検出器、検出器駆動制御回路、検出器の出力信号を処理するデジタル信号処理回路を内蔵するCT装置とする。さらに、検出器から得られたデータを記録する半導体画像メモリを内蔵するCT装置とする。 Preferably, the rotating portion is a CT device having at least a light source, a light source drive control circuit, and a secondary battery for driving them. Further, the CT device has a detector, a detector drive control circuit, and a digital signal processing circuit for processing the output signal of the detector built in the rotating unit. Further, the CT apparatus has a built-in semiconductor image memory for recording the data obtained from the detector.
好ましくは、回転部の外周部に対向する固定部の内周に検出器を有するCT装置とする。さらに、光源の回転部の回転中心を挟んで対向する部分であって、光源からの出射光を通過させ検出器の受光面を露光する開口部を回転部に有するCT装置とする。 A CT device having a detector on the inner circumference of the fixed portion facing the outer peripheral portion of the rotating portion is preferable. Further, the CT apparatus has an opening in the rotating portion, which is a portion facing the rotating portion of the light source across the rotation center and exposes the light receiving surface of the detector by passing the emitted light from the light source.
好ましくは、検出器がシリコン半導体基板上に形成され、かつ同一半導体基板上に形成された周辺回路ブロックの長手方向が、中心軸を回転軸とする円周の法線方向と平行であるCT装置とする。さらに、検出器の受光面が中心軸を中心に湾曲しているCT装置とする。 Preferably, the CT apparatus in which the detector is formed on a silicon semiconductor substrate and the longitudinal direction of the peripheral circuit block formed on the same semiconductor substrate is parallel to the normal direction of the circumference having the central axis as the rotation axis. And. Further, the CT device has a light receiving surface of the detector curved about the central axis.
好ましくは、二次電池にはリチウムイオン電池を用いる。また、画像メモリには大容量の半導体メモリ、例えば、NAND型フラッシュメモリ等の不揮発メモリを用いる。光源はX線光源、或いは近赤外(NIR)光源とする。好ましくは、光源がX線光源であって、X線光源における電子ビーム発生部をカーボンナノ構造体により形成する。検出器は、好ましくはシリコン半導体検出器であって、かつ該シリコン半導体検出器にはAD変換回路が形成された構造とする。好ましくは、検出器を光電子増倍管型検出器、アバランシェホトダイオード(APD)型検出器、又はフォトンカウンティング型検出器のいずれかとする。好ましくは、検出器の上部に放射線遮蔽光ファイバープレート、或いは放射線遮蔽光ファイバープレートの上部にさらに放射線シンチレータを積層した構造とする。 Preferably, a lithium ion battery is used as the secondary battery. Further, a large-capacity semiconductor memory, for example, a non-volatile memory such as a NAND flash memory is used as the image memory. The light source is an X-ray light source or a near infrared (NIR) light source. Preferably, the light source is an X-ray light source, and the electron beam generating portion of the X-ray light source is formed of carbon nanostructures. The detector is preferably a silicon semiconductor detector, and has a structure in which an AD conversion circuit is formed in the silicon semiconductor detector. Preferably, the detector is either a photomultiplier tube type detector, an avalanche diode (APD) type detector, or a photon counting type detector. Preferably, a radiation shielding optical fiber plate is formed on the upper part of the detector, or a radiation scintillator is further laminated on the radiation shielding optical fiber plate.
ガントリが中心軸方向に移動するCT装置とする。或いは、静止したガントリに対し、被験者が立つステージ、又は被験者が腰掛けるイスが上記中心軸方向に移動するCT装置とする。 A CT device in which the gantry moves in the central axis direction. Alternatively, the CT device is such that the stage on which the subject stands or the chair on which the subject sits moves in the central axis direction with respect to the stationary gantry.
上記の光源、二次電池、検出器、又は半導体画像メモリのいずれかがカートリッジ構造であり、かつ回転部にはカートリッジ構造の光源、二次電池、検出器、或いは半導体画像メモリを個別に挿入又は抜去するためのカートリッジ開口部を有するCT装置とする。 Any of the above light source, secondary battery, detector, or semiconductor image memory has a cartridge structure, and the light source, secondary battery, detector, or semiconductor image memory having a cartridge structure is individually inserted or inserted into the rotating portion. A CT device having a cartridge opening for removal.
好ましくは、回転部が停止状態において、回転部インターフェースに対向し、機械的に接触することにより、又は電磁場の相互作用により非接触の状態で電磁気的に結合することにより、電気的に接続するホストインターフェースを回転部の周囲にある固定部に有するCT装置とする。さらに、回転部インターフェースとホストインターフェースが互いに中心軸方向において、又は中心軸に対し放射状方向に近接し対向するCT装置とする。或いは、回転部インターフェースが回転部の側面側の円環全周にわたりリング状の電極として形成され、かつ凸状の接続端子からなるホストインターフェースと対向し接続する構造を有するCT装置とする。或いは、半導体画像メモリの内部のデータを回転部の外部に送信する無線通信インターフェースを回転部に有するCT装置とする。或いは、ガントリの撮像動作を制御する制御信号を無線通信により送受信する無線インターフェースを制御部とガントリの内部の固定部、又は回転部に有するCT装置とする。 Preferably, the host is electrically connected by facing the rotating unit interface and mechanically contacting the rotating unit in a stopped state, or by electromagnetically coupling in a non-contact state by the interaction of an electromagnetic field. A CT device having an interface in a fixed portion around a rotating portion. Further, the rotating unit interface and the host interface are CT devices that face each other in the central axis direction or in a radial direction close to the central axis. Alternatively, the CT device has a structure in which the rotating portion interface is formed as a ring-shaped electrode over the entire circumference of the annulus on the side surface side of the rotating portion and is connected to the host interface composed of convex connection terminals. Alternatively, the CT device has a wireless communication interface in the rotating unit that transmits data inside the semiconductor image memory to the outside of the rotating unit. Alternatively, the CT device has a wireless interface for transmitting and receiving a control signal for controlling the imaging operation of the gantry by wireless communication in a fixed portion or a rotating portion inside the control unit and the gantry.
好ましくは、回転部が停止状態において、回転部インターフェースに対向し、機械的に接触することにより、又は電磁場の相互作用により非接触の状態で電磁気的に結合することにより、電気的に接続するホストインターフェースを回転部の周囲にある固定部に有するCT装置とする。或いは、回転部インターフェースとホストインターフェースが互いに中心軸方向において、又は中心軸に対し放射状方向に近接し対向するCT装置とする。或いは、回転部インターフェースが回転部の側面側の円環全周にわたりリング状の電極として形成され、かつ凸状の接続端子からなるホストインターフェースと対向し接続する構造を有するCT装置とする。或いは、半導体画像メモリの内部のデータを回転部の外部に送信する無線通信インターフェースを回転部に有するCT装置とする。或いは、ガントリの撮像動作を制御する制御信号を無線通信により送受信する無線インターフェースを制御部とガントリの内部に有するCT装置とする。 Preferably, the host is electrically connected by facing the rotating unit interface and mechanically contacting the rotating unit in a stopped state, or by electromagnetically coupling in a non-contact state by the interaction of an electromagnetic field. A CT device having an interface in a fixed portion around a rotating portion. Alternatively, the rotating unit interface and the host interface are CT devices that face each other in the central axis direction or in a radial direction close to the central axis. Alternatively, the CT device has a structure in which the rotating portion interface is formed as a ring-shaped electrode over the entire circumference of the annulus on the side surface side of the rotating portion and is connected to the host interface composed of convex connection terminals. Alternatively, the CT device has a wireless communication interface in the rotating unit that transmits data inside the semiconductor image memory to the outside of the rotating unit. Alternatively, the CT device has a control unit and a CT device inside the gantry that transmits and receives control signals for controlling the imaging operation of the gantry by wireless communication.
回転部が停止状態において、回転部インターフェースに対向し、機械的に接触することにより、又は電磁場の相互作用により非接触の状態で電磁気的に結合することにより、電気的に接続するホストインターフェースを回転部の周囲にある固定部に有するCT装置とする。或いは、回転部インターフェースとホストインターフェースが互いに中心軸方向において、又は中心軸に対し放射状方向に近接し対向するCT装置とする。或いは、回転部インターフェースが回転部の側面側の円環全周にわたりリング状の電極として形成され、かつ凸状の接続端子からなるホストインターフェースと対向し接続する構造を有するCT装置とする。或いは又、ガントリの撮像動作を制御する制御信号を無線通信により送受信する無線インターフェースを制御部と回転部に有するCT装置とする。 When the rotating part is stopped, it rotates the host interface that is electrically connected by facing the rotating part interface and mechanically contacting it, or by electromagnetically coupling it in a non-contact state due to the interaction of an electromagnetic field. It is a CT device provided in a fixed portion around the portion. Alternatively, the rotating unit interface and the host interface are CT devices that face each other in the central axis direction or in a radial direction close to the central axis. Alternatively, the CT device has a structure in which the rotating portion interface is formed as a ring-shaped electrode over the entire circumference of the annulus on the side surface side of the rotating portion and is connected to the host interface composed of convex connection terminals. Alternatively, the CT device has a wireless interface for transmitting and receiving control signals for controlling the imaging operation of the gantry by wireless communication in the control unit and the rotating unit.
ガントリの移動範囲内の所定位置において回転部インターフェースとホストインターフェースが互いに対向する構造とする。好適には、所定位置がガントリの移動範囲の終点にあるようにする。また、回転部インターフェースとホストインターフェースが互いに鉛直方向において近接し対向させる。或いは、回転部インターフェースとホストインターフェースが互いに中心軸方向において近接し対向させる。或いは、回転部インターフェースとホストインターフェースが所定位置において機械的に接触することにより電気的に接続するようにする。或いは、回転部インターフェースとホストインターフェースが所定位置において互いに近接し非接触状態において電磁場の相互作用により電気的に接続する非接触インターフェースとする。また、ガントリを中心軸方向に移動させるための駆動手段をガントリの内部に設ける。また、回転部を回転させる駆動モータをガントリの内部に設ける。 The structure is such that the rotating unit interface and the host interface face each other at a predetermined position within the movement range of the gantry. Preferably, the predetermined position is at the end point of the movement range of the gantry. Further, the rotating unit interface and the host interface are close to each other in the vertical direction and face each other. Alternatively, the rotating unit interface and the host interface are close to each other in the central axis direction and face each other. Alternatively, the rotating unit interface and the host interface are electrically connected by mechanically contacting each other at a predetermined position. Alternatively, it is a non-contact interface in which the rotating unit interface and the host interface are close to each other at a predetermined position and electrically connected by the interaction of an electromagnetic field in a non-contact state. Further, a driving means for moving the gantry in the central axis direction is provided inside the gantry. Further, a drive motor for rotating the rotating portion is provided inside the gantry.
好ましくは、支柱の上部又は下部にクレードルを有し、かつクレードルにホストインターフェースを設ける。さらに、クレードルに回転部の検査・校正に供する検査プローブ、或いは標準サンプルを保持するための保持手段をクレードルに設ける。或いは、所定位置において回転部を保持、固定するためのホールド機構、或いは冷却するための冷却機構をクレードルに有する構造とする。 Preferably, the cradle is provided at the top or bottom of the column, and the cradle is provided with a host interface. Further, the cradle is provided with an inspection probe for inspecting and calibrating the rotating part or a holding means for holding a standard sample. Alternatively, the cradle has a hold mechanism for holding and fixing the rotating portion at a predetermined position, or a cooling mechanism for cooling.
上記のCT装置を搭載した医療検診、又は検査車両とする。好ましくは、上記CT装置への入り口が車両の側面部又は後部側面部に位置する医療検診、又は検査車両とする。また、検査車両の内部のCT装置が占有する一区画の気圧が、検査車両の内部の他の区画、及び移動通路における気圧よりも低い検査車両とする。或いは、CT装置の設置された区画の空気を車外に排出するための換気手段を有する医療検診、又は検査車両とする。 A medical examination or inspection vehicle equipped with the above CT device. Preferably, the entrance to the CT device is a medical examination or inspection vehicle located on the side surface portion or the rear side surface portion of the vehicle. Further, it is assumed that the air pressure in one section occupied by the CT device inside the inspection vehicle is lower than the air pressure in the other sections inside the inspection vehicle and the moving passage. Alternatively, the medical examination or inspection vehicle having a ventilation means for exhausting the air in the section where the CT device is installed to the outside of the vehicle.
好ましくは、CT装置を駆動する電源が水素ガスを使用する燃料電池である上記医療検診、又は検査車両とする。 Preferably, it is the medical examination or inspection vehicle in which the power source for driving the CT device is a fuel cell using hydrogen gas.
CT装置の小型・軽量化、及び低消費電力化が実現し、かつガントリ部の垂直移動によりストローク領域を無くしたのでCT装置を設置するスペース、建物及び電源、空調設備等の建設、設備、及び維持管理コストを大幅に削減できる。さらにスリップリングやこれと電気的接続をとるためのブラシ等の数を減らし、或いは無くすことができるので、特に、電流量の大きい電源供給に伴うスパークの発生や故障頻度を大幅に削減し信頼性を向上させることができる。また、回転部と固定部に永久磁石或いは電磁石を配置し、互いに反発、或いは吸引する磁力を利用し、回転部の重量がボールベアリング等の機械部品に加わる負荷を軽減することができ、回転部を回転させるときの始動トルクが軽減、或いは高速回転に伴うボールベアリングの摩耗やノイズの発生等を軽減させる効果が得られる。また、回転部を、例えば毎秒2回転乃至10回転程度の高速回転が容易に実現する。さらに、オンチップ、或いは積層素子による信号処理回路を集積したCMOS型検出器、さらにはカーボンナノ構造体を用いたX線源を使用できるので、低ノイズかつ低消費電力のガントリ部を搭載したCT装置を実現できる。或いは、小型の光電子増倍管、その他の高感度の検出器を使用できるので、被験者の放射線被ばく量を低減することができる。また、ガントリ内の構成部品、例えば、X線源、X線検出器、二次電池等をカートリッジ構造としたので、ガントリ自体を分解修理するまでもなく、故障している箇所のみ抜き出し、新たな構成部品を挿入すればよく、修理に要する時間やコストを大幅に削減できる。加えて、常時機器の性能を最適に保つための保守部品の在庫、或いは年間の維持経費と機器のダウンタイムを大幅に削減できる。また、本発明に係るCT装置を搭載した医療検診用の検査車両により、遠隔地や災害発生地域等における迅速かつ的確な初期診断が可能になる。特に、開発途上国、その他遠隔地や過疎地域にあっても、最新かつ高水準の医療サービスを提供することにより、自然災害や地域紛争の結果生じた医療格差を解消することができる。さらに、病院や検査施設から離れ、感染症患者等の近く、或いは郊外や遠隔地に機動的に移動し検査診断が行えるため、パンデミック等の早期終息、及び院内感染の防止が容易になる。 Since the CT device has been made smaller and lighter, and the power consumption has been reduced, and the stroke area has been eliminated by the vertical movement of the gantry section, the space for installing the CT device, the building and power supply, the construction of air conditioning equipment, etc. Maintenance costs can be significantly reduced. Furthermore, since the number of slip rings and brushes for making electrical connections with them can be reduced or eliminated, the frequency of sparks and failures associated with power supply with a large amount of current can be significantly reduced and reliability is reduced. Can be improved. In addition, permanent magnets or electromagnets are placed on the rotating part and the fixed part, and the magnetic force that repels or attracts each other can be used to reduce the load that the weight of the rotating part applies to mechanical parts such as ball bearings. It is possible to obtain the effect of reducing the starting torque when rotating the ball bearing, or reducing the wear of ball bearings and the generation of noise due to high-speed rotation. Further, the rotating portion can be easily rotated at a high speed of, for example, 2 to 10 rotations per second. Furthermore, since a CMOS type detector with an integrated signal processing circuit using on-chip or laminated elements and an X-ray source using carbon nanostructures can be used, a CT equipped with a gantry unit with low noise and low power consumption can be used. The device can be realized. Alternatively, a small photomultiplier tube or other high-sensitivity detector can be used, so that the radiation exposure dose of the subject can be reduced. In addition, since the components inside the gantry, such as the X-ray source, X-ray detector, and secondary battery, have a cartridge structure, the gantry itself does not need to be disassembled and repaired, and only the defective part is extracted and new. By inserting components, the time and cost required for repairs can be significantly reduced. In addition, inventory of maintenance parts to maintain optimum equipment performance at all times, or annual maintenance costs and equipment downtime can be significantly reduced. Further, the inspection vehicle for medical examination equipped with the CT device according to the present invention enables quick and accurate initial diagnosis in a remote place, a disaster-occurring area, or the like. In particular, even in developing countries, other remote areas and depopulated areas, by providing the latest and high-level medical services, medical disparities resulting from natural disasters and regional conflicts can be eliminated. Furthermore, since it is possible to move away from hospitals and testing facilities and flexibly move to the suburbs or remote areas near patients with infectious diseases, etc., to perform testing and diagnosis, it is easy to end early pandemics and prevent nosocomial infections.
(a)は実施例に係るCT装置100の斜視図であり、(b)は実施例に係る検査車両500の側面図斜視図である。(A) is a perspective view of the CT device 100 according to the embodiment, and (b) is a side view perspective view of the inspection vehicle 500 according to the embodiment. (a)はガントリ5の内部にある固定部24と回転部分23の構造を説明するためのZ軸方向から見たX-Y平面図である。(b)はガントリ5の内部にある固定部24と回転部分23の構造を説明するため、(a)とは中心軸1に対し反対方向から見たX-Y平面図である。(c)は、回転部23の他の回転駆動構造を説明するための斜視図である。(A) is an XY plan view seen from the Z-axis direction for explaining the structure of the fixed portion 24 and the rotating portion 23 inside the gantry 5. (B) is an XY plan view seen from the direction opposite to the central axis 1 in order to explain the structure of the fixed portion 24 and the rotating portion 23 inside the gantry 5. (C) is a perspective view for explaining another rotation drive structure of the rotation part 23. (a)は、ガントリ5をX軸或いはY軸方向から見た断面構造図である。(b)乃至(e)は、(a)において破線で囲まれた部分Aの構造の変形例を説明するための断面図である。(A) is a cross-sectional structure view of the gantry 5 as viewed from the X-axis or Y-axis direction. (B) to (e) are cross-sectional views for explaining a modified example of the structure of the portion A surrounded by the broken line in (a). (a)はガントリ5の内部にある回転部分23の内部構造を説明するためのZ軸方向から見た平面図である。(b)は回転部分23の内部、特に検出器とその周辺回路を説明するための回路構成図である。(c)回転部分23の内部、特にX発生部と高電圧駆動回路を説明するための回路構成図である。(A) is a plan view seen from the Z-axis direction for explaining the internal structure of the rotating portion 23 inside the gantry 5. (B) is a circuit configuration diagram for explaining the inside of the rotating portion 23, particularly the detector and its peripheral circuits. (C) It is a circuit block diagram for demonstrating the inside of the rotating part 23, particularly the X generation part and a high voltage drive circuit. (a)はCT装置100の変形例に係るCT装置200のガントリ部をZ軸方向からみた平面図である。(b)、及び(c)は、CT装置200の変形例に係るCT装置のガントリ部の構造を説明するためのX軸或いはY軸方向から見た断面構造図である。(A) is a plan view of the gantry portion of the CT device 200 according to the modified example of the CT device 100 as viewed from the Z-axis direction. (B) and (c) are cross-sectional structural views viewed from the X-axis or Y-axis direction for explaining the structure of the gantry portion of the CT device according to the modified example of the CT device 200. (a)はCT装置200の変形例係るCT装置300の、特にガントリ部をZ軸方向からみたX-Y平面図であり、(b)は同じくX軸或いはY軸方向からみた断面構造図であり、(c)は、(a)において破線で囲まれた部分Bの拡大図である。(d)は、回転部23に形成された開口部28を説明するため、X線源25mから開口部28の方向を見たときの平面図であり、開口部28には固定部24に配置した複数の検出器ユニット30の一部が見えている。(A) is a XY plan view of the CT device 300 according to a modification of the CT device 200, particularly the gantry portion viewed from the Z-axis direction, and (b) is a cross-sectional structure view also seen from the X-axis or Y-axis direction. Yes, (c) is an enlarged view of a portion B surrounded by a broken line in (a). (D) is a plan view when the direction of the opening 28 is viewed from the X-ray source 25 m in order to explain the opening 28 formed in the rotating portion 23, and the opening 28 is arranged in the fixed portion 24. A part of the plurality of detector units 30 is visible. (a)は、CT装置300に使用した検出器ユニット30に好適な検出器ユニットであってCMOS型固体撮像素子30-1の平面図である。(b)は、同じく、CT装置300に使用した検出器ユニット30に好適な他の検出器ユニットであってCMOS型固体撮像素子30-2を受光領域が密接するように対向させて配置した場合の平面図である。(c)は、(b)におけるCMOS型固体撮像素子30-2の断面構造を説明するための断面拡大図である。(A) is a plan view of a CMOS type solid-state image sensor 30-1, which is a detector unit suitable for the detector unit 30 used in the CT apparatus 300. (B) is another detector unit suitable for the detector unit 30 used in the CT apparatus 300, and the CMOS type solid-state image sensor 30-2 is arranged so as to face each other so that the light receiving regions are in close contact with each other. It is a plan view of. (C) is an enlarged cross-sectional view for explaining the cross-sectional structure of the CMOS type solid-state image sensor 30-2 in (b). (a)は実施例に係る撮像装置400のX軸方向からみた側面図であり、(b)は非接触インターフェース部(10及び12)におけるワイヤレス給電部分の回路構成を説明するためのブロック図である。(c)及び(d)は、それぞれ着脱可能なカートリッジ構造からなる二次電池(27m)をクレードル内のカートリッジホルダー22に結合させる前の状態をX軸方向から、及びカートリッジホルダー22に取り付けられた充電済の二次電池(27m)をガントリ内に取り込む前の状態をY軸方向から見た概念図である。(A) is a side view of the image pickup apparatus 400 according to the embodiment as viewed from the X-axis direction, and (b) is a block diagram for explaining the circuit configuration of the wireless power feeding portion in the non-contact interface portions (10 and 12). is there. In (c) and (d), the state before the secondary battery (27 m) having a removable cartridge structure was connected to the cartridge holder 22 in the cradle was attached to the cartridge holder 22 from the X-axis direction. It is a conceptual diagram which looked at the state before taking in the charged secondary battery (27 m) into a gantry from the Y-axis direction. (a)、及び(b)は、それぞれ検査車両500の変形例に係る検査車両600と検査車両700の側面図である。(c)、及び(d)は、それぞれ検査車両500の変形例に係る検査車両600と検査車両700のZ軸方向から見た平面図である。(A) and (b) are side views of the inspection vehicle 600 and the inspection vehicle 700 according to the modified example of the inspection vehicle 500, respectively. (C) and (d) are plan views seen from the Z-axis direction of the inspection vehicle 600 and the inspection vehicle 700 according to the modified example of the inspection vehicle 500, respectively. (a)、及び(b)は、それぞれ検査車両500の変形例に係る検査車両800と検査車両900の側面図である。(c)は、検査車両800の駆動方法を説明するためのフローチャートである。(A) and (b) are side views of the inspection vehicle 800 and the inspection vehicle 900 according to the modified example of the inspection vehicle 500, respectively. (C) is a flowchart for explaining the driving method of the inspection vehicle 800.
本発明では、ガントリ或いは寝台の移動方向、即ち「体軸方向」をZ軸、Z軸に垂直な面をX-Y平面と定義する。図1(a)は実施例に係るCT装置100の斜視図である。CT装置100は、Z軸方向が、水平面に対し直角、即ち重力の方向と一致している。従って、ガントリ5の移動方向も上下方向、即ちZ軸方向である。CT装置100には、被験者の立ち位置を決める垂直な寝台、或いは背板と呼ぶ部分3を有する。ガントリ5の内部には回転可能な回転部23があり、回転中心軸1はZ軸、即ち体軸方向に平行である。ガントリ5を引き上げ、或いは下降させるモータ等は、CT装置の天井部分(9-1)、又は被験者が乗る底部(9-2)のいずれかに内蔵している。なお、これら天井部分と底部はガントリ5の終着点であり、後述するように、クレードルとも呼ぶ場合もある。これらクレードル、及びガントリ5を保持するための二本の支柱7-1、7-2が設けられている。なお、図示していないを操作・制御部及び表示(モニター)部があり、画像描出回路及び画像処理ソフトウエア等により再構成された断層像等がモニター上に表示される。以下に詳述するように、本発明に係るガントリ部の小型、軽量化によりガントリの鉛直方向の移動が容易になり、被験者が立ったままの姿勢、或いはイスに腰掛けた姿勢でCT検査を受けることが可能になる。さらに、本CT装置を車両に搭載し移動先において、車内に設置したCT装置を実際に使用することが容易になる。従来のCT装置では、寝台自体、及び寝台を水平方向に移動するためのスペース、即ちストローク領域を車内に確保する必要があり、CT装置を搭載した検査車両の小型化が困難であったためである。 In the present invention, the moving direction of the gantry or the sleeper, that is, the "body axis direction" is defined as the Z axis, and the plane perpendicular to the Z axis is defined as the XY plane. FIG. 1A is a perspective view of the CT device 100 according to the embodiment. In the CT device 100, the Z-axis direction coincides with the horizontal plane, that is, the direction of gravity. Therefore, the moving direction of the gantry 5 is also the vertical direction, that is, the Z-axis direction. The CT device 100 has a vertical sleeper that determines the standing position of the subject, or a portion 3 called a back plate. Inside the gantry 5, there is a rotatable rotating portion 23, and the rotation center axis 1 is parallel to the Z axis, that is, the body axis direction. A motor or the like for pulling up or lowering the gantry 5 is built in either the ceiling portion (9-1) of the CT device or the bottom portion (9-2) on which the subject rides. The ceiling portion and the bottom portion are the end points of the gantry 5, and may be referred to as a cradle as described later. Two columns 7-1 and 7-2 for holding the cradle and the gantry 5 are provided. It should be noted that there is an operation / control unit and a display (monitor) unit (not shown), and a tomographic image or the like reconstructed by an image drawing circuit, image processing software, or the like is displayed on the monitor. As will be described in detail below, the miniaturization and weight reduction of the gantry portion according to the present invention facilitates the vertical movement of the gantry, and the subject undergoes a CT examination while standing or sitting on a chair. Will be possible. Further, it becomes easy to mount the CT device on the vehicle and actually use the CT device installed in the vehicle at the moving destination. This is because with the conventional CT device, it is necessary to secure the sleeper itself and the space for moving the sleeper in the horizontal direction, that is, the stroke area in the vehicle, and it is difficult to miniaturize the inspection vehicle equipped with the CT device. ..
図1(b)は、実施例に係る検査車両500の側面図である。本実施例では、車両の高さ方向、即ち鉛直方向がZ軸であり、破線で示す上記のCT装置100が搭載されている。既に説明したように、被験者は立ったまま、或いは椅子に腰かけた状態でCT検査を受けることができるので、検査車両の小型化に加え、一人当たりの検査時間を短縮することができる。車両後部には、検査車両500の内部に入るための入り口、及び通路(いずれも図示せず)があり、階段或いは踏み台17を使って、車内に入ることができる。また、後述するように、自然エネルギーを活用するため、例えばソーラーパネル13を備えている。 FIG. 1B is a side view of the inspection vehicle 500 according to the embodiment. In this embodiment, the height direction of the vehicle, that is, the vertical direction is the Z axis, and the above-mentioned CT device 100 shown by a broken line is mounted. As described above, since the subject can undergo the CT examination while standing or sitting on a chair, the examination vehicle can be miniaturized and the examination time per person can be shortened. At the rear of the vehicle, there is an entrance and a passage (neither shown) for entering the inside of the inspection vehicle 500, and the inside of the vehicle can be entered using the stairs or the step stool 17. Further, as will be described later, in order to utilize natural energy, for example, a solar panel 13 is provided.
実施例に係るCT装置100に好適なガントリ5の構造を、図2を用い説明する。図2(a)は、ガントリ5をZ軸方向からみた平面図である。回転部23の周囲には固定部24がボールベアリング等(図示せず)を介し組み合わされている。回転部23は、回転部回転用ベルト(又はタイミングベルトと呼ぶ)21、及び回転部駆動モータ19により中心軸1の周囲を回転する。図2(b)は、同じくガントリ5をZ軸方向からみた平面図であるが、図2(a)とは中心軸1に対し反対側から見た場合の平面図である。回転部23には、光源、例えばX線発生部25、光源駆動回路29、検出器アレー31、検出器周辺回路33、検出器駆動制御回路41、回転部の周囲に取り付けられたリング状の電極6Sを有している。固定部24には、上記リング状の電極6Sに電気的に接続可能凸状の接触端子4Sが有り、所謂スリップリング構造による電力、或いは信号の授受を行う。X線発生部25から照射されたX線26が被験者(図示せず)を透過し、検出器アレー31に到達する。以下に詳しく説明するように、ガントリ5、特に回転部23は軽量であることがCT装置の小型化と車両等による可搬性を向上させるために重要な課題である。図2(c)は、回転部23に関し、図2(a)、(b)とは異なる回転構造の一例を説明するための側面図である。回転部回転用ベルトを使用せず、回転部駆動モータ19mと回転部23gが歯車構造により組み合わされ、回転部駆動モータ19mの回転トルクを歯車19gと回転部23gの外周の歯車に伝達する。歯車19gの歯数は、回転部23gの外周の歯数よりも少ない。本構造はベルト用いた構造と比較すると、回転部23gのZ軸方向のずれの許容程度(マージン)が厳しくないので、以下に説明するような回転部23を磁力による反発力、或いは吸引力を利用し、回転に伴うボールベアリング等の機会部品の摩耗を軽減、或いは振動や騒音を軽減する場合に有効である。なお、回転部23を回転子、これを取り囲むガントリ5の内周を固定子とするダイレクトドライブ(DD)モータ構造としても良い。 The structure of the gantry 5 suitable for the CT apparatus 100 according to the embodiment will be described with reference to FIG. FIG. 2A is a plan view of the gantry 5 as viewed from the Z-axis direction. A fixing portion 24 is combined around the rotating portion 23 via a ball bearing or the like (not shown). The rotating unit 23 is rotated around the central shaft 1 by a rotating unit rotating belt (or called a timing belt) 21 and a rotating unit drive motor 19. FIG. 2B is a plan view of the gantry 5 as viewed from the Z-axis direction, but FIG. 2A is a plan view of the gantry 5 as viewed from the opposite side of the central axis 1. The rotating unit 23 includes a light source, for example, an X-ray generating unit 25, a light source driving circuit 29, a detector array 31, a detector peripheral circuit 33, a detector drive control circuit 41, and a ring-shaped electrode attached around the rotating unit. It has 6S. The fixed portion 24 has a convex contact terminal 4S that can be electrically connected to the ring-shaped electrode 6S, and transfers electric power or a signal by a so-called slip ring structure. The X-rays 26 emitted from the X-ray generator 25 pass through the subject (not shown) and reach the detector array 31. As will be described in detail below, it is an important issue that the gantry 5, particularly the rotating portion 23, is lightweight in order to reduce the size of the CT device and improve the portability by a vehicle or the like. FIG. 2C is a side view for explaining an example of a rotating structure different from that of FIGS. 2A and 2B with respect to the rotating portion 23. The rotating unit drive motor 19m and the rotating unit 23g are combined by a gear structure without using the rotating unit rotating belt, and the rotational torque of the rotating unit driving motor 19m is transmitted to the gears 19g and the gears on the outer periphery of the rotating unit 23g. The number of teeth of the gear 19g is less than the number of teeth on the outer circumference of the rotating portion 23g. Compared to the structure using a belt, this structure does not have a stricter tolerance (margin) for the displacement of the rotating portion 23g in the Z-axis direction. It is effective when it is used to reduce wear of occasional parts such as ball bearings due to rotation, or to reduce vibration and noise. A direct drive (DD) motor structure may be formed in which the rotating portion 23 is a rotor and the inner circumference of the gantry 5 surrounding the rotor is a stator.
CT装置100に好適なガントリ5の内部構造について、図3を用いて説明する。図3(a)に示すように、回転部23と固定部24は環状に並べた複数のボールベアリング50を介し、上下方向に組み合わされている。回転部23は、タイミングベルト21を介し外部モータ(図示せず)により回転する。さらに、回転部23と固定部24が対面する部分に永久磁石34-1と34-2が対になっていずれも同じ極性が対向するように(即ち、N極同士、或いはS極同士が対面するように)配置されている。永久磁石34-1と34-2は、いずれもそれぞれ一枚のドーナツ形状の永久磁石であっても、複数の磁石を円周上に並べた構造であっても良い。永久磁石には、例えば、ネオジウム磁石、サマリウムコバルト磁石、フェライト磁石等を使用することができる。このように、回転部23と固定部24に永久磁石を配置することにより、互いに反発する磁力が生じ、回転部23の重量がボールベアリング50に加える負荷を軽減することができる。即ち、磁力浮上方式に類似するが、必ずしも完全に浮上する必要はない。回転部23を回転させるときの始動トルクの軽減、或いは高速回転に伴うボールベアリングの摩耗やノイズの発生等を軽減させる効果が得られるからである。また、回転部23を、例えば毎秒2回転乃至10回転程度の高速回転が容易に実現する。なお、回転部23と固定部24との間隙dは狭いほど反発力が大きくなるが、両者の表面加工精度等を考慮し、例えば、0.1から5ミリメートル(mm)程度の範囲に設定される。 The internal structure of the gantry 5 suitable for the CT apparatus 100 will be described with reference to FIG. As shown in FIG. 3A, the rotating portion 23 and the fixing portion 24 are combined in the vertical direction via a plurality of ball bearings 50 arranged in an annular shape. The rotating portion 23 is rotated by an external motor (not shown) via the timing belt 21. Further, the permanent magnets 34-1 and 34-2 are paired with each other so that the rotating portion 23 and the fixed portion 24 face each other and have the same polarity (that is, the north poles or the south poles face each other). Is arranged (to do). Each of the permanent magnets 34-1 and 34-2 may be a single donut-shaped permanent magnet, or may have a structure in which a plurality of magnets are arranged on the circumference. As the permanent magnet, for example, a neodymium magnet, a samarium-cobalt magnet, a ferrite magnet, or the like can be used. By arranging the permanent magnets in the rotating portion 23 and the fixing portion 24 in this way, magnetic forces repelling each other are generated, and the load applied to the ball bearing 50 by the weight of the rotating portion 23 can be reduced. That is, it is similar to the magnetic levitation method, but does not necessarily have to completely levitate. This is because it is possible to obtain the effect of reducing the starting torque when rotating the rotating portion 23, or reducing the wear of the ball bearing and the generation of noise due to high-speed rotation. Further, the rotating portion 23 can be easily rotated at a high speed of, for example, 2 to 10 rotations per second. The narrower the gap d between the rotating portion 23 and the fixed portion 24, the greater the repulsive force. However, in consideration of the surface processing accuracy of both, for example, it is set in the range of about 0.1 to 5 mm (mm). To.
図3(b)乃至図3(e)は、図3(a)における破線部Aにおける磁力反発、吸引を利用した変形例を説明するための部分拡大図である。図3(b)は、既に図3(a)において説明した通り、S極同士、或いはN極同士のように同じ極性の磁石が対向する構造である。図示するように、回転部23-1が固定部24-1の上部に位置する場合には回転部23-1が磁石同士の反発力により、重力に抗する方向に持ち上げられる力が働く。図3(c)は、S極とN極が対向する構造であり、図示するように、回転部23-2が固定部24-2の下部に位置する場合には回転部23-2が磁石同士の吸引力により、重力に抗する方向に引き上げられる力が働く。図3(d)は、上記図3(b)と(c)を組み合わせた構造であり、回転部23-2の上部には固定部24-2が位置し、磁石同士の吸引力により、回転部23-2は重力に抗する方向に引き上げられる力が働く。他方、回転部23-2の下部には固定部24-1が位置し、磁石同士の反発力により、回転部23-2は重力に抗する方向に持ち上げられる力が働く。なお、これらの反発力、吸引力は永久磁石以外、例えば電磁石によっても誘起することができる。図3(e)を用い、このような電磁誘導を用いた場合の実施例を説明する。回転部23-3には、磁石34が取り付けられ、固定部24-3には、磁石34に対向する位置に鉄心にコイル36を巻き付けた電磁石32が取り付けられている。電磁石32に誘起される磁力は、電源42、増幅器(Amp.)46により制御される。なお、回転部23-3のZ軸方向の高さを制御するため、ギャップセンサ44が取り付けられている。なお、図3(b)乃至(d)における磁石を電磁石に置き換えることも可能であるが、ガントリ全体の重量、特に回転部23-1、或いは23-2の重量増加を抑制することが重要である。 3 (b) to 3 (e) are partially enlarged views for explaining a modified example using magnetic force repulsion and suction in the broken line portion A in FIG. 3 (a). FIG. 3B has a structure in which magnets having the same polarity face each other, such as S poles or N poles, as already described in FIG. 3A. As shown in the figure, when the rotating portion 23-1 is located above the fixed portion 24-1, the rotating portion 23-1 is lifted in the direction against gravity by the repulsive force between the magnets. FIG. 3C shows a structure in which the S pole and the N pole face each other, and as shown in the figure, when the rotating portion 23-2 is located below the fixed portion 24-2, the rotating portion 23-2 is a magnet. Due to the attractive force of each other, a force that pulls up in the direction against gravity works. FIG. 3D has a structure in which the above FIGS. 3B and 3C are combined, and the fixing portion 24-2 is located above the rotating portion 23-2 and rotates due to the attractive force between the magnets. A force that pulls up the portion 23-2 in the direction against gravity acts. On the other hand, the fixed portion 24-1 is located below the rotating portion 23-2, and the repulsive force between the magnets exerts a force that lifts the rotating portion 23-2 in the direction against gravity. These repulsive and attractive forces can be induced not only by permanent magnets but also by, for example, electromagnets. An embodiment in the case of using such electromagnetic induction will be described with reference to FIG. 3 (e). A magnet 34 is attached to the rotating portion 23-3, and an electromagnet 32 in which a coil 36 is wound around an iron core is attached to a fixed portion 24-3 at a position facing the magnet 34. The magnetic force induced in the electromagnet 32 is controlled by the power supply 42 and the amplifier (Amp.) 46. A gap sensor 44 is attached to control the height of the rotating portion 23-3 in the Z-axis direction. Although it is possible to replace the magnet in FIGS. 3B to 3D with an electromagnet, it is important to suppress an increase in the weight of the entire gantry, particularly the rotating portion 23-1 or 23-2. is there.
図4を用いて、CT装置100に好適な回転部23の内部構造、特に電気回路部分について説明する。図4(a)は、ガントリ5の内部にある回転部23の内部構造を説明するZ軸方向から見たときの構成部品等を示す平面図である。回転部23の内部には、光源、例えばX線発生部25、光源駆動回路29、検出器アレー31、検出器周辺回路33、検出器駆動制御回路41、デジタル信号処理回路(図示せず)、半導体画像メモリ35、二次電池27、回転部インターフェース2-2を有する。X線発生部25、二次電池27、半導体画像メモリ35は、以下に説明するように、回転部23からそれぞれ個別に容易に挿入、及び抜去が可能なカートリッジ構造が好ましい。カートリッジと回転部23は、金属端子同士の接触により電気的導通が可能である。回転部インターフェース2-2は、後述の非接触インターフェースであっても、導電性の電極による電気的接点であってもよい。X線発生部25から出射されたX線ビーム26が背板3に沿って立った被験者(図示せず)を透過し、検出器アレー31に到達する。なお、回転部の回転時における重量バランスを調整する重量バランス調整部を設けてもよい。好適には、X線発生部25にカーボンナノチューブ(CNT)等のカーボンナノ材料を電界電子放出源とするX線発生装置を用いてもよい。カーボンナノ材料を冷陰極材料として用いるので、予熱が不要であり従来のX線管を用いた場合に比べ、小型・低消費電力化が可能になり、高電圧制御回路29の小型化や冷却ファンの小型化、或いは冷却ファンそのものを不要にできるからである。なお、本実施例では、回転部23の内部に検出器アレー31が内蔵されている構造について説明したが、後述するように、検出器アレー31が回転部23の内部ではなく、回転部23を取り巻くガントリ5の固定部の内周部全周に亘って配置した構造であってもよい。この場合には、検出器周辺回路、半導体画像メモリ等をガントリ内の回転部に配置する必要が無く、さらに回転部が軽量化される。 The internal structure of the rotating portion 23 suitable for the CT apparatus 100, particularly the electric circuit portion, will be described with reference to FIG. FIG. 4A is a plan view showing components and the like when viewed from the Z-axis direction for explaining the internal structure of the rotating portion 23 inside the gantry 5. Inside the rotating unit 23, there are light sources such as an X-ray generator 25, a light source drive circuit 29, a detector array 31, a detector peripheral circuit 33, a detector drive control circuit 41, and a digital signal processing circuit (not shown). It has a semiconductor image memory 35, a secondary battery 27, and a rotating unit interface 2-2. As described below, the X-ray generator 25, the secondary battery 27, and the semiconductor image memory 35 preferably have a cartridge structure that can be easily inserted and removed individually from the rotating unit 23, respectively. The cartridge and the rotating portion 23 can be electrically conductive by contacting the metal terminals. The rotating unit interface 2-2 may be a non-contact interface described later or an electrical contact with a conductive electrode. The X-ray beam 26 emitted from the X-ray generating unit 25 passes through the subject (not shown) standing along the back plate 3 and reaches the detector array 31. A weight balance adjusting unit for adjusting the weight balance during rotation of the rotating unit may be provided. Preferably, an X-ray generator using a carbon nanomaterial such as carbon nanotube (CNT) as a field electron emission source may be used for the X-ray generator 25. Since the carbon nanomaterial is used as the cold cathode material, preheating is not required, and compared to the case of using a conventional X-ray tube, it is possible to reduce the size and power consumption, and the high voltage control circuit 29 can be downsized and the cooling fan. This is because the size of the cooling fan itself can be reduced or the cooling fan itself can be eliminated. In this embodiment, the structure in which the detector array 31 is built in the rotating portion 23 has been described. However, as will be described later, the detector array 31 is not inside the rotating portion 23 but the rotating portion 23. The structure may be arranged so as to cover the entire inner circumference of the fixed portion of the surrounding gantry 5. In this case, it is not necessary to arrange the detector peripheral circuit, the semiconductor image memory, etc. in the rotating portion in the gantry, and the rotating portion is further reduced in weight.
図4(b)は回転部23の内部、特に検出器31とその周辺回路33等を説明するための回路ブロック図である。周辺回路33には、検出器駆動制御回路41、信号増幅・アナログデジタル(AD)変換回路43、信号走査・制御回路45、デジタル信号処理回路47、パラレルシリアル変換回路49等を含んでいる。図示するように、検出器アレー31には、複数の検出器ユニット30が円弧状に、或いはスライス数を増やすためにZ軸方向にも規則的に並んでいる。検出器ユニット30には、小型の電子増倍型検出器(例えば、浜松ホトニクス社製「マイクロPMT素子」等)やアバランシェ効果(APD)を利用した増幅型検出器、フォトンカウンティング型検出器等の高感度検出器を用いることもできる。また、アナログデジタル(AD)変換回路、或いは信号処理回路等をオンチップ化したCMOS型検出器を使用することもできるので、高速かつ低ノイズの読み出しが実現する。これらの検出器ユニットは高感度、或いは低ノイズであるため、X線照射(被ばく)量を減少させ、或いは短時間パルス照射によるZ軸方向の高速走査が容易になる。また回転部23のZ軸方向の薄型化による軽量化に加え、特に電界電子放出源として使用するカーボンナノ材料の安定性や耐久性を向上させることもできる。なお、後述するように、検出器ユニット30には、入射X線を検出器ユニット30に使用する半導体材料、例えばシリコン(Si)のバンドギャップに相当する可視光に変換するシンチレータ層を有する構造としてもよい。 FIG. 4B is a circuit block diagram for explaining the inside of the rotating portion 23, particularly the detector 31 and its peripheral circuits 33 and the like. The peripheral circuit 33 includes a detector drive control circuit 41, a signal amplification / analog-to-digital (AD) conversion circuit 43, a signal scanning / control circuit 45, a digital signal processing circuit 47, a parallel serial conversion circuit 49, and the like. As shown in the figure, a plurality of detector units 30 are regularly arranged in an arc shape or in the Z-axis direction in order to increase the number of slices in the detector array 31. The detector unit 30 includes a small electron multiplier type detector (for example, "micro PMT element" manufactured by Hamamatsu Photonics Co., Ltd.), an amplification type detector using an avalanche effect (APD), a photomultiplier type detector, and the like. A high-sensitivity detector can also be used. Further, since a CMOS type detector in which an analog-to-digital (AD) conversion circuit, a signal processing circuit, or the like is on-chip can be used, high-speed and low-noise readout can be realized. Since these detector units have high sensitivity or low noise, the amount of X-ray irradiation (exposure) is reduced, or high-speed scanning in the Z-axis direction by short-time pulse irradiation becomes easy. Further, in addition to weight reduction by thinning the rotating portion 23 in the Z-axis direction, it is also possible to improve the stability and durability of the carbon nanomaterial used as a field electron emission source. As will be described later, the detector unit 30 has a structure having a scintillator layer that converts incident X-rays into visible light corresponding to a band gap of a semiconductor material used for the detector unit 30, for example, silicon (Si). May be good.
検出器アレー31から出力される検出器信号は、信号増幅・AD変換回路43によりデジタルデータ(例えば16ビット)に変換され、信号走査・制御回路45を経由してデジタル信号処理回路47に送られ必要な画像処理が加えられる。デジタル信号処理回路47から送られた画像データを直接記録するために回転部23の内部に半導体画像メモリ35を内蔵している。パラレルシリアル変換せずにバスライン38を介し直接、半導体画像メモリ35にパラレル記録することができるので、特に半導体不揮発メモリへの高速書き込みが可能になる。半導体画像メモリ35には、NAND形フラッシュメモリ等の半導体不揮発メモリが好適である。CT装置の操作者が、リアルタイムでCT画像をモニターしたい場合には、半導体画像メモリであるDRAMに格納された画像データを、無線通信インターフェースを介しモニター画面上に表示させることもできる。近年普及が進む高速大容量の通信インターフェース(5G等)技術を利用することができりからである。他方、撮像終了後であって、回転部23の回転及びガントリ5の移動停止後に画像データを半導体不揮発メモリ、例えば上記NAND形フラッシュメモリから読み出す場合には、撮像時と異なりリアルタイムで読み出す必要がないので、パラレルシリアル変換回路49により、シリアルデータとして、回転部インターフェース2-2に出力すれば良い。シリアル化することにより、ホストインターフェース2-1における端子数を減らせる効果も有する。ホストインターフェース2-1と回転部インターフェース2-2からなる電気的接続手段においては、回転部23の回転部インターフェース2-2の内部に複数のコネクタがあり、その形状が凹状の受け構造である(凹型接続端子6)。他方、ホストインターフェース2-1の側には凸型接続端子4が同数あり、接続端子4を凹型接続端子6に挿入することにより電気的接続が可能になる。従来の動的機械的(摺動)接点であるスリップリングを使用した場合とは異なり、回転部23の静止時おいて内部に記録・蓄積した画像データを回転部インターフェース2-2からホストインターフェース2-1に読み出す。そのため、スリップリング使用時の弊害を解消でき、かつ回転部23の高速回転、例えば毎秒2回転以上の高速回転も容易になる。例えば、後述する検出器(図5等)を例に説明する。検出器の体軸(Z軸)方向の画素数が500画素であって、画素の配列ピッチが50ミクロンメートル(μm)、回転部の回転数が毎秒5回転とした場合、ガントリ5の体軸(Z軸)方向における移動速度は、約12センチメートル(cm)/秒と見積もられる。なお、画素の配列ピッチが縦、横50ミクロンメートル(μm)であっても、その内部がさらに細分化された複数の画素、例えば、5ミクロンメートル(μm)角の小画素の集団(10×10画素)から構成されていても良い。設計ルールに適合した高速読み出しや、画素の間引き、画素の加算等が容易になるからである。このように、回転部23の軽量化と回転速度の高速化により、体軸(Z軸)方向におけるスキャン速度を高速化できるため、スライス数を増やすことなくX線被ばく量を軽減でき、しかも画素の微細化による検査精度の向上に加え、心臓のような絶えず動く臓器の撮影にも有効である。 The detector signal output from the detector array 31 is converted into digital data (for example, 16 bits) by the signal amplification / AD conversion circuit 43, and sent to the digital signal processing circuit 47 via the signal scanning / control circuit 45. The necessary image processing is added. A semiconductor image memory 35 is built in the rotating unit 23 in order to directly record the image data sent from the digital signal processing circuit 47. Since parallel recording can be performed directly in the semiconductor image memory 35 via the bus line 38 without parallel serial conversion, high-speed writing to the semiconductor non-volatile memory becomes possible. As the semiconductor image memory 35, a semiconductor non-volatile memory such as a NAND flash memory is suitable. When the operator of the CT device wants to monitor the CT image in real time, the image data stored in the DRAM, which is a semiconductor image memory, can be displayed on the monitor screen via the wireless communication interface. This is because it is possible to use high-speed, large-capacity communication interface (5G, etc.) technology that has become widespread in recent years. On the other hand, when reading image data from a semiconductor non-volatile memory, for example, the NAND flash memory after the completion of imaging and after the rotation of the rotating unit 23 and the movement of the gantry 5 are stopped, it is not necessary to read the image data in real time unlike the time of imaging. Therefore, the parallel serial conversion circuit 49 may output the serial data to the rotating unit interface 2-2. Serialization also has the effect of reducing the number of terminals in the host interface 2-1. In the electrical connection means including the host interface 2-1 and the rotating part interface 2-2, there are a plurality of connectors inside the rotating part interface 2-2 of the rotating part 23, and the shape thereof is a concave receiving structure ( Concave connection terminal 6). On the other hand, there are the same number of convex connection terminals 4 on the side of the host interface 2-1. By inserting the connection terminals 4 into the concave connection terminals 6, electrical connection is possible. Unlike the case where a slip ring, which is a conventional dynamic mechanical (sliding) contact, is used, the image data recorded and accumulated inside the rotating unit 23 when it is stationary is recorded from the rotating unit interface 2-2 to the host interface 2. Read to -1. Therefore, the harmful effect of using the slip ring can be eliminated, and high-speed rotation of the rotating portion 23, for example, high-speed rotation of 2 rotations or more per second becomes easy. For example, a detector (FIG. 5, etc.) described later will be described as an example. When the number of pixels in the body axis (Z axis) direction of the detector is 500 pixels, the pixel arrangement pitch is 50 micron meters (μm), and the rotation speed of the rotating part is 5 rotations per second, the body axis of the gantry 5 The movement speed in the (Z-axis) direction is estimated to be about 12 cm (cm) / sec. Even if the pixel arrangement pitch is 50 microns (μm) in length and width, a group (10 ×) of a plurality of pixels whose inside is further subdivided, for example, small pixels of 5 μm (μm) square. It may be composed of 10 pixels). This is because high-speed readout conforming to the design rules, pixel thinning, pixel addition, and the like can be facilitated. In this way, by reducing the weight of the rotating portion 23 and increasing the rotation speed, the scanning speed in the body axis (Z-axis) direction can be increased, so that the amount of X-ray exposure can be reduced without increasing the number of slices, and the pixels. In addition to improving the inspection accuracy by miniaturizing the X-ray, it is also effective for photographing constantly moving organs such as the heart.
図4(c)は回転部23の内部にあるX線発生部25と光源駆動回路29を説明するためのブロック図である。カートリッジ構造のX線発生部25は、カーボンナノ材料電子ビーム発生冷陰極25Cと陽極ターゲット25Aから構成されている。光源駆動回路29は、電圧昇圧回路29-1と高電圧制御回路29-2から構成されている。好適には、光源駆動回路29は、スイッチング電源及びパワー半導体を用いることにより、トランスレスの小型・軽量・低消費電力の高電圧電源部とする。カートリッジ構造の二次電池27には、例えば、リチウムイオン電池を用いることができる。このように、リチウムイオン電池27の直流電圧を光源駆動回路29により昇圧し、かつタイミングコントロールされた高電圧パルスをX線発生部25に印加することができる。なお、リチウムイオン電池27は、図示していない電池残量検知回路及び充電回路により、回転部23の静止時において回転部インターフェース2-2とホストインターフェース2-1を介し充電することができる。 FIG. 4C is a block diagram for explaining the X-ray generating unit 25 and the light source driving circuit 29 inside the rotating unit 23. The X-ray generating section 25 of the cartridge structure is composed of a carbon nanomaterial electron beam generating cold cathode 25C and an anode target 25A. The light source drive circuit 29 is composed of a voltage booster circuit 29-1 and a high voltage control circuit 29-2. Preferably, the light source drive circuit 29 is a transformerless compact, lightweight, low power consumption high voltage power supply unit by using a switching power supply and a power semiconductor. As the secondary battery 27 having a cartridge structure, for example, a lithium ion battery can be used. In this way, the DC voltage of the lithium-ion battery 27 can be boosted by the light source drive circuit 29, and the timing-controlled high-voltage pulse can be applied to the X-ray generator 25. The lithium-ion battery 27 can be charged via the rotating unit interface 2-2 and the host interface 2-1 when the rotating unit 23 is stationary by using a battery remaining amount detection circuit and a charging circuit (not shown).
図5(a)はCT装置100の変形例係るCT装置200の、特にガントリ内の構造をZ軸方向からみた平面図であり、同図(b)はCT装置200の変形例に係るCT装置におけるガントリ部5-2のX軸又はY軸方向から見た断面図である。図5(a)に示すように、本実施例では、回転部23の内部にカートリッジ構造のX線光源部25m、二次電池27m、高電圧制御回路29m等を内蔵し、他方、回転部の回転中心と同じ位置に中心を有する円環状の固定部24の内部の全円周上に取り付けられた多数の検出器ユニット30を内蔵している。本実施例では、固定部24は、ガントリの外周部5-2に固定され、かつX-Y平面視座上、回転部23の内側に位置している。さらに、回転部23を回転させるための回転駆動モータ19、タイミングベルト21が図示されている。また、ガントリ移動台車11の内部には、上記回転駆動モータ19に加え、カートリッジ構造の半導体画像メモリ35mと検出器駆動制御回路41mを内蔵している。図5(b)に図示するように、ガントリ5-1内のX線光源部25mから発せられたX線(破線矢印)が、固定部24により妨げられないようにするため、固定部24が検出器ユニット30の取り付け位置に対しZ軸方向にシフトした構造を採用している。 FIG. 5A is a plan view of the CT device 200 according to the modified example of the CT device 100, particularly the structure inside the gantry as viewed from the Z-axis direction, and FIG. 5B is a plan view of the CT device 200 according to the modified example of the CT device 200. It is sectional drawing seen from the X-axis or Y-axis direction of the gantry part 5-2 in 1 As shown in FIG. 5A, in this embodiment, an X-ray light source unit 25 m having a cartridge structure, a secondary battery 27 m, a high voltage control circuit 29 m, etc. are built in the rotating unit 23, while the rotating unit A large number of detector units 30 mounted on the entire circumference inside the annular fixing portion 24 having a center at the same position as the rotation center are built in. In this embodiment, the fixing portion 24 is fixed to the outer peripheral portion 5-2 of the gantry and is located inside the rotating portion 23 on the XY plane view. Further, a rotation drive motor 19 and a timing belt 21 for rotating the rotating portion 23 are shown. Further, inside the gantry moving carriage 11, in addition to the rotary drive motor 19, a semiconductor image memory 35 m having a cartridge structure and a detector drive control circuit 41 m are built in. As shown in FIG. 5B, the fixing portion 24 is provided so that the X-rays (broken line arrows) emitted from the X-ray light source portion 25m in the gantry 5-1 are not obstructed by the fixing portion 24. A structure shifted in the Z-axis direction with respect to the mounting position of the detector unit 30 is adopted.
図5(c)は、CT装置200の変形例に係るCT装置の、特にガントリ5-2の内部構造を説明するための断面図である。ガントリ5-2の内部には、固定部24及び回転部23が組み込まれている。図5(b)に示した構造と異なる点は、X線光源25mを内蔵する回転部23の直径が、固定部の24の内周部の直径よりも小さく、従って、X線光源25mから発したX線が固定部24に妨げられずに検出器30に到達する。しかし、従来の構造においては、例えば、ブラシからスリップリングに対し高速かつ滑らせながら高電圧或いは大電流を流す必要があり、接触面が発熱し焼き付きの原因となるばかりでなく、スパーク等による発光現象により検出器30において誤った光電変換を行うリスク、即ち画質劣化の原因となるノイズが避けられない。しかし、本構造では、X線光源25mの回転中心の中心軸を挟んで対向する部分の回転部23が、X線光源25mから発したX線の光路上にあり、均一なX線照射を阻害する可能性がある。この課題を解決した構造について、図6を用い以下に説明する。 FIG. 5C is a cross-sectional view for explaining the internal structure of the CT device according to the modified example of the CT device 200, particularly the gantry 5-2. A fixed portion 24 and a rotating portion 23 are incorporated in the gantry 5-2. The difference from the structure shown in FIG. 5B is that the diameter of the rotating portion 23 containing the X-ray light source 25 m is smaller than the diameter of the inner peripheral portion of the fixed portion 24, and therefore the X-ray light source 25 m emits light. The X-rays reach the detector 30 without being hindered by the fixed portion 24. However, in the conventional structure, for example, it is necessary to pass a high voltage or a large current from the brush to the slip ring while sliding it at high speed, and not only the contact surface generates heat and causes seizure, but also light emission due to sparks or the like. Due to the phenomenon, the risk of erroneous photoelectric conversion in the detector 30, that is, noise that causes deterioration of image quality is unavoidable. However, in this structure, the rotating portion 23 of the portion facing the central axis of rotation of the X-ray light source 25 m is on the optical path of the X-ray emitted from the X-ray light source 25 m, which hinders uniform X-ray irradiation. there's a possibility that. A structure that solves this problem will be described below with reference to FIG.
図6(a)は、実施例に係るCT装置300の、特にガントリ内の構造を説明するZ軸方向からみた平面図である。上述の通り、回転部23の外周を取り巻くように固定部24が組み合わされている。固定部24の内周には、図示していない検出器が全周にわたって配置されている。回転部23には、X線発生部25mと図示していない光源駆動回路や二次電池等を内蔵している。回転部23には、破線で示す開口部28が形成されており、X線発生部より発せられたX線を透過、或いは通過させることができる。即ち、X線ビーム26の強度や進行方向に及ぼす影響を軽減することができる。なお、開口部28は、必ずしもすべての部材を取り除いた状態(空気のみ)である必要はなく、例えば、X線透過率の高い樹脂製の保護カバー、或いは可視光等に対する遮光膜等が残されていてもよい。図6(b)は、ガントリ5-2の構造をX軸又はY軸方向から見た断面図である。固定部24の内周に沿って検出器30が配置され、開口部28を通過したX線26が検出器30に到達する。なお、検出器30の上部にX線を選択的に遮蔽、或いはコリメートするファイバーオプティックプレート、及びX線シンチレータ等を積層することもできる。 FIG. 6A is a plan view of the CT apparatus 300 according to the embodiment as viewed from the Z-axis direction for explaining the structure in the gantry. As described above, the fixing portions 24 are combined so as to surround the outer circumference of the rotating portion 23. A detector (not shown) is arranged on the inner circumference of the fixed portion 24 over the entire circumference. The rotating unit 23 incorporates an X-ray generating unit 25 m, a light source drive circuit (not shown), a secondary battery, and the like. An opening 28 shown by a broken line is formed in the rotating portion 23, and X-rays emitted from the X-ray generating portion can be transmitted or passed through. That is, the influence on the intensity and the traveling direction of the X-ray beam 26 can be reduced. The opening 28 does not necessarily have to have all the members removed (air only), and for example, a protective cover made of resin having high X-ray transmittance, a light-shielding film against visible light, or the like is left. You may be. FIG. 6B is a cross-sectional view of the structure of the gantry 5-2 as viewed from the X-axis or Y-axis direction. The detector 30 is arranged along the inner circumference of the fixed portion 24, and the X-ray 26 that has passed through the opening 28 reaches the detector 30. A fiber optic plate that selectively shields or collimates X-rays, an X-ray scintillator, or the like can be laminated on the upper part of the detector 30.
図6(c)は、図6(a)における破線部Bに係る部分の構造を説明するためのZ軸方向から見た拡大図である。固定部24の環状の部分に沿って、検出器30の長手方向がZ軸に平行になるように密接に並べられている。即ち、図6(d)を用い、同じ部位をX線発生部25mの方から開口部28を見たときの平面図である。回転部23に形成された開口部28により、固定部24に取り付けられた複数の検出器30の画素アレーがX線光源25mに対し露出しているので、照射X線を遮蔽することなく、検出器30に対するX線露光を可能にしている。 FIG. 6 (c) is an enlarged view seen from the Z-axis direction for explaining the structure of the portion related to the broken line portion B in FIG. 6 (a). Along the annular portion of the fixed portion 24, the detectors 30 are closely arranged so that the longitudinal direction of the detector 30 is parallel to the Z axis. That is, it is a plan view when the opening 28 is viewed from the X-ray generating portion 25m toward the same portion using FIG. 6D. Since the pixel arrays of the plurality of detectors 30 attached to the fixed portion 24 are exposed to the X-ray light source 25 m by the opening 28 formed in the rotating portion 23, the irradiation X-rays can be detected without being shielded. It enables X-ray exposure to the vessel 30.
図7を用い、上記のCT装置200、又はCT装置300等に用いる場合に好適な検出器30の構造、及びその配置や組み合わせ等について以下に説明する。図7(a)に、複数の検出器30-1を、回転中心軸1を取り囲むように固定部24の内周に沿って密接して配置されている構造を示す。検出器30-1は、図示するように、多数の画素30-11が並ぶ受光領域の対向する2辺に沿って、垂直シフトレジスタ30-12、及び水平シフトレジスタと信号読み出し回路30-13等の周辺回路が配置され、残る対向する2辺は、上記受光領域の端部である。そして複数の検出器30-1が接する境界線が30-14であり、この境界線を挟んだ各画素30-11の配列ピッチが、同方向において境界線30-14に接しない受光領域内部の画素30-11の配列ピッチと等しいことが望ましい。なお、図示するように、複数の検出器30-1は、検出器30-1が互いに隣接しない2辺に沿って上記の周辺回路が形成されている。回転部の回転方向において、連続した画素信号を得るためである。なお、検出器30-1の素子寸法は大型であることが望ましいが、例えば、デジタルカメラ等で広く採用されている、所謂、中判サイズ(44mm×33mm)、フルサイズ(36mm×24mm)、APSサイズ(23mm×15mm)等のCMOS型撮像素子の構造や製造方法を流用、或いは本発明のCT装置の構造適した設計とすることができる。 With reference to FIG. 7, the structure of the detector 30 suitable for use in the CT device 200, the CT device 300, and the like, and the arrangement and combination thereof will be described below. FIG. 7A shows a structure in which a plurality of detectors 30-1 are closely arranged along the inner circumference of the fixing portion 24 so as to surround the rotation center axis 1. As shown in the figure, the detector 30-1 includes a vertical shift register 30-12, a horizontal shift register, a signal reading circuit 30-13, and the like along two opposite sides of a light receiving region in which a large number of pixels 30-11 are arranged. The peripheral circuits of the above are arranged, and the remaining two opposite sides are the ends of the light receiving region. The boundary line in which the plurality of detectors 30-1 are in contact is 30-14, and the arrangement pitch of each pixel 30-11 sandwiching this boundary line is inside the light receiving region that does not touch the boundary line 30-14 in the same direction. It is desirable that it is equal to the arrangement pitch of pixels 30-11. As shown in the figure, the plurality of detectors 30-1 have the above peripheral circuits formed along two sides where the detectors 30-1 are not adjacent to each other. This is to obtain a continuous pixel signal in the rotation direction of the rotating portion. It is desirable that the element size of the detector 30-1 is large, but for example, the so-called medium format size (44 mm × 33 mm), full size (36 mm × 24 mm), which are widely used in digital cameras and the like. The structure and manufacturing method of the CMOS type image sensor such as APS size (23 mm × 15 mm) can be diverted, or the design suitable for the structure of the CT apparatus of the present invention can be used.
図7(b)は、複数の検出器30-2を、回転中心軸1を取り囲むように固定部24の内周に沿って密接して配置され、かつ回転中心軸1の方向にもさらに検出器30-2を配置することにより、体軸(Z軸)方向の画素数を拡大した構造を開示する。これにより、スライス幅を約2倍拡大することができる。本実施例では、図面上、左右に密接する検出器30-2の境界線30-24が重要となる。境界線が30-24を挟んだ各画素30-21の配列ピッチが、同方向において境界線30-24に接しない他の画素30-21の配列ピッチと等しいことが望ましいからである。また、図示するように、水平、垂直走査回路や信号読み出し回路((30-22、30-23)は、上述の如く、検出器30-2の3辺において各画素30-11の配列ピッチを阻害しないようにするため、検出器30-2の1辺に集約した回路配置とした。 In FIG. 7B, a plurality of detectors 30-2 are closely arranged along the inner circumference of the fixing portion 24 so as to surround the rotation center axis 1, and further detect in the direction of the rotation center axis 1. Disclosed is a structure in which the number of pixels in the body axis (Z axis) direction is increased by arranging the device 30-2. As a result, the slice width can be expanded about twice. In this embodiment, the boundary line 30-24 of the detector 30-2, which is in close contact with the left and right sides, is important in the drawing. This is because it is desirable that the arrangement pitch of each pixel 30-21 having a boundary line sandwiching 30-24 equal to the arrangement pitch of other pixels 30-21 that do not touch the boundary line 30-24 in the same direction. Further, as shown in the figure, the horizontal and vertical scanning circuits and the signal readout circuits ((30-22, 30-23) have the arrangement pitch of each pixel 30-11 on the three sides of the detector 30-2 as described above. In order not to interfere with the circuit, the circuit is arranged on one side of the detector 30-2.
図7(c)は、図7(b)に示した検出器30-2の構造を説明するための断面図である。検出器30-2は、裏面照射構造のCMOS型固体撮像素子であり、裏面側にシンチレータ層39が積層されている。本CMOS型固体撮像素子に使用しているシリコン基板の厚さは5乃至10ミクロンメートル(μm)程度あれば十分である。入射X線をシンチレータ層において可視光に変換後、画素30-21を介し電気信号として読み出すからである。検出器30-2の表側には、配線層30-26、破線で囲む領域Cには水平、垂直走査回路や信号読み出し回路((30-22、30-23)、接続端子30-25が配置されている。なお、裏面側には、集積回路をX線損傷から保護、軽減するための遮蔽部材40を領域C(30-22、30-23)の上部に配置している。 FIG. 7 (c) is a cross-sectional view for explaining the structure of the detector 30-2 shown in FIG. 7 (b). The detector 30-2 is a CMOS type solid-state image sensor having a back-illuminated structure, and a scintillator layer 39 is laminated on the back surface side. It is sufficient that the thickness of the silicon substrate used in this CMOS type solid-state image sensor is about 5 to 10 microns (μm). This is because the incident X-rays are converted into visible light in the scintillator layer and then read out as an electric signal via the pixel 30-21. The wiring layer 30-26 is arranged on the front side of the detector 30-2, and the horizontal and vertical scanning circuits, signal readout circuits ((30-22, 30-23), and connection terminals 30-25) are arranged in the area C surrounded by the broken line. On the back surface side, a shielding member 40 for protecting and mitigating the integrated circuit from X-ray damage is arranged above the area C (30-22, 30-23).
図8を用い、実施例に係るCT装置400について説明する。なお、図面配置の都合上、Z軸を水平方向にした状態で図示しているが、CT装置400の使用時には、Z軸が鉛直になるように90度回転させた状態で使用する。図8(a)は、CT装置400をX軸方向から見た側面図である。CT装置400は、支柱7-1、7-2、及びCT装置400の天井部分(9-3)、と被験者が乗る底部(9-4)から構成されている。天井部分(9-3)は、以下に説明するような機能を有しているので、クレードルと呼ぶこともできる。また、被験者が乗る底部(9-4)も、クレードルと呼ぶこともできるし、被験者が乗るステージと呼ぶこともできる。天井部分(9-3)と被験者が乗る底部(9-4)の間を、Z軸方向に移動可能なガントリ5が取り付けられた構造からなる。ガントリ5の内部には回転駆動モータ19により回転可能な回転部23があり、その回転中心軸1が図示されている。回転部23の内部には、カートリッジ構造の部品(図示せず)が使用されている。ガントリ5をZ軸方向に移動させるための車輪15とガントリけん引モータ14を有している。また、以下に詳述するように、ガントリ内の回転部23との間において電気信号又は電力の授受を行う電気的接続手段10がクレードル9-3のガントリ収納部37に、電気的接続手段12がガントリ内の回転部23に、電気的接続手段10と互いが対向するように配置されている。これらは互いに対向して近接した状態で非接触の給電、例えば回転部23の内部のリチウムイオン電池等への充電、或いは回転部23とクレードル側との間でデータや信号の授受を行うことができる。被験者の位置を決める背板3がガントリ5の中空部内をZ軸方向に挿入されている。撮影中はガントリ5のみがZ軸方向に移動し、被験者は背板3と共に静止している。なお、図示していないを操作・制御部及び表示(モニター)部があり、画像描出回路及びソフトウエア等により再構成された断層像等がモニター上に表示される。 The CT apparatus 400 according to the embodiment will be described with reference to FIG. Although the Z-axis is shown in the horizontal direction for convenience of drawing arrangement, when the CT device 400 is used, it is used in a state of being rotated 90 degrees so that the Z-axis is vertical. FIG. 8A is a side view of the CT device 400 as viewed from the X-axis direction. The CT device 400 is composed of columns 7-1 and 7-2, a ceiling portion (9-3) of the CT device 400, and a bottom portion (9-4) on which the subject rides. Since the ceiling portion (9-3) has the functions described below, it can also be called a cradle. In addition, the bottom (9-4) on which the subject rides can also be called a cradle or a stage on which the subject rides. It has a structure in which a gantry 5 that can move in the Z-axis direction is attached between the ceiling portion (9-3) and the bottom portion (9-4) on which the subject rides. Inside the gantry 5, there is a rotating portion 23 that can be rotated by a rotary drive motor 19, and the rotation central axis 1 thereof is shown in the drawing. A cartridge structure component (not shown) is used inside the rotating portion 23. It has wheels 15 and a gantry traction motor 14 for moving the gantry 5 in the Z-axis direction. Further, as described in detail below, the electrical connection means 10 for exchanging an electric signal or electric power with the rotating portion 23 in the gantry is connected to the gantry storage portion 37 of the cradle 9-3 with the electrical connection means 12 Are arranged in the rotating portion 23 in the gantry so as to face each other with the electrical connecting means 10. These can supply non-contact power in a state of facing each other and close to each other, for example, charging a lithium ion battery or the like inside the rotating unit 23, or exchanging data or a signal between the rotating unit 23 and the cradle side. it can. The back plate 3 that determines the position of the subject is inserted in the hollow portion of the gantry 5 in the Z-axis direction. During the imaging, only the gantry 5 moves in the Z-axis direction, and the subject is stationary together with the back plate 3. It should be noted that there is an operation / control unit and a display (monitor) unit (not shown), and a tomographic image or the like reconstructed by an image drawing circuit or software is displayed on the monitor.
さらに、クレードル9-3のガントリ収納部37の内部には、上記の非接触ホストインターフェース10以外に、試料保持部20が設けられている。試料とは、例えば、回転部23の内部の検出器や光源部が正常に機能しているか否かを事前にテストするための被測定物であって標準サンプル、或いはファントムと呼ばれるものである。また、クレードル内に回転部23の検査或いは校正を目的とする検査プローブ(図示せず)を設けても良い。或いは、収納部37の内部には、ガントリ5の内部の温度を下げるため、冷却ガス、例えば、空気や窒素ガスの供給口16があり、他方、回転部23には供給口16に嵌合する回転部23に設けた開口部18が設けられている。また、ガントリを保持、固定するホールド機構(図示せず)を設けることにより、CT装置を車両等で移動し、目的地で使用する場合等においても、ガントリ部を衝撃から保護することができる。このように、クレードル9-3には、ガントリの安定駆動、或いは安全性や性能等の維持管理に必要な機能を付加することができる。 Further, in addition to the non-contact host interface 10 described above, a sample holding portion 20 is provided inside the gantry storage portion 37 of the cradle 9-3. The sample is, for example, an object to be measured for preliminarily testing whether or not the detector and the light source unit inside the rotating unit 23 are functioning normally, and is called a standard sample or a phantom. Further, an inspection probe (not shown) for the purpose of inspection or calibration of the rotating portion 23 may be provided in the cradle. Alternatively, inside the storage portion 37, there is a supply port 16 for cooling gas, for example, air or nitrogen gas, in order to lower the temperature inside the gantry 5, while the rotating portion 23 fits into the supply port 16. An opening 18 provided in the rotating portion 23 is provided. Further, by providing a hold mechanism (not shown) for holding and fixing the gantry, the gantry portion can be protected from impact even when the CT device is moved by a vehicle or the like and used at a destination. In this way, the cradle 9-3 can be provided with functions necessary for stable driving of the gantry or maintenance such as safety and performance.
図8(b)は非接触インターフェース部(10及び12)における電磁誘導方式のワイヤレス給電に係る回路構成の一例を説明するためのブロック図である。図示するように、クレードル側のインターフェース10の回路構成は、商用電源(10-2)を直流に変換するAC/DCコンバータ(10-3)、高周波の方形波を出力する高周波インバータ(10-4)、これを正弦波に変換する波形変換回路(10-5)、安全確保のための絶縁トランス(10-6)等を介し一次コイルL1(10-1)につながっている。他方、二次コイルL2(12-1)は、高周波を直流に戻す整流平滑回路(12-4)、逆流阻止ダイオード((12-3)等を介し、負荷、例えば二次電池(12-2)等に接続している。他方、制御信号或いは画像データ等の送受信には、例えば、近接場磁界結合にもとづくワイヤレス通信方式(図示せず)を使用する。また、近年急速に普及しつつある高速大容量の通信方式(例えば、5G)を利用した高速、大容量のCT画像データの伝送等を行うこともできる。データ転送速度をギガ(G)ビット/秒以上の高速化が可能だからである。なお、上記ワイヤレス給電とワイヤレス通信を同一のコイル、或いはアンテナを使用して行う方式であってもよい。 FIG. 8B is a block diagram for explaining an example of a circuit configuration related to electromagnetic induction type wireless power feeding in the non-contact interface units (10 and 12). As shown in the figure, the circuit configuration of the interface 10 on the cradle side consists of an AC / DC converter (10-3) that converts commercial power (10-2) to direct current, and a high-frequency inverter (10-4) that outputs high-frequency square waves. ), A waveform conversion circuit (10-5) that converts this into a sinusoidal wave, an isolation transformer (10-6) for ensuring safety, and the like are connected to the primary coil L1 (10-1). On the other hand, the secondary coil L2 (12-1) is loaded with a load such as a secondary battery (12-2) via a rectifying smoothing circuit (12-4) that returns high frequencies to direct current, a backflow blocking diode ((12-3), etc.). ) Etc. On the other hand, a wireless communication method (not shown) based on near-field magnetic field coupling is used for transmitting and receiving control signals or image data, etc., and is rapidly becoming widespread in recent years. It is also possible to transmit high-speed, large-capacity CT image data using a high-speed, large-capacity communication method (for example, 5G) because the data transfer speed can be increased by giga (G) bits / second or more. There may be a method in which the wireless power supply and the wireless communication are performed using the same coil or antenna.
実施例に係るCT装置400の駆動方法を説明する。ガントリ5の移動及び回転部23の回転開始の後、X線照射による撮像が開始される。検出器アレー31から得られたデジタルデータはリアルタイムで半導体画像メモリに記録される。図2(b)において説明したように、デジタルデータは、パラレルシリアル変換するまでもなく、パラレルデータのまま画像メモリ(35)に記録することができる。撮像終了後、ガントリは所定位置に停止し、回転部インターフェース12からクレー側のインターフェース10を介し、画像メモリ35に記録されたデータが読み出され、操作・制御部において画像の再構成処理後、モニター上に表示され待機状態に戻る。また同時に、或いは待機時においてリチウムイオン電池(27)を充電し、一連の撮像駆動シーケンスが完了する。 A method of driving the CT device 400 according to the embodiment will be described. After the movement of the gantry 5 and the start of rotation of the rotating portion 23, imaging by X-ray irradiation is started. The digital data obtained from the detector array 31 is recorded in the semiconductor image memory in real time. As described with reference to FIG. 2B, the digital data can be recorded in the image memory (35) as it is without the need for parallel serial conversion. After the imaging is completed, the gantry stops at a predetermined position, the data recorded in the image memory 35 is read from the rotating unit interface 12 via the clay-side interface 10, and after the image reconstruction process in the operation / control unit, the gantry is reconstructed. It is displayed on the monitor and returns to the standby state. At the same time, or during standby, the lithium ion battery (27) is charged to complete a series of imaging drive sequences.
図8(c)、(d)は、CT装置400の変形例に係るガントリ部5とクレードル9-5の構造を説明するための断面図である。即ち、ガントリ部5がクレードル部9-5に退避中において、ガントリ内の二次電池の見かけ上の充電時間を短縮することが可能な構造を開示するものである。図8(c)に示すように二次電池は、カートリッジ構造の二次電池27mであり、挿入スペース27fに挿入されている。他方、クレードル9-5のガントリ収納部37には、カートリッジホルダー22が設けられており、ガントリ5がガントリ収納部37に収納されると二次電池27mがカートリッジホルダー22に結合する。その後、ガントリ5がガントリ収納部37から離れる時に二次電池27mがガントリ収納部37に残り、充電が行われる。図8(d)は、図8(c)における回転部23を、中心軸1を中心に90度回転した場合の断面図である。ガントリ5の内部の第二の二次電池挿入スペース27fには二次電池27mが挿入されておらず、他方、クレードル9-4のガントリ収納部37の内部のカートリッジホルダー22には充電済みの二次電池27mが取り付けられている。そのため、ガントリ5がガントリ収納部37に収納されたときに充電済みの二次電池27mをガントリ内の二次電池挿入スペース27fに挿入することができる。言い換えると、使用後の二次電池27mをクレードル9-4に戻すと同時に、充電済みの二次電池27mをガントリ5に挿入することにより、使用後の二次電池27mの充電完了を待たずに、充電済みの二次電池をガントリ部5が受け取ることにより、即座に次の撮像動作を開始できる。その結果、二次電池の見かけ上の充電時間を短縮、或いは無くすことができ、検査に要する時間を短縮し装置の稼働効率を向上させることができる。 8 (c) and 8 (d) are cross-sectional views for explaining the structure of the gantry portion 5 and the cradle 9-5 according to the modified example of the CT device 400. That is, it discloses a structure capable of shortening the apparent charging time of the secondary battery in the gantry while the gantry section 5 is retracted to the cradle section 9-5. As shown in FIG. 8C, the secondary battery is a secondary battery 27 m having a cartridge structure and is inserted into the insertion space 27f. On the other hand, the gantry storage portion 37 of the cradle 9-5 is provided with a cartridge holder 22, and when the gantry 5 is stored in the gantry storage portion 37, the secondary battery 27m is coupled to the cartridge holder 22. After that, when the gantry 5 separates from the gantry storage unit 37, the secondary battery 27 m remains in the gantry storage unit 37, and charging is performed. FIG. 8D is a cross-sectional view of the rotating portion 23 in FIG. 8C when the rotating portion 23 is rotated 90 degrees about the central axis 1. The secondary battery 27m is not inserted in the second secondary battery insertion space 27f inside the gantry 5, while the cartridge holder 22 inside the gantry storage portion 37 of the cradle 9-4 is charged. The next battery 27m is attached. Therefore, when the gantry 5 is stored in the gantry storage unit 37, the charged secondary battery 27 m can be inserted into the secondary battery insertion space 27f in the gantry. In other words, by returning the used secondary battery 27m to the cradle 9-4 and at the same time inserting the charged secondary battery 27m into the gantry 5, it is not necessary to wait for the used secondary battery 27m to be fully charged. When the gantry unit 5 receives the charged secondary battery, the next imaging operation can be started immediately. As a result, the apparent charging time of the secondary battery can be shortened or eliminated, the time required for inspection can be shortened, and the operating efficiency of the device can be improved.
図9(a)、及び(b)は、それぞれ実施例に係る医療用の検査車両600と医療用の検査車両700の側面図である。本図では、車両の高さ方向、即ち鉛直方向がCT装置100のZ軸と一致する。なお、本図では説明の簡略化のため、CT装置100と記載したが、既に説明したCT装置200乃至400のいずれであって良い。図10においても同様である。図9(a)における検査車両600では、CT装置100が検査車両後方に位置し、被験者は車両の後部側面に設けられた扉48を開け、CT装置に入ることができる。他方、図(b)に示す検査車両700の場合には、車両の左又は右側面部に扉48が有り、被験者は車両の左右いずれかの側面部からCT装置の中に入ることができる。図9(a)及び(b)のいずれの場合も、ソーラーパネル13、階段又は踏み台17を備えている。 9 (a) and 9 (b) are side views of the medical inspection vehicle 600 and the medical inspection vehicle 700 according to the embodiment, respectively. In this figure, the height direction of the vehicle, that is, the vertical direction coincides with the Z axis of the CT device 100. In this figure, the CT device 100 is described for simplification of the description, but any of the CT devices 200 to 400 already described may be used. The same applies to FIG. In the inspection vehicle 600 in FIG. 9A, the CT device 100 is located behind the inspection vehicle, and the subject can enter the CT device by opening the door 48 provided on the rear side surface of the vehicle. On the other hand, in the case of the inspection vehicle 700 shown in FIG. (B), the door 48 is provided on the left or right side surface of the vehicle, and the subject can enter the CT device from either the left or right side surface of the vehicle. In both cases of FIGS. 9A and 9B, a solar panel 13, a staircase or a step 17 is provided.
図9(c)、及び図9(d)に上記検査車両600と700を上部から見下ろした場合のX-Y平面図を示す。検査車両600の場合(c)は、上述の如く、被験者が検査車両600の中の一区画63-3に配置されたCT装置100に車両後部から直接入ることができる。これに対し、検査車両700の場合(d)は、被験者が検査車両700の中の一区画63-3に配置されたCT装置100に車両の側面部から直接入ることができる。いずれの場合も、被験者が、待合室や更衣室等を除く他の検査や診察区画(63-1、63-2等)や、車内通路64等を経由することなく、CT装置による検査を受けることができる。そのため、感染症等が疑われる被験者であっても、車内にいる医療従事者や患者にウイルスや細菌等を感染させるリスクを低減することが容易になる。さらに好ましくは、CT装置100が設置された区画(63-3)や被験者のいる場所の気圧を、他の検査や診察区画(63-1、63-2等)や、車内通路64の気圧よりも低くした(陰圧)状態に維持することにより、上記の感染リスクをさらに低減させることができる。そのためには、例えば、上記CT装置100が設置された区画(63-3)や被験者のいる場所に車外への強制換気手段(換気扇等)を設けることにより、他の検査や診察区画(63-1、63-2等)や、車内通路64における気圧よりも下げる構造とする。 9 (c) and 9 (d) show XY plan views when the inspection vehicles 600 and 700 are viewed from above. In the case of the inspection vehicle 600 (c), as described above, the subject can directly enter the CT device 100 arranged in the section 63-3 in the inspection vehicle 600 from the rear part of the vehicle. On the other hand, in the case of the inspection vehicle 700 (d), the subject can directly enter the CT device 100 arranged in the section 63-3 in the inspection vehicle 700 from the side surface of the vehicle. In either case, the subject shall be examined by a CT device without going through other examinations and examination areas (63-1, 63-2, etc.) other than the waiting room and changing room, and the in-car passage 64, etc. Can be done. Therefore, even for a subject suspected of having an infectious disease or the like, it becomes easy to reduce the risk of infecting a medical worker or a patient in a vehicle with a virus or a bacterium. More preferably, the atmospheric pressure of the section (63-3) where the CT device 100 is installed or the place where the subject is located is set from the atmospheric pressure of other examination or examination sections (63-1, 63-2, etc.) or the passage 64 in the vehicle. The risk of infection can be further reduced by keeping the pressure low (negative pressure). For that purpose, for example, by providing a forced ventilation means (ventilation fan, etc.) to the outside of the vehicle in the section (63-3) where the CT device 100 is installed or in the place where the subject is present, another examination or examination section (63-). 1, 63-2, etc.) and the structure will be lower than the air pressure in the in-vehicle passage 64.
図10(a)は、実施例に係る医療車両800の、特に車両駆動モータ77、CT装置100等を中心とした電源構成を説明する要部ブロック図である。医療車両800は、水素貯蔵タンク75を備え、水素ガスを用い燃料電池73において発生した電気エネルギーを車両駆動モータ77に供給する。さらに、医療車両800の移動中の車両ブレーキング、即ち減速に伴う回生エネルギーを回収する車両回生ブレーキ回路79を有している。CT装置の主電源は、クレードル7を介し、燃料電池73より供給される。また、医療車両800の移動中においては、車両回生ブレーキ回路79よりクレードル7を介し、例えば、ガントリ5の内部の二次電池を充電することができる。また、ソーラーパネル13により、太陽光エネルギーの利用が可能であり、車両内部のリチウムイオン電池74等を充電することができる。燃料電池73は、水素(H2)、及び空気(Air)のみを消費し、排出物は水分(H2O)のみである。そのため有害な排気ガスや騒音、振動等の問題が無く、被験者や医療従事者等に害を及ぼすことなく、検診等の医療活動を継続することができる利点がある。 FIG. 10A is a block diagram of a main part for explaining the power supply configuration of the medical vehicle 800 according to the embodiment, particularly centering on the vehicle drive motor 77, the CT device 100, and the like. The medical vehicle 800 includes a hydrogen storage tank 75, and uses hydrogen gas to supply the electric energy generated in the fuel cell 73 to the vehicle drive motor 77. Further, it has a vehicle regenerative braking circuit 79 that recovers the regenerative energy associated with the moving vehicle braking of the medical vehicle 800, that is, the deceleration. The main power source of the CT device is supplied from the fuel cell 73 via the cradle 7. Further, while the medical vehicle 800 is moving, the secondary battery inside the gantry 5 can be charged from the vehicle regenerative braking circuit 79 via the cradle 7, for example. In addition, the solar panel 13 makes it possible to use solar energy and charge the lithium ion battery 74 and the like inside the vehicle. The fuel cell 73 consumes only hydrogen (H2) and air (Air), and emits only water (H2O). Therefore, there is no problem of harmful exhaust gas, noise, vibration, etc., and there is an advantage that medical activities such as medical examination can be continued without harming the subject, medical staff, and the like.
上述の医療車両に関する実施例では、検査或いは医療行為を行う部分と車両を駆動する部分が一体となった構造について説明したが、図10(b)に示すように、検査或いは医療行為を行う車両910Bを他の運転移動可能車両910Aによりけん引する構造であっても良いことは言うまでもない。この場合、検査或いは医療行為を行う車両910Bは、運転移動可能車両910Aから電源の供給を受ける方式、或いは車両910Bの内部に燃料電池等の電源部を内蔵する構造であってもよい。本構造により、目的地到着後、運転移動可能車両910Aは、検査或いは医療行為を行う車両910Bを切り離し、さらに別の検査或いは医療行為を行う車両をけん引し別の目的地に向かうことができる。 In the above-described embodiment relating to the medical vehicle, the structure in which the part for performing the inspection or medical treatment and the part for driving the vehicle are integrated has been described, but as shown in FIG. 10B, the vehicle for performing the inspection or medical treatment Needless to say, the structure may be such that the 910B is towed by another movable vehicle 910A. In this case, the vehicle 910B for performing the inspection or medical practice may have a method of receiving power supply from the driving movable vehicle 910A, or a structure in which a power supply unit such as a fuel cell is built in the vehicle 910B. With this structure, after arriving at the destination, the driveable vehicle 910A can separate the vehicle 910B performing the inspection or medical treatment, and tow the vehicle performing another inspection or medical treatment to go to another destination.
医療車両800、或いは900により、遠隔地、震災、台風等による被災地、開発途上国等の電源供給や燃料の補充が期待できない場所に赴いて検査、医療活動等が容易になる。このような環境下においては、しばしば野外テントの中、或いは避難所等の建物の内部に医療車両800又は900を移動させ、24時間、検査、診療活動を継続することが期待される。燃料電池73のエネルギー効率は高く、予備の水素貯蔵タンクにより、長時間の医療活動の継続が可能だからである。また、図10(c)のフローチャートに示すように、医療車両500が移動開始後、目的地においてCT等の医療機器を使用する前までは、燃料電池73は主として車両駆動モータ77に電力を供給し、CT装置等の医療機器に電力を供給する必要が無い。他方、医療車両800又は900が目的地において停止した後は、燃料電池73は主としてCT装置等の医療機器に電力を供給し、車両駆動モータ77に電力を供給する必要が無い。また、医療車両800又は900が移動中は、車両回生ブレーキ回路79よりCT装置に内蔵した二次電池等を充電することもできる。 The medical vehicle 800 or 900 facilitates inspections, medical activities, etc. by going to remote areas, areas affected by earthquakes, typhoons, etc., developing countries, and other places where power supply and refueling cannot be expected. In such an environment, it is often expected that the medical vehicle 800 or 900 will be moved into an outdoor tent or inside a building such as an evacuation center to continue examination and medical treatment activities for 24 hours. This is because the energy efficiency of the fuel cell 73 is high, and the spare hydrogen storage tank enables the continuation of medical activities for a long time. Further, as shown in the flowchart of FIG. 10C, the fuel cell 73 mainly supplies electric power to the vehicle drive motor 77 after the medical vehicle 500 starts moving and before using a medical device such as a CT at the destination. However, there is no need to supply electric power to medical devices such as CT devices. On the other hand, after the medical vehicle 800 or 900 is stopped at the destination, the fuel cell 73 mainly supplies electric power to medical equipment such as a CT device, and it is not necessary to supply electric power to the vehicle drive motor 77. Further, while the medical vehicle 800 or 900 is moving, the secondary battery or the like built in the CT device can be charged from the vehicle regenerative braking circuit 79.
ガントリ部、或いは光源部や検出器カートリッジの交換、或いはPET用のガントリや近赤外光を光源とするガントリを追加するにより、整形外科、循環器科、消化器科領域等異なる医療分野及び異なる光源エネルギーに対するマルチ画像診断が一台のCT装置において実現する。また、人間を対象とした医療用途以外にも、動植物の検査、工業計測等の用途にも幅広く利用できる。 Different medical fields such as orthopedics, cardiology, gastroenterology, etc. and different by replacing the gantry part, the light source part and the detector cartridge, or adding the gantry for PET or the gantry using near infrared light as the light source. Multi-imaging diagnosis for light source energy is realized in one CT device. In addition to medical applications for humans, it can be widely used for animal and plant inspections, industrial measurements, and the like.

Claims (20)

  1. 体軸方向を中心軸として回転する回転部を内蔵するガントリを有するCT装置であって、該中心軸が鉛直方向であり、かつ該回転部と該回転部を取り囲む固定部が鉛直方向に組み合わされ、該回転部と該固定部が対面する位置にそれぞれ磁石、又は磁場を発生する電磁誘導手段を近接し対向するように配置したCT装置。 A CT device having a gantry with a built-in rotating portion that rotates about the body axis direction, the central axis being in the vertical direction, and the rotating portion and a fixed portion surrounding the rotating portion being combined in the vertical direction. , A CT device in which magnets or electromagnetic guiding means for generating a magnetic field are arranged close to each other at positions where the rotating portion and the fixed portion face each other.
  2. 前記対面する位置において前記回転部が前記固定部の上部に位置し、かつ前記対面する位置において前記回転部と前記固定部にそれぞれ互いに同じ極性が対向するように磁石を取り付けた請求項1に記載のCT装置。 The first aspect of claim 1, wherein the rotating portion is located above the fixed portion at the facing position, and magnets are attached to the rotating portion and the fixed portion so that the same polarities face each other at the facing position. CT device.
  3. 前記対面する位置において前記回転部が前記固定部の下部に位置し、かつ前記対面する位置において前記回転部と前記固定部にそれぞれ互いに異なる極性が対向するように磁石を取り付けた請求項1に記載のCT装置。 The first aspect of claim 1, wherein the rotating portion is located below the fixed portion at the facing position, and magnets are attached to the rotating portion and the fixed portion so that different polarities face each other at the facing position. CT device.
  4. 前記対面する位置において前記回転部が前記固定部の上部に位置し、かつ前記対面する位置において前記回転部に磁石を有し、前記固定部に電磁誘導手段を配置した請求項1に記載のCT装置。 The CT according to claim 1, wherein the rotating portion is located above the fixed portion at the facing position, the rotating portion has a magnet at the facing position, and an electromagnetic induction means is arranged at the fixed portion. apparatus.
  5. 前記対面する位置において前記回転部が前記固定部の下部に位置し、かつ前記対面する位置において前記回転部に磁石を有し、前記固定部に電磁誘導手段を配置した請求項1に記載のCT装置。 The CT according to claim 1, wherein the rotating portion is located below the fixed portion at the facing position, the rotating portion has a magnet at the facing position, and an electromagnetic induction means is arranged at the fixed portion. apparatus.
  6. 前記回転部を回転点させる駆動モータ、該駆動モータの回転トルクを前記回転部に伝達するタイミングベルトを有する請求項1に記載のCT装置。 The CT apparatus according to claim 1, further comprising a drive motor that rotates the rotating portion and a timing belt that transmits the rotational torque of the drive motor to the rotating portion.
  7. 前記回転部を回転点させる駆動モータの回転トルクを前記回転部に伝達する互いに歯数の異なる歯車構造を該駆動モータの回転軸と前記回転部の円周上に有する請求項1に記載のCT装置。 The CT according to claim 1, wherein a gear structure having different numbers of teeth for transmitting the rotational torque of the drive motor that rotates the rotating portion to the rotating portion is provided on the rotating shaft of the driving motor and the circumference of the rotating portion. apparatus.
  8. 前記回転部には少なくとも光源、光源駆動制御回路、及びこれらを駆動する二次電池を内蔵する請求項1に記載のCT装置。 The CT device according to claim 1, wherein at least a light source, a light source drive control circuit, and a secondary battery for driving these are built in the rotating portion.
  9. 前記回転部に検出器、該検出器の出力信号を記録する半導体画像メモリを内蔵する請求項8に記載のCT装置。 The CT apparatus according to claim 8, wherein a detector and a semiconductor image memory for recording an output signal of the detector are built in the rotating portion.
  10. 前記回転部の外周部に対向する前記固定部の内周に検出器を有する請求項8に記載のCT装置。 The CT apparatus according to claim 8, further comprising a detector on the inner circumference of the fixed portion facing the outer peripheral portion of the rotating portion.
  11. 前記光源の前記回転部の回転中心を挟んで対向する部分であって、前記光源からの出射光を通過させ前記検出器の受光面を露光する開口部を前記回転部に有する請求項10に記載のCT装置。 The tenth aspect of the present invention, wherein the rotating portion has an opening that is a portion of the light source that faces the rotation center of the rotating portion and that allows the light emitted from the light source to pass through and exposes the light receiving surface of the detector. CT device.
  12. 前記検出器の同一半導体基板上に形成された周辺回路ブロックの長手方向が、前記中心軸を回転軸とする円周の法線方向と平行である請求項9、又は請求項10に記載のCT装置。 The CT according to claim 9 or 10, wherein the longitudinal direction of the peripheral circuit block formed on the same semiconductor substrate of the detector is parallel to the normal direction of the circumference having the central axis as the rotation axis. apparatus.
  13. 前記検出器の受光面が前記中心軸を中心に湾曲している請求項9、又は請求項10に記載のCT装置。 The CT apparatus according to claim 9, wherein the light receiving surface of the detector is curved about the central axis.
  14. 前記光源がX線光源であって、該X線光源における電子ビーム発生部がカーボンナノ構造体から構成された請求項8に記載のCT装置。 The CT apparatus according to claim 8, wherein the light source is an X-ray light source, and the electron beam generating portion of the X-ray light source is composed of carbon nanostructures.
  15. 前記ガントリが前記中心軸方向に移動する請求項1に記載のCT装置。 The CT apparatus according to claim 1, wherein the gantry moves in the central axis direction.
  16. 請求項8に記載の光源、又は二次電池、或いは請求項9に記載の検出器、又は半導体画像メモリのいずれかがカートリッジ構造であり、かつ前記回転部には該カートリッジ構造の光源、二次電池、検出器、或いは半導体画像メモリを個別に挿入又は抜去するためのカートリッジ開口部を有する請求項8、又は請求項9に記載のCT装置。 The light source according to claim 8, the secondary battery, or the detector according to claim 9, or the semiconductor image memory has a cartridge structure, and the rotating portion has a light source and a secondary having the cartridge structure. The CT apparatus according to claim 8 or 9, further comprising a cartridge opening for inserting or removing a battery, a detector, or a semiconductor image memory individually.
  17. CT装置を搭載した検査車両であって、該CT装置の体軸方向を中心軸として回転する回転部を内蔵するガントリを有し、該中心軸が鉛直方向であり、該CT装置への被験者の入り口が該中心軸に平行な面にあり、かつ該検査車両の側面部又は後部側面部に位置する検査車両。 An inspection vehicle equipped with a CT device, which has a gantry containing a rotating portion that rotates about the body axis direction of the CT device, the central axis of which is in the vertical direction, and a subject to the CT device. An inspection vehicle whose entrance is on a surface parallel to the central axis and is located on a side surface or a rear side surface of the inspection vehicle.
  18. 請求項1乃至請求項16のいずれか一項に記載のCT装置を搭載した請求項17に記載の検査車両。 The inspection vehicle according to claim 17, which is equipped with the CT device according to any one of claims 1 to 16.
  19. 前記検査車両の内部の前記CT装置が占有する一区画の気圧が、前記検査車両の内部の他の区画、及び移動通路における気圧よりも低い請求項17に記載の検査車両。 The inspection vehicle according to claim 17, wherein the air pressure in one section occupied by the CT device inside the inspection vehicle is lower than the air pressure in the other sections inside the inspection vehicle and the moving passage.
  20. 前記CT装置を駆動する電源が水素ガスを使用する燃料電池である請求項17に記載の検査車両。 The inspection vehicle according to claim 17, wherein the power source for driving the CT device is a fuel cell using hydrogen gas.
PCT/JP2020/025950 2019-07-09 2020-07-02 Computer tomography device and examination vehicle WO2021006166A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020569218A JP6858317B1 (en) 2019-07-09 2020-07-02 Computed tomography equipment and examination vehicle

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2019-127481 2019-07-09
JP2019127481 2019-07-09
JP2019165058 2019-09-11
JP2019-165058 2019-09-11
JP2020-011335 2020-01-28
JP2020011335 2020-01-28

Publications (1)

Publication Number Publication Date
WO2021006166A1 true WO2021006166A1 (en) 2021-01-14

Family

ID=74115250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025950 WO2021006166A1 (en) 2019-07-09 2020-07-02 Computer tomography device and examination vehicle

Country Status (2)

Country Link
JP (1) JP6858317B1 (en)
WO (1) WO2021006166A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023014757A (en) 2021-07-19 2023-01-31 富士フイルム株式会社 Radiation detector and radiographic device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287961A (en) * 1999-04-09 2000-10-17 Toshiba Corp X-ray computed tomograph
JP2001258873A (en) * 2000-03-15 2001-09-25 Hitachi Medical Corp X-ray computed tomograph
JP2003010167A (en) * 2001-07-04 2003-01-14 Toshiba Corp X-ray ct apparatus
JP2003522583A (en) * 2000-02-15 2003-07-29 フィリップス メディカル システムズ テクノロジーズ リミテッド Clinical screening CT system
JP2005237779A (en) * 2004-02-27 2005-09-08 Shimadzu Corp X-ray ct apparatus
JP2007151707A (en) * 2005-12-02 2007-06-21 Hitachi Medical Corp X-ray computed tomography system
JP2011025727A (en) * 2009-07-21 2011-02-10 Shiro Ozaki Infectious disease countermeasure vehicle
JP2011147652A (en) * 2010-01-22 2011-08-04 Hitachi Medical Corp X ray ct apparatus
CN104101615A (en) * 2014-07-28 2014-10-15 重庆大学 Vehicle-mounted movable detecting system for computed tomography
JP6586550B1 (en) * 2018-12-26 2019-10-02 雫石 誠 Imaging device and driving method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05344674A (en) * 1992-06-08 1993-12-24 Hitachi Ltd Bearing device for motor
JP3577558B2 (en) * 1994-12-28 2004-10-13 光洋精工株式会社 Flywheel equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287961A (en) * 1999-04-09 2000-10-17 Toshiba Corp X-ray computed tomograph
JP2003522583A (en) * 2000-02-15 2003-07-29 フィリップス メディカル システムズ テクノロジーズ リミテッド Clinical screening CT system
JP2001258873A (en) * 2000-03-15 2001-09-25 Hitachi Medical Corp X-ray computed tomograph
JP2003010167A (en) * 2001-07-04 2003-01-14 Toshiba Corp X-ray ct apparatus
JP2005237779A (en) * 2004-02-27 2005-09-08 Shimadzu Corp X-ray ct apparatus
JP2007151707A (en) * 2005-12-02 2007-06-21 Hitachi Medical Corp X-ray computed tomography system
JP2011025727A (en) * 2009-07-21 2011-02-10 Shiro Ozaki Infectious disease countermeasure vehicle
JP2011147652A (en) * 2010-01-22 2011-08-04 Hitachi Medical Corp X ray ct apparatus
CN104101615A (en) * 2014-07-28 2014-10-15 重庆大学 Vehicle-mounted movable detecting system for computed tomography
JP6586550B1 (en) * 2018-12-26 2019-10-02 雫石 誠 Imaging device and driving method thereof

Also Published As

Publication number Publication date
JPWO2021006166A1 (en) 2021-09-13
JP6858317B1 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
US8013607B2 (en) Magnetic shielding for a PET detector system
US11723613B2 (en) Imaging apparatus and driving method thereof
EP2111558B1 (en) Hybrid pet/mr imaging systems
US8516636B2 (en) Patient bed for PET/MR imaging systems
WO2021006294A1 (en) Medical vehicle, ct device, and driving method
JP4365762B2 (en) Nuclear medicine diagnostic apparatus and method for cooling nuclear medicine diagnostic apparatus
JP5736099B2 (en) Method and apparatus for high rotational speed scanner
KR100878881B1 (en) Integrated pet/ct system
US6285028B1 (en) Semiconductor radiation detector and nuclear medicine diagnostic apparatus
US20070080296A1 (en) Nuclear medicine diagnostic apparatus, positron emission computed tomography apparatus, and detector units
JP2009540882A (en) Rotating integrated scanner for diagnostic and surgical imaging
JP2008206977A (en) Overlay display device for magnetic resonance tomographic image and positron emission tomographic image
WO2016093140A1 (en) Imaging device
WO2021006166A1 (en) Computer tomography device and examination vehicle
JP5426282B2 (en) Diagnostic imaging equipment
JP6586550B1 (en) Imaging device and driving method thereof
Jalink et al. CCD mosaic technique for large-field digital mammography
JP6821074B1 (en) Medical vehicle
JP2011030682A (en) Mri-pet system
JP6820989B1 (en) Imaging device and its driving method
JP6842590B1 (en) Imaging device and its driving method
JP2005270562A (en) Radiation computer tomograph, radiation computer tomographic system and radiation computer tomographic method using the same
JP2011120842A (en) Medical image diagnostic apparatus

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020569218

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836987

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836987

Country of ref document: EP

Kind code of ref document: A1