WO2021006111A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2021006111A1
WO2021006111A1 PCT/JP2020/025612 JP2020025612W WO2021006111A1 WO 2021006111 A1 WO2021006111 A1 WO 2021006111A1 JP 2020025612 W JP2020025612 W JP 2020025612W WO 2021006111 A1 WO2021006111 A1 WO 2021006111A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
route
control device
vehicle control
width
Prior art date
Application number
PCT/JP2020/025612
Other languages
French (fr)
Japanese (ja)
Inventor
沙良 須田
大司 清宮
幸夫 麻生
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2021530621A priority Critical patent/JP7303304B2/en
Publication of WO2021006111A1 publication Critical patent/WO2021006111A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a vehicle control device that provides driving support.
  • Patent Document 1 describes a vehicle control device that stores obstacles, signs, and positions of white lines with respect to the vehicle around the vehicle and improves the estimation accuracy of the vehicle position.
  • a typical example of the invention disclosed in the present application is as follows. That is, it is a vehicle control device that controls a vehicle, and has a storage unit that stores information on a route and information on a travelable width set in a direction perpendicular to the traveling direction of the route, and follows the route.
  • a control unit that controls the automatic traveling of the vehicle is provided, and the control unit updates the route information acquired from the storage unit based on the travelable width.
  • FIG. 1 It is a figure explaining the effect of the travelable width. It is a figure which shows the change of the travelable width at the time of automatic traveling of the vehicle of Example 1. It is a flowchart explaining an example of the avoidance processing executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1.
  • FIG. 1 shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows an example of the screen displayed on the display device of Example 1.
  • FIG. It is a figure which shows an example of the screen displayed on the display device of Example 1.
  • FIG. It is a flowchart explaining an example of the landmark movement processing executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the landmark movement processing executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the landmark movement processing executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the landmark movement processing executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the landmark movement processing executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows the running state of the vehicle which accompanies the landmark movement processing executed by the vehicle control device of Example 1.
  • FIG. It is a figure which shows an example of the update of the route information of Example 1.
  • 17A and 17B are diagrams for explaining problems in the automatic traveling of a conventional vehicle.
  • the problem of the conventional automatic traveling of the vehicle will be described by taking as an example the case where the vehicle 1700 travels along the route 1710 to the target position 1701 which is the end point.
  • the vehicle 1700 shall automatically travel so that the center of the vehicle 1700 passes on the route 1710.
  • the map shown in FIG. 17A shows landmarks such as utility poles 1720, traffic lights 1721, signs 1723, and paints 1722, 1724, houses 1730, outer walls 1731 around houses 1730, vehicles 1702 in private land, and the like.
  • the vehicle 100 stores the above-mentioned landmark information (landmark information) together with the information on the route 1710 (route information).
  • the route information and the landmark information may be generated from the result of manual driving or automatic driving, or may be generated by a system or device different from the vehicle 1700.
  • the vehicle 1700 sequentially stores the landmarks on the road together with the coordinates of the road. Further, on private land, the vehicle 1700 stores landmarks such as the house 1730, the adjacent vehicle 1702, and the outer wall 1731.
  • the vehicle 1700 can automatically travel along the route 1710 to the target position 1701.
  • the vehicle 1700 stops the automatic running in order to avoid the collision with the obstacle 1750, and the obstacle 1750 is stopped. Stop before.
  • the conventional automatic driving technology has a problem that the convenience of the user is lacking.
  • the width in which the vehicle can travel in the direction perpendicular to the traveling direction of the route is stored as information indicating the range in which the route can be changed. Since the vehicle can grasp the range that can deviate from the original route, it is possible to change the route to avoid a collision with an obstacle. As a result, the vehicle can automatically travel to the target position.
  • FIG. 1 is a diagram showing an example of a sensor installation position of the vehicle 100 of the first embodiment.
  • 2A and 2B are diagrams showing an example of the detection range of the sensor included in the vehicle 100 of the first embodiment.
  • the vehicle 100 has image sensors 101A, 101B, 101C, 101D and distance measuring sensors 102A, 102B, 102C, 102D, 102E, 102F, 102G, 102H, 102I, 102J as sensors for detecting the environment around the vehicle 100. , 102K, 102L.
  • the image sensor 101A, 101B, 101C, and 101D are not distinguished, the image sensor 101 is described, and the distance measurement sensors 102A, 102B, 102C, 102D, 102E, 102F, 102G, 102H, 102I, 102J, 102K. , 102L is not distinguished, it is described as a distance measuring sensor 102.
  • the image sensor 101 acquires an image showing a sign, a lane marking, an obstacle, or the like.
  • the image sensor 101 is composed of, for example, a camera.
  • the broken line in FIG. 2A shows the detection range of the image sensor 101.
  • the image acquired by the image pickup sensor 101 can be displayed as, for example, a bird's-eye view image of the periphery of the vehicle 100 as viewed from a virtual viewpoint above the vehicle 100.
  • the distance measuring sensor 102 detects an object existing in the installation direction and calculates the distance from the vehicle 100 to the object.
  • a short-distance distance measuring sensor 102, a medium-distance distance measuring sensor 102, and a long-distance distance measuring sensor 102 are set in the vehicle 100.
  • the short-distance distance measuring sensor 102 is composed of, for example, sonar.
  • the short-distance distance measuring sensor 102 outputs ultrasonic waves around the vehicle 100 and calculates the distance between the vehicle 100 and the object based on the reflected waves.
  • the dotted line in FIG. 2A shows the detection range of the short-range distance measuring sensor 102.
  • the medium-range ranging sensor 102 is composed of, for example, a millimeter-wave radar.
  • the medium-range distance measuring sensor 102 outputs a millimeter wave around the vehicle 100, and calculates the distance between the vehicle 100 and the object based on the reflected wave.
  • two medium-range distance measuring sensors 102 are arranged in front of and behind the vehicle 100.
  • the dotted fan shape in FIG. 2B indicates the detection range of the medium-range ranging sensor 102.
  • the long-distance ranging sensor 102 is composed of, for example, a millimeter-wave radar.
  • the long-distance distance measuring sensor 102 outputs a millimeter wave around the vehicle 100, and calculates the distance between the vehicle 100 and the object based on the reflected wave.
  • one long-distance distance measuring sensor 102 is arranged in front of the vehicle 100.
  • the fan shape of the broken line in FIG. 2B shows the detection range of the long-distance distance measuring sensor 102.
  • the long-distance distance measuring sensor 102 may be composed of a stereo camera, a rider, or the like.
  • the information transmitted by the image pickup sensor 101 and the distance measurement sensor 102 will be collectively referred to as environmental information.
  • FIG. 3 is a diagram showing an example of a configuration for realizing automatic traveling of the vehicle 100 of the first embodiment.
  • the vehicle 100 has a vehicle control device 300, an image sensor 101, a distance measuring sensor 102, an input switch 301, a wheel sensor 302, a position detector 303, a communication device 304, an actuator ECU 305, and a notification as a configuration for realizing automatic traveling. It has a mechanism 306.
  • the image sensor 101 inputs image data to the vehicle control device 300.
  • the distance measuring sensor 102 inputs the distance measuring data to the vehicle control device 300.
  • the input switch 301 is a switch operated to input user operations such as a memory instruction of the surrounding environment and an instruction to start automatic driving of the vehicle 100.
  • the input switch 301 may be realized as, for example, a dedicated mechanical switch provided around the driver's seat, or may be realized as an icon on a GUI (Graphical User Interface).
  • the wheel sensor 302 is attached to each wheel of the vehicle 100, and includes a wheel speed sensor that measures the rotation speed of the wheels and a controller that integrates the rotation speeds of the wheels measured by a plurality of wheel speed sensors to generate a vehicle speed signal. Including.
  • the wheel sensor 302 inputs a vehicle speed signal to the vehicle control device 300.
  • the position detector 303 detects the position of the vehicle 100.
  • the position detector 303 is, for example, a GPS (Global Positioning System) device.
  • the GPS device receives the position information of the vehicle 100 by communicating with the GPS sanitary.
  • the position detector 303 inputs the position information of the vehicle 100 to the vehicle control device 300. The information is used when determining whether or not automatic driving can be started.
  • the communication device 304 communicates with the outside.
  • the communication device 304 inputs the received information to the vehicle control device 300.
  • the actuator ECU 305 controls the actuator.
  • the actuator ECU is an example of an output destination of a command from the vehicle control device 300, and is not limited to this.
  • mechanical elements and signal conversion devices such as an accelerator pedal that controls a driving force, a brake pedal and a parking brake that control a braking force, a steering wheel that controls the traveling direction of a vehicle, and a shift lever that controls the traveling direction of a vehicle. is there.
  • the notification mechanism 306 notifies the user of the information.
  • the notification mechanism 306 includes a display device 320 and an audio output device 321.
  • the display device 320 notifies the information via the screen.
  • the display device 320 of the first embodiment displays a bird's-eye view image generated from the image acquired by the image pickup sensor 101, information output from the vehicle control device 300, and the like.
  • the display device 320 is composed of, for example, a liquid crystal display equipped with a touch panel function.
  • the voice output device 321 notifies the information via voice.
  • the voice output device 321 outputs voice guidance and warning sounds.
  • the audio output device 321 is arranged at an appropriate position in the interior of the vehicle 100.
  • the audio output device 321 is composed of, for example, a speaker.
  • the vehicle control device 300 provides information (road surface information) regarding the road surface paint type and position such as lane marking position, stop line position, and pedestrian crossing, and around the road such as signs, traffic lights, and features, via the communication device 304.
  • Information about an existing object is acquired as road peripheral information around the vehicle 100.
  • the vehicle control device 300 can also acquire the information measured by the sensor installed in the road infrastructure and the road peripheral information acquired by another vehicle via the communication device 304.
  • the vehicle control device 300 can update landmark information and the like based on the received information.
  • the vehicle control device 300 controls the entire vehicle 100.
  • the vehicle control device 300 includes an environment detection unit 310, a vehicle position estimation unit 311, a travelable width calculation unit 312, a storage unit 313, an obstacle avoidance determination unit 314, a landmark determination unit 315, a route update processing unit 316, and a vehicle control unit. 317 and Display Command 318 are included.
  • the storage unit 313 stores information.
  • the storage unit 313 of the first embodiment stores map information, route information for automatic driving, landmark information, and a travelable width described later.
  • the route information is composed of a plurality of control points (coordinates).
  • the storage unit 313 of the first embodiment stores data transmitted from the image pickup sensor 101, the distance measuring sensor 102, the wheel sensor 302, the position detector 303, and the communication device 304.
  • the environment detection unit 310 determines the type of a mark or sign such as a lane marking and an object such as an obstacle based on the data or the like acquired from the image pickup sensor 101 and the distance measurement sensor 102, and the mark or object and the vehicle 100. Calculate the position and distance between and.
  • the vehicle position estimation unit 311 estimates the position of the vehicle 100 on the map based on the position of the mark or the object, the vehicle speed signal, and the like.
  • the travelable width calculation unit 312 calculates the travelable width of the vehicle 100 with respect to the road as the travelable width based on the position of the mark or the object, the route information, and the like.
  • the obstacle avoidance determination unit 314 determines whether or not to update the route in order to avoid obstacles existing on the route.
  • the landmark determination unit 315 determines the detection difficulty level of the landmark used for estimating the position of the vehicle 100, and determines whether or not to update the route in order to reduce the detection difficulty level of the landmark.
  • the route update processing unit 316 updates the route when it is determined by the obstacle avoidance determination unit 314 or the landmark determination unit 315 that the route needs to be updated.
  • the vehicle control unit 317 controls the vehicle 100.
  • the vehicle control unit 317 reads out the control points included in the route information, calculates the control value for the vehicle 100 to travel on the route defined by the control points, and transmits the control value to the actuator ECU 305. ..
  • the display command unit 318 transmits a command to the notification mechanism 306.
  • FIG. 4 is a flowchart illustrating an example of the travelable width setting process executed by the vehicle control device 300 of the first embodiment.
  • 5A and 5B are diagrams showing an example of the travelable width calculated by the vehicle control device 300 of the first embodiment.
  • 6A and 6B are diagrams illustrating the effect of the travelable width.
  • FIG. 7 is a diagram showing a change in the travelable width of the vehicle 100 of the first embodiment during automatic traveling.
  • the vehicle control device 300 executes the travelable width setting process when the vehicle 100 reaches the control point or when an arbitrary event occurs, such as after moving in a lane.
  • the vehicle control device 300 may periodically execute the travelable width setting process.
  • the vehicle control device 300 executes the travelable width setting process for each of the right side and the left side with respect to the traveling direction of the route.
  • the travelable width calculation unit 312 acquires environmental information from the image pickup sensor 101 and the distance measurement sensor 102 via the environment detection unit 310 (step S101).
  • image data transmitted from the image sensor 101 is mainly used. If the image sensor 101 is out of order or there is no lane marking on the road, the data transmitted from the distance measuring sensor 102 may be used. Further, in case of failure of the distance measuring sensor 102, a sensor capable of detecting road edges, lane markings, gutters, and signs may be set in the vehicle 100.
  • step S102 the travelable width calculation unit 312 starts loop processing (step S102).
  • the processes from step S103 to step S109 are executed for each of the right side and the left side with respect to the traveling direction of the route.
  • the selected direction is also described as the target direction.
  • the travelable width calculation unit 312 selects either the right side or the left side.
  • the travelable width calculation unit 312 determines whether or not there is a lane marking in the target direction of the road on which the vehicle 100 is traveling (step S103).
  • the travelable width calculation unit 312 proceeds to step S106.
  • the travelable width calculation unit 312 calculates the distance A from the control point to the lane marking (step S104). Specifically, the travelable width calculation unit 312 calculates the distance from the control point to the lane marking in the direction perpendicular to the traveling direction of the route.
  • the travelable width calculation unit 312 determines whether or not the distance A is equal to or less than the threshold value (step S105).
  • the threshold is preset. This is a process for determining whether or not a safe distance can be maintained. When the distance A is equal to or less than the threshold value, the travelable width calculation unit 312 determines that the safe distance cannot be maintained.
  • the travelable width calculation unit 312 sets the distance A as the travelable width (step S109), and then proceeds to step S110. Specifically, the travelable width calculation unit 312 stores the travelable width in the storage unit 313 in association with the control points.
  • the travelable width calculation unit 312 determines whether or not there is a sign or a gutter in the target direction of the road (step S106).
  • the travelable width calculation unit 312 calculates the distance B from the control point to the sign or the gutter (step S107). Specifically, the travelable width calculation unit 312 calculates the distance from the control point to the sign or the gutter in the direction perpendicular to the traveling direction of the route.
  • the travelable width calculation unit 312 sets the distance B as the travelable width (step S109), and then proceeds to step S110. Specifically, the travelable width calculation unit 312 stores the travelable width in the storage unit 313 in association with the control points.
  • the travelable width calculation unit 312 calculates the distance C from the control point to the road edge (step S108). Specifically, the travelable width calculation unit 312 calculates the distance from the control point to the road edge in the direction perpendicular to the traveling direction of the route.
  • the travelable width calculation unit 312 sets the distance C as the travelable width (step S109), and then proceeds to step S110. Specifically, the travelable width calculation unit 312 stores the travelable width in the storage unit 313 in association with the control points.
  • the process from step S103 to step S108 is a process for calculating the maximum width of the road on which the vehicle 100 can move.
  • the maximum width is calculated based on lane markings, signs, and road edges.
  • the vehicle control device 300 can set the travel width for safely changing the route.
  • step S110 the travelable width calculation unit 312 determines whether or not the travelable widths on the right side and the left side are set with respect to the traveling direction of the route (step S110).
  • the travelable width calculation unit 312 returns to step S102 and executes the same process.
  • the travelable width calculation unit 312 ends the travelable width setting process.
  • the travelable width calculation unit 312 may compare the previously calculated minimum value of the travelable width with the calculated distance, and set a smaller value as the travelable width.
  • the travelable width is stored without being associated with the control point. That is, the travelable width stored in the storage unit 313 is one. In this way, the amount of storage area used can be reduced by storing the minimum width as the travelable width.
  • FIG. 5A shows the travelable width set with reference to the lane marking 501 of the road 500.
  • the widths 520R-1 and 520L-1 representing the distance from the control point to the section line 501 can be set as the travelable width.
  • the width 520R-2 and 520L-2 which is obtained by adding the margin area 511 to half of the minimum vehicle width 510 required for the vehicle 100 to travel, can be set as the traveling width.
  • the travelable width can be set with reference to either the outer lane markings or the inner lane markings.
  • FIG. 5B shows the travelable width set with reference to the sign or gutter of the road 500.
  • the width 520L-3 from the control point to the utility pole 530 and the width 520R-3 from the control point to the sign 531 are set as the travelable width.
  • the sign or gutter As a reference, it is possible to set the travelable width even on roads where there is no lane marking. Further, even when the lane marking exists, the travelable width for realizing the change of the route beyond the lane marking can be set by using the sign or the gutter as a reference.
  • a value obtained by subtracting a certain value from the width from the control point to the lane marking, the sign or the gutter can be set as the travelable width.
  • the distance between the vehicle 100 and the obstacle can be controlled to be larger than a predetermined value even after the route is changed.
  • the vehicle 100 can grasp the deviation width when the route is changed in the direction opposite to the direction in which the obstacle exists.
  • the travelable width calculation unit 312 When an obstacle exists on the road, the travelable width calculation unit 312 recognizes the obstacle as the road edge and sets the distance from the control point to the obstacle as the travelable width. However, if the obstacle is an obstacle such as a bus, a truck, or a taxi that may move from the road, the travelable width calculation unit 312 may not treat it as an obstacle.
  • the storage capacity used can be reduced by fixing the travelable width.
  • the minimum value may be fixed to a predetermined minimum value or the minimum travelable value calculated so far.
  • FIG. 7 shows the change in the traveling width when the vehicle is traveling. As shown in FIG. 7, the travelable width is stored in association with the control point.
  • the dotted line range 700 represents the locus of the travelable width.
  • the travelable width may be calculated at a point (change point) between the control points. As a result, a large travelable width can be set according to changes in the road environment. Further, when the travelable width is calculated between the control points, the minimum value may be stored in association with the control points.
  • the travelable width stored in the storage unit 313 may be used as it is. However, if the road environment is different from that at the time of the previous automatic driving, the travelable width setting process may be executed. As a result, the travelable width can be updated.
  • FIG. 8 is a flowchart illustrating an example of avoidance processing executed by the vehicle control device 300 of the first embodiment.
  • 9A, 9B, 9C, 9D, 9E, and 10 are diagrams showing a running state of the vehicle 100 due to the avoidance process executed by the vehicle control device 300 of the first embodiment.
  • 11A and 11B are diagrams showing an example of a screen displayed on the display device 320 of the first embodiment.
  • the vehicle control device 300 executes avoidance processing when an arbitrary event occurs, such as when the vehicle 100 reaches a control point or after moving in a lane.
  • the vehicle control device 300 may periodically execute the avoidance process.
  • the safety width is stored in the storage unit 313.
  • a width obtained by adding a margin area 511 to half of the vehicle width 510 or half of the vehicle width 510 is set as the safety width.
  • widths 900R and 900L are set as safety widths.
  • the size of the widths 900R and 900L is a.
  • the safety margin can be set arbitrarily according to the system.
  • the obstacle avoidance determination unit 314 acquires environmental information from the image pickup sensor 101 and the distance measurement sensor 102 via the environment detection unit 310 (step S201).
  • the obstacle avoidance determination unit 314 determines whether or not an obstacle exists within the safe range (step S202).
  • the obstacle avoidance determination unit 314 determines that the obstacle exists within the range of the safety width.
  • the obstacle avoidance determination unit 314 ends the avoidance process.
  • the obstacle avoidance determination unit 314 calculates the offset (step S203) and transmits the offset to the route update processing unit 316.
  • the obstacle avoidance determination unit 314 calculates the minimum value of the distance between the control point and the obstacle 910 in the direction perpendicular to the traveling direction of the route 150.
  • the obstacle avoidance determination unit 314 calculates the value b obtained by subtracting the minimum value from the size of the safety width 900R as an offset.
  • the offset calculation method described above is an example and is not limited to this.
  • the route update processing unit 316 determines whether or not the route can be updated (step S204).
  • the route update processing unit 316 determines whether or not the route moved by the offset exists within the travelable width in the direction opposite to the direction in which the obstacle exists. If the above conditions are not satisfied, the route update processing unit 316 determines that the route cannot be updated.
  • the route update processing unit 316 instructs the display command unit 318 to notify the stop of the vehicle 100 (step S210), and instructs the vehicle control unit 317 to stop the vehicle 100 (step). S211). At this time, the route update processing unit 316 notifies the obstacle avoidance determination unit 314 of the failure of the route update. When the obstacle avoidance determination unit 314 receives the notification, the obstacle avoidance determination unit 314 ends the avoidance process.
  • the route update processing unit 316 updates the route (step S205). Specifically, the route update processing unit 316 transmits the offset to the vehicle control unit 317.
  • the vehicle control unit 317 When the vehicle control unit 317 receives the offset, the vehicle control unit 317 updates the read control point based on the offset. The vehicle control unit 317 controls the vehicle 100 based on the updated control points.
  • updating the control point based on the offset is synonymous with updating from the dotted line path 150 to the solid line path 150.
  • the route can be updated without executing the process involving the regeneration of the route. Therefore, by reducing the processing load, the cost required for controlling the vehicle 100 can be reduced.
  • the vehicle control unit 317 calculates the steering angle so that the vehicle 100 travels along the updated route 150, and transmits it to the actuator ECU 305. As a result, as shown in FIG. 9C, the vehicle 100 can avoid the obstacle 910.
  • the route update processing unit 316 instructs the display command unit 318 to notify the start of avoidance control (step S206). In addition, the route update processing unit 316 instructs the obstacle avoidance determination unit 314 to monitor obstacles.
  • the obstacle avoidance determination unit 314 acquires environmental information from the image pickup sensor 101 and the distance measurement sensor 102 via the environment detection unit 310 (step S207).
  • the obstacle avoidance determination unit 314 determines whether or not the vehicle 100 has passed an obstacle (step S208).
  • the obstacle avoidance determination unit 314 returns to step S207 and executes the same process.
  • the obstacle avoidance determination unit 314 updates the route by transmitting an offset release instruction to the route update processing unit 316 (step S209). After that, the obstacle avoidance determination unit 314 ends the avoidance process. At this time, the route update processing unit 316 transmits an offset deletion instruction to the vehicle control unit 317.
  • the vehicle control unit 317 When the vehicle control unit 317 receives the offset deletion instruction, the vehicle control unit 317 deletes the offset.
  • the vehicle control unit 317 controls the vehicle 100 based on the control points before the update.
  • the update of the control point based on the deletion of the offset is synonymous with the update from the dotted line path 150 to the solid line path 150.
  • the vehicle control unit 317 calculates the steering angle so that the vehicle 100 travels along the updated route 150, and transmits it to the actuator ECU 305. As a result, as shown in FIG. 9E, the vehicle 100 returns to the thing and the route 150. After avoiding the obstacle 910, the vehicle 100 returns to the original route 150, so that the vehicle 100 can reach the target position.
  • the vehicle control device 300 returns the route 150 to the route 150 before the update when the obstacle passes, but the route 150 is not limited to this.
  • the vehicle control device 300 may return to the original route 150.
  • the vehicle 100 updates the route beyond the lane marking 1010 to obtain the obstacle 1000. Can be avoided. In this way, even when the traveling lane through which the route 150 passes is blocked, the vehicle 100 can continue the automatic traveling.
  • the notification mechanism 306 displays the screen 1100 or the screen 1110 on the display device 320, for example.
  • the screen 1100 is a screen for notifying the start of avoidance control.
  • the screen 1110 is a screen for notifying the stop of the vehicle 100.
  • the screen 1100 and the screen 1110 include a message display field 1101, an image display field 1102, 1103, and an end button 1104.
  • the message display field 1101 is a field for displaying a message.
  • a message indicating that the avoidance control has been started is displayed in the message display field 1101 of the screen 1100, and a message indicating that the automatic driving is stopped is displayed in the message display field 1101 of the screen 1110.
  • the image display field 1102 is a field for displaying an image in front of the vehicle 100.
  • the image display column 1103 is a column for displaying a bird's-eye view image above the vehicle 100.
  • the end button 1104 is an operation button for instructing the display of the screens 1100 and 1110.
  • the screen 1100 may include an operation button instructing execution of avoidance control. In this way, safety can be enhanced by leaving the necessity of avoiding obstacles to the judgment of the user.
  • the ease of detecting landmarks from the route that is, the difficulty of detection changes. Therefore, even if the landmark can be detected by the previous running of the vehicle 100, an event may occur in which the landmark cannot be detected under the current running environment. If the landmark cannot be detected, the accuracy of estimating the vehicle position will decrease, so it is necessary to change the route so that the landmark can be detected.
  • FIG. 12 is a flowchart illustrating an example of the landmark movement process executed by the vehicle control device 300 of the first embodiment.
  • 13A, 13B, 13C, 13D, and 13E are diagrams showing a running state of the vehicle 100 due to the landmark movement process executed by the vehicle control device 300 of the first embodiment.
  • the vehicle control device 300 executes the landmark movement process when the vehicle 100 reaches the control point or when an arbitrary event occurs, such as after moving the lane.
  • the vehicle control device 300 may periodically execute the landmark movement process.
  • the landmark determination unit 315 acquires environmental information from the image pickup sensor 101 and the distance measurement sensor 102 via the environment detection unit 310 (step S301).
  • the landmark determination unit 315 determines whether or not there is a landmark to be approached (step S302). For example, the following processing is executed.
  • the landmark determination unit 315 estimates the detection range of the sensor in the current driving environment. The landmark determination unit 315 determines whether or not there is a landmark not included in the detection range on the route. If there are landmarks that are not included in the detection range, the landmark determination unit 315 determines that there are landmarks that should be approached.
  • the above-mentioned determination method is an example and is not limited to this.
  • the landmark determination unit 315 ends the landmark movement process.
  • the landmark determination unit 315 calculates the offset (step S303) and transmits the offset to the route update processing unit 316.
  • the offset calculation method will be described using FIG. 13A as an example.
  • the landmark determination unit 315 selects the landmarks to be approached based on the importance. Specifically, the landmark with the highest importance is selected. In FIG. 13A, landmark 1311 is selected because the importance of landmark 1311 is higher than that of landmark 1310.
  • the landmark determination unit 315 calculates the minimum value of the distance between the control point and the landmark in the direction perpendicular to the traveling direction of the route 150.
  • the landmark determination unit 315 calculates the value c obtained by subtracting the minimum value from the total value of the detection range 1300 and half the vehicle width as an offset.
  • the offset calculation method described above is an example and is not limited to this.
  • the route update processing unit 316 determines whether or not the route can be updated (step S304).
  • the route update processing unit 316 determines whether or not the route moved by the offset in the direction in which the landmark 1311 exists exists within the travelable width. If the above conditions are not satisfied, the route update processing unit 316 determines that the route cannot be updated.
  • the route update processing unit 316 instructs the display command unit 318 to notify the landmark of the failure to approach the landmark (step S310). At this time, the route update processing unit 316 notifies the landmark determination unit 315 of the failure of the route update. When the landmark determination unit 315 receives the notification, the landmark determination unit 315 ends the landmark movement process.
  • step S305 When it is determined that the route can be updated, the route update processing unit 316 updates the route (step S305).
  • the process of step S305 is the same as the process of step S205.
  • the update of the control point based on the offset is synonymous with the update from the dotted line path 150 to the solid line path 150.
  • the vehicle control unit 317 calculates the steering angle so that the vehicle 100 travels along the updated route 150, and transmits it to the actuator ECU 305. As a result, as shown in FIG. 13C, the vehicle 100 can approach the landmark 1311 within a detectable range.
  • the route update processing unit 316 instructs the display command unit 318 to notify the start of approach control (step S306). Further, the route update processing unit 316 instructs the landmark determination unit 315 to monitor the landmark.
  • the landmark determination unit 315 acquires environmental information from the image pickup sensor 101 and the distance measurement sensor 102 via the environment detection unit 310 (step S307).
  • the landmark determination unit 315 determines whether or not the vehicle 100 has passed the landmark (step S308).
  • the landmark determination unit 315 returns to step S307 and executes the same process.
  • the landmark determination unit 315 updates the route by transmitting an offset release instruction to the route update processing unit 316 (step S309). After that, the landmark determination unit 315 ends the landmark movement process. At this time, the route update processing unit 316 transmits an offset deletion instruction to the vehicle control unit 317.
  • the vehicle control unit 317 When the vehicle control unit 317 receives the offset deletion instruction, the vehicle control unit 317 deletes the offset.
  • the vehicle control unit 317 controls the vehicle 100 based on the control points before the update.
  • updating the control point based on the deletion of the offset is synonymous with updating the path 150.
  • the vehicle control unit 317 calculates the steering angle so that the vehicle 100 travels along the updated route 150, and transmits it to the actuator ECU 305. As a result, as shown in FIG. 13E, the vehicle 100 returns to the thing and the route 150. After passing the landmark 1311, the vehicle 100 returns to the original route 150, so that the target position can be reached.
  • the travelable width calculation unit 312 stores the history data composed of the control points, the travelable width, and the calculated time in the storage unit 313 for a certain period of time.
  • the route update processing unit 316 divides the route into a plurality of sections and refers to the history data of the control points in each section.
  • the route update processing unit 316 subtracts the travelable width at another time from the oldest travelable width for a certain control point. Further, the route update processing unit 316 calculates the average value of the calculated differences.
  • the route update processing unit 316 sets the control point of the route information stored in the storage unit 313 to the average value of the difference. Update to the corrected coordinates based on. Further, the route update processing unit 316 deletes the control points in the section when the travelable width of the section including the updated control points is the same.
  • the route update processing unit 316 adds a new control point.
  • the travelable width managed in association with the control points may also be updated.
  • the range 700 indicates a locus of a travelable width that is set when the vehicle moves along the route 150.
  • the route information when an obstacle 1400 exists on the road at the time of generating the route information, the route information includes a control point 151 set to avoid the obstacle 1400.
  • the route update processing unit 316 deletes the updated control point from the route information.
  • the route information includes the control point 151 set so that the vehicle 100 goes straight.
  • the route update processing unit 316 adds a control point 151 so as to avoid the obstacle 1500.
  • FIG. 16 is a diagram showing the relationship between the vehicle speed control by the vehicle control device 300 of the first embodiment and the travelable width.
  • the vehicle control unit 317 may change the vehicle speed according to the size of the travelable width. For example, the vehicle control unit 317 controls the vehicle 100 so as to reduce the vehicle speed as the travelable width on either the left or right side becomes smaller. As a result, safety and user's anxiety and resistance can be reduced.
  • the present invention is not limited to the above-mentioned examples, and includes various modifications.
  • the above-described embodiment describes the configuration in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to add, delete, or replace a part of the configuration of each embodiment with other configurations.
  • each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit.
  • the present invention can also be realized by a program code of software that realizes the functions of the examples.
  • a storage medium in which the program code is recorded is provided to the computer, and the processor included in the computer reads the program code stored in the storage medium.
  • the program code itself read from the storage medium realizes the functions of the above-described embodiment, and the program code itself and the storage medium storing the program code itself constitute the present invention.
  • Examples of the storage medium for supplying such a program code include a flexible disk, a CD-ROM, a DVD-ROM, a hard disk, an SSD (Solid State Drive), an optical disk, a magneto-optical disk, a CD-R, and a magnetic tape.
  • Non-volatile memory cards, ROMs, etc. are used.
  • program code that realizes the functions described in this embodiment can be implemented in a wide range of programs or script languages such as assembler, C / C ++, perl, Shell, PHP, Python, and Java (registered trademark).
  • the program code of the software that realizes the function of the embodiment is stored in a storage means such as a hard disk or memory of a computer or a storage medium such as a CD-RW or a CD-R.
  • the processor provided in the computer may read and execute the program code stored in the storage means or the storage medium.
  • control lines and information lines indicate those considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. All configurations may be interconnected.
  • Vehicle 101 Image sensor 102 Distance measurement sensor 150 Path 151 Control point 300
  • Vehicle control device 301 Input switch 302 Wheel sensor 303 Position detector 304
  • Communication device 305
  • Actuator ECU 306 Notification mechanism 310
  • Environment detection unit 311
  • Vehicle position estimation unit 312
  • Vehicle width calculation unit 313
  • Storage unit 314
  • Obstacle avoidance judgment unit 315
  • Landmark judgment unit 316
  • Route update processing unit 317
  • Vehicle control unit 318 Display control unit 320

Abstract

When an obstacle is present on a path on which a vehicle is automatically traveling, the vehicle cannot continue to automatically travel. This vehicle control device for controlling a vehicle is provided with: a storage unit for storing information about a path and information about a travelable width set in a direction perpendicular to the traveling direction of the path; and a control unit for controlling the vehicle to travel along the path, wherein the control unit updates the information about the path acquired from the storage unit on the basis of the travelable width.

Description

車両制御装置Vehicle control device
 本発明は、運転支援を行う車両制御装置に関するものである。 The present invention relates to a vehicle control device that provides driving support.
 車両を自動で走行させるためには環境の検知だけでなく、経路情報及び自車位置情報が必要となる。特許文献1には、自車両の周囲の障害物、標識、白線の自車に対する位置を記憶し、自車位置の推定精度を向上させる車両制御装置が記載されている。 In order to drive the vehicle automatically, not only environment detection but also route information and own vehicle position information are required. Patent Document 1 describes a vehicle control device that stores obstacles, signs, and positions of white lines with respect to the vehicle around the vehicle and improves the estimation accuracy of the vehicle position.
国際公開2018/134863号International release 2018/134863
 特許文献1に記載の技術では、経路、並びに、及び標識及び白線の位置を記憶し、その位置を逐次更新又は統合していくことで、自車位置の検知精度を向上させている。しかし、車両が自動走行している経路上に障害物が存在する場合、車両が障害物と衝突してしまう。 In the technique described in Patent Document 1, the route and the positions of the sign and the white line are memorized, and the positions are sequentially updated or integrated to improve the detection accuracy of the position of the own vehicle. However, if there is an obstacle on the route on which the vehicle is automatically traveling, the vehicle will collide with the obstacle.
 本願において開示される発明の代表的な一例を示せば以下の通りである。すなわち、車両を制御する車両制御装置であって、経路の情報、及び前記経路の進行方向に対して垂直な方向に設定される走行可能幅の情報を記憶する記憶部と、前記経路に沿うように前記車両を自動走行させるための制御を行う制御部と、備え、前記制御部は、前記走行可能幅に基づいて、前記記憶部から取得した前記経路の情報を更新する。 A typical example of the invention disclosed in the present application is as follows. That is, it is a vehicle control device that controls a vehicle, and has a storage unit that stores information on a route and information on a travelable width set in a direction perpendicular to the traveling direction of the route, and follows the route. A control unit that controls the automatic traveling of the vehicle is provided, and the control unit updates the route information acquired from the storage unit based on the travelable width.
 本発明によれば、経路上に障害物が存在する場合でも、障害物との衝突を回避し、自動走行を継続することができる。上記した以外の課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to the present invention, even when an obstacle exists on the route, it is possible to avoid a collision with the obstacle and continue automatic driving. Issues, configurations and effects other than those mentioned above will be clarified by the description of the following examples.
実施例1の車両が有するセンサの設置位置の一例を示す図である。It is a figure which shows an example of the installation position of the sensor which the vehicle of Example 1 has. 実施例1の車両が有するセンサの検知範囲の一例を示す図である。It is a figure which shows an example of the detection range of the sensor which the vehicle of Example 1 has. 実施例1の車両が有するセンサの検知範囲の一例を示す図である。It is a figure which shows an example of the detection range of the sensor which the vehicle of Example 1 has. 実施例1の車両の自動走行を実現するための構成の一例を示す図である。It is a figure which shows an example of the structure for realizing the automatic running of the vehicle of Example 1. 実施例1の車両制御装置が実行する走行可能幅設定処理の一例を説明するフローチャートである。It is a flowchart explaining an example of the travelable width setting process executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が算出する走行可能幅の一例を示す図である。It is a figure which shows an example of the travelable width calculated by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が算出する走行可能幅の一例を示す図である。It is a figure which shows an example of the travelable width calculated by the vehicle control device of Example 1. FIG. 走行可能幅の効果を説明する図である。It is a figure explaining the effect of the travelable width. 走行可能幅の効果を説明する図である。It is a figure explaining the effect of the travelable width. 実施例1の車両の自動走行時の走行可能幅の変化を示す図である。It is a figure which shows the change of the travelable width at the time of automatic traveling of the vehicle of Example 1. 実施例1の車両制御装置が実行する回避処理の一例を説明するフローチャートである。It is a flowchart explaining an example of the avoidance processing executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が実行する回避処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が実行する回避処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が実行する回避処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が実行する回避処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が実行する回避処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が実行する回避処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the avoidance process executed by the vehicle control device of Example 1. FIG. 実施例1の表示装置に表示される画面の一例を示す図である。It is a figure which shows an example of the screen displayed on the display device of Example 1. FIG. 実施例1の表示装置に表示される画面の一例を示す図である。It is a figure which shows an example of the screen displayed on the display device of Example 1. FIG. 実施例1の車両制御装置が実行するランドマーク移動処理の一例を説明するフローチャートである。It is a flowchart explaining an example of the landmark movement processing executed by the vehicle control device of Example 1. 実施例1の車両制御装置が実行するランドマーク移動処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the landmark movement processing executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が実行するランドマーク移動処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the landmark movement processing executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が実行するランドマーク移動処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the landmark movement processing executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が実行するランドマーク移動処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the landmark movement processing executed by the vehicle control device of Example 1. FIG. 実施例1の車両制御装置が実行するランドマーク移動処理に伴う車両の走行状態を示す図である。It is a figure which shows the running state of the vehicle which accompanies the landmark movement processing executed by the vehicle control device of Example 1. FIG. 実施例1の経路情報の更新の一例を示す図である。It is a figure which shows an example of the update of the route information of Example 1. 実施例1の経路情報の更新の一例を示す図である。It is a figure which shows an example of the update of the route information of Example 1. 実施例1の経路情報の更新の一例を示す図である。It is a figure which shows an example of the update of the route information of Example 1. 実施例1の経路情報の更新の一例を示す図である。It is a figure which shows an example of the update of the route information of Example 1. 実施例1の車両制御装置による車速の制御と走行可能幅との関係を示す図である。It is a figure which shows the relationship between the control of the vehicle speed by the vehicle control device of Example 1 and the travelable width. 従来の車両の自動走行における課題を説明する図である。It is a figure explaining the problem in the automatic running of a conventional vehicle. 従来の車両の自動走行における課題を説明する図である。It is a figure explaining the problem in the automatic running of a conventional vehicle.
 まず、従来の車両の自動走行の課題を踏まえて、本発明の概要を説明する。 First, the outline of the present invention will be described based on the problems of the conventional automatic traveling of the vehicle.
 図17A及び図17Bは、従来の車両の自動走行における課題を説明する図である。ここでは、車両1700が経路1710に沿って、終点となる目標位置1701まで走行する場合を一例に、従来の車両の自動走行の課題を説明する。 17A and 17B are diagrams for explaining problems in the automatic traveling of a conventional vehicle. Here, the problem of the conventional automatic traveling of the vehicle will be described by taking as an example the case where the vehicle 1700 travels along the route 1710 to the target position 1701 which is the end point.
 車両1700は、車両1700の中心が経路1710上を通過するように自動走行を行うものとする。 The vehicle 1700 shall automatically travel so that the center of the vehicle 1700 passes on the route 1710.
 図17Aに示すマップには、電柱1720、信号機1721、標識1723、及びペイント1722、1724、家1730、家1730の周辺の外壁1731、私有地内の車両1702等のランドマークが表される。車両100は、経路1710の情報(経路情報)とともに、前述のランドマークの情報(ランドマーク情報)を記憶する。 The map shown in FIG. 17A shows landmarks such as utility poles 1720, traffic lights 1721, signs 1723, and paints 1722, 1724, houses 1730, outer walls 1731 around houses 1730, vehicles 1702 in private land, and the like. The vehicle 100 stores the above-mentioned landmark information (landmark information) together with the information on the route 1710 (route information).
 経路情報及びランドマーク情報は、手動運転又は自動運転等の結果から生成されてもよいし、車両1700とは異なるシステム又は装置によって生成されてもよい。例えば、手動運転で経路情報を生成する場合、車両1700は、道路の座標とともに、道路上のランドマークを逐次記憶する。また、私有地では、車両1700は、家1730及び隣接する車両1702、外壁1731等のランドマークを記憶する。 The route information and the landmark information may be generated from the result of manual driving or automatic driving, or may be generated by a system or device different from the vehicle 1700. For example, when the route information is generated by manual driving, the vehicle 1700 sequentially stores the landmarks on the road together with the coordinates of the road. Further, on private land, the vehicle 1700 stores landmarks such as the house 1730, the adjacent vehicle 1702, and the outer wall 1731.
 図17Aに示すような道路状態の場合、車両1700は、経路1710に沿って目標位置1701まで自動走行できる。図17Bに示すような道路状態の場合、車両幅1740の範囲内に障害物1750が存在するため、車両1700は、障害物1750との衝突を回避するために自動走行を中止し、障害物1750の手前で停止する。このように、従来の自動走行技術では、ユーザの利便性を欠いてしまうという課題がある。 In the case of the road condition as shown in FIG. 17A, the vehicle 1700 can automatically travel along the route 1710 to the target position 1701. In the case of the road condition as shown in FIG. 17B, since the obstacle 1750 exists within the range of the vehicle width 1740, the vehicle 1700 stops the automatic running in order to avoid the collision with the obstacle 1750, and the obstacle 1750 is stopped. Stop before. As described above, the conventional automatic driving technology has a problem that the convenience of the user is lacking.
 前述の課題に対して、本発明では、経路の進行方向に対して垂直な方向の、車両が走行可能な幅を、経路の変更が可能な範囲を示す情報として記憶する。車両は、元の経路からずれることができる範囲を把握できるため、障害物への衝突を回避するための経路の変更を実現できる。これによって、車両は目標位置まで自動走行することができる。 In response to the above-mentioned problems, in the present invention, the width in which the vehicle can travel in the direction perpendicular to the traveling direction of the route is stored as information indicating the range in which the route can be changed. Since the vehicle can grasp the range that can deviate from the original route, it is possible to change the route to avoid a collision with an obstacle. As a result, the vehicle can automatically travel to the target position.
 以下、本発明の実施例を、図面を用いて説明する。ただし、本発明は以下に示す実施例の記載内容に限定して解釈されるものではない。本発明の思想ないし趣旨から逸脱しない範囲で、その具体的構成を変更し得ることは当業者であれば容易に理解される。 Hereinafter, examples of the present invention will be described with reference to the drawings. However, the present invention is not construed as being limited to the contents of the examples shown below. It is easily understood by those skilled in the art that a specific configuration thereof can be changed without departing from the idea or purpose of the present invention.
 以下に説明する発明の構成において、同一又は類似する構成又は機能には同一の符号を付し、重複する説明は省略する。 In the configurations of the invention described below, the same or similar configurations or functions are designated by the same reference numerals, and duplicate description will be omitted.
 本明細書等における「第1」、「第2」、「第3」等の表記は、構成要素を識別するために付するものであり、必ずしも、数又は順序を限定するものではない。 The notations such as "first", "second", and "third" in the present specification and the like are attached to identify the components, and do not necessarily limit the number or order.
 図面等において示す各構成の位置、大きさ、形状、及び範囲等は、発明の理解を容易にするため、実際の位置、大きさ、形状、及び範囲等を表していない場合がある。したがって、本発明では、図面等に開示された位置、大きさ、形状、及び範囲等に限定されない。 The position, size, shape, range, etc. of each configuration shown in the drawings, etc. may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not limited to the position, size, shape, range, etc. disclosed in the drawings and the like.
 図1は、実施例1の車両100が有するセンサの設置位置の一例を示す図である。図2A及び図2Bは、実施例1の車両100が有するセンサの検知範囲の一例を示す図である。 FIG. 1 is a diagram showing an example of a sensor installation position of the vehicle 100 of the first embodiment. 2A and 2B are diagrams showing an example of the detection range of the sensor included in the vehicle 100 of the first embodiment.
 車両100は、車両100周辺の環境を検知するためのセンサとして、撮像センサ101A、101B、101C、101Dと、測距センサ102A、102B、102C、102D、102E、102F、102G、102H、102I、102J、102K、102Lを有する。 The vehicle 100 has image sensors 101A, 101B, 101C, 101D and distance measuring sensors 102A, 102B, 102C, 102D, 102E, 102F, 102G, 102H, 102I, 102J as sensors for detecting the environment around the vehicle 100. , 102K, 102L.
 以下の説明では、撮像センサ101A、101B、101C、101Dを区別しない場合、撮像センサ101と記載し、測距センサ102A、102B、102C、102D、102E、102F、102G、102H、102I、102J、102K、102Lを区別しない場合、測距センサ102と記載する。 In the following description, when the image sensor 101A, 101B, 101C, and 101D are not distinguished, the image sensor 101 is described, and the distance measurement sensors 102A, 102B, 102C, 102D, 102E, 102F, 102G, 102H, 102I, 102J, 102K. , 102L is not distinguished, it is described as a distance measuring sensor 102.
 撮像センサ101は、標識、区画線、障害物等が写った画像を取得する。撮像センサ101は、例えば、カメラで構成される。図2Aの破線は撮像センサ101の検知範囲を示す。なお、前方、側方、及び後方のそれぞれに存在する撮像センサは一つであるが、各方位に二つ以上存在してもよい。撮像センサ101によって取得された画像は、例えば、車両100の上方の仮想視点から見下ろした車両100周辺の俯瞰画像として表示することができる。 The image sensor 101 acquires an image showing a sign, a lane marking, an obstacle, or the like. The image sensor 101 is composed of, for example, a camera. The broken line in FIG. 2A shows the detection range of the image sensor 101. Although there is one image sensor in each of the front, side, and rear, there may be two or more in each direction. The image acquired by the image pickup sensor 101 can be displayed as, for example, a bird's-eye view image of the periphery of the vehicle 100 as viewed from a virtual viewpoint above the vehicle 100.
 測距センサ102は、設置方向に存在する物体を検知し、車両100から物体までの距離を算出する。車両100には、近距離測距センサ102、中距離測距センサ102、遠距離測距センサ102が設定される。 The distance measuring sensor 102 detects an object existing in the installation direction and calculates the distance from the vehicle 100 to the object. A short-distance distance measuring sensor 102, a medium-distance distance measuring sensor 102, and a long-distance distance measuring sensor 102 are set in the vehicle 100.
 近距離測距センサ102は、例えば、ソナーで構成される。近距離測距センサ102は、車両100周辺に超音波を出力し、その反射波に基づいて車両100と物体との間の距離を算出する。図2Aの点線は近距離測距センサ102の検知範囲を示す。 The short-distance distance measuring sensor 102 is composed of, for example, sonar. The short-distance distance measuring sensor 102 outputs ultrasonic waves around the vehicle 100 and calculates the distance between the vehicle 100 and the object based on the reflected waves. The dotted line in FIG. 2A shows the detection range of the short-range distance measuring sensor 102.
 中距離測距センサ102は、例えば、ミリ波レーダで構成される。中距離測距センサ102は、車両100周辺にミリ波を出力し、その反射波に基づいて車両100と物体との間の距離を算出する。実施例1では、車両100の前方及び後方に二つの中距離測距センサ102が配置される。図2Bの点線の扇型は中距離測距センサ102の検知範囲を示す。 The medium-range ranging sensor 102 is composed of, for example, a millimeter-wave radar. The medium-range distance measuring sensor 102 outputs a millimeter wave around the vehicle 100, and calculates the distance between the vehicle 100 and the object based on the reflected wave. In the first embodiment, two medium-range distance measuring sensors 102 are arranged in front of and behind the vehicle 100. The dotted fan shape in FIG. 2B indicates the detection range of the medium-range ranging sensor 102.
 遠距離測距センサ102は、例えば、ミリ波レーダで構成される。遠距離測距センサ102は、車両100周辺にミリ波を出力し、その反射波に基づいて車両100と物体との間の距離を算出する。実施例1では、車両100の前方に一つの遠距離測距センサ102が配置される。図2Bの破線の扇型は遠距離測距センサ102の検知範囲を示す。なお、遠距離測距センサ102は、ステレオカメラ及びライダ等で構成されてもよい。 The long-distance ranging sensor 102 is composed of, for example, a millimeter-wave radar. The long-distance distance measuring sensor 102 outputs a millimeter wave around the vehicle 100, and calculates the distance between the vehicle 100 and the object based on the reflected wave. In the first embodiment, one long-distance distance measuring sensor 102 is arranged in front of the vehicle 100. The fan shape of the broken line in FIG. 2B shows the detection range of the long-distance distance measuring sensor 102. The long-distance distance measuring sensor 102 may be composed of a stereo camera, a rider, or the like.
 以下の説明では、撮像センサ101及び測距センサ102の各々送信される情報をまとめて環境情報と記載する。 In the following description, the information transmitted by the image pickup sensor 101 and the distance measurement sensor 102 will be collectively referred to as environmental information.
 図3は、実施例1の車両100の自動走行を実現するための構成の一例を示す図である。 FIG. 3 is a diagram showing an example of a configuration for realizing automatic traveling of the vehicle 100 of the first embodiment.
 車両100は、自動走行を実現するための構成として、車両制御装置300、撮像センサ101、測距センサ102、入力スイッチ301、車輪センサ302、位置検出器303、通信装置304、アクチュエータECU305、及び報知機構306を有する。 The vehicle 100 has a vehicle control device 300, an image sensor 101, a distance measuring sensor 102, an input switch 301, a wheel sensor 302, a position detector 303, a communication device 304, an actuator ECU 305, and a notification as a configuration for realizing automatic traveling. It has a mechanism 306.
 撮像センサ101は、車両制御装置300に画像データを入力する。測距センサ102は、車両制御装置300に測距データを入力する。 The image sensor 101 inputs image data to the vehicle control device 300. The distance measuring sensor 102 inputs the distance measuring data to the vehicle control device 300.
 入力スイッチ301は、周辺環境の記憶指示、及び車両100の自動走行の開始指示等、ユーザ操作を入力するために操作されるスイッチである。入力スイッチ301は、例えば、運転席周辺に設けられた専用の機械式スイッチとして実現してもよいし、GUI(Graphical User Interface)上のアイコンとして実現してもよい。 The input switch 301 is a switch operated to input user operations such as a memory instruction of the surrounding environment and an instruction to start automatic driving of the vehicle 100. The input switch 301 may be realized as, for example, a dedicated mechanical switch provided around the driver's seat, or may be realized as an icon on a GUI (Graphical User Interface).
 車輪センサ302は、車両100の各車輪に取り付けられ、車輪の回転速度を計測する車輪速センサと、複数の車輪速センサが計測した車輪の回転速度を統合して車速信号を生成するコントローラとを含む。車輪センサ302は、車両制御装置300に車速信号を入力する。 The wheel sensor 302 is attached to each wheel of the vehicle 100, and includes a wheel speed sensor that measures the rotation speed of the wheels and a controller that integrates the rotation speeds of the wheels measured by a plurality of wheel speed sensors to generate a vehicle speed signal. Including. The wheel sensor 302 inputs a vehicle speed signal to the vehicle control device 300.
 位置検出器303は車両100の位置を検出する。位置検出器303は、例えば、GPS(Global Positioning System)装置である。GPS装置は、GPS衛生との通信により車両100の位置情報を受信する。位置検出器303は、車両制御装置300に車両100の位置情報を入力する。当該情報は、自動走行の開始が可能か否か判定する場合に用いられる。 The position detector 303 detects the position of the vehicle 100. The position detector 303 is, for example, a GPS (Global Positioning System) device. The GPS device receives the position information of the vehicle 100 by communicating with the GPS sanitary. The position detector 303 inputs the position information of the vehicle 100 to the vehicle control device 300. The information is used when determining whether or not automatic driving can be started.
 通信装置304は、外部と通信を行う。通信装置304は、車両制御装置300に受信した情報を入力する。 The communication device 304 communicates with the outside. The communication device 304 inputs the received information to the vehicle control device 300.
 アクチュエータECU305は、アクチュエータを制御する。なお、アクチュエータECUは、車両制御装置300からの指令の出力先の一例であってこれに限定されない。例えば、駆動力を操作するアクセルペダル、制動力を操作するブレーキペダル及びパーキングブレーキ、車両の進行方向を操作するステアリング、並びに、車両の進行方向を操作するシフトレバー等の機械要素及び信号変換装置である。 The actuator ECU 305 controls the actuator. The actuator ECU is an example of an output destination of a command from the vehicle control device 300, and is not limited to this. For example, in mechanical elements and signal conversion devices such as an accelerator pedal that controls a driving force, a brake pedal and a parking brake that control a braking force, a steering wheel that controls the traveling direction of a vehicle, and a shift lever that controls the traveling direction of a vehicle. is there.
 報知機構306はユーザに情報を報知する。報知機構306は、表示装置320及び音声出力装置321を含む。 The notification mechanism 306 notifies the user of the information. The notification mechanism 306 includes a display device 320 and an audio output device 321.
 表示装置320は画面を介して情報を報知する。実施例1の表示装置320は、撮像センサ101により取得された画像から生成される俯瞰画像、及び車両制御装置300から出力される情報等を表示する。表示装置320は、例えば、タッチパネル機能を搭載した液晶ディスプレイで構成される。 The display device 320 notifies the information via the screen. The display device 320 of the first embodiment displays a bird's-eye view image generated from the image acquired by the image pickup sensor 101, information output from the vehicle control device 300, and the like. The display device 320 is composed of, for example, a liquid crystal display equipped with a touch panel function.
 音声出力装置321は音声を介して情報を報知する。例えば、音声出力装置321は、音声案内及び警告音を出力する。音声出力装置321は、車両100の室内の適切な位置に配置される。音声出力装置321は、例えば、スピーカで構成される。 The voice output device 321 notifies the information via voice. For example, the voice output device 321 outputs voice guidance and warning sounds. The audio output device 321 is arranged at an appropriate position in the interior of the vehicle 100. The audio output device 321 is composed of, for example, a speaker.
 車両制御装置300は、通信装置304を介して、区画線位置、停止線位置、横断歩道等の路面ペイント種別と位置等に関する情報(路面情報)と、標識、信号機、地物等、道路周辺に存在する物体に関する情報(物体情報)とを、車両100周辺の道路周辺情報として取得する。また、車両制御装置300は、通信装置304を介して、道路インフラに設置されたセンサによって計測された情報、他の車両が取得した道路周辺情報を取得することもできる。車両制御装置300は、受信した情報に基づいて、ランドマーク情報等を更新できる。 The vehicle control device 300 provides information (road surface information) regarding the road surface paint type and position such as lane marking position, stop line position, and pedestrian crossing, and around the road such as signs, traffic lights, and features, via the communication device 304. Information about an existing object (object information) is acquired as road peripheral information around the vehicle 100. Further, the vehicle control device 300 can also acquire the information measured by the sensor installed in the road infrastructure and the road peripheral information acquired by another vehicle via the communication device 304. The vehicle control device 300 can update landmark information and the like based on the received information.
 車両制御装置300は車両100全体を制御する。車両制御装置300は、環境検知部310、車両位置推定部311、走行可能幅算出部312、記憶部313、障害物回避判定部314、ランドマーク判定部315、経路更新処理部316、車両制御部317、及び表示司令部318を含む。 The vehicle control device 300 controls the entire vehicle 100. The vehicle control device 300 includes an environment detection unit 310, a vehicle position estimation unit 311, a travelable width calculation unit 312, a storage unit 313, an obstacle avoidance determination unit 314, a landmark determination unit 315, a route update processing unit 316, and a vehicle control unit. 317 and Display Command 318 are included.
 記憶部313は情報を記憶する。実施例1の記憶部313には、マップ情報、自動走行するための経路情報、ランドマーク情報、及び後述する走行可能幅が格納される。経路情報は、複数の制御点(座標)から構成される。また、実施例1の記憶部313には、撮像センサ101、測距センサ102、車輪センサ302、位置検出器303、通信装置304から送信されたデータが格納される。 The storage unit 313 stores information. The storage unit 313 of the first embodiment stores map information, route information for automatic driving, landmark information, and a travelable width described later. The route information is composed of a plurality of control points (coordinates). Further, the storage unit 313 of the first embodiment stores data transmitted from the image pickup sensor 101, the distance measuring sensor 102, the wheel sensor 302, the position detector 303, and the communication device 304.
 環境検知部310は、撮像センサ101及び測距センサ102から取得したデータ等に基づいて、区画線等の目印又は標識及び障害物等の物体の種別を判別し、また、目印又は物体と車両100との間の位置及び距離を算出する。 The environment detection unit 310 determines the type of a mark or sign such as a lane marking and an object such as an obstacle based on the data or the like acquired from the image pickup sensor 101 and the distance measurement sensor 102, and the mark or object and the vehicle 100. Calculate the position and distance between and.
 車両位置推定部311では、目印又は物体の位置、及び車速信号等に基づいて、地図上の車両100の位置を推定する。 The vehicle position estimation unit 311 estimates the position of the vehicle 100 on the map based on the position of the mark or the object, the vehicle speed signal, and the like.
 走行可能幅算出部312は、目印又は物体の位置及び経路情報等に基づいて、道路に対して車両100が走行可能は幅を、走行可能幅として算出する。 The travelable width calculation unit 312 calculates the travelable width of the vehicle 100 with respect to the road as the travelable width based on the position of the mark or the object, the route information, and the like.
 障害物回避判定部314は、経路上に存在する障害物を回避するために経路を更新するか否かを判定する。 The obstacle avoidance determination unit 314 determines whether or not to update the route in order to avoid obstacles existing on the route.
 ランドマーク判定部315は、車両100の位置の推定等に用いるランドマークの検知難易度を判定し、ランドマークの検知難易度を下げるために経路を更新するか否かを判定する。 The landmark determination unit 315 determines the detection difficulty level of the landmark used for estimating the position of the vehicle 100, and determines whether or not to update the route in order to reduce the detection difficulty level of the landmark.
 経路更新処理部316は、障害物回避判定部314又はランドマーク判定部315によって経路を更新する必要があると判定された場合、経路を更新する。 The route update processing unit 316 updates the route when it is determined by the obstacle avoidance determination unit 314 or the landmark determination unit 315 that the route needs to be updated.
 車両制御部317は車両100を制御する。自動走行では、車両制御部317は、経路情報に含まれる制御点を読み出し、制御点により定義される経路上を車両100が走行するための制御値を算出し、アクチュエータECU305に制御値を送信する。 The vehicle control unit 317 controls the vehicle 100. In automatic driving, the vehicle control unit 317 reads out the control points included in the route information, calculates the control value for the vehicle 100 to travel on the route defined by the control points, and transmits the control value to the actuator ECU 305. ..
 表示司令部318は報知機構306に対して指令を送信する。 The display command unit 318 transmits a command to the notification mechanism 306.
 次に、車両制御装置300が実行する処理について説明する。まず、走行可能幅を設定するための処理について説明する。 Next, the process executed by the vehicle control device 300 will be described. First, the process for setting the travelable width will be described.
 図4は、実施例1の車両制御装置300が実行する走行可能幅設定処理の一例を説明するフローチャートである。図5A及び図5Bは、実施例1の車両制御装置300が算出する走行可能幅の一例を示す図である。図6A及び図6Bは、走行可能幅の効果を説明する図である。図7は、実施例1の車両100の自動走行時の走行可能幅の変化を示す図である。 FIG. 4 is a flowchart illustrating an example of the travelable width setting process executed by the vehicle control device 300 of the first embodiment. 5A and 5B are diagrams showing an example of the travelable width calculated by the vehicle control device 300 of the first embodiment. 6A and 6B are diagrams illustrating the effect of the travelable width. FIG. 7 is a diagram showing a change in the travelable width of the vehicle 100 of the first embodiment during automatic traveling.
 車両制御装置300は、車両100が制御点に到達した場合、又は、車線の移動後等、任意のイベントの発生時に走行可能幅設定処理を実行する。なお、車両制御装置300は、周期的に走行可能幅設定処理を実行してもよい。 The vehicle control device 300 executes the travelable width setting process when the vehicle 100 reaches the control point or when an arbitrary event occurs, such as after moving in a lane. The vehicle control device 300 may periodically execute the travelable width setting process.
 車両制御装置300は、経路の進行方向に対して右側及び左側の各々に対して走行可能幅設定処理を実行する。 The vehicle control device 300 executes the travelable width setting process for each of the right side and the left side with respect to the traveling direction of the route.
 走行可能幅算出部312は、環境検知部310を介して撮像センサ101及び測距センサ102から環境情報を取得する(ステップS101)。 The travelable width calculation unit 312 acquires environmental information from the image pickup sensor 101 and the distance measurement sensor 102 via the environment detection unit 310 (step S101).
 本実施例では、主に撮像センサ101から送信される画像データを使用する。なお、撮像センサ101が故障している場合、又は道路に区画線が無い場合、測距センサ102から送信されたのデータを用いてもよい。また、測距センサ102の故障に供えて、道路端及び区画線、側溝、及び標識を検知できるセンサを車両100に設定してもよい。 In this embodiment, image data transmitted from the image sensor 101 is mainly used. If the image sensor 101 is out of order or there is no lane marking on the road, the data transmitted from the distance measuring sensor 102 may be used. Further, in case of failure of the distance measuring sensor 102, a sensor capable of detecting road edges, lane markings, gutters, and signs may be set in the vehicle 100.
 次に、走行可能幅算出部312はループ処理を開始する(ステップS102)。実施例1では、経路の進行方向に対して右側及び左側の各々に対してステップS103からステップS109までの処理が実行される。以下の説明では、選択された方向を対象方向とも記載する。ステップS102では、走行可能幅算出部312は右側及び左側のいずれかを選択する。 Next, the travelable width calculation unit 312 starts loop processing (step S102). In the first embodiment, the processes from step S103 to step S109 are executed for each of the right side and the left side with respect to the traveling direction of the route. In the following description, the selected direction is also described as the target direction. In step S102, the travelable width calculation unit 312 selects either the right side or the left side.
 次に、走行可能幅算出部312は車両100が走行している道路の対象方向に区画線が存在するか否かを判定する(ステップS103)。 Next, the travelable width calculation unit 312 determines whether or not there is a lane marking in the target direction of the road on which the vehicle 100 is traveling (step S103).
 道路の対象方向に区画線が存在しないと判定された場合、走行可能幅算出部312はステップS106に進む。 If it is determined that there is no lane marking in the target direction of the road, the travelable width calculation unit 312 proceeds to step S106.
 道路の対象方向に区画線が存在すると判定された場合、走行可能幅算出部312は、制御点から区画線までの距離Aを算出する(ステップS104)。具体的には、走行可能幅算出部312は、経路の進行方向に対して垂直な方向の、制御点から区画線までの距離を算出する。 When it is determined that the lane marking exists in the target direction of the road, the travelable width calculation unit 312 calculates the distance A from the control point to the lane marking (step S104). Specifically, the travelable width calculation unit 312 calculates the distance from the control point to the lane marking in the direction perpendicular to the traveling direction of the route.
 次に、走行可能幅算出部312は距離Aが閾値以下であるか否かを判定する(ステップS105)。閾値は予め設定されている。これは、安全な距離を保持できるか否かを判定するための処理である。距離Aが閾値以下である場合、走行可能幅算出部312は安全な距離を保持できないと判定する。 Next, the travelable width calculation unit 312 determines whether or not the distance A is equal to or less than the threshold value (step S105). The threshold is preset. This is a process for determining whether or not a safe distance can be maintained. When the distance A is equal to or less than the threshold value, the travelable width calculation unit 312 determines that the safe distance cannot be maintained.
 距離Aが閾値より大きいと判定された場合、走行可能幅算出部312は、距離Aを走行可能幅として設定し(ステップS109)、その後、ステップS110に進む。具体的には、走行可能幅算出部312は、制御点と紐付けて走行可能幅を記憶部313に格納する。 When it is determined that the distance A is larger than the threshold value, the travelable width calculation unit 312 sets the distance A as the travelable width (step S109), and then proceeds to step S110. Specifically, the travelable width calculation unit 312 stores the travelable width in the storage unit 313 in association with the control points.
 距離Aが閾値以下であると判定された場合、走行可能幅算出部312は、道路の対象方向に標識又は側溝が存在するか否かを判定する(ステップS106)。 When it is determined that the distance A is equal to or less than the threshold value, the travelable width calculation unit 312 determines whether or not there is a sign or a gutter in the target direction of the road (step S106).
 道路の対象方向に標識又は側溝が存在すると判定された場合、走行可能幅算出部312は、制御点から標識又は側溝までの距離Bを算出する(ステップS107)。具体的には、走行可能幅算出部312は、経路の進行方向に対して垂直な方向の、制御点から標識又は側溝までの距離を算出する。 When it is determined that a sign or a gutter exists in the target direction of the road, the travelable width calculation unit 312 calculates the distance B from the control point to the sign or the gutter (step S107). Specifically, the travelable width calculation unit 312 calculates the distance from the control point to the sign or the gutter in the direction perpendicular to the traveling direction of the route.
 走行可能幅算出部312は、距離Bを走行可能幅として設定し(ステップS109)、その後、ステップS110に進む。具体的には、走行可能幅算出部312は、制御点と紐付けて走行可能幅を記憶部313に格納する。 The travelable width calculation unit 312 sets the distance B as the travelable width (step S109), and then proceeds to step S110. Specifically, the travelable width calculation unit 312 stores the travelable width in the storage unit 313 in association with the control points.
 ステップS106において、道路の対象方向に標識又は側溝が存在しないと判定された場合、走行可能幅算出部312は、制御点から道路端までの距離Cを算出する(ステップS108)。具体的には、走行可能幅算出部312は、経路の進行方向に対して垂直な方向の、制御点から道路端までの距離を算出する。 If it is determined in step S106 that there is no sign or gutter in the target direction of the road, the travelable width calculation unit 312 calculates the distance C from the control point to the road edge (step S108). Specifically, the travelable width calculation unit 312 calculates the distance from the control point to the road edge in the direction perpendicular to the traveling direction of the route.
 走行可能幅算出部312は、距離Cを走行可能幅として設定し(ステップS109)、その後、ステップS110に進む。具体的には、走行可能幅算出部312は、制御点と紐付けて走行可能幅を記憶部313に格納する。 The travelable width calculation unit 312 sets the distance C as the travelable width (step S109), and then proceeds to step S110. Specifically, the travelable width calculation unit 312 stores the travelable width in the storage unit 313 in association with the control points.
 ステップS103からステップS108までの処理は、車両100が移動できる道路の最大幅を算出するための処理である。最大幅は、区画線、標識、及び道路端を基準に算出される。最大幅に基づいて走行可能幅を設定することによって、車両制御装置300は、安全に経路を変更するための走行幅を設定できる。 The process from step S103 to step S108 is a process for calculating the maximum width of the road on which the vehicle 100 can move. The maximum width is calculated based on lane markings, signs, and road edges. By setting the travelable width based on the maximum width, the vehicle control device 300 can set the travel width for safely changing the route.
 ステップS110では、走行可能幅算出部312は、経路の進行方向に対して右側及び左側の各々の走行可能幅が設定されたか否かを判定する(ステップS110)。 In step S110, the travelable width calculation unit 312 determines whether or not the travelable widths on the right side and the left side are set with respect to the traveling direction of the route (step S110).
 経路の進行方向に対して右側及び左側のいずれかの方向の走行可能幅が設定されていないと判定された場合、走行可能幅算出部312は、ステップS102に戻り、同様の処理を実行する。 When it is determined that the travelable width in either the right side or the left side with respect to the traveling direction of the route is not set, the travelable width calculation unit 312 returns to step S102 and executes the same process.
 経路の進行方向に対して右側及び左側の各々の走行可能幅が設定されたと判定された場合、走行可能幅算出部312は走行可能幅設定処理を終了する。 When it is determined that the travelable widths on the right side and the left side with respect to the traveling direction of the route are set, the travelable width calculation unit 312 ends the travelable width setting process.
 ステップS109において、走行可能幅算出部312は、以前算出した走行可能幅の最小値と算出された距離とを比較し、小さい値を走行可能幅として設定してもよい。この場合、走行可能幅は制御点と紐付けされることなく格納される。すなわち、記憶部313に格納される走行可能幅は一つである。このように、最小の幅を走行可能幅として格納することによって記憶領域の使用量を削減することができる。 In step S109, the travelable width calculation unit 312 may compare the previously calculated minimum value of the travelable width with the calculated distance, and set a smaller value as the travelable width. In this case, the travelable width is stored without being associated with the control point. That is, the travelable width stored in the storage unit 313 is one. In this way, the amount of storage area used can be reduced by storing the minimum width as the travelable width.
 図5Aは、道路500の区画線501を基準に設定された走行可能幅を示す。図5Aに示すように、制御点から区画線501までの距離を表す幅520R-1、520L-1を走行可能幅として設定できる。また、車両100が走行するために最低限必要な車幅510の半分に、マージン領域511を加算した幅520R-2、520L-2を走行幅として設定できる。なお、区画線が複数存在する場合、外側の区画線又は内側の区画線のいずれかを基準として走行可能幅を設定できる。 FIG. 5A shows the travelable width set with reference to the lane marking 501 of the road 500. As shown in FIG. 5A, the widths 520R-1 and 520L-1 representing the distance from the control point to the section line 501 can be set as the travelable width. Further, the width 520R-2 and 520L-2, which is obtained by adding the margin area 511 to half of the minimum vehicle width 510 required for the vehicle 100 to travel, can be set as the traveling width. When there are a plurality of lane markings, the travelable width can be set with reference to either the outer lane markings or the inner lane markings.
 図5Bは、道路500の標識又は側溝を基準に設定された走行可能幅を示す。図5Bに示すように、制御点から電柱530までの幅520L-3、及び制御点から標識531までの幅520R-3が走行可能幅として設定される。 FIG. 5B shows the travelable width set with reference to the sign or gutter of the road 500. As shown in FIG. 5B, the width 520L-3 from the control point to the utility pole 530 and the width 520R-3 from the control point to the sign 531 are set as the travelable width.
 標識又は側溝を基準とすることによって、区画線が存在しない道路に対しても走行可能幅を設定することができる。また、区画線が存在する場合でも、標識又は側溝を基準とすることによって、区画線を越えた経路の変更を実現するための走行可能幅を設定できる。 By using the sign or gutter as a reference, it is possible to set the travelable width even on roads where there is no lane marking. Further, even when the lane marking exists, the travelable width for realizing the change of the route beyond the lane marking can be set by using the sign or the gutter as a reference.
 なお、制御点から区画線、又は、標識若しくは側溝までの幅から一定値を減算した値を走行可能幅として設定することもできる。これによって、経路の変更後も車両100と障害物との間の距離が所定値より大きくなるように制御できる。 It should be noted that a value obtained by subtracting a certain value from the width from the control point to the lane marking, the sign or the gutter can be set as the travelable width. As a result, the distance between the vehicle 100 and the obstacle can be controlled to be larger than a predetermined value even after the route is changed.
 経路の進行方向に対する右側及び左側のそれぞれに走行可能幅を設定することによって、車両100は、障害物が存在する方向とは逆の方向に経路を変更する場合のズレ幅を把握できる。 By setting the travelable widths on the right side and the left side of the traveling direction of the route, the vehicle 100 can grasp the deviation width when the route is changed in the direction opposite to the direction in which the obstacle exists.
 障害物が道路上に存在する場合、走行可能幅算出部312は、障害物を道路端と認識し、制御点から障害物までの距離を走行可能幅として設定する。ただし、障害物が、バス、トラック、及びタクシー等、道路から移動する可能性がある障害物である場合、走行可能幅算出部312は障害物として扱わないようにしてもよい。 When an obstacle exists on the road, the travelable width calculation unit 312 recognizes the obstacle as the road edge and sets the distance from the control point to the obstacle as the travelable width. However, if the obstacle is an obstacle such as a bus, a truck, or a taxi that may move from the road, the travelable width calculation unit 312 may not treat it as an obstacle.
 図6Aに示すように、最小距離を走行可能幅として設定した場合、経路の変化は小さくなるが、撮像センサ101及び測距センサ102が路肩及び車両100周辺の縁石を検知できない場合でも、路肩及び縁石に衝突することなく障害物600を回避できる。これによって車両100の安全な自動走行を実現できる。また、走行可能幅を固定することによって使用する記憶容量を削減することができる。経路の目標位置から一定距離前までの区間では、予め規定された最小値、又は、これまでに算出された走行可能の最小値に固定してもよい。これによって、制御点が多い区間では走行可能幅設定処理処が必要ないため、狭い空間における迅速な経路変更を実現できる。 As shown in FIG. 6A, when the minimum distance is set as the travelable width, the change in the route becomes small, but even if the image sensor 101 and the distance measuring sensor 102 cannot detect the road shoulder and the curb around the vehicle 100, the road shoulder and the vehicle 100 are not detected. Obstacle 600 can be avoided without colliding with the curb. As a result, safe automatic driving of the vehicle 100 can be realized. Further, the storage capacity used can be reduced by fixing the travelable width. In the section from the target position of the route to a certain distance before, the minimum value may be fixed to a predetermined minimum value or the minimum travelable value calculated so far. As a result, since the travelable width setting processing process is not required in the section with many control points, it is possible to realize a quick route change in a narrow space.
 図6Bに示すように、道路状態の変化に応じて走行可能幅を更新することによって、車両100と障害物600との間の距離を一定以上に保ちつつ、柔軟に経路を変更することができる。 As shown in FIG. 6B, by updating the travelable width in response to changes in road conditions, it is possible to flexibly change the route while keeping the distance between the vehicle 100 and the obstacle 600 above a certain level. ..
 図7は、車両の走行時の走行幅の変化を示す。図7に示すように、走行可能幅は制御点と対応づけて記憶される。点線の範囲700は走行可能幅の軌跡を表す。 FIG. 7 shows the change in the traveling width when the vehicle is traveling. As shown in FIG. 7, the travelable width is stored in association with the control point. The dotted line range 700 represents the locus of the travelable width.
 なお、制御点と制御点との間の点(変化点)で走行可能幅が算出されてもよい。これによって、道路環境の変化にあわせて、大きい走行可能幅を設定できる。また、制御点間で走行可能幅が算出される場合、最小の値を制御点と対応づけて記憶してもよい。 Note that the travelable width may be calculated at a point (change point) between the control points. As a result, a large travelable width can be set according to changes in the road environment. Further, when the travelable width is calculated between the control points, the minimum value may be stored in association with the control points.
 車両100は、目標位置まで移動した後に、再度、自動走行を行う場合、記憶部313に格納される走行可能幅をそのまま利用してもよい。ただし、前回の自動走行時と道路環境が異なる場合、走行可能幅設定処理を実行してもよい。これによって、走行可能幅を更新することができる。 When the vehicle 100 moves to the target position and then automatically travels again, the travelable width stored in the storage unit 313 may be used as it is. However, if the road environment is different from that at the time of the previous automatic driving, the travelable width setting process may be executed. As a result, the travelable width can be updated.
 次に、障害物の回避する場合の経路の更新について説明する。図8は、実施例1の車両制御装置300が実行する回避処理の一例を説明するフローチャートである。図9A、図9B、図9C、図9D、図9E、及び図10は、実施例1の車両制御装置300が実行する回避処理に伴う車両100の走行状態を示す図である。図11A及び図11Bは、実施例1の表示装置320に表示される画面の一例を示す図である。 Next, we will explain how to update the route when avoiding obstacles. FIG. 8 is a flowchart illustrating an example of avoidance processing executed by the vehicle control device 300 of the first embodiment. 9A, 9B, 9C, 9D, 9E, and 10 are diagrams showing a running state of the vehicle 100 due to the avoidance process executed by the vehicle control device 300 of the first embodiment. 11A and 11B are diagrams showing an example of a screen displayed on the display device 320 of the first embodiment.
 車両制御装置300は、車両100が制御点に到達した場合、又は、車線の移動後等、任意のイベントの発生時に回避処理を実行する。なお、車両制御装置300は、周期的に回避処理を実行してもよい。 The vehicle control device 300 executes avoidance processing when an arbitrary event occurs, such as when the vehicle 100 reaches a control point or after moving in a lane. The vehicle control device 300 may periodically execute the avoidance process.
 記憶部313には安全幅が格納されるものとする。例えば、車幅510の半分、又は、車幅510の半分にマージン領域511を追加した幅が、安全幅として設定される。図9Aでは、幅900R、900Lが安全幅として設定される。なお、幅900R、900Lの大きさをaとする。安全幅はシステムに応じて任意に設定できる。 It is assumed that the safety width is stored in the storage unit 313. For example, a width obtained by adding a margin area 511 to half of the vehicle width 510 or half of the vehicle width 510 is set as the safety width. In FIG. 9A, widths 900R and 900L are set as safety widths. The size of the widths 900R and 900L is a. The safety margin can be set arbitrarily according to the system.
 なお、走行可能幅を車幅とマージン領域とに区分けして保存し、車幅を安全幅として利用することもできる。 It is also possible to divide the travelable width into a vehicle width and a margin area and save it, and use the vehicle width as a safety width.
 障害物回避判定部314は、環境検知部310を介して撮像センサ101及び測距センサ102から環境情報を取得する(ステップS201)。 The obstacle avoidance determination unit 314 acquires environmental information from the image pickup sensor 101 and the distance measurement sensor 102 via the environment detection unit 310 (step S201).
 次に、障害物回避判定部314は、安全幅の範囲内に障害物が存在するか否かを判定する(ステップS202)。 Next, the obstacle avoidance determination unit 314 determines whether or not an obstacle exists within the safe range (step S202).
 図9Aでは、安全幅900Rの範囲内に障害物910が存在するため、障害物回避判定部314は、安全幅の範囲内に障害物が存在すると判定する。 In FIG. 9A, since the obstacle 910 exists within the range of the safety width 900R, the obstacle avoidance determination unit 314 determines that the obstacle exists within the range of the safety width.
 安全領域に障害物が存在しないと判定された場合、障害物回避判定部314は回避処理を終了する。 When it is determined that there is no obstacle in the safe area, the obstacle avoidance determination unit 314 ends the avoidance process.
 安全領域に障害物が存在すると判定された場合、障害物回避判定部314は、オフセットを算出し(ステップS203)、オフセットを経路更新処理部316に送信する。 When it is determined that an obstacle exists in the safe area, the obstacle avoidance determination unit 314 calculates the offset (step S203) and transmits the offset to the route update processing unit 316.
 ここで、図9Aを例にオフセットの算出方法の一例を説明する。障害物回避判定部314は、経路150の進行方向に垂直な方向の、制御点及び障害物910の間の距離の最小値を算出する。障害物回避判定部314は、安全幅900Rの大きさから最小値を減算した値bをオフセットとして算出する。なお、前述したオフセットの算出方法は一例であってこれに限定されない。 Here, an example of the offset calculation method will be described using FIG. 9A as an example. The obstacle avoidance determination unit 314 calculates the minimum value of the distance between the control point and the obstacle 910 in the direction perpendicular to the traveling direction of the route 150. The obstacle avoidance determination unit 314 calculates the value b obtained by subtracting the minimum value from the size of the safety width 900R as an offset. The offset calculation method described above is an example and is not limited to this.
 経路更新処理部316は経路を更新できるか否かを判定する(ステップS204)。 The route update processing unit 316 determines whether or not the route can be updated (step S204).
 具体的には、経路更新処理部316は、障害物が存在する方向とは逆方向に、オフセット分移動させた経路が走行可能幅内に存在するか否かを判定する。前述の条件を満たさない場合、経路更新処理部316は経路を更新できないと判定する。 Specifically, the route update processing unit 316 determines whether or not the route moved by the offset exists within the travelable width in the direction opposite to the direction in which the obstacle exists. If the above conditions are not satisfied, the route update processing unit 316 determines that the route cannot be updated.
 経路を更新できないと判定された場合、経路更新処理部316は、表示司令部318に車両100の停止の報知を指示し(ステップS210)、車両制御部317に車両100の停止を指示する(ステップS211)。このとき、経路更新処理部316は、障害物回避判定部314に経路更新の失敗を通知する。障害物回避判定部314は、当該通知を受け付けた場合、回避処理を終了する。 When it is determined that the route cannot be updated, the route update processing unit 316 instructs the display command unit 318 to notify the stop of the vehicle 100 (step S210), and instructs the vehicle control unit 317 to stop the vehicle 100 (step). S211). At this time, the route update processing unit 316 notifies the obstacle avoidance determination unit 314 of the failure of the route update. When the obstacle avoidance determination unit 314 receives the notification, the obstacle avoidance determination unit 314 ends the avoidance process.
 経路を更新できると判定された場合、経路更新処理部316は経路を更新する(ステップS205)。具体的には、経路更新処理部316は、オフセットを車両制御部317に送信する。 When it is determined that the route can be updated, the route update processing unit 316 updates the route (step S205). Specifically, the route update processing unit 316 transmits the offset to the vehicle control unit 317.
 車両制御部317は、オフセットを受信した場合、オフセットに基づいて読み出された制御点を更新する。車両制御部317は、更新された制御点に基づいて車両100を制御する。 When the vehicle control unit 317 receives the offset, the vehicle control unit 317 updates the read control point based on the offset. The vehicle control unit 317 controls the vehicle 100 based on the updated control points.
 図9Bに示すように、オフセットに基づく制御点の更新は、点線の経路150から実線の経路150への更新と同義である。本実施例では、経路の再生成を伴う処理を実行することなく、経路の更新を実現できる。したがって、処理負荷の低減により、車両100の制御に要するコストを削減できる。 As shown in FIG. 9B, updating the control point based on the offset is synonymous with updating from the dotted line path 150 to the solid line path 150. In this embodiment, the route can be updated without executing the process involving the regeneration of the route. Therefore, by reducing the processing load, the cost required for controlling the vehicle 100 can be reduced.
 車両制御部317は、更新後の経路150に沿って車両100が走行するように操舵角を算出し、アクチュエータECU305に送信する。これによって、図9Cに示すように、車両100は障害物910を回避することができる。 The vehicle control unit 317 calculates the steering angle so that the vehicle 100 travels along the updated route 150, and transmits it to the actuator ECU 305. As a result, as shown in FIG. 9C, the vehicle 100 can avoid the obstacle 910.
 経路更新処理部316は、表示司令部318に回避制御の開始の報知を指示する(ステップS206)。また、経路更新処理部316は、障害物回避判定部314に障害物の監視を指示する。 The route update processing unit 316 instructs the display command unit 318 to notify the start of avoidance control (step S206). In addition, the route update processing unit 316 instructs the obstacle avoidance determination unit 314 to monitor obstacles.
 障害物回避判定部314は、環境検知部310を介して撮像センサ101及び測距センサ102から環境情報を取得する(ステップS207)。 The obstacle avoidance determination unit 314 acquires environmental information from the image pickup sensor 101 and the distance measurement sensor 102 via the environment detection unit 310 (step S207).
 障害物回避判定部314は、車両100が障害物を通過したか否かを判定する(ステップS208)。 The obstacle avoidance determination unit 314 determines whether or not the vehicle 100 has passed an obstacle (step S208).
 車両100が障害物を通過していないと判定された場合、障害物回避判定部314は、ステップS207に戻り、同様の処理を実行する。 When it is determined that the vehicle 100 has not passed an obstacle, the obstacle avoidance determination unit 314 returns to step S207 and executes the same process.
 車両100が障害物を通過したと判定された場合、障害物回避判定部314は、オフセットの解除指示を経路更新処理部316に送信することによって、経路を更新する(ステップS209)。その後、障害物回避判定部314は回避処理を終了する。このとき、経路更新処理部316は、オフセットの削除指示を車両制御部317に送信する。 When it is determined that the vehicle 100 has passed an obstacle, the obstacle avoidance determination unit 314 updates the route by transmitting an offset release instruction to the route update processing unit 316 (step S209). After that, the obstacle avoidance determination unit 314 ends the avoidance process. At this time, the route update processing unit 316 transmits an offset deletion instruction to the vehicle control unit 317.
 車両制御部317は、オフセットの削除指示を受信した場合、オフセットを削除する。車両制御部317は、更新前の制御点に基づいて車両100を制御する。 When the vehicle control unit 317 receives the offset deletion instruction, the vehicle control unit 317 deletes the offset. The vehicle control unit 317 controls the vehicle 100 based on the control points before the update.
 図9Dに示すように、オフセットの削除に基づく制御点の更新は、点線の経路150から実線の経路150への更新と同義である。 As shown in FIG. 9D, the update of the control point based on the deletion of the offset is synonymous with the update from the dotted line path 150 to the solid line path 150.
 車両制御部317は、更新後の経路150に沿って車両100が走行するように操舵角を算出し、アクチュエータECU305に送信する。これによって、図9Eに示すように、車両100はものと経路150に戻る。車両100は、障害物910を回避した後に、元の経路150に戻るため、目標位置に到達できる。 The vehicle control unit 317 calculates the steering angle so that the vehicle 100 travels along the updated route 150, and transmits it to the actuator ECU 305. As a result, as shown in FIG. 9E, the vehicle 100 returns to the thing and the route 150. After avoiding the obstacle 910, the vehicle 100 returns to the original route 150, so that the vehicle 100 can reach the target position.
 車両制御装置300は、障害物の通過を契機に、経路150を更新前の経路150に戻しているが、これに限定されない。車両100が敷地内に入った場合、又は、車両100が元の経路150及び更新後の経路150が交わる点に到達した場合、車両制御装置300は元の経路150に戻してもよい。 The vehicle control device 300 returns the route 150 to the route 150 before the update when the obstacle passes, but the route 150 is not limited to this. When the vehicle 100 enters the premises, or when the vehicle 100 reaches the point where the original route 150 and the updated route 150 intersect, the vehicle control device 300 may return to the original route 150.
 図10に示すように、外側の区画線1011R、1011Lを基準に走行可能幅520R、520Lが設定されている場合、車両100は、区画線1010を超えて経路に更新することによって、障害物1000を回避することができる。このように、経路150が通過する走行車線が塞がれている場合でも、車両100は自動走行を継続できる。 As shown in FIG. 10, when the travelable widths 520R and 520L are set with reference to the outer lane markings 1011R and 1011L, the vehicle 100 updates the route beyond the lane marking 1010 to obtain the obstacle 1000. Can be avoided. In this way, even when the traveling lane through which the route 150 passes is blocked, the vehicle 100 can continue the automatic traveling.
 ここで、図11A及び図11Bを用いて、報知機構306による情報の報知方法について説明する。 Here, a method of notifying information by the notifying mechanism 306 will be described with reference to FIGS. 11A and 11B.
 報知機構306は、例えば、表示装置320に画面1100又は画面1110を表示する。 The notification mechanism 306 displays the screen 1100 or the screen 1110 on the display device 320, for example.
 画面1100は、回避制御の開始の報知するための画面である。画面1110は、車両100の停止を報知するための画面である。 The screen 1100 is a screen for notifying the start of avoidance control. The screen 1110 is a screen for notifying the stop of the vehicle 100.
 画面1100及び画面1110は、メッセージ表示欄1101、画像表示欄1102、1103、及び終了ボタン1104を含む。 The screen 1100 and the screen 1110 include a message display field 1101, an image display field 1102, 1103, and an end button 1104.
 メッセージ表示欄1101は、メッセージを表示する欄である。画面1100のメッセージ表示欄1101には、回避制御が開始されたことを示すメッセージが表示され、画面1110のメッセージ表示欄1101には、自動走行を中止することを示すメッセージが表示される。自動走行の中止を通知することによって、ユーザの手動運転へのスムーズな切替えを促すことができる。 The message display field 1101 is a field for displaying a message. A message indicating that the avoidance control has been started is displayed in the message display field 1101 of the screen 1100, and a message indicating that the automatic driving is stopped is displayed in the message display field 1101 of the screen 1110. By notifying the suspension of automatic driving, it is possible to encourage the user to smoothly switch to manual driving.
 画像表示欄1102は、車両100の前方の画像を表示する欄である。画像表示欄1103は、車両100上方の俯瞰画像を表示する欄である。終了ボタン1104は、画面1100、1110の表示を指示するための操作ボタンである。 The image display field 1102 is a field for displaying an image in front of the vehicle 100. The image display column 1103 is a column for displaying a bird's-eye view image above the vehicle 100. The end button 1104 is an operation button for instructing the display of the screens 1100 and 1110.
 なお、画面1100には、回避制御の実行を指示する操作ボタンが含まれてもよい。このように、障害物の回避の要否をユーザの判断に委ねることによって、安全性を高めることができる。 Note that the screen 1100 may include an operation button instructing execution of avoidance control. In this way, safety can be enhanced by leaving the necessity of avoiding obstacles to the judgment of the user.
 次に、ランドマークを検知するための経路の更新について説明する。 Next, we will explain how to update the route to detect landmarks.
 走行環境等が変化した場合、経路からのランドマークの検知のしやすさ、すなわち、検知難易度は変化する。そのため、以前の車両100の走行では検知できたランドマークであっても、現在の走行環境の元ではランドマークが検知できない事象が起こりうる。ランドマークが検知できない場合、車両位置の推定精度が低下するため、ランドマークの検知できるように経路を変更する必要がある。 When the driving environment changes, the ease of detecting landmarks from the route, that is, the difficulty of detection changes. Therefore, even if the landmark can be detected by the previous running of the vehicle 100, an event may occur in which the landmark cannot be detected under the current running environment. If the landmark cannot be detected, the accuracy of estimating the vehicle position will decrease, so it is necessary to change the route so that the landmark can be detected.
 図12は、実施例1の車両制御装置300が実行するランドマーク移動処理の一例を説明するフローチャートである。図13A、図13B、図13C、図13D、及び図13Eは、実施例1の車両制御装置300が実行するランドマーク移動処理に伴う車両100の走行状態を示す図である。 FIG. 12 is a flowchart illustrating an example of the landmark movement process executed by the vehicle control device 300 of the first embodiment. 13A, 13B, 13C, 13D, and 13E are diagrams showing a running state of the vehicle 100 due to the landmark movement process executed by the vehicle control device 300 of the first embodiment.
 車両制御装置300は、車両100が制御点に到達した場合、又は、車線の移動後等、任意のイベントの発生時にランドマーク移動処理を実行する。なお、車両制御装置300は、周期的にランドマーク移動処理を実行してもよい。 The vehicle control device 300 executes the landmark movement process when the vehicle 100 reaches the control point or when an arbitrary event occurs, such as after moving the lane. The vehicle control device 300 may periodically execute the landmark movement process.
 ランドマーク判定部315は、環境検知部310を介して撮像センサ101及び測距センサ102から環境情報を取得する(ステップS301)。 The landmark determination unit 315 acquires environmental information from the image pickup sensor 101 and the distance measurement sensor 102 via the environment detection unit 310 (step S301).
 次に、ランドマーク判定部315は、接近すべきランドマークが存在するか否かを判定する(ステップS302)。例えば、以下のような処理が実行される。 Next, the landmark determination unit 315 determines whether or not there is a landmark to be approached (step S302). For example, the following processing is executed.
 ランドマーク判定部315は、現在の走行環境におけるセンサの検知範囲を推定する。ランドマーク判定部315は、経路上に、当該検知範囲に含まれないランドマークが存在するか否かを判定する。当該検知範囲に含まれないランドマークが存在する場合、ランドマーク判定部315は、接近すべきランドマークが存在すると判定する。なお、前述した判定方法は一例であってこれに限定されない。 The landmark determination unit 315 estimates the detection range of the sensor in the current driving environment. The landmark determination unit 315 determines whether or not there is a landmark not included in the detection range on the route. If there are landmarks that are not included in the detection range, the landmark determination unit 315 determines that there are landmarks that should be approached. The above-mentioned determination method is an example and is not limited to this.
 図13Aに示す例では、検知範囲1300に含まれないランドマーク1310、1311が存在する。なお、ランドマークには重要度が設定されているものとする。ランドマークの重要度はランドマーク情報に含まれる。 In the example shown in FIG. 13A, there are landmarks 1310 and 1311 that are not included in the detection range 1300. It is assumed that the importance is set for the landmark. The importance of landmarks is included in the landmark information.
 接近すべきランドマークが存在しないと判定された場合、ランドマーク判定部315は、ランドマーク移動処理を終了する。 If it is determined that there is no landmark to approach, the landmark determination unit 315 ends the landmark movement process.
 接近すべきランドマークが存在すると判定された場合、ランドマーク判定部315は、オフセットを算出し(ステップS303)、オフセットを経路更新処理部316に送信する。ここで、図13Aを例にオフセットの算出方法の一例を説明する。 When it is determined that there is a landmark to be approached, the landmark determination unit 315 calculates the offset (step S303) and transmits the offset to the route update processing unit 316. Here, an example of the offset calculation method will be described using FIG. 13A as an example.
 ランドマーク判定部315は、接近すべきランドマークが複数存在する場合、重要度に基づいて接近するランドマークを選択する。具体的には、重要度の最も高いランドマークが選択される。図13Aでは、ランドマーク1311の重要度がランドマーク1310の重要度より高いため、ランドマーク1311が選択される。 When there are a plurality of landmarks to be approached, the landmark determination unit 315 selects the landmarks to be approached based on the importance. Specifically, the landmark with the highest importance is selected. In FIG. 13A, landmark 1311 is selected because the importance of landmark 1311 is higher than that of landmark 1310.
 ランドマーク判定部315は、経路150の進行方向に垂直な方向の、制御点及びランドマークの間の距離の最小値を算出する。ランドマーク判定部315は、検知範囲1300と車幅の半分の合計値から最小値を減算した値cをオフセットとして算出する。 The landmark determination unit 315 calculates the minimum value of the distance between the control point and the landmark in the direction perpendicular to the traveling direction of the route 150. The landmark determination unit 315 calculates the value c obtained by subtracting the minimum value from the total value of the detection range 1300 and half the vehicle width as an offset.
 なお、前述したオフセットの算出方法は一例であってこれに限定されない。 The offset calculation method described above is an example and is not limited to this.
 経路更新処理部316は経路を更新できるか否かを判定する(ステップS304)。 The route update processing unit 316 determines whether or not the route can be updated (step S304).
 具体的には、経路更新処理部316は、ランドマーク1311が存在する方向に、オフセット分移動させた経路が走行可能幅内に存在するか否かを判定する。前述の条件を満たさない場合、経路更新処理部316は経路を更新できないと判定する。 Specifically, the route update processing unit 316 determines whether or not the route moved by the offset in the direction in which the landmark 1311 exists exists within the travelable width. If the above conditions are not satisfied, the route update processing unit 316 determines that the route cannot be updated.
 経路を更新できないと判定された場合、経路更新処理部316は、表示司令部318にランドマークへの接近失敗の報知を指示する(ステップS310)。このとき、経路更新処理部316は、ランドマーク判定部315に経路更新の失敗を通知する。ランドマーク判定部315は、当該通知を受け付けた場合、ランドマーク移動処理を終了する。 When it is determined that the route cannot be updated, the route update processing unit 316 instructs the display command unit 318 to notify the landmark of the failure to approach the landmark (step S310). At this time, the route update processing unit 316 notifies the landmark determination unit 315 of the failure of the route update. When the landmark determination unit 315 receives the notification, the landmark determination unit 315 ends the landmark movement process.
 経路を更新できると判定された場合、経路更新処理部316は経路を更新する(ステップS305)。ステップS305の処理はステップS205の処理と同一である。 When it is determined that the route can be updated, the route update processing unit 316 updates the route (step S305). The process of step S305 is the same as the process of step S205.
 図13Bに示すように、オフセットに基づく制御点の更新は、点線の経路150から実線の経路150への更新と同義である。 As shown in FIG. 13B, the update of the control point based on the offset is synonymous with the update from the dotted line path 150 to the solid line path 150.
 車両制御部317は、更新後の経路150に沿って車両100が走行するように操舵角を算出し、アクチュエータECU305に送信する。これによって、図13Cに示すように、車両100は、ランドマーク1311を検知できる範囲内に接近できる。 The vehicle control unit 317 calculates the steering angle so that the vehicle 100 travels along the updated route 150, and transmits it to the actuator ECU 305. As a result, as shown in FIG. 13C, the vehicle 100 can approach the landmark 1311 within a detectable range.
 経路更新処理部316は、表示司令部318に接近制御の開始の報知を指示する(ステップS306)。また、経路更新処理部316は、ランドマーク判定部315にランドマークの監視を指示する。 The route update processing unit 316 instructs the display command unit 318 to notify the start of approach control (step S306). Further, the route update processing unit 316 instructs the landmark determination unit 315 to monitor the landmark.
 ランドマーク判定部315は、環境検知部310を介して撮像センサ101及び測距センサ102から環境情報を取得する(ステップS307)。 The landmark determination unit 315 acquires environmental information from the image pickup sensor 101 and the distance measurement sensor 102 via the environment detection unit 310 (step S307).
 ランドマーク判定部315は、車両100がランドマークを通過したか否かを判定する(ステップS308)。 The landmark determination unit 315 determines whether or not the vehicle 100 has passed the landmark (step S308).
 車両100がランドマークを通過していないと判定された場合、ランドマーク判定部315は、ステップS307に戻り、同様の処理を実行する。 When it is determined that the vehicle 100 has not passed the landmark, the landmark determination unit 315 returns to step S307 and executes the same process.
 車両100がランドマークを通過したと判定された場合、ランドマーク判定部315は、オフセットの解除指示を経路更新処理部316に送信することによって、経路を更新する(ステップS309)。その後、ランドマーク判定部315はランドマーク移動処理を終了する。このとき、経路更新処理部316は、オフセットの削除指示を車両制御部317に送信する。 When it is determined that the vehicle 100 has passed the landmark, the landmark determination unit 315 updates the route by transmitting an offset release instruction to the route update processing unit 316 (step S309). After that, the landmark determination unit 315 ends the landmark movement process. At this time, the route update processing unit 316 transmits an offset deletion instruction to the vehicle control unit 317.
 車両制御部317は、オフセットの削除指示を受信した場合、オフセットを削除する。車両制御部317は、更新前の制御点に基づいて車両100を制御する。 When the vehicle control unit 317 receives the offset deletion instruction, the vehicle control unit 317 deletes the offset. The vehicle control unit 317 controls the vehicle 100 based on the control points before the update.
 図13Dに示すように、オフセットの削除に基づく制御点の更新は経路150の更新と同義である。 As shown in FIG. 13D, updating the control point based on the deletion of the offset is synonymous with updating the path 150.
 車両制御部317は、更新後の経路150に沿って車両100が走行するように操舵角を算出し、アクチュエータECU305に送信する。これによって、図13Eに示すように、車両100はものと経路150に戻る。車両100は、ランドマーク1311を通過した後に、元の経路150に戻るため、目標位置に到達できる。 The vehicle control unit 317 calculates the steering angle so that the vehicle 100 travels along the updated route 150, and transmits it to the actuator ECU 305. As a result, as shown in FIG. 13E, the vehicle 100 returns to the thing and the route 150. After passing the landmark 1311, the vehicle 100 returns to the original route 150, so that the target position can be reached.
 次に、記憶部313に格納される経路情報の更新について説明する。 Next, updating the route information stored in the storage unit 313 will be described.
 経路情報の更新を実現するために、走行可能幅算出部312は、制御点、走行可能幅、及び算出時刻から構成される履歴データを記憶部313に一定期間保存する。 In order to update the route information, the travelable width calculation unit 312 stores the history data composed of the control points, the travelable width, and the calculated time in the storage unit 313 for a certain period of time.
 経路更新処理部316は、経路を複数の区間に分割し、各区間の制御点の履歴データを参照する。経路更新処理部316は、ある制御点について、最も古い走行可能幅から他の時刻の走行可能幅を減算する。さらに、経路更新処理部316は、算出された差の平均値を算出する。 The route update processing unit 316 divides the route into a plurality of sections and refers to the history data of the control points in each section. The route update processing unit 316 subtracts the travelable width at another time from the oldest travelable width for a certain control point. Further, the route update processing unit 316 calculates the average value of the calculated differences.
 当該差の平均値が負であり、かつ、同一である期間が一定以上継続した場合、経路更新処理部316は、記憶部313に格納される経路情報の制御点を、当該差の平均値に基づいて修正した座標に更新する。さらに、経路更新処理部316は、更新された制御点を含む区間の走行可能幅が同一である場合、当該区間の制御点を削除する。 When the average value of the difference is negative and the same period continues for a certain period of time or longer, the route update processing unit 316 sets the control point of the route information stored in the storage unit 313 to the average value of the difference. Update to the corrected coordinates based on. Further, the route update processing unit 316 deletes the control points in the section when the travelable width of the section including the updated control points is the same.
 当該差の平均値が正であり、かつ、同一である期間が一定以上継続した場合、経路更新処理部316は、新たに制御点を追加する。 If the average value of the difference is positive and the same period continues for a certain period of time or longer, the route update processing unit 316 adds a new control point.
 なお、制御点の更新とともに、制御点に紐付けて管理する走行可能幅も更新されてもよい。 Along with updating the control points, the travelable width managed in association with the control points may also be updated.
 図14A、図14B、図15A、及び図15Bは、実施例1の経路情報の更新の一例を示す図である。なお、範囲700は、経路150に沿って移動した場合に設定される走行可能幅の軌跡を示す。 14A, 14B, 15A, and 15B are diagrams showing an example of updating the route information of the first embodiment. The range 700 indicates a locus of a travelable width that is set when the vehicle moves along the route 150.
 図14Aに示すように、経路情報の生成時に道路上に障害物1400が存在する場合、経路情報には、障害物1400を避けるように設定された制御点151が含まれる。 As shown in FIG. 14A, when an obstacle 1400 exists on the road at the time of generating the route information, the route information includes a control point 151 set to avoid the obstacle 1400.
 図14Bに示すように、障害物1400が移動した場合、障害物1400が存在した区間を直進するように制御点が更新される。さらに、更新された制御点を含む区間の走行可能幅は同一であるため、経路更新処理部316は、更新された制御点を経路情報から削除する。以上のように経路情報が更新されることによって、車両100の無用な迂回をなくすることができる。 As shown in FIG. 14B, when the obstacle 1400 moves, the control point is updated so as to go straight in the section where the obstacle 1400 existed. Further, since the travelable width of the section including the updated control point is the same, the route update processing unit 316 deletes the updated control point from the route information. By updating the route information as described above, it is possible to eliminate unnecessary detours of the vehicle 100.
 図15Aに示すように、経路情報の生成時に道路上に障害物1400が存在しない場合、経路情報には、車両100が直進するように設定された制御点151が含まれる。 As shown in FIG. 15A, when the obstacle 1400 does not exist on the road at the time of generating the route information, the route information includes the control point 151 set so that the vehicle 100 goes straight.
 図15Bに示すように、道路上に障害物1500が存在する場合、障害物1500を基準とする走行可能幅が算出される。そこで、経路更新処理部316は、障害物1500を避けるように制御点151を追加する。以上のように経路情報が更新されることによって、回避処理に伴う経路の更新を削減できる。 As shown in FIG. 15B, when there is an obstacle 1500 on the road, the travelable width based on the obstacle 1500 is calculated. Therefore, the route update processing unit 316 adds a control point 151 so as to avoid the obstacle 1500. By updating the route information as described above, it is possible to reduce the update of the route due to the avoidance process.
 図16は、実施例1の車両制御装置300による車速の制御と走行可能幅との関係を示す図である。 FIG. 16 is a diagram showing the relationship between the vehicle speed control by the vehicle control device 300 of the first embodiment and the travelable width.
 図16に示すように、車両制御部317は、走行可能幅の大きさに応じて車速を変化させてもよい。例えば、車両制御部317は、左右いずれかの走行可能幅が小さくなるほど、車速を下げるように車両100を制御する。これによって、安全性とユーザの不安感及び抵抗感を低減できる。 As shown in FIG. 16, the vehicle control unit 317 may change the vehicle speed according to the size of the travelable width. For example, the vehicle control unit 317 controls the vehicle 100 so as to reduce the vehicle speed as the travelable width on either the left or right side becomes smaller. As a result, safety and user's anxiety and resistance can be reduced.
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。また、例えば、上記した実施例は本発明を分かりやすく説明するために構成を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成に追加、削除、置換することが可能である。 The present invention is not limited to the above-mentioned examples, and includes various modifications. Further, for example, the above-described embodiment describes the configuration in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to add, delete, or replace a part of the configuration of each embodiment with other configurations.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、本発明は、実施例の機能を実現するソフトウェアのプログラムコードによっても実現できる。この場合、プログラムコードを記録した記憶媒体をコンピュータに提供し、そのコンピュータが備えるプロセッサが記憶媒体に格納されたプログラムコードを読み出す。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施例の機能を実現することになり、そのプログラムコード自体、及びそれを記憶した記憶媒体は本発明を構成することになる。このようなプログラムコードを供給するための記憶媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、SSD(Solid State Drive)、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。 Further, each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. The present invention can also be realized by a program code of software that realizes the functions of the examples. In this case, a storage medium in which the program code is recorded is provided to the computer, and the processor included in the computer reads the program code stored in the storage medium. In this case, the program code itself read from the storage medium realizes the functions of the above-described embodiment, and the program code itself and the storage medium storing the program code itself constitute the present invention. Examples of the storage medium for supplying such a program code include a flexible disk, a CD-ROM, a DVD-ROM, a hard disk, an SSD (Solid State Drive), an optical disk, a magneto-optical disk, a CD-R, and a magnetic tape. Non-volatile memory cards, ROMs, etc. are used.
 また、本実施例に記載の機能を実現するプログラムコードは、例えば、アセンブラ、C/C++、perl、Shell、PHP、Python、Java(登録商標)等の広範囲のプログラム又はスクリプト言語で実装できる。 Further, the program code that realizes the functions described in this embodiment can be implemented in a wide range of programs or script languages such as assembler, C / C ++, perl, Shell, PHP, Python, and Java (registered trademark).
 さらに、実施例の機能を実現するソフトウェアのプログラムコードを、ネットワークを介して配信することによって、それをコンピュータのハードディスクやメモリ等の記憶手段又はCD-RW、CD-R等の記憶媒体に格納し、コンピュータが備えるプロセッサが当該記憶手段や当該記憶媒体に格納されたプログラムコードを読み出して実行するようにしてもよい。 Further, by distributing the program code of the software that realizes the function of the embodiment via the network, it is stored in a storage means such as a hard disk or memory of a computer or a storage medium such as a CD-RW or a CD-R. , The processor provided in the computer may read and execute the program code stored in the storage means or the storage medium.
 上述の実施例において、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。 In the above-described embodiment, the control lines and information lines indicate those considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. All configurations may be interconnected.
100 車両
101 撮像センサ
102 測距センサ
150 経路
151 制御点
300 車両制御装置
301 入力スイッチ
302 車輪センサ
303 位置検出器
304 通信装置
305 アクチュエータECU
306 報知機構
310 環境検知部
311 車両位置推定部
312 走行可能幅算出部
313 記憶部
314 障害物回避判定部
315 ランドマーク判定部
316 経路更新処理部
317 車両制御部
318 表示司令部
320 表示装置
321 音声出力装置
520L、520R 走行可能幅
 
100 Vehicle 101 Image sensor 102 Distance measurement sensor 150 Path 151 Control point 300 Vehicle control device 301 Input switch 302 Wheel sensor 303 Position detector 304 Communication device 305 Actuator ECU
306 Notification mechanism 310 Environment detection unit 311 Vehicle position estimation unit 312 Vehicle width calculation unit 313 Storage unit 314 Obstacle avoidance judgment unit 315 Landmark judgment unit 316 Route update processing unit 317 Vehicle control unit 318 Display control unit 320 Display device 321 Voice Output device 520L, 520R Travelable width

Claims (10)

  1.  車両を制御する車両制御装置であって、
     経路の情報、及び前記経路の進行方向に対して垂直な方向に設定される走行可能幅の情報を記憶する記憶部と、
     前記経路に沿うように前記車両を自動走行させるための制御を行う制御部と、備え、
     前記制御部は、前記走行可能幅に基づいて、前記記憶部から取得した前記経路の情報を更新することを特徴とする車両制御装置。
    A vehicle control device that controls a vehicle
    A storage unit that stores route information and travelable width information set in a direction perpendicular to the traveling direction of the route.
    A control unit that controls the vehicle to automatically travel along the route is provided.
    The vehicle control unit is a vehicle control device that updates information on the route acquired from the storage unit based on the travelable width.
  2.  請求項1に記載の車両制御装置であって、
     前記制御部は、前記経路の進行方向に対して垂直な方向の、前記経路及び前記走行可能幅により定まる範囲内に存在するように、前記記憶部から取得した経路の情報を更新することを特徴とする車両制御装置。
    The vehicle control device according to claim 1.
    The control unit is characterized by updating information on a route acquired from the storage unit so that the control unit exists within a range determined by the route and the travelable width in a direction perpendicular to the traveling direction of the route. Vehicle control device.
  3.  請求項2に記載の車両制御装置であって、
     前記車両には、前記車両の周辺の環境に関する値を計測するセンサが搭載され、
     前記車両の幅、及び前記センサから取得された値に基づいて算出される、前記経路が設定された道路上の前記車両が移動できる最大幅に基づいて、前記走行可能幅を算出する算出部を備えることを特徴とする車両制御装置。
    The vehicle control device according to claim 2.
    The vehicle is equipped with a sensor that measures values related to the environment around the vehicle.
    A calculation unit that calculates the travelable width based on the width of the vehicle and the maximum width that the vehicle can move on the road on which the route is set, which is calculated based on the value acquired from the sensor. A vehicle control device characterized by being provided.
  4.  請求項3に記載の車両制御装置であって、
     前記最大幅は、前記経路から、区画線、標識、障害物、又は道路の端までの距離であることを特徴とする車両制御装置。
    The vehicle control device according to claim 3.
    The vehicle control device, wherein the maximum width is a distance from the route to a lane marking, a sign, an obstacle, or an edge of a road.
  5.  請求項3に記載の車両制御装置であって、
     前記制御部は、
     前記センサから取得した値に基づいて、障害物と衝突する危険があるか否かを判定し、
     前記障害物と衝突する危険があると判定された場合、前記経路の進行方向に対して垂直な方向の、前記経路及び前記障害物の間の距離を算出し、
     前記距離に基づいて、前記障害物を回避するように、前記記憶部から取得した経路の情報を更新することを特徴とする車両制御装置。
    The vehicle control device according to claim 3.
    The control unit
    Based on the value obtained from the sensor, it is determined whether or not there is a risk of collision with an obstacle.
    When it is determined that there is a risk of collision with the obstacle, the distance between the route and the obstacle in the direction perpendicular to the traveling direction of the route is calculated.
    A vehicle control device characterized by updating route information acquired from the storage unit so as to avoid the obstacle based on the distance.
  6.  請求項5に記載の車両制御装置であって、
     前記制御部は、
     前記センサから取得した値に基づいて、前記障害物を通過したか否かを判定し、
     前記障害物を通過したと判定された場合、前記記憶部から取得した経路の情報を更新前の状態に更新することを特徴とする車両制御装置。
    The vehicle control device according to claim 5.
    The control unit
    Based on the value acquired from the sensor, it is determined whether or not the obstacle has passed.
    A vehicle control device characterized in that when it is determined that the vehicle has passed the obstacle, the route information acquired from the storage unit is updated to the state before the update.
  7.  請求項3に記載の車両制御装置であって、
     前記制御部は、
     前記センサが目標物を検知可能であるか否かを判定し、
     前記センサが前記目標物を検知できないと判定された場合、前記経路の進行方向に対して垂直な方向の、前記経路及び前記目標物の間の距離を算出し、
     前記距離に基づいて、前記センサの検知範囲に前記目標物が含まれるように、前記記憶部から取得した経路の情報を更新することを特徴とする車両制御装置。
    The vehicle control device according to claim 3.
    The control unit
    Determining whether the sensor can detect the target,
    When it is determined that the sensor cannot detect the target object, the distance between the path and the target object in the direction perpendicular to the traveling direction of the path is calculated.
    A vehicle control device characterized in that information on a route acquired from the storage unit is updated so that the target object is included in the detection range of the sensor based on the distance.
  8.  請求項2に記載の車両制御装置であって、
     前記制御部は、前記経路の終点から一定距離前まで区間の前記走行可能幅として、固定値又は前記区間とは異なる区間において算出された前記走行可能幅の最小値を前記記憶部に格納することを特徴とする車両制御装置。
    The vehicle control device according to claim 2.
    The control unit stores in the storage unit a fixed value or the minimum value of the travelable width calculated in a section different from the section as the travelable width of the section from the end point of the route to a certain distance before. A vehicle control device characterized by.
  9.  請求項2に記載の車両制御装置であって、
     前記記憶部は、前記走行可能幅に基づく前記経路の更新の履歴を格納し、
     前記履歴に基づいて、前記記憶部に格納される経路の情報を更新することを特徴とする車両制御装置。
    The vehicle control device according to claim 2.
    The storage unit stores a history of updating the route based on the travelable width.
    A vehicle control device characterized in that information on a route stored in the storage unit is updated based on the history.
  10.  請求項2に記載の車両制御装置であって、
     前記制御部は、前記走行可能幅の大きさ応じて車速を制御することを特徴とする車両制御装置。
     
    The vehicle control device according to claim 2.
    The control unit is a vehicle control device characterized in that the vehicle speed is controlled according to the magnitude of the travelable width.
PCT/JP2020/025612 2019-07-08 2020-06-30 Vehicle control device WO2021006111A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021530621A JP7303304B2 (en) 2019-07-08 2020-06-30 vehicle controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-127011 2019-07-08
JP2019127011 2019-07-08

Publications (1)

Publication Number Publication Date
WO2021006111A1 true WO2021006111A1 (en) 2021-01-14

Family

ID=74114796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025612 WO2021006111A1 (en) 2019-07-08 2020-06-30 Vehicle control device

Country Status (2)

Country Link
JP (1) JP7303304B2 (en)
WO (1) WO2021006111A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136480A (en) * 2013-01-16 2014-07-28 Nippon Soken Inc Travel route production unit
JP2014151758A (en) * 2013-02-07 2014-08-25 Toyota Motor Corp Target travel trajectory production unit
JP2018135072A (en) * 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 Vehicle control device, vehicle control method, program, and recording medium in which the program is recorded
WO2018216177A1 (en) * 2017-05-25 2018-11-29 本田技研工業株式会社 Vehicle control device
JP2019077295A (en) * 2017-10-24 2019-05-23 株式会社Subaru Vehicle travel control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2741126C1 (en) * 2017-08-30 2021-01-22 Ниссан Мотор Ко., Лтд. Motion control method and vehicle movement control device by means of driving

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014136480A (en) * 2013-01-16 2014-07-28 Nippon Soken Inc Travel route production unit
JP2014151758A (en) * 2013-02-07 2014-08-25 Toyota Motor Corp Target travel trajectory production unit
JP2018135072A (en) * 2017-02-23 2018-08-30 パナソニックIpマネジメント株式会社 Vehicle control device, vehicle control method, program, and recording medium in which the program is recorded
WO2018216177A1 (en) * 2017-05-25 2018-11-29 本田技研工業株式会社 Vehicle control device
JP2019077295A (en) * 2017-10-24 2019-05-23 株式会社Subaru Vehicle travel control device

Also Published As

Publication number Publication date
JP7303304B2 (en) 2023-07-04
JPWO2021006111A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
JP6677822B2 (en) Vehicle control device
US10322720B2 (en) Vehicle control device including object detection, speed distribution area setting and avoidance control execution sections
JP7040621B2 (en) Vehicle travel control method and travel control device
JP7004077B2 (en) Vehicle travel control method and travel control device
JP6375237B2 (en) Automatic operation control device
JP6451851B2 (en) Method for controlling travel control device and travel control device
JP6485792B2 (en) Driving support control device
JP6460579B2 (en) Driving support control device
WO2017017797A1 (en) Method for controlling travel control device, and travel control device
JP5888407B2 (en) Driving assistance device
KR20180026502A (en) Driving control method and driving control device
JP2004185504A (en) Drive assist system
JP2014041556A (en) Driving support device
JP6711329B2 (en) Driving support device
JPWO2017017795A1 (en) Method for controlling travel control device and travel control device
CN108162978B (en) Vehicle control device
JP6551866B2 (en) Driving support control device
JP7163729B2 (en) vehicle controller
JP5614079B2 (en) Driving assistance device
JP6551867B2 (en) Driving support control device
JP2012212271A (en) Driving support device
WO2021006111A1 (en) Vehicle control device
JP2018154217A (en) Driving assist control device
JP6617166B2 (en) Vehicle control device
JP2020015443A (en) Vehicle control method and vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836131

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530621

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20836131

Country of ref document: EP

Kind code of ref document: A1