WO2021005812A1 - Power storage device structure - Google Patents

Power storage device structure Download PDF

Info

Publication number
WO2021005812A1
WO2021005812A1 PCT/JP2019/048508 JP2019048508W WO2021005812A1 WO 2021005812 A1 WO2021005812 A1 WO 2021005812A1 JP 2019048508 W JP2019048508 W JP 2019048508W WO 2021005812 A1 WO2021005812 A1 WO 2021005812A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
storage device
flammable gas
gas
device structure
Prior art date
Application number
PCT/JP2019/048508
Other languages
French (fr)
Japanese (ja)
Inventor
八木 稔
満 野末
淳 金子
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2021005812A1 publication Critical patent/WO2021005812A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a power storage device structure that encloses a power storage device such as a lithium ion battery, a lithium ion capacitor, and an electric double layer capacitor, and particularly reduces the risk of ignition when the power storage device is damaged or overcharged.
  • a power storage device structure capable of
  • Such a power storage device usually has an upper limit voltage, and is controlled so as not to exceed the upper limit voltage by combining with an appropriate protection circuit. However, if the protection circuit malfunctions and exceeds the upper limit voltage, if charging / discharging is repeated, or if a short circuit occurs due to an external factor, the power storage device falls into an overcharged state, and the electrolytic solution becomes an electrode material or the like. A gas is generated by the reaction, and the generated gas raises the internal pressure. This generated gas may contain flammable gases such as electrolyte methane, carbon monoxide, ethylene, ethane, and propane, and when released to the outside of the power storage device, there is a risk of ignition or explosion. ..
  • power storage devices such as lithium ion capacitors and electric double layer capacitors have been required to have high output and large capacity, and a large current can be generated by a single power storage device or a module configuration in which a plurality of power storage devices are stacked.
  • Opportunities to use it are increasing. For example, in a module in which a plurality of power storage devices are stacked, when one power storage device falls into an overcharged state, a large current is generated because the other power storage devices are still functioning even after the gas is released together with the electrolytic solution. May continue to flow. Therefore, it may be overheated violently due to a short circuit, and the risk of ignition or explosion as described above increases.
  • Patent Document 1 a method of absorbing gas generated inside a lithium ion battery with a flammable gas absorber to prevent the battery from exploding has been proposed.
  • Patent Document 3 a method has also been proposed in which a fire extinguishing agent is placed inside the lithium-ion battery to lower the temperature of the gas released to the outside when the safety valve is opened due to an increase in internal pressure due to the generation of gas inside the battery. Furthermore, by arranging a nonflammable gas, an aqueous solvent, or a porous material in which a nonflammable solvent is adsorbed in the pores and on the surface inside the lithium ion battery, ignition by the gas generated from the lithium ion battery can be ignited. A method for preventing this has also been proposed (Patent Document 4).
  • Patent Documents 1 and 2 since a large amount of gas is instantaneously generated at the time of electrical abnormality or thermal runaway, the method of arranging the gas adsorbent in the power storage device as described in Patent Documents 1 and 2 is limited to the power storage device. There is a problem that the gas adsorption amount and the gas adsorption rate are insufficient for the space, and the gas ejection from the power storage device cannot be suppressed. Further, as described in Patent Documents 3 and 4, a fire extinguishing agent is used to lower the temperature inside the lithium ion battery, and a nonflammable gas, an aqueous solvent or a nonflammable substance is used in the pores and on the surface of the porous material. The method of arranging the material to which the solvent is adsorbed in the power storage device has a problem that if the amount of gas adsorbed is insufficient, the effect is not sufficiently exhibited and the gas ejection cannot be completely suppressed.
  • the present invention has been made in view of the above problems, and is capable of reducing the risk of ignition in the event of an abnormality such as damage or overcharging of a power storage device, particularly a power storage device stack in which a plurality of power storage devices are stacked.
  • the purpose is to provide a structure.
  • the present invention is a power storage device structure including a power storage device and a casing that surrounds the power storage device with a gap, and the power storage is performed in the gap between the power storage device and the casing.
  • a power storage device structure in which a flammable gas absorber having an ability to absorb flammable gas that may be generated from the device is arranged (Invention 1).
  • the power storage device may be short-circuited or the like. Even if flammable gas is ejected from the power storage device and flows out into the space of the casing, the flammable gas absorber quickly absorbs the flammable gas to the combustion concentration of this flammable gas or less, so that it goes out of the casing. The risk of fire spread can be reduced. Moreover, in this case, it is not necessary for the flammable gas to absorb the entire amount, and it is sufficient that the flammable gas has a flammable concentration or less in the space of the casing. can do.
  • the flammable gas that may be generated from the power storage device contains methane, carbon monoxide, ethylene, ethane or propane (Invention 2).
  • the risk of fire spreading to the outside of the casing can be significantly reduced by absorbing these flammable gases with a flammable gas absorber to reduce the combustion concentration to less than or equal to the combustion concentration.
  • the power storage device uses a non-aqueous electrolyte (Invention 3).
  • the non-aqueous electrolyte may generate flammable gas by heating. Therefore, by absorbing this flammable gas with a flammable gas absorbent, the concentration is reduced to a predetermined concentration or less. , The risk of fire spreading to the outside of the casing can be significantly reduced.
  • the flammable gas absorbent is a porous material having a specific surface area of 10 to 3000 m 2 / g (Invention 4).
  • a sufficient contact area between the flammable gas absorber and the flammable gas ejected from the power storage device can be secured, which is suitable for absorbing the flammable gas.
  • the flammable gas absorbent is a porous material having a pore diameter of 0.1 to 10 nm (Invention 5).
  • the flammable gas is quickly reduced to the combustion concentration or less by capturing the flammable gas generated when the power storage device is short-circuited in the pores of the flammable gas absorber.
  • the risk of fire spreading to the outside of the casing can be significantly reduced.
  • the flammable gas absorber is a porous material having an average particle size of 0.1 to 5.0 mm (Invention 6). Further, in (Invention 4 to 6), it is preferable that the flammable gas absorbent is a molded product obtained by processing the powder of the porous material into a sheet shape (Invention 7).
  • this sheet by forming a powdery or granular flammable gas absorber into a sheet, this sheet can be attached to the casing, inserted into a gap, or its installation variation. Can be abundant and can be excellent in handleability.
  • a power storage device stack in which a plurality of power storage devices are stacked is violently overheated and flammable because even if one power storage device falls into an overcharged state, a large current continues to flow because the other power storage devices are functioning. Gas tends to exceed the ignition temperature.
  • the flammable gas absorber absorbs the flammable gas and burns the flammable gas.
  • the flammable gas absorbing material having the ability to absorb flammable gas is arranged in the gap between the power storage device and the casing, the flammable gas is ejected from the power storage device due to a short circuit of the power storage device or the like. Even if it flows out into the space of the casing, the flammable gas absorber absorbs the flammable gas and can be quickly reduced to below the combustion concentration, so the risk of fire spreading outside the casing can be significantly reduced. Can be done.
  • the power storage device structure of the present embodiment includes a power storage device and a casing that encloses the power storage device with a gap, and the gap between the power storage device and the casing is flammable that may be generated from the power storage device. It has a structure in which a flammable gas absorber having a gas absorbing ability is arranged.
  • the power storage device is not particularly limited, and either a primary battery or a secondary battery can be used, but a secondary battery is preferable.
  • the type of this secondary battery is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, a lead livestock battery, a nickel / hydrogen livestock battery, a nickel / cadmium livestock battery, a nickel / iron livestock battery, and a nickel / zinc.
  • a livestock battery, a silver oxide / zinc livestock battery, a metal air battery, a polyvalent cation battery, a capacitor, a capacitor and the like can be used. Among these, those using a non-aqueous electrolyte can be preferably used.
  • a lithium ion battery, a lithium ion polymer battery, a lithium ion capacitor, or the like can be preferably used as a suitable application target of the battery packaging material of the present invention.
  • non-aqueous electrolyte examples include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), and chain carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC).
  • PC propylene carbonate
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • a mixed solution of the above can be used.
  • the non-aqueous electrolyte may be one in which a lithium salt such as lithium hexafluorophosphate is dissolved as an electrolyte, if necessary.
  • a mixed solution of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) in a ratio of 1: 1: 1, or propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate (A mixture in which DEC) is mixed at a ratio of 1: 1: 1 to which 1 mol / L lithium hexafluorophosphate is added can be used.
  • the power storage device as described above may be in the form of a power storage device stack in which a plurality of power storage devices are stacked. Even if one power storage device is overcharged, the power storage device stack continues to carry a large current because the other power storage devices are functioning, so that flammable gas is generated due to the non-aqueous electrolyte. It is particularly suitable because it tends to exceed the ignition temperature when it occurs.
  • the casing is not particularly limited as long as it has a gap with respect to the above-mentioned power storage device (power storage device stack) and can be externally encapsulated.
  • the casing is not limited to the material such as synthetic resin or metal.
  • a porous material is used as the flammable gas absorbing material installed in the gap between the power storage device and the casing.
  • the porous material an organic material, an inorganic material, or an organic / inorganic composite material can be used, and in particular, an inorganic porous material, a carbon-based porous material, an organic host compound, and a porous organic metal composite can be used.
  • a material or the like can be preferably used.
  • porous silica metallic porous structure, calcium silicate, magnesium silicate, magnesium aluminometasilicate, zeolite, activated alumina, titanium oxide, apatite, porous glass, magnesium oxide, aluminum silicate Etc.
  • porous silica metallic porous structure, calcium silicate, magnesium silicate, magnesium aluminometasilicate, zeolite, activated alumina, titanium oxide, apatite, porous glass, magnesium oxide, aluminum silicate Etc.
  • carbon-based porous material granular activated carbon, fibrous activated carbon, sheet-shaped activated carbon, graphite, carbon nanotubes, fullerenes, nanocarbons and the like can be used.
  • Organic host compounds include ⁇ -cyclodextrin, ⁇ -cyclodextrin, ⁇ -cyclodextrin, calix allenes, urea, deoxycholic acid, phenolic acid, 1,1,6,6-tetraphenylhexa-2,4- Acetylene alcohols such as diine-1,6-diol, bisphenols such as 1,1-bis (4-hydroxyphenyl) cyclohexane, and tetraxphenols such as 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane.
  • Naftors such as bis- ⁇ -naphthol, carboxylic acid amides such as bisdiphenate (dicyclohexylamide), hydroquinones such as 2,5-di-t-butylhydroquinone, chitin, chitosan and the like can be used. ..
  • porous organic metal composite material examples include a porous organic metal complex compound called Metal-Organic Framworks (MOF), an organic carboxylate, an organic boron compound, an organic phosphorus compound, an organic aluminum compound, an organic titanium compound, and an organic silicon compound.
  • MOF Metal-Organic Framworks
  • organic carboxylate an organic boron compound
  • organic phosphorus compound an organic aluminum compound
  • organic titanium compound an organic titanium compound
  • organic silicon compound organic zinc compounds, organic magnesium compounds, organic indium compounds, organic tin compounds, organic tellurium compounds, organic gallium compounds and the like can be used.
  • carbon-based porous materials are suitable.
  • This carbon-based porous material generally has the selectivity of adsorbable molecules depending on the pore size and polarity. Therefore, those having a pore diameter and polarity capable of adsorbing flammable gases such as methane, carbon monoxide, ethylene, ethane, and propane are used. As a result, the flammable gas generated from the power storage device due to repeated charging and discharging can be reduced to the combustion concentration or less.
  • the carbon-based porous material may be adjusted to impart polarity to its surface functional group so as to easily adsorb a flammable gas to be adsorbed such as methane or ethane. Further. Hygroscopicity can be improved by adjusting the surface functional groups to improve the hydrophobicity.
  • the surface functional groups of the carbon-based porous material as described above can be adjusted by activating the carbon-based porous material with carbon dioxide gas, nitrogen gas, or argon gas.
  • the surface of the untreated (initial state) carbon-based porous material is a carboxyl group or a phenol-based hydroxyl group, but by activating with carbon dioxide gas, all or part of the surface is designated as the -CH end. can do. Further, the same effect can be obtained by activating with nitrogen or argon gas.
  • a carbon-based porous material is housed in a furnace such as a rotary kiln type, and the inside of the furnace is heated with an inert gas such as nitrogen to create an inert atmosphere. Therefore, the carbon-based porous material can be activated by introducing carbon dioxide gas after reaching a desired activation temperature.
  • the activation temperature is not particularly limited, but is preferably 350 to 1000 ° C, more preferably 800 to 950 ° C. By setting the temperature in such a range, the specific surface area of the carbon-based porous material is further increased.
  • the treatment time (activation time) after reaching the activation temperature is preferably 30 minutes or more, particularly 40 minutes or more, in order to increase the specific surface area of the carbon-based porous material and enhance the adsorption performance.
  • the upper limit of the activation time is not particularly limited, but if the activation time is too long, the pore volume becomes large, but the pore diameter becomes rather large. Therefore, 180 minutes or less, particularly 120 minutes or less is preferable.
  • the carbon-based porous material as the gas absorbing material as described above preferably has a specific surface area in the range of 10 to 3000 m 2 / g.
  • the specific surface area of the carbon-based porous material is less than 10 m 2 / g, not only the adsorption amount of the flammable gas is reduced, but also the contact efficiency with the ejected flammable gas is low, so that a sufficient combustion prevention effect can be obtained. It is not preferable because it cannot be used.
  • the specific surface area exceeds 3000 m 2 / g, further improvement in the ignition prevention effect cannot be obtained.
  • this carbon-based porous material preferably has a pore diameter in the range of 0.1 to 10 nm. If the pore diameter is less than 0.1 nm, the diffusion rate of the gas in the pores becomes slow, and the combustible gas component is less likely to be replaced due to the invasion into the pores, so that the effect of reducing the flammable gas concentration is obtained. On the other hand, if the pore diameter exceeds 10 nm, the adsorption force in the pores is weakened, so that the flammable gas cannot be retained in the pores, and as a result, the combustion prevention effect may be lowered, which is preferable. Absent.
  • the carbon-based porous material preferably has a particle size in the range of 0.1 to 5.0 mm.
  • the particle size is 0.1 mm or less, the contact efficiency with the flammable gas is deteriorated, so that the combustion prevention effect is lowered.
  • the combustion gas passes through the gaps between the particles of the carbon-based porous material, which may reduce the combustion prevention effect, which is not preferable.
  • a nonflammable gas, an aqueous solvent, or a nonflammable solvent may be adsorbed in the pores and on the surface of such a porous material as a flammable gas absorber.
  • a nonflammable gas adsorbed in the pores and on the surface of the porous material one or more gases selected from carbon dioxide, nitrogen, halogen, and rare gas can be preferably used.
  • the flammable gas absorber as described above may be used alone or in combination of two or more kinds of materials.
  • the flammable gas absorber may be molded by using an appropriate method.
  • the shape of the molded product is not particularly limited and may be in the shape of granules, granules, beads, pellets, honeycombs, etc.
  • the sheet It is preferably shaped.
  • the amount of the flammable gas absorber as described above is determined by estimating the type and amount of the flammable gas based on the type and amount of the non-aqueous electrolyte used in the power storage device (power storage device stack), and using this estimated amount. It may be appropriately set according to the volume of the voids in the casing, the combustible concentration of the flammable gas, and the absorbency of the flammable gas absorber. Specifically, the combustible concentration is, for example, 5.3 to 14.0% by volume for methane, 3.2 to 12.5% by volume for ethane, and 12.5 to 74.5% by volume for carbon monoxide. From the volume of the voids in the casing, the type of flammable gas, and the amount of ejected gas, an amount of flammable gas absorber that can be adsorbed until the concentration becomes lower than the combustible concentration may be installed.
  • the power storage device structure of the present invention has been described above, in the present invention, it is only necessary to dispose a flammable gas absorber in the gap between the power storage device (power storage device stack) and the casing, and the power storage device (power storage device)
  • the size and shape of the device stack) are not particularly limited. Therefore, it can be applied to a wide range of power storage devices (power storage device stacks) such as smartphones and in-vehicle devices.
  • a 1100 mAh lithium-ion battery with a positive electrode LCO is precharged at 4.2 V0.3 A until it reaches 0.03 A, then overcharged at 5 V 0.5 A for 2 hours, and this is performed with an open circuit voltage of 4.5 V or higher.
  • a nail piercing test was conducted in which a lithium-ion battery was pierced with a nail and forced to short-circuit. The diameter of the nail used was 2.5 mm, and the nail piercing speed was 80 mm / sec, and the battery was penetrated. As a result, it was confirmed that sparks were generated due to the short circuit and that severe ignition was confirmed.
  • Comparative Example 2 One lithium-ion battery used in Comparative Example 1 was precharged at 4.2V 0.3A until 0.03A, then overcharged at 5V 0.5A for 2 hours, and at an open circuit voltage of 4.5V or higher. Place the casing in a 15 cm x 20 cm x 5 cm resin pressure-resistant container (10 mm ⁇ nail piercing holes are formed at the top of the container and four 10 mm ⁇ gas vent holes are formed at the bottom of the container), and a nail piercing test is performed in the same manner as in Comparative Example 1. went. As a result, it was confirmed that sparks were generated due to a short circuit, and that there was a risk of violent ignition from the gas vent hole formed at the bottom of the resin pressure-resistant container and spreading to the outside of the resin pressure-resistant container.
  • Comparative Example 3 In Comparative Example 2, a nail piercing test was carried out in the same manner except that two lithium ion batteries were used. As a result, it was confirmed that sparks were generated due to a short circuit, and that there was a risk of violent ignition from the gas vent hole formed at the bottom of the resin pressure-resistant container and spreading to the outside of the resin pressure-resistant container.
  • Example 1 In Comparative Example 2, a carbon-based porous material (methane gas absorption performance 28 ml / g, specific surface area 780 m 2 / g, average pore diameter 0.7 nm, particle size 0) that absorbs methane gas, which is a flammable gas, in a resin pressure-resistant container.
  • a nail piercing test was carried out in the same manner as in Comparative Example 1 by adding 3 g of (a pellet of .7 to 1.0 mm). As a result, it was confirmed that sparks were generated due to a short circuit in the resin pressure-resistant container, but the ignition did not continue in the resin pressure-resistant container and there was no risk of the fire spreading to the outside of the resin pressure-resistant container. Was confirmed.
  • Example 2 In Comparative Example 2, a sheet-shaped carbon-based porous material that absorbs methane gas, which is a flammable gas, in a resin pressure-resistant container (a sheet-shaped processed carbon-based porous material of Example 1. Methane gas absorption performance 19 ml / 2 g (g, sheet thickness 80 ⁇ m) was added, and a nail piercing test was conducted in the same manner as in Comparative Example 1. As a result, it was confirmed that sparks were generated due to a short circuit in the resin pressure-resistant container, but the ignition did not continue in the resin pressure-resistant container and there was no risk of the fire spreading to the outside of the resin pressure-resistant container. Was confirmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

This power storage device has a structure: comprising a power storage device and a casing that encloses the power storage device with a gap therebetween; and in which disposed in the gap between the power storage device and the casing is a flammable gas-absorbing material that has the ability to absorb flammable gas that is potentially generated from the power storage device. The flammable gas-absorbing material is preferably a carbon-based porous material, and is, in particular, preferably in the form of a sheet. With this power storage device structure, it is possible to reduce the risk of ignition happening during an abnormality such as damage to or overcharging of the power storage device, and in particular, of a power storage device stack in which a plurality of power storage devices have been stacked.

Description

蓄電デバイス構造体Power storage device structure
 本発明は、リチウムイオン電池、リチウムイオンキャパシタ、電気二重層キャパシタなどの蓄電デバイスを外包した蓄電デバイス構造体に関し、特に蓄電デバイスの破損時や過充電時などの異常時に発火するリスクを低減することが可能な蓄電デバイス構造体に関する。 The present invention relates to a power storage device structure that encloses a power storage device such as a lithium ion battery, a lithium ion capacitor, and an electric double layer capacitor, and particularly reduces the risk of ignition when the power storage device is damaged or overcharged. Regarding a power storage device structure capable of
 近年、高出力用途の携帯機器や電気自動車などの電源として、非水電解質を用いた蓄電デバイスをケーシングに収容してなる二次電池、リチウムイオンキャパシタおよび電気二重層キャパシタなどの蓄電デバイスが用いられている。 In recent years, as a power source for mobile devices and electric vehicles for high output applications, power storage devices such as secondary batteries, lithium ion capacitors and electric double layer capacitors in which a power storage device using a non-aqueous electrolyte is housed in a casing have been used. ing.
 このような蓄電デバイスは、通常、上限電圧が定められており、適切な保護回路と組み合わせることで上限電圧を超えないよう制御されている。しかしながら、保護回路が誤動作を起こし上限電圧を超えた場合、充放電を繰り返した場合、あるいは外的要因により短絡した場合などには、蓄電デバイスが過充電状態に陥り、電解液が電極材料などと反応してガスが発生し、この発生したガスによって内圧が上昇する。この発生するガスは、電解液メタン、一酸化炭素、エチレン、エタン、プロパンなどの可燃性ガスを含むことがあり、蓄電デバイス外部に放出された際に、発火や爆発などを起こす危険性がある。 Such a power storage device usually has an upper limit voltage, and is controlled so as not to exceed the upper limit voltage by combining with an appropriate protection circuit. However, if the protection circuit malfunctions and exceeds the upper limit voltage, if charging / discharging is repeated, or if a short circuit occurs due to an external factor, the power storage device falls into an overcharged state, and the electrolytic solution becomes an electrode material or the like. A gas is generated by the reaction, and the generated gas raises the internal pressure. This generated gas may contain flammable gases such as electrolyte methane, carbon monoxide, ethylene, ethane, and propane, and when released to the outside of the power storage device, there is a risk of ignition or explosion. ..
 そして、近年、リチウムイオンキャパシタや電気二重層キャパシタなどの蓄電デバイスにおいては、高出力および大容量化が求められてきており、蓄電デバイス単体や、複数の蓄電デバイスをスタックしたモジュール構成で大電流を使用する機会が増えてきている。例えば、複数の蓄電デバイスをスタックしたモジュールにおいて、1つの蓄電デバイスが過充電状態に陥った場合に、ガスが電解液と共に放出された後も、その他の蓄電デバイスが機能しているため、大電流を流し続けることがある。そのため、短絡により激しく過熱される場合があり、上述したような発火や爆発などを起こす危険性は大きくなる。 In recent years, power storage devices such as lithium ion capacitors and electric double layer capacitors have been required to have high output and large capacity, and a large current can be generated by a single power storage device or a module configuration in which a plurality of power storage devices are stacked. Opportunities to use it are increasing. For example, in a module in which a plurality of power storage devices are stacked, when one power storage device falls into an overcharged state, a large current is generated because the other power storage devices are still functioning even after the gas is released together with the electrolytic solution. May continue to flow. Therefore, it may be overheated violently due to a short circuit, and the risk of ignition or explosion as described above increases.
 このような蓄電デバイスの発火を防止する技術として、例えば、リチウムイオン電池の内部で発生したガスを可燃性ガス吸収材によって吸収し、電池の破裂を防止する方法が提案されている(特許文献1,2)。 As a technique for preventing ignition of such a power storage device, for example, a method of absorbing gas generated inside a lithium ion battery with a flammable gas absorber to prevent the battery from exploding has been proposed (Patent Document 1). , 2).
 一方、リチウムイオン電池内部に消火剤を配置することにより、電池内部でのガスの発生による内圧上昇によって安全弁が開放した際に外部に放出されるガスの温度を低下させる方法も提案されている(特許文献3)。さらには、リチウムイオン電池内部に、不燃性ガス、水系溶媒、あるいは不燃性溶媒を細孔内及び表面に吸着させた多孔質素材を配置することにより、リチウムイオン電池からの発生するガスによる発火を防止する方法も提案されている(特許文献4)。 On the other hand, a method has also been proposed in which a fire extinguishing agent is placed inside the lithium-ion battery to lower the temperature of the gas released to the outside when the safety valve is opened due to an increase in internal pressure due to the generation of gas inside the battery ( Patent Document 3). Furthermore, by arranging a nonflammable gas, an aqueous solvent, or a porous material in which a nonflammable solvent is adsorbed in the pores and on the surface inside the lithium ion battery, ignition by the gas generated from the lithium ion battery can be ignited. A method for preventing this has also been proposed (Patent Document 4).
特開2001-155790号公報Japanese Unexamined Patent Publication No. 2001-155790 特開2003-077549号公報Japanese Unexamined Patent Publication No. 2003-07549 特開2010-287488号公報JP-A-2010-287488 特開2010-287488号公報JP-A-2010-287488
 しかしながら、電気的異常時や熱暴走時には瞬間的に大量のガスが発生するため、特許文献1及び2に記載されているようなガス吸着材を蓄電デバイス内に配置する方法では、蓄電デバイスという限られた空間に対しては、ガス吸着量及びガス吸着速度ともに不十分であり、蓄電デバイスからのガスの噴出を抑制しきれない、という問題点があった。また、特許文献3及び4に記載されているように、リチウムイオン電池の内部の温度を低下させるために消火剤や、多孔質素材の細孔内および表面に不燃性ガスあるいは水系溶媒又は不燃性溶媒を吸着される材を蓄電デバイス内に配置する方法では、ガス吸着量が不十分だとその効果が十分に発揮されず、さらにガスの噴出を抑制しきれない、という問題点があった。 However, since a large amount of gas is instantaneously generated at the time of electrical abnormality or thermal runaway, the method of arranging the gas adsorbent in the power storage device as described in Patent Documents 1 and 2 is limited to the power storage device. There is a problem that the gas adsorption amount and the gas adsorption rate are insufficient for the space, and the gas ejection from the power storage device cannot be suppressed. Further, as described in Patent Documents 3 and 4, a fire extinguishing agent is used to lower the temperature inside the lithium ion battery, and a nonflammable gas, an aqueous solvent or a nonflammable substance is used in the pores and on the surface of the porous material. The method of arranging the material to which the solvent is adsorbed in the power storage device has a problem that if the amount of gas adsorbed is insufficient, the effect is not sufficiently exhibited and the gas ejection cannot be completely suppressed.
 本発明は、上記課題に鑑みてなされたものであり、蓄電デバイス、特に複数の蓄電デバイスを積層した蓄電デバイススタックの破損や過充電などの異常時に発火するリスクを低減することが可能な蓄電デバイス構造体を提供することを目的とする。 The present invention has been made in view of the above problems, and is capable of reducing the risk of ignition in the event of an abnormality such as damage or overcharging of a power storage device, particularly a power storage device stack in which a plurality of power storage devices are stacked. The purpose is to provide a structure.
 上記課題を解決するために本発明は、蓄電デバイスと、該蓄電デバイスを空隙を有して外包するケーシングとからなる蓄電デバイス構造体であって、前記蓄電デバイスとケーシングとの空隙に、前記蓄電デバイスから発生する可能性のある可燃性ガスの吸収能を有する可燃性ガス吸収材を配置した、蓄電デバイス構造体を提供する(発明1)。 In order to solve the above problems, the present invention is a power storage device structure including a power storage device and a casing that surrounds the power storage device with a gap, and the power storage is performed in the gap between the power storage device and the casing. Provided is a power storage device structure in which a flammable gas absorber having an ability to absorb flammable gas that may be generated from the device is arranged (Invention 1).
 上記発明(発明1)によれば、蓄電デバイス内ではなく、蓄電デバイスを外包するケーシングの空間に可燃性ガスの吸収能を有する可燃性ガス吸収材を配置することにより、蓄電デバイスの短絡などにより、蓄電デバイスから可燃性ガスが噴出してケーシングの空間に流出したとしても、可燃性ガス吸収材がこの可燃性ガスをこの可燃性ガスの燃焼濃度以下にまで迅速に吸収するため、ケーシング外まで延焼するリスクを低減することができる。しかも、この場合、可燃性ガスは全量を吸収する必要はなく、ケーシングの空間内で可燃性ガスが引火濃度以下になる程度であればよいので、少量の可燃性ガス吸収材でも大きな効果を期待することができる。 According to the above invention (Invention 1), by arranging a flammable gas absorbing material having an ability to absorb flammable gas not in the power storage device but in the space of the casing surrounding the power storage device, the power storage device may be short-circuited or the like. Even if flammable gas is ejected from the power storage device and flows out into the space of the casing, the flammable gas absorber quickly absorbs the flammable gas to the combustion concentration of this flammable gas or less, so that it goes out of the casing. The risk of fire spread can be reduced. Moreover, in this case, it is not necessary for the flammable gas to absorb the entire amount, and it is sufficient that the flammable gas has a flammable concentration or less in the space of the casing. can do.
 上記発明(発明1)においては、前記蓄電デバイスから発生する可能性のある可燃性ガスが、メタン、一酸化炭素、エチレン、エタン又はプロパンを含有することが好ましい(発明2)。 In the above invention (Invention 1), it is preferable that the flammable gas that may be generated from the power storage device contains methane, carbon monoxide, ethylene, ethane or propane (Invention 2).
 上記発明(発明2)によれば、これらの可燃性ガスを可燃性ガス吸収材により吸収して燃焼濃度以下とすることにより、ケーシング外にまで延焼するリスクを大幅に低減することができる。 According to the above invention (Invention 2), the risk of fire spreading to the outside of the casing can be significantly reduced by absorbing these flammable gases with a flammable gas absorber to reduce the combustion concentration to less than or equal to the combustion concentration.
 上記発明(発明1,2)においては、前記蓄電デバイスが非水電解質を用いたものであることが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), it is preferable that the power storage device uses a non-aqueous electrolyte (Invention 3).
 上記発明(発明3)によれば、非水電解質は加熱により、可燃性ガスを発生する虞があるので、この可燃性ガスを可燃性ガス吸収材により吸収して所定の濃度以下とすることにより、ケーシング外にまで延焼するリスクを大幅に低減することができる。 According to the above invention (Invention 3), the non-aqueous electrolyte may generate flammable gas by heating. Therefore, by absorbing this flammable gas with a flammable gas absorbent, the concentration is reduced to a predetermined concentration or less. , The risk of fire spreading to the outside of the casing can be significantly reduced.
 上記発明(発明1~3)においては、前記可燃性ガス吸収材が、比表面積が10~3000m/gである多孔質素材であることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), it is preferable that the flammable gas absorbent is a porous material having a specific surface area of 10 to 3000 m 2 / g (Invention 4).
 かかる発明(発明4)によれば、可燃性ガス吸収材と蓄電デバイスから噴出する可燃性ガスとの接触面積を十分に確保することができるので、可燃性ガスの吸収に好適である。 According to the invention (Invention 4), a sufficient contact area between the flammable gas absorber and the flammable gas ejected from the power storage device can be secured, which is suitable for absorbing the flammable gas.
 上記発明(発明1~4)においては、前記可燃性ガス吸収材が、0.1~10nmの細孔径を有する多孔質素材であることが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), it is preferable that the flammable gas absorbent is a porous material having a pore diameter of 0.1 to 10 nm (Invention 5).
 かかる発明(発明5)によれば、蓄電デバイスの短絡時などに発生する可燃性ガスを可燃性ガス吸収材の細孔内に捕捉することで、可燃性ガスを迅速に燃焼濃度以下とすることができ、ケーシング外にまで延焼するリスクを大幅に低減することができる。 According to the present invention (Invention 5), the flammable gas is quickly reduced to the combustion concentration or less by capturing the flammable gas generated when the power storage device is short-circuited in the pores of the flammable gas absorber. The risk of fire spreading to the outside of the casing can be significantly reduced.
 上記発明(発明1~5)においては、 前記可燃性ガス吸収材が、0.1~5.0mmの平均粒子径を有する多孔質素材であることが好ましい(発明6)。また、(発明4~6)においては、前記可燃性ガス吸収材が、前記多孔質素材の粉末をシート状に加工した成形品であることが好ましい(発明7)。 In the above inventions (Inventions 1 to 5), it is preferable that the flammable gas absorber is a porous material having an average particle size of 0.1 to 5.0 mm (Invention 6). Further, in (Invention 4 to 6), it is preferable that the flammable gas absorbent is a molded product obtained by processing the powder of the porous material into a sheet shape (Invention 7).
 上記発明(発明6,7)によれば、粉末状もしくは顆粒状の可燃性ガス吸収材をシート状とすることにより、このシートをケーシング内に張り付けたり、隙間部に挿入したり、その設置バリエーションを豊富なものとすることができ、取扱い性に優れたものとすることができる。 According to the above inventions (Inventions 6 and 7), by forming a powdery or granular flammable gas absorber into a sheet, this sheet can be attached to the casing, inserted into a gap, or its installation variation. Can be abundant and can be excellent in handleability.
 上記発明(発明1~7)においては、前記可燃性ガス吸収材の細孔内および表面に不燃性ガスあるいは水系溶媒または不燃性溶媒を吸着させることが好ましい(発明8)。 In the above inventions (Inventions 1 to 7), it is preferable to adsorb a nonflammable gas, an aqueous solvent, or a nonflammable solvent in the pores and on the surface of the flammable gas absorbent (Invention 8).
 上記発明(発明8)によれば、可燃性ガス吸収材による可燃性ガスの発火防止効果をさらに高めることができる。 According to the above invention (Invention 8), the effect of preventing the ignition of flammable gas by the flammable gas absorber can be further enhanced.
 上記発明(発明1~8)においては、前記蓄電デバイスが複数積層されていてもよい(発明9)。 In the above inventions (Inventions 1 to 8), a plurality of the power storage devices may be stacked (Invention 9).
 蓄電デバイスを複数積層した蓄電デバイススタックは、1つの蓄電デバイスが過充電状態に陥った場合であってもその他の蓄電デバイスが機能しているため大電流を流し続けるので、激しく過熱され、可燃性のガスが発火温度以上となりやすい。このとき、上記発明(発明9)によれば、蓄電デバイスから可燃性ガスが噴出してケーシングの空間に流出したとしても可燃性ガス吸収材が可燃性ガスを吸収して、可燃性ガスの燃焼濃度以下にまで迅速に低減することにより、ケーシング外にまで延焼するリスクを大幅に低減することができるので、蓄電デバイススタックに特に好適に適用することができる。 A power storage device stack in which a plurality of power storage devices are stacked is violently overheated and flammable because even if one power storage device falls into an overcharged state, a large current continues to flow because the other power storage devices are functioning. Gas tends to exceed the ignition temperature. At this time, according to the above invention (Invention 9), even if the flammable gas is ejected from the power storage device and flows out into the space of the casing, the flammable gas absorber absorbs the flammable gas and burns the flammable gas. By rapidly reducing the concentration to below the concentration, the risk of fire spreading to the outside of the casing can be significantly reduced, so that it can be particularly preferably applied to a power storage device stack.
 本発明は、前記蓄電デバイスとケーシングとの空隙に、可燃性ガスの吸収能を有する可燃性ガス吸収材を配置しているので、蓄電デバイスの短絡などにより蓄電デバイスから可燃性ガスが噴出してケーシングの空間に流出したとしても、可燃性ガス吸収材が可燃性ガスを吸収し、その燃焼濃度以下にまで迅速に低減することができるので、ケーシング外にまで延焼するリスクを大幅に低減することができる。 In the present invention, since the flammable gas absorbing material having the ability to absorb flammable gas is arranged in the gap between the power storage device and the casing, the flammable gas is ejected from the power storage device due to a short circuit of the power storage device or the like. Even if it flows out into the space of the casing, the flammable gas absorber absorbs the flammable gas and can be quickly reduced to below the combustion concentration, so the risk of fire spreading outside the casing can be significantly reduced. Can be done.
 以下の本発明の蓄電デバイス構造体について、以下詳細に説明する。 The following power storage device structure of the present invention will be described in detail below.
[蓄電デバイス構造体]
 本実施形態の蓄電デバイス構造体は、蓄電デバイスと、この蓄電デバイスを空隙を有して外包するケーシングとからなり、蓄電デバイスとケーシングとの空隙に、蓄電デバイスから発生する可能性のある可燃性ガスの吸収能を有する可燃性ガス吸収材を配置した構造を有する。
[Power storage device structure]
The power storage device structure of the present embodiment includes a power storage device and a casing that encloses the power storage device with a gap, and the gap between the power storage device and the casing is flammable that may be generated from the power storage device. It has a structure in which a flammable gas absorber having a gas absorbing ability is arranged.
(蓄電デバイス)
 本実施形態において、蓄電デバイスとしては、特に制限はなく、一次電池、二次電池のいずれも用いることができるが、好ましくは二次電池である。この二次電池の種類については、特に制限されず、例えば、リチウムイオン電池、リチウムイオンポリマー電池、鉛畜電池、ニッケル・水素畜電池、ニッケル・カドミウム畜電池、ニッケル・鉄畜電池、ニッケル・亜鉛畜電池、酸化銀・亜鉛畜電池、金属空気電池、多価カチオン電池、コンデンサ、キャパシタ等を用いることができる。これらの中では、非水電解質を用いたものを好適に用いることができる。これらの二次電池の中でも、本発明の電池用包装材料の好適な適用対象として、リチウムイオン電池、リチウムイオンポリマー電池、リチウムイオンキャパシタなどを好適に用いることができる。
(Power storage device)
In the present embodiment, the power storage device is not particularly limited, and either a primary battery or a secondary battery can be used, but a secondary battery is preferable. The type of this secondary battery is not particularly limited, and for example, a lithium ion battery, a lithium ion polymer battery, a lead livestock battery, a nickel / hydrogen livestock battery, a nickel / cadmium livestock battery, a nickel / iron livestock battery, and a nickel / zinc. A livestock battery, a silver oxide / zinc livestock battery, a metal air battery, a polyvalent cation battery, a capacitor, a capacitor and the like can be used. Among these, those using a non-aqueous electrolyte can be preferably used. Among these secondary batteries, a lithium ion battery, a lithium ion polymer battery, a lithium ion capacitor, or the like can be preferably used as a suitable application target of the battery packaging material of the present invention.
 上記非水電解質としては、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)などの環状カーボネートと、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)などの鎖状カーボネートとの混合溶液などを用いることができる。また、上記非水電解質は、必要に応じて、電解質として六フッ化リン酸リチウムなどのリチウム塩が溶解したものであってもよい。例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びジメチルカーボネート(DMC)を1:1:1の割合で混合した混合液、あるいはプロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)を1:1:1の割合で混合した混合液に、1mol/Lの六フッ化リン酸リチウムを添加したものを用いることができる。 Examples of the non-aqueous electrolyte include cyclic carbonates such as propylene carbonate (PC) and ethylene carbonate (EC), and chain carbonates such as dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC). A mixed solution of the above can be used. Further, the non-aqueous electrolyte may be one in which a lithium salt such as lithium hexafluorophosphate is dissolved as an electrolyte, if necessary. For example, a mixed solution of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and dimethyl carbonate (DMC) in a ratio of 1: 1: 1, or propylene carbonate (PC), ethylene carbonate (EC), diethyl carbonate ( A mixture in which DEC) is mixed at a ratio of 1: 1: 1 to which 1 mol / L lithium hexafluorophosphate is added can be used.
 上述したような蓄電デバイスは、複数が積層されてなる蓄電デバイススタックの形態であってもよい。蓄電デバイススタックは、1つの蓄電デバイスが過充電状態に陥った場合であっても、その他の蓄電デバイスが機能しているため大電流を流し続けるので、非水電解質に起因して可燃性ガスが発生した際に、発火温度以上となりやすいため特に好適である。 The power storage device as described above may be in the form of a power storage device stack in which a plurality of power storage devices are stacked. Even if one power storage device is overcharged, the power storage device stack continues to carry a large current because the other power storage devices are functioning, so that flammable gas is generated due to the non-aqueous electrolyte. It is particularly suitable because it tends to exceed the ignition temperature when it occurs.
(ケーシング)
 本実施形態において、ケーシングとしては上述した蓄電デバイス(蓄電デバイススタック)に対して空隙を有して外包しうるものであれば特に制限はなく、電池ケースなどの蓄電デバイス(蓄電デバイススタック)の収納ケースや、蓄電デバイス(蓄電デバイススタック)を使用する機器の筐体などがこれに該当する。このケーシングは、合成樹脂製、金属製などその素材については限定されない。
(casing)
In the present embodiment, the casing is not particularly limited as long as it has a gap with respect to the above-mentioned power storage device (power storage device stack) and can be externally encapsulated. This includes a case and a casing of a device that uses a power storage device (power storage device stack). The casing is not limited to the material such as synthetic resin or metal.
(可燃性ガス吸収材)
 このような蓄電デバイスとケーシングとの空隙に設置する可燃性ガス吸収材としては、多孔質素材を用いる。本実施形態において多孔質素材としては、有機系、無機系、あるいは有機・無機複合素材を用いることができ、特に、無機多孔質素材料、炭素系多孔質素材、有機ホスト化合物、多孔質有機金属複合材料などを好適に用いることができる。
(Flameable gas absorber)
A porous material is used as the flammable gas absorbing material installed in the gap between the power storage device and the casing. In the present embodiment, as the porous material, an organic material, an inorganic material, or an organic / inorganic composite material can be used, and in particular, an inorganic porous material, a carbon-based porous material, an organic host compound, and a porous organic metal composite can be used. A material or the like can be preferably used.
 無機多孔質素材料としては、多孔質シリカ、金属ポーラス構造体、ケイ酸カルシウム、ケイ酸マグネシウム、メタケイ酸アルミン酸マグネシウム、ゼオライト、活性アルミナ、酸化チタン、アパタイト、多孔質ガラス、酸化マグネシウム、ケイ酸アルミニウム等を用いることができる。 As the inorganic porous material, porous silica, metallic porous structure, calcium silicate, magnesium silicate, magnesium aluminometasilicate, zeolite, activated alumina, titanium oxide, apatite, porous glass, magnesium oxide, aluminum silicate Etc. can be used.
 炭素系多孔質素材としては、粒状活性炭、繊維状活性炭、シート状活性炭、グラファイト、カーボンナノチューブ、フラーレン、ナノカーボン等を用いることができる。 As the carbon-based porous material, granular activated carbon, fibrous activated carbon, sheet-shaped activated carbon, graphite, carbon nanotubes, fullerenes, nanocarbons and the like can be used.
 有機ホスト化合物としては、α-シクロデキストリン、β-シクロデキストリン、γ-シクロデキストリン、カリックスアレン類、尿素、デオキシコール酸、コール酸、1,1,6,6-テトラフェニルヘキサ-2,4-ジイン-1,6-ジオール等のアセチレンアルコール類、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン等のビスフェノール類、 1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン等のテトラキスフェノール類、ビス-β-ナフトール等のナフトール類、ジフェン酸ビス(ジシクロヘキシルアミド)等のカルボン酸アミド類、2,5-ジ-t-ブチルヒドロキノン等のヒドロキノン類、キチン、キトサン等を用いることができる。 Organic host compounds include α-cyclodextrin, β-cyclodextrin, γ-cyclodextrin, calix allenes, urea, deoxycholic acid, phenolic acid, 1,1,6,6-tetraphenylhexa-2,4- Acetylene alcohols such as diine-1,6-diol, bisphenols such as 1,1-bis (4-hydroxyphenyl) cyclohexane, and tetraxphenols such as 1,1,2,2-tetrakis (4-hydroxyphenyl) ethane. , Naftors such as bis-β-naphthol, carboxylic acid amides such as bisdiphenate (dicyclohexylamide), hydroquinones such as 2,5-di-t-butylhydroquinone, chitin, chitosan and the like can be used. ..
 多孔質有機金属複合材料としては、Metal-Organic Framworks(MOF)と呼ばれる多孔質有機金属錯体化合物、有機カルボン酸塩、有機ホウ素化合物、有機りん化合物、有機アルミニウム化合物、有機チタン化合物、有機ケイ素化合物、有機亜鉛化合物、有機マグネシウム化合物、有機インジウム化合物、有機スズ化合物、有機テルル化合物、有機ガリウム化合物等を用いることができる。 Examples of the porous organic metal composite material include a porous organic metal complex compound called Metal-Organic Framworks (MOF), an organic carboxylate, an organic boron compound, an organic phosphorus compound, an organic aluminum compound, an organic titanium compound, and an organic silicon compound. Organic zinc compounds, organic magnesium compounds, organic indium compounds, organic tin compounds, organic tellurium compounds, organic gallium compounds and the like can be used.
 これらの中では、炭素系多孔質素材が好適である。この炭素系多孔質素材は、一般に細孔径と極性とによって、吸着可能な分子の選択性を有する。したがって、メタン、一酸化炭素、エチレン、エタン、プロパンなどの可燃性ガスを吸着できる細孔径と極性とを有するものを用いる。これにより充放電の繰り返し等により蓄電デバイスから発生した可燃性ガスを燃焼濃度以下にまで低下させることができる。 Of these, carbon-based porous materials are suitable. This carbon-based porous material generally has the selectivity of adsorbable molecules depending on the pore size and polarity. Therefore, those having a pore diameter and polarity capable of adsorbing flammable gases such as methane, carbon monoxide, ethylene, ethane, and propane are used. As a result, the flammable gas generated from the power storage device due to repeated charging and discharging can be reduced to the combustion concentration or less.
 また、炭素系多孔質素材は、その表面官能基をメタンやエタンなどの吸着対象となる可燃性ガスを吸着しやすいように極性を付与する調整を行ってもよい。さらに。表面官能基を調整して疎水性を向上させることにより、吸湿性を改善することができる。 Further, the carbon-based porous material may be adjusted to impart polarity to its surface functional group so as to easily adsorb a flammable gas to be adsorbed such as methane or ethane. further. Hygroscopicity can be improved by adjusting the surface functional groups to improve the hydrophobicity.
 上述したような炭素系多孔質素材の表面官能基の調整は、炭素系多孔質素材を炭酸ガス、窒素ガス又はアルゴンガスで賦活処理を行うことにより行うことができる。具体的には、未処理(初期状態)の炭素系多孔質素材の表面は、カルボキシル基やフェノール系水酸基であるが、炭酸ガスで賦活化することにより、その全部または一部を-CH末端とすることができる。また、窒素やアルゴンガスで賦活化することによっても同様の効果を得ることができる。 The surface functional groups of the carbon-based porous material as described above can be adjusted by activating the carbon-based porous material with carbon dioxide gas, nitrogen gas, or argon gas. Specifically, the surface of the untreated (initial state) carbon-based porous material is a carboxyl group or a phenol-based hydroxyl group, but by activating with carbon dioxide gas, all or part of the surface is designated as the -CH end. can do. Further, the same effect can be obtained by activating with nitrogen or argon gas.
 この賦活工程は、例えば、炭酸ガスで賦活化する場合には、炭素系多孔質素材をロータリーキルン式などの炉内に収容し、炉内を窒素などの不活性ガスによって不活性雰囲気としつつ加熱して、所望の賦活温度に到達した後に炭酸ガスを導入することによって炭素系多孔質素材を賦活処理することができる。 In this activation step, for example, when activating with carbon dioxide gas, a carbon-based porous material is housed in a furnace such as a rotary kiln type, and the inside of the furnace is heated with an inert gas such as nitrogen to create an inert atmosphere. Therefore, the carbon-based porous material can be activated by introducing carbon dioxide gas after reaching a desired activation temperature.
 賦活温度は、特に制限はないが350~1000℃が好ましく、800~950℃がより好ましい。温度をこのような範囲とすることで、炭素系多孔質素材の比表面積がより増大する。 The activation temperature is not particularly limited, but is preferably 350 to 1000 ° C, more preferably 800 to 950 ° C. By setting the temperature in such a range, the specific surface area of the carbon-based porous material is further increased.
 賦活温度に到達した後の処理時間(賦活時間)は、炭素系多孔質素材の比表面積を増大させて吸着性能を高めるため、30分以上、特に40分以上であることが好ましい。なお、賦活時間の上限については特に制限はないが、賦活時間が長すぎると細孔容積は大きくなるものの、細孔径がかえって大きくなってしまうため、180分以下、特に120分以下が好ましい。 The treatment time (activation time) after reaching the activation temperature is preferably 30 minutes or more, particularly 40 minutes or more, in order to increase the specific surface area of the carbon-based porous material and enhance the adsorption performance. The upper limit of the activation time is not particularly limited, but if the activation time is too long, the pore volume becomes large, but the pore diameter becomes rather large. Therefore, 180 minutes or less, particularly 120 minutes or less is preferable.
 上述したようなガス吸収材としての炭素系多孔質素材は、比表面積が10~3000m/gの範囲内にあることが好ましい。炭素系多孔質素材の比表面積が10m/g未満では、可燃性ガスの吸着量が少なくなるばかりでなく、噴出する可燃性ガスとの接触効率が低いために、十分な燃焼防止効果が得られないため好ましくない。一方、比表面積が3000m/gを超えてもそれ以上の発火防止効果の向上を得ることができない。 The carbon-based porous material as the gas absorbing material as described above preferably has a specific surface area in the range of 10 to 3000 m 2 / g. When the specific surface area of the carbon-based porous material is less than 10 m 2 / g, not only the adsorption amount of the flammable gas is reduced, but also the contact efficiency with the ejected flammable gas is low, so that a sufficient combustion prevention effect can be obtained. It is not preferable because it cannot be used. On the other hand, even if the specific surface area exceeds 3000 m 2 / g, further improvement in the ignition prevention effect cannot be obtained.
 また、この炭素系多孔質素材は、0.1~10nmの範囲の細孔径を有することが好ましい。細孔径が0.1nm未満では、細孔内での気体の拡散速度が遅くなり、可燃性ガス成分が細孔内に侵入することによる入れ替わりが起こりにくくなるため、可燃性ガス濃度の低減効果が得られなくなる一方、細孔径が10nmを超えると、細孔内での吸着力が弱くなるため、細孔内で可燃性ガスを保持できず、結果として燃焼防止効果が低くなる虞があるため好ましくない。 Further, this carbon-based porous material preferably has a pore diameter in the range of 0.1 to 10 nm. If the pore diameter is less than 0.1 nm, the diffusion rate of the gas in the pores becomes slow, and the combustible gas component is less likely to be replaced due to the invasion into the pores, so that the effect of reducing the flammable gas concentration is obtained. On the other hand, if the pore diameter exceeds 10 nm, the adsorption force in the pores is weakened, so that the flammable gas cannot be retained in the pores, and as a result, the combustion prevention effect may be lowered, which is preferable. Absent.
 さらに、炭素系多孔質素材は、粒径が0.1~5.0mmの範囲にあることが好ましい。粒径が0.1mm以下の場合、可燃性ガスとの接触効率が悪くなるため、燃焼防止効果が低下してしまう。一方、5.0mmを超えると、燃焼ガスが炭素系多孔質素材の粒子の隙間を通過してしまうため、燃焼防止効果が低下する虞があるため好ましくない。 Further, the carbon-based porous material preferably has a particle size in the range of 0.1 to 5.0 mm. When the particle size is 0.1 mm or less, the contact efficiency with the flammable gas is deteriorated, so that the combustion prevention effect is lowered. On the other hand, if it exceeds 5.0 mm, the combustion gas passes through the gaps between the particles of the carbon-based porous material, which may reduce the combustion prevention effect, which is not preferable.
 このような可燃性ガス吸収材としての多孔質素材の細孔内および表面には、不燃性ガスあるいは水系溶媒または不燃性溶媒を吸着させてもよい。多孔質素材の細孔内および表面に吸着される不燃性ガスとしては、二酸化炭素、窒素、ハロゲン、希ガスから選択される1種又は2種以上のガスを好適に用いることができる。 A nonflammable gas, an aqueous solvent, or a nonflammable solvent may be adsorbed in the pores and on the surface of such a porous material as a flammable gas absorber. As the nonflammable gas adsorbed in the pores and on the surface of the porous material, one or more gases selected from carbon dioxide, nitrogen, halogen, and rare gas can be preferably used.
 上述したような可燃性ガス吸収材は、単独で用いてもよいし2種類以上の素材を併用してもよい。 The flammable gas absorber as described above may be used alone or in combination of two or more kinds of materials.
 本実施形態においては、可燃性ガス吸収材は適当な手法を用いて成形してもよい。成形品の形状に特に制限はなく、穎粒、粒状、ビーズ、ペレット、ハニカムなどの形状とすることができるが、蓄電デバイスとケーシングとの空隙に設置する際の取扱い易さを考慮すると、シート状とすることが好ましい。可燃性ガス吸収材をシート状とすることにより、ケーシング内に張り付けたり、隙間部に挿入したり、その設置バリエーションを豊富なものとすることができる。 In the present embodiment, the flammable gas absorber may be molded by using an appropriate method. The shape of the molded product is not particularly limited and may be in the shape of granules, granules, beads, pellets, honeycombs, etc. However, considering the ease of handling when installing in the gap between the power storage device and the casing, the sheet It is preferably shaped. By forming the flammable gas absorber into a sheet shape, it can be attached to the inside of the casing, inserted into the gap, and the installation variation thereof can be enriched.
 上述したような可燃性ガス吸収材の配置量は、蓄電デバイス(蓄電デバイススタック)で使用されている非水電解質の種類及び量により可燃性ガスの種類及び噴出量を推定し、この推定量とケーシング内における空隙の体積と可燃性ガスの燃焼可能濃度と可燃性ガス吸収材の吸収能とにより適宜設定すればよい。具体的には、燃焼可能濃度は例えばメタンは5.3~14.0容積%、エタンは3.2~12.5容積%、一酸化炭素は12.5~74.5容積%であるので、ケーシング内における空隙の体積と可燃性ガスの種類及び噴出量とから、その燃焼可能濃度より低くなるまで吸着可能な量の可燃性ガス吸収材を設置すればよい。 The amount of the flammable gas absorber as described above is determined by estimating the type and amount of the flammable gas based on the type and amount of the non-aqueous electrolyte used in the power storage device (power storage device stack), and using this estimated amount. It may be appropriately set according to the volume of the voids in the casing, the combustible concentration of the flammable gas, and the absorbency of the flammable gas absorber. Specifically, the combustible concentration is, for example, 5.3 to 14.0% by volume for methane, 3.2 to 12.5% by volume for ethane, and 12.5 to 74.5% by volume for carbon monoxide. From the volume of the voids in the casing, the type of flammable gas, and the amount of ejected gas, an amount of flammable gas absorber that can be adsorbed until the concentration becomes lower than the combustible concentration may be installed.
 以上、本発明の蓄電デバイス構造体について説明してきたが、本発明は蓄電デバイス(蓄電デバイススタック)とケーシングとの間の空隙に可燃性ガス吸収材を配置しさえすればよく、蓄電デバイス(蓄電デバイススタック)の大きさ、形状などは特に制限されない。そのため、スマートフォンから車載用など幅広い大きさの蓄電デバイス(蓄電デバイススタック)にまで適用可能である。 Although the power storage device structure of the present invention has been described above, in the present invention, it is only necessary to dispose a flammable gas absorber in the gap between the power storage device (power storage device stack) and the casing, and the power storage device (power storage device) The size and shape of the device stack) are not particularly limited. Therefore, it can be applied to a wide range of power storage devices (power storage device stacks) such as smartphones and in-vehicle devices.
 以下の具体的な実施例に基づき本発明をさらに詳細に説明するが、本発明は下記の実施例に限定されるものではない。 The present invention will be described in more detail based on the following specific examples, but the present invention is not limited to the following examples.
(比較例1)
 蓄電デバイスとして正極LCOで1100mAhのリチウムイオン電池を、4.2V0.3Aで0.03Aになるまで予備充電し、その後5V0.5Aで2時間過充電し、開放電圧4.5V以上の状態でこのリチウムイオン電池に釘を刺して強制的に短絡させる、釘刺し試験を行った。使用した釘の直径は2.5mmで、釘刺し速度は80mm/秒で電池を貫通させた。この結果、短絡による火花の発生を確認するとともに激しい発火が確認された。
(Comparative Example 1)
As a power storage device, a 1100 mAh lithium-ion battery with a positive electrode LCO is precharged at 4.2 V0.3 A until it reaches 0.03 A, then overcharged at 5 V 0.5 A for 2 hours, and this is performed with an open circuit voltage of 4.5 V or higher. A nail piercing test was conducted in which a lithium-ion battery was pierced with a nail and forced to short-circuit. The diameter of the nail used was 2.5 mm, and the nail piercing speed was 80 mm / sec, and the battery was penetrated. As a result, it was confirmed that sparks were generated due to the short circuit and that severe ignition was confirmed.
(比較例2)
 比較例1で使用したリチウムイオン電池1個を、4.2V0.3Aで0.03Aになるまで予備充電し、その後5V0.5Aで2時間過充電し、開放電圧4.5V以上の状態で、ケーシングとして15cm×20cm×5cmの樹脂製耐圧容器(容器上部に10mmΦの釘刺し穴、容器底部に10mmΦのガス抜き孔を4箇所形成)に入れて、比較例1と同様にして釘刺し試験を行った。この結果、短絡による火花の発生を確認するとともに、樹脂製耐圧容器の底部に形成したガス抜き孔から激しく発火し、樹脂製耐圧容器の外部にまで延焼する危険性があることが確認された。
(Comparative Example 2)
One lithium-ion battery used in Comparative Example 1 was precharged at 4.2V 0.3A until 0.03A, then overcharged at 5V 0.5A for 2 hours, and at an open circuit voltage of 4.5V or higher. Place the casing in a 15 cm x 20 cm x 5 cm resin pressure-resistant container (10 mmΦ nail piercing holes are formed at the top of the container and four 10 mmΦ gas vent holes are formed at the bottom of the container), and a nail piercing test is performed in the same manner as in Comparative Example 1. went. As a result, it was confirmed that sparks were generated due to a short circuit, and that there was a risk of violent ignition from the gas vent hole formed at the bottom of the resin pressure-resistant container and spreading to the outside of the resin pressure-resistant container.
(比較例3)
 比較例2において、2個のリチウムイオン電池とした以外は同様にして釘刺し試験を行った。この結果、短絡による火花の発生を確認するとともに、樹脂製耐圧容器の底部に形成したガス抜き孔から激しく発火し、樹脂製耐圧容器の外部にまで延焼する危険性があることが確認された。
(Comparative Example 3)
In Comparative Example 2, a nail piercing test was carried out in the same manner except that two lithium ion batteries were used. As a result, it was confirmed that sparks were generated due to a short circuit, and that there was a risk of violent ignition from the gas vent hole formed at the bottom of the resin pressure-resistant container and spreading to the outside of the resin pressure-resistant container.
(実施例1)
 比較例2において、樹脂製耐圧容器内に可燃性ガスであるメタンガスを吸収する炭素系多孔質素材(メタンガス吸収性能28ml/g、比表面積780m/g、平均細孔径0.7nm、粒径0.7~1.0mmのペレット状)を3g入れて、比較例1と同様にして釘刺し試験を行った。この結果、樹脂製耐圧容器内で短絡による火花の発生は確認できたが、樹脂製耐圧容器内での発火が継続することはなく、樹脂製耐圧容器の外部にまで延焼する危険性がないことが確認された。
(Example 1)
In Comparative Example 2, a carbon-based porous material (methane gas absorption performance 28 ml / g, specific surface area 780 m 2 / g, average pore diameter 0.7 nm, particle size 0) that absorbs methane gas, which is a flammable gas, in a resin pressure-resistant container. A nail piercing test was carried out in the same manner as in Comparative Example 1 by adding 3 g of (a pellet of .7 to 1.0 mm). As a result, it was confirmed that sparks were generated due to a short circuit in the resin pressure-resistant container, but the ignition did not continue in the resin pressure-resistant container and there was no risk of the fire spreading to the outside of the resin pressure-resistant container. Was confirmed.
(実施例2)
 比較例2において、樹脂製耐圧容器内に可燃性ガスであるメタンガスを吸収するシート状炭素系多孔質素材(実施例1の炭素系多孔質素材をシート状に加工したもの。メタンガス吸収性能19ml/g、シート厚さ80μm)を2g入れて、比較例1と同様にして釘刺し試験を行った。この結果、樹脂製耐圧容器内で短絡による火花の発生は確認できたが、樹脂製耐圧容器内での発火が継続することはなく、樹脂製耐圧容器の外部にまで延焼する危険性がないことが確認された。
(Example 2)
In Comparative Example 2, a sheet-shaped carbon-based porous material that absorbs methane gas, which is a flammable gas, in a resin pressure-resistant container (a sheet-shaped processed carbon-based porous material of Example 1. Methane gas absorption performance 19 ml / 2 g (g, sheet thickness 80 μm) was added, and a nail piercing test was conducted in the same manner as in Comparative Example 1. As a result, it was confirmed that sparks were generated due to a short circuit in the resin pressure-resistant container, but the ignition did not continue in the resin pressure-resistant container and there was no risk of the fire spreading to the outside of the resin pressure-resistant container. Was confirmed.

Claims (9)

  1.  蓄電デバイスと、該蓄電デバイスを空隙を有して外包するケーシングとからなる蓄電デバイス構造体であって、
     前記蓄電デバイスとケーシングとの空隙に、前記蓄電デバイスから発生する可能性のある可燃性ガスの吸収能を有する可燃性ガス吸収材を配置した、蓄電デバイス構造体。
    A power storage device structure including a power storage device and a casing that encloses the power storage device with a gap.
    A power storage device structure in which a flammable gas absorbing material having an ability to absorb flammable gas that may be generated from the power storage device is arranged in a gap between the power storage device and the casing.
  2.  前記蓄電デバイスから発生する可能性のある可燃性ガスが、メタン、一酸化炭素、エチレン、エタン又はプロパンを含有する、請求項1に記載の蓄電デバイス構造体。 The power storage device structure according to claim 1, wherein the flammable gas that may be generated from the power storage device contains methane, carbon monoxide, ethylene, ethane or propane.
  3.  前記蓄電デバイスが非水電解質を用いたものである、請求項1又は2に記載の蓄電デバイス構造体。 The power storage device structure according to claim 1 or 2, wherein the power storage device uses a non-aqueous electrolyte.
  4.  前記可燃性ガス吸収材が、比表面積が10~3000m/gの多孔質素材である、請求項1~3のいずれかに記載の蓄電デバイス構造体。 The power storage device structure according to any one of claims 1 to 3, wherein the flammable gas absorbing material is a porous material having a specific surface area of 10 to 3000 m 2 / g.
  5.  前記可燃性ガス吸収材が、0.1~10nmの細孔径を有する多孔質素材である、請求項1~4のいずれか1項に記載の蓄電デバイス構造体。 The power storage device structure according to any one of claims 1 to 4, wherein the flammable gas absorbent is a porous material having a pore diameter of 0.1 to 10 nm.
  6.  前記可燃性ガス吸収材が、0.1~5.0mmの平均粒子径を有する多孔質素材である、請求項1~5のいずれか1項に記載の蓄電デバイス構造体。 The power storage device structure according to any one of claims 1 to 5, wherein the flammable gas absorber is a porous material having an average particle diameter of 0.1 to 5.0 mm.
  7.  前記可燃性ガス吸収材が、前記多孔質素材の粉末をシート状に加工した成形品である、請求項4~6のいずれか1項に記載の蓄電デバイス構造体。 The power storage device structure according to any one of claims 4 to 6, wherein the flammable gas absorbing material is a molded product obtained by processing the powder of the porous material into a sheet shape.
  8.  前記可燃性ガス吸収材の細孔内および表面に不燃性ガスあるいは水系溶媒または不燃性溶媒を吸着させた、請求項1~7のいずれか1項に記載の蓄電デバイス構造体。 The power storage device structure according to any one of claims 1 to 7, wherein a nonflammable gas, an aqueous solvent, or a nonflammable solvent is adsorbed in the pores and the surface of the flammable gas absorbent.
  9.  前記蓄電デバイスが複数積層されている、請求項1~8のいずれか1項に記載の蓄電デバイス構造体。 The power storage device structure according to any one of claims 1 to 8, wherein a plurality of the power storage devices are stacked.
PCT/JP2019/048508 2019-07-05 2019-12-11 Power storage device structure WO2021005812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-126420 2019-07-05
JP2019126420 2019-07-05

Publications (1)

Publication Number Publication Date
WO2021005812A1 true WO2021005812A1 (en) 2021-01-14

Family

ID=74114511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048508 WO2021005812A1 (en) 2019-07-05 2019-12-11 Power storage device structure

Country Status (2)

Country Link
JP (1) JP2021012865A (en)
WO (1) WO2021005812A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228610A (en) * 2005-02-18 2006-08-31 Densei Lambda Kk Secondary battery pack
WO2012073432A1 (en) * 2010-12-03 2012-06-07 パナソニック株式会社 Battery pack
JP2012517080A (en) * 2009-02-06 2012-07-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Battery module
WO2013069308A1 (en) * 2011-11-11 2013-05-16 パナソニック株式会社 Battery pack
JP2013187089A (en) * 2012-03-08 2013-09-19 Kurita Water Ind Ltd Ignition prevention material of power storage device, ignition prevention system including ignition prevention material, and power storage system using ignition prevention system
JP2014135234A (en) * 2013-01-11 2014-07-24 Mitsubishi Electric Corp Battery pack
JP2015135749A (en) * 2014-01-17 2015-07-27 栗田工業株式会社 Lithium ion battery, and electronic device using the same
WO2019097739A1 (en) * 2017-11-15 2019-05-23 栗田工業株式会社 Gas absorbing material for lithium ion batteries

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006228610A (en) * 2005-02-18 2006-08-31 Densei Lambda Kk Secondary battery pack
JP2012517080A (en) * 2009-02-06 2012-07-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Battery module
WO2012073432A1 (en) * 2010-12-03 2012-06-07 パナソニック株式会社 Battery pack
WO2013069308A1 (en) * 2011-11-11 2013-05-16 パナソニック株式会社 Battery pack
JP2013187089A (en) * 2012-03-08 2013-09-19 Kurita Water Ind Ltd Ignition prevention material of power storage device, ignition prevention system including ignition prevention material, and power storage system using ignition prevention system
JP2014135234A (en) * 2013-01-11 2014-07-24 Mitsubishi Electric Corp Battery pack
JP2015135749A (en) * 2014-01-17 2015-07-27 栗田工業株式会社 Lithium ion battery, and electronic device using the same
WO2019097739A1 (en) * 2017-11-15 2019-05-23 栗田工業株式会社 Gas absorbing material for lithium ion batteries

Also Published As

Publication number Publication date
JP2021012865A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP5966457B2 (en) Ignition prevention material for electricity storage device, ignition prevention system including this ignition prevention material, and electricity storage system using this ignition prevention system
JP5969159B2 (en) Electrochemical element with improved heat resistance
CN112310533B (en) Battery box and device
KR102647517B1 (en) Electrodes for non-aqueous electrolyte cells and non-aqueous electrolyte cells
WO2022246841A1 (en) Gas adsorption apparatus, end cover assembly, battery cell, battery, and electrical device
JP4880330B2 (en) Non-aqueous electrolyte secondary battery
JP2022133893A (en) Power storage device structure body
KR20220085788A (en) Electrode for non-aqueous electrolyte electrical storage device, non-aqueous electrolyte electrical storage device, and manufacturing method thereof
JPH10255860A (en) Nonaqueous battery
WO2015140984A1 (en) Electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery and battery pack
CN113629306A (en) Adsorption structure of large-capacity battery
CN114094099B (en) Thermal runaway inhibitor and application thereof
KR20130043734A (en) Secondary battery of improved stability
WO2021005812A1 (en) Power storage device structure
JP2019091675A (en) Gas-absorbent material for lithium ion battery
WO2019097739A1 (en) Gas absorbing material for lithium ion batteries
WO2021111647A1 (en) Ignition prevention apparatus for power storage device
US20240055720A1 (en) Secondary battery including gas adsorption material, and secondary battery module
WO2022202309A1 (en) Power storage device structure
CN216648499U (en) Battery protection box used during charging of electric vehicle
JP2022169370A (en) Storage device structure
WO2015008341A1 (en) Secondary battery module and battery system
WO2023210264A1 (en) Power storage device structure
WO2023063002A1 (en) Power storage device transport container and method for transporting power storage device using same
WO2023074158A1 (en) Transport container for power storage devices, and method for transporting power storage device using same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937225

Country of ref document: EP

Kind code of ref document: A1