WO2021005770A1 - Terminal and wireless communication method - Google Patents

Terminal and wireless communication method Download PDF

Info

Publication number
WO2021005770A1
WO2021005770A1 PCT/JP2019/027421 JP2019027421W WO2021005770A1 WO 2021005770 A1 WO2021005770 A1 WO 2021005770A1 JP 2019027421 W JP2019027421 W JP 2019027421W WO 2021005770 A1 WO2021005770 A1 WO 2021005770A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
transmission
segment
segments
uplink shared
Prior art date
Application number
PCT/JP2019/027421
Other languages
French (fr)
Japanese (ja)
Inventor
優元 ▲高▼橋
翔平 吉岡
聡 永田
リフェ ワン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201980100175.0A priority Critical patent/CN114365558A/en
Priority to PCT/JP2019/027421 priority patent/WO2021005770A1/en
Priority to US17/625,580 priority patent/US20220295519A1/en
Priority to EP19937136.0A priority patent/EP3998815A1/en
Priority to JP2021530442A priority patent/JP7337928B2/en
Publication of WO2021005770A1 publication Critical patent/WO2021005770A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • the user terminal In the existing LTE system (for example, 3GPP Rel.8-14), the user terminal (UE: User Equipment) is based on the downlink control information (DCI: Downlink Control Information, DL assignment, etc.) from the base station. , Controls the reception of downlink shared channels (for example, PDSCH: Physical Downlink Shared Channel). Further, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • DCI Downlink Control Information
  • DL assignment Downlink assignment
  • DCI Downlink Control Information
  • PDSCH Physical Downlink Shared Channel
  • the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
  • future wireless communication systems eg, NR will support scheduling of at least one (also referred to as channel / signal) of a given channel and signal across a slot boundary at a given transmission opportunity.
  • the channel / signal may be, for example, a shared channel (eg, uplink shared channel (eg, PUSCH)) or downlink shared channel (eg, PDSCH).
  • the UE controls transmission or reception by dividing the shared channel scheduled across the slot boundary (or across the slot boundary) into a plurality of segments.
  • the problem is how to control the shared channel when transmitting or receiving by dividing it into segments.
  • One of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately performing communication even when a predetermined channel / signal is divided and transmitted or received.
  • the terminal has a receiving unit that receives information instructing transmission of an uplink shared channel, and when the uplink shared channel is divided into a plurality of segments and transmitted, the terminal is described for at least one segment. It is characterized by having a redundant version different from the redundant version set in the uplink shared channel, and a control unit for controlling to apply at least one of the parameter values related to the overhead set in the uplink shared channel and different values. And.
  • communication can be appropriately performed even when a predetermined channel / signal is divided and transmitted or received.
  • FIG. 1 is a diagram showing an example of allocation of a shared channel (for example, PUSCH).
  • FIG. 2 is a diagram showing an example of multi-segment transmission.
  • FIG. 3 is a diagram showing an example of an MCS table.
  • FIG. 4 is a diagram showing an example of a redundant version applied to a plurality of PUSCH transmissions (for example, repeated PUSCHs).
  • 5A-5E are diagrams showing an example of transmission conditions or transmission parameters applied to a plurality of segments.
  • FIG. 6 is a diagram showing other examples of transmission conditions or transmission parameters applied to a plurality of segments.
  • FIG. 7 is a diagram showing other examples of transmission conditions or transmission parameters applied to a plurality of segments.
  • FIG. 8 is a diagram illustrating a self-decoderable redundant version.
  • FIG. 9 is a diagram showing an example of RV applied to a plurality of segments.
  • FIG. 10 is a diagram showing another example of RV applied to a plurality of segments.
  • FIG. 11 is a diagram showing another example of RV applied to a plurality of segments.
  • FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the UE refers to an uplink shared channel (eg, PUSCH) or a downlink shared channel (eg, PDSCH) for a transmission occasion (also referred to as period, opportunity, etc.). It has been considered to allocate time domain resources (eg, a predetermined number of symbols) within a single slot.
  • PUSCH uplink shared channel
  • PDSCH downlink shared channel
  • the UE may transmit one or more transport blocks (Transport Block (TB)) at a certain transmission opportunity using the PUSCH assigned to a predetermined number of consecutive symbols in the slot.
  • the UE may also transmit one or more TBs at a transmission opportunity using the PDSCH assigned to a predetermined number of consecutive symbols in the slot.
  • Transport Block TB
  • time domain resources may be allocated across slot boundaries (or across a plurality of slots) for PUSCH or PDSCH of a certain transmission opportunity. Assumed (see Figure 1).
  • FIG. 1 shows a case where PUSCHs are assigned across (or crossing) a slot boundary in addition to PUSCHs assigned to a predetermined number of consecutive slots (7 symbols in this case) in one slot.
  • the PUSCHs assigned to the symbols # 10 to # 13 of slot #n and the symbols # 0 to # 3 of slot # n + 1 are transmitted across the slot boundary. Further, as shown in FIG. 1, when the PUSCH is repeatedly transmitted over a plurality of transmission opportunities, it is assumed that at least a part of the transmission opportunities or the repeated transmissions are transmitted across the slot boundary.
  • Channel / signal transmission using time domain resources allocated across slot boundaries includes multi-segment transmission, 2-segment transmission, cross-slot boundary transmission, discontinuous transmission, multiple division transmission, etc. be called.
  • reception of channels / signals transmitted across slot boundaries is also referred to as multi-segment reception, two-segment reception, cross-slot boundary reception, discontinuous reception, multiple division reception, and the like.
  • FIG. 2 is a diagram showing an example of multi-segment transmission.
  • the multi-segment transmission of PUSCH is illustrated in FIG. 2, it may be replaced with another signal / channel (for example, PDSCH or the like).
  • PDSCH PDSCH
  • the case where each segment is divided based on the slot boundary is shown, but the criterion for dividing into each segment is not limited to the slot boundary.
  • the case where the symbol length of PUSCH is 7 symbols is shown, but the present invention is not limited to this, and any symbol longer than 2 symbol lengths can be similarly applied.
  • the UE may control the transmission of the PUSCH allocated (or scheduled) in one slot or the PUSCH allocated across a plurality of slots based on a predetermined number of segments.
  • the UE may divide (or split, split) the PUSCH into a plurality of segments to control the transmission process. For example, the UE may map each segment divided relative to a slot boundary to a predetermined number of assigned symbols in the slot to which each segment corresponds.
  • the “segment” may be a predetermined number of symbols in each slot assigned to one transmission opportunity or data transmitted with the predetermined number of symbols. For example, if the first symbol of the PUSCH assigned in one transmission opportunity is in the first slot and the last symbol is in the second slot, for the PUSCH, one or more symbols contained in the first slot are used in the first segment. , One or more symbols contained in the second slot may be the second segment.
  • each segment is a predetermined data unit and may be at least a part of one or a plurality of TBs.
  • each segment is composed of one or more TBs, one or more code blocks (Code Block (CB)), or one or more code block groups (Code Block Group (CBG)). May be good.
  • CB code Block
  • CBG code Block Group
  • 1CB is a unit for coding TB, and TB may be divided into one or a plurality (CB segmentation). Further, 1 CBG may include a predetermined number of CBs. The divided segment may be called a short segment.
  • the size (number of bits) of each segment may be determined based on, for example, at least one of the number of slots to which PUSCH is allocated, the number of allocated symbols in each slot, and the ratio of the number of allocated symbols in each slot. Also, the number of segments may be determined based on the number of slots to which the PUSCH is allocated.
  • PUSCHs assigned to symbols # 5 to # 11 of slot #n are transmitted within a single slot (single segment) without straddling slot boundaries.
  • the transmission of PUSCH without straddling the slot boundary is a single-segment transmission and one segment (one-). It may be called segment transmission, non-segmented transmission, or the like.
  • the PUSCHs assigned to the symbols # 10 to # 13 of slot #n and the symbols # 0 to # 2 of slot # n + 1 are transmitted across the slot boundary.
  • the transmission of PUSCH across the slot boundary is a multi-segment transmission, a two-segment transmission, It may also be called cross-slot boundary transmission or the like.
  • the multi-segment transmission may be applied to at least a part of the transmission opportunities.
  • the PUSCH is repeated twice, the single-segment transmission is applied to the first PUSCH transmission, and the multi-segment transmission is applied to the second PUSCH transmission.
  • repeated transmission may be performed in one or more time units.
  • Each transmission opportunity may be provided in each time unit.
  • Each time unit may be, for example, a slot or a time unit shorter than the slot (eg, also referred to as a mini slot, subslot, half slot, etc.).
  • FIG. 2 shows repeated transmission using a 7-symbol mini-slot, but the unit of repeated transmission (for example, symbol length) is not limited to that shown in FIG.
  • the fact that the number of repetitions is 1, may indicate that the PUSCH or PDSCH is transmitted once (no repetition).
  • repeated transmission may be referred to as slot-aggregation transmission, multi-slot transmission, or the like.
  • the number of iterations (aggregation number, aggregation factor) N may be specified to the UE by at least one of the upper layer parameter (for example, "pusch-Aggregation Factor” or "pdsch-Aggregation Factor” of RRC IE) and DCI.
  • the upper layer parameter for example, "pusch-Aggregation Factor” or "pdsch-Aggregation Factor” of RRC IE
  • transmission opportunities, repeats, slots, mini-slots, etc. can be paraphrased with each other.
  • the PUSCH also called nominal PUSCH
  • a symbol for example, 7 symbols
  • the UE divides the PUSCH into a plurality of segments (or repetition) to control transmission.
  • the PUSCH when the PUSCH is divided into a plurality of segments and transmitted, how to control the transmission becomes a problem. For example, when the UE transmits PUSCH, transmission is performed using predetermined transmission conditions or transmission parameters, but how to control the transmission conditions or transmission parameters of the divided segments becomes a problem.
  • the transmission condition at least one of the transport block size (TBS) and the redundant version (Redundancy Version (RV)) can be considered.
  • FIG. 3 is a diagram showing an example of an MCS table in the future wireless communication system. Note that FIG. 3 is merely an example and is not limited to the values shown, and some items (fields) may be deleted or items not shown may be added.
  • the modulation order (Modulation order), the coding rate (also referred to as the assumed coding rate, the target coding rate, etc.), the modulation order, and the coding
  • a table (MCS table) associated with an index indicating the rate (for example, MCS index) may be specified (may be stored in the user terminal).
  • MCS table in addition to the above three items, spectral efficiency (Spectral efficiency) may be associated.
  • the user terminal receives the DCI (DL assignment, at least one of DCI formats 1_0 and 1-11) for scheduling the PDSCH, and is used for the PDSCH based on the MCS table (FIG. 3) and the MCS index included in the DCI.
  • the modulation order (Qm) and the coding rate (R) may be determined.
  • the user terminal receives the DCI (UL grant, at least one of DCI formats 0_0 and 0_1) for scheduling the PUSCH, and uses the MCS table (FIG. 3) and the MCS index included in the DCI for the PUSCH.
  • the modulation order (Qm) and the coding rate (R) of the above may be determined.
  • the user terminal may determine the TBS using at least one of the following steps 1) to 4).
  • steps 1) to 4 the determination of the TBS for PDSCH will be described as an example, but in the determination of the TBS for PUSCH, "PDSCH" in the following steps 1) to 4) will be changed to "PUSCH". It can be replaced and applied as appropriate.
  • Step 1) The user terminal determines the number of REs (N REs ) in the slot.
  • the user terminal may determine the number of RE assigned to PDSCH in 1PRB (N 'RE). For example, the user terminal, based on at least one parameter represented by the following formula (1) may determine the number of RE assigned to PDSCH in PRB (N 'RE).
  • N sh symb is the number of symbols (eg, OFDM symbols) scheduled in the slot.
  • N PRB DMRS is the number of REs for DMRS per PRB within the scheduled period.
  • the number of REs for the DMRS may include group overhead for Code Division Multiplexing (CDM) of the DMRS, as indicated by the DCI (eg, at least one of DCI formats 1_0, 1_1, 0_0 and 0_1). ..
  • CDM Code Division Multiplexing
  • N PRB oh may be a value set by the upper layer parameter.
  • N PRB oh is the overhead indicated by the upper layer parameter (Xoh-PDSCH) and may be any value of 0, 6, 12 or 18. If the Xoh-PDSCH is not set (notified) in the user terminal, the Xoh-PDSCH may be set to 0. Further, in the message 3 (msg3) in the random access procedure, Xoh-PUSCH is set to 0.
  • the user terminal may determine the total number of REs (N RE ) assigned to the PDSCH.
  • User terminal determined on the basis of the total number of PRB allocated to the number (N 'RE) and the user terminal of RE assigned to PDSCH in PRB (n PRB), the total number of RE assigned to the PDSCH of (N RE) (For example, the following equation (2)) may be used.
  • the user terminal quantizes the number of RE assigned to PDSCH in 1PRB the (N 'RE) according to a predetermined rule, the total number of PRB allocated to the quantized RE number and a user terminal and (n PRB)
  • the total number of REs assigned to the PDSCH (N RE ) may be determined based on.
  • Step 2 The user terminal determines an intermediate number of information bits (intermediate number) (N info) . Specifically, the user terminal may determine the median number (N info ) based on at least one parameter represented by the following equation (3).
  • the median number (N info ) may be referred to as a temporary TBS (TBS emp ) or the like.
  • N RE is the total number of REs assigned to PDSCH.
  • R is the code rate associated with the MCS index included in the DCI in the MCS table (eg, FIG. 3).
  • Q m is the modulation order associated with the MCS index included in the DCI in the MCS table.
  • v is the number of PDSCH layers.
  • Step 3 When the intermediate number ( Ninfo ) of the information bits determined in step 2) is equal to or less than (or less than) a predetermined threshold value (for example, 3824), the user terminal quantizes the intermediate number and quantizes the intermediate number.
  • the number (N'info) may be determined.
  • the user terminal may calculate the quantized intermediate number (N'info) using, for example, the equation (4).
  • the user terminal uses a predetermined table (for example, a table that associates the TBS with the index (also referred to as a quantization table or a TBS table)) and is equal to or larger than the quantized intermediate number (N'info). You may find the closest TBS (not less than).
  • a predetermined table for example, a table that associates the TBS with the index (also referred to as a quantization table or a TBS table)
  • N'info quantized intermediate number
  • Step 4) On the other hand, when the median number (N info ) of the information bits determined in step 2) is greater than (or greater than or equal to) a predetermined threshold value (for example, 3824), the user terminal quantizes the median number (N info ).
  • the quantized intermediate number (N'info) may be determined.
  • the user terminal may calculate the quantized intermediate number (N'info) using, for example, the equation (5).
  • the round function may be rounded up.
  • TBS may be determined based on at least one parameter represented by the following formula (6) (for example, using the formula (6)).
  • N'info is a quantized intermediate number, and may be calculated using, for example, the above equation (5).
  • C may be the number of code blocks (CB: code bock) in which TB is divided.
  • the coding rate (R) is greater than (or greater than or equal to) a predetermined threshold value (for example, 1/4), and the quantized intermediate number (N'info) of the information bits is a predetermined threshold value (N'info).
  • a predetermined threshold value for example, 1/4
  • N'info quantized intermediate number of the information bits
  • the coding rate (R) is equal to or less than (for example, 1/4) a predetermined threshold value (for example, less than 1/4), and the quantized intermediate number (N'info) is a predetermined threshold value (for example, 8424). If less than (or less than), the user terminal may determine the TBS based on at least one parameter represented by the following equation (8) (eg, using equation (8)).
  • the user terminal has at least the number of REs (N RE ), the coding rate (R), the modulation order (Qm), and the number of layers available for PDSCH or PUSCH in the slot.
  • the median number (N info ) of the information bits is determined based on one, and the TBS for PDSCH or PUSCH is determined based on the median number (N'info) obtained by quantizing the median number (N info ). Is being considered.
  • ⁇ Redundant version> When transmitting a plurality of shared channels (for example, PUSCH) or repeatedly transmitting a PUSCH, a predetermined redundant version (RV) is applied to each PUSCH transmission.
  • a predetermined redundant version RV
  • the RV applied to the nth transmission opportunity of the TB may be determined based on a predetermined rule. For example, for repeated transmissions of PUSCH scheduled by CRC scrambled PDCCH (or DCI) using a predetermined RNTI, the RV is determined based on the information notified by DCI and the index of transmission opportunity. May be good.
  • the UE determines the RV (which may be read as RV index, RV value, etc.) corresponding to the nth iteration based on the value of a predetermined field (for example, RV field) in the DCI that schedules the PDSCH iteration. You may.
  • the nth repetition may be read as the n-1th repetition with each other (for example, the first repetition may be expressed as the 0th repetition).
  • the UE may determine the RV index to be applied to the first iteration based on the 2-bit RV field. For example, if the value of the RV field is "00", “01”, “10", “11”, the RV index of the first repetition is “0", “1", “2", “3”, respectively. It may correspond to'.
  • FIG. 4 is a diagram showing an example of RV mapping for each transmission opportunity.
  • the leftmost column of the table in FIG. 4 shows the RV index (rv id ) indicated by the RV field.
  • the UE may determine the RV index applied to the nth iteration (transmission opportunity) according to this value.
  • the particular RV sequence may be an RV sequence (eg, RV sequence ⁇ # 0, # 2, # 3, # 1 ⁇ ) that includes different RV indexes (does not contain the same RV index).
  • the RV sequence may be composed of one or more RV indexes.
  • RV sequences greater than 1 include, for example, RV sequences ⁇ # 0, # 2, # 3, # 1 ⁇ , ⁇ # 0, # 3, # 0, # 3 ⁇ , ⁇ # 0, # 0, # 0, It may include # 0 ⁇ and the like.
  • the number of RV sequences applied may be set depending on the transmission type. For example, one RV sequence may be applied to a dynamic-based PUSCH transmission in which PUSCH is scheduled in DCI, and a plurality of RV sequences may be applied to a set grant-based PUSCH transmission.
  • the UE may set at least one of the more than 1 RV sequences by higher layer signaling for PUSCH iterations. For example, the UE may determine the RV index to be applied to the first iteration from the set RV sequence based on the 2-bit RV field. The UE may determine the RV index applied to the nth iteration (transmission opportunity), as described above in the first mapping, based on the RV index applied to the first iteration.
  • RV sequences ⁇ # 0, # 2, # 3, # 1 ⁇ , ⁇ # 0, # 3, # 0, # 3 ⁇ , and ⁇ # 0, by higher layer signaling At least one of # 0, # 0, # 0 ⁇ may be set.
  • TBS transport block size
  • RV redundant version
  • the present inventors have studied how to apply transmission conditions or parameters to a plurality of segments of a shared channel, and have reached the present invention.
  • first to third aspects may be used individually, or at least two may be applied in combination.
  • the following description will be given by taking an uplink shared channel (for example, PUSCH) as an example, but the applicable signal / channel is not limited to this.
  • the present embodiment may be applied by replacing PUSCH with PDSCH and transmitting with receiving.
  • the following aspects are at least a shared channel (PUSCH or PDSCH) to which repeated transmission (also referred to as repetition or nominal repetition) is applied, and a shared channel to which repeated transmission is not applied (or the number of repetitions is 1). Applicable to one.
  • PUSCH or PDSCH shared channel to which repeated transmission is not applied
  • the TBS of each segment after the division is determined based on a predetermined condition.
  • the predetermined condition may be a transmission condition or a transmission parameter including at least one of time, frequency (freq), modulation coding method (MCS), and number of layers (layer).
  • the modulation coding method (MCS) may be at least one of a modulation order (Modulation order) and a coding rate (target code rate).
  • the UE may control the TBSs of the divided plurality of segments to be the same. Further, the TBS of the PUSCH before the division (also referred to as the original TBS) and the TBS of each segment after the division may be controlled to be the same. By transmitting TB using the same TBS among a plurality of PUSCH transmissions, it becomes possible to appropriately combine a plurality of TBs on the receiving side (for example, a base station on the uplink).
  • the UE sets the conditions such as time, frequency (freq), modulation coding method (MCS), and number of layers (layer) for the TBS of each PUSCH transmission (for example, single-segment PUSCH or multi-segment PUSCH). It may be decided based on. For example, the TBS may be determined based on step 1) -step 4) described above.
  • the allocation in the time direction of each segment (for example, the number of symbols) is smaller than that of the original PUSCH. Therefore, when the TBS of each segment is the same as the original TBS, other transmission conditions or transmission parameters (for example, at least one of frequency, MCS and layer) are changed, or a predetermined MCS index is applied. You may. For example, the UE may change the transmission conditions or transmission parameters applied to each segment based on at least one of the following options 1-1 to 1-5.
  • the frequency resources to be allocated may be increased for at least one of the plurality of segments. That is, in the parameter for determining TBS, since the number of symbols corresponding to the time parameter is reduced by the division, the frequency resource corresponding to the frequency (freq) parameter is increased (see FIGS. 5A and 6).
  • the UE may allocate by increasing the number of allocated PRBs of at least one of the plurality of segments from the number of allocated PRBs of PUSCH before division (also referred to as the number of original PRBs).
  • the number of PUSCH allocated PRBs before division may be specified by the DCI that schedules the PUSCH.
  • the number of allocated PRBs for each segment may be controlled to increase by the same number. For example, when the PUSCH is divided into a first segment and a second segment, the number of allocated PRBs in the first segment and the number of allocated PRBs in the second segment may be changed (for example, increased) in common. ..
  • the number of allocated PRBs for each segment may be controlled to be increased separately.
  • an increasing frequency resource eg, PRB number
  • the time resource eg, number of symbols
  • the number of PRBs in the first segment having a small number of symbols may be changed to be larger than the number of PRBs in the second segment having a larger number of symbols than the first segment (see the repeated transmission in FIG. 6). ..
  • Information about the frequency resources applied to each segment may be predefined in the specification, or the base station notifies the UE using at least one of higher layer signaling and DCI. You may.
  • the original PUSCH eg, the first assigned PUSCH
  • the original PUSCH eg, the first assigned PUSCH
  • the MCS (eg, at least one of modulation order and code rate) may be increased for at least one of the plurality of segments. That is, in the parameter for determining TBS, the number of symbols corresponding to the time parameter is reduced by the division, so that the MCS is increased (see FIG. 5B).
  • the MCS may be at least one of the modulation order and the coding rate, or may be an MCS index.
  • the UE may allocate at least one MCS of a plurality of segments by increasing the MCS of the PUSCH before division (also referred to as an original MCS).
  • the MCS of the PUSCH before the division may be specified by the DCI that schedules the PUSCH.
  • the MCS of each segment may be controlled to increase by the same number. For example, when the PUSCH is divided into a first segment and a second segment, the MCS of the first segment and the MCS of the second segment may be changed (for example, increased) in common.
  • the MCS of each segment may be controlled to be increased separately.
  • the increasing MCS may be determined based on the time resources of each segment (eg, the number of symbols).
  • the MCS of the first segment having a small number of symbols may be changed to be larger than the MCS of the second segment having a larger number of symbols than the first segment.
  • Information about the MCS applied to each segment may be predefined in the specification, or the base station may notify the UE using at least one of higher layer signaling and DCI. Good.
  • a specific MCS index or a specific modulation order may be applied to at least one of the plurality of segments.
  • the particular MCS index may be a reserved MCS index.
  • the specific modulation order may be a fixed value defined in advance in the specifications, or a value notified or set by the base station.
  • the UE When using a specific MCS index (for example, reserved MCS index), the UE does not use the above-mentioned 4 steps, but instead uses the latest PDCCH (latest PDCCH) for DCI (MCS index is 0 or more and 27 or less). Determined based on. That is, by applying a specific MCS index or a specific modulation order, the original TBS can be maintained without re-calculate.
  • a specific MCS index for example, reserved MCS index
  • Spatial resources may be increased for at least one of the plurality of segments. That is, in the parameter for determining TBS, the number of symbols corresponding to the time parameter is reduced by the division, so that the spatial resource is increased (see FIGS. 5D and 7).
  • the UE may allocate at least one spatial resource (for example, the number of layers) of the plurality of segments by increasing the spatial resource (for example, the number of original layers) of the PUSCH before division.
  • the spatial resource of the PUSCH before division (for example, the number of layers) may be specified by the DCI that schedules the PUSCH.
  • the number of layers in each segment may be controlled to increase by the same number. For example, when the PUSCH is divided into a first segment and a second segment, the number of layers in the first segment and the number of layers in the second segment may be changed (for example, increased) in common.
  • the MCS of each segment may be controlled to be increased separately.
  • the number of layers to be increased may be determined based on the time resource (for example, the number of symbols) of each segment.
  • the number of layers in the first segment having a small number of symbols may be changed to be larger than the number of layers in the second segment having a larger number of symbols than the first segment (see repeated transmission in FIG. 7). ..
  • Information about the number of layers applied to each segment may be predefined in the specification, or the base station notifies the UE using at least one of higher layer signaling and DCI. You may.
  • the same TBS as the original PUSCH (eg, the originally allocated PUSCH) is maintained, with or without the allocation of frequency resources and MCS. be able to. Further, since the frequency resource is not changed, it is possible to suppress the complicated allocation control of the segment PUSCH.
  • At least two options may be applied in combination.
  • frequency resources eg, number of PRBs
  • MCS may be increased for at least one of the plurality of segments. That is, in the parameter for determining TBS, the frequency resource and MCS are increased because the number of symbols corresponding to the time parameter is reduced by the division (see FIG. 5E).
  • frequency resources and spatial resources may be increased, MCS and spatial resources may be increased, and frequency resources, MCS and spatial resources may be increased.
  • the parameter to be increased may be common to a plurality of segments. Alternatively, the parameters that increase for each segment may be set separately.
  • the UE may autonomously (for example, automatically) adjust the transmission conditions or parameters of each segment. For example, when the scheduled or set PUSCH crosses the slot boundary, the PUSCH may be divided based on the slot boundary, and at least one of the above options 1-1 to 1-5 may be applied to the divided segments. ..
  • the UE when applying option 1-1, the UE adjusts the number of PRBs in each segment.
  • the UE adjusts the MCS of each segment when applying option 1-2.
  • the UE adjusts the number of layers in each segment when applying options 1-4.
  • the UE adjusts at least two of the PRB number, MCS and layer number of each segment when applying option 1-5.
  • which MCS index is applied may be set by higher layer signaling or may be selected based on the code rate.
  • option 1-3 the same value as the modulation order notified in the MCS field included in the DCI may be applied as the modulation order.
  • the UE may adjust the transmission conditions or parameters of each segment based on the information notified from the base station. For example, the UE determines transmission conditions or parameters to apply to each segment based on information explicitly notified using at least one of DCI's predetermined fields (eg, new fields) and higher layer signaling. May be good.
  • DCI's predetermined fields eg, new fields
  • the transmission conditions or parameters applied to each segment may be controlled based on the schedule status (or communication status). For example, the UE may control to apply option 1-1 when resources are available in the frequency direction of each segment. Further, when the frequency resource of the original PUSCH (for example, the number of allocated PRBs) is equal to or more than a predetermined value, the UE does not increase the frequency resource and uses another method (for example, any of options 1-2 to 1-4). May be controlled to apply.
  • the frequency resource of the original PUSCH for example, the number of allocated PRBs
  • the UE does not increase the frequency resource and uses another method (for example, any of options 1-2 to 1-4). May be controlled to apply.
  • the UE controls so that the MCS is not increased and another method (for example, any of options 1-1, 1-3, and 1-4) is applied. You may.
  • the MCS index may be changed by using option 1-5.
  • the changed MCS index may be changed so as to be in a range close to the original MCS index.
  • the UE when the coding rate applied to each segment (for example, effective coding rate) is higher than a predetermined value (for example, 0.95), the UE does not transmit the PUSCH (or each segment) (for example,). It may be controlled to skip). By skipping the transmission of the PUSCH segment, which has a low possibility of decoding, it is possible to suppress an increase in the power consumption of the UE (for example, battery saving) and reduce the influence of interference with other cells.
  • a predetermined value for example 0.95
  • first segment in which the coding rate is equal to or less than a predetermined value and a second segment in which the coding rate is higher than the predetermined value among the plurality of segments, only the first segment is transmitted (the second segment is not transmitted). ), Or it may be controlled not to transmit both the first segment and the second segment.
  • the UE may be controlled to transmit the PUSCH (or each segment) regardless of the coding rate applied to each segment. That is, transmission may be controlled even when the coding rate applied to each segment is higher than a predetermined value.
  • the base station can appropriately decode the PUSCH having a high coding rate by combining with another PUSCH (for example, soft combining).
  • each segment may be transmitted using the same transmission power as the transmission power set in the PUSCH before division (for example, the original PUSCH). .. In this case, the UE applies the same transmit power to each segment.
  • each segment is transmitted using a transmission power different from the transmission power set in the PUSCH (for example, the original PUSCH) before the division. May be good. For example, if the transmission power set in the original PUSCH does not exceed a predetermined value (for example, when power is not limited), the transmission power of each segment may be increased (or boosted).
  • a predetermined value for example, when power is not limited
  • the predetermined value may be the maximum allowable transmission power (Pcmax), and the transmission power of the original PUSCH is equal to or less than the maximum allowable power P PUSCH, b, f, c (I, j, qd, l) ⁇ P CMAX, When f, c (i) is satisfied (or within the range not exceeding PCMAX, f, c (i)), the transmission power may be increased.
  • the value that increases the transmission power may be determined autonomously on the UE side (UE implementation), may be defined in the specifications, or the base station notifies the UE by higher layer signaling or the like. May be done. For example, when the coding rate of the segment PUSCH is higher than that of the original PUSCH (for example, it is doubled), the transmission power may be boosted by a predetermined value (for example, 3 dB). As a result, deterioration of communication quality can be suppressed even when the coding rate of each segment is high.
  • a predetermined value for example, 3 dB
  • the RV to be applied to each segment after the division is determined based on a predetermined condition.
  • the UE may determine the RV to apply to each segment based on at least one of the following options 2-1 to 2-4.
  • the same RV may be applied to multiple segments. For example, when the UE divides the PUSCH into a plurality of segments and transmits the PUSCH, the UE applies the same RV to each segment. Further, the RV applied to each segment may be an RV (for example, an original RV) set in the PUSCH before division (for example, the original PUSCH).
  • the RV of the original PUSCH may be notified by the DCI that schedules the original PUSCH. For example, when the RV notified by the PDCCH (or DCI) that schedules the PUSCH is 0, the UE applies 0 as the RV for a plurality of segments to divide and transmit the PUSCH.
  • Different RVs may be applied to multiple segments. For example, when the UE divides the PUSCH into a plurality of segments and transmits the PUSCH, the UE applies different RVs to at least two segments of the plurality of segments. Further, the RV applied to at least one of the plurality of segments may be an RV set in the PUSCH before division (for example, the original PUSCH). The RV applied to the other segments may be selected based on predetermined conditions.
  • the original RV is applied to one of the first segment and the second segment, and the other RV different from the original RV is applied to the other. May be applied.
  • An RV different from the original RV may be determined based on predetermined conditions (for example, any of predetermined conditions 1 to 4 shown below).
  • An RV different from the RV set in the PUSCH before division may be applied to a plurality of segments.
  • the same RV may be applied to the plurality of segments, or different RVs may be applied.
  • an RV different from the original RV may be applied to both the first segment and the second segment.
  • An RV different from the original RV may be determined based on predetermined conditions (for example, any of predetermined conditions 1 to 4 shown below).
  • the RVs to be applied may be selected based on predetermined conditions. For example, the UE may apply a non-zero RV for each segment if the RV notified by the PDCCH (or DCI) that schedules the PUSCH is zero. For example, when there are two segments, the RV of the first segment (for example, the segment transmitted first in the time direction) may be 2, and the RV of the second segment may be 3.
  • a specific RV sequence may be applied to a plurality of segments.
  • the RV sequence is at least one of ⁇ # 0, # 2, # 3, # 1 ⁇ , ⁇ # 0, # 3, # 0, # 3 ⁇ , and ⁇ # 0, # 0, # 0, # 0 ⁇ . It may be.
  • the UE may determine the changed RV based on a predetermined condition.
  • a part of PUSCH of repeated transmission or multiple transmission is divided, only the RV of the divided segment PUSCH may be changed, or the segment PUSCH and another non-divided PUSCH (for example, after the divided segment PUSCH).
  • the RV of PUSCH) transmitted to may be changed.
  • the UE may determine the RV to be applied to the plurality of segments divided from the original PUSCH based on a predetermined RV sequence. For example, assume that the RV sequence is ⁇ # 0, # 2, # 3, # 1 ⁇ and the number of segments to be divided is 2 (first segment and second segment). In this case, the UE may apply the RV notified by the PDCCH (or DCI) that schedules the PUSCH to the first segment, and apply the RV to the right of the RV to the second segment in the RV sequence. Good.
  • the UE determines that the RV of the first segment is 0 and the RV of the second segment is 2. May be good.
  • the RV sequence used is not limited to ⁇ # 0, # 2, # 3, # 1 ⁇ . Other RV sequences such as ⁇ # 0, # 3, # 0, # 3 ⁇ or ⁇ # 0, # 0, # 0, # 0 ⁇ may be used.
  • the RV sequence to be used may be defined in advance in the specifications, or may be notified from the base station to the UE by using upper layer signaling or the like.
  • the UE may select an RV to be applied to a plurality of segments divided from the original PUSCH from a specific RV value.
  • the particular RV value may be a Self-decodable RV.
  • the UE applies the notified RV (or the notified RV and another specific RV) if the RV notified by the PDCCH (or DCI) that schedules the PUSCH is a specific RV. You may. For example, if the RV notified by the PDCCH (or DCI) that schedules the PUSCH is 0, the UE determines that the RV of the first segment is 0 and the RV of the second segment is another particular RV. It may be determined that 3 is.
  • the UE may apply the notified RV and the specific RV to each of the two segments if the RV notified by the PDCCH (or DCI) that schedules the PUSCH is not a specific RV.
  • the second PUSCH transmission is divided into a plurality of segments. If the RV of the second PUSCH transmission (divided PUSCH) is 2 based on the PDCCH (or DCI) that schedules the repetition of the PUSCH, the UE determines that the RV of the first segment is 2.
  • the RV of the second segment may be determined to be a specific RV of 0 or 3 (see FIG. 9).
  • the UE may apply a specific RV to a plurality of segments without applying the notified RV unless the RV notified by the PDCCH (or DCI) that schedules the PUSCH is a specific RV. ..
  • the decoding probability of the PUSCH to which the RV is applied can be improved, so that the communication quality (for example, SNR) can be improved.
  • the UE When dividing a part of the PUSCH that is repeatedly transmitted into a plurality of segments, the UE changes the RV of the divided segment from the RV set in the original PUSCH and then transmits the RV of the PUSCH. May also be changed.
  • the RV of the PUSCH transmitted after the PUSCH transmitted divided into a plurality of segments may be determined in the same manner as in the segment.
  • the RV applied to the non-divided PUSCH may be determined in consideration of the RV applied to the divided segment. For example, when selecting an RV to be applied to a segment divided based on a predetermined RV sequence (for example, an RV different from the original PUSCH), the remaining repeated PUSCHs after the segment PUSCH are also applied based on the predetermined RV sequence. The RV to be used may be determined.
  • the UE applies the RV notified by the PDCCH (or DCI) that schedules the PUSCH to the first segment, and in the RV sequence the RV adjacent to the RV (eg, to the right) is the second. It may be applied to a segment.
  • the second PUSCH transmission is divided into a plurality of segments. If the RV of the second PUSCH transmission is 2 based on the PDCCH (or DCI) that schedules the repetition of the PUSCH, the UE determines that the RV of the first segment is 2, and the RV of the second segment. May be determined as 3. Further, the UE sets the RV applied to the PUSCH transmission following the segment to 1. In this case, the UE controls to apply a different RV even if the original RV for the PUSCH is 3. (See FIG. 10).
  • the RV sequence used is not limited to ⁇ # 0, # 2, # 3, # 1 ⁇ . Other RV sequences such as ⁇ # 0, # 3, # 0, # 3 ⁇ or ⁇ # 0, # 0, # 0, # 0 ⁇ may be used.
  • the RV sequence to be used may be defined in advance in the specifications, or may be notified from the base station to the UE by using upper layer signaling or the like.
  • the decoding gain can be obtained by receiving all the segments.
  • the RV applied to the divided segments may not be considered, and the RV applied to the PUSCH not divided may be determined. That is, the RV is determined separately for the divided segment PUSCH and the non-divided PUSCH.
  • the PUSCH divided into a plurality of segments and the PUSCH not divided are each a predetermined RV.
  • the RV to be applied may be determined based on the sequence.
  • the UE applies the RV notified by the PDCCH (or DCI) that schedules the PUSCH to the first segment, and in the RV sequence the RV adjacent to the RV (eg, to the right) is the second. It may be applied to a segment. Further, the RV sequence may be applied to the PUSCH that is not divided into a plurality of segments (the PUSCH excluding the PUSCH that is divided into a plurality of segments).
  • the second PUSCH transmission is divided into a plurality of segments. If the RV notified by the PDCCH (or DCI) that schedules the repetition of the PUSCH is 0, the UE sets the RV applied to the first PUSCH transmission to 0.
  • the RV of the first segment may be determined to be 0, and the RV of the second segment may be determined to be 2. Further, the UE sets the RV applied to the PUSCH transmission following the segment to 2 (see FIG. 11). In this case, the UE controls to apply the RV sequence (for example, apply a different RV) except for the second PUSCH even if the original RV for the third PUSCH is 3.
  • the RV sequence used is not limited to ⁇ # 0, # 2, # 3, # 1 ⁇ . Other RV sequences such as ⁇ # 0, # 3, # 0, # 3 ⁇ or ⁇ # 0, # 0, # 0, # 0 ⁇ may be used.
  • the RV sequence to be used may be defined in advance in the specifications, or may be notified from the base station to the UE by using upper layer signaling or the like.
  • the method for determining the RV to be applied to the PUSCH transmission may be selected based on predetermined conditions.
  • the UE may select the RV determination method based on any of the following options A to D.
  • the RV determination method may be set based on the PUSCH scheduling type.
  • the UE may apply different RV determination methods for a dynamically scheduled grant-based PUSCH in DCI and a configuration grant-based PUSCH that is not dynamically scheduled in DCI.
  • the RV determination method may be defined in the specifications, or may be set from the base station to the UE by higher layer signaling or the like.
  • the base station may notify the UE of the RV determination method using L1 signaling. For example, the UE may select the RV determination method based on at least one of the predetermined DCI fields transmitted from the base station, the DCI format, and the applied RNTI.
  • the RV determination method may be selected based on the TBS determination method (or the TBS determination method and the RV determination method may be associated). For example, when the UE uses the first TBS determination method (option 1-1), the UE may apply the first RV determination method (for example, predetermined condition 2 of 2-2).
  • the base station may notify the UE of the RV determination method using higher layer signaling.
  • the RV determination method may be defined in advance in the specifications.
  • a parameter relating to overhead indicates overhead from other signals (eg, CSI-RS, PT-RS, etc.).
  • N PRB oh may indicate the number of resource elements (RE) of other signals in PRB
  • N PRB oh may be a value configured by a higher layer parameter.
  • N PRB oh is the overhead indicated by the upper layer parameter (Xoh-PUSCH) and may be any value of 0, 6, 12 or 18. If Xoh-PUSCH is not set (notified) in the user terminal, Xoh-PUSCH may be set to 0.
  • the UE may determine TBS or the like based on N PRB oh .
  • the NPRB oh applied to each segment after the division is based on a predetermined condition.
  • the UE may determine the N PRB oh to apply to each segment based on at least one of the following options 3-1 to 3-4.
  • the same N PRB oh may be applied to a plurality of segments. For example, when the UE divides the PUSCH into a plurality of segments and transmits the PUSCH, it is assumed that the same NPRB oh is used for each segment. Further, the N PRB oh applied to each segment may be the N PRB oh set in the PUSCH before division (for example, the original PUSCH).
  • the N PRB oh of the original PUSCH may be notified by higher layer signaling (eg, xOverhead). For example, when the N PRB oh notified by the upper layer signaling is 0 in X, the UE applies X as the N PRB oh for a plurality of segments to divide and transmit the PUSCH.
  • higher layer signaling eg, xOverhead
  • the complexity of scheduling can be suppressed by determining the N PRB oh to be applied to each segment based on the N PRB oh set in PUSCH in advance.
  • Different N PRB oh may be applied to a plurality of segments. For example, when the UE divides the PUSCH into a plurality of segments and transmits the PUSCH, it is assumed that different N PRB ohs are set for at least two segments out of the plurality of segments. Further, the N PRB oh applied to at least one of the plurality of segments may be an N PRB oh (original N PRB oh ) set in the PUSCH before division (for example, the original PUSCH).
  • N PRB oh applied to other segments may be original N PRB oh different N PRB oh.
  • Original N PRB oh different N PRB oh may be selected based on a predetermined condition.
  • the UE may determine an N PRB oh different from the original N PRB oh based on at least one of scheduling conditions, a predetermined DCI field, and higher layer signaling.
  • different N PRB oh for example, 0
  • At least one of the plurality of segments for example, the first segment
  • N PRB oh different from the N PRB oh set in the PUSCH before division may be applied to a plurality of segments.
  • the same N PRB oh may be applied to the plurality of segments, or different N PRB ohs may be applied.
  • N PRB oh may be selected to be applied based on a predetermined condition. For example, the UE may apply a non-zero N PRB oh to each segment when the N PRB oh notified by the upper layer signaling is 0. For example, if the segment is two, the first segment (e.g., segment sent in the time direction the first) to N PRB oh 6, the N PRB oh the second segment may be 12.
  • a specific N PRB oh may be applied to a plurality of segments.
  • the specific N PRB oh may be 0.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, an optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for detecting PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat reQuest ACK knowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 transmits information instructing transmission of the uplink shared channel. Further, the transmission / reception unit 120 may transmit at least one of the number of repetitions, information on TBS, information on RV, and information on overhead.
  • the control unit 110 applies a transmission condition different from the transmission condition set for transmission of the uplink shared channel to at least one segment. You may control it.
  • the control unit 110 When the UE divides the uplink shared channel into a plurality of segments for transmission, the control unit 110 has a redundant version different from the redundant version set for transmission of the uplink shared channel for at least one segment, or the same redundant version. It may be controlled to be applied.
  • FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmission / reception unit 220 receives information instructing transmission of the uplink shared channel.
  • the transmission / reception unit 220 may receive at least one of the number of repetitions, information on TBS, information on RV, and information on overhead.
  • control unit 210 controls so as to apply transmission conditions different from the transmission conditions set for transmission of the uplink shared channel to at least one segment. May be good.
  • control unit 210 may control the frequency resource used for transmission of at least one segment to be larger than the frequency resource set for transmission of the uplink shared channel.
  • control unit 210 sets at least one of the modulation coding methods and modulation orders used for transmission of at least one segment to at least one of the modulation coding methods and modulation orders set for transmission of the uplink shared channel. It may be controlled to change from.
  • control unit 210 may control the spatial resources used for transmission of at least one segment to be larger than the spatial resources set for transmission of the uplink shared channel.
  • the plurality of segments may be arranged in different slots.
  • the control unit 210 sets the redundant version different from the redundant version set in the uplink shared channel and the uplink shared channel for at least one segment. It may be controlled to apply at least one value different from the parameter value regarding the overhead to be set.
  • the control unit 210 is set to the same redundant version as the redundant version set in the uplink shared channel and the uplink shared channel for the plurality of segments. It may be controlled to apply at least one of the same values as the parameter values related to the overhead.
  • control unit 210 may apply at least one of a specific redundant version and a specific overhead parameter value to at least one of a plurality of segments. Further, when the control unit 210 divides a part of the uplink shared channels into a plurality of segments and transmits the plurality of uplink shared channels that are repeatedly transmitted, the control unit 210 transmits the uplink shared channels without dividing the uplink into a plurality of segments. The same redundant version as the redundant version set for transmission of the upstream shared channel may be applied.
  • control unit 210 when the control unit 210 divides a part of the uplink shared channels into a plurality of segments and transmits the plurality of uplink shared channels that are repeatedly transmitted, the control unit 210 transmits the uplink shared channels without dividing the uplink into a plurality of segments.
  • a redundant version different from the redundant version set for transmission of the upstream shared channel may be applied.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An embodiment of a terminal according to the present disclosure comprises: a reception unit that receives information for indicating transmission of an uplink shared channel; and a control unit that, when the uplink shared channel is divided into a plurality of segments and transmitted, performs control such that at least one of a redundancy version which is different from a redundancy version set to the uplink shared channel and a value which is different from a parameter value related to overhead set to the uplink shared channel is applied to at least one segment.

Description

端末及び無線通信方法Terminal and wireless communication method
 本開示は、次世代移動通信システムにおける端末及び無線通信方法に関する。 The present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(UE:User Equipment)は、基地局からの下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。 In the existing LTE system (for example, 3GPP Rel.8-14), the user terminal (UE: User Equipment) is based on the downlink control information (DCI: Downlink Control Information, DL assignment, etc.) from the base station. , Controls the reception of downlink shared channels (for example, PDSCH: Physical Downlink Shared Channel). Further, the user terminal controls transmission of an uplink shared channel (for example, PUSCH: Physical Uplink Shared Channel) based on DCI (also referred to as UL grant or the like).
 将来の無線通信システム(例えば、NR)では、所定の送信機会において、スロット境界(slot boundary)にわたって所定のチャネル及び信号の少なくとも一つ(チャネル/信号とも記す)のスケジューリングがサポートされることが検討されている。チャネル/信号は、例えば、共有チャネル(例えば、上り共有チャネル(例えば、PUSCH))、又は、下り共有チャネル(例えば、PDSCH))であってもよい。 It is considered that future wireless communication systems (eg, NR) will support scheduling of at least one (also referred to as channel / signal) of a given channel and signal across a slot boundary at a given transmission opportunity. Has been done. The channel / signal may be, for example, a shared channel (eg, uplink shared channel (eg, PUSCH)) or downlink shared channel (eg, PDSCH).
 この場合、UEは、スロット境界にわたって(又は、スロット境界を跨って)スケジュールされる共有チャネルを複数のセグメントに分けて送信又は受信を制御することが検討されている。しかしながら、共有チャネルをセグメントに分けて送信又は受信を行う場合にどのように制御するかが問題となる。 In this case, it is considered that the UE controls transmission or reception by dividing the shared channel scheduled across the slot boundary (or across the slot boundary) into a plurality of segments. However, the problem is how to control the shared channel when transmitting or receiving by dividing it into segments.
 本開示は、所定のチャネル/信号が分割されて送信又は受信が行われる場合であっても通信を適切に行うことができる端末及び無線通信方法を提供することを目的の1つとする。 One of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately performing communication even when a predetermined channel / signal is divided and transmitted or received.
 本開示の一態様に係る端末は、上り共有チャネルの送信を指示する情報を受信する受信部と、前記上り共有チャネルを複数セグメントに分割して送信する場合、少なくとも一つのセグメントに対して、前記上り共有チャネルに設定される冗長バージョンと異なる冗長バージョン、及び前記上り共有チャネルに設定されるオーバーヘッドに関するパラメータ値と異なる値の少なくとも一つを適用するように制御する制御部と、を有することを特徴とする。 The terminal according to one aspect of the present disclosure has a receiving unit that receives information instructing transmission of an uplink shared channel, and when the uplink shared channel is divided into a plurality of segments and transmitted, the terminal is described for at least one segment. It is characterized by having a redundant version different from the redundant version set in the uplink shared channel, and a control unit for controlling to apply at least one of the parameter values related to the overhead set in the uplink shared channel and different values. And.
 本開示の一態様によれば、所定のチャネル/信号が分割されて送信又は受信が行われる場合であっても通信を適切に行うことができる。 According to one aspect of the present disclosure, communication can be appropriately performed even when a predetermined channel / signal is divided and transmitted or received.
図1は、共有チャネル(例えば、PUSCH)の割当ての一例を示す図である。FIG. 1 is a diagram showing an example of allocation of a shared channel (for example, PUSCH). 図2は、マルチセグメント送信の一例を示す図である。FIG. 2 is a diagram showing an example of multi-segment transmission. 図3は、MCSテーブルの一例を示す図である。FIG. 3 is a diagram showing an example of an MCS table. 図4は、複数のPUSCH送信(例えば、繰り返しPUSCH)に適用する冗長バージョンの一例を示す図である。FIG. 4 is a diagram showing an example of a redundant version applied to a plurality of PUSCH transmissions (for example, repeated PUSCHs). 図5A-図5Eは、複数セグメントに適用する送信条件又は送信パラメータの一例を示す図である。5A-5E are diagrams showing an example of transmission conditions or transmission parameters applied to a plurality of segments. 図6は、複数セグメントに適用する送信条件又は送信パラメータの他の例を示す図である。FIG. 6 is a diagram showing other examples of transmission conditions or transmission parameters applied to a plurality of segments. 図7は、複数セグメントに適用する送信条件又は送信パラメータの他の例を示す図である。FIG. 7 is a diagram showing other examples of transmission conditions or transmission parameters applied to a plurality of segments. 図8は、セルフデコーダブルな冗長バージョンを説明する図である。FIG. 8 is a diagram illustrating a self-decoderable redundant version. 図9は、複数セグメントに適用するRVの一例を示す図である。FIG. 9 is a diagram showing an example of RV applied to a plurality of segments. 図10は、複数セグメントに適用するRVの他の例を示す図である。FIG. 10 is a diagram showing another example of RV applied to a plurality of segments. 図11は、複数セグメントに適用するRVの他の例を示す図である。FIG. 11 is a diagram showing another example of RV applied to a plurality of segments. 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図13は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment. 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の例を示す図である。FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
(マルチセグメント送信)
 既存システム(例えば、3GPP Rel.15)では、UEは、ある送信機会(transmission occasion)(期間、機会等ともいう)の上り共有チャネル(例えば、PUSCH)又は下り共有チャネル(例えば、PDSCH)に対して、単一のスロット内で時間領域リソース(例えば、所定数のシンボル)を割り当てることが検討されてきた。
(Multi-segment transmission)
In an existing system (eg, 3GPP Rel.15), the UE refers to an uplink shared channel (eg, PUSCH) or a downlink shared channel (eg, PDSCH) for a transmission occasion (also referred to as period, opportunity, etc.). It has been considered to allocate time domain resources (eg, a predetermined number of symbols) within a single slot.
 UEは、ある送信機会において、スロット内の連続する所定数のシンボルに割り当てられるPUSCHを用いて、一つ又は複数のトランスポートブロック(Transport Block(TB))を送信してもよい。また、UEは、ある送信機会において、スロット内の連続する所定数のシンボルに割り当てられるPDSCHを用いて、一つ又は複数のTBを送信してもよい。 The UE may transmit one or more transport blocks (Transport Block (TB)) at a certain transmission opportunity using the PUSCH assigned to a predetermined number of consecutive symbols in the slot. The UE may also transmit one or more TBs at a transmission opportunity using the PDSCH assigned to a predetermined number of consecutive symbols in the slot.
 一方、将来の無線通信システム(例えば、Rel.16以降)では、ある送信機会のPUSCH又はPDSCHに対して、スロット境界を跨って(又は、複数のスロットに渡って)時間領域リソースを割り当てることも想定される(図1参照)。図1では、1スロット内の連続する所定数(ここでは、7シンボル)に割当てられるPUSCHに加えて、スロット境界を跨いで(又は、クロスして)PUSCHが割当てられる場合を示している。 On the other hand, in future wireless communication systems (for example, Rel.16 or later), time domain resources may be allocated across slot boundaries (or across a plurality of slots) for PUSCH or PDSCH of a certain transmission opportunity. Assumed (see Figure 1). FIG. 1 shows a case where PUSCHs are assigned across (or crossing) a slot boundary in addition to PUSCHs assigned to a predetermined number of consecutive slots (7 symbols in this case) in one slot.
 具体的には、スロット#nのシンボル#10~#13及びスロット#n+1のシンボル#0~#3に割り当てられるPUSCHは、スロット境界を跨って送信される。また、図1に示すように、複数の送信機会に渡ってPUSCHの繰り返し送信が行われる場合、少なくとも一部の送信機会又は繰り返し送信がスロット境界を跨って送信されることも想定される。 Specifically, the PUSCHs assigned to the symbols # 10 to # 13 of slot #n and the symbols # 0 to # 3 of slot # n + 1 are transmitted across the slot boundary. Further, as shown in FIG. 1, when the PUSCH is repeatedly transmitted over a plurality of transmission opportunities, it is assumed that at least a part of the transmission opportunities or the repeated transmissions are transmitted across the slot boundary.
 スロット境界を跨いで(複数のスロットに渡って)割り当てられる時間領域リソースを利用したチャネル/信号の送信は、マルチセグメント送信、2セグメント送信、クロススロット境界送信、不連続送信、複数分割送信等とも呼ばれる。同様に、スロット境界を跨いで送信されるチャネル/信号の受信は、マルチセグメント受信、2セグメント受信、クロススロット境界受信、不連続受信、複数分割受信等とも呼ばれる。 Channel / signal transmission using time domain resources allocated across slot boundaries (over multiple slots) includes multi-segment transmission, 2-segment transmission, cross-slot boundary transmission, discontinuous transmission, multiple division transmission, etc. be called. Similarly, reception of channels / signals transmitted across slot boundaries is also referred to as multi-segment reception, two-segment reception, cross-slot boundary reception, discontinuous reception, multiple division reception, and the like.
 図2は、マルチセグメント送信の一例を示す図である。なお、図2では、PUSCHのマルチセグメント送信を例示するが、他の信号/チャネル(例えば、PDSCH等)に置き換えてもよい。以下の説明では、スロット境界に基づいて各セグメントに分割される場合を示すが、各セグメントに分割される基準はスロット境界に限られない。また、以下の説明では、PUSCHのシンボル長が7シンボルである場合を示すが、これに限られず2シンボル長より長いシンボルであれば同様に適用できる。 FIG. 2 is a diagram showing an example of multi-segment transmission. Although the multi-segment transmission of PUSCH is illustrated in FIG. 2, it may be replaced with another signal / channel (for example, PDSCH or the like). In the following description, the case where each segment is divided based on the slot boundary is shown, but the criterion for dividing into each segment is not limited to the slot boundary. Further, in the following description, the case where the symbol length of PUSCH is 7 symbols is shown, but the present invention is not limited to this, and any symbol longer than 2 symbol lengths can be similarly applied.
 図2において、UEは、所定数のセグメントに基づいて、一つのスロット内で割当て(又は、スケジュール)されるPUSCH、又は複数のスロットに跨って割当てられるPUSCHの送信を制御してもよい。UEは、ある送信機会において一以上のスロットにわたる時間領域リソースがPUSCHに割り当てられる場合、当該PUSCHを複数のセグメントに分けて(又は、分割、split)して送信処理を制御してもよい。例えば、UEは、スロット境界を基準に分割した各セグメントを、当該各セグメントが対応するスロット内の所定数の割り当てシンボルにマッピングしてもよい。 In FIG. 2, the UE may control the transmission of the PUSCH allocated (or scheduled) in one slot or the PUSCH allocated across a plurality of slots based on a predetermined number of segments. When the time domain resource over one or more slots is allocated to the PUSCH at a certain transmission opportunity, the UE may divide (or split, split) the PUSCH into a plurality of segments to control the transmission process. For example, the UE may map each segment divided relative to a slot boundary to a predetermined number of assigned symbols in the slot to which each segment corresponds.
 ここで、「セグメント」は、一つの送信機会に割り当てられる各スロット内の所定数のシンボル又は当該所定数のシンボルで送信されるデータであってもよい。例えば、一つの送信機会で割り当てられるPUSCHの先頭シンボルが第一のスロット、末尾シンボルが第二のスロットにある場合、当該PUSCHについて、第一のスロットに含まれる一以上のシンボルを第一のセグメント、第二のスロットに含まれる一以上のシンボルを第二のセグメント、としてもよい。 Here, the "segment" may be a predetermined number of symbols in each slot assigned to one transmission opportunity or data transmitted with the predetermined number of symbols. For example, if the first symbol of the PUSCH assigned in one transmission opportunity is in the first slot and the last symbol is in the second slot, for the PUSCH, one or more symbols contained in the first slot are used in the first segment. , One or more symbols contained in the second slot may be the second segment.
 なお、「セグメント」は、所定のデータユニットであり、一つ又は複数のTBの少なくとも一部であってもよい。例えば、各セグメントは、一つ又は複数のTB、一つ又は複数のコードブロック(Code Block(CB))、又は、一つ又は複数のコードブロックグループ(Code Block Group(CBG))で構成されてもよい。なお、1CBは、TBの符号化用のユニットであり、TBが一つ又は複数に分割(CB segmentation)されたものであってもよい。また、1CBGは、所定数のCBを含んでもよい。なお、分割されたセグメントは、ショートセグメント(short segment)と呼ばれてもよい。 Note that the "segment" is a predetermined data unit and may be at least a part of one or a plurality of TBs. For example, each segment is composed of one or more TBs, one or more code blocks (Code Block (CB)), or one or more code block groups (Code Block Group (CBG)). May be good. Note that 1CB is a unit for coding TB, and TB may be divided into one or a plurality (CB segmentation). Further, 1 CBG may include a predetermined number of CBs. The divided segment may be called a short segment.
 各セグメントのサイズ(ビット数)は、例えば、PUSCHが割り当てられるスロット数、各スロットにおける割り当てシンボル数、及び、各スロットにおける割り当てシンボル数の割合の少なくとも一つに基づいて決定されてもよい。また、セグメントの数は、PUSCHが割り当てられるスロット数に基づいて決定されてもよい。 The size (number of bits) of each segment may be determined based on, for example, at least one of the number of slots to which PUSCH is allocated, the number of allocated symbols in each slot, and the ratio of the number of allocated symbols in each slot. Also, the number of segments may be determined based on the number of slots to which the PUSCH is allocated.
 例えば、スロット#nのシンボル#5~#11に割り当てられるPUSCHは、単一のスロット内(単一のセグメント)でスロット境界を跨がずに送信される。このように、スロット境界を跨がずにPUSCHの送信(単一のスロット内に割り当てられる所定数のシンボルを用いたPUSCHの送信)は、シングルセグメント(single-segment)送信、1セグメント(one-segment)送信、非セグメント(non-segmented)送信等と呼ばれてもよい。 For example, PUSCHs assigned to symbols # 5 to # 11 of slot #n are transmitted within a single slot (single segment) without straddling slot boundaries. In this way, the transmission of PUSCH without straddling the slot boundary (transmission of PUSCH using a predetermined number of symbols assigned in a single slot) is a single-segment transmission and one segment (one-). It may be called segment transmission, non-segmented transmission, or the like.
 一方、スロット#nのシンボル#10~#13及びスロット#n+1のシンボル#0~#2に割り当てられるPUSCHは、スロット境界を跨って送信される。このように、スロット境界を跨るPUSCHの送信(複数のスロット内に割り当てられる所定数のシンボルを用いたPUSCHの送信)は、マルチセグメント(multi-segment)送信、2セグメント(two-segment)送信、クロススロット境界送信等と呼ばれてもよい。 On the other hand, the PUSCHs assigned to the symbols # 10 to # 13 of slot #n and the symbols # 0 to # 2 of slot # n + 1 are transmitted across the slot boundary. In this way, the transmission of PUSCH across the slot boundary (transmission of PUSCH using a predetermined number of symbols assigned in a plurality of slots) is a multi-segment transmission, a two-segment transmission, It may also be called cross-slot boundary transmission or the like.
 また、図2に示すように、複数の送信機会にわたってPUSCHの繰り返し送信が行われる場合、少なくとも一部の送信機会にマルチセグメント送信が適用されてもよい。例えば、図2では、PUSCHが2回繰り返され、1回目のPUSCH送信にはシングルセグメント送信が適用され、2回目のPUSCH送信にはマルチセグメント送信が適用される。 Further, as shown in FIG. 2, when the PUSCH is repeatedly transmitted over a plurality of transmission opportunities, the multi-segment transmission may be applied to at least a part of the transmission opportunities. For example, in FIG. 2, the PUSCH is repeated twice, the single-segment transmission is applied to the first PUSCH transmission, and the multi-segment transmission is applied to the second PUSCH transmission.
 また、繰り返し送信は、一以上の時間ユニットで行われてもよい。各送信機会が各時間ユニットに設けられてもよい。各時間ユニットは、例えば、スロットであってもよいし、スロットよりも短い時間ユニット(例えば、ミニスロット、サブスロット又はハーフスロット等ともいう)であってもよい。例えば、図2では、7シンボルのミニスロットを用いた繰り返し送信が示されるが、繰り返し送信の単位(例えば、シンボル長)は図2に示すものに限られない。 Also, repeated transmission may be performed in one or more time units. Each transmission opportunity may be provided in each time unit. Each time unit may be, for example, a slot or a time unit shorter than the slot (eg, also referred to as a mini slot, subslot, half slot, etc.). For example, FIG. 2 shows repeated transmission using a 7-symbol mini-slot, but the unit of repeated transmission (for example, symbol length) is not limited to that shown in FIG.
 また、繰り返し回数が1であることは、PUSCH又はPDSCHを1回送信する(繰り返し無しである)ことを示してもよい。 Further, the fact that the number of repetitions is 1, may indicate that the PUSCH or PDSCH is transmitted once (no repetition).
 また、繰り返し送信は、スロットアグリゲーション(slot-aggregation)送信、マルチスロット送信等と呼ばれてもよい。当該繰り返し回数(アグリゲーション数、アグリゲーションファクター)Nは、上位レイヤパラメータ(例えば、RRC IEの「pusch-AggregationFactor」又は「pdsch-AggregationFactor」)及びDCIの少なくとも一つによってUEに指定されてもよい。また、送信機会、繰り返し、スロット又はミニスロット等は相互に言い換え可能である。 In addition, repeated transmission may be referred to as slot-aggregation transmission, multi-slot transmission, or the like. The number of iterations (aggregation number, aggregation factor) N may be specified to the UE by at least one of the upper layer parameter (for example, "pusch-Aggregation Factor" or "pdsch-Aggregation Factor" of RRC IE) and DCI. Also, transmission opportunities, repeats, slots, mini-slots, etc. can be paraphrased with each other.
 このように、割当て(又は、スケジュール)が指示されるPUSCH(nominal PUSCHとも呼ぶ)がスロット境界をクロスする場合、又は1送信(例えば、7シンボル)の範囲にPUSCH送信に利用できないシンボル(例えば、DL又はフレキシブル)が存在する場合が想定される。かかる場合、UEは、当該PUSCHを複数のセグメント(又は、repetition)に分割して送信を制御することが考えられる。 In this way, when the PUSCH (also called nominal PUSCH) to which the allocation (or schedule) is instructed crosses the slot boundary, or a symbol (for example, 7 symbols) that cannot be used for PUSCH transmission within the range of 1 transmission (for example, 7 symbols). It is assumed that DL or flexible) exists. In such a case, it is conceivable that the UE divides the PUSCH into a plurality of segments (or repetition) to control transmission.
 しかしながら、PUSCHを複数のセグメントに分割して送信を行う場合、どのように送信を制御するかが問題となる。例えば、UEがPUSCHを送信する場合、所定の送信条件又は送信パラメータを用いて送信を行うが、分割されたセグメントの送信条件又は送信パラメータをどのように制御するかが問題となる。送信条件の一例としては、トランスポートブロックサイズ(TBS)及び冗長バージョン(Redundancy Version(RV))の少なくとも一つが考えられる。 However, when the PUSCH is divided into a plurality of segments and transmitted, how to control the transmission becomes a problem. For example, when the UE transmits PUSCH, transmission is performed using predetermined transmission conditions or transmission parameters, but how to control the transmission conditions or transmission parameters of the divided segments becomes a problem. As an example of the transmission condition, at least one of the transport block size (TBS) and the redundant version (Redundancy Version (RV)) can be considered.
<トランスポートブロックサイズ>
 図3は、上記将来の無線通信システムにおけるMCSテーブルの一例を示す図である。なお、図3は、例示にすぎず、図示される値に限られないし、一部の項目(フィールド)が削除されてもよいし、図示されない項目が追加されてもよい。
<Transport block size>
FIG. 3 is a diagram showing an example of an MCS table in the future wireless communication system. Note that FIG. 3 is merely an example and is not limited to the values shown, and some items (fields) may be deleted or items not shown may be added.
 図3に示すように、当該将来の無線通信システムでは、変調次数(Modulation order)と、符号化率(想定される符号化率、ターゲット符号化率等ともいう)と、当該変調次数及び符号化率を示すインデックス(例えば、MCSインデックス)と、を関連付けるテーブル(MCSテーブル)が規定されてもよい(ユーザ端末に記憶されてもよい)。なお、当該MCSテーブルでは、上記3項目に加えて、スペクトル効率(Spectral efficiency)が関連付けられてもよい。 As shown in FIG. 3, in the future wireless communication system, the modulation order (Modulation order), the coding rate (also referred to as the assumed coding rate, the target coding rate, etc.), the modulation order, and the coding A table (MCS table) associated with an index indicating the rate (for example, MCS index) may be specified (may be stored in the user terminal). In the MCS table, in addition to the above three items, spectral efficiency (Spectral efficiency) may be associated.
 ユーザ端末は、PDSCHのスケジューリング用のDCI(DLアサインメント、DCIフォーマット1_0及び1_1の少なくとも一つ)を受信し、MCSテーブル(図3)及び当該DCIに含まれるMCSインデックスに基づいて、PDSCH用の変調次数(Qm)及び符号化率(R)を決定してもよい。 The user terminal receives the DCI (DL assignment, at least one of DCI formats 1_0 and 1-11) for scheduling the PDSCH, and is used for the PDSCH based on the MCS table (FIG. 3) and the MCS index included in the DCI. The modulation order (Qm) and the coding rate (R) may be determined.
 また、ユーザ端末は、PUSCHのスケジューリング用のDCI(ULグラント、DCIフォーマット0_0及び0_1の少なくとも一つ)を受信し、MCSテーブル(図3)及び当該DCIに含まれるMCSインデックスに基づいて、PUSCH用の変調次数(Qm)及び符号化率(R)を決定してもよい。 Further, the user terminal receives the DCI (UL grant, at least one of DCI formats 0_0 and 0_1) for scheduling the PUSCH, and uses the MCS table (FIG. 3) and the MCS index included in the DCI for the PUSCH. The modulation order (Qm) and the coding rate (R) of the above may be determined.
 当該将来の無線通信システムでは、ユーザ端末は、下記のステップ1)~4)の少なくとも一つを用いてTBSを決定してもよい。なお、下記のステップ1)~4)は、PDSCH用のTBSの決定を一例として説明するが、PUSCH用のTBSの決定にも、下記ステップ1)~4)における“PDSCH”を“PUSCH”に置き換えて適宜適用可能である。 In the future wireless communication system, the user terminal may determine the TBS using at least one of the following steps 1) to 4). In the following steps 1) to 4), the determination of the TBS for PDSCH will be described as an example, but in the determination of the TBS for PUSCH, "PDSCH" in the following steps 1) to 4) will be changed to "PUSCH". It can be replaced and applied as appropriate.
 ステップ1)
 ユーザ端末は、スロット内のREの数(NRE)を決定する。
Step 1)
The user terminal determines the number of REs (N REs ) in the slot.
 具体的には、ユーザ端末は、1PRB内でPDSCHに割り当てられるREの数(N’RE)を決定してもよい。例えば、ユーザ端末は、下記式(1)に示される少なくとも一つのパラメータに基づいて、1PRB内でPDSCHに割り当てられるREの数(N’RE)を決定してもよい。
Figure JPOXMLDOC01-appb-M000001
Specifically, the user terminal may determine the number of RE assigned to PDSCH in 1PRB (N 'RE). For example, the user terminal, based on at least one parameter represented by the following formula (1) may determine the number of RE assigned to PDSCH in PRB (N 'RE).
Figure JPOXMLDOC01-appb-M000001
 ここで、NRB SCは、1RBあたりのサブキャリアの数であり、例えば、NRB SC=12であってもよい。Nsh symbは、スロット内でスケジューリングされたシンボル(例えば、OFDMシンボル)の数である。 Here, N RB SC is the number of sub-carriers per 1 RB, for example, be a N RB SC = 12. N sh symb is the number of symbols (eg, OFDM symbols) scheduled in the slot.
 NPRB DMRSは、スケジューリングされた期間内における1PRBあたりのDMRS用のREの数である。当該DMRS用のREの数は、DCI(例えば、DCIフォーマット1_0、1_1、0_0及び0_1の少なくとも一つ)によって示されるDMRSの符号分割多重(CDM:Code Division Multiplexing)に関するグループのオーバーヘッドを含んでもよい。 N PRB DMRS is the number of REs for DMRS per PRB within the scheduled period. The number of REs for the DMRS may include group overhead for Code Division Multiplexing (CDM) of the DMRS, as indicated by the DCI (eg, at least one of DCI formats 1_0, 1_1, 0_0 and 0_1). ..
 NPRB ohは、上位レイヤパラメータによって設定(configure)される値であってもよい。例えば、NPRB ohは、上位レイヤパラメータ(Xoh-PDSCH)が示すオーバーヘッドであり、0、6、12又は18のいずれかの値であってもよい。Xoh-PDSCHがユーザ端末に設定(通知)されない場合、Xoh-PDSCHは0に設定されてもよい。また、ランダムアクセス手順におけるメッセージ3(msg3)では、Xoh-PUSCHは0に設定される。 N PRB oh may be a value set by the upper layer parameter. For example, N PRB oh is the overhead indicated by the upper layer parameter (Xoh-PDSCH) and may be any value of 0, 6, 12 or 18. If the Xoh-PDSCH is not set (notified) in the user terminal, the Xoh-PDSCH may be set to 0. Further, in the message 3 (msg3) in the random access procedure, Xoh-PUSCH is set to 0.
 また、ユーザ端末は、PDSCHに割り当てられるREの総数(NRE)を決定してもよい。ユーザ端末は、1PRB内でPDSCHに割り当てられるREの数(N’RE)及びユーザ端末に割り当てられるPRBの総数(nPRB)に基づいて、当該PDSCHに割り当てられるREの総数(NRE)を決定してもよい(例えば、下記式(2))。
Figure JPOXMLDOC01-appb-M000002
Further, the user terminal may determine the total number of REs (N RE ) assigned to the PDSCH. User terminal, determined on the basis of the total number of PRB allocated to the number (N 'RE) and the user terminal of RE assigned to PDSCH in PRB (n PRB), the total number of RE assigned to the PDSCH of (N RE) (For example, the following equation (2)) may be used.
Figure JPOXMLDOC01-appb-M000002
 なお、ユーザ端末は、1PRB内でPDSCHに割り当てられるREの数(N’RE)を所定のルールに従って量子化し、当該量子化されたRE数とユーザ端末に割り当てられるPRBの総数(nPRB)とに基づいて、PDSCHに割り当てられるREの総数(NRE)を決定してもよい。 The user terminal quantizes the number of RE assigned to PDSCH in 1PRB the (N 'RE) according to a predetermined rule, the total number of PRB allocated to the quantized RE number and a user terminal and (n PRB) The total number of REs assigned to the PDSCH (N RE ) may be determined based on.
 ステップ2)
 ユーザ端末は、情報ビットの中間数(intermediate number)(Ninfo)を決定する。具体的には、ユーザ端末は、下記式(3)に示される少なくとも一つのパラメータに基づいて、当該中間数(Ninfo)を決定してもよい。なお、当該中間数(Ninfo)は、一時的なTBS(TBStemp)等と呼ばれてもよい。
Figure JPOXMLDOC01-appb-M000003
Step 2)
The user terminal determines an intermediate number of information bits (intermediate number) (N info) . Specifically, the user terminal may determine the median number (N info ) based on at least one parameter represented by the following equation (3). The median number (N info ) may be referred to as a temporary TBS (TBS emp ) or the like.
Figure JPOXMLDOC01-appb-M000003
 ここで、NREは、PDSCHに割り当てられるREの総数である。Rは、MCSテーブル(例えば、図3)においてDCIに含まれるMCSインデックスに関連付けられる符号化率である。Qは、当該MCSテーブルにおいて当該DCIに含まれるMCSインデックスに関連付けられる変調次数である。vは、PDSCHのレイヤの数である。 Here, N RE is the total number of REs assigned to PDSCH. R is the code rate associated with the MCS index included in the DCI in the MCS table (eg, FIG. 3). Q m is the modulation order associated with the MCS index included in the DCI in the MCS table. v is the number of PDSCH layers.
 ステップ3)
 ステップ2)で決定される情報ビットの中間数(Ninfo)が所定の閾値(例えば、3824)以下(又は未満)である場合、ユーザ端末は、当該中間数を量子化し、量子化された中間数(N’info)を決定してもよい。ユーザ端末は、例えば、式(4)を用いて、量子化された中間数(N’info)を算出してもよい。
Figure JPOXMLDOC01-appb-M000004
Step 3)
When the intermediate number ( Ninfo ) of the information bits determined in step 2) is equal to or less than (or less than) a predetermined threshold value (for example, 3824), the user terminal quantizes the intermediate number and quantizes the intermediate number. The number (N'info) may be determined. The user terminal may calculate the quantized intermediate number (N'info) using, for example, the equation (4).
Figure JPOXMLDOC01-appb-M000004
 また、ユーザ端末は、所定のテーブル(例えば、TBSとインデックスとを関連づけるテーブル(量子化(quantization)テーブル又はTBSテーブル等ともいう))を用いて、量子化された中間数(N’info)以上の(not less than)最も近いTBSを見つけ(find)てもよい。 In addition, the user terminal uses a predetermined table (for example, a table that associates the TBS with the index (also referred to as a quantization table or a TBS table)) and is equal to or larger than the quantized intermediate number (N'info). You may find the closest TBS (not less than).
 ステップ4)
 一方、ステップ2)で決定される情報ビットの中間数(Ninfo)が所定の閾値(例えば、3824)より大きい(又は以上)である場合、ユーザ端末は、当該中間数(Ninfo)を量子化し、量子化された中間数(N’info)を決定してもよい。ユーザ端末は、例えば、式(5)を用いて、量子化された中間数(N’info)を算出してもよい。なお、ラウンド関数は、端数を切り上げてもよい。
Figure JPOXMLDOC01-appb-M000005
Step 4)
On the other hand, when the median number (N info ) of the information bits determined in step 2) is greater than (or greater than or equal to) a predetermined threshold value (for example, 3824), the user terminal quantizes the median number (N info ). The quantized intermediate number (N'info) may be determined. The user terminal may calculate the quantized intermediate number (N'info) using, for example, the equation (5). The round function may be rounded up.
Figure JPOXMLDOC01-appb-M000005
 ここで、上記MCSテーブル(例えば、図3)でDCI内のMCSインデックスに関連付けられる符号化率(R)が所定の閾値(例えば、1/4)以下(又は未満)である場合、ユーザ端末は、下記式(6)に示される少なくとも一つのパラメータに基づいて(例えば、式(6)を用いて)、TBSを決定してもよい。
Figure JPOXMLDOC01-appb-M000006
 N’infoは、量子化された中間数であり、例えば、上記式(5)を用いて算出されてもよい。また、Cは、TBが分割されるコードブロック(CB:code bock)の数であってもよい。
Here, when the coding rate (R) associated with the MCS index in the DCI in the MCS table (for example, FIG. 3) is equal to or less than a predetermined threshold value (for example, 1/4), the user terminal has a user terminal. , TBS may be determined based on at least one parameter represented by the following formula (6) (for example, using the formula (6)).
Figure JPOXMLDOC01-appb-M000006
N'info is a quantized intermediate number, and may be calculated using, for example, the above equation (5). Further, C may be the number of code blocks (CB: code bock) in which TB is divided.
 一方、上記符号化率(R)が所定の閾値(例えば、1/4)より大きい(又は以上)であり、かつ、情報ビットの量子化された中間数(N’info)が所定の閾値(例えば、8424)より大きい(又は以上)である場合、ユーザ端末は、下記式(7)に示される少なくとも一つのパラメータに基づいて(例えば、式(7)を用いて)、TBSを決定してもよい。
Figure JPOXMLDOC01-appb-M000007
On the other hand, the coding rate (R) is greater than (or greater than or equal to) a predetermined threshold value (for example, 1/4), and the quantized intermediate number (N'info) of the information bits is a predetermined threshold value (N'info). For example, if it is greater than (or greater than or equal to) 8424), the user terminal determines the TBS based on at least one parameter represented by the following equation (7) (eg, using equation (7)). May be good.
Figure JPOXMLDOC01-appb-M000007
 また、上記符号化率(R)が所定の閾値(例えば、1/4)以下(又は未満)であり、かつ、量子化された中間数(N’info)が所定の閾値(例えば、8424)以下(又は未満)である場合、ユーザ端末は、下記式(8)に示される少なくとも一つのパラメータに基づいて(例えば、式(8)を用いて)、TBSを決定してもよい。 Further, the coding rate (R) is equal to or less than (for example, 1/4) a predetermined threshold value (for example, less than 1/4), and the quantized intermediate number (N'info) is a predetermined threshold value (for example, 8424). If less than (or less than), the user terminal may determine the TBS based on at least one parameter represented by the following equation (8) (eg, using equation (8)).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 このように、当該将来の無線通信システムでは、ユーザ端末は、スロット内でPDSCH又はPUSCHに利用可能なRE数(NRE)、符号化率(R)、変調次数(Qm)、レイヤ数の少なくとも一つに基づいて情報ビットの中間数(Ninfo)を決定し、当該中間数(Ninfo)が量子化された中間数(N’info)に基づいてPDSCH用又はPUSCH用のTBSを決定することが検討されている。 As described above, in the future wireless communication system, the user terminal has at least the number of REs (N RE ), the coding rate (R), the modulation order (Qm), and the number of layers available for PDSCH or PUSCH in the slot. The median number (N info ) of the information bits is determined based on one, and the TBS for PDSCH or PUSCH is determined based on the median number (N'info) obtained by quantizing the median number (N info ). Is being considered.
<冗長バージョン>
 複数の共有チャネル(例えば、PUSCH)の送信又はPUSCHの繰り返し送信を行う場合、各PUSCH送信において所定の冗長バージョン(RV)が適用される。
<Redundant version>
When transmitting a plurality of shared channels (for example, PUSCH) or repeatedly transmitting a PUSCH, a predetermined redundant version (RV) is applied to each PUSCH transmission.
 複数の送信機会にわたってPUSCH(又は、TB)の繰り返し送信が行われる場合、当該TBのn番目の送信機会に適用されるRVは、所定ルールに基づいて決定されてもよい。例えば、所定のRNTIを利用してCRCスクランブルされたPDCCH(又は、DCI)によりスケジュールされたPUSCHの繰り返し送信に対して、DCIで通知される情報と送信機会のインデックスに基づいてRVが決定されてもよい。 When the PUSCH (or TB) is repeatedly transmitted over a plurality of transmission opportunities, the RV applied to the nth transmission opportunity of the TB may be determined based on a predetermined rule. For example, for repeated transmissions of PUSCH scheduled by CRC scrambled PDCCH (or DCI) using a predetermined RNTI, the RV is determined based on the information notified by DCI and the index of transmission opportunity. May be good.
 UEは、PDSCHの繰り返しをスケジュールするDCI内の所定フィールド(例えば、RVフィールド)の値に基づいて、n番目の繰り返しに対応するRV(RVインデックス、RV値などと読み替えられてもよい)を決定してもよい。なお、本開示においては、n番目の繰り返しはn-1番目の繰り返しと互いに読み替えられてもよい(例えば、1番目の繰り返しは、0番目の繰り返しと表現されてもよい)。 The UE determines the RV (which may be read as RV index, RV value, etc.) corresponding to the nth iteration based on the value of a predetermined field (for example, RV field) in the DCI that schedules the PDSCH iteration. You may. In the present disclosure, the nth repetition may be read as the n-1th repetition with each other (for example, the first repetition may be expressed as the 0th repetition).
 例えば、UEは、2ビットのRVフィールドに基づいて、1番目の繰り返しに適用するRVインデックスを決定してもよい。例えば、RVフィールドの値が“00”、“01”、“10”、“11”であることは、それぞれ1番目の繰り返しのRVインデックスが‘0’、‘1’、‘2’、‘3’であることに対応してもよい。 For example, the UE may determine the RV index to be applied to the first iteration based on the 2-bit RV field. For example, if the value of the RV field is "00", "01", "10", "11", the RV index of the first repetition is "0", "1", "2", "3", respectively. It may correspond to'.
 図4は、各送信機会に対するRVのマッピングの一例を示す図である。図4の表の一番左の列は、RVフィールドによって示されるRVインデックス(rvid)を示す。UEは、この値に応じて、n番目の繰り返し(送信機会)に適用されるRVインデックスを判断してもよい。 FIG. 4 is a diagram showing an example of RV mapping for each transmission opportunity. The leftmost column of the table in FIG. 4 shows the RV index (rv id ) indicated by the RV field. The UE may determine the RV index applied to the nth iteration (transmission opportunity) according to this value.
 例えば、UEは、RVフィールドによって示されるrvidが0の場合、n mod 4(mod(n,4)と等価)=0、1、2、3が、それぞれrvid=0、2、3、1に対応すると判断してもよい。つまり、UEは、RVシーケンス{#0、#2、#3、#1}について、RVフィールドによって示されたRVを開始位置として、繰り返しごとに1つ右のRVを適用してもよい。 For example, in the UE, when the rv id indicated by the RV field is 0, n mod 4 (equivalent to mod (n, 4)) = 0, 1, 2, 3 means rv id = 0, 2, 3, respectively. It may be judged that it corresponds to 1. That is, the UE may apply the right RV for each iteration of the RV sequence {# 0, # 2, # 3, # 1}, starting from the RV indicated by the RV field.
 PUSCHの繰り返しについては、特定のRVシーケンスのみがサポートされてもよい。当該特定のRVシーケンスは、互いに異なるRVインデックスを含む(同じRVインデックスを含まない)RVシーケンス(例えば、RVシーケンス{#0、#2、#3、#1})であってもよい。なお、本開示において、RVシーケンスは、1つ又は複数のRVインデックスから構成されてもよい。 For PUSCH iterations, only specific RV sequences may be supported. The particular RV sequence may be an RV sequence (eg, RV sequence {# 0, # 2, # 3, # 1}) that includes different RV indexes (does not contain the same RV index). In the present disclosure, the RV sequence may be composed of one or more RV indexes.
 また、PUSCHの繰り返しについては、1より多いRVシーケンスがサポートされてもよい。当該1より多いRVシーケンスは、例えば、RVシーケンス{#0、#2、#3、#1}、{#0、#3、#0、#3}、{#0、#0、#0、#0}などを含んでもよい。適用されるRVシーケンスの数は、送信タイプに応じて設定されてもよい。例えば、DCIでPUSCHがスケジュールされるダイナミックベースのPUSCH送信には1つのRVシーケンスを適用し、設定グラントベースのPUSCH送信には複数のRVシーケンスが適用されてもよい。 Also, for PUSCH iterations, more than 1 RV sequence may be supported. RV sequences greater than 1 include, for example, RV sequences {# 0, # 2, # 3, # 1}, {# 0, # 3, # 0, # 3}, {# 0, # 0, # 0, It may include # 0} and the like. The number of RV sequences applied may be set depending on the transmission type. For example, one RV sequence may be applied to a dynamic-based PUSCH transmission in which PUSCH is scheduled in DCI, and a plurality of RV sequences may be applied to a set grant-based PUSCH transmission.
 UEは、PUSCHの繰り返しのために、1より多いRVシーケンスの少なくとも1つを、上位レイヤシグナリングによって設定されてもよい。例えば、UEは、2ビットのRVフィールドに基づいて、設定されたRVシーケンスから、1番目の繰り返しに適用するRVインデックスを決定してもよい。UEは、1番目の繰り返しに適用するRVインデックスに基づいて、第1のマッピングで上述したように、n番目の繰り返し(送信機会)に適用されるRVインデックスを判断してもよい。 The UE may set at least one of the more than 1 RV sequences by higher layer signaling for PUSCH iterations. For example, the UE may determine the RV index to be applied to the first iteration from the set RV sequence based on the 2-bit RV field. The UE may determine the RV index applied to the nth iteration (transmission opportunity), as described above in the first mapping, based on the RV index applied to the first iteration.
 例えば、設定グラントベースのPUSCH送信において、上位レイヤシグナリングにより、RVシーケンス{#0、#2、#3、#1}、{#0、#3、#0、#3}、及び{#0、#0、#0、#0}の少なくとも一つが設定されてもよい。 For example, in a configuration grant-based PUSCH transmission, RV sequences {# 0, # 2, # 3, # 1}, {# 0, # 3, # 0, # 3}, and {# 0, by higher layer signaling. At least one of # 0, # 0, # 0} may be set.
 上述したように、PUSCHを送信する場合、所定のトランスポートブロックサイズ(TBS)を用いて送信を行うが、分割されたセグメントのTBSをどのように制御するかが問題となる。あるいは、PUSCHを送信する場合、所定の冗長バージョン(RV)を用いて送信を行うが、分割された複数のセグメントの冗長バージョンをどのように制御するかが問題となる。 As described above, when transmitting PUSCH, transmission is performed using a predetermined transport block size (TBS), but how to control the TBS of the divided segment becomes a problem. Alternatively, when PUSCH is transmitted, transmission is performed using a predetermined redundant version (RV), but how to control the redundant version of a plurality of divided segments becomes a problem.
 本発明者等は、共有チャネルの複数のセグメントに対して送信条件又はパラメータ等をどのように適用するかについて検討し、本発明に至った。 The present inventors have studied how to apply transmission conditions or parameters to a plurality of segments of a shared channel, and have reached the present invention.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。なお、以下の第1の態様~第3の態様はそれぞれ単独で用いられてもよいし、少なくとも2つを組み合わせて適用されてもよい。以下の説明は、上り共有チャネル(例えば、PUSCH)を例に挙げて説明するが、適用可能な信号/チャネルはこれに限られない。例えば、PUSCHをPDSCH、送信を受信に読み替えて本実施の形態を適用してもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. In addition, the following first to third aspects may be used individually, or at least two may be applied in combination. The following description will be given by taking an uplink shared channel (for example, PUSCH) as an example, but the applicable signal / channel is not limited to this. For example, the present embodiment may be applied by replacing PUSCH with PDSCH and transmitting with receiving.
 また、以下に示す態様は、繰り返し送信(repetition、又はnominal repetitionとも呼ぶ)を適用する共有チャネル(PUSCH又はPDSCH)、及び繰り返し送信を適用しない(又は、繰り返し数が1である)共有チャネルの少なくとも一つに対して適用できる。 Further, the following aspects are at least a shared channel (PUSCH or PDSCH) to which repeated transmission (also referred to as repetition or nominal repetition) is applied, and a shared channel to which repeated transmission is not applied (or the number of repetitions is 1). Applicable to one.
(第1の態様)
 第1の態様では、PUSCHを複数のセグメントに分割して送信を行う場合に、各セグメントに適用するトランスポートブロックサイズ(TBS)について説明する。
(First aspect)
In the first aspect, when the PUSCH is divided into a plurality of segments and transmission is performed, the transport block size (TBS) applied to each segment will be described.
 UEは、所定領域又は所定送信機会にスケジュール又は割当てられたPUSCH(nominal PUSCHとも呼ぶ)を複数のセグメントに分割して送信する場合、分割後の各セグメントのTBSを所定条件に基づいて決定する。所定条件は、時間(time)、周波数(freq)、変調符号化方式(MCS)、及びレイヤ数(layer)の少なくとも一つを含む送信条件又は送信パラメータであってもよい。変調符号化方式(MCS)は、変調次数(Modulation order)及び符号化率(target code rate)の少なくとも一つであってもよい。 When the UE divides the PUSCH (also referred to as nominal PUSCH) scheduled or allocated to a predetermined area or a predetermined transmission opportunity into a plurality of segments and transmits the PUSCH, the TBS of each segment after the division is determined based on a predetermined condition. The predetermined condition may be a transmission condition or a transmission parameter including at least one of time, frequency (freq), modulation coding method (MCS), and number of layers (layer). The modulation coding method (MCS) may be at least one of a modulation order (Modulation order) and a coding rate (target code rate).
 UEは、分割された複数のセグメントのTBSが同一となるように制御してもよい。また、分割前のPUSCHのTBS(オリジナルTBSとも呼ぶ)と、分割後の各セグメントのTBSが同一となるように制御してもよい。複数のPUSCH送信の間で同じTBSを利用してTBを送信することにより、複数のTBを受信側(例えば、上りでは基地局)で適切に合成(combine)することが可能となる。 The UE may control the TBSs of the divided plurality of segments to be the same. Further, the TBS of the PUSCH before the division (also referred to as the original TBS) and the TBS of each segment after the division may be controlled to be the same. By transmitting TB using the same TBS among a plurality of PUSCH transmissions, it becomes possible to appropriately combine a plurality of TBs on the receiving side (for example, a base station on the uplink).
 UEは、各PUSCH送信(例えば、シングルセグメントPUSCH、又はマルチセグメントPUSCH)のTBSについて、時間(time)、周波数(freq)、変調符号化方式(MCS)、及びレイヤ数(layer)等の条件に基づいて決定してもよい。例えば、上述したステップ1)-ステップ4)に基づいてTBSを決定してもよい。 The UE sets the conditions such as time, frequency (freq), modulation coding method (MCS), and number of layers (layer) for the TBS of each PUSCH transmission (for example, single-segment PUSCH or multi-segment PUSCH). It may be decided based on. For example, the TBS may be determined based on step 1) -step 4) described above.
 PUSCHが複数のセグメントに分割される場合、各セグメントの時間方向の割当て(例えば、シンボル数)はオリジナルPUSCHより少なくなる。そのため、各セグメントのTBSをオリジナルTBSと同一とする場合、他の送信条件又は送信パラメータ(例えば、周波数、MCS及びレイヤの少なくとも一つ)を変更する、又は所定のMCSインデックスを適用するように制御してもよい。例えば、UEは、以下のオプション1-1~オプション1-5の少なくとも一つに基づいて各セグメントに適用する送信条件又は送信パラメータを変更してもよい。 When the PUSCH is divided into a plurality of segments, the allocation in the time direction of each segment (for example, the number of symbols) is smaller than that of the original PUSCH. Therefore, when the TBS of each segment is the same as the original TBS, other transmission conditions or transmission parameters (for example, at least one of frequency, MCS and layer) are changed, or a predetermined MCS index is applied. You may. For example, the UE may change the transmission conditions or transmission parameters applied to each segment based on at least one of the following options 1-1 to 1-5.
<オプション1-1>
 複数のセグメントの少なくとも一つについて、割当てを行う周波数リソース(例えば、RB数又はPRB数)を増加してもよい。つまり、TBSを決定するパラメータにおいて、分割により時間(time)パラメータに相当するシンボル数が減少するため、周波数(freq)パラメータに相当する周波数リソースを増加させる(図5A、図6参照)。
<Option 1-1>
The frequency resources to be allocated (eg, number of RBs or number of PRBs) may be increased for at least one of the plurality of segments. That is, in the parameter for determining TBS, since the number of symbols corresponding to the time parameter is reduced by the division, the frequency resource corresponding to the frequency (freq) parameter is increased (see FIGS. 5A and 6).
 例えば、UEは、複数のセグメントの少なくとも一つの割当てPRB数を分割前のPUSCHの割当てPRB数(オリジナルPRB数とも呼ぶ)より増やして割当てを行ってもよい。分割前のPUSCHの割当てPRB数は、PUSCHをスケジュールするDCIで指定されてもよい。 For example, the UE may allocate by increasing the number of allocated PRBs of at least one of the plurality of segments from the number of allocated PRBs of PUSCH before division (also referred to as the number of original PRBs). The number of PUSCH allocated PRBs before division may be specified by the DCI that schedules the PUSCH.
 各セグメントの割当てPRB数をそれぞれ同じ数だけ増加するように制御してもよい。例えば、PUSCHを第1のセグメント及び第2のセグメントに分割する場合、第1のセグメントの割当てPRB数と、第2のセグメントの割当てPRB数の変更(例えば、増加)を共通に行ってもよい。 The number of allocated PRBs for each segment may be controlled to increase by the same number. For example, when the PUSCH is divided into a first segment and a second segment, the number of allocated PRBs in the first segment and the number of allocated PRBs in the second segment may be changed (for example, increased) in common. ..
 あるいは、各セグメントの割当てPRB数をそれぞれ別々に増加するように制御してもよい。例えば、各セグメントの時間リソース(例えば、シンボル数)に基づいて、増加する周波数リソース(例えば、PRB数)が決定されてもよい。一例として、シンボル数が少ない第1のセグメントのPRB数を、第1のセグメントよりシンボル数が多い第2のセグメントのPRB数より多くなるように変更してもよい(図6の繰り返し送信参照)。 Alternatively, the number of allocated PRBs for each segment may be controlled to be increased separately. For example, an increasing frequency resource (eg, PRB number) may be determined based on the time resource (eg, number of symbols) of each segment. As an example, the number of PRBs in the first segment having a small number of symbols may be changed to be larger than the number of PRBs in the second segment having a larger number of symbols than the first segment (see the repeated transmission in FIG. 6). ..
 各セグメントに適用される周波数リソース(例えば、増加するPRB数)に関する情報は、仕様であらかじめ定義されてもよいし、基地局からUEに上位レイヤシグナリング及びDCIの少なくとも一つを利用して通知してもよい。 Information about the frequency resources applied to each segment (eg, increasing number of PRBs) may be predefined in the specification, or the base station notifies the UE using at least one of higher layer signaling and DCI. You may.
 このように各セグメントに割当てる周波数リソース(例えば、PRB数)を増加することにより、符号化率(coding rate)を維持しつつ又は増加することなく、オリジナルPUSCH(例えば、最初に割当てられたPUSCH)と同じTBSを維持することができる。 By increasing the frequency resources (eg, the number of PRBs) allocated to each segment in this way, the original PUSCH (eg, the first assigned PUSCH) while maintaining or without increasing the coding rate. Can maintain the same TBS as.
<オプション1-2>
 複数のセグメントの少なくとも一つについて、MCS(例えば、変調次数及び符号化率の少なくとも一つ)を増加してもよい。つまり、TBSを決定するパラメータにおいて、分割により時間(time)パラメータに相当するシンボル数が減少するため、MCSを増加させる(図5B参照)。当該、MCSは、変調次数及び符号化率の少なくとも一つであってもよいし、MCSインデックスであってもよい。
<Option 1-2>
The MCS (eg, at least one of modulation order and code rate) may be increased for at least one of the plurality of segments. That is, in the parameter for determining TBS, the number of symbols corresponding to the time parameter is reduced by the division, so that the MCS is increased (see FIG. 5B). The MCS may be at least one of the modulation order and the coding rate, or may be an MCS index.
 例えば、UEは、複数のセグメントの少なくとも一つのMCSを分割前のPUSCHのMCS(オリジナルMCSとも呼ぶ)より増やして割当てを行ってもよい。分割前のPUSCHのMCSは、PUSCHをスケジュールするDCIで指定されてもよい。 For example, the UE may allocate at least one MCS of a plurality of segments by increasing the MCS of the PUSCH before division (also referred to as an original MCS). The MCS of the PUSCH before the division may be specified by the DCI that schedules the PUSCH.
 各セグメントのMCSをそれぞれ同じ数だけ増加するように制御してもよい。例えば、PUSCHを第1のセグメント及び第2のセグメントに分割する場合、第1のセグメントのMCSと、第2のセグメントのMCSの変更(例えば、増加)を共通に行ってもよい。 The MCS of each segment may be controlled to increase by the same number. For example, when the PUSCH is divided into a first segment and a second segment, the MCS of the first segment and the MCS of the second segment may be changed (for example, increased) in common.
 あるいは、各セグメントのMCSをそれぞれ別々に増加するように制御してもよい。例えば、各セグメントの時間リソース(例えば、シンボル数)に基づいて、増加するMCSが決定されてもよい。一例として、シンボル数が少ない第1のセグメントのMCSを、第1のセグメントよりシンボル数が多い第2のセグメントのMCSより大きくなるように変更してもよい。 Alternatively, the MCS of each segment may be controlled to be increased separately. For example, the increasing MCS may be determined based on the time resources of each segment (eg, the number of symbols). As an example, the MCS of the first segment having a small number of symbols may be changed to be larger than the MCS of the second segment having a larger number of symbols than the first segment.
 各セグメントに適用されるMCS(例えば、増加するMCS)に関する情報は、仕様であらかじめ定義されてもよいし、基地局からUEに上位レイヤシグナリング及びDCIの少なくとも一つを利用して通知してもよい。 Information about the MCS applied to each segment (eg, increasing MCS) may be predefined in the specification, or the base station may notify the UE using at least one of higher layer signaling and DCI. Good.
 このように各セグメントに適用するMCSを増加することにより、周波数リソースの割当てを維持しつつ又は増加することなく、オリジナルPUSCH(例えば、最初に割当てられたPUSCH)と同じTBSを維持することができる。また、周波数リソースは変更されないため、セグメントPUSCHの割当て制御が複雑になることを抑制できる。 By increasing the MCS applied to each segment in this way, it is possible to maintain the same TBS as the original PUSCH (eg, the initially allocated PUSCH) while maintaining or without increasing the allocation of frequency resources. .. Further, since the frequency resource is not changed, it is possible to suppress the complicated allocation control of the segment PUSCH.
<オプション1-3>
 複数のセグメントの少なくとも一つについて、特定のMCSインデックス、又は特定の変調次数を適用してもよい。特定のMCSインデックスは、予約されたMCSインデックス(reserved MCS index)であってもよい。また、特定の変調次数は、仕様であらかじめ定義された固定値、又は基地局から通知又は設定された値であってもよい。
<Option 1-3>
A specific MCS index or a specific modulation order may be applied to at least one of the plurality of segments. The particular MCS index may be a reserved MCS index. Further, the specific modulation order may be a fixed value defined in advance in the specifications, or a value notified or set by the base station.
 特定のMCSインデックス(例えば、reserved MCS index)を利用する場合、UEは、上述した4ステップを利用せず、最新のPDCCH(latest PDCCH)で送信されるDCI(MCSインデックスが0以上27以下)に基づいて決定される。つまり、特定のMCSインデックス又は特定の変調次数を適用することにより、再計算(re-calculate)を行うことなくオリジナルTBSを維持することができる。 When using a specific MCS index (for example, reserved MCS index), the UE does not use the above-mentioned 4 steps, but instead uses the latest PDCCH (latest PDCCH) for DCI (MCS index is 0 or more and 27 or less). Determined based on. That is, by applying a specific MCS index or a specific modulation order, the original TBS can be maintained without re-calculate.
<オプション1-4>
 複数のセグメントの少なくとも一つについて、空間リソース(例えば、レイヤ数)を増加してもよい。つまり、TBSを決定するパラメータにおいて、分割により時間(time)パラメータに相当するシンボル数が減少するため、空間リソースを増加させる(図5D、図7参照)。
<Option 1-4>
Spatial resources (eg, number of layers) may be increased for at least one of the plurality of segments. That is, in the parameter for determining TBS, the number of symbols corresponding to the time parameter is reduced by the division, so that the spatial resource is increased (see FIGS. 5D and 7).
 例えば、UEは、複数のセグメントの少なくとも一つの空間リソース(例えば、レイヤ数)を分割前のPUSCHの空間リソース(例えば、オリジナルレイヤ数)より増やして割当てを行ってもよい。分割前のPUSCHの空間リソース(例えば、レイヤ数)は、PUSCHをスケジュールするDCIで指定されてもよい。 For example, the UE may allocate at least one spatial resource (for example, the number of layers) of the plurality of segments by increasing the spatial resource (for example, the number of original layers) of the PUSCH before division. The spatial resource of the PUSCH before division (for example, the number of layers) may be specified by the DCI that schedules the PUSCH.
 各セグメントのレイヤ数をそれぞれ同じ数だけ増加するように制御してもよい。例えば、PUSCHを第1のセグメント及び第2のセグメントに分割する場合、第1のセグメントのレイヤ数と、第2のセグメントのレイヤ数の変更(例えば、増加)を共通に行ってもよい。 The number of layers in each segment may be controlled to increase by the same number. For example, when the PUSCH is divided into a first segment and a second segment, the number of layers in the first segment and the number of layers in the second segment may be changed (for example, increased) in common.
 あるいは、各セグメントのMCSをそれぞれ別々に増加するように制御してもよい。例えば、各セグメントの時間リソース(例えば、シンボル数)に基づいて、増加するレイヤ数が決定されてもよい。一例として、シンボル数が少ない第1のセグメントのレイヤ数を、第1のセグメントよりシンボル数が多い第2のセグメントのレイヤ数より多くなるように変更してもよい(図7の繰り返し送信参照)。 Alternatively, the MCS of each segment may be controlled to be increased separately. For example, the number of layers to be increased may be determined based on the time resource (for example, the number of symbols) of each segment. As an example, the number of layers in the first segment having a small number of symbols may be changed to be larger than the number of layers in the second segment having a larger number of symbols than the first segment (see repeated transmission in FIG. 7). ..
 各セグメントに適用されるレイヤ数(例えば、増加するレイヤ数)に関する情報は、仕様であらかじめ定義されてもよいし、基地局からUEに上位レイヤシグナリング及びDCIの少なくとも一つを利用して通知してもよい。 Information about the number of layers applied to each segment (eg, increasing number of layers) may be predefined in the specification, or the base station notifies the UE using at least one of higher layer signaling and DCI. You may.
 このように各セグメントに適用するレイヤ数を増加することにより、周波数リソースの割当て及びMCSを維持しつつ又は増加することなく、オリジナルPUSCH(例えば、最初に割当てられたPUSCH)と同じTBSを維持することができる。また、周波数リソースは変更されないため、セグメントPUSCHの割当て制御が複雑になることを抑制できる。 By increasing the number of layers applied to each segment in this way, the same TBS as the original PUSCH (eg, the originally allocated PUSCH) is maintained, with or without the allocation of frequency resources and MCS. be able to. Further, since the frequency resource is not changed, it is possible to suppress the complicated allocation control of the segment PUSCH.
<オプション1-5>
 上記オプション1-1~オプション1-4のうち、少なくとも2つのオプションを組み合わせて適用してもよい。例えば、複数のセグメントの少なくとも一つについて、周波数リソース(例えば、PRB数)及びMCSを増加してもよい。つまり、TBSを決定するパラメータにおいて、分割により時間(time)パラメータに相当するシンボル数が減少するため、周波数リソース及びMCSを増加させる(図5E参照)。
<Option 1-5>
Of the above options 1-1 to 1-4, at least two options may be applied in combination. For example, frequency resources (eg, number of PRBs) and MCS may be increased for at least one of the plurality of segments. That is, in the parameter for determining TBS, the frequency resource and MCS are increased because the number of symbols corresponding to the time parameter is reduced by the division (see FIG. 5E).
 その他にも、周波数リソース及び空間リソースを増加してもよいし、MCS及び空間リソースを増加してもよいし、周波数リソース、MCS及び空間リソースを増加してもよい。また、複数のセグメントに対して、増加するパラメータは共通としてもよい。あるいは、セグメントごとに増加するパラメータを別々に設定してもよい。 In addition, frequency resources and spatial resources may be increased, MCS and spatial resources may be increased, and frequency resources, MCS and spatial resources may be increased. Moreover, the parameter to be increased may be common to a plurality of segments. Alternatively, the parameters that increase for each segment may be set separately.
<UE動作>
 PUSCHを複数セグメントに分割して送信を行う場合、UEは自律的(例えば、automatically)に各セグメントの送信条件又はパラメータを調整してもよい。例えば、スケジュール又は設定されたPUSCHがスロット境界を跨ぐ場合、スロット境界を基準としてPUSCHを分割し、分割されたセグメントに上記オプション1-1~オプション1-5の少なくとも一つを適用してもよい。
<UE operation>
When the PUSCH is divided into a plurality of segments for transmission, the UE may autonomously (for example, automatically) adjust the transmission conditions or parameters of each segment. For example, when the scheduled or set PUSCH crosses the slot boundary, the PUSCH may be divided based on the slot boundary, and at least one of the above options 1-1 to 1-5 may be applied to the divided segments. ..
 例えば、UEは、オプション1-1を適用する場合、各セグメントのPRB数を調整する。UEは、オプション1-2を適用する場合、各セグメントのMCSを調整する。UEは、オプション1-4を適用する場合、各セグメントのレイヤ数を調整する。UEは、オプション1-5を適用する場合、各セグメントのPRB数、MCS及びレイヤ数の少なくとも2つを調整する。 For example, when applying option 1-1, the UE adjusts the number of PRBs in each segment. The UE adjusts the MCS of each segment when applying option 1-2. The UE adjusts the number of layers in each segment when applying options 1-4. The UE adjusts at least two of the PRB number, MCS and layer number of each segment when applying option 1-5.
 UEは、オプション1-3を適用する場合、所定のMCSインデックス(例えば、MCS=28、29、30、又は31)を適用してもよい。どのMCSインデックスを適用するかは上位レイヤシグナリングで設定されてもよいし、符号化率に基づいて選択されてもよい。また、オプション1-3を適用する場合、変調次数として、DCIに含まれるMCSフィールドで通知された変調次数と同じ値を適用してもよい。 The UE may apply a predetermined MCS index (eg, MCS = 28, 29, 30, or 31) when applying option 1-3. Which MCS index is applied may be set by higher layer signaling or may be selected based on the code rate. When option 1-3 is applied, the same value as the modulation order notified in the MCS field included in the DCI may be applied as the modulation order.
 あるいは、PUSCHを複数セグメントに分割して送信を行う場合、UEは基地局から通知される情報に基づいて各セグメントの送信条件又はパラメータを調整してもよい。例えば、UEは、DCIの所定フィールド(例えば、新規フィールド)及び上位レイヤシグナリングの少なくとも一つを利用して明示的に通知される情報に基づいて各セグメントに適用する送信条件又はパラメータを決定してもよい。 Alternatively, when the PUSCH is divided into a plurality of segments for transmission, the UE may adjust the transmission conditions or parameters of each segment based on the information notified from the base station. For example, the UE determines transmission conditions or parameters to apply to each segment based on information explicitly notified using at least one of DCI's predetermined fields (eg, new fields) and higher layer signaling. May be good.
 あるいは、スケジュール状況(又は、通信状況)に基づいて、各セグメントに適用する送信条件又はパラメータが制御されてもよい。例えば、UEは、各セグメントの周波数方向に利用可能なリソースが存在する場合に、オプション1-1を適用するように制御してもよい。また、UEは、オリジナルPUSCHの周波数リソース(例えば、割当てPRB数)が所定値以上の場合、周波数リソースの増加は行わず他の方法(例えば、オプション1-2~オプション1-4のいずれか)を適用するように制御してもよい。 Alternatively, the transmission conditions or parameters applied to each segment may be controlled based on the schedule status (or communication status). For example, the UE may control to apply option 1-1 when resources are available in the frequency direction of each segment. Further, when the frequency resource of the original PUSCH (for example, the number of allocated PRBs) is equal to or more than a predetermined value, the UE does not increase the frequency resource and uses another method (for example, any of options 1-2 to 1-4). May be controlled to apply.
 また、UEは、オリジナルPUSCHのMCSが所定値以下の場合、MCSの増加は行わず他の方法(例えば、オプション1-1、1-3、1-4のいずれか)を適用するように制御してもよい。 Further, when the MCS of the original PUSCH is equal to or less than a predetermined value, the UE controls so that the MCS is not increased and another method (for example, any of options 1-1, 1-3, and 1-4) is applied. You may.
 また、オリジナルPUSCHと同じTBS及びMCSを維持するためにオプション1-1が選択された場合であっても、増加するPRB数が見つからない場合も考えられる。かかる場合、オプション1-5を利用し、MCSインデックを変更してもよい。この場合、変更後のMCSインデックスは、オリジナルMCSインデックスと近い範囲となるように変更してもよい。 Also, even if option 1-1 is selected to maintain the same TBS and MCS as the original PUSCH, it is possible that an increasing number of PRBs cannot be found. In such a case, the MCS index may be changed by using option 1-5. In this case, the changed MCS index may be changed so as to be in a range close to the original MCS index.
 また、UEは、各セグメントに適用する符号化率(例えば、effective coding rate)が所定値(例えば、0.95)より高くなる場合、PUSCH(又は、各セグメント)の送信を行わない(例えば、スキップする)ように制御してもよい。復号の可能性が低いPUSCHのセグメントの送信をスキップすることにより、UEの消費電力の増加を抑制(例えば、バッテリーセービング)すると共に、他セルへの干渉の影響を低減することが可能となる。 Further, when the coding rate applied to each segment (for example, effective coding rate) is higher than a predetermined value (for example, 0.95), the UE does not transmit the PUSCH (or each segment) (for example,). It may be controlled to skip). By skipping the transmission of the PUSCH segment, which has a low possibility of decoding, it is possible to suppress an increase in the power consumption of the UE (for example, battery saving) and reduce the influence of interference with other cells.
 なお、複数セグメントのうち、符号化率が所定値以下となる第1のセグメントと、所定値より高くなる第2のセグメントがある場合、第1のセグメントのみ送信する(第2のセグメントは送信しない)ように制御してもよいし、第1のセグメント及び第2のセグメントの両方を送信しないように制御してもよい。 If there is a first segment in which the coding rate is equal to or less than a predetermined value and a second segment in which the coding rate is higher than the predetermined value among the plurality of segments, only the first segment is transmitted (the second segment is not transmitted). ), Or it may be controlled not to transmit both the first segment and the second segment.
 あるいは、UEは、各セグメントに適用する符号化率に関わらず、PUSCH(又は、各セグメント)の送信を行うように制御してもよい。つまり、各セグメントに適用する符号化率が所定値より高くなる場合であっても送信するように制御してもよい。この場合、基地局は、他のPUSCHと結合(例えば、ソフトコンバイニング)することにより、符号化率が高いPUSCHの復号を適切に行うことができる。 Alternatively, the UE may be controlled to transmit the PUSCH (or each segment) regardless of the coding rate applied to each segment. That is, transmission may be controlled even when the coding rate applied to each segment is higher than a predetermined value. In this case, the base station can appropriately decode the PUSCH having a high coding rate by combining with another PUSCH (for example, soft combining).
<送信電力制御>
 PUSCHを複数のセグメント(segmented PUSCH)に分割して送信を行う場合、分割前のPUSCH(例えば、オリジナルPUSCH)に設定された送信電力と同じ送信電力を用いて各セグメントの送信を行ってもよい。この場合、UEは、各セグメントに対して同一の送信電力を適用する。
<Transmission power control>
When the PUSCH is divided into a plurality of segments (segmented PUSCH) for transmission, each segment may be transmitted using the same transmission power as the transmission power set in the PUSCH before division (for example, the original PUSCH). .. In this case, the UE applies the same transmit power to each segment.
 あるいは、PUSCHを複数のセグメント(segmented PUSCH)に分割して送信を行う場合、分割前のPUSCH(例えば、オリジナルPUSCH)に設定された送信電力と異なる送信電力を用いて各セグメントの送信を行ってもよい。例えば、オリジナルPUSCHに設定された送信電力が所定値を超えない場合(例えば、パワーリミテッドされない場合)、各セグメントの送信電力を増加(又は、ブースト)してもよい。 Alternatively, when the PUSCH is divided into a plurality of segments (segmented PUSCH) for transmission, each segment is transmitted using a transmission power different from the transmission power set in the PUSCH (for example, the original PUSCH) before the division. May be good. For example, if the transmission power set in the original PUSCH does not exceed a predetermined value (for example, when power is not limited), the transmission power of each segment may be increased (or boosted).
 所定値は、許容最大送信電力(Pcmax)であってもよく、オリジナルPUSCHの送信電力が許容最大電力以下となるPPUSCH,b,f,c(I,j,qd,l)≦PCMAX,f,c(i)となる場合に(又は、PCMAX,f,c(i)を超えない範囲で)送信電力が増加されてもよい。 The predetermined value may be the maximum allowable transmission power (Pcmax), and the transmission power of the original PUSCH is equal to or less than the maximum allowable power P PUSCH, b, f, c (I, j, qd, l) ≤ P CMAX, When f, c (i) is satisfied (or within the range not exceeding PCMAX, f, c (i)), the transmission power may be increased.
 送信電力を増加する値(Boosted power value)は、UE側で自律的に決定してもよいし(UE implementation)、仕様で定義されてもよいし、基地局からUEに上位レイヤシグナリング等で通知されてもよい。例えば、セグメントPUSCHの符号化率がオリジナルPUSCHより高くなる(例えば、2倍となる)場合、送信電力が所定値(例えば、3dB)ブーストされてもよい。これにより、各セグメントの符号化率が高くなる場合でも通信品質の低下を抑制することができる。 The value that increases the transmission power (Boosted power value) may be determined autonomously on the UE side (UE implementation), may be defined in the specifications, or the base station notifies the UE by higher layer signaling or the like. May be done. For example, when the coding rate of the segment PUSCH is higher than that of the original PUSCH (for example, it is doubled), the transmission power may be boosted by a predetermined value (for example, 3 dB). As a result, deterioration of communication quality can be suppressed even when the coding rate of each segment is high.
(第2の態様)
 第2の態様では、PUSCHを複数のセグメントに分割して送信を行う場合に、各セグメントに適用する冗長バージョン(RV)について説明する。
(Second aspect)
In the second aspect, when the PUSCH is divided into a plurality of segments and transmission is performed, a redundant version (RV) applied to each segment will be described.
 UEは、所定領域又は所定送信機会にスケジュール又は割当てられたPUSCH(nominal PUSCHとも呼ぶ)を複数のセグメントに分割して送信する場合、分割後の各セグメントに適用するRVを所定条件に基づいて決定する。例えば、UEは、以下のオプション2-1~2-4の少なくとも一つに基づいて各セグメントに適用するRVを決定してもよい。 When the UE divides a PUSCH (also called nominal PUSCH) scheduled or allocated to a predetermined area or a predetermined transmission opportunity into a plurality of segments and transmits the PUSCH, the RV to be applied to each segment after the division is determined based on a predetermined condition. To do. For example, the UE may determine the RV to apply to each segment based on at least one of the following options 2-1 to 2-4.
<オプション2-1>
 複数のセグメントに対して同じRVを適用してもよい。例えば、UEは、PUSCHを複数のセグメントに分割して送信する場合、各セグメントに対して同じRVを適用する。また、各セグメントに適用するRVは、分割前のPUSCH(例えば、オリジナルPUSCH)に設定されるRV(例えば、オリジナルRV)であってもよい。
<Option 2-1>
The same RV may be applied to multiple segments. For example, when the UE divides the PUSCH into a plurality of segments and transmits the PUSCH, the UE applies the same RV to each segment. Further, the RV applied to each segment may be an RV (for example, an original RV) set in the PUSCH before division (for example, the original PUSCH).
 オリジナルPUSCHのRVは、当該オリジナルPUSCHをスケジュールするDCIで通知されてもよい。例えば、UEは、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVが0である場合、当該PUSCHを分割して送信する複数のセグメントに対するRVとして0を適用する。 The RV of the original PUSCH may be notified by the DCI that schedules the original PUSCH. For example, when the RV notified by the PDCCH (or DCI) that schedules the PUSCH is 0, the UE applies 0 as the RV for a plurality of segments to divide and transmit the PUSCH.
 このように、あらかじめPUSCHに設定されるRVに基づいて各セグメントに適用するRVを決定することにより、スケジューリングの複雑性を抑制することができる。 In this way, by determining the RV to be applied to each segment based on the RV set in the PUSCH in advance, the complexity of scheduling can be suppressed.
<オプション2-2>
 複数のセグメントに対して異なるRVを適用してもよい。例えば、UEは、PUSCHを複数のセグメントに分割して送信する場合、複数のセグメントのうち少なくとも2つのセグメント同士に対して異なるRVを適用する。また、複数のセグメントの少なくとも一つに適用するRVは、分割前のPUSCH(例えば、オリジナルPUSCH)に設定されるRVであってもよい。その他のセグメントに適用されるRVは、所定条件に基づいて選択されてもよい。
<Option 2-2>
Different RVs may be applied to multiple segments. For example, when the UE divides the PUSCH into a plurality of segments and transmits the PUSCH, the UE applies different RVs to at least two segments of the plurality of segments. Further, the RV applied to at least one of the plurality of segments may be an RV set in the PUSCH before division (for example, the original PUSCH). The RV applied to the other segments may be selected based on predetermined conditions.
 例えば、PUSCHを2つのセグメント(第1のセグメント及び第2のセグメント)に分割する場合、第1のセグメントと第2のセグメントの一方にオリジナルRVを適用し、他方にオリジナルRVと異なる他のRVを適用してもよい。オリジナルRVと異なるRVは、所定条件(例えば、以下に示す所定条件1~4のいずれか)に基づいて決定してもよい。 For example, when dividing the PUSCH into two segments (first segment and second segment), the original RV is applied to one of the first segment and the second segment, and the other RV different from the original RV is applied to the other. May be applied. An RV different from the original RV may be determined based on predetermined conditions (for example, any of predetermined conditions 1 to 4 shown below).
 オリジナルPUSCHのRVは、当該オリジナルPUSCHをスケジュールするDCIで通知されてもよい。例えば、UEは、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVが0である場合、当該PUSCHを分割して送信する複数のセグメントの少なくとも一つにRV=0を適用し、他のセグメントに対して異なるRV(例えば、2)を適用してもよい。複数のセグメントの少なくとも一つは、時間方向において最初に送信されるセグメント(例えば、第1のセグメント)であってもよい。 The RV of the original PUSCH may be notified by the DCI that schedules the original PUSCH. For example, when the RV notified by the PDCCH (or DCI) that schedules the PUSCH is 0, the UE applies RV = 0 to at least one of a plurality of segments that divide and transmit the PUSCH, and the other. Different RVs (eg, 2) may be applied to the segments of. At least one of the plurality of segments may be the first segment transmitted in the time direction (for example, the first segment).
<オプション2-3>
 複数のセグメントに対して分割前のPUSCH(例えば、オリジナルPUSCH)に設定されるRVと異なるRVを適用してもよい。この場合、当該複数のセグメントに同一のRVを適用してもよいし、異なるRVを適用してもよい。
<Option 2-3>
An RV different from the RV set in the PUSCH before division (for example, the original PUSCH) may be applied to a plurality of segments. In this case, the same RV may be applied to the plurality of segments, or different RVs may be applied.
 例えば、PUSCHを2つのセグメント(第1のセグメント及び第2のセグメント)に分割する場合、第1のセグメントと第2のセグメントの両方にオリジナルRVと異なるRVを適用してもよい。オリジナルRVと異なるRVは、所定条件(例えば、以下に示す所定条件1~4のいずれか)に基づいて決定してもよい。 For example, when the PUSCH is divided into two segments (first segment and second segment), an RV different from the original RV may be applied to both the first segment and the second segment. An RV different from the original RV may be determined based on predetermined conditions (for example, any of predetermined conditions 1 to 4 shown below).
 各セグメントに対して同一のRV(オリジナルPUSCHに設定されるRVと異なるRV)が設定される場合、所定条件に基づいて適用するRVが選択されてもよい。例えば、UEは、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVが0である場合、当該PUSCHを分割して送信する複数のセグメントに0以外のRV(例えば、RV=2)を適用してもよい。 When the same RV (RV different from the RV set in the original PUSCH) is set for each segment, the RV to be applied may be selected based on a predetermined condition. For example, when the RV notified by the PDCCH (or DCI) that schedules the PUSCH is 0, the UE transmits a non-zero RV (for example, RV = 2) to a plurality of segments that divide and transmit the PUSCH. It may be applied.
 各セグメントに対して異なるRVが設定される場合、所定条件に基づいて適用するRVが選択されてもよい。例えば、UEは、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVが0である場合、各セグメントについて0以外のRVを適用してもよい。例えば、セグメントが2つの場合、第1のセグメント(例えば、時間方向に最初に送信されるセグメント)のRVを2、第2のセグメントのRVを3としてもよい。 When different RVs are set for each segment, the RVs to be applied may be selected based on predetermined conditions. For example, the UE may apply a non-zero RV for each segment if the RV notified by the PDCCH (or DCI) that schedules the PUSCH is zero. For example, when there are two segments, the RV of the first segment (for example, the segment transmitted first in the time direction) may be 2, and the RV of the second segment may be 3.
<オプション2-4>
 複数のセグメントに対して特定のRVシーケンスを適用してもよい。RVシーケンスは、{#0、#2、#3、#1}、{#0、#3、#0、#3}、及び{#0、#0、#0、#0}の少なくとも一つであってもよい。
<Option 2-4>
A specific RV sequence may be applied to a plurality of segments. The RV sequence is at least one of {# 0, # 2, # 3, # 1}, {# 0, # 3, # 0, # 3}, and {# 0, # 0, # 0, # 0}. It may be.
 上述したように、分割前のオリジナルPUSCHに設定されるRVと異なるRVをセグメントPUSCHに適用する場合、UEは、所定条件に基づいて変更後のRVを決定してもよい。なお、PUSCHを繰り返し送信又はマルチプル送信の一部PUSCHを分割する場合、分割されたセグメントPUSCHのRVのみ変更してもよいし、セグメントPUSCHと他の分割しないPUSCH(例えば、分割されたセグメントPUSCH以降に送信されるPUSCH)のRVを変更してもよい。 As described above, when applying an RV different from the RV set in the original PUSCH before division to the segment PUSCH, the UE may determine the changed RV based on a predetermined condition. When a part of PUSCH of repeated transmission or multiple transmission is divided, only the RV of the divided segment PUSCH may be changed, or the segment PUSCH and another non-divided PUSCH (for example, after the divided segment PUSCH). The RV of PUSCH) transmitted to may be changed.
<セグメントPUSCHのRVのみ変更する場合>
[所定条件1]
 UEは、オリジナルPUSCHから分割される複数のセグメントに適用するRVを、所定のRVシーケンスに基づいて決定してもよい。例えば、RVシーケンスが{#0、#2、#3、#1}、分割されるセグメント数が2(第1のセグメント及び第2のセグメント)である場合を想定する。この場合、UEは、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVを第1のセグメントに適用し、RVシーケンスにおいて当該RVの右隣のRVを第2のセグメントに適用してもよい。
<When changing only the RV of the segment PUSCH>
[Predetermined condition 1]
The UE may determine the RV to be applied to the plurality of segments divided from the original PUSCH based on a predetermined RV sequence. For example, assume that the RV sequence is {# 0, # 2, # 3, # 1} and the number of segments to be divided is 2 (first segment and second segment). In this case, the UE may apply the RV notified by the PDCCH (or DCI) that schedules the PUSCH to the first segment, and apply the RV to the right of the RV to the second segment in the RV sequence. Good.
 例えば、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVが0である場合、UEは、第1のセグメントのRVを0と判断し、第2のセグメントのRVを2と判断してもよい。 For example, if the RV notified by the PDCCH (or DCI) that schedules the PUSCH is 0, the UE determines that the RV of the first segment is 0 and the RV of the second segment is 2. May be good.
 なお、利用するRVシーケンスは、{#0、#2、#3、#1}に限られない。{#0、#3、#0、#3}又は{#0、#0、#0、#0}等の他のRVシーケンスを利用してもよい。利用するRVシーケンスは、仕様であらかじめ定義されてもよいし、基地局からUEに上位レイヤシグナリング等を利用して通知してもよい。 The RV sequence used is not limited to {# 0, # 2, # 3, # 1}. Other RV sequences such as {# 0, # 3, # 0, # 3} or {# 0, # 0, # 0, # 0} may be used. The RV sequence to be used may be defined in advance in the specifications, or may be notified from the base station to the UE by using upper layer signaling or the like.
 このように、分割されたPUSCHのセグメントのRVを所定のRVシーケンスに基づいて決定する場合、全てのセグメントを受信することにより復号ゲインを得ることができる。
[所定条件2]
 UEは、オリジナルPUSCHから分割される複数のセグメントに適用するRVを、特定のRV値から選択してもよい。特定のRV値は、セルフデコーダブル(Self-decodable)のRVであってもよい。セルフデコーダブルのRVは、システム情報に関するビット(systematic bit)を多く含むRV(例えば、RV=0、3)であってもよい(図8参照)。セルフデコーダブルのRVが適用されたPUSCHを受信することにより、当該RVが適用されたPUSCHに基づいて復号できる確率を高くすることができる。
In this way, when the RV of the segment of the divided PUSCH is determined based on a predetermined RV sequence, the decoding gain can be obtained by receiving all the segments.
[Predetermined condition 2]
The UE may select an RV to be applied to a plurality of segments divided from the original PUSCH from a specific RV value. The particular RV value may be a Self-decodable RV. The self-decoderable RV may be an RV containing a large number of bits related to system information (for example, RV = 0, 3) (see FIG. 8). By receiving the PUSCH to which the self-decoderable RV is applied, the probability that the RV can be decoded based on the PUSCH to which the RV is applied can be increased.
 例えば、分割されるセグメント数が2(第1のセグメント及び第2のセグメント)である場合を想定する。この場合、UEは、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVが特定のRVであれば、通知されたRV(又は、通知されたRVと他の特定のRV)を適用してもよい。例えば、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVが0である場合、UEは、第1のセグメントのRVを0と判断し、第2のセグメントのRVを他の特定のRVである3と判断してもよい。 For example, assume that the number of segments to be divided is 2 (1st segment and 2nd segment). In this case, the UE applies the notified RV (or the notified RV and another specific RV) if the RV notified by the PDCCH (or DCI) that schedules the PUSCH is a specific RV. You may. For example, if the RV notified by the PDCCH (or DCI) that schedules the PUSCH is 0, the UE determines that the RV of the first segment is 0 and the RV of the second segment is another particular RV. It may be determined that 3 is.
 一方で、UEは、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVが特定のRVでなければ、通知されたRVと特定のRVをそれぞれ2つのセグメントに適用してもよい。例えば、PUSCHの繰り返し送信において、2番目のPUSCH送信が複数のセグメントに分割される場合を想定する。PUSCHの繰り返しをスケジュールするPDCCH(又は、DCI)に基づいて、2番目のPUSCH送信(分割されるPUSCH)のRVが2である場合、UEは、第1のセグメントのRVを2と判断し、第2のセグメントのRVを特定のRVである0又は3と判断してもよい(図9参照)。 On the other hand, the UE may apply the notified RV and the specific RV to each of the two segments if the RV notified by the PDCCH (or DCI) that schedules the PUSCH is not a specific RV. For example, in the repeated transmission of PUSCH, it is assumed that the second PUSCH transmission is divided into a plurality of segments. If the RV of the second PUSCH transmission (divided PUSCH) is 2 based on the PDCCH (or DCI) that schedules the repetition of the PUSCH, the UE determines that the RV of the first segment is 2. The RV of the second segment may be determined to be a specific RV of 0 or 3 (see FIG. 9).
 あるいは、UEは、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVが特定のRVでなければ、通知されたRVは適用せずに特定のRVを複数のセグメントに適用してもよい。 Alternatively, the UE may apply a specific RV to a plurality of segments without applying the notified RV unless the RV notified by the PDCCH (or DCI) that schedules the PUSCH is a specific RV. ..
 このように、セルフでコーダブルであるRVを適用することにより、当該RVが適用されたPUSCHの復号確率を向上することができるため、通信品質(例えば、SNR)を改善することができる。 In this way, by applying the self-codeable RV, the decoding probability of the PUSCH to which the RV is applied can be improved, so that the communication quality (for example, SNR) can be improved.
<セグメントPUSCHと他のPUSCHのRVを変更する場合>
 繰り返し送信されるPUSCHの一部のPUSCHを複数のセグメントに分割する場合、UEは、当該分割されるセグメントのRVをオリジナルPUSCHに設定されるRVから変更するとともに、その後に送信を行うPUSCHのRVも変更してもよい。例えば、複数セグメントに分割されたPUSCH送信後に送信されるPUSCHについて、セグメントと同様の方法でRVを決定してもよい。
<When changing the RV of the segment PUSCH and other PUSCH>
When dividing a part of the PUSCH that is repeatedly transmitted into a plurality of segments, the UE changes the RV of the divided segment from the RV set in the original PUSCH and then transmits the RV of the PUSCH. May also be changed. For example, the RV of the PUSCH transmitted after the PUSCH transmitted divided into a plurality of segments may be determined in the same manner as in the segment.
[所定条件3]
 分割されたセグメントに適用されるRVを考慮して、分割を行わないPUSCHに適用するRVを決定してもよい。例えば、所定のRVシーケンスに基づいて分割されたセグメントに適用するRV(例えば、オリジナルPUSCHと異なるRV)を選択する場合、セグメントPUSCH以降の残りの繰り返しPUSCHについても当該所定のRVシーケンスに基づいて適用するRVを決定してもよい。
[Predetermined condition 3]
The RV applied to the non-divided PUSCH may be determined in consideration of the RV applied to the divided segment. For example, when selecting an RV to be applied to a segment divided based on a predetermined RV sequence (for example, an RV different from the original PUSCH), the remaining repeated PUSCHs after the segment PUSCH are also applied based on the predetermined RV sequence. The RV to be used may be determined.
 例えば、RVシーケンスが{#0、#2、#3、#1}、分割されるセグメント数が2(第1のセグメント及び第2のセグメント)である場合を想定する。この場合、UEは、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVを第1のセグメントに適用し、RVシーケンスにおいて当該RVに隣接する(例えば、右隣の)RVを第2のセグメントに適用してもよい。 For example, assume that the RV sequence is {# 0, # 2, # 3, # 1} and the number of segments to be divided is 2 (first segment and second segment). In this case, the UE applies the RV notified by the PDCCH (or DCI) that schedules the PUSCH to the first segment, and in the RV sequence the RV adjacent to the RV (eg, to the right) is the second. It may be applied to a segment.
 例えば、PUSCHの繰り返し送信において、2番目のPUSCH送信が複数のセグメントに分割される場合を想定する。PUSCHの繰り返しをスケジュールするPDCCH(又は、DCI)に基づいて、2番目のPUSCH送信のRVが2である場合、UEは、第1のセグメントのRVを2と判断し、第2のセグメントのRVを3と判断してもよい。さらに、UEは、当該セグメントに続くPUSCH送信に適用するRVを1とする。この場合、UEは、当該PUSCH用のオリジナルRVが3であっても、異なるRVを適用するように制御する(図10参照)。 For example, in the repeated transmission of PUSCH, it is assumed that the second PUSCH transmission is divided into a plurality of segments. If the RV of the second PUSCH transmission is 2 based on the PDCCH (or DCI) that schedules the repetition of the PUSCH, the UE determines that the RV of the first segment is 2, and the RV of the second segment. May be determined as 3. Further, the UE sets the RV applied to the PUSCH transmission following the segment to 1. In this case, the UE controls to apply a different RV even if the original RV for the PUSCH is 3. (See FIG. 10).
 なお、利用するRVシーケンスは{#0、#2、#3、#1}に限られない。{#0、#3、#0、#3}又は{#0、#0、#0、#0}等の他のRVシーケンスを利用してもよい。利用するRVシーケンスは、仕様であらかじめ定義されてもよいし、基地局からUEに上位レイヤシグナリング等を利用して通知してもよい。 The RV sequence used is not limited to {# 0, # 2, # 3, # 1}. Other RV sequences such as {# 0, # 3, # 0, # 3} or {# 0, # 0, # 0, # 0} may be used. The RV sequence to be used may be defined in advance in the specifications, or may be notified from the base station to the UE by using upper layer signaling or the like.
 このように、分割されたPUSCHのセグメントのRVを所定のRVシーケンスに基づいて決定する場合、全てのセグメントを受信することにより復号ゲインを得ることができる。 In this way, when the RV of the divided PUSCH segment is determined based on a predetermined RV sequence, the decoding gain can be obtained by receiving all the segments.
[所定条件4]
 分割されたセグメントに適用されるRVは考慮せず、分割を行わないPUSCHに適用するRVを決定してもよい。つまり、分割されたセグメントPUSCHと、分割しないPUSCHにおいてそれぞれ別々にRVを決定する。
[Predetermined condition 4]
The RV applied to the divided segments may not be considered, and the RV applied to the PUSCH not divided may be determined. That is, the RV is determined separately for the divided segment PUSCH and the non-divided PUSCH.
 例えば、所定のRVシーケンスに基づいて分割されたセグメントに適用するRV(例えば、オリジナルPUSCHと異なるRV)を選択する場合、複数セグメントに分割するPUSCHと、分割を行わないPUSCHについて、それぞれ所定のRVシーケンスに基づいて適用するRVを決定してもよい。 For example, when selecting an RV to be applied to a segment divided based on a predetermined RV sequence (for example, an RV different from the original PUSCH), the PUSCH divided into a plurality of segments and the PUSCH not divided are each a predetermined RV. The RV to be applied may be determined based on the sequence.
 例えば、RVシーケンスが{#0、#2、#3、#1}、分割されるセグメント数が2(第1のセグメント及び第2のセグメント)である場合を想定する。この場合、UEは、PUSCHをスケジュールするPDCCH(又は、DCI)で通知されるRVを第1のセグメントに適用し、RVシーケンスにおいて当該RVに隣接する(例えば、右隣の)RVを第2のセグメントに適用してもよい。また、複数セグメントに分割されないPUSCH(複数セグメントに分割されるPUSCHを除いたPUSCH)についてRVシーケンスを適用してもよい。 For example, assume that the RV sequence is {# 0, # 2, # 3, # 1} and the number of segments to be divided is 2 (first segment and second segment). In this case, the UE applies the RV notified by the PDCCH (or DCI) that schedules the PUSCH to the first segment, and in the RV sequence the RV adjacent to the RV (eg, to the right) is the second. It may be applied to a segment. Further, the RV sequence may be applied to the PUSCH that is not divided into a plurality of segments (the PUSCH excluding the PUSCH that is divided into a plurality of segments).
 例えば、PUSCHの繰り返し送信において、2番目のPUSCH送信が複数のセグメントに分割される場合を想定する。PUSCHの繰り返しをスケジュールするPDCCH(又は、DCI)で通知されるRVが0である場合、UEは、1番目のPUSCH送信に適用するRVを0とする。 For example, in the repeated transmission of PUSCH, it is assumed that the second PUSCH transmission is divided into a plurality of segments. If the RV notified by the PDCCH (or DCI) that schedules the repetition of the PUSCH is 0, the UE sets the RV applied to the first PUSCH transmission to 0.
 一方で、複数セグメントに分割される2番目のPUSCH送信において、第1のセグメントのRVを0と判断し、第2のセグメントのRVを2と判断してもよい。さらに、UEは、当該セグメントに続くPUSCH送信に適用するRVを2とする(図11参照)。この場合、UEは、3番目のPUSCH用のオリジナルRVが3であっても、2番目のPUSCHを除いてRVシーケンスを適用する(例えば、異なるRVを適用する)ように制御する。 On the other hand, in the second PUSCH transmission divided into a plurality of segments, the RV of the first segment may be determined to be 0, and the RV of the second segment may be determined to be 2. Further, the UE sets the RV applied to the PUSCH transmission following the segment to 2 (see FIG. 11). In this case, the UE controls to apply the RV sequence (for example, apply a different RV) except for the second PUSCH even if the original RV for the third PUSCH is 3.
 なお、利用するRVシーケンスは{#0、#2、#3、#1}に限られない。{#0、#3、#0、#3}又は{#0、#0、#0、#0}等の他のRVシーケンスを利用してもよい。利用するRVシーケンスは、仕様であらかじめ定義されてもよいし、基地局からUEに上位レイヤシグナリング等を利用して通知してもよい。 The RV sequence used is not limited to {# 0, # 2, # 3, # 1}. Other RV sequences such as {# 0, # 3, # 0, # 3} or {# 0, # 0, # 0, # 0} may be used. The RV sequence to be used may be defined in advance in the specifications, or may be notified from the base station to the UE by using upper layer signaling or the like.
<バリエーション>
 PUSCH送信に適用するRVの決定方法は、所定条件に基づいて選択されてもよい。UEは、以下のオプションA~Dのいずれかに基づいてRVの決定方法を選択してもよい。
<Variation>
The method for determining the RV to be applied to the PUSCH transmission may be selected based on predetermined conditions. The UE may select the RV determination method based on any of the following options A to D.
[オプションA]
 PUSCHのスケジューリングタイプに基づいてRVの決定方法が設定されてもよい。例えば、UEは、DCIで動的にスケジュールされるダイナミックグラントベースのPUSCHと、DCIで動的にスケジュールされない設定グラントベースのPUSCHで異なるRV決定方法を適用してもよい。RV決定方法は、仕様で定義されてもよいし、上位レイヤシグナリング等により基地局からUEに設定されてもよい。
[Option A]
The RV determination method may be set based on the PUSCH scheduling type. For example, the UE may apply different RV determination methods for a dynamically scheduled grant-based PUSCH in DCI and a configuration grant-based PUSCH that is not dynamically scheduled in DCI. The RV determination method may be defined in the specifications, or may be set from the base station to the UE by higher layer signaling or the like.
[オプションB]
 基地局からUEに、L1シグナリングを利用してRV決定方法が通知されてもよい。例えば、UEは、基地局から送信されるDCIの所定フィールド、DCIフォーマット、及び適用されるRNTIの少なくとも一つに基づいてRV決定方法を選択してもよい。
[Option B]
The base station may notify the UE of the RV determination method using L1 signaling. For example, the UE may select the RV determination method based on at least one of the predetermined DCI fields transmitted from the base station, the DCI format, and the applied RNTI.
[オプションC]
 TBSの決定方法に基づいてRV決定方法が選択されて(又は、TBSの決定方法とRVの決定方法が関連づけられて)いてもよい。例えば、UEは、第1のTBS決定方法(オプション1-1)を利用する場合に、第1のRV決定方法(例えば、2-2の所定条件2)を適用してもよい。
[Option C]
The RV determination method may be selected based on the TBS determination method (or the TBS determination method and the RV determination method may be associated). For example, when the UE uses the first TBS determination method (option 1-1), the UE may apply the first RV determination method (for example, predetermined condition 2 of 2-2).
[オプションD]
 基地局からUEに、上位レイヤシグナリングを利用してRV決定方法が通知されてもよい。あるいは、仕様であらかじめRV決定方法が定義されてもよい。
[Option D]
The base station may notify the UE of the RV determination method using higher layer signaling. Alternatively, the RV determination method may be defined in advance in the specifications.
(第3の態様)
 第3の態様では、PUSCHを複数のセグメントに分割して送信を行う場合に、各セグメントに適用するオーバーヘッドに関するパラメータ(例えば、NPRB oh)について説明する。
(Third aspect)
In the third aspect, when the PUSCH is divided into a plurality of segments and transmission is performed, a parameter related to overhead applied to each segment (for example, N PRB oh ) will be described.
 オーバーヘッドに関するパラメータ(例えば、NPRB oh)は、他の信号(例えば、CSI-RS、PT-RS等)からのオーバーヘッドを示す。例えば、NPRB ohによりPRBにおける他の信号のリソースエレメント(RE)数が示され、NPRB ohは上位レイヤパラメータによって設定(configure)される値であってもよい。例えば、NPRB ohは、上位レイヤパラメータ(Xoh-PUSCH)が示すオーバーヘッドであり、0、6、12又は18のいずれかの値であってもよい。Xoh-PUSCHがユーザ端末に設定(通知)されない場合、Xoh-PUSCHは0に設定されてもよい。UEは、NPRB ohに基づいてTBS等を決定してもよい。 A parameter relating to overhead (eg, N PRB oh ) indicates overhead from other signals (eg, CSI-RS, PT-RS, etc.). For example, N PRB oh may indicate the number of resource elements (RE) of other signals in PRB , and N PRB oh may be a value configured by a higher layer parameter. For example, N PRB oh is the overhead indicated by the upper layer parameter (Xoh-PUSCH) and may be any value of 0, 6, 12 or 18. If Xoh-PUSCH is not set (notified) in the user terminal, Xoh-PUSCH may be set to 0. The UE may determine TBS or the like based on N PRB oh .
 UEは、所定領域又は所定送信機会にスケジュール又は割当てられたPUSCH(nominal PUSCHとも呼ぶ)を複数のセグメントに分割して送信する場合、分割後の各セグメントに適用するNPRB ohを所定条件に基づいて決定する。例えば、UEは、以下のオプション3-1~3-4の少なくとも一つに基づいて各セグメントに適用するNPRB ohを決定してもよい。 When the UE divides a PUSCH (also called a nominal PUSCH) scheduled or allocated to a predetermined area or a predetermined transmission opportunity into a plurality of segments and transmits the PUSCH, the NPRB oh applied to each segment after the division is based on a predetermined condition. To decide. For example, the UE may determine the N PRB oh to apply to each segment based on at least one of the following options 3-1 to 3-4.
<オプション3-1>
 複数のセグメントに対して同じNPRB ohを適用してもよい。例えば、UEは、PUSCHを複数のセグメントに分割して送信する場合、各セグメントに対して同じNPRB ohであると想定する。また、各セグメントに適用するNPRB ohは、分割前のPUSCH(例えば、オリジナルPUSCH)に設定されるNPRB ohであってもよい。
<Option 3-1>
The same N PRB oh may be applied to a plurality of segments. For example, when the UE divides the PUSCH into a plurality of segments and transmits the PUSCH, it is assumed that the same NPRB oh is used for each segment. Further, the N PRB oh applied to each segment may be the N PRB oh set in the PUSCH before division (for example, the original PUSCH).
 オリジナルPUSCHのNPRB ohは、上位レイヤシグナリング(例えば、xOverhead)で通知されてもよい。例えば、UEは、上位レイヤシグナリングで通知されるNPRB ohがXで0である場合、当該PUSCHを分割して送信する複数のセグメントに対するNPRB ohとしてXを適用する。 The N PRB oh of the original PUSCH may be notified by higher layer signaling (eg, xOverhead). For example, when the N PRB oh notified by the upper layer signaling is 0 in X, the UE applies X as the N PRB oh for a plurality of segments to divide and transmit the PUSCH.
 このように、あらかじめPUSCHに設定されるNPRB ohに基づいて各セグメントに適用するNPRB ohを決定することにより、スケジューリングの複雑性を抑制することができる。 In this way, the complexity of scheduling can be suppressed by determining the N PRB oh to be applied to each segment based on the N PRB oh set in PUSCH in advance.
<オプション3-2>
 複数のセグメントに対して異なるNPRB ohを適用してもよい。例えば、UEは、PUSCHを複数のセグメントに分割して送信する場合、複数のセグメントのうち少なくとも2つのセグメントに対して異なるNPRB ohが設定されると想定する。また、複数のセグメントの少なくとも一つに適用するNPRB ohは、分割前のPUSCH(例えば、オリジナルPUSCH)に設定されるNPRB oh(オリジナルNPRB oh)であってもよい。
<Option 3-2>
Different N PRB oh may be applied to a plurality of segments. For example, when the UE divides the PUSCH into a plurality of segments and transmits the PUSCH, it is assumed that different N PRB ohs are set for at least two segments out of the plurality of segments. Further, the N PRB oh applied to at least one of the plurality of segments may be an N PRB oh (original N PRB oh ) set in the PUSCH before division (for example, the original PUSCH).
 その他のセグメントに適用されるNPRB ohは、オリジナルNPRB ohと異なるNPRB ohであってもよい。オリジナルNPRB ohと異なるNPRB ohは、所定条件に基づいて選択されてもよい。例えば、UEは、スケジューリング条件、所定のDCIフィールド、及び上位レイヤシグナリングの少なくとも一つに基づいてオリジナルNPRB ohと異なるNPRB ohを決定してもよい。 N PRB oh applied to other segments may be original N PRB oh different N PRB oh. Original N PRB oh different N PRB oh may be selected based on a predetermined condition. For example, the UE may determine an N PRB oh different from the original N PRB oh based on at least one of scheduling conditions, a predetermined DCI field, and higher layer signaling.
 例えば、UEは、上位レイヤシグナリングで通知されるNPRB ohが6である場合、当該PUSCHを分割して送信する複数のセグメントの少なくとも一つにNPRB oh=6を適用し、他のセグメントに対して異なるNPRB oh(例えば、0)を適用してもよい。複数のセグメントの少なくとも一つ(例えば、第1のセグメント)は、時間方向において最初に送信されるセグメントであってもよい。 For example, when the N PRB oh notified by the upper layer signaling is 6, the UE applies N PRB oh = 6 to at least one of the plurality of segments to be transmitted by dividing the PUSCH, and applies N PRB oh = 6 to the other segments. On the other hand, different N PRB oh (for example, 0) may be applied. At least one of the plurality of segments (for example, the first segment) may be the first segment transmitted in the time direction.
<オプション3-3>
 複数のセグメントに対して分割前のPUSCH(例えば、オリジナルPUSCH)に設定されるNPRB ohと異なるNPRB ohを適用してもよい。この場合、当該複数のセグメントに同一のNPRB ohを適用してもよいし、異なるNPRB ohを適用してもよい。
<Option 3-3>
An N PRB oh different from the N PRB oh set in the PUSCH before division (for example, the original PUSCH) may be applied to a plurality of segments. In this case, the same N PRB oh may be applied to the plurality of segments, or different N PRB ohs may be applied.
 各セグメントに対して同一のNPRB oh(オリジナルPUSCHに設定されるNPRB ohと異なるNPRB oh)が設定される場合、所定条件に基づいて適用するNPRB ohが選択されてもよい。例えば、UEは、上位レイヤシグナリングで通知されるNPRB ohが0である場合、当該PUSCHを分割して送信する複数のセグメントに0以外のNPRB oh(例えば、NPRB oh=6)を適用してもよい。 If the same N PRB oh for each segment (N PRB oh different N PRB oh set in the original PUSCH) is set, N PRB oh may be selected to be applied based on a predetermined condition. For example, when the N PRB oh notified by the upper layer signaling is 0, the UE applies a non-zero N PRB oh (for example, N PRB oh = 6) to a plurality of segments to be transmitted by dividing the PUSCH. You may.
 各セグメントに対して異なるNPRB ohが設定される場合、所定条件に基づいて適用するNPRB ohが選択されてもよい。例えば、UEは、上位レイヤシグナリングで通知されるNPRB ohが0である場合、各セグメントについて0以外のNPRB ohを適用してもよい。例えば、セグメントが2つの場合、第1のセグメント(例えば、時間方向に最初に送信されるセグメント)のNPRB ohを6、第2のセグメントのNPRB ohを12としてもよい。 If different N PRB oh for each segment is set, N PRB oh may be selected to be applied based on a predetermined condition. For example, the UE may apply a non-zero N PRB oh to each segment when the N PRB oh notified by the upper layer signaling is 0. For example, if the segment is two, the first segment (e.g., segment sent in the time direction the first) to N PRB oh 6, the N PRB oh the second segment may be 12.
 このように、分割後のセグメントに対してオリジナルNPRB ohより高いNPRB ohを想定することにより、NPRB ohのミスマッチにより生じる過度のリソース割当て、又はターゲット符号化率より高い符号化率の適用を抑制することができる。
<オプション3-4>
 複数のセグメントに対して特定のNPRB ohを適用してもよい。特定のNPRB ohは、0であってもよい。
In this way, by assuming N PRB oh higher than the original N PRB oh for the segment after division, excessive resource allocation caused by the mismatch of N PRB oh , or application of a coding rate higher than the target code rate. Can be suppressed.
<Option 3-4>
A specific N PRB oh may be applied to a plurality of segments. The specific N PRB oh may be 0.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図12は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 12 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is MN, and the LTE (E-UTRA) base station (eNB) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, an optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for detecting PDCCH. CORESET corresponds to a resource that searches for DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, may be called Hybrid Automatic Repeat reQuest ACK knowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble for establishing a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図13は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 13 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110. RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits / receives signals (backhaul signaling) to / from a device included in the core network 30, another base station 10 and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
 なお、送受信部120は、上り共有チャネルの送信を指示する情報を送信する。また、送受信部120は、繰り返し数、TBSに関する情報、RVに関する情報、及びオーバーヘッドに関する情報の少なくとも一つを送信してもよい。 The transmission / reception unit 120 transmits information instructing transmission of the uplink shared channel. Further, the transmission / reception unit 120 may transmit at least one of the number of repetitions, information on TBS, information on RV, and information on overhead.
 制御部110は、UEが上り共有チャネルを複数セグメントに分割して送信する場合、少なくとも一つのセグメントに対して上り共有チャネルの送信用に設定される送信条件と異なる送信条件が適用されるように制御してもよい。 When the UE divides the uplink shared channel into a plurality of segments for transmission, the control unit 110 applies a transmission condition different from the transmission condition set for transmission of the uplink shared channel to at least one segment. You may control it.
 制御部110は、UEが上り共有チャネルを複数セグメントに分割して送信する場合、少なくとも一つのセグメントに対して上り共有チャネルの送信用に設定される冗長バージョンと異なる冗長バージョン又は同一の冗長バージョンが適用されるように制御してもよい。 When the UE divides the uplink shared channel into a plurality of segments for transmission, the control unit 110 has a redundant version different from the redundant version set for transmission of the uplink shared channel for at least one segment, or the same redundant version. It may be controlled to be applied.
(ユーザ端末)
 図14は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 14 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. The transmission / reception unit 220 (transmission processing unit 2211) described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 The transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
 なお、送受信部220は、上り共有チャネルの送信を指示する情報を受信する。また、送受信部220は、繰り返し数、TBSに関する情報、RVに関する情報、及びオーバーヘッドに関する情報の少なくとも一つを受信してもよい。 Note that the transmission / reception unit 220 receives information instructing transmission of the uplink shared channel. In addition, the transmission / reception unit 220 may receive at least one of the number of repetitions, information on TBS, information on RV, and information on overhead.
 制御部210は、上り共有チャネルを複数セグメントに分割して送信する場合、少なくとも一つのセグメントに対して上り共有チャネルの送信用に設定される送信条件と異なる送信条件を適用するように制御してもよい。 When the uplink shared channel is divided into a plurality of segments for transmission, the control unit 210 controls so as to apply transmission conditions different from the transmission conditions set for transmission of the uplink shared channel to at least one segment. May be good.
 例えば、制御部210は、少なくとも一つのセグメントの送信に利用する周波数リソースを、上り共有チャネルの送信用に設定される周波数リソースより増加するように制御してもよい。あるいは、制御部210は、少なくとも一つのセグメントの送信に利用する変調符号化方式及び変調次数の少なくとも一つを、上り共有チャネルの送信用に設定される変調符号化方式及び変調次数の少なくとも一つから変更するように制御してもよい。あるいは、制御部210は、少なくとも一つのセグメントの送信に利用する空間リソースを、上り共有チャネルの送信用に設定される空間リソースより増加するように制御してもよい。複数のセグメントは、異なるスロットに配置されてもよい。 For example, the control unit 210 may control the frequency resource used for transmission of at least one segment to be larger than the frequency resource set for transmission of the uplink shared channel. Alternatively, the control unit 210 sets at least one of the modulation coding methods and modulation orders used for transmission of at least one segment to at least one of the modulation coding methods and modulation orders set for transmission of the uplink shared channel. It may be controlled to change from. Alternatively, the control unit 210 may control the spatial resources used for transmission of at least one segment to be larger than the spatial resources set for transmission of the uplink shared channel. The plurality of segments may be arranged in different slots.
 また、制御部210は、上り共有チャネルを複数セグメントに分割して送信する場合、少なくとも一つのセグメントに対して、前記上り共有チャネルに設定される冗長バージョンと異なる冗長バージョン、及び前記上り共有チャネルに設定されるオーバーヘッドに関するパラメータ値と異なる値の少なくとも一つを適用するように制御してもよい。あるいは、制御部210は、上り共有チャネルを複数セグメントに分割して送信する場合、複数のセグメントに対して、上り共有チャネルに設定される冗長バージョンと同一の冗長バージョン、及び上り共有チャネルに設定されるオーバーヘッドに関するパラメータ値と同じ値の少なくとも一つを適用するように制御してもよい。 Further, when the uplink shared channel is divided into a plurality of segments and transmitted, the control unit 210 sets the redundant version different from the redundant version set in the uplink shared channel and the uplink shared channel for at least one segment. It may be controlled to apply at least one value different from the parameter value regarding the overhead to be set. Alternatively, when the uplink shared channel is divided into a plurality of segments and transmitted, the control unit 210 is set to the same redundant version as the redundant version set in the uplink shared channel and the uplink shared channel for the plurality of segments. It may be controlled to apply at least one of the same values as the parameter values related to the overhead.
 例えば、制御部210は、複数のセグメントの少なくとも一つに対して特定の冗長バージョン及び特定のオーバーヘッドに関するパラメータ値の少なくとも一つを適用してもよい。また、制御部210は、繰り返し送信される複数の上り共有チャネルのうち、一部の上り共有チャネルを複数セグメントに分割して送信する場合、複数セグメントに分割せずに送信する上り共有チャネルに対して上り共有チャネルの送信用に設定される冗長バージョンと同一の冗長バージョンを適用してもよい。あるいは、制御部210は、繰り返し送信される複数の上り共有チャネルのうち、一部の上り共有チャネルを複数セグメントに分割して送信する場合、複数セグメントに分割せずに送信する上り共有チャネルに対して上り共有チャネルの送信用に設定される冗長バージョンと異なる冗長バージョンを適用してもよい。 For example, the control unit 210 may apply at least one of a specific redundant version and a specific overhead parameter value to at least one of a plurality of segments. Further, when the control unit 210 divides a part of the uplink shared channels into a plurality of segments and transmits the plurality of uplink shared channels that are repeatedly transmitted, the control unit 210 transmits the uplink shared channels without dividing the uplink into a plurality of segments. The same redundant version as the redundant version set for transmission of the upstream shared channel may be applied. Alternatively, when the control unit 210 divides a part of the uplink shared channels into a plurality of segments and transmits the plurality of uplink shared channels that are repeatedly transmitted, the control unit 210 transmits the uplink shared channels without dividing the uplink into a plurality of segments. A redundant version different from the redundant version set for transmission of the upstream shared channel may be applied.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図15は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 15 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. In addition, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), LTE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as "judgment (decision)" of "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used herein, are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。
 
Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as a modified or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  上り共有チャネルの送信を指示する情報を受信する受信部と、
     前記上り共有チャネルを複数セグメントに分割して送信する場合、少なくとも一つのセグメントに対して、前記上り共有チャネルに設定される冗長バージョンと異なる冗長バージョン、及び前記上り共有チャネルに設定されるオーバーヘッドに関するパラメータ値と異なる値の少なくとも一つを適用するように制御する制御部と、を有することを特徴とする端末。
    A receiver that receives information instructing transmission of the uplink shared channel,
    When the uplink shared channel is divided into a plurality of segments and transmitted, parameters relating to a redundant version different from the redundant version set in the uplink shared channel and the overhead set in the uplink shared channel are set for at least one segment. A terminal characterized by having a control unit that controls to apply at least one of a value different from the value.
  2.  前記制御部は、前記複数のセグメントの少なくとも一つに対して特定の冗長バージョン及び特定のオーバーヘッドに関するパラメータ値の少なくとも一つを適用することを特徴とする請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit applies at least one of a specific redundant version and a parameter value related to a specific overhead to at least one of the plurality of segments.
  3.  前記制御部は、繰り返し送信される複数の上り共有チャネルのうち、一部の上り共有チャネルを複数セグメントに分割して送信する場合、複数セグメントに分割せずに送信する上り共有チャネルに対して前記上り共有チャネルの送信用に設定される冗長バージョンと同一の冗長バージョンを適用することを特徴とする請求項1又は請求項2に記載の端末。 When the control unit divides a part of the uplink shared channels into a plurality of segments and transmits the plurality of uplink shared channels that are repeatedly transmitted, the control unit refers to the uplink shared channel that is transmitted without being divided into the plurality of segments. The terminal according to claim 1 or 2, wherein the same redundant version as the redundant version set for transmission of the uplink shared channel is applied.
  4.  前記制御部は、繰り返し送信される複数の上り共有チャネルのうち、一部の上り共有チャネルを複数セグメントに分割して送信する場合、複数セグメントに分割せずに送信する上り共有チャネルに対して前記上り共有チャネルの送信用に設定される冗長バージョンと異なる冗長バージョンを適用することを特徴とする請求項1又は請求項2に記載の端末。 When the control unit divides a part of the uplink shared channels into a plurality of segments and transmits the plurality of uplink shared channels that are repeatedly transmitted, the control unit refers to the uplink shared channel that is transmitted without being divided into the plurality of segments. The terminal according to claim 1 or 2, wherein a redundant version different from the redundant version set for transmission of the uplink shared channel is applied.
  5.  上り共有チャネルの送信を指示する情報を受信する受信部と、
     前記上り共有チャネルを複数セグメントに分割して送信する場合、前記複数のセグメントに対して、前記上り共有チャネルに設定される冗長バージョンと同一の冗長バージョン、及び前記上り共有チャネルに設定されるオーバーヘッドに関するパラメータ値と同じ値の少なくとも一つを適用するように制御する制御部と、を有することを特徴とする端末。
    A receiver that receives information instructing transmission of the uplink shared channel,
    When the uplink shared channel is divided into a plurality of segments and transmitted, the same redundant version as the redundant version set in the uplink shared channel and the overhead set in the uplink shared channel are related to the plurality of segments. A terminal characterized by having a control unit that controls to apply at least one of the same values as a parameter value.
  6.  上り共有チャネルの送信を指示する情報を受信する工程と、
     前記上り共有チャネルを複数セグメントに分割して送信する場合、少なくとも一つのセグメントに対して、前記上り共有チャネルに設定される冗長バージョンと異なる冗長バージョン、及び前記上り共有チャネルに設定されるオーバーヘッドに関するパラメータ値と異なる値の少なくとも一つを適用するように制御する工程と、を有することを特徴とする無線通信方法。
     
     
     
    The process of receiving information instructing transmission of the uplink shared channel, and
    When the uplink shared channel is divided into a plurality of segments and transmitted, parameters relating to a redundant version different from the redundant version set in the uplink shared channel and the overhead set in the uplink shared channel are set for at least one segment. A wireless communication method comprising: a step of controlling to apply at least one of a value different from a value.


PCT/JP2019/027421 2019-07-10 2019-07-10 Terminal and wireless communication method WO2021005770A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980100175.0A CN114365558A (en) 2019-07-10 2019-07-10 Terminal and wireless communication method
PCT/JP2019/027421 WO2021005770A1 (en) 2019-07-10 2019-07-10 Terminal and wireless communication method
US17/625,580 US20220295519A1 (en) 2019-07-10 2019-07-10 Terminal and radio communication method
EP19937136.0A EP3998815A1 (en) 2019-07-10 2019-07-10 Terminal and wireless communication method
JP2021530442A JP7337928B2 (en) 2019-07-10 2019-07-10 Terminal, wireless communication method, base station and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027421 WO2021005770A1 (en) 2019-07-10 2019-07-10 Terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2021005770A1 true WO2021005770A1 (en) 2021-01-14

Family

ID=74114490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027421 WO2021005770A1 (en) 2019-07-10 2019-07-10 Terminal and wireless communication method

Country Status (5)

Country Link
US (1) US20220295519A1 (en)
EP (1) EP3998815A1 (en)
JP (1) JP7337928B2 (en)
CN (1) CN114365558A (en)
WO (1) WO2021005770A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021090438A1 (en) * 2019-11-07 2021-05-14 株式会社Nttドコモ Terminal and communication method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887801B2 (en) * 2015-03-11 2018-02-06 Samsung Electronics Co., Ltd. Resource allocation for repetitions of transmissions in a communication system
CN110474726A (en) * 2018-05-10 2019-11-19 夏普株式会社 The method and user equipment executed by user equipment
CN113728714A (en) * 2019-02-15 2021-11-30 瑞典爱立信有限公司 Transport format for multi-segment PUSCH
US12015484B2 (en) * 2019-05-02 2024-06-18 Sharp Kabushiki Kaisha User equipments, base stations and methods for redundancy version determination on mini-slot PUSCH

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
"PUSCHenhancementsforURLLC", 3GPP TSG RAN WG1 #96 R1-1902806, 25 February 2019 (2019-02-25), XP051600501 *
"PUSCHenhancementsforURLLC", 3GPP TSG RAN WG1 #98 R1-1909195, 26 August 2019 (2019-08-26), XP051765800 *
SONY: "Considerations on PUSCH enhancements for URLLC", 3GPP TSG RAN WG1 #96 R1-1902178, 25 February 2019 (2019-02-25), XP051599873 *

Also Published As

Publication number Publication date
CN114365558A (en) 2022-04-15
EP3998815A1 (en) 2022-05-18
US20220295519A1 (en) 2022-09-15
JP7337928B2 (en) 2023-09-04
JPWO2021005770A1 (en) 2021-01-14

Similar Documents

Publication Publication Date Title
WO2020217408A1 (en) User terminal and wireless communication method
JP7244658B2 (en) Terminal, wireless communication method, base station and system
JP7273072B2 (en) Terminal, wireless communication method and system
JPWO2020066025A1 (en) Terminals, wireless communication methods, base stations and systems
JP7305763B2 (en) Terminal, wireless communication method, base station and system
WO2022024379A1 (en) Terminal, wireless communication method, and base station
WO2020255263A1 (en) Terminal and wireless communication method
WO2020166022A1 (en) User equipment
WO2021014576A1 (en) Terminal and wireless communication method
WO2020217514A1 (en) User terminal and wireless communication method
WO2020202517A1 (en) User terminal and wireless communication method
WO2021152702A1 (en) Terminal, radio communication method, and base station
JP7308942B2 (en) Terminal, wireless communication method, base station and system
JP7315668B2 (en) Terminal, wireless communication method and system
JP7273071B2 (en) Terminal, wireless communication method, base station and system
WO2020202478A1 (en) User terminal and wireless communication method
WO2021166036A1 (en) Terminal, wireless communication method, and base station
JP7335349B2 (en) Terminal, wireless communication method, base station and system
WO2021019736A1 (en) Terminal and wireless communication method
JP7337927B2 (en) Terminal, wireless communication method, base station and system
JP7337928B2 (en) Terminal, wireless communication method, base station and system
WO2021161396A1 (en) Terminal, wireless communication method, and base station
WO2020209283A1 (en) User terminal and wireless communication method
JP7375017B2 (en) Terminals, wireless communication methods, base stations and systems
WO2021024482A1 (en) Terminal and wireless communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937136

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530442

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019937136

Country of ref document: EP

Effective date: 20220210