WO2021004423A1 - 一种高灵敏宽频响的全光纤微震监测系统 - Google Patents

一种高灵敏宽频响的全光纤微震监测系统 Download PDF

Info

Publication number
WO2021004423A1
WO2021004423A1 PCT/CN2020/100405 CN2020100405W WO2021004423A1 WO 2021004423 A1 WO2021004423 A1 WO 2021004423A1 CN 2020100405 W CN2020100405 W CN 2020100405W WO 2021004423 A1 WO2021004423 A1 WO 2021004423A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
arm
transducer
reference arm
optical fiber
Prior art date
Application number
PCT/CN2020/100405
Other languages
English (en)
French (fr)
Inventor
俞本立
葛强
李世丽
吴许强
时金辉
张刚
Original Assignee
安徽大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽大学 filed Critical 安徽大学
Publication of WO2021004423A1 publication Critical patent/WO2021004423A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern

Definitions

  • the invention relates to the field of optical fiber sensing and safety monitoring, in particular to an all-fiber microseismic monitoring system with high sensitivity and wide frequency response.
  • Shandong Science, 2008, 06:19-22] discloses a fiber grating acceleration sensing system with a bandwidth of 2-100 Hz , The minimum resolution is only 0.1mg, but it is not suitable for the monitoring of hard rock environments such as metal mines;
  • the patent application with publication number CN106940387A discloses a Michelson interferometric optical fiber acceleration sensor, which uses a differential optical fiber Michelson interference device The phase change caused by the mass displacement is detected, and the acceleration change of the sensor is demodulated in real time, but the structure is complicated;
  • the patent application with publication number CN105158508A discloses a new type of optical fiber micro-vibration acceleration sensor with simple structure, which is squeezed by a cantilever beam. The sensing fiber produces a small deformation under the excitation of the vibration signal, and the reflected light power at the end of the fiber is modulated by the vibration signal.
  • the structure is simple, but the detection sensitivity is narrow in a narrow band.
  • the front-end of the traditional microseismic monitoring system requires power supply and is not intrinsically safe. There is a risk of explosion when used in a coal mine environment, and the sensitivity is low, the frequency band is narrow, and the fidelity pickup of microseismic signals cannot be achieved.
  • the microseismic monitor based on the principle of fiber grating is intrinsically safe, its key technical indicators such as working frequency band and resolution are poor, making it practically difficult. Therefore, it is necessary to develop an all-fiber microseismic monitoring system with high sensitivity and wide frequency response to solve the above shortcomings.
  • the technical problem to be solved by the present invention is to provide a highly sensitive and wide frequency response all-fiber microseismic monitoring system, which significantly improves the monitoring sensitivity, resists electromagnetic interference, and is suitable for coal mines and metal mines. Safety monitoring of important infrastructure projects such as tunnels and slopes.
  • a highly sensitive and wide-frequency response all-fiber microseismic monitoring system which consists of a laser light source, a sensing probe, a signal demodulator, an incident fiber connected to the laser light source, and a reflection of the signal demodulator connected to one end Optical fiber composition; characterized in that,
  • the sensing probe is composed of a cylindrical packaging shell and a top cover connected to it with a screw on the top, encapsulated in the packaging shell and coupled with the optical fiber connected to the other end of the incident fiber and the reflective fiber
  • the sensor, the reference arm fiber and the sensor arm fiber drawn from the fiber coupler, the screw fixedly connected to the middle of the inner bottom surface of the packaging shell, the sensor arm transducer, the mass, and the
  • the incident optical fiber and the reflecting optical fiber are introduced into the packaging shell through an optical fiber inlet provided on the top cover, and the optical fiber inlet is sealed by glass glue or silica gel;
  • the reference arm optical fiber is tightly wound around the outer circumference of the reference arm transducer with a certain prestress from bottom to top, and the reference arm mirror is installed at its end;
  • the sensor arm optical fiber is tightly wound around the outer circumference of the sensor arm transducer with a certain prestress from top to bottom, and the sensor arm reflector is installed at its end.
  • the oily liquid is simethicone with different viscosities.
  • the hollow cylindrical structure of the reference arm transducer and the sensor arm transducer is made of one of copper, polyurethane and silicon rubber, and the gasket is a hollow structure made of aluminum alloy and high hardness silicon rubber. Made of one kind.
  • the present invention has the following beneficial effects:
  • the sensing probes in the present invention are all composed of passive optical devices, which break through the shortcomings of traditional microseismic monitoring downhole equipment that require power supply, and can realize safe, efficient, and low-fault sensing monitoring.
  • the housing of the sensing probe is filled with oily liquid. Under the excitation of the microseismic signal, the movement of the oily liquid causes viscous deformation of the stress fiber wound on the transducer, which significantly improves the sensitivity of the sensor; when the sensing probe is installed upright Because the oily liquid above the mass block exerts pressure on it, the mass of the mass block is equivalently increased, and the stress fiber wound on the transducer is more prone to deformation, which can further improve the sensitivity of the sensor.
  • Frequency bandwidth The use of materials with higher Young's modulus as the transducer significantly increases the bandwidth of the sensor's response; filling with oily liquid can reduce high-frequency oscillation and high-frequency signal distortion inside the package, and smooth the sensor's frequency response curve , Extend the bandwidth and realize the lossless acquisition of microseismic signals.
  • Fig. 1 is a schematic structural diagram of an all-fiber microseismic monitoring system with high sensitivity and wide frequency response disclosed in the present invention.
  • Fig. 2 is a comparison diagram of the frequency response curve of the sensor probe of a highly sensitive and wide frequency response all-fiber microseismic monitoring system disclosed by the present invention without oily liquid and after being filled with oily liquid.
  • Fig. 3 is a graph of the frequency response curve when 0.5N and 0.8N pressure is applied to the nut in the sensor probe of the all-fiber microseismic monitoring system with high sensitivity and wide frequency response disclosed in the present invention.
  • the all-fiber microseismic monitoring system with high sensitivity and wide frequency response disclosed in the present invention consists of a laser light source 1 for generating laser light, a sensing probe 3 for picking up microseismic signals, and a signal used for demodulation of microseismic signals.
  • the demodulator 4 is composed of an incident optical fiber 201 connected to the laser light source 1 at one end and a reflective optical fiber 202 connected to the signal demodulator 4 at the other end.
  • the sensing probe 3 is filled with an oily liquid 305 of dimethyl silicone oil.
  • the sensing probe 3 includes a cylindrical packaging shell 301 and a top cover 307 connected to it with a screw on the top, and the other end of the packaging shell 301 and the other end of the incident optical fiber 201 and the reflective optical fiber 202 is enclosed in the packaging shell 301.
  • the fiber coupler 2 is a 2 ⁇ 2 fiber coupler, and the splitting ratio is 50:50.
  • the sensor arm transducer 304, the mass block 303, the reference arm transducer 302, and the gasket 309 are passed through the screw 308 concentrically in turn, and pressure is applied through the nut 310.
  • the magnitude of the pressure affects the sensor arm transducer 304 and the equivalent stiffness coefficient of the reference arm transducer 302, thereby changing the sensitivity and resonance frequency of the probe, and optimizing the frequency response curve. Adjusting the pressure can optimize the frequency response curve of the probe.
  • the incident optical fiber 201 and the reflecting optical fiber 202 are introduced into the package housing 301 through the fiber introduction port 306 provided on the top cover 307, the fiber introduction port 306 and the threaded connection between the package housing 301 and the top cover 307
  • the place is sealed by glass glue to prevent oily liquid from leaking out.
  • the two ports of the optical fiber inlet 306 are rounded and chamfered to prevent the optical fiber from breaking.
  • the reference arm optical fiber 204 is tightly wound around the outer circumference of the reference arm transducer 302 with a certain prestress from bottom to top, and the reference arm mirror 203 is installed at its end.
  • the sensor arm optical fiber 205 is tightly wound around the outer circumference of the sensor arm transducer 304 with a certain prestress from top to bottom, and the sensor arm reflector 206 is installed at its end. Can convert microseismic signals into light phase changes.
  • the reference arm transducer 302 and the sensor arm transducer 304 have a hollow cylindrical structure and are made of copper.
  • the fiber coupler 2, the reference arm reflector 203, and the sensor arm reflector 206 can be fixed to the side of the mass block 303 with glue, and the excess pigtails are wound around the outside of the transducer 302 and the transducer 304 to make the entire sensor structure More compact.
  • the laser light emitted by the laser light source 1 is transmitted to the fiber coupler 2 through the incident fiber 201, and is divided into two paths, one path is reflected by the reference arm fiber 204 by the reference arm reflector 203, and the other path is passed through the sensor arm fiber 205 Reflected by the sensor arm mirror 206, the two beams of light carrying vibration information interfere at the fiber coupler 2, and the interference light is transmitted to the signal demodulator 4 through the reflection fiber 202, and the signal to be measured is recovered.
  • the abscissa represents the frequency
  • the ordinate represents the measured acceleration sensitivity. It can be seen from the figure that after the sensor probe is filled with oily liquid 305, its acceleration sensitivity has increased from 130rad/g to 180rad/g, an increase of 38%; , When the oily liquid 305 is not added, high-frequency oscillation signal distortion appears inside the barrel shell, that is, there are small spikes on the back slope of the frequency response curve, and the oily liquid can completely solve the above problems, the frequency response curve is smooth, and the microseismic signal can be achieved without loss Obtain.
  • the abscissa represents the frequency
  • the ordinate represents the measured acceleration sensitivity. It can be seen from the figure that when the pre-stressed nut changes from 0.5N to 0.8N, the resonance frequency increases from 1.9kHz to 2.3kHz, an increase of 21.1%, the sensitivity Sacrifice 15.4%. Therefore, the internal parameters of the probe can be adjusted according to different application requirements, and the sensor probe that meets the requirements can be designed and optimized.
  • the sensing probe 3 does not contain any active components, does not need power supply, breaks through the shortcomings of traditional microseismic monitoring downhole equipment requiring power supply, and realizes safe, efficient, low-fault, and intrinsically safe sensing monitoring.
  • the present invention adopts an all-optical structure design, does not contain any active devices, and is intrinsically safe.
  • the packaging shell 301 is filled with oily liquid 305, which significantly improves the sensitivity, solves the problem of signal distortion caused by high-frequency oscillation in the shell, smoothes the frequency response curve, and extends the bandwidth; on the other hand, the size of the nut pressure affects the sensor
  • the equivalent stiffness coefficient of the arm transducer and the reference arm transducer can change the sensitivity and resonance frequency of the probe and optimize the frequency response curve. The higher the sensitivity of the sensor, the stronger the ability to detect weak vibration signals, the wider the frequency band of the sensor, and the richer the microseismic information that can be effectively picked up.

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

本发明涉及光纤传感和安全监测领域,尤其涉及一种高灵敏宽频响的全光纤微震监测系统。该系统由激光光源、光纤耦合器、传感探头、信号解调仪组成,其中所述传感探头包括封装外壳及顶盖、光纤耦合器、参考臂光纤和传感臂光纤、位于封装外壳底面中部并依次向上同心固定连接的传感臂换能器、质量块、参考臂换能器、垫片、螺母以及参考臂反射镜和传感臂反射镜,所述传感探头内完全充满油性液体;通过螺母调节施加于垫片的应力大小。该系统具有探测灵敏度高、频响曲线平滑、本质安全和应用范围广等优点,可实现更低震级、更宽频带微震信号的无损伤的获取,适用于各类矿井及基础设施工程的安全监测。

Description

一种高灵敏宽频响的全光纤微震监测系统 技术领域
本发明涉及光纤传感和安全监测领域,尤其涉及一种高灵敏宽频响的全光纤微震监测系统。
背景技术
上世纪六十年代至今,很多采矿大国先后开展矿山微震监测设备和监测系统的研制,例如,加拿大ESG、南非ISS、波兰SOS系统等,已在微震监测应用领域开展了应用。上述系统前端均为基于压电式或电磁式传感器,非本质安全,不适用于煤矿强电磁、高温高湿等复杂环境。论文“一种光纤光栅加速度传感系统”[马良柱,常军,刘小会,霍佃恒,刘统玉.山东科学,2008,06:19-22]公开了光纤光栅加速度传感系统,频宽为2-100Hz,最小分辨率仅为0.1mg,但无法适用于金属矿等硬岩环境监测;公开号为CN106940387A的专利申请公开了一种迈克尔逊干涉式光纤加速度传感器,该传感器通过差分式光纤迈克尔逊干涉装置检测质量块位移引起的相位变化,实时解调传感器的加速度变化,但是结构复杂;公开号为CN105158508A的专利申请公开了一种结构简单的新型光纤微振动加速度传感器,该传感器被悬臂梁挤压的传感光纤在振动信号激励下产生微小形变,光纤末端反射光功率受到振动信号的调制,结构简单,但是频带窄检测灵敏度低。
综上所述,传统微震监测系统前端需要供电,非本质安全,煤矿环境下使用存在燃爆风险,且灵敏度低,频带较窄,无法实现微震信 号保真拾取。而基于光纤光栅原理的微震监测仪,虽然本质安全,但关键技术指标如工作频带、分辨率等较差,实用困难。因此,需要开发出一种高灵敏度、宽频响的全光纤微震监测系统,以解决上述不足。
发明内容
针对现有技术中存在的不足,本发明所要解决的技术问题是提供一种高灵敏宽频响的全光纤微震监测系统,该系统显著提高了监测灵敏度,抗电磁干扰,可适用于煤矿、金属矿、隧道和边坡等重要基础设施工程的安全监测。
本发明解决上述技术问题的方案是:
一种高灵敏宽频响的全光纤微震监测系统,该系统由激光光源、传感探头、信号解调仪和一头连接所述的激光光源的入射光纤以及一头连接所述的信号解调仪的反射光纤组成;其特征在于,
所述的传感探头由圆筒状的封装外壳及其顶部以螺纹与其连接的顶盖,封装在所述的封装外壳内并与所述的入射光纤和反射光纤的另一头相连接的光纤耦合器,由光纤耦合器引出的参考臂光纤和传感臂光纤,固定连接在封装外壳内底面中部的螺杆、由所述的螺杆依次向上同心固定串接的传感臂换能器、质量块、参考臂换能器、垫片、螺母,参考臂反射镜和传感臂反射镜,以及充满于封装外壳内部的油性液体组成;其中,
所述的入射光纤和反射光纤由所述的顶盖上设有的光纤引入口引入封装外壳,所述的光纤引入口由玻璃胶或硅胶密封;
所述的参考臂光纤由下向上以一定预应力紧密缠绕在所述的参 考臂换能器的外周,其末端装设有所述的参考臂射镜;
所述的传感臂光纤由上向下以一定预应力紧密缠绕在传感臂换能器的外周,其末端装设有所述的传感臂反射镜。
所述油性液体为不同粘度的二甲基硅油。
所述参考臂换能器和传感臂换能器空心圆柱状结构,由铜、聚氨酯和硅橡胶中的一种制成,所述垫片为空心结构,由铝合金、高硬度硅橡胶中的一种制成。
本发明与现有技术相比,其有益效果为:
1、本质安全:本发明中的传感探头均由无源光学器件构成,突破了传统微震监测井下设备需要供电的弊端,可实现安全、高效、低故障的传感监测。
2、灵敏度高:传感探头的外壳内充满油性液体,在微震信号激励下,油性液体运动引起缠绕在换能器上的应力光纤发生粘性形变,显著提高传感器灵敏度;在传感探头直立安装时,由于质量块上方的油性液体对其有压力作用,等效增加质量块质量,使缠绕于换能器上的应力光纤更易发生形变,可进一步提高传感器灵敏度。
3、频带宽:采用杨氏模量较高材料作为换能器,显著提高了传感器响应的频带宽度;充满油性液体可减小封装外壳内部高频振荡和高频信号畸变,平滑传感器频响曲线,扩展频宽,实现微震信号的无损获取。
4、应用范围广:一方面,可以通过改变探头内部结构参数和传感光纤几何参数等实现探头频响宽度和动态范围等关键参数控制;另 一方面,在组装时,仅需通过螺母调节施加于垫片的压力大小就可以优化探头灵敏度、谐振频率等,为复杂微震信号监测提供不同的解决方案。本发明所公开的高灵敏宽频响的全光纤微震监测系统可全面应用于煤矿、金属矿山、隧道、边坡等重基础设施工程的安全监测领域。
附图说明
图1为本发明公开的一种高灵敏宽频响的全光纤微震监测系统的结构示意图。
图2为本发明公开的一种高灵敏宽频响的全光纤微震监测系统的传感探头内未加油性液体与充满油性液体后的频响曲线对比图。
图3为本发明公开的一种高灵敏宽频响的全光纤微震监测系统的传感探头中的螺母施加0.5N和0.8N压力时的频响曲线图。
具体实施方式
下面结合具体实施例对本发明作进一步解说。
实施例1
参见图1,本发明公开的一种高灵敏宽频响的全光纤微震监测系统由用于产生激光的激光光源1、用于拾取微震信号的传感探头3、用于微震信号的解调的信号解调仪4和一头连接激光光源1的入射光纤201以及一头连接所述的信号解调仪4的反射光纤202组成,传感探头3内充满二甲基硅油的油性液体305。
所述传感探头3包括圆筒状的封装外壳301及其顶部以螺纹与其连接的顶盖307、封装在所述的封装外壳301内并与所述的入射光纤201和反射光纤202的另一头相连接的光纤耦合器2、由光纤耦合器2 引出的参考臂光纤204和传感臂光纤205、位于所述的封装外壳301底面中部并依次向上同心固定连接的传感臂换能器304、质量块303、参考臂换能器302、垫片309、螺母310,以及参考臂反射镜203和传感臂反射镜206。光纤耦合器2为2×2光纤耦合器,分光比为50:50。
其中,所述的传感臂换能器304、质量块303、参考臂换能器302、垫片309依次同心穿过螺杆308,通过螺母310施加压力,压力的大小影响传感臂换能器304和参考臂换能器302的等效劲度系数,从而改变探头灵敏度和谐振频率,优化频响曲线调整压力的大小可优化探头频响曲线。所述的入射光纤201和反射光纤202由所述的顶盖307上设有的光纤引入口306引入封装外壳301,所述的光纤引入口306以及封装外壳301与顶盖307之间的螺纹连接处由玻璃胶密封,以防止油性液体外渗。所述的光纤引入口306的两端口为圆弧形倒角,以防止光纤折断。
所述的参考臂光纤204由下向上以一定预应力紧密缠绕在所述的参考臂换能器302的外周,其末端装设有所述的参考臂反射镜203。所述的传感臂光纤205由上向下以一定预应力紧密缠绕在传感臂换能器304的外周,其末端装设有所述的传感臂反射镜206。可以将微震信号转换成光相位变化。
所述参考臂换能器302和传感臂换能器304空心圆柱状结构,其材质为铜。光纤耦合器2、参考臂反射镜203、传感臂反射镜206可用胶体固定于质量块303的侧边,多余尾纤缠绕在换能器302和换能器304的外部,可使整个传感器结构更加紧凑。
本系统在工作时,激光光源1出射的激光经过入射光纤201传输至光纤耦合器2,分为两路,一路经参考臂光纤204由参考臂反射镜203反射,另一路经传感臂光纤205由传感臂反射镜206反射,携带振动信息的两束光在光纤耦合器2处发生干涉,干涉光经反射光纤202传输至信号解调仪4,恢复出待测信号。
参见图2,横坐标表示频率,纵坐标表示实测加速度灵敏度,由图可见,传感探头内充满油性液体305后,其加速度灵敏度由130rad/g增加到180rad/g,提高了38%;同时可见,未加油性液体305时,筒外壳内部出现高频振荡信号畸变,即频响曲线后坡有小尖峰,而充满油性液体可完全解决上述存在的问题,频响曲线平滑,可以实现微震信号无损获取。
参见图3,横坐标表示频率,纵坐标表示实测加速度灵敏度,由图可见,螺母预加的应力由0.5N变为0.8N时,其谐振频率由1.9kHz增加到2.3kHz,提高21.1%,灵敏度牺牲15.4%。故可根据不同应用需求调整探头内部参数,设计、优化满足要求的传感探头。
传感探头3不含任何有源器件,无需供电,突破传统微震监测井下设备需要供电的弊端,实现安全、高效、低故障、本质安全传感监测。
综上,本发明采用全光学结构设计,不含任何有源器件,本质安全。一方面,封装外壳301内充满油性液体305,显著提高了灵敏度,解决外壳内高频振荡而引起的信号畸变问题,平滑频响曲线,扩展频宽;另一方面,螺母压力的大小影响传感臂换能器和参考臂换能器的 等效劲度系数,从而改变探头灵敏度和谐振频率,优化频响曲线。传感器灵敏度越高,对微弱振动信号的探测能力越强,传感器频带越宽,有效拾取的微震信息越丰富,因此,发明一种高灵敏宽频响的全光纤微震监测系统,实现更低震级、更宽频带微震信号的无损伤的获取,易集成和远程传输,形成大规模分布式传感阵列,可应用于煤矿、金属矿山、隧道、边坡等重基础设施工程安全监测领域,具有高度的产业利用价值。

Claims (3)

  1. 一种高灵敏宽频响的全光纤微震监测系统,该系统由激光光源(1)、传感探头(3)、信号解调仪(4)和一头连接所述的激光光源(1)的入射光纤(201)以及一头连接所述的信号解调仪(4)的反射光纤(202)组成;其特征在于,
    所述的传感探头(3)由圆筒状的封装外壳(301)及其顶部以螺纹与其连接的顶盖(307),封装在所述的封装外壳(301)内并与所述的入射光纤(201)和反射光纤(202)的另一头相连接的光纤耦合器(2),由光纤耦合器(2)引出的参考臂光纤(204)和传感臂光纤(205),固定连接在封装外壳(301)内底面中部的螺杆(308)、由所述的螺杆(308)依次向上同心固定串接的传感臂换能器(304)、质量块(303)、参考臂换能器(302)、垫片(309)、螺母(310),参考臂反射镜(203)和传感臂反射镜(206),以及充满于封装外壳(301)内部的油性液体(305)组成,其中,
    所述的入射光纤(201)和反射光纤(202)由所述的顶盖(307)上设有的光纤引入口(306)引入封装外壳(301),所述的光纤引入口(306)由玻璃胶或硅胶密封;
    所述的参考臂光纤(204)由下向上以一定预应力紧密缠绕在所述的参考臂换能器(302)的外周,其末端装设有所述的参考臂射镜(203);
    所述的传感臂光纤(205)由上向下以一定预应力紧密缠绕在传感臂换能器(304)的外周,其末端装设有所述的传感臂反射镜(206)。
  2. 根据权利要求1所述的一种高灵敏宽频响的全光纤微震监测 系统,其特征在于,所述油性液体(305)为不同粘度的二甲基硅油。
  3. 根据权利要求1所述的一种高灵敏宽频响的全光纤微震监测系统,其特征在于,所述参考臂换能器(302)和传感臂换能器(304)空心圆柱状结构,由铜、聚氨酯和硅橡胶中的一种制成,所述垫片(309)为空心结构,由铝合金和高硬度硅橡胶中的一种制成。
PCT/CN2020/100405 2019-07-09 2020-07-06 一种高灵敏宽频响的全光纤微震监测系统 WO2021004423A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910612905.7A CN110261895B (zh) 2019-07-09 2019-07-09 一种高灵敏宽频响的全光纤微震监测系统
CN201910612905.7 2019-07-09

Publications (1)

Publication Number Publication Date
WO2021004423A1 true WO2021004423A1 (zh) 2021-01-14

Family

ID=67925018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100405 WO2021004423A1 (zh) 2019-07-09 2020-07-06 一种高灵敏宽频响的全光纤微震监测系统

Country Status (2)

Country Link
CN (1) CN110261895B (zh)
WO (1) WO2021004423A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261895B (zh) * 2019-07-09 2022-01-14 安徽大学 一种高灵敏宽频响的全光纤微震监测系统
CN112379414B (zh) * 2020-10-29 2024-02-02 安徽大学 共振抑制的光纤加速度传感探头及光纤微震监测传感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2599600Y (zh) * 2003-01-28 2004-01-14 天津大学 顺变柱体全光纤双光路加速度地震检波器
US7466631B1 (en) * 2006-10-19 2008-12-16 The United States Of America As Represented By The Secretary Of The Navy Enhanced sensitivity pressure tolerant fiber optic hydrophone
CN102374895A (zh) * 2011-09-26 2012-03-14 中国人民解放军国防科技大学 一种大动态光纤振动传感器
CN206523645U (zh) * 2017-02-17 2017-09-26 珠海任驰光电科技有限公司 一种带有横向限振结构的光纤检波器
CN110261895A (zh) * 2019-07-09 2019-09-20 安徽大学 一种高灵敏宽频响的全光纤微震监测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2599600Y (zh) * 2003-01-28 2004-01-14 天津大学 顺变柱体全光纤双光路加速度地震检波器
US7466631B1 (en) * 2006-10-19 2008-12-16 The United States Of America As Represented By The Secretary Of The Navy Enhanced sensitivity pressure tolerant fiber optic hydrophone
CN102374895A (zh) * 2011-09-26 2012-03-14 中国人民解放军国防科技大学 一种大动态光纤振动传感器
CN206523645U (zh) * 2017-02-17 2017-09-26 珠海任驰光电科技有限公司 一种带有横向限振结构的光纤检波器
CN110261895A (zh) * 2019-07-09 2019-09-20 安徽大学 一种高灵敏宽频响的全光纤微震监测系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DING, GUILAN ET AL.: "An All-Fiberoptic Accelerometer Based on Compliant Cylinders", ACTA OPTICA SINICA, vol. 22, no. 3, 31 March 2002 (2002-03-31), ISSN: 0253-2239, DOI: 20200901140759Y *
YI DUO ET AL.: "Experimental study on transient response of the fiber optic seismic accelerometer", OPTICAL FIBER TECHNOLOGY, 15 June 2018 (2018-06-15), XP085515218, ISSN: 1068-5200, DOI: 20200901112128Y *

Also Published As

Publication number Publication date
CN110261895A (zh) 2019-09-20
CN110261895B (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
CN201155991Y (zh) 一种新型的光纤光栅加速度传感器
US6891621B2 (en) Highly sensitive cross axis accelerometer
AU777802B2 (en) Highly sensitive accelerometer
CN101982740B (zh) 双等强度悬臂梁光纤光栅振动传感器
CN105841796B (zh) 一种光纤光栅三维矢量振动传感器
CN101608944B (zh) 一种光纤振动传感头及其制作方法
Liu et al. UV adhesive diaphragm-based FPI sensor for very-low-frequency acoustic sensing
WO2021004423A1 (zh) 一种高灵敏宽频响的全光纤微震监测系统
AU2002229908A1 (en) Highly sensitive cross axis accelerometer
US7714271B1 (en) Simple fiber optic seismometer for harsh environments
CN104199086A (zh) 单分量光纤检波器及含有该检波器的三分量微地震光纤检波器及三分量微地震光纤检波阵列
CN106680535A (zh) 基于光纤布喇格光栅反射谱特性实现激光拍频的差动型光学加速度计
CN107144705A (zh) 一种光纤光栅加速度计
CN110261893A (zh) 一种阻尼可调全光纤加速度微震监测传感器探头
CN103954228A (zh) 一种高精度分量式光纤钻孔应变仪
CN110207807A (zh) 一种光纤振动传感器及其测量振动的方法
CN101782442A (zh) 一种新型的光纤光栅压力传感器
CN110244348B (zh) 一种光电复合式地震检波器及检测系统
CN109443629A (zh) 一种差压光纤探头结构及其差压光纤传感器
CN113295260A (zh) 一种基于推挽结构的光纤水听器
CN108828073A (zh) 一种基于光纤光栅的声发射检测装置
Yu et al. Highly sensitive fiber-optic Fabry-Perot geophone with graphene-coated PMMA membrane
CN109520665A (zh) 一种差压光纤探头结构及其差压光纤传感器
CN105490142A (zh) 一种激光传音方法及装置
CN111928937A (zh) 光纤震动传感探头及光纤微震监测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20837528

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837528

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20837528

Country of ref document: EP

Kind code of ref document: A1