WO2021002616A1 - Drunk driving prevention apparatus - Google Patents

Drunk driving prevention apparatus Download PDF

Info

Publication number
WO2021002616A1
WO2021002616A1 PCT/KR2020/008051 KR2020008051W WO2021002616A1 WO 2021002616 A1 WO2021002616 A1 WO 2021002616A1 KR 2020008051 W KR2020008051 W KR 2020008051W WO 2021002616 A1 WO2021002616 A1 WO 2021002616A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample gas
carbon dioxide
concentration
alcohol
sensor
Prior art date
Application number
PCT/KR2020/008051
Other languages
French (fr)
Korean (ko)
Inventor
유도준
정종진
김용
이준노
Original Assignee
주식회사 센텍코리아
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 센텍코리아 filed Critical 주식회사 센텍코리아
Publication of WO2021002616A1 publication Critical patent/WO2021002616A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K28/00Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions
    • B60K28/02Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver
    • B60K28/06Safety devices for propulsion-unit control, specially adapted for, or arranged in, vehicles, e.g. preventing fuel supply or ignition in the event of potentially dangerous conditions responsive to conditions relating to the driver responsive to incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/10Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with two or more closure members not moving as a unit
    • F16K11/105Three-way check or safety valves with two or more closure members
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4972Determining alcohol content

Definitions

  • the present invention relates to an apparatus for preventing drunk driving provided in a vehicle.
  • Drunk driving is strictly restricted by law because it can cause fatal damage to not only the driver himself, but also others. However, since there is no device for preventing drunk driving in a general vehicle, even a driver in a drunk state can drive freely.
  • a drunk driving prevention device that measures the concentration of alcohol contained in the driver's exhaled gas and prevents the vehicle from starting when the concentration is higher than a reference value.
  • Korean Patent Laid-Open Publication No. 10-2017-0040890 includes a sensor that measures an alcohol concentration and outputs the measured alcohol concentration; And a processor for controlling the vehicle by performing drunk driving authentication based on the alcohol concentration sensed through the sensor, wherein the processor includes a first drunk driving according to the alcohol concentration detected through the sensor before starting the vehicle.
  • a vehicle assistance apparatus for performing authentication and additionally performing secondary drinking driving authentication according to an alcohol concentration detected through the sensor while the vehicle is driving.
  • the device of Korean Patent Application Publication No. 10-2017-0040890 can prepare for proxy authentication of acquaintances who have not been drunk through additional authentication while driving, or replacement of a driver while driving a vehicle.
  • Korean Patent Registration No. 10-1525204 includes an alcohol measurement unit that measures the alcohol concentration contained in the driver's exhalation, a recognition unit that recognizes authentication information set in advance to authenticate the driver, and a state collection that collects driver's state information inside the vehicle.
  • a storage unit for storing authentication information and status information of the driver, suction position and pattern information when measuring alcohol consumption for each driver, and information transmitted from the alcohol measurement unit, recognition unit and state information collection unit, and information stored in the storage unit
  • a control unit that generates a control signal to control the starting of the vehicle by comparing the driver to authenticate the driver and to determine whether the driver is in a drunk state, and the authentication information includes image information photographing the driver and fingerprint information of the driver and the photographed image information.
  • An apparatus for preventing drunk driving is disclosed, characterized in that it includes information on a suction position and a pattern when measuring a driver's alcohol consumption extracted by analyzing
  • the drunk driving prevention device of Korean Patent Registration No. 10-1525204 also aims to prevent proxy authentication by a passenger or a passerby.
  • Korean Patent Laid-Open Publication No. 10-2016-0096251 determines whether the driver is drinking alcohol based on the measurement result of alcohol concentration in the indoor air of the vehicle, and generates a first alcohol warning signal when the driver is determined to be in a state of suspicion of drinking.
  • a first drinking warning signal generator for; And when receiving the first drinking warning signal, determining whether the driver is drinking alcohol based on the result of measuring the driver's heart rate, and generating a second drinking warning signal when it is determined that the driver is drinking.
  • a device for preventing drunk driving characterized in that it comprises a second drinking warning signal generator for, is disclosed.
  • Korean Patent Registration 10-0706040 discloses a vehicle key capable of preventing drunk driving.
  • the vehicle key disclosed in Korean Patent Registration No. 10-0706040 includes a controller, an insertion prevention means, an alcohol sensor, and a carbon dioxide sensor.
  • the controller of the key detects carbon dioxide in the user's exhalation based on the output signal from the carbon dioxide sensor, and determines whether or not the user has exhaled. Further, the alcohol concentration in the user's exhalation is measured based on the output signal of the alcohol sensor, and the measured value and the reference value are compared. As a result of the comparison, if the alcohol concentration is higher than the reference value, the insertion preventing means protrudes to prevent the vehicle key from being inserted into the keyhole for starting the vehicle.
  • An object of the present invention is to provide a device for preventing drunk driving with a new structure capable of quickly determining whether a driver is drinking alcohol.
  • the present invention includes a sample gas inlet pipe into which a sample gas mixed with an exhaled gas of a driver and air inside a vehicle is introduced and a sample gas outlet pipe through which the introduced sample gas is discharged.
  • a carbon dioxide sensor for generating an electric signal according to the concentration of carbon dioxide contained in the sample gas introduced through the gas inlet pipe;
  • a suction pump connected to the sample gas outlet pipe of the carbon dioxide sensor and for introducing a sample gas into the carbon dioxide sensor during operation;
  • An exhaust pipe connected to an outlet of the suction pump;
  • An alcohol sensor that generates an electric signal according to the alcohol concentration of the sample gas flowing through the exhaust pipe;
  • a controller configured to control the starting device of the vehicle by determining whether the vehicle is in a drinking state based on electrical signals from the carbon dioxide sensor and the alcohol sensor,
  • the controller determines a change value of the carbon dioxide concentration (Cc) in the sample gas for X seconds obtained by comparing the electric signal value of the current carbon dioxide sensor with the electric signal value of the carbon dioxide sensor before a predetermined X seconds. If the carbon dioxide concentration comparison unit comparing the carbon dioxide concentration change reference value Rc and the carbon dioxide concentration comparison unit determines that the change value of the carbon dioxide concentration Cc in the sample gas is greater than or equal to the carbon dioxide concentration change reference value Rc, the It includes an alcohol concentration comparison unit that compares the alcohol concentration (Ca) in the sample gas with a predetermined alcohol concentration reference value (Ra) based on the electrical signal measured by the alcohol sensor,
  • a drunk driving prevention device is provided to control the starting device to start the vehicle.
  • the alcohol concentration comparison unit determines that the alcohol concentration (Ca) in the sample gas is equal to or greater than the reference value (Ra), the alcohol concentration (Ca) in the sample gas and the predetermined maximum value (Cmax) of the carbon dioxide in the sample gas It further includes a blood alcohol concentration calculator for calculating the driver's blood alcohol concentration (BAC) based on the value divided by the concentration (Cc) of,
  • a drunk driving prevention device is provided for controlling a starting device to start a vehicle.
  • the drunk driving prevention apparatus when a driver rides in a vehicle and blows exhaled gas toward a drunk driving prevention apparatus installed on a steering wheel of a driver's seat or a sun visor, whether or not drinking is immediately confirmed within a short time of about 3 seconds.
  • FIG. 1 is a block diagram of an apparatus for preventing drunk driving according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the drunk driving prevention apparatus shown in FIG. 1.
  • FIG. 3 is a cross-sectional view of the carbon dioxide sensor shown in FIG. 2.
  • FIG. 4 is a side cross-sectional view of the alcohol sensor shown in FIG. 2.
  • FIG. 5 is a side cross-sectional view of the alcohol sensor module shown in FIG. 4.
  • FIG. 6 is a block diagram of the controller shown in FIG. 1.
  • FIG. 7 is a diagram illustrating a change over time of an electrical signal of a carbon dioxide sensor.
  • FIG. 8 is a flow chart for explaining the operation of the drunk driving prevention device shown in FIG.
  • FIG. 9 is a schematic diagram of an apparatus for preventing drunk driving according to another embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an apparatus for preventing drunk driving according to another embodiment of the present invention.
  • FIG. 1 is a block diagram of an apparatus for preventing drunk driving according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an apparatus for preventing drunk driving according to an embodiment of the present invention.
  • the drunk driving prevention device 1 is installed in a position where the driver can easily blow exhaled gas, such as a sun visor or steering wheel of a driver's seat.
  • the drunk driving prevention apparatus 1 includes a carbon dioxide sensor 100, an alcohol sensor 200, and a controller 250 (not shown in FIG. 2). do.
  • the carbon dioxide sensor 100 serves to transmit an electric signal according to the concentration of carbon dioxide contained in the mixture of the driver's exhaled gas and the air inside the vehicle to the controller 250.
  • the alcohol sensor 200 serves to transmit an electric signal according to the concentration of alcohol contained in the mixture of the driver's exhaled gas and the air inside the vehicle to the controller 250.
  • the controller 250 controls the vehicle starting device by using these electric signals.
  • the drunk driving prevention apparatus 1 connects the suction pump 150, the carbon dioxide sensor 100 and the inlet of the suction pump 150 It includes a connection pipe 120, an exhaust pipe 170 connecting the outlet of the suction pump 150 and the alcohol sensor 200.
  • the carbon dioxide sensor 100 and the suction pump 150 are connected through a connection pipe 120. Therefore, when the suction pump 150 is operated, the sample gas flows into the carbon dioxide sensor 100.
  • the sample gas is the driver's exhaled gas diluted by the air inside the vehicle.
  • a diaphragm pump may be used as the suction pump 150.
  • the diaphragm pump is a kind of positive displacement pump that sucks and discharges fluid by the motion of the diaphragm.
  • the positive displacement pump has an advantage in that it has excellent quantitative characteristics and is hardly affected by pressure changes at the outlet side.
  • One end of the exhaust pipe 170 is connected to the outlet of the suction pump 150, and a semiconductor alcohol sensor 200 is coupled to the other end of the exhaust pipe 170.
  • the upstream side and the downstream side are determined based on the direction in which the sample gas flows when the suction pump 150 is operated.
  • FIG. 3 is a cross-sectional view of the carbon dioxide sensor shown in FIG. 2.
  • the carbon dioxide sensor shown in FIG. 3 is an infrared gas sensor.
  • the carbon dioxide sensor 100 includes an optical waveguide 10, an infrared light source 20, an optical sensor 30, a band pass filter 40, a downstream transparent layer 50, and an upstream transparent layer 55. , A downstream side light guide 60, and an upstream side light guide 65.
  • Infrared light irradiated from the infrared light source 20 proceeds while being reflected inside the optical waveguide 10 and reaches the optical sensor 30.
  • the intensity of light having a wavelength absorbed by carbon dioxide among infrared rays reaching the optical sensor 30 varies according to the concentration of carbon dioxide in the sample gas flowing inside the optical waveguide 10.
  • the carbon dioxide sensor 100 calculates the concentration of carbon dioxide contained in the exhalation of the subject by using the change in the intensity of light of such a specific wavelength.
  • the optical waveguide 10 is a straight metal tube.
  • the optical waveguide 10 may be made of copper or a copper alloy, for example, a brass tube.
  • the optical waveguide 10 is a passage through which the sample gas passes.
  • the optical waveguide 10 is a passage through which infrared rays irradiated into the interior thereof are reflected while being reflected on the inner surface thereof.
  • a sample gas inlet pipe 11 is coupled to the lower right side of the optical waveguide 10, and the sample gas flows into the sample gas inlet pipe 11.
  • a sample gas outlet pipe 12 is coupled to the lower left side of the optical waveguide 10.
  • a heater (not shown) is installed around the optical waveguide 10.
  • a heater a film-type heater can be used. Since a large amount of water vapor is included in the exhalation, when the temperature of the sample gas falls below about 33°C, the water vapor contained in the sample gas is condensed and moisture is condensed in the optical waveguide 10. Since gases such as alcohol are easily dissolved in moisture, when moisture condenses, the concentration of gas dissolved in moisture such as alcohol in the sample gas decreases. Therefore, it is necessary to maintain the temperature of the optical waveguide 10 at a constant temperature of 33°C or higher. The heater heats the optical waveguide 10 so that the inside of the optical waveguide 10 is maintained at a constant temperature.
  • an insulating material may be disposed around the optical waveguide 10 to minimize heat loss.
  • the infrared light source 20 is installed at the right end of the optical waveguide 10 to be spaced apart from the optical waveguide 10.
  • the infrared light source 20 emits infrared light including light of a specific wavelength absorbed by carbon dioxide.
  • the upstream light guide 65 is a hollow tube having an inclined inner surface to guide light, and may be made of a copper alloy or copper material such as brass.
  • the upstream optical guide 65 serves to guide the light irradiated from the infrared light source 20 to the open upstream end of the optical waveguide 10.
  • the upstream transparent layer 55 prevents the sample gas flowing into the optical waveguide 10 from flowing toward the infrared light source 20, and passes at least a specific wavelength that reacts to carbon dioxide among the infrared rays emitted from the infrared light source 20. Do it. Since the sample gas may contain foreign substances such as saliva, it is preferable that the introduced sample gas does not contact the infrared light source 20.
  • the upstream transparent layer 55 may be made of transparent glass or film. In addition, an infrared filter that transmits only infrared rays may be used.
  • the optical sensor 30 is installed at a left end of the optical waveguide 10 to be spaced apart from the optical waveguide 10.
  • the optical sensor 30 detects infrared rays of a specific wavelength reacting with carbon dioxide and converts them into electric signals. The higher the carbon dioxide concentration, the weaker the intensity of infrared rays of a specific wavelength reacting with carbon dioxide.
  • a bandpass filter 40 Between the optical sensor 30 and the open downstream end of the optical waveguide 10, a bandpass filter 40, a downstream optical guide 60, and a downstream transparent layer 50 are sequentially installed.
  • the bandpass filter 40 serves to selectively pass light of a specific wavelength reacting with carbon dioxide.
  • the downstream light guide 60 is a hollow tube having an inclined inner surface to guide light, and, like the upstream light guide 65, may be made of a copper alloy or copper material such as brass.
  • the downstream optical guide 60 serves to guide the light passing through the optical waveguide 10 to the bandpass filter 40.
  • the downstream transparent layer 50 prevents the sample gas flowing into the optical waveguide 10 from flowing toward the optical sensor 30, and passes at least a specific wavelength that reacts to carbon dioxide among the infrared rays emitted from the infrared light source 20. Do it. Since the sample gas may contain foreign substances such as saliva, it is preferable that the introduced sample gas does not come into contact with the band pass filter 40.
  • the downstream transparent layer 50 may be formed of a transparent glass or film. In addition, an infrared filter that transmits only infrared rays may be used.
  • FIG. 4 is a side cross-sectional view of the alcohol sensor shown in FIG. 2.
  • the alcohol sensor 200 includes a sample gas passage 210 and at least one alcohol sensor module 220 installed in the sample gas passage 210.
  • the alcohol sensor module 220 installed in the sample gas passage 210.
  • four semiconductor type alcohol sensor modules 220 are installed.
  • the sample gas passage 210 has a substantially rectangular parallelepiped shape, and includes an inlet 211 connected to the exhaust pipe 170 and at least one outlet 212 formed opposite the inlet 211.
  • at least one alcohol sensor module installation hole 215 is formed on the bottom surface of the sample gas passage 210. It is preferable that the total area of the outlet 212 is smaller than that of the inlet 211. This is to prevent the sample gas from flowing out of the alcohol sensor module 220 and immediately flowing out.
  • FIG. 5 is a side cross-sectional view of the alcohol sensor module shown in FIG. 4.
  • each alcohol sensor module 220 includes a housing 221, an insulator substrate 222 installed inside the housing 221, a heating element pattern 223 formed on a lower surface of the insulator substrate 222, A pair of electrodes 224 formed on the upper surface, a sensing film 225 formed on the electrode 224 and a heating element pattern 223, and a plurality of stem pins 226 electrically connected to the electrode 224.
  • the housing 221 has a cylindrical shape, and through-holes 227 and 228 are formed in the center of the upper end which is an upstream end and the lower end which is the downstream end, respectively.
  • the through-hole 228 formed in the center of the lower end is preferably smaller than the total area of the through-holes 227 formed in the center of the upper end.
  • the insulator substrate 222 is not particularly limited, it is preferable to use an alumina (Al 2 O 3 ) substrate.
  • the thickness of about 0.25 mm is mainly used, but is not limited thereto.
  • the heating element pattern 223 and the electrode 224 are generally formed using platinum (Pt).
  • a method of forming the heating element pattern 223 and the electrode 224 on the insulator substrate 222 is as follows. First, gold is formed on the surface of the alumina substrate using a laser so that the heating element pattern 223 can be cut in units of cells. Next, the surface of the alumina substrate on which gold is formed is cleaned. Then, platinum paste is applied to both surfaces of the washed alumina substrate by a screen printing method and then dried to form a heating element pattern and an electrode. The heating element pattern is generally formed in a zigzag shape to allow sufficient heat generation. Finally, heat treatment is performed in a vacuum or reducing atmosphere to remove the binder in the platinum paste and sinter the platinum.
  • the sensing film 225 is a thick film whose resistance value is changed by reacting with alcohol in the sample gas at high temperature.
  • the stem pin 226 serves to support the insulator substrate 222 so as to float at a predetermined height inside the housing 221.
  • the pair of stem pins 226 are electrically coupled to the heating element pattern 223 and serve to apply current to the heating element pattern 223.
  • the remaining pair of stem pins 226 are connected by an electrode 224 and a conductive material 229 such as silver paste to measure the resistance change of the sensing layer 225.
  • the sample gas flows into the housing 221 through the upstream side through hole 227.
  • the sample gas flowing into the interior of the housing 221 hits the insulator substrate 222 and then turns around the insulator substrate 222 and is discharged through a through hole 228 formed at the lower end of the housing 221.
  • FIG. 6 is a block diagram of the controller shown in FIG. 1.
  • the controller 250 includes a sensor signal receiving unit 251, a carbon dioxide concentration comparing unit 252, an alcohol concentration comparing unit 253, a blood alcohol concentration calculating unit 254, a blood alcohol concentration comparing unit ( 255), a memory 256, and a starter control unit 257.
  • the sensor signal receiving unit 251 serves to receive electrical signals from the carbon dioxide sensor 100 and the alcohol sensor 100.
  • FIG. 7 is a diagram illustrating a change over time of an electrical signal of a carbon dioxide sensor.
  • the normal state represents a case in which the driver normally injects exhaled gas toward the drunk driving prevention device 1.
  • the vertical axis represents the electric signal value of the carbon dioxide sensor 100
  • the horizontal axis represents the elapsed time based on the point in time when the driver blows the exhaled gas.
  • one-person boarding and five-person boarding indicate a case in which the driver alone or four other passengers boarded, but the driver did not blow the exhaled gas toward the drunk driving prevention device 1.
  • the horizontal axis represents the elapsed time based on the time of boarding.
  • the electric signal is 2200 mV from about 1000 mV to about 3200 mV in a short period of time within 3 seconds (indicated by the vertical dotted line in Figure 7) after the driver blows in the exhaled gas. Degree increases. Even if the driver does not blow the exhaled gas, the carbon dioxide sensor 100 basically outputs a voltage of about 1000 mV by carbon dioxide inside the vehicle. 2200mV of electric signal becomes 2200PPM when converted into carbon dioxide concentration. Therefore, the concentration of carbon dioxide in the sample gas increased by 2200 PPM within 3 seconds by the exhaled gas.
  • the electric signal increases slowly compared to the normal state even if there are many passengers. In the case of single-person boarding, it reaches 2000mV only after 70 seconds have elapsed, and in the case of four-person boarding, it reaches 2000mV only after 24 seconds.
  • FIG. 8 is a diagram showing the change over time of electrical signals of carbon dioxide and alcohol sensors. As shown in FIG. 8, the electrical signal of the alcohol sensor 200 also rapidly increases within 3 seconds.
  • the alcohol sensor 200 used in the preparation of FIG. 8 is a semiconductor type alcohol sensor.
  • the carbon dioxide concentration comparison unit 252 compares the carbon dioxide concentration change reference value Rc stored in the memory 256 with the change value of the carbon dioxide concentration Cc in the sample gas for a predetermined time. That is, by comparing the electric signal value of the current carbon dioxide sensor 100 with the electric signal value of the carbon dioxide sensor 100 before a predetermined X seconds, a change value of the carbon dioxide concentration (Cc) in the sample gas for X seconds is obtained. And, the obtained change value is compared with the carbon dioxide concentration change reference value (Rc).
  • the predetermined time may be 3 seconds
  • the carbon dioxide concentration change reference value Rc may be 1000 PPM.
  • the current electric signal value is about 3200 mV
  • the electric signal value 3 seconds ago is about 1000 mV
  • the change value of the carbon dioxide concentration (Cc) in the sample gas for 3 seconds Becomes about 2200 mV.
  • 2200mV can be converted into 2200PPM of carbon dioxide concentration.
  • the carbon dioxide concentration comparison unit 252 compares this value with a carbon dioxide concentration change reference value Rc of 1000 mV.
  • the carbon dioxide concentration comparison unit 252 continuously monitors the electric signal value of the carbon dioxide sensor 100 after the operation of the carbon dioxide sensor 100 starts, and compares the electric signal value 3 seconds before the carbon dioxide concentration Cc Obtain the change value. And this is compared with the reference value of carbon dioxide concentration change (Rc).
  • the carbon dioxide concentration (Cc) change value for 3 seconds becomes less than 1000 PPM even when measured based on a certain point in time.
  • the alcohol concentration comparison unit 253 compares the alcohol concentration reference value Rc stored in the memory 256 with the alcohol concentration Ca in the sample gas based on the electric signal of the sensor signal receiving unit 251.
  • the blood alcohol concentration calculating unit 254 stores the maximum value Cmax of carbon dioxide stored in the memory 256 in the alcohol concentration Ca in the sample gas based on the electric signal of the sensor signal receiving unit 251. The value divided by the carbon dioxide concentration (Cc) in the sample gas based on the signal is multiplied to estimate the alcohol concentration in the exhaled gas. And based on this, the blood alcohol concentration (BAC) is calculated.
  • the maximum value of carbon dioxide (Cmax) is the maximum value of carbon dioxide contained in the driver's exhaled gas, which is usually about 45000 PPM.
  • the value obtained by dividing the maximum value (Cmax) of carbon dioxide stored in the memory 256 by the concentration of carbon dioxide (Cc) in the sample gas based on the electrical signal of the sensor signal receiving unit 251 indicates the degree of dilution of the exhaled gas. Multiplying the alcohol concentration (Ca) in the gas to obtain the alcohol concentration in the exhaled gas.
  • the alcohol concentration in the exhaled gas and the blood alcohol concentration (BAC) are in direct proportion, it is possible to know the blood alcohol concentration (BAC) by knowing the alcohol concentration in the exhaled gas.
  • the blood alcohol concentration comparison unit 255 compares the blood alcohol concentration reference value stored in the memory 256 with the blood alcohol concentration BAC calculated by the blood alcohol concentration calculator 254.
  • the starting device control unit 257 generates a control signal for controlling the starting device 1 according to the comparison result of the alcohol concentration comparison unit 253 or the blood alcohol concentration comparison unit 255, and sends the starting device (not shown). Deliver. That is, when the alcohol concentration Ca is less than the alcohol concentration reference value Rc or the blood alcohol concentration BAC is less than the blood alcohol concentration reference value, a control signal is sent to the starter so that the starter is switched to the startable state.
  • FIG. 9 is a flow chart for explaining the operation of the drunk driving prevention device shown in FIG.
  • the device 1 for preventing drunk driving is maintained in the start-lock state until the result of the drinking measurement is confirmed (S1).
  • the drunk driving prevention device 1 When the drunk driving prevention device 1 is operated, the optical waveguide 10 is heated.
  • the drunk driving prevention device 1 may operate automatically by using a sensor installed in the driver's seat or a sensor installed in the driver's seat side door, or in a manner in which the driver manually turns on the switch.
  • the suction pump 150 When it is confirmed that the optical waveguide 10 is sufficiently heated and preparation for measurement is completed, the suction pump 150 is operated. In addition, by using an output device (not shown) such as a display or speaker installed in the drunk driving prevention device 1, it notifies the driver that the measurement preparation is complete.
  • the sample gas containing the driver's exhaled gas flows into the optical waveguide 10.
  • the sample gas flowing into the optical waveguide 10 fills the optical waveguide 10. Since both ends of the optical waveguide 10 are blocked by the downstream transparent layer 50 and the upstream transparent layer 55, respectively, the sample gas does not directly contact the infrared light source 20 or the optical sensor 30.
  • the infrared light source 20 when the infrared light source 20 is turned on, the infrared rays emitted from the infrared light source 20 pass through the upstream side optical guide 65 and the upstream side transparent layer 55 and are introduced into the optical waveguide 10. The light irradiated into the optical waveguide 10 is reflected from the inner surface of the optical waveguide 10 and proceeds to the optical sensor 30 side (downstream side). At this time, light of a specific wavelength that reacts with carbon dioxide is absorbed by carbon dioxide.
  • the infrared rays passing through the optical waveguide 10 pass through the downstream transparent layer 50 and are guided by the downstream optical guide 60.
  • the infrared rays pass through the bandpass filter 40 and then reach the optical sensor 30.
  • the bandpass filter 40 reflects or absorbs light except for light of a specific wavelength absorbed by carbon dioxide, and passes only light of a specific wavelength absorbed by carbon dioxide.
  • the optical sensor 30 generates an electric signal according to the intensity of light of a specific wavelength absorbed by carbon dioxide. This electric signal is transmitted to the controller 250 of the drunk driving prevention device 1.
  • the sensing film 225 of each alcohol sensor module 220 is heated by the control signal of the controller 250.
  • the sample gas discharged from the carbon dioxide sensor 100 flows into the sample gas passage 210 through the exhaust pipe 170. Some are discharged through the outlet 212 of the sample gas passage 210, and some are respectively introduced into the alcohol sensor module 220. Alcohol contained in the introduced sample gas reacts with the sensing film 225 of the alcohol sensor module 220 to change the resistance value of the sensing film 225. In addition, an electric signal according to a change in resistance value is transmitted to the controller 250.
  • the carbon dioxide concentration comparison unit 252 of the controller 250 continuously acquires a change value of the carbon dioxide concentration Cc for a predetermined time, for example, 3 seconds after the carbon dioxide sensor 100 is operated. For example, at a time point of 3 seconds, a change value of the carbon dioxide concentration Cc is obtained by comparing the electrical signal values of the carbon dioxide sensor 100 in 3 seconds and 0 seconds. And at the time point of 4 seconds, the change value of the carbon dioxide concentration Cc is obtained by comparing the electric signal values at 4 seconds and 1 second.
  • the obtained change value is compared with a predetermined reference value for change in carbon dioxide concentration (Rc).
  • the change value of the carbon dioxide concentration Cc and the predetermined reference value Rc of change in the carbon dioxide concentration may be a value converted into a concentration, but the electric signal value itself may be compared.
  • the carbon dioxide concentration change reference value Rc may be, for example, 1000 ppm.
  • the carbon dioxide concentration comparison unit 252 determines that the change value of the carbon dioxide concentration Cc for a predetermined time is less than the carbon dioxide concentration change reference value Rc, for example, 1000 PPM, the process returns to the carbon dioxide concentration measurement step S2. It continues to receive electrical signals from the carbon dioxide sensor.
  • the reason that the concentration (Cc) of carbon dioxide in the sample gas is less than 1000 ppm may be due to the driver's intentionally blowing a weak exhalation.
  • the alcohol concentration comparison unit 253 of the controller 250 compares the alcohol concentration Ca based on the electrical signal from the alcohol sensor 100 with a predetermined alcohol concentration reference value Ra.
  • the alcohol concentration reference value Ra may be, for example, 1 ppm.
  • the drunk driving prevention device 1 When it is confirmed that the alcohol concentration (Ca) is less than the alcohol concentration reference value (Ra), the drunk driving prevention device 1 enters the startable state (S8).
  • the blood alcohol concentration calculation step (S6) proceeds.
  • the blood alcohol concentration calculating unit 254 of the controller 250 is based on a value obtained by dividing the concentration of alcohol in the sample gas (Ca) and the predetermined maximum value of carbon dioxide (Cmax) by the concentration of carbon dioxide in the sample gas (Cc).
  • the driver's blood alcohol concentration (BAC) is calculated.
  • the maximum value of carbon dioxide (Cmax) is the maximum amount of carbon dioxide contained in the driver's exhaled gas, which is usually about 45,000 PPM.
  • the alcohol concentration in the exhaled gas is proportional to the blood alcohol concentration, and the blood alcohol concentration of 0.05BAC% corresponds to the alcohol concentration in the exhaled gas of 130 PPM, the alcohol concentration in the exhaled gas 45 PPM is the blood alcohol concentration (BAC) 0.0173BAC% (45 ⁇ 130 ⁇ 0.05BAC%).
  • This step may be carried out using a separate breathalyzer (not shown) connected to the controller. That is, it is also possible to measure the blood alcohol concentration (BAC) by directly blowing exhaled gas into the breathalyzer using a fire band. In particular, when the alcohol concentration (Ca) is low, it is preferable to perform this method in parallel.
  • BAC blood alcohol concentration
  • the blood alcohol concentration (BAC) calculated by the blood alcohol concentration calculating unit 254 or measured using a separate breathalyzer is compared with a reference value, for example, 0.05BAC%. If the blood alcohol concentration (BAC) is less than the reference value, the drunk driving prevention device 1 enters the startable state (S8).
  • the drunk driving prevention device 1 maintains the starting lock state (S1).
  • a warning message is transmitted to the driver through an output device such as a speaker or a display.
  • FIG. 10 is a schematic diagram of an apparatus for preventing drunk driving according to another embodiment of the present invention.
  • the structure of the exhaust pipe 175 and the alcohol sensor 300 is different from the embodiment shown in FIG. 2, only this will be described.
  • the sample gas passage 210 of the semiconductor alcohol sensor 200 is connected to the open other end of the exhaust pipe 170, but in this embodiment, the alcohol sensor ( 300) is installed. It is important that a quantitative sample gas flows into the detection unit 320 of the alcohol sensor 300.
  • the alcohol sensor 300 includes a sensing unit 320 and a suction pump 340 for an alcohol sensor.
  • the sensing unit 320 includes a sample gas chamber 310 and a reaction cell 314 installed in the inner space 313 of the sample gas chamber 310.
  • the sample gas inlet pipe 311 of the sample gas chamber 310 is connected to the exhaust pipe 175, and the sample gas outlet pipe 312 is connected to the suction pump 340 for an alcohol sensor.
  • a reaction cell 314 is installed in the inner space 313 between the sample gas inlet pipe 311 and the sample gas outlet pipe 312 of the sample gas chamber 310.
  • the reaction cell 314 outputs a current value that changes according to the alcohol concentration of the sample gas.
  • the reaction cell 314 includes a sensing electrode and an opposite electrode, and an electrolyte interposed between the sensing electrode and the opposite electrode. Alcohol decomposed into ions in the sensing electrode passes through the electrolyte and then moves to the counter electrode. The generated current value becomes a detection signal value proportional to the alcohol concentration.
  • the alcohol sensor suction pump 340 serves to suck a quantity of the sample gas flowing through the exhaust pipe 175 into the sample gas chamber 310.
  • the alcohol sensor suction pump 340 is installed to communicate with the sample gas outlet pipe 312 of the sample gas chamber 310.
  • the alcohol sensor suction pump 340 is instantaneously operated after a certain time elapses after carbon dioxide is sensed to collect a quantitative sample gas.
  • a solenoid pump may be used as the suction pump 340 for the alcohol sensor.
  • the suction pump 340 for the alcohol sensor is operated by the control signal of the controller 250, A quantitative sample gas is introduced into the sample gas chamber 310.
  • the alcohol sensor suction pump 340 may be continuously operated a plurality of times. That is, by applying power to the solenoid actuator of the alcohol sensor suction pump 340 a plurality of times at short intervals, the alcohol sensor suction pump 340 may be continuously operated a plurality of times. In this way, when a large amount of exhaled gas is introduced into the sample gas chamber 310, the alcohol concentration can be more accurately measured even when the alcohol concentration is low. When the operation is performed multiple times, the controller 250 corrects the alcohol concentration value in consideration of this.
  • the alcohol contained in the introduced sample gas is completely decomposed into ions in the sensing electrode of the reaction cell 314 installed in the sample gas chamber 310 and then passes through the electrolyte and moves to the counter electrode.
  • the current value generated at this time becomes a detection signal value proportional to the alcohol concentration.
  • FIG. 11 is a schematic diagram of an apparatus for preventing drunk driving according to another embodiment of the present invention.
  • the suction pump for an alcohol sensor is not used, and the valves 430 and 440 are opened between the exhaust pipe 175 and the sensing unit 420 Each is installed at the end.
  • the exhaust pipe 175 and the detection unit As the valve 440 between the valves 420 is opened and the valve 430 installed at the open end of the exhaust pipe 175 is closed, the sample gas flowing through the exhaust pipe 175 is introduced into the sample gas chamber 310. When a fixed amount of sample gas is supplied to the sensing unit 420 after a certain period of time, the valve 440 between the exhaust pipe 175 and the sensing unit 420 is closed, and the valve 430 installed at the open end of the exhaust pipe 175 ) Opens.
  • the alcohol contained in the introduced sample gas is completely decomposed into ions by the sensing electrode of the reaction cell 414 installed in the sample gas chamber 410 and then passes through the electrolyte and moves to the counter electrode.
  • the current value generated at this time becomes a detection signal value proportional to the alcohol concentration.
  • the controller 250 measures the concentration of alcohol through the detection signal value and compares the concentration of alcohol Ca with a predetermined value Ra.
  • the optical waveguide 10 has been described as a straight metal tube, but may be a U-shaped metal tube.
  • valves 430 and 440 are respectively installed between the exhaust pipe 175 and the sensing unit 420 and at the open end of the exhaust pipe 175, but the open end of the exhaust pipe It is also possible to install a three-way valve on the three-way valve and a sample gas chamber on one outlet side of the three-way valve.
  • the three-way valve may be controlled so that the sample gas is directed to the sample gas chamber, and during non-measurement, the three-way valve may be controlled so that the sample gas is discharged to the outside through the open end of the exhaust pipe.

Abstract

The present invention relates to a drunk driving prevention apparatus provided in a vehicle. The present invention comprises: a carbon dioxide sensor which includes a sample gas inlet pipe through which sample gas, which is gas exhaled by a driver mixed with air inside the vehicle, is introduced and a sample gas outlet pipe through which the introduced sample gas is discharged, and which generates an electric signal according to a concentration of carbon dioxide included in the sample gas introduced through the sample gas inlet pipe; a suction pump connected to the sample gas outlet pipe of the carbon dioxide sensor, and introducing the sample gas into the carbon dioxide sensor during operation; an exhaust pipe connected to an outlet of the suction pump; an alcohol sensor which generates an electric signal according to an alcohol concentration of the sample gas flowing through the exhaust pipe; and a controller configured to control a starting device of the vehicle by determining whether the driver is intoxicated on the basis of electrical signals from the carbon dioxide sensor and the alcohol sensor. The drunk driving prevention apparatus, according to the present invention, immediately checks whether the driver is intoxicated in a short time of about 3 seconds, when the driver boards the vehicle and blows the exhaled gas toward a steering wheel or a drunk driving prevention apparatus installed on a sun visor.

Description

음주운전 방지 장치Drunk driving prevention device
본 발명은 차량에 구비되는 음주운전 방지 장치에 관한 것이다.The present invention relates to an apparatus for preventing drunk driving provided in a vehicle.
음주운전은 운전자 자신뿐 아니라 타인에게도 치명적인 피해를 끼칠 수 있기 때문에 법률로 엄격하게 제한되고 있다. 그러나 일반적인 차량에는 음주운전을 방지할 수 있는 아무런 장치가 없기 때문에, 음주 상태의 운전자라도 자유롭게 운전을 할 수 있다.Drunk driving is strictly restricted by law because it can cause fatal damage to not only the driver himself, but also others. However, since there is no device for preventing drunk driving in a general vehicle, even a driver in a drunk state can drive freely.
이러한 문제점을 해결하기 위해서 최근에는 운전자의 호기 가스에 포함되어 있는 알코올의 농도를 측정하여, 농도가 기준값 이상일 경우에는 차량의 시동이 걸리지 않도록 하는 음주운전 방지 장치가 개발되고 있다.In order to solve this problem, recently, a drunk driving prevention device has been developed that measures the concentration of alcohol contained in the driver's exhaled gas and prevents the vehicle from starting when the concentration is higher than a reference value.
예를 들어, 한국공개특허 10-2017-0040890에는 알코올 농도를 측정하고, 상기 측정한 알코올 농도를 출력하는 센서; 및 상기 센서를 통해 감지된 알코올 농도를 기준으로 음주운전 인증을 수행하여 차량을 제어하는 프로세서를 포함하고, 상기 프로세서는, 상기 차량의 시동 전에 상기 센서를 통해 감지된 알코올 농도에 따라 1차 음주운전 인증을 수행하고, 상기 차량의 주행 중에 상기 센서를 통해 감지된 알코올 농도에 따라 2차 음주운전 인증을 추가 수행하는 차량 보조 장치가 개시되어 있다. 공개특허 10-2017-0040890의 장치는 주행 중의 추가인증을 통해서 음주하지 않은 지인의 대리 인증이나, 차량의 주행 도중 운전자의 교체 등을 대비할 수 있다.For example, Korean Patent Laid-Open Publication No. 10-2017-0040890 includes a sensor that measures an alcohol concentration and outputs the measured alcohol concentration; And a processor for controlling the vehicle by performing drunk driving authentication based on the alcohol concentration sensed through the sensor, wherein the processor includes a first drunk driving according to the alcohol concentration detected through the sensor before starting the vehicle Disclosed is a vehicle assistance apparatus for performing authentication and additionally performing secondary drinking driving authentication according to an alcohol concentration detected through the sensor while the vehicle is driving. The device of Korean Patent Application Publication No. 10-2017-0040890 can prepare for proxy authentication of acquaintances who have not been drunk through additional authentication while driving, or replacement of a driver while driving a vehicle.
또한, 한국등록특허 10-1525204에는 운전자의 날숨에 포함된 알코올 농도를 측정하는 알코올 측정부, 운전자를 인증하도록 미리 설정된 인증 정보를 인식하는 인식부, 차량 내부에서 운전자의 상태 정보를 수집하는 상태 수집부, 상기 운전자의 인증 정보 및 상태 정보와 운전자별 음주 측정 시 흡입 위치 및 패턴 정보를 저장하는 저장부 그리고 상기 알코올 측정부, 인식부 및 상태 정보 수집부로부터 전달되는 정보와 상기 저장부에 저장된 정보를 비교해서 운전자를 인증하고 음주 상태인지 여부를 판단해서 차량의 시동을 제어하도록 제어신호를 발생하는 제어부를 포함하고, 상기 인증 정보는 운전자를 촬영한 이미지 정보 및 운전자의 지문 정보와 촬영된 이미지 정보를 분석해서 추출되는 운전자의 음주 측정 시 흡입 위치 및 패턴 정보를 포함하는 것을 특징으로 하는 음주운전 방지장치가 개시되어 있다. 한국등록특허 10-1525204의 음주운전 방지장치 역시, 동승자나 행인에 의한 대리 인증을 방지하는 것을 목적으로 한다.In addition, Korean Patent Registration No. 10-1525204 includes an alcohol measurement unit that measures the alcohol concentration contained in the driver's exhalation, a recognition unit that recognizes authentication information set in advance to authenticate the driver, and a state collection that collects driver's state information inside the vehicle. A storage unit for storing authentication information and status information of the driver, suction position and pattern information when measuring alcohol consumption for each driver, and information transmitted from the alcohol measurement unit, recognition unit and state information collection unit, and information stored in the storage unit And a control unit that generates a control signal to control the starting of the vehicle by comparing the driver to authenticate the driver and to determine whether the driver is in a drunk state, and the authentication information includes image information photographing the driver and fingerprint information of the driver and the photographed image information. An apparatus for preventing drunk driving is disclosed, characterized in that it includes information on a suction position and a pattern when measuring a driver's alcohol consumption extracted by analyzing The drunk driving prevention device of Korean Patent Registration No. 10-1525204 also aims to prevent proxy authentication by a passenger or a passerby.
또한, 한국공개특허 10-2016-0096251에는 차량의 실내 공기의 알코올 농도 측정 결과를 근거로 운전자의 음주 여부를 판단하고, 판단 결과 운전자가 음주의심상태라고 판단될 경우 제1 음주경고신호를 생성하기 위한 제1 음주경고신호 생성부; 및 상기 제1 음주경고신호를 수신하는 경우, 상기 운전자의 심장박동수 측정 결과를 근거로 상기 운전자의 음주 여부를 판단하고, 판단 결과 상기 운전자가 음주상태라고 판단될 경우 제2 음주경고신호를 생성하기 위한 제2 음주경고신호 생성부를 포함하는 것을 특징으로 하는 음주운전 방지장치가 개시되어 있다.In addition, Korean Patent Laid-Open Publication No. 10-2016-0096251 determines whether the driver is drinking alcohol based on the measurement result of alcohol concentration in the indoor air of the vehicle, and generates a first alcohol warning signal when the driver is determined to be in a state of suspicion of drinking. A first drinking warning signal generator for; And when receiving the first drinking warning signal, determining whether the driver is drinking alcohol based on the result of measuring the driver's heart rate, and generating a second drinking warning signal when it is determined that the driver is drinking. A device for preventing drunk driving, characterized in that it comprises a second drinking warning signal generator for, is disclosed.
또한, 한국등록특허 10-0706040에는 음주운전을 방지할 수 있는 차량용 키가 개시되어 있다. 한국등록특허 10-0706040에 개시된 차량용 키에는 제어기, 삽입 방지수단, 알코올 센서 및 이산화탄소 센서가 설치되어 있다. 키의 제어기는 이산화탄소 센서의 출력신호에 기초해서 사용자의 호기 중의 이산화탄소를 검출하고, 사용자에 의해 숨이 내뿜어졌는지 아닌지를 판단한다. 또한, 알코올 센서의 출력신호에 기초해서 사용자의 호기 중의 알코올 농도를 측정해서, 이 측정값과 기준값을 비교한다. 비교해본 결과 알코올 농도가 기준값보다 높으면, 삽입 방지 수단이 돌출되어 차량용 키가 차량의 시동을 걸기 위한 열쇠구멍에 끼워지지 못하도록 한다.In addition, Korean Patent Registration 10-0706040 discloses a vehicle key capable of preventing drunk driving. The vehicle key disclosed in Korean Patent Registration No. 10-0706040 includes a controller, an insertion prevention means, an alcohol sensor, and a carbon dioxide sensor. The controller of the key detects carbon dioxide in the user's exhalation based on the output signal from the carbon dioxide sensor, and determines whether or not the user has exhaled. Further, the alcohol concentration in the user's exhalation is measured based on the output signal of the alcohol sensor, and the measured value and the reference value are compared. As a result of the comparison, if the alcohol concentration is higher than the reference value, the insertion preventing means protrudes to prevent the vehicle key from being inserted into the keyhole for starting the vehicle.
[특허문헌][Patent Literature]
한국공개특허 10-2017-0040890Korean Patent Publication 10-2017-0040890
한국등록특허 10-1525204Korean Patent Registration 10-1525204
한국공개특허 10-2016-0096251Korean Patent Publication 10-2016-0096251
한국등록특허 10-0706040Korean Patent Registration 10-0706040
본 발명은 운전자의 음주 여부를 빠르게 판단할 수 있는 새로운 구조의 음주운전 방지 장치를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a device for preventing drunk driving with a new structure capable of quickly determining whether a driver is drinking alcohol.
상술한 목적을 달성하기 위해서, 본 발명은 운전자의 호기 가스와 차량의 내부의 공기가 혼합된 시료가스가 유입되는 시료가스 유입관 및 유입된 시료가스가 배출되는 시료가스 유출관을 포함하며, 시료가스 유입관을 통해서 유입된 시료가스에 포함된 이산화탄소의 농도에 따른 전기신호를 발생하는 이산화탄소 센서와; 상기 이산화탄소 센서의 시료가스 유출관과 연결되며, 가동시에 상기 이산화탄소 센서의 내부로 시료가스를 유입시키는 흡입 펌프와; 상기 흡입 펌프의 출구와 연결된 배기관과; 상기 배기관에 흐르는 시료가스의 알코올 농도에 따른 전기신호를 발생하는 알코올센서와; 상기 이산화탄소 센서 및 알코올센서의 전기신호를 기준으로 음주 상태인지 여부를 판단하여 차량의 시동장치를 제어하도록 구성된 제어기를 포함하며,In order to achieve the above object, the present invention includes a sample gas inlet pipe into which a sample gas mixed with an exhaled gas of a driver and air inside a vehicle is introduced and a sample gas outlet pipe through which the introduced sample gas is discharged. A carbon dioxide sensor for generating an electric signal according to the concentration of carbon dioxide contained in the sample gas introduced through the gas inlet pipe; A suction pump connected to the sample gas outlet pipe of the carbon dioxide sensor and for introducing a sample gas into the carbon dioxide sensor during operation; An exhaust pipe connected to an outlet of the suction pump; An alcohol sensor that generates an electric signal according to the alcohol concentration of the sample gas flowing through the exhaust pipe; And a controller configured to control the starting device of the vehicle by determining whether the vehicle is in a drinking state based on electrical signals from the carbon dioxide sensor and the alcohol sensor,
상기 제어기는, 현재 상기 이산화탄소 센서의 전기신호 값과 미리 정해진 X초 이전의 상기 이산화탄소 센서의 전기신호 값을 비교하여 획득된 X초 동안의 시료가스 내의 이산화탄소의 농도(Cc)의 변화 값을 미리 정해진 이산화탄소 농도 변화 기준 값(Rc)과 비교하는 이산화탄소 농도 비교부와, 상기 이산화탄소 농도 비교부에서 시료가스 내의 이산화탄소의 농도(Cc)의 변화 값이 이산화탄소 농도 변화 기준 값(Rc) 이상인 것으로 판단되면, 상기 알코올센서에서 측정된 전기신호를 기준으로 시료가스 내의 알코올의 농도(Ca)를 미리 정해진 알코올 농도 기준 값(Ra)과 비교하는 알코올 농도 비교부를 포함하며,The controller determines a change value of the carbon dioxide concentration (Cc) in the sample gas for X seconds obtained by comparing the electric signal value of the current carbon dioxide sensor with the electric signal value of the carbon dioxide sensor before a predetermined X seconds. If the carbon dioxide concentration comparison unit comparing the carbon dioxide concentration change reference value Rc and the carbon dioxide concentration comparison unit determines that the change value of the carbon dioxide concentration Cc in the sample gas is greater than or equal to the carbon dioxide concentration change reference value Rc, the It includes an alcohol concentration comparison unit that compares the alcohol concentration (Ca) in the sample gas with a predetermined alcohol concentration reference value (Ra) based on the electrical signal measured by the alcohol sensor,
상기 알코올 농도 비교부에서 시료가스 내의 알코올의 농도(Ca)가 미리 정해진 알코올 농도 기준 값(Ra) 미만인 것으로 판단되면 차량의 시동이 가능하도록 시동장치를 제어하는 음주운전 방지 장치를 제공한다.When the alcohol concentration comparator determines that the alcohol concentration (Ca) in the sample gas is less than a predetermined alcohol concentration reference value (Ra), a drunk driving prevention device is provided to control the starting device to start the vehicle.
또한, 상기 제어기는,In addition, the controller,
상기 알코올 농도 비교부에서 시료가스 내의 알코올의 농도(Ca)가 기준 값(Ra) 이상인 것으로 판단되면, 시료가스 내의 알코올의 농도(Ca)와, 미리 정해진 이산화탄소의 최대치(Cmax)를 시료가스 내의 이산화탄소의 농도(Cc)로 나눈 값을 기준으로 운전자의 혈중 알코올 농도(BAC)를 계산하는 혈중 알코올 농도 연산부를 더 포함하며,If the alcohol concentration comparison unit determines that the alcohol concentration (Ca) in the sample gas is equal to or greater than the reference value (Ra), the alcohol concentration (Ca) in the sample gas and the predetermined maximum value (Cmax) of the carbon dioxide in the sample gas It further includes a blood alcohol concentration calculator for calculating the driver's blood alcohol concentration (BAC) based on the value divided by the concentration (Cc) of,
상기 혈중 알코올 농도 연산부에서 계산된 혈중 알코올 농도(BAC)가 기준 값 미만인 것으로 판단되면 차량의 시동이 가능하도록 시동장치를 제어하는 음주운전 방지 장치를 제공한다.When it is determined that the blood alcohol concentration (BAC) calculated by the blood alcohol concentration calculating unit is less than a reference value, a drunk driving prevention device is provided for controlling a starting device to start a vehicle.
본 발명에 따른 음주운전 방지 장치는 차량에 운전자가 탑승하여 차량의 운전석의 핸들이나 선바이저에 설치된 음주운전 방지 장치를 향해서 호기 가스를 불면 3초 정도의 짧은 시간안에 음주 여부가 바로 확인된다.In the drunk driving prevention apparatus according to the present invention, when a driver rides in a vehicle and blows exhaled gas toward a drunk driving prevention apparatus installed on a steering wheel of a driver's seat or a sun visor, whether or not drinking is immediately confirmed within a short time of about 3 seconds.
또한, 운전자가 의도적으로 호기 가스를 약하게 부는 경우에는 시동 잠금 상태가 유지된다.In addition, when the driver intentionally blows the exhaled gas weakly, the ignition lock state is maintained.
또한, 여러 명이 동승자가 있는 경우에도 운전자의 음주 여부를 명확하게 확인할 수 있다.In addition, it is possible to clearly check whether the driver is drinking alcohol even when there are several passengers.
도 1은 본 발명의 일실시예에 따른 음주운전 방지 장치의 블록도이다.1 is a block diagram of an apparatus for preventing drunk driving according to an embodiment of the present invention.
도 2는 도 1에 도시된 음주운전 방지 장치의 개략도이다.2 is a schematic diagram of the drunk driving prevention apparatus shown in FIG. 1.
도 3은 도 2에 도시된 이산화탄소 센서의 단면도이다.3 is a cross-sectional view of the carbon dioxide sensor shown in FIG. 2.
도 4는 도 2에 도시된 알코올센서의 측단면도이다.4 is a side cross-sectional view of the alcohol sensor shown in FIG. 2.
도 5는 도 4에 도시된 알코올센서 모듈의 측단면도이다.5 is a side cross-sectional view of the alcohol sensor module shown in FIG. 4.
도 6은 도 1에 도시된 제어기의 블록도이다.6 is a block diagram of the controller shown in FIG. 1.
도 7은 이산화탄소 센서의 전기신호의 시간에 따른 변화를 나타낸 도면이다.7 is a diagram illustrating a change over time of an electrical signal of a carbon dioxide sensor.
도 8은 도 1에 도시된 음주운전 방지 장치의 작용을 설명하기 위한 순서도이다.8 is a flow chart for explaining the operation of the drunk driving prevention device shown in FIG.
도 9는 본 발명의 다른 실시예에 따른 음주운전 방지 장치의 개략도이다.9 is a schematic diagram of an apparatus for preventing drunk driving according to another embodiment of the present invention.
도 10은 본 발명의 또 다른 실시예에 따른 음주운전 방지 장치의 개략도이다.10 is a schematic diagram of an apparatus for preventing drunk driving according to another embodiment of the present invention.
이하, 본 발명의 실시예들을 첨부된 도면들에 의거하여 상세하게 설명한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The following embodiments are provided as examples in order to sufficiently convey the spirit of the present invention to those skilled in the art. Therefore, the present invention is not limited to the embodiments described below and may be embodied in other forms. In addition, in the drawings, the width, length, thickness, etc. of the component may be exaggerated for convenience. The same reference numbers throughout the specification indicate the same elements.
도 1은 본 발명의 일실시예에 따른 음주운전 방지 장치의 블록도이며, 도 2는 본 발명의 일실시예에 따른 음주운전 방지 장치의 개략도이다.1 is a block diagram of an apparatus for preventing drunk driving according to an embodiment of the present invention, and FIG. 2 is a schematic diagram of an apparatus for preventing drunk driving according to an embodiment of the present invention.
음주운전 방지 장치(1)는 운전석의 썬바이저나 핸들 등 운전자가 호기 가스를 불어넣기 용이한 위치에 설치된다.The drunk driving prevention device 1 is installed in a position where the driver can easily blow exhaled gas, such as a sun visor or steering wheel of a driver's seat.
도 1과 2에 도시된 바와 같이, 본 발명의 일실시예에 따른 음주운전 방지 장치(1)는 이산화탄소 센서(100), 알코올센서(200) 및 제어기(250, 도 2에는 미도시)를 포함한다. 이산화탄소 센서(100)는 운전자의 호기 가스와 차량 내부의 공기가 혼합된 가스에 포함되어 있는 이산화탄소의 농도에 따른 전기신호를 제어기(250)에 전달하는 역할을 한다. 알코올센서(200)는 운전자의 호기 가스와 차량의 내부의 공기가 혼합된 가스에 포함되어 있는 알코올의 농도에 따른 전기신호를 제어기(250)에 전달하는 역할을 한다. 제어기(250)는 이들 전기신호를 이용하여 차량의 시동장치를 제어한다.1 and 2, the drunk driving prevention apparatus 1 according to an embodiment of the present invention includes a carbon dioxide sensor 100, an alcohol sensor 200, and a controller 250 (not shown in FIG. 2). do. The carbon dioxide sensor 100 serves to transmit an electric signal according to the concentration of carbon dioxide contained in the mixture of the driver's exhaled gas and the air inside the vehicle to the controller 250. The alcohol sensor 200 serves to transmit an electric signal according to the concentration of alcohol contained in the mixture of the driver's exhaled gas and the air inside the vehicle to the controller 250. The controller 250 controls the vehicle starting device by using these electric signals.
또한, 도 1과 2에 도시된 바와 같이, 본 발명의 일실시예에 따른 음주운전 방지 장치(1)는 흡입 펌프(150), 이산화탄소 센서(100)와 흡입 펌프(150)의 입구를 연결하는 연결관(120), 흡입 펌프(150)의 출구와 알코올센서(200)를 연결하는 배기관(170)을 포함한다.In addition, as shown in Figures 1 and 2, the drunk driving prevention apparatus 1 according to an embodiment of the present invention connects the suction pump 150, the carbon dioxide sensor 100 and the inlet of the suction pump 150 It includes a connection pipe 120, an exhaust pipe 170 connecting the outlet of the suction pump 150 and the alcohol sensor 200.
도 1과 2에 도시된 바와 같이, 이산화탄소 센서(100)와 흡입 펌프(150)는 연결관(120)을 통해서 연결된다. 따라서 흡입 펌프(150)가 가동되면, 이산화탄소 센서(100)의 내부로 시료가스가 유입된다. 시료가스는 차량의 내부의 공기에 의해서 희석된 운전자의 호기 가스이다.1 and 2, the carbon dioxide sensor 100 and the suction pump 150 are connected through a connection pipe 120. Therefore, when the suction pump 150 is operated, the sample gas flows into the carbon dioxide sensor 100. The sample gas is the driver's exhaled gas diluted by the air inside the vehicle.
흡입 펌프(150)로는 다이아프램 펌프를 사용할 수 있다. 다이아프램 펌프는 다이아프램의 운동에 의해서 유체를 흡입 토출하는 용적형 펌프의 일종이다. 용적형 펌프는 정량특성이 우수하고, 출구 측 압력 변화의 영향을 거의 받지 않는다는 장점이 있다.As the suction pump 150, a diaphragm pump may be used. The diaphragm pump is a kind of positive displacement pump that sucks and discharges fluid by the motion of the diaphragm. The positive displacement pump has an advantage in that it has excellent quantitative characteristics and is hardly affected by pressure changes at the outlet side.
흡입 펌프(150)의 출구에는 배기관(170)의 일단이 연결되어 있으며, 배기관(170)의 타단에는 반도체식 알코올센서(200)가 결합되어 있다.One end of the exhaust pipe 170 is connected to the outlet of the suction pump 150, and a semiconductor alcohol sensor 200 is coupled to the other end of the exhaust pipe 170.
본 발명에서, 상류 측과 하류 측은 흡입 펌프(150)가 작동할 때 시료가스가 흐르는 방향을 기준으로 정한다.In the present invention, the upstream side and the downstream side are determined based on the direction in which the sample gas flows when the suction pump 150 is operated.
도 3은 도 2에 도시된 이산화탄소 센서의 단면도이다. 도 3에 도시된 이산화탄소 센서는 적외선 방식의 가스 센서이다.3 is a cross-sectional view of the carbon dioxide sensor shown in FIG. 2. The carbon dioxide sensor shown in FIG. 3 is an infrared gas sensor.
도 3을 참고하면, 이산화탄소 센서(100)는 광도파로(10), 적외선 광원(20), 광센서(30), 밴드패스 필터(40), 하류 측 투명층(50), 상류 측 투명층(55), 하류 측 광가이드(60), 상류 측 광가이드(65)를 포함한다.Referring to FIG. 3, the carbon dioxide sensor 100 includes an optical waveguide 10, an infrared light source 20, an optical sensor 30, a band pass filter 40, a downstream transparent layer 50, and an upstream transparent layer 55. , A downstream side light guide 60, and an upstream side light guide 65.
적외선 광원(20)에서 조사된 적외선은 광도파로(10)의 내부에서 반사되면서 진행하여, 광센서(30)에 도달한다. 이때, 광센서(30)에 도달하는 적외선 중에서 이산화탄소에 흡수되는 파장의 빛의 강도는 광도파로(10)의 내부에 흐르는 시료가스의 이산화탄소 농도에 따라서 변한다. 이산화탄소 센서(100)는 이러한 특정 파장의 빛의 강도의 변화를 이용하여 피측정자의 날숨에 포함되어 있는 이산화탄소의 농도를 계산한다.Infrared light irradiated from the infrared light source 20 proceeds while being reflected inside the optical waveguide 10 and reaches the optical sensor 30. At this time, the intensity of light having a wavelength absorbed by carbon dioxide among infrared rays reaching the optical sensor 30 varies according to the concentration of carbon dioxide in the sample gas flowing inside the optical waveguide 10. The carbon dioxide sensor 100 calculates the concentration of carbon dioxide contained in the exhalation of the subject by using the change in the intensity of light of such a specific wavelength.
도 3에 도시된 바와 같이, 광도파로(10)는 직선 형태의 금속관이다. 광도파로(10)는 구리 또는 구리 합금, 예를 들어, 황동 관으로 제작할 수 있다. 광도파로(10)는 시료가스가 통과하는 통로이다. 또한, 광도파로(10)는 그 내부로 조사된 적외선이 그 내면에 반사되면서 통과하는 통로이다.3, the optical waveguide 10 is a straight metal tube. The optical waveguide 10 may be made of copper or a copper alloy, for example, a brass tube. The optical waveguide 10 is a passage through which the sample gas passes. In addition, the optical waveguide 10 is a passage through which infrared rays irradiated into the interior thereof are reflected while being reflected on the inner surface thereof.
광도파로(10)의 우측 하단 측면에는 시료가스 유입관(11)이 결합되어 있으며, 이 시료가스 유입관(11)으로 시료가스가 유입된다. 또한, 광도파로(10)의 좌측 하단 측면에는 시료가스 유출관(12)이 결합되어 있다.A sample gas inlet pipe 11 is coupled to the lower right side of the optical waveguide 10, and the sample gas flows into the sample gas inlet pipe 11. In addition, a sample gas outlet pipe 12 is coupled to the lower left side of the optical waveguide 10.
광도파로(10)의 둘레에는 히터(미도시)가 설치된다. 히터로는 필름 형태의 히터를 사용할 수 있다. 날숨에는 다량의 수증기 포함되어 있으므로, 시료가스의 온도가 약 33℃ 이하로 떨어지면, 시료가스의 내부에 포함되어 있는 수증기가 응축되어 광도파로(10)의 내부에 수분이 맺힌다. 알코올 등의 가스는 수분에 쉽게 용해되므로, 수분이 맺히면 시료가스 내부의 알코올 등 수분에 용해되는 가스의 농도가 떨어진다. 따라서 광도파로(10)의 온도를 33℃ 이상의 일정한 온도로 유지할 필요가 있다. 히터는 광도파로(10)를 가열하여, 광도파로(10)의 내부가 일정한 온도로 유지되도록 한다.A heater (not shown) is installed around the optical waveguide 10. As a heater, a film-type heater can be used. Since a large amount of water vapor is included in the exhalation, when the temperature of the sample gas falls below about 33°C, the water vapor contained in the sample gas is condensed and moisture is condensed in the optical waveguide 10. Since gases such as alcohol are easily dissolved in moisture, when moisture condenses, the concentration of gas dissolved in moisture such as alcohol in the sample gas decreases. Therefore, it is necessary to maintain the temperature of the optical waveguide 10 at a constant temperature of 33°C or higher. The heater heats the optical waveguide 10 so that the inside of the optical waveguide 10 is maintained at a constant temperature.
그리고 광도파로(10)의 둘레에는 열손실을 최소화하기 위해서 단열재가 배치될 수 있다.In addition, an insulating material may be disposed around the optical waveguide 10 to minimize heat loss.
적외선 광원(20)은 광도파로(10)의 도면상 우측 끝단에 광도파로(10)와 이격되어 설치된다. 적외선 광원(20)은 이산화탄소가 흡수하는 특정 파장의 빛을 포함하는 적외선 광을 방사한다.The infrared light source 20 is installed at the right end of the optical waveguide 10 to be spaced apart from the optical waveguide 10. The infrared light source 20 emits infrared light including light of a specific wavelength absorbed by carbon dioxide.
그리고 적외선 광원(20)과 광도파로(10)의 개방된 상류 측 일단 사이에는 순서대로 상류 측 광가이드(65)와 상류 측 투명층(55)이 배치된다. 상류 측 광가이드(65)는 빛을 안내하도록 경사진 내면을 구비한 중공 관으로서, 황동 등 구리 합금 또는 구리재질로 이루어질 수 있다. 상류 측 광가이드(65)는 적외선 광원(20)에서 조사된 빛을 광도파로(10)의 개방된 상류 측 일단으로 안내하는 역할을 한다.And between the infrared light source 20 and the open upstream end of the optical waveguide 10, an upstream side optical guide 65 and an upstream side transparent layer 55 are arranged in sequence. The upstream light guide 65 is a hollow tube having an inclined inner surface to guide light, and may be made of a copper alloy or copper material such as brass. The upstream optical guide 65 serves to guide the light irradiated from the infrared light source 20 to the open upstream end of the optical waveguide 10.
상류 측 투명층(55)은 광도파로(10)에 유입된 시료가스가 적외선 광원(20) 측으로 흐르는 것은 방지하고, 적외선 광원(20)에서 방사된 적외선 중 적어도 이산화탄소에 반응하는 특정 파장은 통과시키는 역할을 한다. 시료가스의 내부에는 침과 같은 이물질이 포함되어 있을 수 있으므로, 유입된 시료가스가 적외선 광원(20)과 접촉하지 않는 것이 바람직하다. 상류 측 투명층(55)은 투명한 유리나 필름으로 이루어질 수 있다. 또한, 적외선만을 투과시키는 적외선 필터로 이루어질 수도 있다.The upstream transparent layer 55 prevents the sample gas flowing into the optical waveguide 10 from flowing toward the infrared light source 20, and passes at least a specific wavelength that reacts to carbon dioxide among the infrared rays emitted from the infrared light source 20. Do it. Since the sample gas may contain foreign substances such as saliva, it is preferable that the introduced sample gas does not contact the infrared light source 20. The upstream transparent layer 55 may be made of transparent glass or film. In addition, an infrared filter that transmits only infrared rays may be used.
광센서(30)는 광도파로(10)의 도면상 좌측 끝단에 광도파로(10)와 이격되어 설치된다. 광센서(30)는 이산화탄소와 반응하는 특정 파장의 적외선을 감지하여 전기신호로 전환한다. 이산화탄소 농도가 높을수록 이산화탄소와 반응하는 특정 파장의 적외선의 강도가 약해진다. The optical sensor 30 is installed at a left end of the optical waveguide 10 to be spaced apart from the optical waveguide 10. The optical sensor 30 detects infrared rays of a specific wavelength reacting with carbon dioxide and converts them into electric signals. The higher the carbon dioxide concentration, the weaker the intensity of infrared rays of a specific wavelength reacting with carbon dioxide.
광센서(30)와 광도파로(10)의 개방된 하류 측 일단 사이에는 밴드패스 필터(40), 하류 측 광가이드(60), 하류 측 투명층(50)이 순서대로 설치된다.Between the optical sensor 30 and the open downstream end of the optical waveguide 10, a bandpass filter 40, a downstream optical guide 60, and a downstream transparent layer 50 are sequentially installed.
밴드패스 필터(40)는 이산화탄소와 반응하는 특정 파장의 빛을 선택적으로 통과시키는 역할을 한다.The bandpass filter 40 serves to selectively pass light of a specific wavelength reacting with carbon dioxide.
하류 측 광가이드(60)는 빛을 안내하도록 경사진 내면을 구비한 중공 관으로서, 상류 측 광가이드(65)와 마찬가지로, 황동 등 구리합금 또는 구리 재질로 이루어질 수 있다. 하류 측 광가이드(60)는 광도파로(10)를 통과한 빛을 밴드패스 필터(40)로 안내하는 역할을 한다.The downstream light guide 60 is a hollow tube having an inclined inner surface to guide light, and, like the upstream light guide 65, may be made of a copper alloy or copper material such as brass. The downstream optical guide 60 serves to guide the light passing through the optical waveguide 10 to the bandpass filter 40.
하류 측 투명층(50)은 광도파로(10)에 유입된 시료가스가 광센서(30) 측으로 흐르는 것은 방지하고, 적외선 광원(20)에서 방사된 적외선 중 적어도 이산화탄소에 반응하는 특정 파장은 통과시키는 역할을 한다. 시료가스의 내부에는 침과 같은 이물질이 포함되어 있을 수 있으므로, 유입된 시료가스가 밴드패스 필터(40)와 접촉하지 않는 것이 바람직하다. 하류 측 투명층(50)은 상류 측 투명층(55)과 마찬가지로 투명한 유리나 필름으로 이루어질 수 있다. 또한, 적외선만을 투과시키는 적외선 필터로 이루어질 수도 있다.The downstream transparent layer 50 prevents the sample gas flowing into the optical waveguide 10 from flowing toward the optical sensor 30, and passes at least a specific wavelength that reacts to carbon dioxide among the infrared rays emitted from the infrared light source 20. Do it. Since the sample gas may contain foreign substances such as saliva, it is preferable that the introduced sample gas does not come into contact with the band pass filter 40. Like the upstream transparent layer 55, the downstream transparent layer 50 may be formed of a transparent glass or film. In addition, an infrared filter that transmits only infrared rays may be used.
도 4는 도 2에 도시된 알코올센서의 측단면도이다.4 is a side cross-sectional view of the alcohol sensor shown in FIG. 2.
도 4에 도시된 바와 같이, 알코올센서(200)는 시료가스통로(210)와 시료가스통로(210)에 설치된 적어도 하나의 알코올센서 모듈(220)을 포함한다. 본 실시예에서는 4개의 반도체식 알코올센서 모듈(220)이 설치된다.As shown in FIG. 4, the alcohol sensor 200 includes a sample gas passage 210 and at least one alcohol sensor module 220 installed in the sample gas passage 210. In this embodiment, four semiconductor type alcohol sensor modules 220 are installed.
시료가스통로(210)는 대체로 직육면체 형태이며, 배기관(170)과 연결된 유입구(211) 및 유입구(211) 반대쪽에 형성된 적어도 하나의 유출구(212)를 포함한다. 또한, 시료가스통로(210)의 바닥면에는 적어도 하나의 알코올센서 모듈 설치 구멍(215)들이 형성된다. 유출구(212)의 전체 면적은 유입구(211)에 비해서 작은 것이 바람직하다. 시료가스가 알코올센서 모듈(220) 쪽으로 흐르지 않고, 바로 유출되는 것을 방지하기 위함이다.The sample gas passage 210 has a substantially rectangular parallelepiped shape, and includes an inlet 211 connected to the exhaust pipe 170 and at least one outlet 212 formed opposite the inlet 211. In addition, at least one alcohol sensor module installation hole 215 is formed on the bottom surface of the sample gas passage 210. It is preferable that the total area of the outlet 212 is smaller than that of the inlet 211. This is to prevent the sample gas from flowing out of the alcohol sensor module 220 and immediately flowing out.
도 5는 도 4에 도시된 알코올센서 모듈의 측단면도이다.5 is a side cross-sectional view of the alcohol sensor module shown in FIG. 4.
도 5에 도시된 바와 같이, 각각의 알코올센서 모듈(220)은 하우징(221), 하우징(221) 내부에 설치된 절연체기판(222), 절연체기판(222)의 하면에 형성된 발열체 패턴(223), 상면에 형성된 한 쌍의 전극(224)과 전극(224) 위에 형성된 감지막(225) 및 발열체 패턴(223), 전극(224)과 전기적으로 연결된 복수의 스템핀(226)을 포함한다. 본 실시예에 있어서, 하우징(221)은 원통형이며, 상류 측 일단인 상단과 하류 측 일단인 하단의 중심부에 각각 관통구멍들(227, 228)이 형성되어 있다. 하단의 중심부에 형성된 관통구멍(228)은 상단의 중심부에 형성된 관통구멍(227)의 면적의 전체 합에 비해서 작은 것이 바람직하다.As shown in FIG. 5, each alcohol sensor module 220 includes a housing 221, an insulator substrate 222 installed inside the housing 221, a heating element pattern 223 formed on a lower surface of the insulator substrate 222, A pair of electrodes 224 formed on the upper surface, a sensing film 225 formed on the electrode 224 and a heating element pattern 223, and a plurality of stem pins 226 electrically connected to the electrode 224. In this embodiment, the housing 221 has a cylindrical shape, and through-holes 227 and 228 are formed in the center of the upper end which is an upstream end and the lower end which is the downstream end, respectively. The through-hole 228 formed in the center of the lower end is preferably smaller than the total area of the through-holes 227 formed in the center of the upper end.
절연체기판(222)은 특별히 제한하는 것은 아니지만 알루미나(Al2O3)기판을 사용하는 것이 바람직하다. 그 두께는 대략 0.25㎜인 것이 주로 사용되나, 이에 한정되는 것은 아니다.Although the insulator substrate 222 is not particularly limited, it is preferable to use an alumina (Al 2 O 3 ) substrate. The thickness of about 0.25 mm is mainly used, but is not limited thereto.
발열체 패턴(223)과 전극(224)은 일반적으로 백금(Pt)을 이용하여 형성한다. 절연체기판(222)에 발열체 패턴(223)과 전극(224)을 형성하는 방법을 예로 들면 다음과 같다. 먼저, 발열체 패턴(223)의 셀 단위로 절단할 수 있도록, 레이저를 이용하여 알루미나기판의 표면에 금을 형성한다. 다음, 금이 형성되어 있는 알루미나기판의 표면을 세척한다. 그리고 세척된 알루미나기판의 양쪽 표면에 스크린 프린팅 방법으로 백금 페이스트를 도포한 후 건조하여 발열체 패턴 및 전극을 형성한다. 발열체 패턴은 충분한 발열이 가능하도록 지그재그형태로 형성하는 것이 일반적이다. 마지막으로, 진공 또는 환원분위기에서 열처리를 하여 백금 페이스트 내의 바인더를 제거하고, 백금을 소결한다.The heating element pattern 223 and the electrode 224 are generally formed using platinum (Pt). A method of forming the heating element pattern 223 and the electrode 224 on the insulator substrate 222 is as follows. First, gold is formed on the surface of the alumina substrate using a laser so that the heating element pattern 223 can be cut in units of cells. Next, the surface of the alumina substrate on which gold is formed is cleaned. Then, platinum paste is applied to both surfaces of the washed alumina substrate by a screen printing method and then dried to form a heating element pattern and an electrode. The heating element pattern is generally formed in a zigzag shape to allow sufficient heat generation. Finally, heat treatment is performed in a vacuum or reducing atmosphere to remove the binder in the platinum paste and sinter the platinum.
감지막(225)은 고온에서 시료가스의 알코올과 반응하여 저항값이 변화하는 후막이다.The sensing film 225 is a thick film whose resistance value is changed by reacting with alcohol in the sample gas at high temperature.
스템핀(226)은 절연체기판(222)을 하우징(221)의 내부에 소정 높이로 떠 있도록 지탱하는 역할을 한다. 한 쌍의 스템핀(226)은 발열체 패턴(223)과 전기적으로 결합되어 있어, 발열체 패턴(223)에 전류를 가하는 역할을 한다. 또한, 나머지 한 쌍의 스템핀(226)은 전극(224)과 실버 페이스트 등과 같은 전도성 물질(229)에 의해서 연결되어 감지막(225)의 저항 변화를 측정하는 역할을 한다.The stem pin 226 serves to support the insulator substrate 222 so as to float at a predetermined height inside the housing 221. The pair of stem pins 226 are electrically coupled to the heating element pattern 223 and serve to apply current to the heating element pattern 223. In addition, the remaining pair of stem pins 226 are connected by an electrode 224 and a conductive material 229 such as silver paste to measure the resistance change of the sensing layer 225.
시료가스는 상류 측 관통구멍(227)을 통해 하우징(221)의 내부로 유입된다. 하우징(221)의 내부에 유입된 시료가스는 절연체기판(222)에 부딪힌 후 절연체기판(222)을 돌아서 하우징(221)의 하단에 형성된 관통구멍(228)을 통해서 배출된다.The sample gas flows into the housing 221 through the upstream side through hole 227. The sample gas flowing into the interior of the housing 221 hits the insulator substrate 222 and then turns around the insulator substrate 222 and is discharged through a through hole 228 formed at the lower end of the housing 221.
도 6은 도 1에 도시된 제어기의 블록도이다.6 is a block diagram of the controller shown in FIG. 1.
도 6에 도시된 바와 같이, 제어기(250)는 센서 신호 수신부(251), 이산화탄소 농도 비교부(252), 알코올 농도 비교부(253), 혈중 알코올 농도 연산부(254), 혈중 알코올 농도 비교부(255), 메모리(256) 및 시동장치 제어부(257)를 포함한다.6, the controller 250 includes a sensor signal receiving unit 251, a carbon dioxide concentration comparing unit 252, an alcohol concentration comparing unit 253, a blood alcohol concentration calculating unit 254, a blood alcohol concentration comparing unit ( 255), a memory 256, and a starter control unit 257.
센서 신호 수신부(251)는 이산화탄소 센서(100) 및 알코올 센서(100)로부터 전기신호를 수신하는 역할을 한다. The sensor signal receiving unit 251 serves to receive electrical signals from the carbon dioxide sensor 100 and the alcohol sensor 100.
도 7은 이산화탄소 센서의 전기신호의 시간에 따른 변화를 나타낸 도면이다. 도 7에서 정상상태는 운전자가 음주운전 방지 장치(1)를 향해서 호기 가스를 정상적으로 불어넣은 경우를 나타낸다. 세로 축은 이산화탄소 센서(100)의 전기신호 값을 나타내며, 가로 축은 운전자가 호기 가스를 불어넣은 시점을 기준으로 경과시간을 나타낸다. 그리고 1인 탑승과 5인 탑승은 운전자 혼자 또는 운전자와 다른 탑승자 네 명이 탑승을 하였지만 운전자가 음주운전 방지 장치(1)를 향해서 호기 가스를 불어넣지 않은 경우를 나타낸다. 가로 축은 탑승시점을 기준으로 경과시간을 나타낸다.7 is a diagram illustrating a change over time of an electrical signal of a carbon dioxide sensor. In FIG. 7, the normal state represents a case in which the driver normally injects exhaled gas toward the drunk driving prevention device 1. The vertical axis represents the electric signal value of the carbon dioxide sensor 100, and the horizontal axis represents the elapsed time based on the point in time when the driver blows the exhaled gas. In addition, one-person boarding and five-person boarding indicate a case in which the driver alone or four other passengers boarded, but the driver did not blow the exhaled gas toward the drunk driving prevention device 1. The horizontal axis represents the elapsed time based on the time of boarding.
도 7에 도시된 바와 같이, 정상상태인 경우에는 운전자가 호기 가스를 불어넣은 후 3초(도 7에서 수직 점선으로 표시) 이내의 짧은 시간에 전기신호가 약 1000㎷에서 약 3200㎷으로 2200㎷정도 증가한다. 운전자가 호기 가스를 불어넣지 않아도 차량의 내부에 이산화탄소에 의해서 이산화탄소 센서(100)는 기본적으로 1000㎷정도의 전압을 출력한다. 전기신호 2200㎷는 이산화탄소 농도로 환산하면 2200PPM이 된다. 따라서 호기 가스에 의해서 3초 안에 시료가스 내의 이산화탄소의 농도가 2200PPM정도 증가한 것이다.As shown in Fig. 7, in a normal state, the electric signal is 2200 mV from about 1000 mV to about 3200 mV in a short period of time within 3 seconds (indicated by the vertical dotted line in Figure 7) after the driver blows in the exhaled gas. Degree increases. Even if the driver does not blow the exhaled gas, the carbon dioxide sensor 100 basically outputs a voltage of about 1000 mV by carbon dioxide inside the vehicle. 2200㎷ of electric signal becomes 2200PPM when converted into carbon dioxide concentration. Therefore, the concentration of carbon dioxide in the sample gas increased by 2200 PPM within 3 seconds by the exhaled gas.
그런데 운전자가 호기 가스를 불어넣지 않은 경우에는 탑승자 많더라도 정상상태에 비해서 전기신호가 느리게 증가한다. 1인 탑승의 경우에는 70초 정도가 경과한 후에야 2000㎷에 도달하며, 4인 탑승의 경우에도 24초 정도 경과한 후에야 2000㎷에 도달한다.However, if the driver does not blow in the exhaled gas, the electric signal increases slowly compared to the normal state even if there are many passengers. In the case of single-person boarding, it reaches 2000㎷ only after 70 seconds have elapsed, and in the case of four-person boarding, it reaches 2000㎷ only after 24 seconds.
도 8은 이산화탄소 및 알코올 센서의 전기신호의 시간에 따른 변화를 나타낸 도면이다. 도 8에 도시된 바와 같이, 알코올 센서(200)의 전기신호도 3초 이내에 급격하게 증가한다. 도 8 작성에 사용된 알코올 센서(200)는 반도체식 알코올 센서이다. 8 is a diagram showing the change over time of electrical signals of carbon dioxide and alcohol sensors. As shown in FIG. 8, the electrical signal of the alcohol sensor 200 also rapidly increases within 3 seconds. The alcohol sensor 200 used in the preparation of FIG. 8 is a semiconductor type alcohol sensor.
이산화탄소 농도 비교부(252)는 메모리(256)에 저장된 이산화탄소 농도 변화 기준 값(Rc)을 미리 정해진 시간 동안의 시료가스 내의 이산화탄소 농도(Cc)의 변화 값과 비교한다. 즉, 현재의 이산화탄소 센서(100)의 전기신호 값과 미리 정해진 X초 이전의 이산화탄소 센서(100)의 전기신호 값을 비교하여 X초 동안의 시료가스 내의 이산화탄소의 농도(Cc)의 변화 값을 획득하고, 획득된 변화 값을 이산화탄소 농도 변화 기준 값(Rc)과 비교한다. 예를 들어, 미리 정해진 시간은 3초이고, 이산화탄소 농도 변화 기준 값(Rc)는 1000PPM일 수 있다. The carbon dioxide concentration comparison unit 252 compares the carbon dioxide concentration change reference value Rc stored in the memory 256 with the change value of the carbon dioxide concentration Cc in the sample gas for a predetermined time. That is, by comparing the electric signal value of the current carbon dioxide sensor 100 with the electric signal value of the carbon dioxide sensor 100 before a predetermined X seconds, a change value of the carbon dioxide concentration (Cc) in the sample gas for X seconds is obtained. And, the obtained change value is compared with the carbon dioxide concentration change reference value (Rc). For example, the predetermined time may be 3 seconds, and the carbon dioxide concentration change reference value Rc may be 1000 PPM.
도 7을 예로 들어 좀더 구체적으로 설명하면, 현재의 전기신호 값은 약 3200㎷이고, 3초 전의 전기신호 값은 약 1000㎷이므로, 3초 동안의 시료가스 내의 이산화탄소의 농도(Cc)의 변화 값은 약 2200㎷가 된다. 2200㎷는 이산화탄소 농도 2200PPM으로 환산할 수 있다. 이산화탄소 농도 비교부(252)는 이 값을 이산화탄소 농도 변화 기준 값(Rc) 1000㎷와 비교한다.Referring to FIG. 7 as an example, the current electric signal value is about 3200 mV, and the electric signal value 3 seconds ago is about 1000 mV, so the change value of the carbon dioxide concentration (Cc) in the sample gas for 3 seconds Becomes about 2200 mV. 2200㎷ can be converted into 2200PPM of carbon dioxide concentration. The carbon dioxide concentration comparison unit 252 compares this value with a carbon dioxide concentration change reference value Rc of 1000 mV.
이산화탄소 농도 비교부(252)는 이산화탄소 센서(100)의 작동이 시작된 후 계속해서 이산화탄소 센서(100)의 전기신호 값을 모니터링하면서, 3초 이전의 전기신호 값과 비교하여 이산화탄소의 농도(Cc)의 변화 값을 획득한다. 그리고 이를 이산화탄소 농도 변화 기준 값(Rc)과 비교한다.The carbon dioxide concentration comparison unit 252 continuously monitors the electric signal value of the carbon dioxide sensor 100 after the operation of the carbon dioxide sensor 100 starts, and compares the electric signal value 3 seconds before the carbon dioxide concentration Cc Obtain the change value. And this is compared with the reference value of carbon dioxide concentration change (Rc).
도 7에 도시된 바와 같이, 운전자가 호기 가스를 불지 않은 경우에는 어떤 시점을 기준으로 측정하여도 3초 동안의 이산화탄소 농도(Cc) 변화 값이 1000PPM미만이 된다.As shown in FIG. 7, when the driver does not blow the exhaled gas, the carbon dioxide concentration (Cc) change value for 3 seconds becomes less than 1000 PPM even when measured based on a certain point in time.
알코올 농도 비교부(253)는 메모리(256)에 저장된 알코올 농도 기준 값(Rc)과 센서 신호 수신부(251)의 전기신호에 기초한 시료가스내의 알코올 농도(Ca)를 비교한다.The alcohol concentration comparison unit 253 compares the alcohol concentration reference value Rc stored in the memory 256 with the alcohol concentration Ca in the sample gas based on the electric signal of the sensor signal receiving unit 251.
혈중 알코올 농도 연산부(254)는 센서 신호 수신부(251)의 전기신호에 기초한 시료가스내의 알코올 농도(Ca)에, 메모리(256)에 저장된 이산화탄소의 최대치(Cmax)를 센서 신호 수신부(251)의 전기신호에 기초한 시료가스내의 이산화탄소 농도(Cc)로 나눈 값은 곱하여 호기 가스 내의 알코올 농도를 추정한다. 그리고 이를 근거로 혈중 알코올 농도(BAC)를 구한다.The blood alcohol concentration calculating unit 254 stores the maximum value Cmax of carbon dioxide stored in the memory 256 in the alcohol concentration Ca in the sample gas based on the electric signal of the sensor signal receiving unit 251. The value divided by the carbon dioxide concentration (Cc) in the sample gas based on the signal is multiplied to estimate the alcohol concentration in the exhaled gas. And based on this, the blood alcohol concentration (BAC) is calculated.
이산화탄소의 최대치(Cmax)는 운전자의 호기 가스 내에 포함되는 이산화탄소의 최대치로서 보통 45000PPM 정도이다. 메모리(256)에 저장된 이산화탄소의 최대치(Cmax)를 센서 신호 수신부(251)의 전기신호에 기초한 시료가스내의 이산화탄소 농도(Cc)로 나눈 값은 호기 가스의 희석된 정도를 나타내므로, 이 값을 시료가스내의 알코올 농도(Ca)에 곱하면 호기 가스 내의 알코올 농도를 구할 수 있다. 그리고 호기 가스 내의 알코올 농도와 혈중 알코올 농도(BAC)는 정비례하므로, 호기 가스 내의 알코올 농도를 알면 혈중 알코올 농도(BAC)를 알 수 있다.The maximum value of carbon dioxide (Cmax) is the maximum value of carbon dioxide contained in the driver's exhaled gas, which is usually about 45000 PPM. The value obtained by dividing the maximum value (Cmax) of carbon dioxide stored in the memory 256 by the concentration of carbon dioxide (Cc) in the sample gas based on the electrical signal of the sensor signal receiving unit 251 indicates the degree of dilution of the exhaled gas. Multiplying the alcohol concentration (Ca) in the gas to obtain the alcohol concentration in the exhaled gas. In addition, since the alcohol concentration in the exhaled gas and the blood alcohol concentration (BAC) are in direct proportion, it is possible to know the blood alcohol concentration (BAC) by knowing the alcohol concentration in the exhaled gas.
혈중 알코올 농도 비교부(255)는 메모리(256)에 저장된 혈중 알코올 농도 기준 값과 혈중 알코올 농도 연산부(254)에서 계산된 혈중 알코올 농도(BAC)를 비교한다. The blood alcohol concentration comparison unit 255 compares the blood alcohol concentration reference value stored in the memory 256 with the blood alcohol concentration BAC calculated by the blood alcohol concentration calculator 254.
시동장치 제어부(257)는 알코올 농도 비교부(253) 또는 혈중 알코올 농도 비교부(255)에서의 비교 결과에 따라서 시동장치(1)를 제어하는 제어신호를 발생시켜서, 시동장치(미도시)에 전달한다. 즉, 알코올 농도(Ca)가 알코올 농도 기준 값(Rc) 미만이거나, 혈중 알코올 농도(BAC)가 혈중 알코올 농도 기준 값 미만인 경우에는 시동장치가 시동가능상태로 전환되도록 시동장치에 제어신호를 보낸다.The starting device control unit 257 generates a control signal for controlling the starting device 1 according to the comparison result of the alcohol concentration comparison unit 253 or the blood alcohol concentration comparison unit 255, and sends the starting device (not shown). Deliver. That is, when the alcohol concentration Ca is less than the alcohol concentration reference value Rc or the blood alcohol concentration BAC is less than the blood alcohol concentration reference value, a control signal is sent to the starter so that the starter is switched to the startable state.
이하, 도 9를 참고하여 상술한 음주운전 방지 장치(1)의 작용에 대해서 설명한다. 도 9는 도 1에 도시된 음주운전 방지 장치의 작용을 설명하기 위한 순서도이다.Hereinafter, the operation of the above-described drunk driving prevention apparatus 1 will be described with reference to FIG. 9. 9 is a flow chart for explaining the operation of the drunk driving prevention device shown in FIG.
도 9에 도시된 바와 같이, 음주측정 결과가 확인되기 전까지 음주운전 방지 장치(1)는 시동잠금상태로 유지된다(S1).As shown in FIG. 9, the device 1 for preventing drunk driving is maintained in the start-lock state until the result of the drinking measurement is confirmed (S1).
다음, 측정 준비 단계(S2)에 대해서 설명한다.Next, the measurement preparation step (S2) will be described.
음주운전 방지 장치(1)가 가동되면, 광도파로(10)가 가열된다. 음주운전 방지 장치(1)는 운전석에 설치된 센서나, 운전석 측 문에 설치된 센서를 이용하여 자동을 가동하거나, 운전자가 수동으로 스위치를 켜는 방식으로 가동시킬 수 있다.When the drunk driving prevention device 1 is operated, the optical waveguide 10 is heated. The drunk driving prevention device 1 may operate automatically by using a sensor installed in the driver's seat or a sensor installed in the driver's seat side door, or in a manner in which the driver manually turns on the switch.
광도파로(10)가 충분히 가열된 것이 확인되어, 측정준비가 완료되면, 흡입 펌프(150)가 가동된다. 그리고 음주운전 방지 장치(1)에 설치된 디스플레이나 스피커 등의 출력장치(미도시)를 이용해서 운전자에게 측정준비가 완료되었음을 알린다. When it is confirmed that the optical waveguide 10 is sufficiently heated and preparation for measurement is completed, the suction pump 150 is operated. In addition, by using an output device (not shown) such as a display or speaker installed in the drunk driving prevention device 1, it notifies the driver that the measurement preparation is complete.
다음, 이산화탄소 및 알코올 농도 측정 단계(S3)에 대해서 설명한다.Next, the carbon dioxide and alcohol concentration measurement step (S3) will be described.
먼저, 이산화탄소 농도 측정 방법에 대해서 설명한다.First, a method of measuring the carbon dioxide concentration will be described.
운전자가 운전석의 썬바이저나 핸들에 설치된 음주운전 방지 장치(1)를 향해서 호기 가스를 불면, 운전자의 호기 가스가 포함된 시료가스가 광도파로(10)의 내부로 유입된다. 광도파로(10)의 내부로 유입된 시료가스는 광도파로(10)를 채운다. 광도파로(10)의 양단은 각각 하류 측 투명층(50)과 상류 측 투명층(55)에 의해서 막혀 있으므로, 시료가스가 적외선 광원(20)이나 광센서(30)와 직접 접촉하지 않는다.When the driver blows the exhaled gas toward the driver's sun visor or the drunk driving prevention device 1 installed on the steering wheel, the sample gas containing the driver's exhaled gas flows into the optical waveguide 10. The sample gas flowing into the optical waveguide 10 fills the optical waveguide 10. Since both ends of the optical waveguide 10 are blocked by the downstream transparent layer 50 and the upstream transparent layer 55, respectively, the sample gas does not directly contact the infrared light source 20 or the optical sensor 30.
그리고 적외선 광원(20)이 점등되면, 적외선 광원(20)에서 발산된 적외선이 상류 측 광가이드(65)와 상류 측 투명층(55)을 통과하여, 광도파로(10)의 내부로 유입된다. 광도파로(10)의 내부로 조사된 빛은 광도파로(10)의 내면에서 반사되면서, 광센서(30) 측(하류 측)으로 진행한다. 이때, 이산화탄소와 반응하는 특정 파장의 빛은 이산화탄소에 흡수된다.In addition, when the infrared light source 20 is turned on, the infrared rays emitted from the infrared light source 20 pass through the upstream side optical guide 65 and the upstream side transparent layer 55 and are introduced into the optical waveguide 10. The light irradiated into the optical waveguide 10 is reflected from the inner surface of the optical waveguide 10 and proceeds to the optical sensor 30 side (downstream side). At this time, light of a specific wavelength that reacts with carbon dioxide is absorbed by carbon dioxide.
광도파로(10)를 통과한 적외선은 하류 측 투명층(50)을 통과하고, 하류 측 광가이드(60)에 의해서 안내된다. 이 적외선은 밴드패스 필터(40)를 통과한 후 광센서(30)에 도달한다. 밴드패스 필터(40)는 이산화탄소에 흡수되는 특정 파장의 빛을 제외한 나머지 빛은 반사 또는 흡수하고, 이산화탄소에 흡수되는 특정 파장의 빛만 통과시킨다. 광센서(30)에서는 이산화탄소에 흡수되는 특정 파장의 빛의 강도에 따른 전기신호를 발생시킨다. 이 전기신호는 음주운전 방지 장치(1)의 제어기(250)에 전달된다.The infrared rays passing through the optical waveguide 10 pass through the downstream transparent layer 50 and are guided by the downstream optical guide 60. The infrared rays pass through the bandpass filter 40 and then reach the optical sensor 30. The bandpass filter 40 reflects or absorbs light except for light of a specific wavelength absorbed by carbon dioxide, and passes only light of a specific wavelength absorbed by carbon dioxide. The optical sensor 30 generates an electric signal according to the intensity of light of a specific wavelength absorbed by carbon dioxide. This electric signal is transmitted to the controller 250 of the drunk driving prevention device 1.
다음, 알코올 농도 측정 방법에 대해서 설명한다.Next, a method of measuring the alcohol concentration will be described.
제어기(250)의 제어신호에 의해서 각각의 알코올센서 모듈(220)의 감지막(225)이 가열된다. 이산화탄소 센서(100)에서 배출된 시료가스는 배기관(170)을 통해서 시료가스통로(210)로 유입된다. 일부는 시료가스통로(210)의 유출구(212)를 통해서 배출되고, 일부는 알코올센서 모듈(220)에 각각 유입된다. 유입된 시료가스에 포함된 알코올은 알코올센서 모듈(220)의 감지막(225)과 반응하여 감지막(225)의 저항값을 변화시킨다. 그리고 저항값의 변화에 따른 전기신호는 제어기(250)에 전달된다.The sensing film 225 of each alcohol sensor module 220 is heated by the control signal of the controller 250. The sample gas discharged from the carbon dioxide sensor 100 flows into the sample gas passage 210 through the exhaust pipe 170. Some are discharged through the outlet 212 of the sample gas passage 210, and some are respectively introduced into the alcohol sensor module 220. Alcohol contained in the introduced sample gas reacts with the sensing film 225 of the alcohol sensor module 220 to change the resistance value of the sensing film 225. In addition, an electric signal according to a change in resistance value is transmitted to the controller 250.
다음, 이산화탄소 농도 비교 단계(S4)에 대해서 설명한다.Next, the carbon dioxide concentration comparison step (S4) will be described.
제어기(250)의 이산화탄소 농도 비교부(252)는 이산화탄소 센서(100) 가동 후 계속해서 미리 정해진 시간, 예를 들어, 3초 동안의 이산화탄소 농도(Cc)의 변화 값을 획득한다. 예를 들어, 3초 시점에는 3초와 0초에서의 이산화탄소 센서(100)의 전기신호 값을 비교하여 이산화탄소 농도(Cc)의 변화 값을 획득한다. 그리고 4초 시점에서는 4초와 1초에서의 전기신호 값을 비교하여 이산화탄소 농도(Cc)의 변화 값을 획득한다.The carbon dioxide concentration comparison unit 252 of the controller 250 continuously acquires a change value of the carbon dioxide concentration Cc for a predetermined time, for example, 3 seconds after the carbon dioxide sensor 100 is operated. For example, at a time point of 3 seconds, a change value of the carbon dioxide concentration Cc is obtained by comparing the electrical signal values of the carbon dioxide sensor 100 in 3 seconds and 0 seconds. And at the time point of 4 seconds, the change value of the carbon dioxide concentration Cc is obtained by comparing the electric signal values at 4 seconds and 1 second.
그리고 획득된 변화 값을 미리 정해진 이산화탄소 농도 변화 기준 값(Rc)과 비교한다. 이산화탄소의 농도(Cc)의 변화 값과 미리 정해진 이산화탄소 농도 변화 기준 값(Rc)은 농도로 환산한 값일 수도 있으나, 전기신호 값 자체를 비교할 수도 있다. 이산화탄소 농도 변화 기준 값(Rc)은, 예를 들어, 1000ppm일 수 있다.Then, the obtained change value is compared with a predetermined reference value for change in carbon dioxide concentration (Rc). The change value of the carbon dioxide concentration Cc and the predetermined reference value Rc of change in the carbon dioxide concentration may be a value converted into a concentration, but the electric signal value itself may be compared. The carbon dioxide concentration change reference value Rc may be, for example, 1000 ppm.
이산화탄소 농도 비교부(252)에서 정해진 시간 동안의 이산화탄소의 농도(Cc)의 변화 값이 이산화탄소 농도 변화 기준 값(Rc), 예를 들어, 1000PPM 미만인 것이 확인되면, 이산화탄소 농도 측정 단계(S2)로 돌아가서 계속 이산화탄소 센서로부터 전기신호를 수신한다. 시료가스의 이산화탄소의 농도(Cc)가 1000ppm 미만인 것은 운전자가 고의로 날숨을 약하게 불었기 때문일 수 있다.If the carbon dioxide concentration comparison unit 252 determines that the change value of the carbon dioxide concentration Cc for a predetermined time is less than the carbon dioxide concentration change reference value Rc, for example, 1000 PPM, the process returns to the carbon dioxide concentration measurement step S2. It continues to receive electrical signals from the carbon dioxide sensor. The reason that the concentration (Cc) of carbon dioxide in the sample gas is less than 1000 ppm may be due to the driver's intentionally blowing a weak exhalation.
이산화탄소 농도 비교부(252)에서 정해진 시간 동안의 이산화탄소의 농도(Cc)의 변화 값이 1000ppm 이상인 것이 확인되면, 다음 단계로 진행된다.When the carbon dioxide concentration comparator 252 determines that the change value of the carbon dioxide concentration Cc for a predetermined time is 1000 ppm or more, the process proceeds to the next step.
다음, 알코올 농도 비교 단계(S5)에 대해서 설명한다.Next, the alcohol concentration comparison step (S5) will be described.
제어기(250)의 알코올 농도 비교부(253)는 알코올 센서(100)로부터의 전기신호에 기초한 알코올의 농도(Ca)와 미리 정해진 알코올 농도 기준 값(Ra)을 비교한다. 알코올 농도 기준 값(Ra)은, 예를 들어, 1ppm일 수 있다.The alcohol concentration comparison unit 253 of the controller 250 compares the alcohol concentration Ca based on the electrical signal from the alcohol sensor 100 with a predetermined alcohol concentration reference value Ra. The alcohol concentration reference value Ra may be, for example, 1 ppm.
알코올의 농도(Ca)가 알코올 농도 기준 값(Ra) 미만인 것이 확인되면, 음주운전 방지 장치(1)는 시동가능상태(S8)가 된다. When it is confirmed that the alcohol concentration (Ca) is less than the alcohol concentration reference value (Ra), the drunk driving prevention device 1 enters the startable state (S8).
알코올의 농도(Ca)가 알코올 농도 기준 값(Ra) 이상인 것이 확인되면 혈중알코올 농도 연산단계(S6)로 진행한다.When it is confirmed that the alcohol concentration (Ca) is equal to or greater than the alcohol concentration reference value (Ra), the blood alcohol concentration calculation step (S6) proceeds.
다음, 혈중알코올 농도 연산단계(S6)에 대해서 설명한다.Next, the blood alcohol concentration calculation step (S6) will be described.
본 단계에서는 제어기(250)의 혈중 알코올 농도 연산부(254)가 시료가스 내의 알코올의 농도(Ca)와, 미리 정해진 이산화탄소의 최대치(Cmax)를 시료가스 내의 이산화탄소의 농도(Cc)로 나눈 값을 기준으로 운전자의 혈중 알코올 농도(BAC)를 연산한다.In this step, the blood alcohol concentration calculating unit 254 of the controller 250 is based on a value obtained by dividing the concentration of alcohol in the sample gas (Ca) and the predetermined maximum value of carbon dioxide (Cmax) by the concentration of carbon dioxide in the sample gas (Cc). The driver's blood alcohol concentration (BAC) is calculated.
이산화탄소의 최대치(Cmax)는 운전자의 호기 가스 내에 포함되는 이산화탄소의 최대치로서 보통 45,000PPM 정도이다. The maximum value of carbon dioxide (Cmax) is the maximum amount of carbon dioxide contained in the driver's exhaled gas, which is usually about 45,000 PPM.
예를 들어, 시료가스 내의 알코올의 농도(Ca)와 이산화탄소의 농도(Cc)가 각각 1PPM과 1000PPM으로 측정되었다면, 호기 가스의 희석 정도를 고려하여, 실제 호기 가스 내의 알코올 농도는 1PPM×(45,000PPM÷1,000PPM) = 45PPM으로 연산된다. 그리고 호기 가스 내의 알코올 농도는 혈중 알코올 농도와 비례하고, 혈중 알코올 농도 0.05BAC%는 호기 가스 내의 알코올 농도 130PPM에 대응하므로, 호기 가스 내의 알코올 농도 45PPM은 혈중 알코올 농도(BAC) 0.0173BAC%(45÷130×0.05BAC%)에 대응한다.For example, if the concentration of alcohol (Ca) and the concentration of carbon dioxide (Cc) in the sample gas were measured as 1 PPM and 1000 PPM, respectively, considering the degree of dilution of the exhaled gas, the actual alcohol concentration in the exhaled gas is 1 PPM × (45,000 PPM). ÷1,000PPM) = It is calculated as 45PPM. And since the alcohol concentration in the exhaled gas is proportional to the blood alcohol concentration, and the blood alcohol concentration of 0.05BAC% corresponds to the alcohol concentration in the exhaled gas of 130 PPM, the alcohol concentration in the exhaled gas 45 PPM is the blood alcohol concentration (BAC) 0.0173BAC% (45 ÷ 130×0.05BAC%).
본 단계는 제어기와 연결된 별도의 음주측정기(미도시)를 이용하여 진행할 수도 있다. 즉, 음주측정기에 불대를 이용하여 직접 호기 가스를 불어넣어 혈중 알코올 농도(BAC) 측정할 수도 있다. 특히, 알코올의 농도(Ca)가 낮은 경우에는 이러한 방법을 병행하는 것이 바람직하다.This step may be carried out using a separate breathalyzer (not shown) connected to the controller. That is, it is also possible to measure the blood alcohol concentration (BAC) by directly blowing exhaled gas into the breathalyzer using a fire band. In particular, when the alcohol concentration (Ca) is low, it is preferable to perform this method in parallel.
다음, 혈중알코올 농도 비교단계(S7)에 대해서 설명한다.Next, a step of comparing the blood alcohol concentration (S7) will be described.
본 단계에서는 혈중 알코올 농도 연산부(254)에서 계산되거나 별도의 음주측정기를 이용해서 측정된 혈중 알코올 농도(BAC)를 기준 값, 예를 들어, 0.05BAC%와 비교한다. 혈중 알코올 농도(BAC)가 기준값 미만이면 음주운전 방지 장치(1)는 시동가능상태(S8)가 된다.In this step, the blood alcohol concentration (BAC) calculated by the blood alcohol concentration calculating unit 254 or measured using a separate breathalyzer is compared with a reference value, for example, 0.05BAC%. If the blood alcohol concentration (BAC) is less than the reference value, the drunk driving prevention device 1 enters the startable state (S8).
그리고 혈중 알코올 농도(BAC)가 기준값 이상이면, 음주운전 방지 장치(1)는 시동장금상태(S1)가 유지된다. 또한, 운전자에게는 스피커나 디스플레이 등의 출력장치를 통해서 경고 메시지가 전달된다.And when the blood alcohol concentration (BAC) is greater than or equal to the reference value, the drunk driving prevention device 1 maintains the starting lock state (S1). In addition, a warning message is transmitted to the driver through an output device such as a speaker or a display.
도 10은 본 발명의 다른 실시예에 따른 음주운전 방지 장치의 개략도이다. 본 실시예는 도 2에 도시된 실시예와 배기관(175) 및 알코올센서(300)의 구조에 차이가 있으므로, 여기에 대해서만 설명한다.10 is a schematic diagram of an apparatus for preventing drunk driving according to another embodiment of the present invention. In this embodiment, since the structure of the exhaust pipe 175 and the alcohol sensor 300 is different from the embodiment shown in FIG. 2, only this will be described.
도 2에 도시된 실시예에서는 배기관(170)의 개방된 타단에 반도체식 알코올센서(200)의 시료가스통로(210)가 연결되지만, 본 실시예에서는 배기관(175)의 중간에 화학식 알코올센서(300)가 설치된다. 화학식 알코올센서(300)는 감지부(320)에 정량의 시료가스가 유입되는 것이 중요하다.In the embodiment shown in FIG. 2, the sample gas passage 210 of the semiconductor alcohol sensor 200 is connected to the open other end of the exhaust pipe 170, but in this embodiment, the alcohol sensor ( 300) is installed. It is important that a quantitative sample gas flows into the detection unit 320 of the alcohol sensor 300.
알코올센서(300)는 감지부(320), 알코올센서용 흡입 펌프(340)를 포함한다.The alcohol sensor 300 includes a sensing unit 320 and a suction pump 340 for an alcohol sensor.
감지부(320)는 시료가스챔버(310)와 시료가스챔버(310)의 내부공간(313)에 설치되는 반응셀(314)을 포함한다.The sensing unit 320 includes a sample gas chamber 310 and a reaction cell 314 installed in the inner space 313 of the sample gas chamber 310.
시료가스챔버(310)는 시료가스가 유입되는 시료가스유입관(311)과, 시료가스가 유출되는 시료가스유출관(312) 및 시료가스유입관(311)에서 유입된 시료가스가 시료가스유출관(312) 방향으로 유동하도록 안내하는 내부 공간(313)을 구비한다.In the sample gas chamber 310, the sample gas inlet pipe 311 through which the sample gas flows in, the sample gas outlet pipe 312 through which the sample gas flows out, and the sample gas flowing in the sample gas inlet pipe 311 flow out the sample gas. It has an inner space 313 that guides the flow in the direction of the tube 312.
시료가스챔버(310)의 시료가스유입관(311)은 배기관(175)과 연결되며, 시료가스유출관(312)은 알코올센서용 흡입 펌프(340)와 연결된다.The sample gas inlet pipe 311 of the sample gas chamber 310 is connected to the exhaust pipe 175, and the sample gas outlet pipe 312 is connected to the suction pump 340 for an alcohol sensor.
시료가스챔버(310)의 시료가스유입관(311)과 시료가스유출관(312) 사이의 내부 공간(313)에는 반응셀(314)이 설치된다. 반응셀(314)은 시료가스의 알코올 농도에 따라서 변화하는 전류 값을 출력한다.A reaction cell 314 is installed in the inner space 313 between the sample gas inlet pipe 311 and the sample gas outlet pipe 312 of the sample gas chamber 310. The reaction cell 314 outputs a current value that changes according to the alcohol concentration of the sample gas.
반응셀(314)는 감지 전극과 대향 전극 및 감지 전극과 대향 전극 사이에 게재된 전해질을 포함한다. 감지 전극에서 이온으로 분해된 알코올은 전해질을 통과한 후 대향 전극으로 이동한다. 이때 발생한 전류 값이 알코올 농도에 비례하는 검출신호 값이 된다.The reaction cell 314 includes a sensing electrode and an opposite electrode, and an electrolyte interposed between the sensing electrode and the opposite electrode. Alcohol decomposed into ions in the sensing electrode passes through the electrolyte and then moves to the counter electrode. The generated current value becomes a detection signal value proportional to the alcohol concentration.
알코올센서용 흡입 펌프(340)는 배기관(175)에 흐르는 시료가스 중에서 정량을 시료가스챔버(310)에 흡입시키는 역할을 한다. 알코올센서용 흡입 펌프(340)는 시료가스챔버(310)의 시료가스유출관(312)과 연통되도록 설치된다. 알코올센서용 흡입 펌프(340)는 이산화탄소가 감지된 후 일정한 시간이 지난 시점에 순간적으로 동작하여 정량의 시료가스를 채취한다. 알코올센서용 흡입 펌프(340)로는 솔레노이드 펌프를 사용할 수 있다.The alcohol sensor suction pump 340 serves to suck a quantity of the sample gas flowing through the exhaust pipe 175 into the sample gas chamber 310. The alcohol sensor suction pump 340 is installed to communicate with the sample gas outlet pipe 312 of the sample gas chamber 310. The alcohol sensor suction pump 340 is instantaneously operated after a certain time elapses after carbon dioxide is sensed to collect a quantitative sample gas. A solenoid pump may be used as the suction pump 340 for the alcohol sensor.
이하, 본 실시예에 따른 음주운전 방지 장치(2)의 작용에 대해서 설명한다.Hereinafter, the operation of the drunk driving prevention apparatus 2 according to the present embodiment will be described.
다른 단계는 상술한 단계와 차이가 없으므로, 알코올센서의 작용에 대해서만 설명한다.Since the other steps are not different from the above steps, only the action of the alcohol sensor will be described.
이산화탄소 센서(100)로부터의 전기신호에 기초한 이산화탄소의 농도(Cc)가 기준값(Rc) 이상인 것으로 확인되면, 잠시 후 제어기(250)의 제어신호에 의해서 알코올센서용 흡입 펌프(340)가 작동하면서, 시료가스챔버(310)에 정량의 시료가스가 유입된다.When it is confirmed that the concentration Cc of carbon dioxide based on the electric signal from the carbon dioxide sensor 100 is greater than or equal to the reference value Rc, after a while, the suction pump 340 for the alcohol sensor is operated by the control signal of the controller 250, A quantitative sample gas is introduced into the sample gas chamber 310.
이때, 알코올센서용 흡입 펌프(340)가 연속적으로 복수 회 가동될 수도 있다. 즉, 알코올센서용 흡입 펌프(340)의 솔레노이드 액추에이터에 전원을 짧은 간격으로 복수 회 인가하여, 알코올센서용 흡입 펌프(340)가 연속적으로 복수 회 가동되도록 할 수 있다. 이러한 방법으로 시료가스챔버(310)의 내부로 많은 양의 호기 가스를 유입시키면, 알코올 농도가 낮을 경우에도 알코올 농도를 더욱 정확하게 측정할 수 있다는 장점이 있다. 복수 회 가동된 경우에는 제어기(250)가 이를 고려하여 알코올 농도 값을 보정한다.At this time, the alcohol sensor suction pump 340 may be continuously operated a plurality of times. That is, by applying power to the solenoid actuator of the alcohol sensor suction pump 340 a plurality of times at short intervals, the alcohol sensor suction pump 340 may be continuously operated a plurality of times. In this way, when a large amount of exhaled gas is introduced into the sample gas chamber 310, the alcohol concentration can be more accurately measured even when the alcohol concentration is low. When the operation is performed multiple times, the controller 250 corrects the alcohol concentration value in consideration of this.
유입된 시료가스 내에 포함된 알코올은 시료가스챔버(310)에 설치된 반응셀(314)의 감지 전극에서 전부 이온으로 분해된 후 전해질을 통과하여 대향 전극으로 이동한다. 이때 발생한 전류 값이 알코올 농도에 비례하는 검출신호 값이 된다.The alcohol contained in the introduced sample gas is completely decomposed into ions in the sensing electrode of the reaction cell 314 installed in the sample gas chamber 310 and then passes through the electrolyte and moves to the counter electrode. The current value generated at this time becomes a detection signal value proportional to the alcohol concentration.
도 11은 본 발명의 또 다른 실시예에 따른 음주운전 방지 장치의 개략도이다.11 is a schematic diagram of an apparatus for preventing drunk driving according to another embodiment of the present invention.
본 실시예는 도 10에 도시된 실시예와 달리 알코올센서용 흡입 펌프를 사용하지 않으며, 밸브(430, 440)가, 배기관(175)과 감지부(420) 사이 및 배기관(175)의 개방된 끝단에 각각 설치된다.In this embodiment, unlike the embodiment shown in FIG. 10, the suction pump for an alcohol sensor is not used, and the valves 430 and 440 are opened between the exhaust pipe 175 and the sensing unit 420 Each is installed at the end.
본 실시예에서는 이산화탄소 센서(100)로부터의 전기신호에 기초한 이산화탄소의 농도(Cc)가 기준값(Rc) 이상인 것이 확인되면, 제어기(250)의 제어신호에 의해서 잠시 후 배기관(175)과 감지부(420) 사이의 밸브(440)가 열리고, 배기관(175)의 개방된 끝단에 설치된 밸브(430)가 닫히면서, 배기관(175)에 흐르는 시료가스가 시료가스챔버(310)에 유입된다. 일정한 시간이 지나 정량의 시료가스가 감지부(420)에 공급되면, 배기관(175)과 감지부(420) 사이의 밸브(440)가 닫히고, 배기관(175)의 개방된 끝단에 설치된 밸브(430)가 열린다.In this embodiment, when it is confirmed that the concentration Cc of carbon dioxide based on the electric signal from the carbon dioxide sensor 100 is greater than or equal to the reference value Rc, the exhaust pipe 175 and the detection unit ( As the valve 440 between the valves 420 is opened and the valve 430 installed at the open end of the exhaust pipe 175 is closed, the sample gas flowing through the exhaust pipe 175 is introduced into the sample gas chamber 310. When a fixed amount of sample gas is supplied to the sensing unit 420 after a certain period of time, the valve 440 between the exhaust pipe 175 and the sensing unit 420 is closed, and the valve 430 installed at the open end of the exhaust pipe 175 ) Opens.
유입된 시료가스 내에 포함된 알코올은 시료가스챔버(410)에 설치된 반응셀(414)의 감지 전극에서 전부 이온으로 분해된 후 전해질을 통과하여 대향 전극으로 이동한다. 이때 발생한 전류 값이 알코올 농도에 비례하는 검출신호 값이 된다.The alcohol contained in the introduced sample gas is completely decomposed into ions by the sensing electrode of the reaction cell 414 installed in the sample gas chamber 410 and then passes through the electrolyte and moves to the counter electrode. The current value generated at this time becomes a detection signal value proportional to the alcohol concentration.
제어기(250)에서는 이 검출신호 값을 통해서 알코올의 농도를 측정하고 알코올의 농도(Ca)가 미리 정해진 값(Ra)과 비교한다.The controller 250 measures the concentration of alcohol through the detection signal value and compares the concentration of alcohol Ca with a predetermined value Ra.
이상에서 설명된 실시예는 본 발명의 바람직한 실시예를 설명한 것에 불과하고, 본 발명의 권리범위는 설명된 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상과 특허청구범위 내에서 이 분야의 당업자에 의하여 다양한 변경, 변형 또는 치환이 가능할 것이며, 그와 같은 실시예들은 본 발명의 범위에 속하는 것으로 이해되어야 한다.The above-described embodiments are merely describing preferred embodiments of the present invention, and the scope of the present invention is not limited to the described embodiments, and those skilled in the art within the scope of the technical spirit and claims of the present invention Various changes, modifications, or substitutions may be made by this, and such embodiments are to be understood as being within the scope of the present invention.
예를 들어, 광도파로(10)는 직선 형태의 금속관으로 설명하였으나, U자 형태의 금속관일 수도 있다.For example, the optical waveguide 10 has been described as a straight metal tube, but may be a U-shaped metal tube.
또한, 도 11에 도시된 실시예에서 배기관(175)과 감지부(420) 사이 및 배기관(175)의 개방된 끝단에 밸브(430, 440)를 각각 설치하는 것으로 설명하였으나, 배기관의 개방된 끝단에 삼방 밸브를 설치하고, 삼방 밸브에 한쪽 출구 측에 시료가스챔버를 설치할 수도 있다. 그리고 측정시에는 시료가스가 시료가스챔버로 향하도록 삼방 밸브를 제어하고, 비측정시에는 시료가스가 배기관의 개방된 끝단을 통해서 외부로 배출되도록 삼방 밸브를 제어할 수 있다.In addition, in the embodiment shown in FIG. 11, it has been described that valves 430 and 440 are respectively installed between the exhaust pipe 175 and the sensing unit 420 and at the open end of the exhaust pipe 175, but the open end of the exhaust pipe It is also possible to install a three-way valve on the three-way valve and a sample gas chamber on one outlet side of the three-way valve. During measurement, the three-way valve may be controlled so that the sample gas is directed to the sample gas chamber, and during non-measurement, the three-way valve may be controlled so that the sample gas is discharged to the outside through the open end of the exhaust pipe.
[부호의 설명][Explanation of code]
1, 2, 3: 음주운전 방지 장치1, 2, 3: drunk driving prevention device
100: 이산화탄소 센서100: carbon dioxide sensor
120: 연결관120: connector
150: 흡입펌프150: suction pump
170, 175: 배기관170, 175: exhaust pipe
200: 반도체식 알코올센서200: semiconductor alcohol sensor
300, 400: 화학식 알코올센서300, 400: chemical formula alcohol sensor
320, 420: 감지부320, 420: detection unit
340: 알코올센서용 흡입 펌프340: suction pump for alcohol sensor
430, 440: 밸브430, 440: valve

Claims (6)

  1. 운전자의 호기 가스와 차량의 내부의 공기가 혼합된 시료가스가 유입되는 시료가스 유입관 및 유입된 시료가스가 배출되는 시료가스 유출관을 포함하며, 시료가스 유입관을 통해서 유입된 시료가스에 포함된 이산화탄소의 농도에 따른 전기신호를 발생하는 이산화탄소 센서와,Includes a sample gas inlet pipe through which the sample gas in which the driver's exhaled gas and the air inside the vehicle are mixed and a sample gas outlet pipe through which the introduced sample gas is discharged, and included in the sample gas introduced through the sample gas inlet pipe A carbon dioxide sensor that generates an electric signal according to the concentration of carbon dioxide
    상기 이산화탄소 센서의 시료가스 유출관과 연결되며, 가동시에 상기 이산화탄소 센서의 내부로 시료가스를 유입시키는 흡입 펌프와,A suction pump connected to the sample gas outlet pipe of the carbon dioxide sensor and for introducing a sample gas into the carbon dioxide sensor during operation,
    상기 흡입 펌프의 출구와 연결된 배기관과,An exhaust pipe connected to the outlet of the suction pump,
    상기 배기관에 흐르는 시료가스의 알코올 농도에 따른 전기신호를 발생하는 알코올센서와,An alcohol sensor that generates an electric signal according to the alcohol concentration of the sample gas flowing through the exhaust pipe,
    상기 이산화탄소 센서 및 알코올센서의 전기신호를 기준으로 음주 상태인지 여부를 판단하여 차량의 시동장치를 제어하도록 구성된 제어기를 포함하며,And a controller configured to control the starting device of the vehicle by determining whether the vehicle is in a drinking state based on electrical signals from the carbon dioxide sensor and the alcohol sensor,
    상기 제어기는,The controller,
    현재 상기 이산화탄소 센서의 전기신호 값과 미리 정해진 X초 이전의 상기 이산화탄소 센서의 전기신호 값을 비교하여 획득된 X초 동안의 시료가스 내의 이산화탄소의 농도(Cc)의 변화 값을 미리 정해진 이산화탄소 농도 변화 기준 값(Rc)과 비교하는 이산화탄소 농도 비교부와,The change value of the carbon dioxide concentration (Cc) in the sample gas for X seconds obtained by comparing the electric signal value of the current carbon dioxide sensor with the electric signal value of the carbon dioxide sensor before a predetermined X seconds is based on a predetermined change in carbon dioxide concentration. A carbon dioxide concentration comparison unit comparing the value Rc, and
    상기 이산화탄소 농도 비교부에서 시료가스 내의 이산화탄소의 농도(Cc)의 변화 값이 이산화탄소 농도 변화 기준 값(Rc) 이상인 것으로 판단되면, 상기 알코올센서에서 측정된 전기신호를 기준으로 시료가스 내의 알코올의 농도(Ca)를 미리 정해진 알코올 농도 기준 값(Ra)과 비교하는 알코올 농도 비교부를 포함하며,If the carbon dioxide concentration comparison unit determines that the change value of the carbon dioxide concentration (Cc) in the sample gas is more than the carbon dioxide concentration change reference value (Rc), the alcohol concentration in the sample gas ( It includes an alcohol concentration comparison unit for comparing Ca) with a predetermined alcohol concentration reference value (Ra),
    상기 알코올 농도 비교부에서 시료가스 내의 알코올의 농도(Ca)가 미리 정해진 알코올 농도 기준 값(Ra) 미만인 것으로 판단되면 차량의 시동이 가능하도록 시동장치를 제어하는 음주운전 방지 장치. When the alcohol concentration comparator determines that the alcohol concentration (Ca) in the sample gas is less than a predetermined alcohol concentration reference value (Ra), the apparatus for preventing drunk driving controls a starting device to start the vehicle.
  2. 제1항에 있어서,The method of claim 1,
    상기 제어기는,The controller,
    상기 알코올 농도 비교부에서 시료가스 내의 알코올의 농도(Ca)가 기준 값(Ra) 이상인 것으로 판단되면, 시료가스 내의 알코올의 농도(Ca)와, 미리 정해진 이산화탄소의 최대치(Cmax)를 시료가스 내의 이산화탄소의 농도(Cc)로 나눈 값을 기준으로 운전자의 혈중 알코올 농도(BAC)를 계산하는 혈중 알코올 농도 연산부를 더 포함하며,If the alcohol concentration comparison unit determines that the alcohol concentration (Ca) in the sample gas is equal to or greater than the reference value (Ra), the alcohol concentration (Ca) in the sample gas and the predetermined maximum value (Cmax) of the carbon dioxide in the sample gas It further includes a blood alcohol concentration calculator for calculating the driver's blood alcohol concentration (BAC) based on the value divided by the concentration (Cc) of,
    상기 혈중 알코올 농도 연산부에서 계산된 혈중 알코올 농도(BAC)가 기준 값 미만인 것으로 판단되면 차량의 시동이 가능하도록 시동장치를 제어하는 음주운전 방지 장치.When it is determined that the blood alcohol concentration (BAC) calculated by the blood alcohol concentration calculating unit is less than a reference value, the apparatus for preventing drunk driving controls the starter to enable the vehicle to be started.
  3. 제1항에 있어서,The method of claim 1,
    운전자의 혈중 알코올 농도(BAC)를 측정하는 음주측정기를 더 포함하며,Further comprising a breathalyzer for measuring the driver's blood alcohol concentration (BAC),
    상기 제어기는,The controller,
    상기 알코올 농도 비교부에서 시료가스 내의 알코올의 농도(Ca)가 기준 값(Ra) 이상인 것으로 판단되면, 상기 음주측정기에서 측정된 혈중 알코올 농도(BAC)를 수신하고, 상기 음주측정기에서 측정된 혈중 알코올 농도(BAC)가 기준 값 미만인 것으로 판단되면 차량의 시동이 가능하도록 시동장치를 제어하는 음주운전 방지 장치.When the alcohol concentration comparison unit determines that the alcohol concentration (Ca) in the sample gas is greater than or equal to the reference value (Ra), the blood alcohol concentration (BAC) measured by the breathalyzer is received, and the blood alcohol measured by the breathalyzer When it is determined that the concentration (BAC) is less than the reference value, a drunk driving prevention device that controls the starter so that the vehicle can be started.
  4. 제1항에 있어서,The method of claim 1,
    상기 이산화탄소 농도 비교부는 현재 상기 이산화탄소 센서의 전기신호 값과 3초 이전의 상기 이산화탄소 센서의 전기신호 값을 비교하여 3초 동안 시료가스 내의 이산화탄소의 농도(Cc)가 1000ppm이상 증가하였는지 판단하는 음주운전 방지 장치.The carbon dioxide concentration comparison unit compares the current electrical signal value of the carbon dioxide sensor and the electrical signal value of the carbon dioxide sensor 3 seconds before, and determines whether the concentration of carbon dioxide (Cc) in the sample gas increases by 1000 ppm or more for 3 seconds. Device.
  5. 제1항에 있어서,The method of claim 1,
    상기 알코올센서는,The alcohol sensor,
    상기 배기관과 연결되는 시료가스챔버와,A sample gas chamber connected to the exhaust pipe,
    상기 시료가스챔버의 내부에 배치되는 감지셀과,A sensing cell disposed inside the sample gas chamber,
    상기 배기관과 시료가스챔버 사이의 경로를 연결 또는 차단하도록 설치되는 제1밸브와,A first valve installed to connect or block a path between the exhaust pipe and the sample gas chamber,
    상기 배기관의 개방된 단부를 개방 또는 차단하도록 설치되는 제2밸브를 포함하며,And a second valve installed to open or block the open end of the exhaust pipe,
    상기 제어기는,The controller,
    상기 이산화탄소 센서의 전기신호에 따른 이산화탄소의 농도가 미리 정해진 값 이상일 경우에 상기 제1밸브가 개방되는 동시에 상기 제2밸브가 차단되며, 일정한 시간이 경과한 후 상기 제1밸브가 차단되고, 상기 제2밸브가 개방되도록 상기 제1밸브 및 제2밸브를 제어하는 음주운전 방지 장치.When the concentration of carbon dioxide according to the electric signal of the carbon dioxide sensor is greater than or equal to a predetermined value, the first valve is opened and the second valve is shut off. After a certain period of time, the first valve is shut off, and the first valve is shut off. A drunk driving prevention device that controls the first valve and the second valve so that the second valve is opened.
  6. 제1항에 있어서,The method of claim 1,
    상기 알코올센서는,The alcohol sensor,
    상기 배기관에 설치되는 삼방밸브와,A three-way valve installed in the exhaust pipe,
    상기 삼방밸브와 연결되는 시료가스챔버와,A sample gas chamber connected to the three-way valve,
    상기 시료가스챔버의 내부에 배치되는 감지셀을 포함하며,It includes a sensing cell disposed inside the sample gas chamber,
    상기 제어기는,The controller,
    상기 이산화탄소 센서의 전기신호에 따른 이산화탄소의 농도가 미리 정해진 값 이상일 경우에 상기 시료가스챔버를 향해서 시료가스가 흐르도록 삼방밸브를 제어하고, 일정한 시간이 경과한 후 상기 배기관의 개방된 단부를 통해서 시료가스가 외부로 배출되도록 삼방밸브를 제어하는 음주운전 방지 장치.When the concentration of carbon dioxide according to the electric signal of the carbon dioxide sensor is higher than a predetermined value, the three-way valve is controlled so that the sample gas flows toward the sample gas chamber, and after a certain time elapses, the sample through the open end of the exhaust pipe A drunk driving prevention device that controls a three-way valve so that gas is discharged to the outside.
PCT/KR2020/008051 2019-07-01 2020-06-22 Drunk driving prevention apparatus WO2021002616A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0078659 2019-07-01
KR1020190078659A KR102108681B1 (en) 2019-07-01 2019-07-01 Device for preventing drunk driving

Publications (1)

Publication Number Publication Date
WO2021002616A1 true WO2021002616A1 (en) 2021-01-07

Family

ID=70678107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008051 WO2021002616A1 (en) 2019-07-01 2020-06-22 Drunk driving prevention apparatus

Country Status (2)

Country Link
KR (1) KR102108681B1 (en)
WO (1) WO2021002616A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108681B1 (en) * 2019-07-01 2020-05-08 (주)센텍코리아 Device for preventing drunk driving
KR102531358B1 (en) * 2021-04-07 2023-05-15 (주)센텍코리아 Breath alcohol analyzer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220759A (en) * 2010-04-07 2011-11-04 Toyota Motor Corp Vehicle breath analyzer and vehicle breath analyzing method
JP2011251564A (en) * 2010-05-31 2011-12-15 Toyota Motor Corp Apparatus for preventing drunk driving
KR20140022638A (en) * 2012-08-14 2014-02-25 (주)센텍코리아 Drunkometer
US20170274768A1 (en) * 2016-03-24 2017-09-28 Automotive Coalition For Traffic Safety, Inc. Sensor system for passive in-vehicle breath alcohol estimation
KR20180021355A (en) * 2016-08-18 2018-03-02 (주)센텍코리아 Multi-gas sensor
KR102108681B1 (en) * 2019-07-01 2020-05-08 (주)센텍코리아 Device for preventing drunk driving

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005028788A1 (en) 2003-09-17 2005-03-31 Hiroshi Kamiki Key for vehicle
SE536782C2 (en) * 2012-08-24 2014-08-05 Automotive Coalition For Traffic Safety Inc Exhalation test system with high accuracy
KR101525204B1 (en) 2014-01-21 2015-06-10 자동차부품연구원 Drunk driving prevention apparatus and method
KR20160096251A (en) 2015-02-04 2016-08-16 강릉원주대학교산학협력단 Drunk Driving Prevention Device
KR101800508B1 (en) 2015-10-06 2017-12-20 엘지전자 주식회사 Method for preventing drunk-driving and driver assistance appratus having the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220759A (en) * 2010-04-07 2011-11-04 Toyota Motor Corp Vehicle breath analyzer and vehicle breath analyzing method
JP2011251564A (en) * 2010-05-31 2011-12-15 Toyota Motor Corp Apparatus for preventing drunk driving
KR20140022638A (en) * 2012-08-14 2014-02-25 (주)센텍코리아 Drunkometer
US20170274768A1 (en) * 2016-03-24 2017-09-28 Automotive Coalition For Traffic Safety, Inc. Sensor system for passive in-vehicle breath alcohol estimation
KR20180021355A (en) * 2016-08-18 2018-03-02 (주)센텍코리아 Multi-gas sensor
KR102108681B1 (en) * 2019-07-01 2020-05-08 (주)센텍코리아 Device for preventing drunk driving

Also Published As

Publication number Publication date
KR102108681B1 (en) 2020-05-08

Similar Documents

Publication Publication Date Title
WO2021002616A1 (en) Drunk driving prevention apparatus
WO2019143139A1 (en) Drunk driving prevention apparatus
CA1225120A (en) Apparatus for gas analysis
CN101738426B (en) Apparatus and process for gas sensor control
US7445698B2 (en) Gas concentration detecting apparatus
US20040074773A1 (en) Gas concentration detecting apparatus
US20030183437A1 (en) Breath measurement instrument and breath alcohol interlock device incorporating same
EP1635171A2 (en) Hydrocarbon sensor
WO2017039356A1 (en) Allergen detection apparatus using electrochemical detection method
SE456811B (en) NYKTERHETSSPAERR
WO2022030843A1 (en) Light-scattering fine dust measurement apparatus
WO2021182672A1 (en) Air purifier
US5034107A (en) Method for sensing nitrous oxide
JP2007147384A (en) Device and method for determining degradation of sensor element
GB2194846A (en) Oxygen concentration measuring device
WO2018159899A1 (en) Dual heater gas sensor module
CN110578588B (en) NOx sensor control device and NOx sensor control method
JPH08510560A (en) Oxygen content detector for gas
JP3607453B2 (en) Gas sensor
JPH03272452A (en) Diagnosis of abnormality of air/fuel ratio sensor
US5047137A (en) Solid electrolyte air/fuel ratio sensor with voltage control
JP3432026B2 (en) Limit current type gas sensor
WO2017171419A1 (en) Sensor for measuring concentration of nitrogen oxide and detecting ammonia slip
WO2022215985A1 (en) Breathalyzer
JP2000146885A (en) Composite gas analyzing device and co gas analyzer used in this composite gas analyzing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835309

Country of ref document: EP

Kind code of ref document: A1