WO2021002459A1 - Titanium oxide powder and method for producing same, and dispersion and cosmetics using same - Google Patents

Titanium oxide powder and method for producing same, and dispersion and cosmetics using same Download PDF

Info

Publication number
WO2021002459A1
WO2021002459A1 PCT/JP2020/026234 JP2020026234W WO2021002459A1 WO 2021002459 A1 WO2021002459 A1 WO 2021002459A1 JP 2020026234 W JP2020026234 W JP 2020026234W WO 2021002459 A1 WO2021002459 A1 WO 2021002459A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
oxide powder
less
particles
titanium
Prior art date
Application number
PCT/JP2020/026234
Other languages
French (fr)
Japanese (ja)
Inventor
鉄平 八久保
伊藤 直子
Original Assignee
住友大阪セメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友大阪セメント株式会社 filed Critical 住友大阪セメント株式会社
Publication of WO2021002459A1 publication Critical patent/WO2021002459A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts

Definitions

  • the present invention relates to titanium oxide powder and a method for producing the same, which are suitable for cosmetics, and dispersions and cosmetics using the same.
  • the present application claims priority based on Japanese Patent Application No. 2019-124699 and Japanese Patent Application No. 2019-124700 filed in Japan on July 3, 2019, the contents of which are incorporated herein by reference.
  • Titanium oxide particles are excellent in light reflection characteristics, ultraviolet shielding characteristics, and hiding power. Therefore, submicron size to micron size titanium oxide particles are used in base makeup cosmetics such as foundations.
  • the titanium oxide particles having excellent hiding power include, for example, octahedral particles in which the average value of the maximum values of the lengths of the line segments connecting the two facing vertices in one particle is 300 nm or more and 1000 nm or less, and the maximum value is described above. It is known that the value obtained by dividing the average value of the values by the average particle size converted from the BET specific surface area (average value of the maximum value / average particle size converted to BET) is 1.0 or more and 2.5 or less. (See, for example, Patent Document 1).
  • titanium oxide powder that can further improve the spread and / or feel of the cosmetic when applied to the skin.
  • the present invention has been made in view of the above circumstances, and is a titanium oxide powder that improves hiding power, elongation and / or good feel when blended in cosmetics, a method for producing the same, and a method for producing the same. It is an object of the present invention to provide a dispersion liquid and a cosmetic using.
  • the titanium oxide powder of the present invention has a BET specific surface area of 5 m 2 / g or more and 15 m 2 / g or less, contains polyhedral titanium oxide particles having eight or more faces, and contains 0.245 N per cm 2 .
  • the average friction coefficient measured in 1) is 0.5 or less.
  • the dispersion liquid of the present invention is characterized by containing the titanium oxide powder of the present invention and a dispersion medium.
  • the cosmetic of the present invention is characterized by containing the titanium oxide powder of the present invention and a cosmetic base.
  • a reaction solution is obtained by mixing a hydrolysis product of titanium alkoxide or a hydrolysis product of a titanium metal salt having a predetermined concentration and a compound having a five-membered ring containing nitrogen.
  • a step of preparing the reaction solution and a step of hydrothermally synthesizing the reaction solution, and the predetermined concentration is 0.4% by mass or more and 6.4% by mass or less of the concentration of titanium oxide in the reaction solution. It is characterized by being.
  • a titanium oxide powder having excellent hiding power, elongation and / or good feel when blended in a cosmetic and applied to the skin, and a dispersion using the same, and a dispersion liquid using the same. Can provide cosmetics.
  • the dispersion liquid of the present invention when a cosmetic containing this dispersion liquid is applied to the skin, it is excellent in hiding power, elongation and / or good feel.
  • the cosmetic of the present invention when applied to the skin, it is excellent in hiding power, elongation and / or good feel.
  • titanium oxide powder of the present invention it is possible to provide titanium oxide powder having excellent hiding power, elongation and / or good feel when blended with cosmetics and applied to the skin.
  • titanium oxide powder of the present invention A preferred example of the titanium oxide powder of the present invention, a method for producing the same, and an embodiment of a dispersion liquid and a cosmetic using the same will be described below. It should be noted that the present embodiment is specifically described in order to better understand the gist of the invention, and is not limited to the present invention unless otherwise specified. For example, unless otherwise specified, conditions such as material, quantity, type, number, size, ratio, time, and temperature may be changed, added, or omitted as necessary.
  • the titanium oxide powder of the present embodiment has a BET specific surface area of 5 m 2 / g or more and 15 m 2 / g or less, contains polyhedral-shaped titanium oxide particles having eight or more faces, and is 0.245 N per cm 2 .
  • the measured average coefficient of friction is 0.5 or less.
  • the BET specific surface area of the titanium oxide powder of the present embodiment is preferably 5 m 2 / g or more and 15 m 2 / g or less, and preferably 5 m 2 / g or more and 13 m 2 / g or less.
  • the range may be 5 m 2 / g or more and 8 m 2 / g or less, 8 m 2 / g or more and 10 m 2 / g or less, 10 m 2 / g or more and 13 m 2 / g or less.
  • the BET specific surface area of the titanium oxide powder is 5 m 2 / g or more and 15 m 2 / g or less, the paleness peculiar to the titanium oxide particles can be further reduced while having hiding power and transparency. It is advantageous.
  • the BET specific surface area of the titanium oxide powder is 5 m 2 / g or more, the transparency does not decrease due to light scattering.
  • the BET specific surface area of the titanium oxide powder does not exceed 15 m 2 / g, the short wavelength light scattering intensity does not increase as compared with the long wavelength light scattering intensity, and the bluish whiteness does not increase.
  • a fully automatic specific surface area measuring device for example, a fully automatic specific surface area measuring device (trade name: BELSORP-MiniII, manufactured by Microtrac Bell) is used, and many BET points are used.
  • BELSORP-MiniII manufactured by Microtrac Bell
  • a method of measuring from the nitrogen adsorption isotherm by the method can be mentioned.
  • the titanium oxide powder of this embodiment is an aggregate of titanium oxide particles.
  • the shape of the titanium oxide particles of the present embodiment includes a polyhedral shape having eight or more faces. Since the shape of the titanium oxide particles has eight or more surfaces, light can be scattered over a wide range. Therefore, when a cosmetic containing titanium oxide powder is applied to the skin, the transparency and hiding power can be improved.
  • the content of polyhedral titanium oxide particles having eight or more faces in the titanium oxide powder is represented by the number% calculated by the method described later. That is, the content of the polyhedral-shaped titanium oxide particles having eight or more faces in the titanium oxide powder is preferably 50% by number or more, 60% by number or more, or 70% by number or more. There may be.
  • the upper limit of the content of polyhedral titanium oxide particles having eight or more faces in the titanium oxide powder may be 70% by number, 80% by number, or 90% by number. , 100% by number.
  • the content of polyhedron-shaped titanium oxide particles having eight or more faces in the titanium oxide powder is 50% by number or more, excellent hiding power is obtained when a cosmetic containing the titanium oxide powder is applied to the skin. It is preferable in that the paleness peculiar to the titanium oxide particles can be further reduced while having a transparent feeling.
  • the content of the polyhedron-shaped titanium oxide particles having eight or more faces in the titanium oxide powder of the present embodiment, that is, the number%, is determined by, for example, a scanning electron microscope (SEM), the titanium oxide powder. It is a value calculated by observing 50 titanium oxide particles contained in the body and counting the number of polyhedron-shaped titanium oxide particles having eight or more faces contained in the 50 particles.
  • SEM scanning electron microscope
  • the maximum value of the length of the line segment connecting the two opposite vertices of the titanium oxide particles is not particularly limited as long as the BET specific surface area of the titanium oxide powder is 5 m 2 / g or more and 15 m 2 / g or less.
  • the maximum value is preferably 100 nm or more and 1000 nm or less, more preferably 150 nm or more and 800 nm or less, and further preferably 200 nm or more and 750 nm or less.
  • the two vertices facing each other are not adjacent vertices. That is, in the two vertices, the line segment connecting the vertices is a line segment that does not pass through the surface of the particle but passes through the inside of the particle. The maximum value is obtained by the combination of vertices located farthest from each other.
  • a polyhedral shape having eight or more faces can be arbitrarily selected.
  • a particle having a polyhedral shape is a particle having a plurality of faces.
  • Examples of the polyhedral shape include octahedron, tetrahedron, dodecahedron, icositetrahedron, and star shape.
  • Each face of the polyhedral shape may have substantially the same shape, or may include a plurality of faces having different shapes such as two types.
  • the polyhedral shape may be a regular polyhedral shape or another polyhedral shape. Specific examples of the polyhedral shape include shapes such as a regular octahedron and a double quadrangular pyramid.
  • the octahedral shape is preferable in that light can be scattered over a wide range.
  • the polyhedral shape also includes a shape in which the corners of the polyhedron are rounded and the shape is rounded in whole or in part.
  • the polyhedral shape also includes a shape in which particles of the polyhedral shape are partially damaged. That is, when it has a shape similar to the polyhedral-shaped particles and it is presumed that this shape is formed from the polyhedral-shaped particles due to breakage, it is regarded as the polyhedral-shaped particles.
  • agglomerated particles in which polyhedral-shaped particles are agglomerated are also included.
  • the octahedron shape described below is a three-dimensional shape in which the internal space is surrounded by eight triangles as shown in FIG.
  • the eight triangles may all have the same shape, or may include two or more different shapes, including two different shapes.
  • the tips of the vertices of the octahedral titanium oxide particles (points indicated by the symbols A, B, C, D, E, and F in FIG. 1) have a sharp shape, a rounded shape, and a flat shape. It may have a shaped shape. It also includes octahedrons with rounded corners, all or part of which are rounded.
  • the octahedral titanium oxide particles include a shape in which a part of the octahedral particles is damaged. That is, when it has a shape similar to the octahedral particles and it is presumed that this shape is formed from the octahedral particles due to breakage, it is regarded as the octahedral particles. Further, the octahedral titanium oxide particles may be aggregated particles in which octahedral titanium oxide particles are aggregated with each other.
  • the content of octahedral titanium oxide particles (hereinafter, may be abbreviated as "octahedral particles”) is preferably 50% by number or more. It may be 55% or more, or 60% or more.
  • the upper limit of the content of octahedral particles may be 70% by number, 80% by number, 90% by number, 100. The number may be%.
  • octahedral particles in the titanium oxide powder of the present embodiment for example, 50 titanium oxide particles contained in the titanium oxide powder are observed with a scanning electron microscope, and the content of the octahedral particles is included in the 50 particles. It can be calculated by counting the number of octahedral particles.
  • the octahedron shape is a three-dimensional shape in which a space is surrounded by eight triangles, as shown in FIG.
  • the tips of the vertices of the octahedral titanium oxide particles (points indicated by the symbols A, B, C, D, E, and F in FIG. 1) have a sharp shape, a rounded shape, and a flat shape. It may have a shaped shape.
  • the maximum value of the line segment connecting the two opposite vertices of the octahedral particles (hereinafter, may be referred to as "distance between vertices") is that the BET specific surface area of the titanium oxide powder is 5 m 2 / g or more and 15 m. As long as it is 2 / g or less, it is not particularly limited.
  • the maximum value is preferably 100 nm or more and 1000 nm or less, more preferably 150 nm or more and 800 nm or less, further preferably 200 nm or more and 700 nm or less, and more preferably 250 nm or more and 600 nm or less. Most preferred.
  • Octahedral particles having a maximum distance between two vertices facing each other of 100 nm or more and 1000 nm or less can scatter visible light in a wider range than spherical and spindle-shaped titanium oxide particles. Therefore, it is presumed that a cosmetic containing titanium oxide powder containing octahedral particles can reduce the paleness peculiar to titanium oxide particles while achieving both hiding power and transparency.
  • the maximum value of the distance between the two vertices facing each other of the octahedral particles is 100 nm or more and 1000 nm or less, when applied to the skin, the paleness peculiar to the titanium oxide particles is further enhanced while having an excellent transparency. It is advantageous in that it can be reduced.
  • the maximum value of the line segment (long axis m of the octahedral particle in FIG. 1) connecting the two opposing vertices (point A and point B in FIG. 1) of the octahedral particle is X (nm), and the maximum value thereof.
  • Two vertices of the octahedral particles facing each other substantially orthogonal to the line segment related to the value (long axis m of the octahedral particles in FIG. 1).
  • the minimum value of the line segment connecting F) minor axis n, o of the octahedral particles in FIG. 1
  • the average value of the ratio of X to Y (X / Y) is 1. It is preferably 5 or more and 3.0 or less, and more preferably 1.5 or more and 2.5 or less.
  • the cosmetic containing titanium oxide powder containing octahedral particles has an octahedral shape when applied to the skin. It is advantageous in that the light scattering effect of the particles can be obtained more effectively and the transparency can be further improved.
  • the above-mentioned substantially orthogonality means that two line segments (major axis and minor axis of octahedral particles) intersect at an angle of 70 ° to 90 °. Further, the above substantially orthogonal means that two line segments (major axis and minor axis of octahedral particles) may intersect in close proximity, and two line segments (major axis and short axis of octahedral particles) are not necessarily required. The axis) does not have to have an intersection.
  • the octahedron shape is a double quadrangular pyramid in which two quadrangular pyramids share the bottom surface of the quadrangle.
  • the octahedral shape in the present embodiment is preferably a shape in which two congruent quadrangular pyramids share a square bottom surface.
  • the side surface shape of the quadrangular pyramid is an isosceles triangle, not an equilateral triangle.
  • the maximum value (X) of the distance between the two vertices facing each other of the octahedral particles is the length of the line segment that gives the distance between the two vertices existing in the direction orthogonal to the bottom surface of the square pyramid. means.
  • the minimum value (Y) of the distance between two vertices facing each other of the octahedral particles means the length of the shorter diagonal line of the two diagonal lines on the bottom surfaces of the two square pyramids.
  • FIG. 1 is a schematic view showing an example of octahedral titanium oxide particles in the titanium oxide particles of the present embodiment.
  • the distance between the two apex of the octahedral particle is the distance a between the point A and the point C, the distance b between the point A and the point D, the distance c between the point A and the point E, and the point A in FIG.
  • the maximum value of the distance between the two vertices of the octahedral particle facing each other is the distance m, which corresponds to the maximum value (X) of the distance between the two vertices of the octahedral particle facing each other.
  • the line segments connecting the two opposite vertices of the octahedral particles, which are substantially orthogonal to the line segment related to the maximum value X are the distance n and the distance o. Of the distance n and the distance o, the shorter one corresponds to the minimum value (Y) of the distance between the two vertices facing each other of the octahedral particles.
  • the maximum value (X) (nm) of the distance between two vertices facing each other of the octahedral particle and the minimum value (Y) (nm) of the distance between the two vertices facing each other of the octahedral particle are, for example, scanning type. It can be measured by observing the octahedral particles using a scanning electron microscope (SEM). If a part of the octahedral particles is damaged and the shape before the damage can be estimated, the shape of the octahedral particles before the damage is the above maximum value X (nm) and the above minimum value. (Y) nm is measured.
  • the shape of one octahedral particle in the agglomerated particles is estimated, and the maximum value X (nm) and the minimum value (Y) nm are measured.
  • the above ratio (X / Y) is calculated by observing titanium oxide particles using a scanning electron microscope (SEM) and measuring the above maximum value (X) and the above minimum value (Y).
  • the titanium oxide powder of the present embodiment has an average coefficient of friction measured at 0.245 N per cm 2 of 0.5 or less, preferably 0.4 or less, and more preferably 0.3 or less. ..
  • the lower limit of the average coefficient of friction is 0, but it may be 0.1 or more. Since the average friction coefficient is 0.5 or less, when titanium oxide powder is blended in the cosmetic, a cosmetic having excellent elongation can be obtained.
  • the titanium oxide powder of the present embodiment preferably has a coefficient of friction deviation of 0.020 or less, more preferably 0.015 or less, measured at 0.245 N per cm 2 .
  • a coefficient of friction deviation of 0.020 or less, more preferably 0.015 or less, measured at 0.245 N per cm 2 .
  • FIG. 3 is a schematic view showing the state of the friction feeling tester and the powder before measuring the deviation between the average friction coefficient and the friction coefficient.
  • the friction tester 100 measures the friction coefficient of the stage 200, the skin model substrate 300 arranged on the stage 200, and the titanium oxide powder 10 arranged on the skin model substrate 300. It includes a piano wire sensor 400 and a detection unit 500 that detects the friction coefficient measured by the piano wire sensor 400. As shown in FIG.
  • a skin model substrate (example of the substrate: cheek skin model 30s ( ⁇ 55 mm ⁇ 5 Tmm), manufactured by Bulux Co., Ltd.) on which 1 g of titanium oxide powder 10 was placed was placed.
  • FIG. 4 is a schematic view showing a state after the skin model substrate on which the titanium oxide powder is placed is moved in the horizontal direction on the stage.
  • the crystal phase of the titanium oxide powder of the present embodiment is not particularly limited, and may be a single phase of any one of anatase type, rutile type and brookite type, and may be a mixed phase thereof.
  • the crystal phase of the titanium oxide powder of the present embodiment is preferably anatase type.
  • the hiding power is further enhanced when a cosmetic containing the titanium oxide powder is applied to the skin, and when mixed with a cosmetic base, the human skin It is advantageous in that a color close to the color can be obtained.
  • the titanium oxide powder is anatase type can be confirmed by, for example, an X-ray diffractometer, for example, an X-ray diffractometer (trade name: X'Pert PRO, manufactured by Spectris). If the measurement result by the X-ray diffractometer is anatase single phase, it can be seen that the titanium oxide powder is anatase type.
  • an X-ray diffractometer for example, an X-ray diffractometer (trade name: X'Pert PRO, manufactured by Spectris). If the measurement result by the X-ray diffractometer is anatase single phase, it can be seen that the titanium oxide powder is anatase type.
  • the cumulative volume percentage of the volume-based particle size distribution of the maximum value of the length of the line segment connecting the two opposing vertices of the polyhedral-shaped titanium oxide particles having eight or more faces In the titanium oxide powder of the present embodiment, the cumulative volume percentage of the volume-based particle size distribution of the maximum value of the length of the line segment connecting the two opposing vertices of the polyhedral-shaped titanium oxide particles having eight or more faces.
  • the value (d10 / d50) obtained by dividing the maximum value (d10) when is 10% by the maximum value (d50) when the cumulative volume percentage is 50% hereinafter, abbreviated as "d10 / d50").
  • d10 / d50 Is preferably 0.3 or more and 1 or less.
  • the lower limit of d10 / d50 may be 0.4 or more, or 0.5 or more.
  • the upper limit of d10 / d50 may be 0.9 or less, 0.8 or less, 0.7 or less, or 0.6 or less.
  • d10 / d50 is in the above range, a cosmetic having more excellent elongation can be obtained when blended in the cosmetic.
  • D10 and d50 are obtained by the following procedure.
  • the maximum value of the distance between two vertices facing each other of a polyhedral particle having 50 or more faces is measured.
  • the measured maximum value is cubed and multiplied by a constant to obtain a volume.
  • the constant may be appropriately determined according to the shape of the titanium oxide particles.
  • the constant for a polyhedral shape having eight or more faces is 0.145
  • the constant for a spherical shape is 4.19 (4 ⁇ / 3).
  • the volume particle size distribution of the maximum value is calculated by using the measured maximum value and the volume value obtained by calculation.
  • d10 means the maximum value at the time of cumulative 10%
  • d50 means the maximum value at the time of cumulative 50%.
  • the maximum value (X) of the length of the line segment connecting the two facing vertices of the titanium oxide powder of the present embodiment is 100 nm or more and 1000 nm or less when the cumulative volume percentage is 50%. It is preferably 150 nm or more and 800 nm or less, more preferably 200 nm or more and 700 nm or less, and most preferably 250 nm or more and 600 nm or less.
  • d50 corresponds to the volume average particle diameter of the titanium oxide powder of this embodiment.
  • the maximum value (X) d50 corresponds to the average primary particle size of the titanium oxide powder of the present embodiment.
  • the average primary particle diameter is 100 nm or more and 1000 nm or less, it is preferable in that when applied to the skin, the peculiar paleness of the titanium oxide particles can be further reduced while having an excellent transparency. In addition, it is preferable because it has an excellent feel when applied to the skin. If the average primary particle size is less than 100 nm, light having a short wavelength is scattered and the color is pale, which is not preferable. Even if the average secondary particle diameter, which will be described later, is 1 ⁇ m or more and 10 ⁇ m or less, it is not preferable because it feels bad when applied to the skin. On the other hand, if the average primary particle size exceeds 1 ⁇ m, a transparent feeling cannot be obtained, which is not preferable.
  • the average primary particle diameter of the titanium oxide particles is preferably 300 nm or more and 1 ⁇ m or less, preferably 350 nm or more. It is more preferably 900 nm or less, further preferably 400 nm or more and 800 nm or less, and even more preferably 450 nm or more and 700 nm or less.
  • the feeling in the present embodiment is, for example, the feeling of touching the skin to which the cosmetic has been applied with fingers when the cosmetic containing the titanium oxide powder is applied to the skin.
  • the average secondary particle size of the titanium oxide powder of the present embodiment is preferably 1 ⁇ m or more and 10 ⁇ m or less, more preferably 2 ⁇ m or more and 9 ⁇ m or less, and further preferably 3 ⁇ m or more and 8 ⁇ m or less. More preferably, it is 4 ⁇ m or more and 8 ⁇ m or less.
  • the average secondary particle diameter is 1 ⁇ m or more and 10 ⁇ m or less, it is preferable because it is excellent in feel when applied to the skin. If the average secondary particle size is less than 1 ⁇ m, the average primary particle size becomes small and the hiding power and transparency cannot be obtained, which is not preferable. On the other hand, if the average secondary particle size exceeds 10 ⁇ m, the feel when applied to the skin deteriorates, which is not preferable.
  • the "average secondary particle size" of the titanium oxide particles of the present embodiment is a numerical value obtained by the following method. That is, the titanium oxide powder of the present embodiment is dry-measured using a particle size distribution measuring device MASTERSIZER3000 (manufactured by Malvern). The particle size (d50) when the cumulative volume percentage of the obtained particle size distribution is 50% is the average secondary particle size of the present embodiment.
  • the titanium oxide powder of the present embodiment may have either an inorganic compound or an organic compound on the surface.
  • Examples of the method of adhering either the inorganic compound or the organic compound to the surface of the titanium oxide particles include a method of surface treatment using a surface treatment agent.
  • the surface treatment agent is not particularly limited as long as it can be used in cosmetics, and can be appropriately selected depending on the intended purpose.
  • Examples of the surface treatment agent include an inorganic component and an organic component.
  • inorganic component examples include inorganic oxides.
  • silica, alumina and the like can be mentioned.
  • organic component examples include silicone compounds, fatty acids, fatty acid soaps, fatty acid esters, organic titanate compounds, surfactants, non-silicone compounds and the like.
  • One of these organic components may be used alone, or two or more thereof may be used in combination.
  • silicone compound examples include silicone oils such as methylhydrogenpolysiloxane, dimethylpolysiloxane, and methylphenylpolysiloxane; alkylsilanes such as methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, and octyltrimethoxysilane; Fluoroalkylsilanes such as trifluoromethylethyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane; methicone, hydrogendimethicone, triethoxysilylethylpolydimethylsiloxyethyldimethicone, triethoxysilylethylpolydimethylsiloxyethylhexyldimethicone, (Acrylate / acrylic) Examples thereof include tridecyl acid acid / triethoxysily
  • fatty acids examples include palmitic acid, isostearic acid, stearic acid, lauric acid, myristic acid, behenic acid, oleic acid, logonic acid, 12-hydroxystearic acid, ricinoleic acid and the like.
  • fatty acid soap examples include aluminum stearate, calcium stearate, and aluminum 12-hydroxystearate.
  • fatty acid ester examples include dextrin fatty acid ester, cholesterol fatty acid ester, sucrose fatty acid ester, starch fatty acid ester and the like.
  • organic titanate compound examples include isopropyltriisostearoyl titanate, isopropyldimethacrylic isostearoyl titanate, isopropyltri (dodecyl) benzenesulfonyl titanate, neopentyl (diallyl) oxy-tri (dioctyl) phosphate titanate, and neopentyl (diallyl) oxy-.
  • examples include trineododecanoyl titanate.
  • the titanium oxide powder of the present embodiment when a cosmetic containing the titanium oxide powder is applied to the skin, it has excellent hiding power and elongation. Further, according to the titanium oxide powder of the present embodiment, when a cosmetic containing the titanium oxide powder is applied to the skin, it has excellent transparency in addition to hiding power, and has a paleness peculiar to titanium oxide particles. It is possible to obtain a natural finish with reduced.
  • a hydrolysis product of titanium alkoxide or a hydrolysis product of a titanium metal salt having a predetermined concentration is mixed with a compound having a five-membered ring containing nitrogen and reacted. It has a step of preparing a solution (hereinafter referred to as "first step") and a step of hydrolyzing this reaction solution (hereinafter referred to as "second step"). Further, in the method for producing the titanium oxide powder of the present embodiment, if necessary, the reaction solution obtained in the first step and the reaction solution after hydrothermal synthesis obtained in the second step are mixed. It has a third step of hydrothermal synthesis. In addition, the method for producing titanium oxide powder of the present embodiment may include a fourth step of crushing the titanium oxide powder recovered after the second step or the third step.
  • the first step is a step of preparing a reaction solution.
  • the first step is a step of preparing a reaction solution (slurry) by mixing a hydrolysis product of titanium alkoxide or a hydrolysis product of a titanium metal salt having a predetermined concentration and a compound having a five-membered ring containing nitrogen. is there.
  • the materials used in the first step will be described below.
  • the hydrolysis product of titanium alkoxide or the hydrolysis product of the titanium metal salt is obtained by hydrolyzing the titanium alkoxide or the titanium metal salt.
  • the hydrolysis product of titanium alkoxide or the hydrolysis product of titanium metal salt is, for example, a cake-like solid which is a white solid, and is titanium hydroxide containing metatitanium acid or orthotitanium acid.
  • titanium alkoxide examples include tetraethoxytitanium, tetraisopropoxytitanium, tetranormalpropoxytitanium, tetranormalbutoxytitanium and the like.
  • One of these titanium alkoxides may be used alone, or two or more thereof may be used in combination.
  • tetraisopropoxytitanium and tetranormalbutoxytitanium are preferable, and tetraisopropoxytitanium is more preferable, because they are easily available and the hydrolysis rate can be easily controlled.
  • titanium metal salt examples include titanium tetrachloride, titanium sulfate and the like.
  • One of these titanium metal salts may be used alone, or two or more thereof may be used in combination.
  • titanium oxide powder of the present embodiment it is preferable to use high-purity titanium alkoxide or high-purity titanium metal salt in order to obtain high-purity anatase-type titanium oxide particles.
  • Hydrolysis products of titanium alkoxides or hydrolysis products of titanium metal salts include by-products such as alcohols, hydrochloric acid and sulfuric acid. Since the by-product inhibits nucleation and crystal growth of titanium oxide particles, it is preferable to wash the hydrolysis product of titanium alkoxide or the hydrolysis product of titanium metal salt with pure water in advance. Examples of the method for cleaning the hydrolysis product of titanium alkoxide or the hydrolysis product of titanium metal salt include decantation, Nutche method, ultrafiltration method and the like.
  • a compound having a five-membered ring containing nitrogen is included in the reaction solution because of its function as a pH adjuster for the reaction solution and as a catalyst for hydrothermal synthesis.
  • the nitrogen-containing compound having a five-membered ring include pyrrole, imidazole, indole, purine, pyrrolidine, pyrazole, triazole, tetrazole, isothiazole, isoxazole, frazan, carbazole, 1,5-diazabicyclo- [4.3 .0] -5-Nonen and the like.
  • These nitrogen-containing five-membered ring compounds may be used alone or in combination of two or more.
  • the compound having a five-membered ring containing nitrogen is a compound containing one nitrogen atom from the viewpoint that the particle size distribution of the titanium oxide powder can be narrowed and the crystallinity can be further improved.
  • pyrrole, indole, pyrrolidine, isothiazole, isoxazole, frazan, carbazole, and 1,5-diazabicyclo- [4.3.0] -5-nonene are preferred.
  • the compound having a five-membered ring containing nitrogen contains one nitrogen atom and has a five-membered ring because the particle size distribution of the titanium oxide powder can be narrowed and the crystallinity can be further improved. Is more preferably a compound having a saturated heterocyclic structure.
  • pyrrolidine, 1,5-diazabicyclo- [4.3.0] -5-nonene is more preferable.
  • reaction solution The method for preparing the reaction solution is not particularly limited, and can be appropriately selected depending on the intended purpose.
  • Examples of the method for preparing the reaction solution include a method of mixing using a stirrer, a bead mill, a ball mill, an attritor, a dissolver and the like.
  • water may be added to the reaction solution to adjust the concentration of the reaction solution.
  • water added to the reaction solution include deionized water, distilled water, pure water and the like.
  • the pH of the reaction solution is preferably 9 or more and 13 or less, and 11 or more and 13 or less, from the viewpoint that the catalytic action of the compound having a five-membered ring containing nitrogen functions appropriately and the nucleation rate becomes appropriate. Is more preferable.
  • the pH of the reaction solution is in the range of 9 or more and 13 or less, the efficiency of producing titanium oxide particles and crystal growth is improved.
  • the pH of the reaction solution can be adjusted by controlling the content of the compound having a five-membered ring containing nitrogen.
  • the titanium atom concentration in the reaction solution can be appropriately selected according to the friction coefficient of the target titanium oxide powder, and is preferably 0.05 mol / L or more and 0.8 mol / L or less, and is 0. More preferably, it is 1 mol / L or more and 0.7 mol / L or less. In other words, the concentration of titanium oxide in the reaction solution is preferably 0.4% by mass or more and 6.4% by mass or less, and 0.8% by mass or more and 5.6% by mass or less. Is more preferable.
  • the concentration of titanium oxide in this reaction solution is the above-mentioned predetermined concentration.
  • the titanium oxide content means the mass of titanium oxide produced from titanium alkoxide or titanium metal salt used as a raw material.
  • titanium oxide when 1 mol of tetraethoxytitanium is used, 1 mol of titanium oxide is produced, so that the titanium oxide content of 1 mol of tetraethoxytitanium is the mass of 1 mol of titanium oxide, that is, 80 g.
  • the titanium atom concentration in the reaction solution is 0.05 mol / L or more, nuclei of titanium oxide particles having eight or more faces are efficiently generated, and the production efficiency is improved.
  • the titanium atom concentration in the reaction solution is 0.8 mol / L or less, the nucleation rate becomes slow, so that the content of small titanium oxide particles contained in the powder is reduced, and the average of the titanium oxide powder is reduced. The friction coefficient becomes smaller.
  • the titanium atom concentration in the reaction solution can be adjusted by controlling the content of the hydrolysis product of titanium alkoxide or the hydrolysis product of the titanium metal salt and the content of water.
  • the concentration of titanium oxide in the reaction solution is 0.4% by mass or more, nuclei of titanium oxide particles having eight or more faces are generated, and the titanium oxide particles of the present embodiment can be produced.
  • the concentration of titanium oxide in the reaction solution is 6.4% by mass or less, the nucleation rate becomes slow, so that the content of small titanium oxide particles contained in the powder is reduced, and the titanium oxide powder is used. The average friction coefficient of the body becomes smaller.
  • the molar ratio of the titanium atom to the nitrogen-containing five-membered ring compound (titanium atom: nitrogen-containing five-membered ring compound) in the reaction solution was 1.0: 0.5 to 1.0: 5. It is preferably 0, more preferably 1.0: 0.6 to 1.0: 3.0, and even more preferably 1.0: 0.6 to 1.0: 1.5. ..
  • the molar ratio of the titanium atom and the compound having a five-membered ring containing nitrogen in the reaction solution is within the above range, octahedral titanium oxide particles can be produced.
  • the second step is a step of producing titanium oxide particles.
  • the second step is a step of producing titanium oxide particles by hydrothermal synthesis of the reaction solution prepared in the first step.
  • Hydrothermal synthesis is a method in which a reaction solution is heated and titanium in the reaction solution is reacted in the presence of hot water at high temperature and high pressure. Hydrothermal synthesis is carried out by putting the reaction solution in a high-temperature and high-pressure container called an autoclave, sealing it, and heating the whole autoclave. When the reaction solution is heated, the water content in the reaction solution evaporates, so that the pressure inside the container rises, and a high-temperature and high-pressure reaction can be carried out.
  • the heating holding temperature in hydrothermal synthesis is preferably 150 ° C. or higher and 350 ° C. or lower, more preferably 150 ° C. or higher and 280 ° C. or lower, and further preferably 150 ° C. or higher and 210 ° C. or lower.
  • the solubility of the hydrolysis product of titanium alkoxide or the hydrolysis product of the titanium metal salt in water is improved, and it can be dissolved in the reaction solution. it can.
  • the nuclei of titanium oxide particles can be generated, the nuclei can be grown, and titanium oxide particles having a desired shape can be produced.
  • the heating rate in hydrothermal synthesis is not particularly limited and can be appropriately selected depending on the intended purpose.
  • the pressure in hydrothermal synthesis is the pressure when the reaction solution is heated to the above temperature range in a high-temperature and high-pressure vessel.
  • the stirring speed is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 100 rpm or more and 300 rpm or less.
  • the heating holding time in hydrothermal synthesis is not particularly limited and can be appropriately selected depending on the size of the titanium oxide particles to be produced, but is preferably 3 hours or more, and preferably 4 hours or more. More preferred. When the heating holding time is 3 hours or more, the hydrolysis product of titanium alkoxide or the hydrolysis product of titanium metal salt, which is a raw material, reacts well and the yield does not decrease.
  • the heating retention time is affected by the type and concentration of the raw material. Therefore, a preliminary experiment may be carried out as appropriate, and the titanium oxide particles may be heated and held for a desired size.
  • the heating holding time may be 9 hours, 12 hours, 24 hours, 48 hours, or 72 hours. However, from the viewpoint of production efficiency, heating may be stopped when the titanium oxide particles reach a desired size.
  • the third step is a step of crystal growing the titanium oxide particles obtained in the second step.
  • the third step is performed when the size of the obtained titanium oxide particles is smaller than desired.
  • the third step is a reaction solution containing titanium oxide particles after hydrothermal synthesis obtained in the second step and a reaction solution (hydrolysis product of titanium alkoxide or titanium metal) prepared in the first step before hydrothermal synthesis. This is a step of mixing a hydrolyzed product of a salt and a compound having a five-membered ring containing nitrogen) for hydrothermal synthesis.
  • reaction solution prepared in the first step before hydrothermal synthesis means hydrolyzing the hydrolysis product of titanium alkoxide or the hydrolysis product of titanium metal salt and a compound having a 5-membered ring containing nitrogen. It may be a method of adding each to the reaction solution containing titanium oxide particles later.
  • a reaction solution containing titanium oxide particles after hydrothermal synthesis obtained in the second step, a reaction solution prepared in the first step (a hydrolysis product of titanium alkoxide or a hydrolysis product of a titanium metal salt, and nitrogen) are used.
  • the mixing ratio with the compound having a five-membered ring containing the titanium oxide is preferably 1: 1 to 1:20 in terms of mass of titanium oxide particles. The ratio may be 1: 1 to 1: 5, 1: 5 to 1:10, 1:10 to 1:20, or the like, if necessary.
  • Hydrothermal synthesis in the third step can be performed under the same conditions as in the second step.
  • the method for extracting the titanium oxide particles from the reaction solution after performing the second step and the third step is not particularly limited and can be appropriately selected depending on the intended purpose.
  • Examples of the method for extracting the titanium oxide particles from the mixed solution include a method of solid-liquid separation such as decantation and the Nutche method.
  • the obtained solid substance containing the titanium oxide particles may be washed with pure water or the like for the purpose of reducing impurities.
  • the solid matter containing the titanium oxide particles taken out by solid-liquid separation may be naturally dried, or may be heated and dried at a drying temperature higher than room temperature, for example, 400 ° C. or lower.
  • the lower limit of the heating temperature of the solid matter is not particularly limited as long as the solid matter can be dried.
  • the lower limit of the heating temperature of the solid material may be, for example, 200 ° C., 250 ° C., or 300 ° C.
  • the titanium oxide powder of the present embodiment can be obtained by taking out the titanium oxide particles from the reaction solution after hydrothermal synthesis and drying them.
  • the titanium oxide powder obtained in the second step and / or the third step is crushed so that the average secondary particle size is 1 ⁇ m or more and 10 ⁇ m or less.
  • the method of crushing is not particularly limited, and examples thereof include a method of crushing titanium oxide powder with a known crusher. Examples of the crusher include a pin mill, a hammer mill, a jet mill, an impeller mill and the like.
  • the titanium oxide powder of the present embodiment can also be obtained by taking out the titanium oxide powder from the reaction solution after hydrothermal synthesis and crushing it. In the present embodiment, a method of crushing the titanium oxide powder after drying has been exemplified, but the titanium oxide powder of the present embodiment can also be obtained by a method of wet crushing and drying before drying. .. In addition, wet crushing may be performed before drying, and crushing may be performed after drying.
  • the titanium oxide particles can also be surface-treated.
  • the time for surface treatment is not particularly limited, and can be appropriately selected depending on the purpose. Examples of the time for performing the surface treatment include after the second step, after the third step, and / or after the fourth step.
  • the surface treatment method is not particularly limited, and a known method can be appropriately selected depending on the type of surface treatment agent used.
  • titanium oxide powder having excellent hiding power and elongation when a cosmetic containing titanium oxide powder is applied to the skin, titanium oxide powder having excellent hiding power and elongation can be obtained. Further, according to the method for producing titanium oxide powder of the present embodiment, when a cosmetic containing titanium oxide powder is applied to the skin, it has excellent transparency in addition to hiding power, and is peculiar to titanium oxide particles. Titanium oxide powder can be obtained that can obtain a natural finish with reduced paleness. Further, according to the method for producing titanium oxide powder of the present embodiment, when a cosmetic containing titanium oxide powder is applied to the skin, titanium oxide powder having excellent hiding power and feel can be obtained.
  • the dispersion liquid of the present embodiment contains the titanium oxide powder of the present embodiment and the dispersion medium.
  • the dispersion of the present embodiment contains other components as needed.
  • the dispersion liquid of the present embodiment may be a low-viscosity liquid or a high-viscosity paste.
  • the content of the titanium oxide powder in the dispersion liquid of the present embodiment is not particularly limited and can be appropriately selected depending on the intended purpose.
  • the dispersion medium is not particularly limited as long as it can be blended with cosmetics, and can be appropriately selected depending on the intended purpose.
  • examples of the dispersion medium include water, alcohols, esters, ethers, ketones, hydrocarbons, amides, polysiloxanes, modified polysiloxanes, hydrocarbon oils, ester oils, higher fatty acids, and higher alcohols. And so on.
  • One of these dispersion media may be used alone, or two or more thereof may be used in combination.
  • alcohols examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, octanol, glycerin and the like.
  • esters examples include ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, ⁇ -butyrolactone and the like.
  • ethers include diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether.
  • ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, cyclohexanone and the like.
  • hydrocarbon examples include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; and cyclic hydrocarbons such as cyclohexane.
  • amides include dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
  • polysiloxanes examples include chain polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane, and diphenylpolysiloxane; cyclic polysiloxanes such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.
  • chain polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane, and diphenylpolysiloxane
  • cyclic polysiloxanes such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane.
  • modified polysiloxanes include amino-modified polysiloxane, polyether-modified polysiloxane, alkyl-modified polysiloxane, and fluorine-modified polysiloxane.
  • hydrocarbon oil examples include liquid paraffin, squalane, isoparaffin, branched chain light paraffin, petrolatum, selecin and the like.
  • ester oil examples include isopropyl myristate, cetyl isooctanoate, glyceryl trioctanoate and the like.
  • higher fatty acids examples include lauric acid, myristic acid, palmitic acid, stearic acid and the like.
  • higher alcohols examples include lauryl alcohol, cetyl alcohol, stearyl alcohol, hexyldodecanol, and isostearyl alcohol.
  • the other components are not particularly limited as long as the effects of the dispersion liquid of the present embodiment are not impaired, and can be appropriately selected depending on the intended purpose.
  • Other components include, for example, dispersants, stabilizers, water-soluble binders, thickeners, oil-soluble preservatives, UV absorbers, oil-soluble agents, oil-soluble pigments, oil-soluble proteins, vegetable oils, animal oils and the like. Can be mentioned. One of these components may be used alone, or two or more thereof may be used in combination.
  • the content of the dispersion medium in the dispersion is not particularly limited and can be appropriately selected depending on the purpose.
  • the content of the dispersion medium is preferably 10% by mass or more and 99% by mass or less, more preferably 20% by mass or more and 90% by mass or less, based on the total amount of the dispersion liquid of the present embodiment. It is more preferably more than mass% and 80% by mass or less.
  • the dispersion liquid of the present embodiment when the cosmetic containing the dispersion liquid of the present embodiment is applied to the skin, it is excellent in hiding power, elongation and / or feel. Further, according to the dispersion liquid of the present embodiment, when a cosmetic containing titanium oxide powder is applied to the skin, it has excellent transparency in addition to hiding power and elongation, and has a paleness peculiar to titanium oxide particles. It is possible to obtain a natural finish with reduced.
  • the method for producing the dispersion liquid of the present embodiment is not particularly limited, and a known method can be adopted.
  • Examples of the method for producing the dispersion liquid of the present embodiment include a method of mechanically dispersing the titanium oxide powder of the present embodiment with a dispersion medium by a dispersion device to produce a dispersion liquid. ..
  • Examples of the disperser include a stirrer, a self-revolving mixer, a homomixer, an ultrasonic homogenizer, a sand mill, a ball mill, a roll mill and the like.
  • the dispersion liquid of the present embodiment When applied to the skin, the dispersion liquid of the present embodiment has excellent elongation and / or feel, and can reduce the paleness peculiar to titanium oxide while achieving both hiding power and transparency.
  • the cosmetic of the present embodiment contains the titanium oxide powder of the present embodiment and a cosmetic base. Further, the cosmetics of another embodiment include a dispersion liquid containing titanium oxide of the present embodiment and a cosmetic base. The cosmetic of this embodiment contains other ingredients as needed.
  • the content of titanium oxide powder in the cosmetic is preferably 0.1% by mass or more and 50% by mass or less with respect to the entire cosmetic.
  • the cosmetic base can be appropriately selected from those usually used in cosmetics, and examples thereof include talc and mica.
  • One of these cosmetic bases may be used alone, or two or more thereof may be used in combination.
  • the content of the cosmetic base in the cosmetics is not particularly limited and can be appropriately selected according to the purpose.
  • the cosmetic of the present embodiment may contain other components as long as the effects of the present embodiment are not impaired.
  • ingredients can be appropriately selected from those usually used in cosmetics.
  • examples of other components include solvents, oils, surfactants, moisturizers, organic ultraviolet absorbers, antioxidants, thickeners, fragrances, colorants, bioactive components, antibacterial agents and the like.
  • One of these components may be used alone, or two or more thereof may be used in combination.
  • the content of other ingredients in the cosmetics is not particularly limited and can be appropriately selected depending on the intended purpose.
  • the method for producing the cosmetics of the present embodiment is not particularly limited, and can be appropriately selected depending on the purpose.
  • the method for producing the cosmetics of the present embodiment is, for example, a method of mixing titanium oxide powder with a cosmetic base and mixing other components for production, or mixing titanium oxide powder with existing cosmetics. Examples include a method of manufacturing, a method of mixing a dispersion containing titanium oxide with a cosmetic base and mixing other components, and a method of mixing a dispersion containing titanium oxide with an existing cosmetic. Be done.
  • the form of the cosmetic of the present embodiment is not particularly limited, and can be appropriately selected depending on the intended purpose.
  • Examples of the form of the cosmetic of the present embodiment include powder, powder solid, solid, liquid, gel and the like.
  • the dispersed form of the cosmetic is not particularly limited and can be appropriately selected depending on the purpose.
  • Examples of the dispersed form of the gel-like cosmetics include a water-in-oil (W / O type) emulsion, an oil-in-water type (O / W type) emulsion, and an oil type.
  • Examples of the cosmetics of the present embodiment include base make-up, manicure, lipstick and the like. Of these, base makeup is preferable.
  • base makeup for example, it is used as a makeup base mainly used for reducing unevenness of the skin, a foundation mainly used for adjusting the color of the skin, and mainly for improving the fixation of the foundation on the skin. Examples include face powder and the like.
  • the cosmetic of the present embodiment when applied to the skin, it has excellent elongation and / or feel and hiding power. Further, according to the cosmetic of the present embodiment, it is possible to reduce the paleness peculiar to titanium oxide particles while having a transparent feeling.
  • Example 1 Preparation of titanium oxide powder
  • 5 L of pure water is placed in a glass container, and 5 mol of tetraisopropoxytitanium (trade name: A-1, manufactured by Nippon Soda Co., Ltd.) is added dropwise with stirring to obtain a white suspension which is a hydrolysis product of titanium alkoxide. It was. The white suspension was then filtered to give white cake A, a solid portion of the hydrolysis product of titanium alkoxide.
  • a slurry (B1) was prepared by adding 5 mol (400 g) of white cake (A) in terms of titanium oxide, 7 mol of pyrrolidine (manufactured by Kanto Chemical Co., Inc.), and pure water to an autoclave to make a total of 10 kg. ..
  • the concentration of titanium oxide in the slurry (B1) was 4% by mass.
  • the slurry (B1) was held at 260 ° C. for 6 hours using an autoclave to obtain a titanium oxide particle suspension (C1).
  • the BET specific surface area of the titanium oxide powder of Example 1 was measured using a specific surface area meter (trade name: BELSORP-mini, manufactured by Nippon Bell Co., Ltd.). As a result, the BET specific surface area of the titanium oxide powder of Example 1 was 9 m 2 / g. The results are shown in Table 1.
  • the crystal phase of the titanium oxide powder of Example 1 was identified using an X-ray diffractometer (trade name: X'Pert Pro, manufactured by Spectris). As a result, the titanium oxide powder of Example 1 was anatase single phase. The results are shown in Table 1.
  • the maximum value (X) / minimum value (Y) was calculated for each particle, and was used as the arithmetic mean value of the maximum value (X) / minimum value (Y) of 50 particles.
  • Table 1 shows the maximum value (X) / minimum value (Y).
  • titanium oxide particle suspension (C2) 8 g of titanium oxide content
  • 0.7 mol of pyrrolidine, and pure water were added.
  • the slurry (D2) was adjusted so that the total amount was 1 kg.
  • the concentration of titanium oxide in the slurry (D2) was 8.8% by mass.
  • the slurry (D2) was held at 220 ° C. for 9 hours using an autoclave to obtain a titanium oxide particle suspension (E2).
  • the obtained titanium oxide particle suspension (E2) was separated into solid and liquid, and the solid was dried at 200 ° C. to obtain the titanium oxide powder of Comparative Example 1.
  • Table 1 shows the evaluation results in the same manner as in Example 1.
  • Example 1 (Evaluation of growth) The cosmetics of Example 1 and Comparative Example 1 were applied to the skin, respectively, and 10 people evaluated which cosmetic had the best growth. As a result, all 10 people evaluated that the cosmetics of Example 1 had better growth than Comparative Example 1.
  • Example 1 By comparing Example 1 and Comparative Example 1, it was confirmed that the base make-up cosmetic containing titanium oxide powder having a small average friction coefficient spreads well when applied to the skin.
  • Example 2 (Preparation of titanium oxide powder) A titanium oxide particle suspension (C1) was obtained in the same manner as in Example 1.
  • the titanium oxide particle suspension (C1) was added to 4500 g (titanium oxide content 180 g), and the white cake (A) obtained in the same manner as above was added to 4.5 mol (titanium oxide content 360 g).
  • Pyrrolidine was added to 6.5 mol and pure water was added to bring the total amount to 10 kg, and the slurry (D1) was adjusted.
  • the concentration of titanium oxide in the slurry (D1) was 5.4% by mass.
  • the slurry (D1) was held at 260 ° C. for 6 hours using an autoclave to obtain a titanium oxide particle suspension (E3).
  • the titanium oxide particle suspension (E3) was added to 4500 g (titanium oxide content 180 g), and the white cake (A) obtained in the same manner as above was added to 2.25 mol (titanium oxide content 180 g).
  • Pyrrolidine was added to 6.5 mol and pure water was added to bring the total amount to 10 kg, and the slurry (F1) was adjusted.
  • the concentration of titanium oxide in the slurry (F1) was 3.6% by mass.
  • the slurry (F1) was held at 260 ° C. for 6 hours using an autoclave to obtain a titanium oxide particle suspension (G1).
  • the titanium oxide particle suspension (G1) was separated into solid and liquid, and the solid was dried at 200 ° C.
  • the dried titanium oxide powder was crushed with a mill (manufactured by Oster, Speed 16) to obtain the titanium oxide powder of Example 2.
  • Example 2 Evaluation of average primary particle size: maximum value (X) and minimum value (Y) and evaluation of particle size distribution
  • 50 octahedral titanium oxide particles of Example 2 were observed, and the value (d10) when the cumulative volume percentage of the above (X) was 10%, the above (X).
  • the value (d50) average primary particle diameter), d10 / d50, and the ratio (X / Y) of (X) to (Y) above, when the cumulative volume percentage of (Y) was 50%, were calculated.
  • the results are shown in Table 2.
  • the SEM image of the observed titanium oxide particles is shown in FIG.
  • the average particle size of the secondary particles of the titanium oxide powder of Example 2 was measured using a particle size distribution measuring device MASTERSIZER3000 (manufactured by Malvern). That is, the volume particle size distribution d50 was obtained by dry measurement. The results are shown in Table 2.
  • the BET specific surface area of the titanium oxide powder of Example 2 was measured in the same manner as in Example 1. As a result, the BET specific surface area of the titanium oxide powder of Example 2 was 9 m 2 / g. The results are shown in Table 2.
  • Example 2 (Identification of crystal phase of titanium oxide particles) The crystal phase of the titanium oxide powder of Example 2 was identified in the same manner as in Example 1. As a result, the titanium oxide powder of Example 2 was anatase single phase. The results are shown in Table 2.
  • Example 2 The base make-up cosmetic of Example 2 was prepared in the same manner as in Example 1.
  • the base make-up cosmetic of Example 2 was applied to a 5 cm square substrate (trade name: HELIOPLATE HD-6, manufactured by Helioscreen) so as to be 12 mg to 14 mg to prepare a coated substrate.
  • a spectrophotometer model number: UV-3150, manufactured by Shimadzu Corporation
  • the diffuse transmission spectrum (TT), diffuse reflection spectrum (TR), and linear reflection spectrum (R) of the coated substrate were measured, and the following It was evaluated using an index.
  • the incident direction of light was measured from the coated surface, and the reflection spectrum was measured with reference to a molded plate obtained by compressing barium sulfate powder (special grade manufactured by Kanto Chemical Co., Inc.). The results are shown in Table 2.
  • the diffuse reflectance at 550 nm (TR 550 nm ) was used as an index of hiding power.
  • the diffuse reflectance (TR 550 nm ) is large, it can be said that the hiding power is large, so a large value is preferable.
  • Table 3 shows the correlation between the index of hiding power and the appearance of a person.
  • Example 3 In the autoclave, 4500 g (titanium oxide content 180 g) of the titanium oxide particle suspension (G1) obtained in the production process of Example 2 and the white cake (A) obtained in the same manner as above were added 2 in titanium oxide content.
  • the slurry (H1) was prepared by adding .25 mol (180 g of titanium oxide), 6.5 mol of pyrrolidine, and pure water to make the total amount 10 kg. The concentration of titanium oxide in the slurry (H1) was 3.6% by mass. Next, the slurry (H1) was held at 260 ° C. for 6 hours using an autoclave to obtain a titanium oxide particle suspension (I1).
  • the titanium oxide particle suspension (I1) was separated into solid and liquid, and the solid was dried at 200 ° C. Next, the dried titanium oxide powder was crushed with a mill (manufactured by Oster, 16 speed) to obtain the titanium oxide powder of Example 3. The results of the evaluation in the same manner as in Example 2 are shown in Table 2.
  • An SEM photograph of the titanium oxide powder of Example 3 is shown in FIG. In the obtained SEM photograph of FIG. 6, the agglomeration was loosened by crushing, and the shape of the primary particles was clearly observed as compared with the SEM photograph of FIG.
  • Example 3 The base make-up cosmetic of Example 3 was prepared in the same manner as in Example 1. Table 2 shows the evaluation results in the same manner as in Example 2.
  • Example 4 The titanium oxide powder of Example 4 was obtained in the same manner as in Example 3 except that the crushing treatment was not performed. The results of the evaluation in the same manner as in Example 2 are shown in Table 2. Further, the base make-up cosmetic of Example 4 was prepared in the same manner as in Example 1. Table 2 shows the evaluation results in the same manner as in Example 2.
  • Comparative Example 2 Spherical and rutile-type titanium oxide particles (commercially available) having a diameter of 290 nm and a specific surface area of 6 m 2 / g were used as the titanium oxide powder of Comparative Example 2. Table 2 shows the evaluation results in the same manner as in Example 2. Moreover, the base make-up cosmetic of Comparative Example 2 was prepared in the same manner as in Example 1. Table 2 shows the evaluation results in the same manner as in Example 2.
  • Comparative Example 3 The titanium oxide powder of Comparative Example 1 was used as the titanium oxide powder of Comparative Example 3, and the base make-up cosmetic of Comparative Example 1 was used as the base make-up cosmetic of Comparative Example 3 in the same manner as in Example 2. The results are shown in Table 2.
  • the BET specific surface area was 5 m 2 / g or more and 15 m 2 / g or less, and the average friction coefficient was 0.5 or less.
  • the base makeup cosmetic containing titanium oxide particles having an average secondary particle diameter of 1 ⁇ m or more and 10 ⁇ m or less is excellent in transparency and hiding power when applied to the skin, and the paleness peculiar to titanium oxide particles is reduced. Moreover, it was confirmed that the cosmetics had a good feel.
  • the present invention can provide a titanium oxide powder that improves hiding power and elongation when blended in a cosmetic, a method for producing the same, and a dispersion liquid and a cosmetic using the same.
  • the titanium oxide powder of the present invention contains polyhedral titanium oxide particles having a BET specific surface area of 5 m 2 / g or more, 15 m 2 / g or less, and eight or more faces, and was measured at 0.245 N per cm 2 . Since the average coefficient of friction is 0.5 or less, when applied to the skin, it is excellent in elongation and / or good feel and hiding power. Therefore, the titanium oxide powder of the present invention can be suitably used for base makeup cosmetics such as foundations. Further, since the titanium oxide powder of the present invention is also excellent in performance as a white pigment, it can be used for industrial applications such as white ink, and its industrial value is great.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Birds (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Epidemiology (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

This titanium oxide powder has a BET specific surface area of 5 m2/g to 15 m2/g, comprises polyhedral titanium oxide particles that have eight or more planes, and has an average friction coefficient measured at 0.245 N per 1 cm2 of 0.5 or less.

Description

酸化チタン粉体およびその製造方法、並びに、それを用いた分散液および化粧料Titanium oxide powder and its manufacturing method, and dispersions and cosmetics using it.
 本発明は、化粧料に好適な、酸化チタン粉体およびその製造方法、並びに、それを用いた分散液および化粧料に関する。
 本願は、2019年7月3日に、日本に出願された特願2019-124699号、及び、特願2019-124700号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to titanium oxide powder and a method for producing the same, which are suitable for cosmetics, and dispersions and cosmetics using the same.
The present application claims priority based on Japanese Patent Application No. 2019-124699 and Japanese Patent Application No. 2019-124700 filed in Japan on July 3, 2019, the contents of which are incorporated herein by reference.
 酸化チタン粒子は、光反射特性、紫外線遮蔽特性、隠蔽力に優れる。そのため、サブミクロンサイズからミクロンサイズの酸化チタン粒子は、ファンデーション等のベースメイク化粧料に使用されている。
 隠蔽力に優れる酸化チタン粒子としては、例えば、一粒子における向かい合う2個の頂点を結ぶ線分の長さの最大値の平均値が300nm以上かつ1000nm以下である八面体状粒子を含み、前記最大値の平均値をBET比表面積から換算される平均粒子径で除した値(最大値の平均値/BET換算平均粒子径)が1.0以上かつ2.5以下であるものが知られている(例えば、特許文献1参照)。
Titanium oxide particles are excellent in light reflection characteristics, ultraviolet shielding characteristics, and hiding power. Therefore, submicron size to micron size titanium oxide particles are used in base makeup cosmetics such as foundations.
The titanium oxide particles having excellent hiding power include, for example, octahedral particles in which the average value of the maximum values of the lengths of the line segments connecting the two facing vertices in one particle is 300 nm or more and 1000 nm or less, and the maximum value is described above. It is known that the value obtained by dividing the average value of the values by the average particle size converted from the BET specific surface area (average value of the maximum value / average particle size converted to BET) is 1.0 or more and 2.5 or less. (See, for example, Patent Document 1).
国際公開第2018/003851号International Publication No. 2018/003851
 しかしながら、隠蔽力に加え、肌に塗布した場合の化粧料の伸び及び/又は感触の良さをさらに向上させることができる酸化チタン粉体が求められていた。 However, in addition to the hiding power, there has been a demand for titanium oxide powder that can further improve the spread and / or feel of the cosmetic when applied to the skin.
 本発明は、上記事情に鑑みてなされたものであって、化粧料に配合された場合に、隠蔽力と伸び及び/又は感触の良さを向上させる酸化チタン粉体およびその製造方法、並びに、それを用いた分散液および化粧料を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a titanium oxide powder that improves hiding power, elongation and / or good feel when blended in cosmetics, a method for producing the same, and a method for producing the same. It is an object of the present invention to provide a dispersion liquid and a cosmetic using.
 すなわち、本発明の酸化チタン粉体は、BET比表面積が5m/g以上かつ15m/g以下であり、八以上の面を有する多面体形状の酸化チタン粒子を含み、1cm当たり0.245Nで測定した平均摩擦係数が0.5以下であることを特徴とする。 That is, the titanium oxide powder of the present invention has a BET specific surface area of 5 m 2 / g or more and 15 m 2 / g or less, contains polyhedral titanium oxide particles having eight or more faces, and contains 0.245 N per cm 2 . The average friction coefficient measured in 1) is 0.5 or less.
 本発明の分散液は、本発明の酸化チタン粉体と、分散媒と、を含むことを特徴とする。 The dispersion liquid of the present invention is characterized by containing the titanium oxide powder of the present invention and a dispersion medium.
 本発明の化粧料は、本発明の酸化チタン粉体と、化粧品基剤と、を含むことを特徴とする。 The cosmetic of the present invention is characterized by containing the titanium oxide powder of the present invention and a cosmetic base.
 本発明の酸化チタン粉体の製造方法は、所定濃度のチタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物と、窒素を含む五員環を有する化合物とを混合して、反応溶液を調製する工程と、前記反応溶液を水熱合成する工程と、を有し、前記所定濃度が、前記反応溶液中の酸化チタン分の濃度で0.4質量%以上かつ6.4質量%以下であることを特徴とする。 In the method for producing titanium oxide powder of the present invention, a reaction solution is obtained by mixing a hydrolysis product of titanium alkoxide or a hydrolysis product of a titanium metal salt having a predetermined concentration and a compound having a five-membered ring containing nitrogen. A step of preparing the reaction solution and a step of hydrothermally synthesizing the reaction solution, and the predetermined concentration is 0.4% by mass or more and 6.4% by mass or less of the concentration of titanium oxide in the reaction solution. It is characterized by being.
 本発明の酸化チタン粉体によれば、化粧料に配合して肌に塗布した場合に、隠蔽力と伸び及び/又は感触の良さに優れる酸化チタン粉体、並びに、それを用いた分散液および化粧料を提供できる。 According to the titanium oxide powder of the present invention, a titanium oxide powder having excellent hiding power, elongation and / or good feel when blended in a cosmetic and applied to the skin, and a dispersion using the same, and a dispersion liquid using the same. Can provide cosmetics.
 本発明の分散液によれば、この分散液を含む化粧料を肌に塗布した場合に、隠蔽力と伸び及び/又は感触の良さに優れる。 According to the dispersion liquid of the present invention, when a cosmetic containing this dispersion liquid is applied to the skin, it is excellent in hiding power, elongation and / or good feel.
 本発明の化粧料によれば、肌に塗布した場合に、隠蔽力と伸び及び/又は感触の良さに優れる。 According to the cosmetic of the present invention, when applied to the skin, it is excellent in hiding power, elongation and / or good feel.
 本発明の酸化チタン粉体の製造方法によれば、化粧料に配合して肌に塗布した場合に、隠蔽力と伸び及び/又は感触の良さに優れる酸化チタン粉体を提供できる。 According to the method for producing titanium oxide powder of the present invention, it is possible to provide titanium oxide powder having excellent hiding power, elongation and / or good feel when blended with cosmetics and applied to the skin.
八面体状の酸化チタン粒子の一例を示す模式図である。It is a schematic diagram which shows an example of octahedral titanium oxide particles. 八面体状の酸化チタン粒子の一例を示す別の模式図である。It is another schematic diagram which shows an example of octahedral titanium oxide particles. 平均摩擦係数測定前の状態を示す模式図である。It is a schematic diagram which shows the state before the average friction coefficient measurement. 平均摩擦係数測定後の状態を示す模式図である。It is a schematic diagram which shows the state after the average friction coefficient measurement. 実施例1の酸化チタン粉体の一例を示す走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image which shows an example of the titanium oxide powder of Example 1. FIG. 実施例3の酸化チタン粉体の一例を示す走査型電子顕微鏡像を示す図である。It is a figure which shows the scanning electron microscope image which shows an example of the titanium oxide powder of Example 3.
 本発明の酸化チタン粉体およびその製造方法、並びに、それを用いた分散液および化粧料の実施の形態の好ましい例について以下に説明する。
 なお、本実施の形態は、発明の趣旨をよりよく理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。例えば、特に制限の無い限り、材料、量、種類、数、サイズ、比率、時間、温度などの条件などを、必要に応じて変更、追加、及び省略してもよい。
A preferred example of the titanium oxide powder of the present invention, a method for producing the same, and an embodiment of a dispersion liquid and a cosmetic using the same will be described below.
It should be noted that the present embodiment is specifically described in order to better understand the gist of the invention, and is not limited to the present invention unless otherwise specified. For example, unless otherwise specified, conditions such as material, quantity, type, number, size, ratio, time, and temperature may be changed, added, or omitted as necessary.
[酸化チタン粉体]
 本実施形態の酸化チタン粉体は、BET比表面積が5m/g以上かつ15m/g以下であり、八以上の面を有する多面体形状の酸化チタン粒子を含み、1cm当たり0.245Nで測定した平均摩擦係数が0.5以下である。
[Titanium oxide powder]
The titanium oxide powder of the present embodiment has a BET specific surface area of 5 m 2 / g or more and 15 m 2 / g or less, contains polyhedral-shaped titanium oxide particles having eight or more faces, and is 0.245 N per cm 2 . The measured average coefficient of friction is 0.5 or less.
(BET比表面積)
 本実施形態の酸化チタン粉体のBET比表面積は、5m/g以上かつ15m/g以下であり、5m/g以上かつ13m/g以下であることが好ましい。5m/g以上かつ8m/g以下や、8m/g以上かつ10m/g以下や、10m/g以上かつ13m/g以下などの範囲であってもよい。
 酸化チタン粉体のBET比表面積が5m/g以上かつ15m/g以下であると、隠蔽力と透明感を有しながら、酸化チタン粒子特有の青白さをより低減させることができる点で有利である。酸化チタン粉体のBET比表面積が5m/g以上であると、光散乱により透明感が低下しない。一方、酸化チタン粉体のBET比表面積が15m/gを超えないと、短波長の光散乱強度が長波長の光散乱強度と比較して増大することがなく、青白さが増大しない。
(BET specific surface area)
The BET specific surface area of the titanium oxide powder of the present embodiment is preferably 5 m 2 / g or more and 15 m 2 / g or less, and preferably 5 m 2 / g or more and 13 m 2 / g or less. The range may be 5 m 2 / g or more and 8 m 2 / g or less, 8 m 2 / g or more and 10 m 2 / g or less, 10 m 2 / g or more and 13 m 2 / g or less.
When the BET specific surface area of the titanium oxide powder is 5 m 2 / g or more and 15 m 2 / g or less, the paleness peculiar to the titanium oxide particles can be further reduced while having hiding power and transparency. It is advantageous. When the BET specific surface area of the titanium oxide powder is 5 m 2 / g or more, the transparency does not decrease due to light scattering. On the other hand, if the BET specific surface area of the titanium oxide powder does not exceed 15 m 2 / g, the short wavelength light scattering intensity does not increase as compared with the long wavelength light scattering intensity, and the bluish whiteness does not increase.
 BET比表面積の測定方法としては、例えば、全自動比表面積測定装置、具体例を挙げれば全自動比表面積測定装置(商品名:BELSORP-MiniII、マイクロトラック・ベル社製)を用い、BET多点法による窒素吸着等温線から測定する方法が挙げられる。 As a method for measuring the BET specific surface area, for example, a fully automatic specific surface area measuring device, for example, a fully automatic specific surface area measuring device (trade name: BELSORP-MiniII, manufactured by Microtrac Bell) is used, and many BET points are used. A method of measuring from the nitrogen adsorption isotherm by the method can be mentioned.
(酸化チタン粒子)
 本実施形態の酸化チタン粉体は、酸化チタン粒子の集合体である。
 本実施形態の酸化チタン粒子の形状は、八以上の面を有する多面体形状を含む。
 酸化チタン粒子の形状が、八以上の面を有することにより、光を広範囲に散乱することができる。このため、酸化チタン粉体を含む化粧料が肌に塗布された時に、透明感と隠蔽力を向上させることができる。
(Titanium oxide particles)
The titanium oxide powder of this embodiment is an aggregate of titanium oxide particles.
The shape of the titanium oxide particles of the present embodiment includes a polyhedral shape having eight or more faces.
Since the shape of the titanium oxide particles has eight or more surfaces, light can be scattered over a wide range. Therefore, when a cosmetic containing titanium oxide powder is applied to the skin, the transparency and hiding power can be improved.
 酸化チタン粉体中における八以上の面を有する多面体形状の酸化チタン粒子の含有率は、後述する方法によって算出される個数%で表わされる。すなわち、酸化チタン粉体中の八以上の面を有する多面体形状の酸化チタン粒子の含有率は、50個数%以上であることが好ましく、60個数%以上であってもよく、70個数%以上であってもよい。酸化チタン粉体中の八以上の面を有する多面体形状の酸化チタン粒子の含有率の上限は70個数%であってもよく、80個数%であってもよく、90個数%であってもよく、100個数%であってもよい。
 酸化チタン粉体中における八以上の面を有する多面体形状の酸化チタン粒子の含有率が50個数%以上であると、酸化チタン粉体を含む化粧料を肌に塗布した場合に、優れた隠蔽力と、透明感を有しながら、酸化チタン粒子特有の青白さをより低減することができる点で好ましい。
The content of polyhedral titanium oxide particles having eight or more faces in the titanium oxide powder is represented by the number% calculated by the method described later. That is, the content of the polyhedral-shaped titanium oxide particles having eight or more faces in the titanium oxide powder is preferably 50% by number or more, 60% by number or more, or 70% by number or more. There may be. The upper limit of the content of polyhedral titanium oxide particles having eight or more faces in the titanium oxide powder may be 70% by number, 80% by number, or 90% by number. , 100% by number.
When the content of polyhedron-shaped titanium oxide particles having eight or more faces in the titanium oxide powder is 50% by number or more, excellent hiding power is obtained when a cosmetic containing the titanium oxide powder is applied to the skin. It is preferable in that the paleness peculiar to the titanium oxide particles can be further reduced while having a transparent feeling.
 本実施形態の酸化チタン粉体中における八以上の面を有する多面体形状の酸化チタン粒子の含有率、すなわち、個数%は、例えば、走査型電子顕微鏡(SEM;Scanning Electron Microscope)により、酸化チタン粉体に含まれる酸化チタン粒子を50個観察し、この50個に含まれる八以上の面を有する多面体形状の酸化チタン粒子の数を数えることにより算出した値である。 The content of the polyhedron-shaped titanium oxide particles having eight or more faces in the titanium oxide powder of the present embodiment, that is, the number%, is determined by, for example, a scanning electron microscope (SEM), the titanium oxide powder. It is a value calculated by observing 50 titanium oxide particles contained in the body and counting the number of polyhedron-shaped titanium oxide particles having eight or more faces contained in the 50 particles.
 酸化チタン粒子の向かい合う2個の頂点を結ぶ線分の長さの最大値は、酸化チタン粉体のBET比表面積が5m/g以上かつ15m/g以下となれば、特に限定されない。例えば、前記最大値は100nm以上かつ1000nm以下であることが好ましく、150nm以上かつ800nm以下であることがより好ましく、200nm以上かつ750nm以下であることがさらに好ましい。なお、前記向かい合う2個の頂点は、隣り合う頂点ではない。すなわち、前記2個の頂点において、頂点と頂点を結ぶ線分は、粒子の表面を通らず、粒子の内部を通る線分である。互いに最も遠い位置にある頂点の組み合わせによって、前記最大値が得られる。 The maximum value of the length of the line segment connecting the two opposite vertices of the titanium oxide particles is not particularly limited as long as the BET specific surface area of the titanium oxide powder is 5 m 2 / g or more and 15 m 2 / g or less. For example, the maximum value is preferably 100 nm or more and 1000 nm or less, more preferably 150 nm or more and 800 nm or less, and further preferably 200 nm or more and 750 nm or less. The two vertices facing each other are not adjacent vertices. That is, in the two vertices, the line segment connecting the vertices is a line segment that does not pass through the surface of the particle but passes through the inside of the particle. The maximum value is obtained by the combination of vertices located farthest from each other.
 八以上の面を有する多面体形状は、任意に選択できる。多面体形状を有する粒子とは、複数の面を持つ粒子である。多面体形状としては、例えば、八面体状、十面体状、十二面体状、二十四面体状、星型状等の形状が挙げられる。多面体形状の各面は、実質的に全てが同じ形であってもよく、または、2種等の複数の互いに異なる形の面を含んでもよい。多面体形状は、正多面体形状であってもよく、その他の多面体形状であってもよい。多面体形状の具体例としては、例えば、正八面体や双四角錐等の形状が挙げられる。これらの中でも、広範囲にわたって光を散乱できる点において、八面体状が好ましい。
 多面体形状には、多面体の角が丸っぽくなっており、全体的または一部が丸みを帯びた形状のものも含む。
 多面体形状には、多面体形状の粒子が一部破損した形状も含まれる。すなわち、多面体形状の粒子と類似する形状を有し、この形状が破損によって多面体形状の粒子から形成されたことが推測される場合には、多面体形状の粒子とみなすこととする。
 また、多面体形状の粒子同士が凝集した凝集粒子も含まれる。
A polyhedral shape having eight or more faces can be arbitrarily selected. A particle having a polyhedral shape is a particle having a plurality of faces. Examples of the polyhedral shape include octahedron, tetrahedron, dodecahedron, icositetrahedron, and star shape. Each face of the polyhedral shape may have substantially the same shape, or may include a plurality of faces having different shapes such as two types. The polyhedral shape may be a regular polyhedral shape or another polyhedral shape. Specific examples of the polyhedral shape include shapes such as a regular octahedron and a double quadrangular pyramid. Among these, the octahedral shape is preferable in that light can be scattered over a wide range.
The polyhedral shape also includes a shape in which the corners of the polyhedron are rounded and the shape is rounded in whole or in part.
The polyhedral shape also includes a shape in which particles of the polyhedral shape are partially damaged. That is, when it has a shape similar to the polyhedral-shaped particles and it is presumed that this shape is formed from the polyhedral-shaped particles due to breakage, it is regarded as the polyhedral-shaped particles.
In addition, agglomerated particles in which polyhedral-shaped particles are agglomerated are also included.
 以下、本実施形態の好ましい例である、八面体状の酸化チタン粒子について詳述する。 Hereinafter, octahedral titanium oxide particles, which is a preferable example of the present embodiment, will be described in detail.
(八面体状の酸化チタン粒子)
 以下に説明する八面体状とは、図1に示すような、内部の空間を、8つの三角形で囲んだ立体の形状である。8つの三角形は、全て同じ形状であってもよく、または、2タイプの異なる形状を含む等、2種以上の異なる形状が含まれてもよい。
 なお、八面体状の酸化チタン粒子の各頂点(図1において、符号A、B、C、D、E、Fで示す点)の先端部は、尖っている形状、丸みを帯びた形状、扁平した形状であってもよい。また、八面体の角が丸っぽくなっており、全体的または一部が丸みを帯びた形状のものも含む。 また、八面体状の酸化チタン粒子には、八面体状粒子の一部が破損した形状も含まれる。すなわち、八面体状の粒子と類似する形状を有し、この形状が破損によって八面体状粒子から形成されたことが推測される場合には、八面体状の粒子とみなすこととする。
 また、八面体状の酸化チタン粒子は、八面体状の酸化チタン粒子同士が凝集した凝集粒子であってもよい。
(Octahedron-shaped titanium oxide particles)
The octahedron shape described below is a three-dimensional shape in which the internal space is surrounded by eight triangles as shown in FIG. The eight triangles may all have the same shape, or may include two or more different shapes, including two different shapes.
The tips of the vertices of the octahedral titanium oxide particles (points indicated by the symbols A, B, C, D, E, and F in FIG. 1) have a sharp shape, a rounded shape, and a flat shape. It may have a shaped shape. It also includes octahedrons with rounded corners, all or part of which are rounded. Further, the octahedral titanium oxide particles include a shape in which a part of the octahedral particles is damaged. That is, when it has a shape similar to the octahedral particles and it is presumed that this shape is formed from the octahedral particles due to breakage, it is regarded as the octahedral particles.
Further, the octahedral titanium oxide particles may be aggregated particles in which octahedral titanium oxide particles are aggregated with each other.
 本実施形態の酸化チタン粉体中において、八面体状の酸化チタン粒子(以下、「八面体状粒子」と略記する場合がある。)の含有率は、50個数%以上であることが好ましく、55個数%以上であってもよく、60個数%以上であってもよい。
 本実施形態の酸化チタン粉体中において、八面体状粒子の含有率の上限は、70個数%であってもよく、80個数%であってもよく、90個数%であってもよく、100個数%であってもよい。
 酸化チタン粉体中における八面体状粒子の含有率が50個数%以上であると、酸化チタン粉体を含む化粧料を肌に塗布した場合に、優れた隠蔽力と、透明感を有しながら、酸化チタン粒子特有の青白さをより低減することができる点で有利である。
In the titanium oxide powder of the present embodiment, the content of octahedral titanium oxide particles (hereinafter, may be abbreviated as "octahedral particles") is preferably 50% by number or more. It may be 55% or more, or 60% or more.
In the titanium oxide powder of the present embodiment, the upper limit of the content of octahedral particles may be 70% by number, 80% by number, 90% by number, 100. The number may be%.
When the content of octahedral particles in the titanium oxide powder is 50% by number or more, when a cosmetic containing the titanium oxide powder is applied to the skin, it has excellent hiding power and transparency. , It is advantageous in that the paleness peculiar to titanium oxide particles can be further reduced.
 本実施形態の酸化チタン粉体中における八面体状粒子の含有率は、例えば、走査型電子顕微鏡により、酸化チタン粉体に含まれる酸化チタン粒子を50個観察し、この50個に含まれる八面体状粒子の数を数えることにより算出できる。 Regarding the content of octahedral particles in the titanium oxide powder of the present embodiment, for example, 50 titanium oxide particles contained in the titanium oxide powder are observed with a scanning electron microscope, and the content of the octahedral particles is included in the 50 particles. It can be calculated by counting the number of octahedral particles.
 八面体状とは、図1に示すような、空間を8つの三角形で囲んだ立体の形状である。
 なお、八面体状の酸化チタン粒子の各頂点(図1において、符号A、B、C、D、E、Fで示す点)の先端部は、尖っている形状、丸みを帯びた形状、扁平した形状であってもよい。
The octahedron shape is a three-dimensional shape in which a space is surrounded by eight triangles, as shown in FIG.
The tips of the vertices of the octahedral titanium oxide particles (points indicated by the symbols A, B, C, D, E, and F in FIG. 1) have a sharp shape, a rounded shape, and a flat shape. It may have a shaped shape.
(向かい合う2個の頂点を結ぶ線分)
 八面体状粒子の向かい合う2個の頂点を結ぶ線分(以下、「頂点間距離」と称することがある。)の最大値は、酸化チタン粉体のBET比表面積が5m/g以上かつ15m/g以下となれば、特に限定されない。例えば、前記最大値は100nm以上かつ1000nm以下であることが好ましく、150nm以上かつ800nm以下であることがより好ましく、200nm以上かつ700nm以下であることがさらに好ましく、250nm以上かつ600nm以下であることが最も好ましい。
(A line segment connecting two vertices facing each other)
The maximum value of the line segment connecting the two opposite vertices of the octahedral particles (hereinafter, may be referred to as "distance between vertices") is that the BET specific surface area of the titanium oxide powder is 5 m 2 / g or more and 15 m. As long as it is 2 / g or less, it is not particularly limited. For example, the maximum value is preferably 100 nm or more and 1000 nm or less, more preferably 150 nm or more and 800 nm or less, further preferably 200 nm or more and 700 nm or less, and more preferably 250 nm or more and 600 nm or less. Most preferred.
 向かい合う2個の頂点間距離の最大値が100nm以上かつ1000nm以下の八面体状粒子は、球状、および紡錘状の酸化チタン粒子と比較して、可視光線を広範囲に散乱させることができる。そのため、八面体状粒子を含む酸化チタン粉体を含有する化粧料は、隠蔽力と透明感を両立しつつ、酸化チタン粒子特有の青白さが低減できると推測される。
 八面体状粒子の向かい合う2個の頂点間距離の最大値が100nm以上かつ1000nm以下であると、肌に塗布した場合に、優れた透明感を有しながら、酸化チタン粒子特有の青白さをより低減することができる点で有利である。
Octahedral particles having a maximum distance between two vertices facing each other of 100 nm or more and 1000 nm or less can scatter visible light in a wider range than spherical and spindle-shaped titanium oxide particles. Therefore, it is presumed that a cosmetic containing titanium oxide powder containing octahedral particles can reduce the paleness peculiar to titanium oxide particles while achieving both hiding power and transparency.
When the maximum value of the distance between the two vertices facing each other of the octahedral particles is 100 nm or more and 1000 nm or less, when applied to the skin, the paleness peculiar to the titanium oxide particles is further enhanced while having an excellent transparency. It is advantageous in that it can be reduced.
 八面体状粒子の、向かい合う2個の頂点(図1における点A、点B)を結ぶ線分(図1における八面体状粒子の長軸m)の最大値をX(nm)とし、その最大値に係る線分(図1における八面体状粒子の長軸m)に略直交する、八面体状粒子の向かい合う2個の頂点(図1における、点Cと点E、または、点Dと点F)を結ぶ線分(図1における八面体状粒子の短軸n、o)の最小値をY(nm)としたとき、Yに対するXの比(X/Y)の平均値は、1.5以上かつ3.0以下であることが好ましく、1.5以上かつ2.5以下であることがより好ましい。 The maximum value of the line segment (long axis m of the octahedral particle in FIG. 1) connecting the two opposing vertices (point A and point B in FIG. 1) of the octahedral particle is X (nm), and the maximum value thereof. Two vertices of the octahedral particles facing each other (points C and E or points D and points in FIG. 1) substantially orthogonal to the line segment related to the value (long axis m of the octahedral particles in FIG. 1). When the minimum value of the line segment connecting F) (minor axis n, o of the octahedral particles in FIG. 1) is Y (nm), the average value of the ratio of X to Y (X / Y) is 1. It is preferably 5 or more and 3.0 or less, and more preferably 1.5 or more and 2.5 or less.
 上記の比(X/Y)が、1.5以上かつ3.0以下であると、八面体状粒子を含む酸化チタン粉体を含有する化粧料は、肌に塗布した場合に、八面体状粒子の光散乱効果をより効果的に得ることができ、透明感をより向上させることができる点で有利である。 When the above ratio (X / Y) is 1.5 or more and 3.0 or less, the cosmetic containing titanium oxide powder containing octahedral particles has an octahedral shape when applied to the skin. It is advantageous in that the light scattering effect of the particles can be obtained more effectively and the transparency can be further improved.
 上記の略直交とは、2つの線分(八面体状粒子の長軸と短軸)が70°~90°の角度で交わることを指す。また、上記の略直交とは、2つの線分(八面体状粒子の長軸と短軸)が接近して交わっていればよく、必ずしも2つの線分(八面体状粒子の長軸と短軸)が交点を有していなくてもよい。 The above-mentioned substantially orthogonality means that two line segments (major axis and minor axis of octahedral particles) intersect at an angle of 70 ° to 90 °. Further, the above substantially orthogonal means that two line segments (major axis and minor axis of octahedral particles) may intersect in close proximity, and two line segments (major axis and short axis of octahedral particles) are not necessarily required. The axis) does not have to have an intersection.
 八面体状とは、2個の四角錘が四角形の底面を共有した形状の双四角錐である。本実施形態における八面体状とは、2つの合同な四角錐が正方形の底面を共有した形状であることが好ましい。また、本実施形態では、四角錐の側面形状が二等辺三角形であり、正三角形ではない。そして、八面体状粒子の向かい合う2個の頂点間距離の最大値(X)とは、四角錘の底面に対して直交する方向に存在する2個の頂点間距離を与える線分の長さを意味する。また、八面体状粒子の向かい合う2個の頂点間距離の最小値(Y)とは、2個の四角錘の底面の2本の対角線のうち、短い方の対角線の長さを意味する。 The octahedron shape is a double quadrangular pyramid in which two quadrangular pyramids share the bottom surface of the quadrangle. The octahedral shape in the present embodiment is preferably a shape in which two congruent quadrangular pyramids share a square bottom surface. Further, in the present embodiment, the side surface shape of the quadrangular pyramid is an isosceles triangle, not an equilateral triangle. The maximum value (X) of the distance between the two vertices facing each other of the octahedral particles is the length of the line segment that gives the distance between the two vertices existing in the direction orthogonal to the bottom surface of the square pyramid. means. Further, the minimum value (Y) of the distance between two vertices facing each other of the octahedral particles means the length of the shorter diagonal line of the two diagonal lines on the bottom surfaces of the two square pyramids.
 ここで、2個の頂点間距離について図面を用いて説明する。図1は、本実施形態の酸化チタン粒子における八面体状の酸化チタン粒子の一例を示す概略図である。八面体状粒子の2個の頂点間距離は、図1において、点Aと点C間の距離a、点Aと点D間の距離b、点Aと点E間の距離c、点Aと点F間の距離d、点Cと点D間の距離e、点Dと点E間の距離f、点Eと点F間の距離g、点Fと点C間の距離h、点Bと点C間の距離i、点Bと点D間の距離j、点Bと点E間の距離k、点Bと点F間の距離l、点Cと点E間の距離n、点Dと点F間の距離o、点Aと点B間の距離mの15個が存在する。図1において、八面体状粒子の向かい合う2個の頂点間距離とは、点Cと点E間の距離n、点Dと点F間の距離o、点Aと点B間の距離mの3個である。八面体状粒子の向かい合う2個の頂点間距離の最大値が、距離mであり、八面体状粒子の向かい合う2個の頂点間距離の最大値(X)に相当する。また、図1において、最大値Xに係る線分に略直交する、八面体状粒子の向かい合う2個の頂点を結ぶ線分は、距離nおよび距離oである。距離nと距離oのうち、短い方が八面体状粒子の向かい合う2個の頂点間距離の最小値(Y)に相当する。 Here, the distance between the two vertices will be explained using drawings. FIG. 1 is a schematic view showing an example of octahedral titanium oxide particles in the titanium oxide particles of the present embodiment. The distance between the two apex of the octahedral particle is the distance a between the point A and the point C, the distance b between the point A and the point D, the distance c between the point A and the point E, and the point A in FIG. Distance d between points F, distance e between points C and D, distance f between points D and E, distance g between points E and F, distance h between points F and C, and points B Distance i between points C, distance j between points B and D, distance k between points B and E, distance l between points B and F, distance n between points C and E, and points D There are 15 distances o between points F and m distances between points A and B. In FIG. 1, the distance between two vertices facing each other of the octahedral particles is 3 such as the distance n between the points C and E, the distance o between the points D and F, and the distance m between the points A and B. It is an individual. The maximum value of the distance between the two vertices of the octahedral particle facing each other is the distance m, which corresponds to the maximum value (X) of the distance between the two vertices of the octahedral particle facing each other. Further, in FIG. 1, the line segments connecting the two opposite vertices of the octahedral particles, which are substantially orthogonal to the line segment related to the maximum value X, are the distance n and the distance o. Of the distance n and the distance o, the shorter one corresponds to the minimum value (Y) of the distance between the two vertices facing each other of the octahedral particles.
 八面体状粒子の向かい合う2個の頂点間距離の最大値(X)(nm)と、八面体状粒子の向かい合う2個の頂点間距離の最小値(Y)(nm)は、例えば、走査型電子顕微鏡(SEM)を用いて、八面体状粒子を観察することにより測定することができる。
 八面体状粒子の一部が破損している場合で、破損前の形状が推測できる場合には、破損前の八面体状粒子の形状で、上記の最大値X(nm)と上記の最小値(Y)nmを測定する。八面体状粒子同士が凝集している場合には、凝集粒子における八面体状粒子1個の形状を推測し、上記の最大値X(nm)と上記の最小値(Y)nmを測定する。
The maximum value (X) (nm) of the distance between two vertices facing each other of the octahedral particle and the minimum value (Y) (nm) of the distance between the two vertices facing each other of the octahedral particle are, for example, scanning type. It can be measured by observing the octahedral particles using a scanning electron microscope (SEM).
If a part of the octahedral particles is damaged and the shape before the damage can be estimated, the shape of the octahedral particles before the damage is the above maximum value X (nm) and the above minimum value. (Y) nm is measured. When the octahedral particles are agglomerated with each other, the shape of one octahedral particle in the agglomerated particles is estimated, and the maximum value X (nm) and the minimum value (Y) nm are measured.
 上記の比(X/Y)は、走査型電子顕微鏡(SEM)を用いて、酸化チタン粒子を観察し、上記の最大値(X)と上記の最小値(Y)を測定して算出する。 The above ratio (X / Y) is calculated by observing titanium oxide particles using a scanning electron microscope (SEM) and measuring the above maximum value (X) and the above minimum value (Y).
(平均摩擦係数)
 本実施形態の酸化チタン粉体は、1cm当たり0.245Nで測定した平均摩擦係数が0.5以下であり、0.4以下であることが好ましく、0.3以下であることがより好ましい。平均摩擦係数の下限値は0であるが、0.1以上であってもよい。
 平均摩擦係数が0.5以下であることにより、酸化チタン粉体を化粧料に配合した場合、伸びに優れる化粧料を得ることができる。
(Average coefficient of friction)
The titanium oxide powder of the present embodiment has an average coefficient of friction measured at 0.245 N per cm 2 of 0.5 or less, preferably 0.4 or less, and more preferably 0.3 or less. .. The lower limit of the average coefficient of friction is 0, but it may be 0.1 or more.
Since the average friction coefficient is 0.5 or less, when titanium oxide powder is blended in the cosmetic, a cosmetic having excellent elongation can be obtained.
(摩擦係数の偏差)
 本実施形態の酸化チタン粉体は、1cm当たり0.245Nで測定した摩擦係数の偏差が0.020以下であることが好ましく、0.015以下であることがより好ましい。
 平均摩擦係数が0.5以下であり、かつ、摩擦係数の偏差が0.020以下であると、酸化チタン粉体を化粧料に配合した場合、感触により優れる化粧料を得ることができる。
(Deviation of coefficient of friction)
The titanium oxide powder of the present embodiment preferably has a coefficient of friction deviation of 0.020 or less, more preferably 0.015 or less, measured at 0.245 N per cm 2 .
When the average friction coefficient is 0.5 or less and the deviation of the friction coefficient is 0.020 or less, when the titanium oxide powder is blended with the cosmetic, a cosmetic having a better feel can be obtained.
 本実施形態の酸化チタン粉体の平均摩擦係数および摩擦係数の偏差は、摩擦感テスター、好ましくは摩擦感テスター(型番:KES-SE、カトーテック社製)を用いて、以下の手順で測定した値である。
 図3は、平均摩擦係数と摩擦係数の偏差を測定する前の、摩擦感テスターと粉体の状態を示す模式図である。
 図3に示すように、摩擦感テスター100は、ステージ200と、ステージ200上に配置される肌模型基板300と、肌模型基板300上に配置される酸化チタン粉体10の摩擦係数を測定するピアノ線センサー400と、ピアノ線センサー400で測定した摩擦係数を検出する検出部500と、を備える。
 図3に示すように、ステージ200上にて、酸化チタン粉体10を1g載せた肌模型基板(基板の例:頬部肌模型30代(φ55mm×5Tmm)、ビューラックス社製)300を、酸化チタン粉体10が、1cmピアノ線センサー(装置標準)400の下に来るように配置する。全ての酸化チタン粉体10がピアノ線センサー400の下に配置される必要がある。このため、酸化チタン粉体10は、肌模型基板300上に1cm以内の範囲に配置する。次いで、ピアノ線センサー400を酸化チタン粉体10に、25g荷重(25×10-3kg×9.8m/s=0.245N)となるように接触させる。次いで、ステージ200上にて、肌模型基板300を1mm/sの速度で水平方向に30mm移動させることで、酸化チタン粉体10の平均摩擦係数と摩擦係数の偏差を測定することができる。
 図4は、ステージ上にて、酸化チタン粉体を載せた肌模型基板を水平方向に移動させ後の状態を示す模式図である。
The average friction coefficient and the deviation of the friction coefficient of the titanium oxide powder of the present embodiment were measured by the following procedure using a friction feeling tester, preferably a friction feeling tester (model number: KES-SE, manufactured by Kato Tech Co., Ltd.). The value.
FIG. 3 is a schematic view showing the state of the friction feeling tester and the powder before measuring the deviation between the average friction coefficient and the friction coefficient.
As shown in FIG. 3, the friction tester 100 measures the friction coefficient of the stage 200, the skin model substrate 300 arranged on the stage 200, and the titanium oxide powder 10 arranged on the skin model substrate 300. It includes a piano wire sensor 400 and a detection unit 500 that detects the friction coefficient measured by the piano wire sensor 400.
As shown in FIG. 3, on the stage 200, a skin model substrate (example of the substrate: cheek skin model 30s (φ55 mm × 5 Tmm), manufactured by Bulux Co., Ltd.) on which 1 g of titanium oxide powder 10 was placed was placed. Place the titanium oxide powder 10 so that it is below the 1 cm 2 piano wire sensor (device standard) 400. All titanium oxide powders 10 need to be placed under the piano wire sensor 400. Therefore, the titanium oxide powder 10 is arranged on the skin model substrate 300 within a range of 1 cm 2 or less. Next, the piano wire sensor 400 is brought into contact with the titanium oxide powder 10 so as to have a load of 25 g (25 × 10 -3 kg × 9.8 m / s 2 = 0.245 N). Next, by moving the skin model substrate 300 horizontally by 30 mm at a speed of 1 mm / s on the stage 200, the deviation between the average friction coefficient and the friction coefficient of the titanium oxide powder 10 can be measured.
FIG. 4 is a schematic view showing a state after the skin model substrate on which the titanium oxide powder is placed is moved in the horizontal direction on the stage.
(結晶相)
 本実施形態の酸化チタン粉体の結晶相は、特に限定されず、アナターゼ型、ルチル型およびブルッカイト型のいずれか1つの単相であってもよく、これらの混相であってもよい。これらの中でも、本実施形態の酸化チタン粉体の結晶相は、アナターゼ型が好ましい。
 酸化チタン粉体の結晶相が、アナターゼ型であると、酸化チタン粉体を含む化粧料を肌に塗布した場合に、隠蔽力がより高まり、化粧品基剤と混合した場合に、人の肌の色味に近い色が得られる点で有利である。
(Crystal phase)
The crystal phase of the titanium oxide powder of the present embodiment is not particularly limited, and may be a single phase of any one of anatase type, rutile type and brookite type, and may be a mixed phase thereof. Among these, the crystal phase of the titanium oxide powder of the present embodiment is preferably anatase type.
When the crystal phase of the titanium oxide powder is anatase type, the hiding power is further enhanced when a cosmetic containing the titanium oxide powder is applied to the skin, and when mixed with a cosmetic base, the human skin It is advantageous in that a color close to the color can be obtained.
 酸化チタン粉体がアナターゼ型であることは、例えば、X線回折装置、具体例を挙げればX線回折装置(商品名:X’Pert PRO、スペクトリス社製)により確認することができる。X線回折装置による測定結果が、アナターゼ単相であれば、酸化チタン粉体がアナターゼ型であることが分かる。 The fact that the titanium oxide powder is anatase type can be confirmed by, for example, an X-ray diffractometer, for example, an X-ray diffractometer (trade name: X'Pert PRO, manufactured by Spectris). If the measurement result by the X-ray diffractometer is anatase single phase, it can be seen that the titanium oxide powder is anatase type.
(粒度分布)
 本実施形態の酸化チタン粉体では、八以上の面を有する多面体形状の酸化チタン粒子の、向かい合う2個の頂点を結ぶ線分の長さの最大値の、体積基準の粒度分布の累積体積百分率が10%の場合の前記最大値(d10)を、累積体積百分率が50%の場合の前記最大値(d50)で除した値(d10/d50)(以下、「d10/d50」と略記する場合がある。)が、0.3以上かつ1以下であることが好ましい。d10/d50の下限は、0.4以上であってもよく、0.5以上であってもよい。d10/d50の上限は、0.9以下であってもよく、0.8以下であってもよく、0.7以下であってもよく、0.6以下であってもよい。
 d10/d50が上記範囲であることにより、化粧料に配合された場合に、より伸びに優れる化粧料が得られる。
(Particle size distribution)
In the titanium oxide powder of the present embodiment, the cumulative volume percentage of the volume-based particle size distribution of the maximum value of the length of the line segment connecting the two opposing vertices of the polyhedral-shaped titanium oxide particles having eight or more faces. The value (d10 / d50) obtained by dividing the maximum value (d10) when is 10% by the maximum value (d50) when the cumulative volume percentage is 50% (hereinafter, abbreviated as "d10 / d50"). ) Is preferably 0.3 or more and 1 or less. The lower limit of d10 / d50 may be 0.4 or more, or 0.5 or more. The upper limit of d10 / d50 may be 0.9 or less, 0.8 or less, 0.7 or less, or 0.6 or less.
When d10 / d50 is in the above range, a cosmetic having more excellent elongation can be obtained when blended in the cosmetic.
 d10、d50は、以下の手順で求められる。50個の八以上の面を有する多面体形状の粒子の向かい合う2個の頂点間距離の最大値をそれぞれ測定する。測定された前記最大値を3乗し、定数を掛けて体積とする。定数は酸化チタン粒子の形状に応じて適宜決定すればよい。例を挙げると、八以上の面を有する多面体形状の場合の定数は0.145であり、球状の場合の定数は4.19(4π/3)である。測定された前記最大値と、計算により求めた体積値を用いて、前記最大値の体積粒度分布を算出する。d10は累積10%時の、d50は累積50%時の前記最大値を意味する。 D10 and d50 are obtained by the following procedure. The maximum value of the distance between two vertices facing each other of a polyhedral particle having 50 or more faces is measured. The measured maximum value is cubed and multiplied by a constant to obtain a volume. The constant may be appropriately determined according to the shape of the titanium oxide particles. For example, the constant for a polyhedral shape having eight or more faces is 0.145, and the constant for a spherical shape is 4.19 (4π / 3). The volume particle size distribution of the maximum value is calculated by using the measured maximum value and the volume value obtained by calculation. d10 means the maximum value at the time of cumulative 10%, and d50 means the maximum value at the time of cumulative 50%.
 本実施形態の酸化チタン粉体の、向かい合う2個の頂点を結ぶ線分の長さの最大値(X)の、累積体積百分率が50%の場合の値(d50)は100nm以上かつ1000nm以下であることが好ましく、150nm以上かつ800nm以下であることがより好ましく、200nm以上かつ700nm以下であることがさらに好ましく、250nm以上かつ600nm以下であることが最も好ましい。なお、d50は、本実施形態の酸化チタン粉体の体積平均粒子径に相当する。また、最大値(X)のd50は、本実施形態の酸化チタン粉体の平均一次粒子径に相当する。 The maximum value (X) of the length of the line segment connecting the two facing vertices of the titanium oxide powder of the present embodiment is 100 nm or more and 1000 nm or less when the cumulative volume percentage is 50%. It is preferably 150 nm or more and 800 nm or less, more preferably 200 nm or more and 700 nm or less, and most preferably 250 nm or more and 600 nm or less. In addition, d50 corresponds to the volume average particle diameter of the titanium oxide powder of this embodiment. Further, the maximum value (X) d50 corresponds to the average primary particle size of the titanium oxide powder of the present embodiment.
 平均一次粒子径が100nm以上かつ1000nm以下であると、肌に塗布したときに、優れた透明感を有しながら、酸化チタン粒子の特有の青白さをより低減することができる点で好ましい。また、肌に塗布した時の感触に優れるため好ましい。
 平均一次粒子径が100nm未満では、短波長の光が散乱され、青白く呈色するため好ましくない。そして、後述する平均二次粒子径が1μm以上かつ10μm以下であっても、肌に塗布した時の感触が悪いため好ましくない。一方、平均一次粒子径が1μmを超えると、透明感が得られないため好ましくない。
 酸化チタン粒子特有の青白さをより低減し、肌に塗布した時の感触をより向上させる観点においては、酸化チタン粒子の平均一次粒子径は300nm以上かつ1μm以下であることが好ましく、350nm以上かつ900nm以下であることがより好ましく、400nm以上かつ800nm以下であることがさらに好ましく、450nm以上かつ700nm以下であることがよりさらに好ましい。
 なお、本実施形態における感触とは、例えば、酸化チタン粉体を配合した化粧料を肌に塗布した時に、その化粧料が塗布された肌に手指で触れた感触のことである。
When the average primary particle diameter is 100 nm or more and 1000 nm or less, it is preferable in that when applied to the skin, the peculiar paleness of the titanium oxide particles can be further reduced while having an excellent transparency. In addition, it is preferable because it has an excellent feel when applied to the skin.
If the average primary particle size is less than 100 nm, light having a short wavelength is scattered and the color is pale, which is not preferable. Even if the average secondary particle diameter, which will be described later, is 1 μm or more and 10 μm or less, it is not preferable because it feels bad when applied to the skin. On the other hand, if the average primary particle size exceeds 1 μm, a transparent feeling cannot be obtained, which is not preferable.
From the viewpoint of further reducing the paleness peculiar to titanium oxide particles and further improving the feel when applied to the skin, the average primary particle diameter of the titanium oxide particles is preferably 300 nm or more and 1 μm or less, preferably 350 nm or more. It is more preferably 900 nm or less, further preferably 400 nm or more and 800 nm or less, and even more preferably 450 nm or more and 700 nm or less.
The feeling in the present embodiment is, for example, the feeling of touching the skin to which the cosmetic has been applied with fingers when the cosmetic containing the titanium oxide powder is applied to the skin.
(二次粒子の平均粒子径)
 本実施形態の酸化チタン粉体の平均二次粒子径は、1μm以上かつ10μm以下であることが好ましく、2μm以上かつ9μm以下であることがより好ましく、3μm以上かつ8μm以下であることがさらに好ましく、4μm以上かつ8μm以下であることがよりさらに好ましい。
 平均二次粒子径が1μm以上かつ10μm以下であると、肌に塗布した時の感触に優れる点で好ましい。
 平均二次粒子径が1μm未満では、平均一次粒子径が小さくなってしまい、隠蔽力や透明感が得られなくなるため、好ましくない。一方、平均二次粒子径が10μmを超えると、肌に塗布した時の感触が悪くなるため好ましくない。
(Average particle size of secondary particles)
The average secondary particle size of the titanium oxide powder of the present embodiment is preferably 1 μm or more and 10 μm or less, more preferably 2 μm or more and 9 μm or less, and further preferably 3 μm or more and 8 μm or less. More preferably, it is 4 μm or more and 8 μm or less.
When the average secondary particle diameter is 1 μm or more and 10 μm or less, it is preferable because it is excellent in feel when applied to the skin.
If the average secondary particle size is less than 1 μm, the average primary particle size becomes small and the hiding power and transparency cannot be obtained, which is not preferable. On the other hand, if the average secondary particle size exceeds 10 μm, the feel when applied to the skin deteriorates, which is not preferable.
 本実施形態の酸化チタン粒子の「平均二次粒子径」とは、以下の方法で求められる数値である。すなわち、本実施形態の酸化チタン粉体を、粒度分布測定装置 MASTERSIZER3000(Malvern社製)を用いて、乾式測定する。得られた粒度分布の累積体積百分率が50%の場合の粒子径(d50)が、本実施形態の平均二次粒子径である。 The "average secondary particle size" of the titanium oxide particles of the present embodiment is a numerical value obtained by the following method. That is, the titanium oxide powder of the present embodiment is dry-measured using a particle size distribution measuring device MASTERSIZER3000 (manufactured by Malvern). The particle size (d50) when the cumulative volume percentage of the obtained particle size distribution is 50% is the average secondary particle size of the present embodiment.
(表面処理)
 本実施形態の酸化チタン粉体は、無機化合物および有機化合物のいずれかを表面に有していてもよい。
 酸化チタン粒子表面に、無機化合物および有機化合物のいずれかを付着する方法としては、例えば、表面処理剤を用いて表面処理する方法等が挙げられる。
(surface treatment)
The titanium oxide powder of the present embodiment may have either an inorganic compound or an organic compound on the surface.
Examples of the method of adhering either the inorganic compound or the organic compound to the surface of the titanium oxide particles include a method of surface treatment using a surface treatment agent.
 表面処理剤としては、化粧料に用いることができるものであれば、特に限定されず、目的に応じて適宜選択することができる。
 表面処理剤としては、例えば、無機成分、有機成分等が挙げられる。
The surface treatment agent is not particularly limited as long as it can be used in cosmetics, and can be appropriately selected depending on the intended purpose.
Examples of the surface treatment agent include an inorganic component and an organic component.
 無機成分としては、無機酸化物が挙げられる。例えば、シリカ、アルミナ等が挙げられる。 Examples of the inorganic component include inorganic oxides. For example, silica, alumina and the like can be mentioned.
 有機成分としては、例えば、シリコーン化合物、脂肪酸、脂肪酸石鹸、脂肪酸エステル、有機チタネート化合物、界面活性剤、非シリコーン化合物等が挙げられる。これらの有機成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the organic component include silicone compounds, fatty acids, fatty acid soaps, fatty acid esters, organic titanate compounds, surfactants, non-silicone compounds and the like. One of these organic components may be used alone, or two or more thereof may be used in combination.
 シリコーン化合物としては、例えば、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン、メチルフェニルポリシロキサン等のシリコーンオイル;メチルトリメトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、オクチルトリメトキシシラン等のアルキルシラン;トリフルオロメチルエチルトリメトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン等のフルオロアルキルシラン;メチコン、ハイドロゲンジメチコン、トリエトキシシリルエチルポリジメチルシロキシエチルジメチコン、トリエトキシシリルエチルポリジメチルシロキシエチルヘキシルジメチコン、(アクリレーツ/アクリル酸トリデシル/メタクリル酸トリエトキシシリルプロピル/メタクリル酸ジメチコン)コポリマー、トリエトキシカプリリルシラン等が挙げられる。また、シリコーン化合物としては、化合物の単量体でもよく、共重合体であってもよい。これらのシリコーン化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the silicone compound include silicone oils such as methylhydrogenpolysiloxane, dimethylpolysiloxane, and methylphenylpolysiloxane; alkylsilanes such as methyltrimethoxysilane, ethyltrimethoxysilane, hexyltrimethoxysilane, and octyltrimethoxysilane; Fluoroalkylsilanes such as trifluoromethylethyltrimethoxysilane, heptadecafluorodecyltrimethoxysilane; methicone, hydrogendimethicone, triethoxysilylethylpolydimethylsiloxyethyldimethicone, triethoxysilylethylpolydimethylsiloxyethylhexyldimethicone, (Acrylate / acrylic) Examples thereof include tridecyl acid acid / triethoxysilylpropyl methacrylate / dimethicone methacrylate) copolymer and triethoxycaprylylsilane. Further, the silicone compound may be a monomer of the compound or a copolymer. One of these silicone compounds may be used alone, or two or more thereof may be used in combination.
 脂肪酸としては、例えば、パルミチン酸、イソステアリン酸、ステアリン酸、ラウリン酸、ミリスチン酸、ベヘニン酸、オレイン酸、ロジン酸、12-ヒドロキシステアリン酸、リシノール酸等が挙げられる。 Examples of fatty acids include palmitic acid, isostearic acid, stearic acid, lauric acid, myristic acid, behenic acid, oleic acid, logonic acid, 12-hydroxystearic acid, ricinoleic acid and the like.
 脂肪酸石鹸としては、例えば、ステアリン酸アルミニウム、ステアリン酸カルシウム、12-ヒドロキシステアリン酸アルミニウム等が挙げられる。 Examples of the fatty acid soap include aluminum stearate, calcium stearate, and aluminum 12-hydroxystearate.
 脂肪酸エステルとしては、例えば、デキストリン脂肪酸エステル、コレステロール脂肪酸エステル、ショ糖脂肪酸エステル、デンプン脂肪酸エステル等が挙げられる。 Examples of the fatty acid ester include dextrin fatty acid ester, cholesterol fatty acid ester, sucrose fatty acid ester, starch fatty acid ester and the like.
 有機チタネート化合物としては、例えば、イソプロピルトリイソステアロイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリ(ドデシル)ベンゼンスルホニルチタネート、ネオペンチル(ジアリル)オキシ-トリ(ジオクチル)ホスフェイトチタネート、ネオペンチル(ジアリル)オキシ-トリネオドデカノイルチタネート等が挙げられる。 Examples of the organic titanate compound include isopropyltriisostearoyl titanate, isopropyldimethacrylic isostearoyl titanate, isopropyltri (dodecyl) benzenesulfonyl titanate, neopentyl (diallyl) oxy-tri (dioctyl) phosphate titanate, and neopentyl (diallyl) oxy-. Examples include trineododecanoyl titanate.
 本実施形態の酸化チタン粉体によれば、酸化チタン粉体を含む化粧料が肌に塗布された場合に、隠蔽力と伸びに優れる。また、本実施形態の酸化チタン粉体によれば、酸化チタン粉体を含む化粧料が肌に塗布された場合に、隠蔽力に加えて、透明感にも優れ、酸化チタン粒子特有の青白さが低減された、自然な仕上がりを得ることができる。 According to the titanium oxide powder of the present embodiment, when a cosmetic containing the titanium oxide powder is applied to the skin, it has excellent hiding power and elongation. Further, according to the titanium oxide powder of the present embodiment, when a cosmetic containing the titanium oxide powder is applied to the skin, it has excellent transparency in addition to hiding power, and has a paleness peculiar to titanium oxide particles. It is possible to obtain a natural finish with reduced.
[酸化チタン粉体の製造方法]
 本実施形態の酸化チタン粉体の製造方法は、所定濃度のチタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物と、窒素を含む五員環を有する化合物とを混合して、反応溶液を調製する工程(以下、「第1工程」と言う。)と、この反応溶液を水熱合成する工程(以下、「第2工程」と言う。)と、を有する。
 また、本実施形態の酸化チタン粉体の製造方法は、必要に応じて、第1工程で得られた反応溶液と、第2工程で得られた水熱合成後の反応溶液とを混合し、水熱合成をする第3工程を有する。
 また、本実施形態の酸化チタン粉体の製造方法は、第2工程または第3工程後に回収された酸化チタン粉体を解砕する第4工程を有してもよい。
[Manufacturing method of titanium oxide powder]
In the method for producing titanium oxide powder of the present embodiment, a hydrolysis product of titanium alkoxide or a hydrolysis product of a titanium metal salt having a predetermined concentration is mixed with a compound having a five-membered ring containing nitrogen and reacted. It has a step of preparing a solution (hereinafter referred to as "first step") and a step of hydrolyzing this reaction solution (hereinafter referred to as "second step").
Further, in the method for producing the titanium oxide powder of the present embodiment, if necessary, the reaction solution obtained in the first step and the reaction solution after hydrothermal synthesis obtained in the second step are mixed. It has a third step of hydrothermal synthesis.
In addition, the method for producing titanium oxide powder of the present embodiment may include a fourth step of crushing the titanium oxide powder recovered after the second step or the third step.
(第1工程)
 第1工程は、反応溶液を調製する工程である。
 第1工程は、所定濃度のチタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物と、窒素を含む五員環を有する化合物とを混合して反応溶液(スラリー)を調製する工程である。
 以下に第1工程で使用する材料について説明する。
(First step)
The first step is a step of preparing a reaction solution.
The first step is a step of preparing a reaction solution (slurry) by mixing a hydrolysis product of titanium alkoxide or a hydrolysis product of a titanium metal salt having a predetermined concentration and a compound having a five-membered ring containing nitrogen. is there.
The materials used in the first step will be described below.
(チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物)
 チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物は、チタンアルコキシドまたはチタン金属塩を加水分解することにより得られる。
 チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物は、例えば、白色の固体であるケーキ状固体であり、メタチタン酸やオルトチタン酸と呼ばれる含水酸化チタンである。
(Hydrolysis product of titanium alkoxide or hydrolysis product of titanium metal salt)
The hydrolysis product of titanium alkoxide or the hydrolysis product of the titanium metal salt is obtained by hydrolyzing the titanium alkoxide or the titanium metal salt.
The hydrolysis product of titanium alkoxide or the hydrolysis product of titanium metal salt is, for example, a cake-like solid which is a white solid, and is titanium hydroxide containing metatitanium acid or orthotitanium acid.
 チタンアルコキシドとしては、例えば、テトラエトキシチタン、テトライソプロポキシチタン、テトラノルマルプロポキシチタン、テトラノルマルブトキシチタン等が挙げられる。これらのチタンアルコキシドは、1種を単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、入手が容易であり、加水分解速度が制御しやすい点から、テトライソプロポキシチタン、テトラノルマルブトキシチタンが好ましく、テトライソプロポキシチタンがより好ましい。 Examples of the titanium alkoxide include tetraethoxytitanium, tetraisopropoxytitanium, tetranormalpropoxytitanium, tetranormalbutoxytitanium and the like. One of these titanium alkoxides may be used alone, or two or more thereof may be used in combination. Among these, tetraisopropoxytitanium and tetranormalbutoxytitanium are preferable, and tetraisopropoxytitanium is more preferable, because they are easily available and the hydrolysis rate can be easily controlled.
 チタン金属塩としては、例えば、四塩化チタン、硫酸チタン等が挙げられる。これらのチタン金属塩は、1種を単独で用いてもよいし、2種以上を併用してもよい。 Examples of the titanium metal salt include titanium tetrachloride, titanium sulfate and the like. One of these titanium metal salts may be used alone, or two or more thereof may be used in combination.
 なお、本実施形態の酸化チタン粉体の製造方法において、高純度のアナターゼ型の酸化チタン粒子を得るためには、高純度のチタンアルコキシドまたは高純度のチタン金属塩を用いることが好ましい。 In the method for producing titanium oxide powder of the present embodiment, it is preferable to use high-purity titanium alkoxide or high-purity titanium metal salt in order to obtain high-purity anatase-type titanium oxide particles.
 チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物は、アルコール類、塩酸、硫酸等の副生成物を含む。
 副生成物は、酸化チタン粒子の核生成や結晶成長を阻害するため、チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物は予め純水で洗浄することが好ましい。
 チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物の洗浄方法としては、例えば、デカンテーション、ヌッチェ法、限外濾過法等が挙げられる。
Hydrolysis products of titanium alkoxides or hydrolysis products of titanium metal salts include by-products such as alcohols, hydrochloric acid and sulfuric acid.
Since the by-product inhibits nucleation and crystal growth of titanium oxide particles, it is preferable to wash the hydrolysis product of titanium alkoxide or the hydrolysis product of titanium metal salt with pure water in advance.
Examples of the method for cleaning the hydrolysis product of titanium alkoxide or the hydrolysis product of titanium metal salt include decantation, Nutche method, ultrafiltration method and the like.
(窒素を含む五員環を有する化合物)
 窒素を含む五員環を有する化合物は、反応溶液のpH調整剤としての機能と、水熱合成の触媒としての機能のために、反応溶液に含まれる。
 窒素を含む五員環を有する化合物としては、例えば、ピロール、イミダゾール、インドール、プリン、ピロリジン、ピラゾール、トリアゾール、テトラゾール、イソチアゾール、イソオキサゾール、フラザン、カルバゾール、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等が挙げられる。これらの窒素を含む五員環を有する化合物は、1種を単独で用いてもよいし、2種以上を併用してもよい。
(Compound with a five-membered ring containing nitrogen)
A compound having a five-membered ring containing nitrogen is included in the reaction solution because of its function as a pH adjuster for the reaction solution and as a catalyst for hydrothermal synthesis.
Examples of the nitrogen-containing compound having a five-membered ring include pyrrole, imidazole, indole, purine, pyrrolidine, pyrazole, triazole, tetrazole, isothiazole, isoxazole, frazan, carbazole, 1,5-diazabicyclo- [4.3 .0] -5-Nonen and the like. These nitrogen-containing five-membered ring compounds may be used alone or in combination of two or more.
 これらの中でも、窒素を含む五員環を有する化合物としては、酸化チタン粉体の粒度分布を狭くし、結晶性をより向上させることができる点から、窒素原子を1つ含む化合物であることが好ましい。例えば、ピロール、インドール、ピロリジン、イソチアゾール、イソオキサゾール、フラザン、カルバゾール、および1,5-ジアザビシクロ-[4.3.0]-5-ノネンが好ましい。
 これらの中でも、窒素を含む五員環を有する化合物としては、酸化チタン粉体の粒度分布を狭くし、結晶性をより向上させることができる点から、窒素原子を1つ含み、かつ五員環が飽和複素環構造を有する化合物であることがより好ましい。例えば、ピロリジン、1,5-ジアザビシクロ-[4.3.0]-5-ノネンがより好ましい。
Among these, the compound having a five-membered ring containing nitrogen is a compound containing one nitrogen atom from the viewpoint that the particle size distribution of the titanium oxide powder can be narrowed and the crystallinity can be further improved. preferable. For example, pyrrole, indole, pyrrolidine, isothiazole, isoxazole, frazan, carbazole, and 1,5-diazabicyclo- [4.3.0] -5-nonene are preferred.
Among these, the compound having a five-membered ring containing nitrogen contains one nitrogen atom and has a five-membered ring because the particle size distribution of the titanium oxide powder can be narrowed and the crystallinity can be further improved. Is more preferably a compound having a saturated heterocyclic structure. For example, pyrrolidine, 1,5-diazabicyclo- [4.3.0] -5-nonene is more preferable.
(反応溶液)
 反応溶液を調製する方法としては、特に限定されず、目的に応じて適宜選択することができる。反応溶液を調製する方法としては、例えば、撹拌機、ビーズミル、ボールミル、アトライター、ディゾルバー等を使用して混合する方法等が挙げられる。
(Reaction solution)
The method for preparing the reaction solution is not particularly limited, and can be appropriately selected depending on the intended purpose. Examples of the method for preparing the reaction solution include a method of mixing using a stirrer, a bead mill, a ball mill, an attritor, a dissolver and the like.
 また、反応溶液に水を添加し、反応溶液の濃度調整を行ってもよい。反応溶液に添加される水としては、例えば、脱イオン水、蒸留水、純水等が挙げられる。 Alternatively, water may be added to the reaction solution to adjust the concentration of the reaction solution. Examples of the water added to the reaction solution include deionized water, distilled water, pure water and the like.
 反応溶液のpHは、窒素を含む五員環を有する化合物の触媒作用が適切に機能し、核生成速度が適切となる点から、9以上かつ13以下であることが好ましく、11以上かつ13以下であることがより好ましい。
 反応溶液のpHが9以上かつ13以下の範囲であると、酸化チタン粒子の作製、および結晶成長の効率がよくなる。
 反応溶液のpHは、窒素を含む五員環を有する化合物の含有量を制御することにより、調節することができる。
The pH of the reaction solution is preferably 9 or more and 13 or less, and 11 or more and 13 or less, from the viewpoint that the catalytic action of the compound having a five-membered ring containing nitrogen functions appropriately and the nucleation rate becomes appropriate. Is more preferable.
When the pH of the reaction solution is in the range of 9 or more and 13 or less, the efficiency of producing titanium oxide particles and crystal growth is improved.
The pH of the reaction solution can be adjusted by controlling the content of the compound having a five-membered ring containing nitrogen.
 反応溶液中のチタン原子濃度は、目的とする酸化チタン粉体の摩擦係数に応じて、適宜選択することができ、0.05mol/L以上かつ0.8mol/L以下であることが好ましく、0.1mol/L以上かつ0.7mol/L以下であることがより好ましい。
 換言すれば、反応溶液中の酸化チタン分の濃度が、0.4質量%以上かつ6.4質量%以下であることが好ましく、0.8質量%以上かつ5.6質量%以下であることがより好ましい。なお、この反応溶液中の酸化チタン分の濃度は、上記の所定濃度である。酸化チタン分とは原料として使用するチタンアルコキシド、またはチタン金属塩から生成される酸化チタンの質量を意味する。例えば、1molのテトラエトキシチタンを用いた場合、1molの酸化チタンが生成されるので、1molのテトラエトキシチタンの酸化チタン分は、1molの酸化チタンの質量、すなわち80gとなる。
The titanium atom concentration in the reaction solution can be appropriately selected according to the friction coefficient of the target titanium oxide powder, and is preferably 0.05 mol / L or more and 0.8 mol / L or less, and is 0. More preferably, it is 1 mol / L or more and 0.7 mol / L or less.
In other words, the concentration of titanium oxide in the reaction solution is preferably 0.4% by mass or more and 6.4% by mass or less, and 0.8% by mass or more and 5.6% by mass or less. Is more preferable. The concentration of titanium oxide in this reaction solution is the above-mentioned predetermined concentration. The titanium oxide content means the mass of titanium oxide produced from titanium alkoxide or titanium metal salt used as a raw material. For example, when 1 mol of tetraethoxytitanium is used, 1 mol of titanium oxide is produced, so that the titanium oxide content of 1 mol of tetraethoxytitanium is the mass of 1 mol of titanium oxide, that is, 80 g.
 反応溶液中のチタン原子濃度が、0.05mol/L以上であると、八以上の面を有する酸化チタン粒子の核が効率よく生成され、生産効率が向上する。反応溶液中のチタン原子濃度が、0.8mol/L以下であると、核生成速度がゆっくりとなるため、粉体に含まれる小さい酸化チタン粒子の含有率が低減し、酸化チタン粉体の平均摩擦係数が小さくなる。
 反応溶液中のチタン原子濃度は、チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物の含有量や水の含有量を制御することにより、調節することができる。
When the titanium atom concentration in the reaction solution is 0.05 mol / L or more, nuclei of titanium oxide particles having eight or more faces are efficiently generated, and the production efficiency is improved. When the titanium atom concentration in the reaction solution is 0.8 mol / L or less, the nucleation rate becomes slow, so that the content of small titanium oxide particles contained in the powder is reduced, and the average of the titanium oxide powder is reduced. The friction coefficient becomes smaller.
The titanium atom concentration in the reaction solution can be adjusted by controlling the content of the hydrolysis product of titanium alkoxide or the hydrolysis product of the titanium metal salt and the content of water.
 反応溶液中の酸化チタン分の濃度が0.4質量%以上であると、八以上の面を有する酸化チタン粒子の核が生成され、本実施形態の酸化チタン粒子を作製することができる。一方、反応溶液中の酸化チタン分の濃度が6.4質量%以下であると、核生成速度がゆっくりとなるため、粉体に含まれる小さい酸化チタン粒子の含有率が低減し、酸化チタン粉体の平均摩擦係数が小さくなる。 When the concentration of titanium oxide in the reaction solution is 0.4% by mass or more, nuclei of titanium oxide particles having eight or more faces are generated, and the titanium oxide particles of the present embodiment can be produced. On the other hand, when the concentration of titanium oxide in the reaction solution is 6.4% by mass or less, the nucleation rate becomes slow, so that the content of small titanium oxide particles contained in the powder is reduced, and the titanium oxide powder is used. The average friction coefficient of the body becomes smaller.
 反応溶液中のチタン原子と窒素を含む五員環を有する化合物とのモル比(チタン原子:窒素を含む五員環を有する化合物)は、1.0:0.5~1.0:5.0であることが好ましく、1.0:0.6~1.0:3.0であることがより好ましく、1.0:0.6~1.0:1.5であることがさらに好ましい。
 反応溶液中のチタン原子と窒素を含む五員環を有する化合物とのモル比が上記の範囲であると、八面体状の酸化チタン粒子を作製することができる。
The molar ratio of the titanium atom to the nitrogen-containing five-membered ring compound (titanium atom: nitrogen-containing five-membered ring compound) in the reaction solution was 1.0: 0.5 to 1.0: 5. It is preferably 0, more preferably 1.0: 0.6 to 1.0: 3.0, and even more preferably 1.0: 0.6 to 1.0: 1.5. ..
When the molar ratio of the titanium atom and the compound having a five-membered ring containing nitrogen in the reaction solution is within the above range, octahedral titanium oxide particles can be produced.
(第2工程)
 第2工程は、酸化チタン粒子を作製する工程である。
 第2工程は、第1工程で調製した反応溶液を水熱合成することにより酸化チタン粒子を生成させる工程である。
(Second step)
The second step is a step of producing titanium oxide particles.
The second step is a step of producing titanium oxide particles by hydrothermal synthesis of the reaction solution prepared in the first step.
 水熱合成とは、反応溶液を加熱し、反応溶液中のチタンを高温高圧の熱水の存在下で反応させる方法である。
 水熱合成は、オートクレーブと呼ばれる高温高圧容器に反応溶液を入れ、密閉して、オートクレーブごと加熱することにより行う。
 反応溶液を加熱すると、反応溶液中の水分が蒸発することにより容器内の圧力が上昇して、高温高圧反応を行うことができる。
Hydrothermal synthesis is a method in which a reaction solution is heated and titanium in the reaction solution is reacted in the presence of hot water at high temperature and high pressure.
Hydrothermal synthesis is carried out by putting the reaction solution in a high-temperature and high-pressure container called an autoclave, sealing it, and heating the whole autoclave.
When the reaction solution is heated, the water content in the reaction solution evaporates, so that the pressure inside the container rises, and a high-temperature and high-pressure reaction can be carried out.
 水熱合成における加熱保持温度は、150℃以上かつ350℃以下であることが好ましく、150℃以上かつ280℃以下であることがより好ましく、150℃以上かつ210℃以下であることがさらに好ましい。
 水熱合成における加熱保持温度が上記の範囲内であると、チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物の水への溶解性が向上し、反応溶液中で溶解させることができる。また、酸化チタン粒子の核を生成でき、その核を成長させることができ、所望の形状の酸化チタン粒子を製造することができる。
The heating holding temperature in hydrothermal synthesis is preferably 150 ° C. or higher and 350 ° C. or lower, more preferably 150 ° C. or higher and 280 ° C. or lower, and further preferably 150 ° C. or higher and 210 ° C. or lower.
When the heating holding temperature in hydrothermal synthesis is within the above range, the solubility of the hydrolysis product of titanium alkoxide or the hydrolysis product of the titanium metal salt in water is improved, and it can be dissolved in the reaction solution. it can. In addition, the nuclei of titanium oxide particles can be generated, the nuclei can be grown, and titanium oxide particles having a desired shape can be produced.
 水熱合成における加熱速度は、特に限定されず、目的に応じて適宜選択することができる。
 なお、水熱合成における圧力は、高温高圧容器において反応溶液を上記の温度範囲に加熱したときの圧力である。
The heating rate in hydrothermal synthesis is not particularly limited and can be appropriately selected depending on the intended purpose.
The pressure in hydrothermal synthesis is the pressure when the reaction solution is heated to the above temperature range in a high-temperature and high-pressure vessel.
 なお、オートクレーブでの加熱中は、攪拌装置を用いて、反応溶液を撹拌することが好ましい。
 攪拌速度は、特に制限はなく、目的に応じて適宜選択することができるが、100rpm以上かつ300rpm以下であることが好ましい。
During heating in the autoclave, it is preferable to stir the reaction solution using a stirrer.
The stirring speed is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 100 rpm or more and 300 rpm or less.
 水熱合成における加熱保持時間は、特に限定されず、作製する酸化チタン粒子の大きさに応じて、適宜選択することができるが、3時間以上であることが好ましく、4時間以上であることがより好ましい。
 加熱保持時間が、3時間以上であると、原料であるチタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物がよく反応し、収率が低下しない。
The heating holding time in hydrothermal synthesis is not particularly limited and can be appropriately selected depending on the size of the titanium oxide particles to be produced, but is preferably 3 hours or more, and preferably 4 hours or more. More preferred.
When the heating holding time is 3 hours or more, the hydrolysis product of titanium alkoxide or the hydrolysis product of titanium metal salt, which is a raw material, reacts well and the yield does not decrease.
 加熱保持時間は、原料の種類や濃度に影響される。そのため、適宜予備実験をして、酸化チタン粒子が所望の大きさになるような加熱保持時間で実施すればよい。例えば、加熱保持時間は9時間であってもよく、12時間であってもよく、24時間であってもよく、48時間であってもよく、72時間であってもよい。ただし、生産効率の観点から、酸化チタン粒子が所望の大きさに達した時点で加熱をやめてもよい。 The heating retention time is affected by the type and concentration of the raw material. Therefore, a preliminary experiment may be carried out as appropriate, and the titanium oxide particles may be heated and held for a desired size. For example, the heating holding time may be 9 hours, 12 hours, 24 hours, 48 hours, or 72 hours. However, from the viewpoint of production efficiency, heating may be stopped when the titanium oxide particles reach a desired size.
(第3工程)
 第3工程は、第2工程で得られた酸化チタン粒子を結晶成長させる工程である。第3工程は、得られた酸化チタン粒子の大きさが所望のものよりも小さかった場合に行う。
 第3工程は、第2工程で得られた水熱合成後の酸化チタン粒子を含む反応溶液と、水熱合成前の第1工程で調製した反応溶液(チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物、および窒素を含む五員環を有する化合物)とを、混合し、水熱合成をする工程である。水熱合成前の第1工程で調整した反応溶液を混合するとは、チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物と、窒素を含む5員環を有する化合物を、水熱合成後の酸化チタン粒子を含む反応溶液にそれぞれ添加する方法であってもよい。
(Third step)
The third step is a step of crystal growing the titanium oxide particles obtained in the second step. The third step is performed when the size of the obtained titanium oxide particles is smaller than desired.
The third step is a reaction solution containing titanium oxide particles after hydrothermal synthesis obtained in the second step and a reaction solution (hydrolysis product of titanium alkoxide or titanium metal) prepared in the first step before hydrothermal synthesis. This is a step of mixing a hydrolyzed product of a salt and a compound having a five-membered ring containing nitrogen) for hydrothermal synthesis. Mixing the reaction solution prepared in the first step before hydrothermal synthesis means hydrolyzing the hydrolysis product of titanium alkoxide or the hydrolysis product of titanium metal salt and a compound having a 5-membered ring containing nitrogen. It may be a method of adding each to the reaction solution containing titanium oxide particles later.
 第2工程で得られた水熱合成後の酸化チタン粒子を含む反応溶液と、第1工程で調製した反応溶液(チタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物、および窒素を含む五員環を有する化合物)との混合比は、酸化チタン粒子の質量換算で1:1~1:20であることが好ましい。前記比は、必要に応じて、1:1~1:5や、1:5~1:10や、1:10~1:20などであってもよい。 A reaction solution containing titanium oxide particles after hydrothermal synthesis obtained in the second step, a reaction solution prepared in the first step (a hydrolysis product of titanium alkoxide or a hydrolysis product of a titanium metal salt, and nitrogen) are used. The mixing ratio with the compound having a five-membered ring containing the titanium oxide is preferably 1: 1 to 1:20 in terms of mass of titanium oxide particles. The ratio may be 1: 1 to 1: 5, 1: 5 to 1:10, 1:10 to 1:20, or the like, if necessary.
 第3工程における水熱合成は、第2工程と同じ条件で行うことができる。 Hydrothermal synthesis in the third step can be performed under the same conditions as in the second step.
 第2工程、および第3工程を行った後、反応溶液から酸化チタン粒子を取り出す方法は、特に限定されず、目的に応じて適宜選択することができる。混合溶液から酸化チタン粒子を取り出す方法としては、例えば、デカンテーション、ヌッチェ法等の固液分離する方法等が挙げられる。 The method for extracting the titanium oxide particles from the reaction solution after performing the second step and the third step is not particularly limited and can be appropriately selected depending on the intended purpose. Examples of the method for extracting the titanium oxide particles from the mixed solution include a method of solid-liquid separation such as decantation and the Nutche method.
 なお、酸化チタン粒子を取り出した後、不純物を低減させる目的で、得られた酸化チタン粒子を含む固形物を純水等で洗浄してもよい。
 固液分離により取り出した酸化チタン粒子を含む固形物は、自然乾燥させてもよく、あるいは室温よりも高い乾燥温度、例えば、400℃以下で加熱し、乾燥させてもよい。
 固形物の加熱温度の下限値は、固形物を乾燥させることができれば特に限定されない。固形物の加熱温度の下限値は、例えば、200℃であってもよく、250℃であってもよく、300℃であってもよい。
 固形物を400℃以下で乾燥することにより、肌に塗布された場合に、伸びと皮膚への付着力に優れる酸化チタン粉体を得ることができる。
 乾燥温度が高温になると、酸化チタン粒子同士が融着し、肌に塗布したときの感触が悪化するため好ましくない。
 水熱合成後の反応溶液から酸化チタン粒子を取り出し、乾燥することで、本実施形態の酸化チタン粉体を得ることができる。
After taking out the titanium oxide particles, the obtained solid substance containing the titanium oxide particles may be washed with pure water or the like for the purpose of reducing impurities.
The solid matter containing the titanium oxide particles taken out by solid-liquid separation may be naturally dried, or may be heated and dried at a drying temperature higher than room temperature, for example, 400 ° C. or lower.
The lower limit of the heating temperature of the solid matter is not particularly limited as long as the solid matter can be dried. The lower limit of the heating temperature of the solid material may be, for example, 200 ° C., 250 ° C., or 300 ° C.
By drying the solid material at 400 ° C. or lower, a titanium oxide powder having excellent elongation and adhesion to the skin can be obtained when applied to the skin.
When the drying temperature becomes high, the titanium oxide particles are fused to each other, and the feel when applied to the skin deteriorates, which is not preferable.
The titanium oxide powder of the present embodiment can be obtained by taking out the titanium oxide particles from the reaction solution after hydrothermal synthesis and drying them.
(第4工程)
 第4工程は、第2工程、および/又は、第3工程で得られた酸化チタン粉体を、平均二次粒子径が1μm以上かつ10μm以下となるように解砕する。解砕する方法は特に限定されず、例えば、公知の解砕機で酸化チタン粉体を解砕する方法があげられる。解砕機としては、例えば、ピンミル、ハンマーミル、ジェットミル、インペラーミル等が挙げられる。
 水熱合成後の反応溶液から酸化チタン粉体を取り出し、解砕することでも、本実施形態の酸化チタン粉体を得ることができる。
 なお本実施形態では、酸化チタン粉体を乾燥後に解砕する方法を例示したが、乾燥前に湿式解砕して、乾燥する方法によっても、本実施形態の酸化チタン粉体を得ることができる。また、乾燥前に湿式解砕し、乾燥後にも解砕を行ってもよい。
(4th step)
In the fourth step, the titanium oxide powder obtained in the second step and / or the third step is crushed so that the average secondary particle size is 1 μm or more and 10 μm or less. The method of crushing is not particularly limited, and examples thereof include a method of crushing titanium oxide powder with a known crusher. Examples of the crusher include a pin mill, a hammer mill, a jet mill, an impeller mill and the like.
The titanium oxide powder of the present embodiment can also be obtained by taking out the titanium oxide powder from the reaction solution after hydrothermal synthesis and crushing it.
In the present embodiment, a method of crushing the titanium oxide powder after drying has been exemplified, but the titanium oxide powder of the present embodiment can also be obtained by a method of wet crushing and drying before drying. .. In addition, wet crushing may be performed before drying, and crushing may be performed after drying.
(表面処理)
 なお、酸化チタン粒子に表面処理を行うこともできる。表面処理を行う時期は、特に限定されず、目的に応じて適宜選択することができる。表面処理を行う時期としては、例えば、第2工程の後、第3工程の後、及び/又は、第4工程の後等が挙げられる。
 表面処理の方法は、特に限定されず、使用する表面処理剤の種類に応じて、公知の方法を適宜選択することができる。
(surface treatment)
The titanium oxide particles can also be surface-treated. The time for surface treatment is not particularly limited, and can be appropriately selected depending on the purpose. Examples of the time for performing the surface treatment include after the second step, after the third step, and / or after the fourth step.
The surface treatment method is not particularly limited, and a known method can be appropriately selected depending on the type of surface treatment agent used.
 本実施形態の酸化チタン粉体の製造方法によれば、酸化チタン粉体を含む化粧料が肌に塗布された場合に、隠蔽力と伸びに優れる酸化チタン粉体が得られる。また、本実施形態の酸化チタン粉体の製造方法によれば、酸化チタン粉体を含む化粧料が肌に塗布された場合に、隠蔽力に加えて、透明感にも優れ、酸化チタン粒子特有の青白さが低減された、自然な仕上がりを得ることができる酸化チタン粉体が得られる。また、本実施形態の酸化チタン粉体の製造方法によれば、酸化チタン粉体を含む化粧料が肌に塗布された場合に、隠蔽力と感触に優れる酸化チタン粉体が得られる。 According to the method for producing titanium oxide powder of the present embodiment, when a cosmetic containing titanium oxide powder is applied to the skin, titanium oxide powder having excellent hiding power and elongation can be obtained. Further, according to the method for producing titanium oxide powder of the present embodiment, when a cosmetic containing titanium oxide powder is applied to the skin, it has excellent transparency in addition to hiding power, and is peculiar to titanium oxide particles. Titanium oxide powder can be obtained that can obtain a natural finish with reduced paleness. Further, according to the method for producing titanium oxide powder of the present embodiment, when a cosmetic containing titanium oxide powder is applied to the skin, titanium oxide powder having excellent hiding power and feel can be obtained.
[分散液]
 本実施形態の分散液は、本実施形態の酸化チタン粉体と、分散媒と、を含む。本実施形態の分散液は、必要に応じてその他の成分を含有する。
 本実施形態の分散液は、低粘度の液状であっても、高粘度のペースト状であってもよい。
[Dispersion]
The dispersion liquid of the present embodiment contains the titanium oxide powder of the present embodiment and the dispersion medium. The dispersion of the present embodiment contains other components as needed.
The dispersion liquid of the present embodiment may be a low-viscosity liquid or a high-viscosity paste.
 本実施形態の分散液における酸化チタン粉体の含有量は、特に限定されず、目的に応じて適宜選択することができる。 The content of the titanium oxide powder in the dispersion liquid of the present embodiment is not particularly limited and can be appropriately selected depending on the intended purpose.
(分散媒)
 分散媒は、化粧料に配合できるものであれば、特に限定されず、目的に応じて適宜選択することができる。分散媒としては、例えば、水、アルコール類、エステル類、エーテル類、ケトン類、炭化水素、アミド類、ポリシロキサン類、ポリシロキサン類の変性体、炭化水素油、エステル油、高級脂肪酸、高級アルコール等が挙げられる。これらの分散媒は、1種を単独で用いてもよいし、2種以上を併用してもよい。
(Dispersion medium)
The dispersion medium is not particularly limited as long as it can be blended with cosmetics, and can be appropriately selected depending on the intended purpose. Examples of the dispersion medium include water, alcohols, esters, ethers, ketones, hydrocarbons, amides, polysiloxanes, modified polysiloxanes, hydrocarbon oils, ester oils, higher fatty acids, and higher alcohols. And so on. One of these dispersion media may be used alone, or two or more thereof may be used in combination.
 アルコール類としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、オクタノール、グリセリン等が挙げられる。 Examples of alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, octanol, glycerin and the like.
 エステル類としては、例えば、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、γ-ブチロラクトン等が挙げられる。 Examples of the esters include ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, γ-butyrolactone and the like.
 エーテル類としては、例えば、ジエチルエーテル、エチレングリコールモノメチルエーテル(メチルセロソルブ)、エチレングリコールモノエチルエーテル(エチルセロソルブ)、エチレングリコールモノブチルエーテル(ブチルセロソルブ)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等が挙げられる。 Examples of ethers include diethyl ether, ethylene glycol monomethyl ether (methyl cellosolve), ethylene glycol monoethyl ether (ethyl cellosolve), ethylene glycol monobutyl ether (butyl cellosolve), diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether.
 ケトン類としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、シクロヘキサノン等が挙げられる。 Examples of ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetylacetone, cyclohexanone and the like.
 炭化水素としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素;シクロヘキサン等の環状炭化水素等が挙げられる。 Examples of the hydrocarbon include aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; and cyclic hydrocarbons such as cyclohexane.
 アミド類としては、例えば、ジメチルホルムアミド、N,N-ジメチルアセトアセトアミド、N-メチルピロリドン等が挙げられる。 Examples of amides include dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone and the like.
 ポリシロキサン類としては、例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン、ジフェニルポリシロキサン等の鎖状ポリシロキサン類;オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン等の環状ポリシロキサン類等が挙げられる。 Examples of polysiloxanes include chain polysiloxanes such as dimethylpolysiloxane, methylphenylpolysiloxane, and diphenylpolysiloxane; cyclic polysiloxanes such as octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, and dodecamethylcyclohexasiloxane. Kind and the like.
 ポリシロキサン類の変性体としては、例えば、アミノ変性ポリシロキサン、ポリエーテル変性ポリシロキサン、アルキル変性ポリシロキサン、フッ素変性ポリシロキサン等が挙げられる。 Examples of modified polysiloxanes include amino-modified polysiloxane, polyether-modified polysiloxane, alkyl-modified polysiloxane, and fluorine-modified polysiloxane.
 炭化水素油としては、例えば、流動パラフィン、スクワラン、イソパラフィン、分岐鎖状軽パラフィン、ワセリン、セレシン等が挙げられる。 Examples of the hydrocarbon oil include liquid paraffin, squalane, isoparaffin, branched chain light paraffin, petrolatum, selecin and the like.
 エステル油としては、例えば、イソプロピルミリステート、セチルイソオクタノエート、グリセリルトリオクタノエート等が挙げられる。 Examples of the ester oil include isopropyl myristate, cetyl isooctanoate, glyceryl trioctanoate and the like.
 高級脂肪酸としては、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸等が挙げられる。 Examples of higher fatty acids include lauric acid, myristic acid, palmitic acid, stearic acid and the like.
 高級アルコールとしては、例えば、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ヘキシルドデカノール、イソステアリルアルコール等が挙げられる。 Examples of higher alcohols include lauryl alcohol, cetyl alcohol, stearyl alcohol, hexyldodecanol, and isostearyl alcohol.
(その他の成分)
 その他の成分は、本実施形態の分散液の効果を損なわなければ、特に限定されず、目的に応じて適宜選択することができる。
 その他の成分としては、例えば、分散剤、安定剤、水溶性バインダー、増粘剤、油溶性防腐剤、紫外線吸収剤、油溶性薬剤、油溶性色素類、油溶性蛋白質類、植物油、動物油等が挙げられる。これらの成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。
(Other ingredients)
The other components are not particularly limited as long as the effects of the dispersion liquid of the present embodiment are not impaired, and can be appropriately selected depending on the intended purpose.
Other components include, for example, dispersants, stabilizers, water-soluble binders, thickeners, oil-soluble preservatives, UV absorbers, oil-soluble agents, oil-soluble pigments, oil-soluble proteins, vegetable oils, animal oils and the like. Can be mentioned. One of these components may be used alone, or two or more thereof may be used in combination.
 分散液における分散媒の含有量は、特に限定されず、目的に応じて適宜選択することができる。分散媒の含有量は、本実施形態の分散液全量に対して、10質量%以上かつ99質量%以下であることが好ましく、20質量%以上かつ90質量%以下であることがより好ましく、30質量%以上かつ80質量%以下であることがさらに好ましい。 The content of the dispersion medium in the dispersion is not particularly limited and can be appropriately selected depending on the purpose. The content of the dispersion medium is preferably 10% by mass or more and 99% by mass or less, more preferably 20% by mass or more and 90% by mass or less, based on the total amount of the dispersion liquid of the present embodiment. It is more preferably more than mass% and 80% by mass or less.
 本実施形態の分散液によれば、本実施形態の分散液を含む化粧料が肌に塗布された場合に、隠蔽力と伸び及び/又は感触に優れる。また、本実施形態の分散液によれば、酸化チタン粉体を含む化粧料が肌に塗布された場合に、隠蔽力と伸びに加えて、透明感にも優れ、酸化チタン粒子特有の青白さが低減された、自然な仕上がりを得ることができる。 According to the dispersion liquid of the present embodiment, when the cosmetic containing the dispersion liquid of the present embodiment is applied to the skin, it is excellent in hiding power, elongation and / or feel. Further, according to the dispersion liquid of the present embodiment, when a cosmetic containing titanium oxide powder is applied to the skin, it has excellent transparency in addition to hiding power and elongation, and has a paleness peculiar to titanium oxide particles. It is possible to obtain a natural finish with reduced.
[分散液の製造方法]
 本実施形態の分散液の製造方法は、特に限定されず、公知の方法を採用することができる。本実施形態の分散液の製造方法としては、例えば、本実施形態の酸化チタン粉体を、分散媒に対して、分散装置で機械的に分散させて、分散液を製造する方法等が挙げられる。
 分散装置としては、例えば、撹拌機、自公転式ミキサー、ホモミキサー、超音波ホモジナイザー、サンドミル、ボールミル、ロールミル等が挙げられる。
[Manufacturing method of dispersion]
The method for producing the dispersion liquid of the present embodiment is not particularly limited, and a known method can be adopted. Examples of the method for producing the dispersion liquid of the present embodiment include a method of mechanically dispersing the titanium oxide powder of the present embodiment with a dispersion medium by a dispersion device to produce a dispersion liquid. ..
Examples of the disperser include a stirrer, a self-revolving mixer, a homomixer, an ultrasonic homogenizer, a sand mill, a ball mill, a roll mill and the like.
 本実施形態の分散液は、肌に塗布された場合に、伸び及び/又は感触に優れ、隠蔽力と透明感を両立しつつ、酸化チタン特有の青白さを低減することができる。 When applied to the skin, the dispersion liquid of the present embodiment has excellent elongation and / or feel, and can reduce the paleness peculiar to titanium oxide while achieving both hiding power and transparency.
[化粧料]
 本実施形態の化粧料は、本実施形態の酸化チタン粉体と、化粧品基剤と、を含む。また、別の実施形態の化粧料としては、本実施形態の酸化チタンを含む分散液と、化粧品基剤と、を含む。本実施形態の化粧料は、必要に応じてその他の成分を含有する。
[Cosmetics]
The cosmetic of the present embodiment contains the titanium oxide powder of the present embodiment and a cosmetic base. Further, the cosmetics of another embodiment include a dispersion liquid containing titanium oxide of the present embodiment and a cosmetic base. The cosmetic of this embodiment contains other ingredients as needed.
 化粧料における酸化チタン粉体の含有量は、化粧料全体に対して、0.1質量%以上かつ50質量%以下であることが好ましい。 The content of titanium oxide powder in the cosmetic is preferably 0.1% by mass or more and 50% by mass or less with respect to the entire cosmetic.
(化粧品基剤)
 化粧品基剤としては、化粧料に通常用いられるものの中から適宜選択することができ、例えば、タルク、マイカ等が挙げられる。これらの化粧品基剤は、1種を単独で用いてもよいし、2種以上を併用してもよい。
(Cosmetic base)
The cosmetic base can be appropriately selected from those usually used in cosmetics, and examples thereof include talc and mica. One of these cosmetic bases may be used alone, or two or more thereof may be used in combination.
 化粧料における化粧品基剤の含有量は、特に限定されず、目的に応じて適宜選択することができる。 The content of the cosmetic base in the cosmetics is not particularly limited and can be appropriately selected according to the purpose.
(その他の成分)
 本実施形態の化粧料は、本実施形態の酸化チタン粉体、および化粧品基剤以外にも、本実施形態の効果を損なわない範囲で、その他の成分を含有することができる。
(Other ingredients)
In addition to the titanium oxide powder of the present embodiment and the cosmetic base, the cosmetic of the present embodiment may contain other components as long as the effects of the present embodiment are not impaired.
 その他の成分は、化粧料に通常用いられるものの中から適宜選択することができる。
 その他の成分としては、例えば、溶媒、油剤、界面活性剤、保湿剤、有機紫外線吸収剤、酸化防止剤、増粘剤、香料、着色剤、生理活性成分、抗菌剤等が挙げられる。これらの成分は、1種を単独で用いてもよいし、2種以上を併用してもよい。
 化粧料におけるその他の成分の含有量は、特に限定されず、目的に応じて適宜選択することができる。
Other ingredients can be appropriately selected from those usually used in cosmetics.
Examples of other components include solvents, oils, surfactants, moisturizers, organic ultraviolet absorbers, antioxidants, thickeners, fragrances, colorants, bioactive components, antibacterial agents and the like. One of these components may be used alone, or two or more thereof may be used in combination.
The content of other ingredients in the cosmetics is not particularly limited and can be appropriately selected depending on the intended purpose.
 本実施形態の化粧料の製造方法は、特に限定されず、目的に応じて、適宜選択することができる。本実施形態の化粧料の製造方法は、例えば、酸化チタン粉体を化粧品基剤と混合し、その他の成分を混合して製造する方法、既存の化粧料に、酸化チタン粉体を混合して製造する方法、酸化チタンを含む分散液を化粧品基剤と混合し、その他の成分を混合して製造する方法、既存の化粧料に酸化チタンを含む分散液を混合して製造する方法等が挙げられる。 The method for producing the cosmetics of the present embodiment is not particularly limited, and can be appropriately selected depending on the purpose. The method for producing the cosmetics of the present embodiment is, for example, a method of mixing titanium oxide powder with a cosmetic base and mixing other components for production, or mixing titanium oxide powder with existing cosmetics. Examples include a method of manufacturing, a method of mixing a dispersion containing titanium oxide with a cosmetic base and mixing other components, and a method of mixing a dispersion containing titanium oxide with an existing cosmetic. Be done.
(形態)
 本実施形態の化粧料の形態は、特に限定されず、目的に応じて適宜選択することができる。本実施形態の化粧料の形態は、例えば、粉末状、粉末固形状、固形状、液状、ジェル状等が挙げられる。なお、化粧料の形態が液状、ジェル状の場合、化粧料の分散形態は、特に限定されず、目的に応じて適宜選択することができる。ジェル状の化粧料の分散形態としては、例えば、油中水型(W/O型)エマルジョン、水中油型(O/W型)エマルジョン、油型等が挙げられる。
(form)
The form of the cosmetic of the present embodiment is not particularly limited, and can be appropriately selected depending on the intended purpose. Examples of the form of the cosmetic of the present embodiment include powder, powder solid, solid, liquid, gel and the like. When the form of the cosmetic is liquid or gel, the dispersed form of the cosmetic is not particularly limited and can be appropriately selected depending on the purpose. Examples of the dispersed form of the gel-like cosmetics include a water-in-oil (W / O type) emulsion, an oil-in-water type (O / W type) emulsion, and an oil type.
 本実施形態の化粧料としては、例えば、ベースメイク、マニキュア、口紅等が挙げられる。これらの中でも、ベースメイクが好ましい。
 ベースメイクとしては、例えば、主に肌の凹凸を軽減させる用途に用いられる化粧下地、主に肌の色味を整える用途に用いられるファンデーション、主にファンデーションの肌への定着を向上させる用途に用いられるフェイスパウダー等が挙げられる。
Examples of the cosmetics of the present embodiment include base make-up, manicure, lipstick and the like. Of these, base makeup is preferable.
As base makeup, for example, it is used as a makeup base mainly used for reducing unevenness of the skin, a foundation mainly used for adjusting the color of the skin, and mainly for improving the fixation of the foundation on the skin. Examples include face powder and the like.
 本実施形態の化粧料によれば、肌に塗布した場合に、伸び及び/又は感触と隠蔽力に優れる。また、本実施形態の化粧料によれば、透明感を有しながら、酸化チタン粒子特有の青白さを低減できる。 According to the cosmetic of the present embodiment, when applied to the skin, it has excellent elongation and / or feel and hiding power. Further, according to the cosmetic of the present embodiment, it is possible to reduce the paleness peculiar to titanium oxide particles while having a transparent feeling.
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[実施例1]
(酸化チタン粉体の作製)
 ガラス容器に純水5Lを入れ、攪拌しながらテトライソプロポキシチタン(商品名:A-1、日本曹達株式会社製)を5mol滴下し、チタンアルコキシドの加水分解生成物である白色懸濁液を得た。
 次に、白色懸濁液をろ過して、チタンアルコキシドの加水分解生成物の固体部分である白色ケーキAを得た。
 次に、オートクレーブに、白色ケーキ(A)を酸化チタン換算で5mol(400g)と、ピロリジン(関東化学株式会社製)を7molと、純水を加えて全量10kgとして、スラリー(B1)を調製した。スラリー(B1)中の酸化チタン分の濃度は、4質量%であった。
 次に、オートクレーブを用いて、スラリー(B1)を260℃にて6時間保持し、酸化チタン粒子懸濁液(C1)を得た。
[Example 1]
(Preparation of titanium oxide powder)
5 L of pure water is placed in a glass container, and 5 mol of tetraisopropoxytitanium (trade name: A-1, manufactured by Nippon Soda Co., Ltd.) is added dropwise with stirring to obtain a white suspension which is a hydrolysis product of titanium alkoxide. It was.
The white suspension was then filtered to give white cake A, a solid portion of the hydrolysis product of titanium alkoxide.
Next, a slurry (B1) was prepared by adding 5 mol (400 g) of white cake (A) in terms of titanium oxide, 7 mol of pyrrolidine (manufactured by Kanto Chemical Co., Inc.), and pure water to an autoclave to make a total of 10 kg. .. The concentration of titanium oxide in the slurry (B1) was 4% by mass.
Next, the slurry (B1) was held at 260 ° C. for 6 hours using an autoclave to obtain a titanium oxide particle suspension (C1).
 次に、オートクレーブに、酸化チタン粒子懸濁液(C1)を4500g(酸化チタン分180g)と、上記と同様にして得られた白色ケーキ(A)を酸化チタン分で4.5mol(酸化チタン分360g)と、ピロリジンを6.5molと、純水を加えて、全量を10kgとして、スラリー(D1)を調整した。スラリー(D1)中の酸化チタン分の濃度は、5.4質量%であった。
 次に、オートクレーブを用いて、スラリー(D1)を250℃にて6時間保持し、酸化チタン粒子懸濁液(E1)を得た。
 酸化チタン粒子懸濁液(E1)を固液分離し、固体を200℃で乾燥させ、実施例1の酸化チタン粉体を得た。
Next, in an autoclave, 4500 g (titanium oxide content 180 g) of titanium oxide particle suspension (C1) and 4.5 mol (titanium oxide content) of the white cake (A) obtained in the same manner as above were added. 360 g), 6.5 mol of pyrrolidine and pure water were added to adjust the total amount to 10 kg, and the slurry (D1) was prepared. The concentration of titanium oxide in the slurry (D1) was 5.4% by mass.
Next, the slurry (D1) was held at 250 ° C. for 6 hours using an autoclave to obtain a titanium oxide particle suspension (E1).
The titanium oxide particle suspension (E1) was separated into solid and liquid, and the solid was dried at 200 ° C. to obtain the titanium oxide powder of Example 1.
(BET比表面積の評価)
 実施例1の酸化チタン粉体のBET比表面積を、比表面積計(商品名:BELSORP-mini、日本ベル社製)を使用して測定した。その結果、実施例1の酸化チタン粉体のBET比表面積は、9m/gであった。結果を表1に示す。
(Evaluation of BET specific surface area)
The BET specific surface area of the titanium oxide powder of Example 1 was measured using a specific surface area meter (trade name: BELSORP-mini, manufactured by Nippon Bell Co., Ltd.). As a result, the BET specific surface area of the titanium oxide powder of Example 1 was 9 m 2 / g. The results are shown in Table 1.
「八面体状粒子の含有率」
 走査型電子顕微鏡(SEM)(商品名:S-4800、日立ハイテクノロジーズ社製)により、酸化チタン粒子50個を観察した結果、八面体状の酸化チタン粒子は、酸化チタン粉体中に60個数%存在した。結果を表1に示す。
 また、透過型電子顕微鏡でも、実施例1の酸化チタン粉体に、八面体状の酸化チタン粒子が含有されていることが確認された。
"Content rate of octahedral particles"
As a result of observing 50 titanium oxide particles with a scanning electron microscope (SEM) (trade name: S-4800, manufactured by Hitachi High-Technologies Corporation), 60 octahedral titanium oxide particles were found in the titanium oxide powder. %Were present. The results are shown in Table 1.
In addition, it was also confirmed by the transmission electron microscope that the titanium oxide powder of Example 1 contained octahedral titanium oxide particles.
(酸化チタン粒子の結晶相の同定)
 実施例1の酸化チタン粉体の結晶相を、X線回折装置(商品名:X’Pert Pro、スペクトリス社製)を用いて同定した。その結果、実施例1の酸化チタン粉体は、アナターゼ単相であった。結果を表1に示す。
(Identification of crystal phase of titanium oxide particles)
The crystal phase of the titanium oxide powder of Example 1 was identified using an X-ray diffractometer (trade name: X'Pert Pro, manufactured by Spectris). As a result, the titanium oxide powder of Example 1 was anatase single phase. The results are shown in Table 1.
(平均摩擦係数の評価)
 肌模型基板(頬部肌模型30代(φ55mm×5Tmm)、ビューラックス社製)に、実施例1の酸化チタン粉体1gを載せた。
 次いで、摩擦感テスター(型番:KES-SE、カトーテック社製)の、1cmピアノ線センサー(装置標準)の下に、酸化チタン粉体を1g載せた肌模型基板を配置した。
 次いで、25g荷重(0.245N)となるようにセンサーを酸化チタン粉体に接触させた状態で、1mm/sの速度で、基板を水平方向に30mm移動させることで、平均摩擦係数を測定した。その結果、平均摩擦係数は0.21であった。結果を表1に示す。
(Evaluation of average coefficient of friction)
1 g of titanium oxide powder of Example 1 was placed on a skin model substrate (cheek skin model 30s (φ55 mm × 5 Tmm), manufactured by Burax).
Next, a skin model substrate on which 1 g of titanium oxide powder was placed was placed under a 1 cm 2 piano wire sensor (device standard) of a friction tester (model number: KES-SE, manufactured by Kato Tech Co., Ltd.).
Next, the average coefficient of friction was measured by moving the substrate by 30 mm in the horizontal direction at a speed of 1 mm / s with the sensor in contact with the titanium oxide powder so as to have a load of 25 g (0.245 N). .. As a result, the average coefficient of friction was 0.21. The results are shown in Table 1.
(平均一次粒子径の評価:最大値(X)と最小値(Y)の評価)
 図2において、一粒子における向かい合う2個の頂点を結ぶ線分の長さの最大値(以下、(X)と表す。)、および前記最大値に係る線分に略直交する、向かい合う2個の頂点を結ぶ線分の最小値(以下、(Y)と表す。)について、走査型電子顕微鏡(SEM)(商品名:JSM-7200F、日本電子社製)を用いて、実施例1の酸化チタン粉体の二次電子像を観察することにより測定した。SEM像を図5に示す。最大値(X)/最小値(Y)は、それぞれの粒子について算出し、50個の粒子の最大値(X)/最小値(Y)の算術平均値とした。最大値(X)/最小値(Y)の値を表1に示す。
(Evaluation of average primary particle size: Evaluation of maximum value (X) and minimum value (Y))
In FIG. 2, the maximum value of the length of the line segment connecting the two facing vertices in one particle (hereinafter referred to as (X)) and the two facing lines substantially orthogonal to the line segment related to the maximum value. Regarding the minimum value of the line segment connecting the vertices (hereinafter referred to as (Y)), using a scanning electron microscope (SEM) (trade name: JSM-7200F, manufactured by Nippon Denshi Co., Ltd.), titanium oxide of Example 1 It was measured by observing the secondary electron image of the powder. The SEM image is shown in FIG. The maximum value (X) / minimum value (Y) was calculated for each particle, and was used as the arithmetic mean value of the maximum value (X) / minimum value (Y) of 50 particles. Table 1 shows the maximum value (X) / minimum value (Y).
(粒度分布の評価)
 上記で求めた50個の粒子の最大値(X)をそれぞれ3乗し、定数0.145をかけて、体積を算出した。最大値(X)と体積値を用いて体積粒度分布を算出した。累積体積百分率が10%の場合の最大値(X)(d10)、累積体積百分率が50%の場合の最大値(X)(d50)、d10/d50を算出した。結果を表1に示す。
(Evaluation of particle size distribution)
The maximum value (X) of the 50 particles obtained above was each cubed and multiplied by a constant of 0.145 to calculate the volume. The volume particle size distribution was calculated using the maximum value (X) and the volume value. The maximum value (X) (d10) when the cumulative volume percentage was 10%, the maximum value (X) (d50) when the cumulative volume percentage was 50%, and d10 / d50 were calculated. The results are shown in Table 1.
(化粧料の作製)
 実施例1の酸化チタン粉体2gと、タルク8gとを乳鉢で混合し、実施例1のベースメイク化粧料を作製した。
(Making cosmetics)
2 g of titanium oxide powder of Example 1 and 8 g of talc were mixed in a mortar to prepare a base make-up cosmetic of Example 1.
[比較例1]
(酸化チタン粉体の作製)
 実施例1の作製過程で得られる白色ケーキ(A)を酸化チタン換算で1mol(80g)と、ピロリジン0.7molと、純水を加えて全量1kgとして、スラリー(B2)を調整した。スラリー(B2)中の酸化チタン分の濃度は8質量%であった。
 次に、オートクレーブを用いて、スラリー(B2)を220℃にて9時間保持し、酸化チタン粒子懸濁液(C2)を得た。
 次に、酸化チタン粒子懸濁液(C2)を100g(酸化チタン分8g)と、白色ケーキ(A)を酸化チタン分で1mol(酸化チタン分80g)と、ピロリジン0.7molと、純水を加えて全量を1kgとして、スラリー(D2)を調整した。スラリー(D2)中の酸化チタン分の濃度は、8.8質量%であった。 次に、オートクレーブを用いて、スラリー(D2)を220℃で9時間保持し、酸化チタン粒子懸濁液(E2)を得た。
 得られた酸化チタン粒子懸濁液(E2)を固液分離し、固体を200℃で乾燥させ、比較例1の酸化チタン粉体を得た。
[Comparative Example 1]
(Preparation of titanium oxide powder)
The white cake (A) obtained in the production process of Example 1 was added with 1 mol (80 g) of titanium oxide, 0.7 mol of pyrrolidine, and pure water to make a total amount of 1 kg, and the slurry (B2) was prepared. The concentration of titanium oxide in the slurry (B2) was 8% by mass.
Next, the slurry (B2) was held at 220 ° C. for 9 hours using an autoclave to obtain a titanium oxide particle suspension (C2).
Next, 100 g of titanium oxide particle suspension (C2) (8 g of titanium oxide content), 1 mol of white cake (A) with titanium oxide content (80 g of titanium oxide content), 0.7 mol of pyrrolidine, and pure water were added. In addition, the slurry (D2) was adjusted so that the total amount was 1 kg. The concentration of titanium oxide in the slurry (D2) was 8.8% by mass. Next, the slurry (D2) was held at 220 ° C. for 9 hours using an autoclave to obtain a titanium oxide particle suspension (E2).
The obtained titanium oxide particle suspension (E2) was separated into solid and liquid, and the solid was dried at 200 ° C. to obtain the titanium oxide powder of Comparative Example 1.
(酸化チタン粉体の評価)
 実施例1と同様に評価した結果を表1に示す。
(Evaluation of titanium oxide powder)
Table 1 shows the evaluation results in the same manner as in Example 1.
(化粧料の作製)
 実施例1と同様にして、比較例1のベースメイク化粧料を作製した。
(Making cosmetics)
The base make-up cosmetic of Comparative Example 1 was prepared in the same manner as in Example 1.
(伸びの評価)
 実施例1と比較例1の化粧料をそれぞれ肌に塗布し、どちらの化粧料の伸びがよいか、10人で評価した。その結果、10人とも実施例1の化粧料の方が比較例1よりも伸びがよいと評価した。
(Evaluation of growth)
The cosmetics of Example 1 and Comparative Example 1 were applied to the skin, respectively, and 10 people evaluated which cosmetic had the best growth. As a result, all 10 people evaluated that the cosmetics of Example 1 had better growth than Comparative Example 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1と比較例1とを比較することにより、平均摩擦係数が小さい酸化チタン粉体を含むベースメイク化粧料は、肌に塗布した時の化粧料の伸びがよいことが確認された。 By comparing Example 1 and Comparative Example 1, it was confirmed that the base make-up cosmetic containing titanium oxide powder having a small average friction coefficient spreads well when applied to the skin.
[実施例2]
(酸化チタン粉体の作製)
 実施例1と同様にして、酸化チタン粒子懸濁液(C1)を得た。
[Example 2]
(Preparation of titanium oxide powder)
A titanium oxide particle suspension (C1) was obtained in the same manner as in Example 1.
 次に、酸化チタン粒子懸濁液(C1)を4500g(酸化チタン分180g)と、上記と同様にして得られた白色ケーキ(A)を酸化チタン分で4.5mol(酸化チタン分360g)と、ピロリジンを6.5molと、純水を加えて全量を10kgとして、スラリー(D1)を調整した。スラリー(D1)中の酸化チタン分の濃度は、5.4質量%であった。
 次に、オートクレーブを用いて、スラリー(D1)を260℃にて6時間保持し、酸化チタン粒子懸濁液(E3)を得た。
Next, the titanium oxide particle suspension (C1) was added to 4500 g (titanium oxide content 180 g), and the white cake (A) obtained in the same manner as above was added to 4.5 mol (titanium oxide content 360 g). , Pyrrolidine was added to 6.5 mol and pure water was added to bring the total amount to 10 kg, and the slurry (D1) was adjusted. The concentration of titanium oxide in the slurry (D1) was 5.4% by mass.
Next, the slurry (D1) was held at 260 ° C. for 6 hours using an autoclave to obtain a titanium oxide particle suspension (E3).
 次に、酸化チタン粒子懸濁液(E3)を4500g(酸化チタン分180g)と、上記と同様にして得られた白色ケーキ(A)を酸化チタン分で2.25mol(酸化チタン分180g)と、ピロリジンを6.5molと、純水を加えて全量を10kgとして、スラリー(F1)を調整した。スラリー(F1)中の酸化チタン分の濃度は、3.6質量%であった。
 次に、オートクレーブを用いて、スラリー(F1)を260℃にて6時間保持し、酸化チタン粒子懸濁液(G1)を得た。
 酸化チタン粒子懸濁液(G1)を固液分離し、固体を200℃で乾燥させた。
 次いで、乾燥後の酸化チタン粉体をミル(Oster社製、Speed16)で解砕し、実施例2の酸化チタン粉体を得た。
Next, the titanium oxide particle suspension (E3) was added to 4500 g (titanium oxide content 180 g), and the white cake (A) obtained in the same manner as above was added to 2.25 mol (titanium oxide content 180 g). , Pyrrolidine was added to 6.5 mol and pure water was added to bring the total amount to 10 kg, and the slurry (F1) was adjusted. The concentration of titanium oxide in the slurry (F1) was 3.6% by mass.
Next, the slurry (F1) was held at 260 ° C. for 6 hours using an autoclave to obtain a titanium oxide particle suspension (G1).
The titanium oxide particle suspension (G1) was separated into solid and liquid, and the solid was dried at 200 ° C.
Next, the dried titanium oxide powder was crushed with a mill (manufactured by Oster, Speed 16) to obtain the titanium oxide powder of Example 2.
(平均一次粒子径の評価:最大値(X)と最小値(Y)と粒度分布の評価)
 実施例1と同様にして、実施例2の八面体状の酸化チタン粒子50個を観察し、上記の(X)の累積体積百分率が10%の場合の値(d10)、上記の(X)の累積体積百分率が50%の場合の値(d50)(平均一次粒子径)、d10/d50、上記の(Y)、および(Y)に対する(X)の比(X/Y)を算出した。結果を表2に示す。観察した酸化チタン粒子のSEM像を図6に示す。
(Evaluation of average primary particle size: maximum value (X) and minimum value (Y) and evaluation of particle size distribution)
In the same manner as in Example 1, 50 octahedral titanium oxide particles of Example 2 were observed, and the value (d10) when the cumulative volume percentage of the above (X) was 10%, the above (X). The value (d50) (average primary particle diameter), d10 / d50, and the ratio (X / Y) of (X) to (Y) above, when the cumulative volume percentage of (Y) was 50%, were calculated. The results are shown in Table 2. The SEM image of the observed titanium oxide particles is shown in FIG.
(平均二次粒子径の評価)
 実施例2の酸化チタン粉体の二次粒子の平均粒子径を粒度分布測定装置 MASTERSIZER3000(Malvern社製)を用いて測定した。すなわち、乾式測定により、体積粒度分布d50を得た。結果を表2に示す。
(Evaluation of average secondary particle size)
The average particle size of the secondary particles of the titanium oxide powder of Example 2 was measured using a particle size distribution measuring device MASTERSIZER3000 (manufactured by Malvern). That is, the volume particle size distribution d50 was obtained by dry measurement. The results are shown in Table 2.
(BET比表面積の評価)
 実施例2の酸化チタン粉体のBET比表面積を、実施例1と同様にして測定した。その結果、実施例2の酸化チタン粉体のBET比表面積は、9m/gであった。結果を表2に示す。
(Evaluation of BET specific surface area)
The BET specific surface area of the titanium oxide powder of Example 2 was measured in the same manner as in Example 1. As a result, the BET specific surface area of the titanium oxide powder of Example 2 was 9 m 2 / g. The results are shown in Table 2.
「八面体状粒子の含有率」
 実施例1と同様にして、酸化チタン粒子50個を観察した結果、八面体状の酸化チタン粒子は、酸化チタン粉体中に60個数%存在した。結果を表2に示す。
 また、透過型電子顕微鏡でも、実施例2の酸化チタン粉体に、八面体状の酸化チタン粒子が含有されていることが確認された。
"Content rate of octahedral particles"
As a result of observing 50 titanium oxide particles in the same manner as in Example 1, 60% by number of octahedral titanium oxide particles were present in the titanium oxide powder. The results are shown in Table 2.
In addition, it was also confirmed by the transmission electron microscope that the titanium oxide powder of Example 2 contained octahedral titanium oxide particles.
(酸化チタン粒子の結晶相の同定)
 実施例1と同様にして、実施例2の酸化チタン粉体の結晶相を同定した。その結果、実施例2の酸化チタン粉体は、アナターゼ単相であった。結果を表2に示す。
(Identification of crystal phase of titanium oxide particles)
The crystal phase of the titanium oxide powder of Example 2 was identified in the same manner as in Example 1. As a result, the titanium oxide powder of Example 2 was anatase single phase. The results are shown in Table 2.
(平均摩擦係数と摩擦係数の偏差の評価)
 肌模型基板(頬部肌模型30代(φ55mm×5Tmm)、ビューラックス社製)に、実施例1の酸化チタン粉体1gを載せた。
 次いで、摩擦感テスター(型番:KES-SE、カトーテック社製)の、1cmピアノ線センサー(装置標準)の下に、酸化チタン粉体を1g載せた肌模型基板を配置した。
 次いで、25g荷重(0.245N)となるようにセンサーを酸化チタン粉体に接触させた状態で、1mm/sの速度で、基板を水平方向に30mm移動させることで、25g荷重(0.245N)で平均摩擦係数と摩擦係数の偏差を測定した。結果を表2に示す。
(Evaluation of deviation between average friction coefficient and friction coefficient)
1 g of titanium oxide powder of Example 1 was placed on a skin model substrate (cheek skin model 30s (φ55 mm × 5 Tmm), manufactured by Burax).
Next, a skin model substrate on which 1 g of titanium oxide powder was placed was placed under a 1 cm 2 piano wire sensor (device standard) of a friction tester (model number: KES-SE, manufactured by Kato Tech Co., Ltd.).
Next, with the sensor in contact with the titanium oxide powder so as to have a load of 25 g (0.245 N), the substrate was moved by 30 mm in the horizontal direction at a speed of 1 mm / s to carry a load of 25 g (0.245 N). ) Measured the deviation between the average friction coefficient and the friction coefficient. The results are shown in Table 2.
(化粧料の作製)
 実施例1と同様にして、実施例2のベースメイク化粧料を作製した。
(Making cosmetics)
The base make-up cosmetic of Example 2 was prepared in the same manner as in Example 1.
(青白さ、透明感、隠蔽力の評価)
 実施例2のベースメイク化粧料を5cm角基板(商品名:HELIOPLATE HD-6、Helioscreen社製)に、12mg~14mgとなるように塗布し、塗布基板を作製した。
 分光光度計(型番;UV-3150、株式会社島津製作所製)を用いて、塗布基板の拡散透過スペクトル(TT)、拡散反射スペクトル(TR)、および直線反射スペクトル(R)を測定し、以下の指標を用いて評価した。いずれも、光の入射方向は塗布面から測定し、反射スペクトルは硫酸バリウム粉体(関東化学社製 特級)を圧縮した成形板を基準として測定した。結果を表2に示す。
(Evaluation of paleness, transparency, and hiding power)
The base make-up cosmetic of Example 2 was applied to a 5 cm square substrate (trade name: HELIOPLATE HD-6, manufactured by Helioscreen) so as to be 12 mg to 14 mg to prepare a coated substrate.
Using a spectrophotometer (model number: UV-3150, manufactured by Shimadzu Corporation), the diffuse transmission spectrum (TT), diffuse reflection spectrum (TR), and linear reflection spectrum (R) of the coated substrate were measured, and the following It was evaluated using an index. In each case, the incident direction of light was measured from the coated surface, and the reflection spectrum was measured with reference to a molded plate obtained by compressing barium sulfate powder (special grade manufactured by Kanto Chemical Co., Inc.). The results are shown in Table 2.
(青白さ)
 450nmにおける拡散反射率(TR450nm)と、550nmにおける拡散反射率(TR550nm)との比率(TR450nm/TR550nm)を青白さの指標とした。比率が1より大きくなればなるほど青白いと言えるため、TR450nm/TR550nmの値は小さいほど好ましい。
 なお、青白さの指標と、人の見た目との相関を表3に示す。
(Pale)
The ratio (TR 450 nm / TR 550 nm ) of the diffuse reflectance at 450 nm (TR 450 nm ) and the diffuse reflectance at 550 nm (TR 550 nm ) was used as an index of paleness. Since it can be said that the larger the ratio is, the paler it is, the smaller the value of TR 450 nm / TR 550 nm is, the more preferable it is.
Table 3 shows the correlation between the paleness index and the appearance of a person.
(透明感)
 550nmにおける直線反射率(R550nm)と、550nmにおける拡散反射率(TR550nm)との比率(R550nm/TR550nm)を透明感の指標とした。比率が小さいほど透明感が高いため、値が小さいほど好ましい。
 なお、透明感の指標と、人の見た目との相関を表3に示す。
(Clarity)
The ratio (R 550 nm / TR 550 nm ) of the linear reflectance (R 550 nm ) at 550 nm and the diffuse reflectance (TR 550 nm ) at 550 nm was used as an index of transparency. The smaller the ratio, the higher the transparency, and the smaller the value, the more preferable.
Table 3 shows the correlation between the index of transparency and the appearance of a person.
(隠蔽力)
 550nmにおける拡散反射率(TR550nm)を隠蔽力の指標とした。拡散反射率(TR550nm)が大きい場合、隠蔽力が大きいと言えるため、値が大きいほうが好ましい。
 なお、隠蔽力の指標と、人の見た目との相関を、表3に示す。
(Hiding power)
The diffuse reflectance at 550 nm (TR 550 nm ) was used as an index of hiding power. When the diffuse reflectance (TR 550 nm ) is large, it can be said that the hiding power is large, so a large value is preferable.
Table 3 shows the correlation between the index of hiding power and the appearance of a person.
(感触の評価)
 実施例2のベースメイク化粧料を人の肌に塗布した。塗布された人間が、ざらつきがなく感触がよいと感じた場合を「○」と評価し、塗布された人間が、ざらつきがあり感触が悪いと感じた場合を「×」と評価した。「○」は評価がよいことを示し、「×」は評価が悪いことを示す。
 実施例2のベースメイク化粧料の感触は「○」であった。
(Evaluation of feel)
The base make-up cosmetic of Example 2 was applied to human skin. The case where the applied human felt that there was no roughness and the feel was good was evaluated as "○", and the case where the applied human felt that it was rough and had a bad feel was evaluated as "x". "○" indicates that the evaluation is good, and "x" indicates that the evaluation is bad.
The feel of the base make-up cosmetic in Example 2 was "○".
[実施例3]
 オートクレーブに、実施例2の作製過程で得られる酸化チタン粒子懸濁液(G1)を4500g(酸化チタン分180g)と、上記と同様にして得られた白色ケーキ(A)を酸化チタン分で2.25mol(酸化チタン分180g)と、ピロリジンを6.5molと、純水を加えて全量を10kgとして、スラリー(H1)を調整した。スラリー(H1)中の酸化チタン分の濃度は、3.6質量%であった。
 次に、オートクレーブを用いて、スラリー(H1)を260℃にて6時間保持し、酸化チタン粒子懸濁液(I1)を得た。
 酸化チタン粒子懸濁液(I1)を固液分離し、固体を200℃で乾燥させた。
 次いで、乾燥後の酸化チタン粉体をミル(Oster社製、16speed)で解砕し、実施例3の酸化チタン粉体を得た。
 実施例2と同様に評価した結果を、表2に示す。
 実施例3の酸化チタン粉体のSEM写真を図6に示す。
 得られた図6のSEM写真では、解砕により凝集がほぐれ、図5のSEM写真よりも、一次粒子の形状が鮮明に観察された。
[Example 3]
In the autoclave, 4500 g (titanium oxide content 180 g) of the titanium oxide particle suspension (G1) obtained in the production process of Example 2 and the white cake (A) obtained in the same manner as above were added 2 in titanium oxide content. The slurry (H1) was prepared by adding .25 mol (180 g of titanium oxide), 6.5 mol of pyrrolidine, and pure water to make the total amount 10 kg. The concentration of titanium oxide in the slurry (H1) was 3.6% by mass.
Next, the slurry (H1) was held at 260 ° C. for 6 hours using an autoclave to obtain a titanium oxide particle suspension (I1).
The titanium oxide particle suspension (I1) was separated into solid and liquid, and the solid was dried at 200 ° C.
Next, the dried titanium oxide powder was crushed with a mill (manufactured by Oster, 16 speed) to obtain the titanium oxide powder of Example 3.
The results of the evaluation in the same manner as in Example 2 are shown in Table 2.
An SEM photograph of the titanium oxide powder of Example 3 is shown in FIG.
In the obtained SEM photograph of FIG. 6, the agglomeration was loosened by crushing, and the shape of the primary particles was clearly observed as compared with the SEM photograph of FIG.
(化粧料の作製)
 実施例1と同様にして、実施例3のベースメイク化粧料を作製した。
 実施例2と同様に評価した結果を表2に示す。
(Making cosmetics)
The base make-up cosmetic of Example 3 was prepared in the same manner as in Example 1.
Table 2 shows the evaluation results in the same manner as in Example 2.
[実施例4]
 解砕処理を行わなかった以外は実施例3と同様にして、実施例4の酸化チタン粉体を得た。
 実施例2と同様に評価した結果を、表2に示す。
 また、実施例1と同様にして、実施例4のベースメイク化粧料を作製した。
 実施例2と同様に評価した結果を表2に示す。
[Example 4]
The titanium oxide powder of Example 4 was obtained in the same manner as in Example 3 except that the crushing treatment was not performed.
The results of the evaluation in the same manner as in Example 2 are shown in Table 2.
Further, the base make-up cosmetic of Example 4 was prepared in the same manner as in Example 1.
Table 2 shows the evaluation results in the same manner as in Example 2.
[比較例2]
 直径が290nmで比表面積が6m/gの球状でルチル型の酸化チタン粒子(市販品)を比較例2の酸化チタン粉体とした。
 実施例2と同様に評価した結果を表2に示す。
 また、実施例1と同様にして、比較例2のベースメイク化粧料を作製した。
 実施例2と同様に評価した結果を表2に示す。
[Comparative Example 2]
Spherical and rutile-type titanium oxide particles (commercially available) having a diameter of 290 nm and a specific surface area of 6 m 2 / g were used as the titanium oxide powder of Comparative Example 2.
Table 2 shows the evaluation results in the same manner as in Example 2.
Moreover, the base make-up cosmetic of Comparative Example 2 was prepared in the same manner as in Example 1.
Table 2 shows the evaluation results in the same manner as in Example 2.
[比較例3]
 比較例1の酸化チタン粉体を比較例3の酸化チタン粉体とし、比較例1のベースメイク化粧料を比較例3のベースメイク化粧料として、実施例2と同様に評価した。結果を表2に示す。
[Comparative Example 3]
The titanium oxide powder of Comparative Example 1 was used as the titanium oxide powder of Comparative Example 3, and the base make-up cosmetic of Comparative Example 1 was used as the base make-up cosmetic of Comparative Example 3 in the same manner as in Example 2. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 実施例2、実施例3と比較例2~比較例3とを比較することにより、BET比表面積が5m/g以上かつ15m/g以下で、平均摩擦係数が0.5以下であり、かつ、平均二次粒子径が1μm以上かつ10μm以下である酸化チタン粒子を含むベースメイク化粧料は、肌に塗布した時の透明感と隠蔽力に優れ、酸化チタン粒子特有の青白さが低減され、かつ化粧料の感触がよいことが確認された。 By comparing Example 2 and Example 3 with Comparative Examples 2 to 3, the BET specific surface area was 5 m 2 / g or more and 15 m 2 / g or less, and the average friction coefficient was 0.5 or less. In addition, the base makeup cosmetic containing titanium oxide particles having an average secondary particle diameter of 1 μm or more and 10 μm or less is excellent in transparency and hiding power when applied to the skin, and the paleness peculiar to titanium oxide particles is reduced. Moreover, it was confirmed that the cosmetics had a good feel.
 本発明は、化粧料に配合された場合に、隠蔽力と伸びを向上させる酸化チタン粉体およびその製造方法、並びに、それを用いた分散液および化粧料を提供できる。
 本発明の酸化チタン粉体は、BET比表面積が5m/g以上かつ15m/g以下、かつ八以上の面を有する多面体形状の酸化チタン粒子を含み、1cm当たり0.245Nで測定した平均摩擦係数が0.5以下であるため、肌に塗布した場合に、伸び及び/又は感触の良さと隠蔽力に優れる。そのため、本発明の酸化チタン粉体は、ファンデーション等のベースメイク化粧料に好適に用いることができる。また、本発明の酸化チタン粉体は、白色顔料としての性能にも優れるため、白色インキ等の工業用途に用いることもでき、その工業的価値は大きい。
The present invention can provide a titanium oxide powder that improves hiding power and elongation when blended in a cosmetic, a method for producing the same, and a dispersion liquid and a cosmetic using the same.
The titanium oxide powder of the present invention contains polyhedral titanium oxide particles having a BET specific surface area of 5 m 2 / g or more, 15 m 2 / g or less, and eight or more faces, and was measured at 0.245 N per cm 2 . Since the average coefficient of friction is 0.5 or less, when applied to the skin, it is excellent in elongation and / or good feel and hiding power. Therefore, the titanium oxide powder of the present invention can be suitably used for base makeup cosmetics such as foundations. Further, since the titanium oxide powder of the present invention is also excellent in performance as a white pigment, it can be used for industrial applications such as white ink, and its industrial value is great.
10 酸化チタン粉体
100 摩擦感テスター
200 ステージ
300 肌模型基板
400 ピアノ線センサー
500 検出部
X 向かい合う2個の頂点を結ぶ線分の長さの最大値
Y 向かい合う2個の頂点間距離の最大値に係る線分に略直交する、2個の頂点を結ぶ線分の長さの最小値
10 Titanium oxide powder 100 Friction tester 200 Stage 300 Skin model substrate 400 Piano wire sensor 500 Detection unit X Maximum value of the length of the line segment connecting the two facing vertices Y Maximum value of the distance between the two facing vertices The minimum value of the length of the line segment connecting two vertices that is approximately orthogonal to the line segment.

Claims (12)

  1.  BET比表面積が5m/g以上かつ15m/g以下である酸化チタン粉体であって、
     前記酸化チタン粉体が、八以上の面を有する多面体形状の酸化チタン粒子を含み、
     1cm当たり0.245Nで測定した平均摩擦係数が0.5以下であることを特徴とする酸化チタン粉体。
    A titanium oxide powder having a BET specific surface area of 5 m 2 / g or more and 15 m 2 / g or less.
    The titanium oxide powder contains polyhedral-shaped titanium oxide particles having eight or more faces.
    A titanium oxide powder having an average friction coefficient of 0.5 or less measured at 0.245 N per cm 2 .
  2.  前記酸化チタン粒子の、向かい合う2個の頂点を結ぶ線分の最大値の、粒度分布の累積体積百分率が10%の場合の前記最大値(d10)を、累積体積百分率が50%の場合の前記最大値(d50)で除した値(d10/d50)が、0.3以上かつ1以下であることを特徴とする請求項1に記載の酸化チタン粉体。 The maximum value (d10) of the maximum value of the line segment connecting the two vertices of the titanium oxide particles when the cumulative volume percentage of the particle size distribution is 10%, and the above when the cumulative volume percentage is 50%. The titanium oxide powder according to claim 1, wherein the value (d10 / d50) divided by the maximum value (d50) is 0.3 or more and 1 or less.
  3.  前記酸化チタン粉体中における、前記多面体形状の酸化チタン粒子の含有率は、50個数%以上であることを特徴とする請求項1または2に記載の酸化チタン粉体。 The titanium oxide powder according to claim 1 or 2, wherein the content of the polyhedral-shaped titanium oxide particles in the titanium oxide powder is 50% by number or more.
  4.  平均二次粒子径が1μm以上かつ10μm以下であることを特徴とする請求項1から3のいずれか1項に記載の酸化チタン粉体。 The titanium oxide powder according to any one of claims 1 to 3, wherein the average secondary particle diameter is 1 μm or more and 10 μm or less.
  5.  摩擦係数の偏差が0.020以下であることを特徴とする請求項4に記載の酸化チタン粉体。 The titanium oxide powder according to claim 4, wherein the deviation of the friction coefficient is 0.020 or less.
  6.  無機化合物および有機化合物のいずれかを表面に有することを特徴とする請求項1~5のいずれか1項に記載の酸化チタン粉体。 The titanium oxide powder according to any one of claims 1 to 5, which has either an inorganic compound or an organic compound on the surface.
  7.  前記d50で示される平均一次粒子径が100nm以上かつ1000nm以下であり、平均二次粒子径が1μm以上かつ10μm以下である、酸化チタン粒子を含むことを特徴とする請求項1~6のいずれか1項に記載の酸化チタン粉体。 Any of claims 1 to 6, wherein the titanium oxide particles having an average primary particle diameter of 100 nm or more and 1000 nm or less and an average secondary particle diameter of 1 μm or more and 10 μm or less indicated by d50 are included. The titanium oxide powder according to item 1.
  8.  前記d50で示される平均一次粒子径が300nm以上かつ1000nm以下であり、平均二次粒子径が1μm以上かつ10μm以下である、酸化チタン粒子を含むことを特徴とする請求項1~7のいずれか1項に記載の酸化チタン粉体。 Any of claims 1 to 7, wherein the titanium oxide particles having an average primary particle diameter of 300 nm or more and 1000 nm or less and an average secondary particle diameter of 1 μm or more and 10 μm or less indicated by d50 are included. The titanium oxide powder according to item 1.
  9.  請求項1~8のいずれか1項に記載の酸化チタン粉体と、分散媒と、を含むことを特徴とする分散液。 A dispersion liquid containing the titanium oxide powder according to any one of claims 1 to 8 and a dispersion medium.
  10.  請求項1~8のいずれか1項に記載の酸化チタン粉体と、化粧品基剤と、を含むことを特徴とする化粧料。 A cosmetic comprising the titanium oxide powder according to any one of claims 1 to 8 and a cosmetic base.
  11.  請求項9に記載の分散液と、化粧品基剤と、を含むことを特徴とする、化粧料。 A cosmetic product comprising the dispersion liquid according to claim 9 and a cosmetic base.
  12.  所定濃度のチタンアルコキシドの加水分解生成物またはチタン金属塩の加水分解生成物と、窒素を含む五員環を有する化合物とを混合して、反応溶液を調製する工程と、
     前記反応溶液を水熱合成する工程と、を有し、
     前記所定濃度が、前記反応溶液中の酸化チタン分の濃度で0.4質量%以上かつ6.4質量%以下であることを特徴とする、請求項1~8のいずれか1項に記載の酸化チタン粉体の製造方法。
    A step of preparing a reaction solution by mixing a hydrolysis product of titanium alkoxide or a hydrolysis product of a titanium metal salt having a predetermined concentration with a compound having a five-membered ring containing nitrogen.
    It has a step of hydrothermally synthesizing the reaction solution.
    The invention according to any one of claims 1 to 8, wherein the predetermined concentration is 0.4% by mass or more and 6.4% by mass or less in terms of the concentration of titanium oxide in the reaction solution. A method for producing titanium oxide powder.
PCT/JP2020/026234 2019-07-03 2020-07-03 Titanium oxide powder and method for producing same, and dispersion and cosmetics using same WO2021002459A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-124699 2019-07-03
JP2019124699 2019-07-03
JP2019-124700 2019-07-03
JP2019124700 2019-07-03

Publications (1)

Publication Number Publication Date
WO2021002459A1 true WO2021002459A1 (en) 2021-01-07

Family

ID=74101326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026234 WO2021002459A1 (en) 2019-07-03 2020-07-03 Titanium oxide powder and method for producing same, and dispersion and cosmetics using same

Country Status (1)

Country Link
WO (1) WO2021002459A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131783A (en) * 2010-11-29 2012-07-12 Shiseido Co Ltd Powdery cosmetic
CN102849793A (en) * 2011-06-29 2013-01-02 财团法人交大思源基金会 Titanium dioxide nanopowder and process for producing the same
WO2017115802A1 (en) * 2015-12-28 2017-07-06 住友大阪セメント株式会社 Metal oxide powder, dispersion liquid and cosmetic preparation
WO2018003851A1 (en) * 2016-06-29 2018-01-04 住友大阪セメント株式会社 Titanium oxide particles, and titanium oxide particle dispersion and cosmetics using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012131783A (en) * 2010-11-29 2012-07-12 Shiseido Co Ltd Powdery cosmetic
CN102849793A (en) * 2011-06-29 2013-01-02 财团法人交大思源基金会 Titanium dioxide nanopowder and process for producing the same
WO2017115802A1 (en) * 2015-12-28 2017-07-06 住友大阪セメント株式会社 Metal oxide powder, dispersion liquid and cosmetic preparation
WO2018003851A1 (en) * 2016-06-29 2018-01-04 住友大阪セメント株式会社 Titanium oxide particles, and titanium oxide particle dispersion and cosmetics using same

Similar Documents

Publication Publication Date Title
JP6939785B2 (en) Titanium oxide particles, and titanium oxide particle dispersions and cosmetics using them.
WO2019131833A1 (en) Titanium oxide powder, and dispersion and cosmetic using same
JP6984407B2 (en) Titanium oxide powder, and dispersions and cosmetics using it
JP2021011397A (en) Titanium oxide powder, and dispersion liquid and cosmetic using the same
WO2021002459A1 (en) Titanium oxide powder and method for producing same, and dispersion and cosmetics using same
JP7326934B2 (en) Titanium oxide powder, dispersion and cosmetics using the same
WO2021002466A1 (en) Titanium oxide powder, and dispersion liquid and cosmetic preparation each using same
JP2021011476A (en) Titanium oxide powder, and dispersion liquid and cosmetics including same
JP6988471B2 (en) Titanium oxide powder, and dispersions and cosmetics using it
JP2021011428A (en) Titanium oxide powder and method for producing the same, and dispersion liquid and cosmetic using the same
JP7419685B2 (en) Titanium oxide powder, dispersion liquid and cosmetics using the same
WO2021002456A1 (en) Titanium oxide powder, and dispersion and cosmetics using same
WO2019131871A1 (en) Titanium oxide powder, and dispersion liquid and cosmetic using said powder
JPWO2020045617A1 (en) Titanium oxide powder, and dispersions and cosmetics using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834679

Country of ref document: EP

Kind code of ref document: A1