WO2021002359A1 - Nucleic acid drug and use thereof - Google Patents

Nucleic acid drug and use thereof Download PDF

Info

Publication number
WO2021002359A1
WO2021002359A1 PCT/JP2020/025676 JP2020025676W WO2021002359A1 WO 2021002359 A1 WO2021002359 A1 WO 2021002359A1 JP 2020025676 W JP2020025676 W JP 2020025676W WO 2021002359 A1 WO2021002359 A1 WO 2021002359A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
aso
oligonucleotide
composition according
gene
Prior art date
Application number
PCT/JP2020/025676
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 中村
玲 金
孝 上村
遼平 ▲高▼田
正之 梨本
Original Assignee
株式会社Veritas In Silico
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Veritas In Silico filed Critical 株式会社Veritas In Silico
Priority to JP2021500250A priority Critical patent/JP6934695B2/en
Publication of WO2021002359A1 publication Critical patent/WO2021002359A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7115Nucleic acids or oligonucleotides having modified bases, i.e. other than adenine, guanine, cytosine, uracil or thymine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/712Nucleic acids or oligonucleotides having modified sugars, i.e. other than ribose or 2'-deoxyribose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7125Nucleic acids or oligonucleotides having modified internucleoside linkage, i.e. other than 3'-5' phosphodiesters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/16Otologicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing

Definitions

  • the present invention relates to the regulation of gene expression using oligonucleotides. More specifically, it relates to a pharmaceutical composition containing a relatively short oligonucleotide for regulating gene expression and treatment of a disease using the same. More specifically, the present invention relates to a pharmaceutical composition containing an antisense oligonucleotide targeting the p53 gene and a method for preventing or treating a disease using the same.
  • nucleic acid drugs are expected as a new modality (drug discovery method).
  • Non-Patent Document 1 As basic research, research on antisense nucleic acids and RNAi (RNA interference) has been conducted (Non-Patent Document 1), drug development based on that technology has been carried out, and some products have begun to be put on the market. Furthermore, the function of nucleic acids that do not encode proteins is being clarified, and application to drug discovery as a gene expression regulation technique as miRNA (microRNA) is being promoted (Non-Patent Document 2).
  • miRNA miRNA
  • Acute renal failure (also called acute renal failure (AKI)) is a condition in which the homeostasis of body fluid cannot be maintained due to a rapid decline in renal function.
  • ARF is a clinical syndrome characterized by rapid deterioration of renal function within a few days and is generally based on a rapid rise in serum creatinine levels or a rapid rise in serum creatinine and BUN.
  • Acute renal failure (acute renal injury) is diagnosed. In general, 170-200 severe ARF cases per million people occur each year.
  • Acute renal failure due to renal tubular necrosis caused by nephrotoxic substances such as ischemia due to shock, cisplatin, aminoglycoside, and contrast media may develop in connection with medical practice such as surgery, contrast examination, and administration of anticancer drugs.
  • Acute kidney injury often develops as a result of renal ischemia-reperfusion injury (IRE) in patients who have undergone major surgery such as heart surgery.
  • IRE renal ischemia-reperfusion injury
  • Acute renal failure due to surgery, contrast examination, administration of antineoplastic drugs or antibiotics is likely to occur when the extracellular fluid volume is low, and it can be caused by sufficient fluid replacement in advance. It is known that the frequency is reduced and the degree of renal failure can be reduced.
  • there is no specific treatment method for ARF there is no specific treatment method for ARF, and further improvement is required for the prevention and treatment method of acute renal failure.
  • U.S. Pat. No. 9,334,499 provides a method for treating patients at risk of developing acute renal failure or those who develop acute renal failure, which down-regulates the expression of the p53 gene. Methods are disclosed that include administering to a patient a double-stranded siRNA compound for an amount effective for p53 gene. The same document also discloses that down-regulation of p53 gene expression can be effective against alopecia caused by cancer chemotherapy and radiation therapy.
  • US Pat. No. 7,910,566 describes acute renal failure after renal ischemia-reperfusion, characterized in that a double-stranded siRNA compound having a specific nucleotide sequence targeting the p53 gene is used at a specific time. Treatment methods for patients at risk are disclosed. This document shows that in a rat ischemia-reperfusion-induced ARF model, p53-targeted siRNA can protect renal tissue from the effects of ischemia-reperfusion injury and reduce the severity of ARF.
  • the present invention comprises a pharmaceutical composition containing a relatively short oligonucleotide (antisense oligonucleotide; hereinafter also referred to as ASO) for regulating the expression of the p53 gene, and a method for preventing or treating a disease or condition using the pharmaceutical composition.
  • ASO antisense oligonucleotide
  • One of the purposes is to provide.
  • Another object of the present invention is to provide ASO having high knockdown efficiency for expression of p53 gene and high efficiency of uptake into cells.
  • the present inventors have identified an ASO that acts on a transcript of the p53 gene for the purpose of regulating the expression of the p53 gene. It is considered that p53-related diseases such as acute renal failure can be treated and prevented by suppressing the translation of the p53 gene from the transcript using these ASOs.
  • the present invention is based on these nucleic acid medicines developed by the present inventors and includes the following aspects:
  • a pharmaceutical composition for inhibiting the expression of the p53 gene in cells wherein an oligonucleotide containing a complementary region substantially complementary to at least a part of mRNA encoding the p53 gene is used as an active ingredient.
  • Aspect 2 The pharmaceutical composition according to Aspect 1, wherein the p53 gene is a human p53 gene.
  • Aspect 3 The pharmaceutical composition according to Aspect 1 or 2, wherein the p53 gene has the sequence of SEQ ID NO: 132.
  • Aspect 4 The pharmaceutical composition according to any one of aspects 1 to 3, wherein the oligonucleotide is essentially a single-stranded molecule.
  • Aspect 5 The pharmaceutical composition according to any one of aspects 1 to 4, wherein the oligonucleotide is an antisense oligonucleotide (ASO).
  • Aspect 6 The pharmaceutical composition according to Aspect 5, wherein the antisense oligonucleotide (ASO) is a gapmer.
  • Aspect 7 The pharmaceutical composition according to any one of aspects 1 to 6, wherein the oligonucleotide has a length of 12 to 18 bases.
  • Aspect 8 The pharmaceutical composition according to Aspect 7, wherein the oligonucleotide is 14 bases long.
  • Aspect 9 The pharmaceutical composition according to Aspect 8, wherein the oligonucleotide is a 2-10-2 gapmer.
  • Aspect 10 The pharmaceutical composition according to any one of aspects 1 to 9, wherein the base in the oligonucleotide is 80% or more complementary to the p53 gene.
  • Aspect 11 The pharmaceutical composition according to any one of aspects 1 to 10, wherein the base in the oligonucleotide is 100% complementary to the p53 gene.
  • Aspect 12 The pharmaceutical composition according to any one of aspects 1 to 11, wherein the oligonucleotide contains a modified nucleoside and / or a bond between modified nucleosides.
  • Aspect 13 The pharmaceutical composition according to Aspect 12, wherein the modified nucleoside is a bridged nucleic acid.
  • oligonucleotide is an oligonucleotide containing any one of the sequences of SEQ ID NO: 1 to SEQ ID NO: 125.
  • oligonucleotide is an oligonucleotide consisting of any one sequence of SEQ ID NO: 1 to SEQ ID NO: 125.
  • the oligonucleotide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or any one of the sequences of SEQ ID NO: 1 to SEQ ID NO: 125.
  • the disease or symptom is ischemia-reperfusion disorder, hearing loss, hearing disorder, balance disorder, hearing loss, chemotherapy-induced alopecia, radiation therapy-induced alopecia, acute renal failure, acute renal disorder, Chronic kidney disease (CKD), side effects associated with anticancer drug therapy, delayed transplant function (DGF) in patients with bone marrow transplantation, spinal cord injury, brain injury, stroke, stroke, neurodegenerative disease, Parkinson's disease, Alzheimer's disease, tumor, burn , Wound, hyperthermia, hypoxia, ischemia, organ transplantation, bone marrow transplantation (BMT), myocardial infarction / heart attack, cardiotoxicity, p53-positive cancer, and acute liver failure, selected from the group, Aspect 26 or 27.
  • DGF delayed transplant function
  • a pharmaceutical composition for use in the treatment or prevention of a disease or symptom in a subject which comprises a complementary region that is substantially complementary to at least a portion of the mRNA encoding the p53 gene. It contains a single-stranded oligonucleotide as an active ingredient, the oligonucleotide is a 14-base long gapmer, and the wing regions on the 5'side and 3'side of the gapmer each consist of 2 bases of LNA.
  • a pharmaceutical composition for use in the treatment or prevention of a disease or condition in a subject p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO.
  • FIG. 1 shows the nucleotide sequence of the human p53 gene (NM_000546.5) (SEQ ID NO: 132).
  • FIG. 2 is a graph showing that the addition of p53-ASO-01-23 with a transfection reagent using HeLa cells reduces the mRNA level of p53. The vertical axis shows the relative value of the mRNA level of p53.
  • FIG. 3 is a graph showing the evaluation result of ASO in which the target site is shifted back and forth. The vertical axis shows the relative value of the mRNA level of p53. The left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection.
  • FIG. 4 is a graph showing the evaluation results of ASO shortened to 13 base lengths.
  • the vertical axis shows the relative value of the mRNA level of p53.
  • the left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection.
  • FIG. 5 is a graph showing the evaluation results of ASO having a long chain length of 15 bases.
  • the vertical axis shows the relative value of the mRNA level of p53.
  • the left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection.
  • FIG. 6 is a graph showing the evaluation results of ASO having a longer chain length of 16 bases.
  • the vertical axis shows the relative value of the mRNA level of p53.
  • the left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection.
  • FIG. 5 is a graph showing the evaluation results of ASO having a long chain length of 15 bases.
  • the vertical axis shows the relative value of the mRNA level of p53.
  • the left side shows the result 1
  • FIG. 7 is a graph showing the evaluation results of ASO having a longer chain length of 17 bases.
  • the vertical axis shows the relative value of the mRNA level of p53.
  • the left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection.
  • FIG. 8 is a graph showing the evaluation results of ASO having a longer chain length of 18 bases.
  • the vertical axis shows the relative value of the mRNA level of p53.
  • the left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection.
  • FIG. 9 is a graph showing the evaluation result of ASO in which the wing region is modified.
  • the vertical axis shows the relative value of the mRNA level of p53.
  • FIG. 10 is a graph showing the evaluation results of ASO with various modifications.
  • the vertical axis shows the relative value of the mRNA level of p53.
  • the results one day after transfection are shown on the left side, and the results two days after transfection are shown side by side on the right side.
  • FIG. 11 is a graph showing the evaluation results of ASO with added cholesterol.
  • the vertical axis shows the relative value of the mRNA level of p53. The results one day after transfection are shown on the left side, and the results two days after transfection are shown side by side on the right side.
  • FIG. 10 is a graph showing the evaluation results of ASO with various modifications.
  • the vertical axis shows the relative value of the mRNA level of p53.
  • the results one day after transfection are shown on the left side, and the results two days after transfection are shown side by side on the right side.
  • FIG. 12 is a graph showing the results of measuring the amount of p53 protein one day after transfection by a luciferase assay using a reporter plasmid with a p53 response element.
  • the results using p53-ASO-15 are shown on the left side, and the results using QPI1002 are shown on the right side.
  • FIG. 13 is a graph showing the results of measuring the amount of p53 protein 2 days after transfection by a luciferase assay using a reporter plasmid having a p53 response element.
  • the results using p53-ASO-15 are shown on the left side, and the results using QPI1002 are shown on the right side.
  • FIG. 14 is a graph showing the results of evaluating the expression-suppressing effect of p53-ASO-15 and Quark's siRNA QP1002 by qPCR. The upper row shows the results after 1 day, and the lower row shows the results after 2 days.
  • FIG. 15 shows an experimental protocol for evaluation by Western blotting.
  • FIG. 16 shows the results of evaluating the effects of ASO-15, 15-16 and QPI-1002 by Western blotting.
  • the present inventors have developed a method for efficiently regulating the expression of the p53 gene in cells using a relatively short oligonucleotide (ASO).
  • ASO oligonucleotide
  • p53 gene The p53 gene is involved in DNA repair in cells, arrest of cell growth, suppression of cell growth cycle, etc., and is a gene that is said to cause apoptosis when cells become cancerous.
  • p53 is one of the so-called tumor suppressor genes, and it is thought that cancer occurs when the function of this gene is impaired. It is thought that changes in multiple oncogenes and tumor suppressor genes are necessary for cells to become cancerous, but p53 is the gene with the highest frequency of abnormalities in malignant tumors.
  • the p53 polypeptide responds to cell stress by converting a variety of different stimuli, such as DNA damage conditions such as gamma irradiation, transcription or replication dysregulation, and transformation by oncogenes, into cell growth arrest or apoptosis. It plays an important role in the mechanism.
  • the p53 polypeptide induces apoptosis, or programmed cell death, in response to such stimuli.
  • p53 has important roles such as maintaining cell homeostasis and inducing apoptosis.
  • Most anticancer therapies also damage normal cells with p53, causing serious side effects associated with damage or death of healthy cells.
  • One aspect of the invention relates to a pharmaceutical composition for use in the treatment or prevention of a disease or condition associated with the expression of the p53 gene in a subject.
  • the targeted disease or condition is ischemic-reperfusion injury, hearing loss, hearing impairment, balance disorder, hearing loss, chemotherapy-induced alopecia, radiation therapy-induced alopecia, acute renal failure.
  • DGF Delayed transplantation function
  • the base sequence of the p53 gene and its mRNA is known and can be easily obtained from a database such as GenBank.
  • GenBank a database such as GenBank.
  • the sequence of NCBI accession number NM_000546.5 (FIG. 1; SEQ ID NO: 132) can be used.
  • Antisense oligonucleotide (also called ASOs) Antisense oligonucleotides (also called ASOs) have a sequence that is substantially complementary to at least a portion of the target nucleobase and is Watson-Crick, Hoogsteen, or reverse hoo between the corresponding nucleobases. Refers to a single-stranded oligonucleotide that hybridizes by a Gusteen-type hydrogen bond. Antisense oligonucleotides can exhibit detectable or measurable antisense activity due to hybridization to their target nucleic acid.
  • antisense activity is a reduction in the amount or expression of a target nucleic acid, or a reduction in the amount or expression of a protein encoded by such a target nucleic acid.
  • antisense activity in certain embodiments, is antisense inhibition by degradation (cleave) of the target, which reduces the level of the target nucleic acid in the presence of antisense oligonucleotides complementary to the target nucleic acid. means.
  • antisense oligonucleotides containing at least a part of continuous DNA of 4 bases or more hybridize with the target RNA and become a substrate for intracellular RNase H, which induces specific degradation (cleavage) of the target RNA.
  • antisense activity is protein binding inhibition due to steric hindrance due to target occupation, resulting in translational repression and splicing regulation (eg, exon skipping).
  • Antisense oligonucleotides are single-stranded oligomers mainly composed of deoxyribonucleosides (DNA), ribonucleosides (RNAs), modified nucleosides, and nucleoside mimics (morpholinonucleic acids, peptide nucleic acids, etc.). It has an outer region having one or more nucleosides (eg, sugar-modified nucleosides such as LNA) on both sides or one side of an internal region having multiple nucleosides (eg, deoxyribonucleosides of 4 or more consecutive bases) that induce RNase H cleavage. Chimeric antisense oligonucleotides are called gapmers.
  • nucleosides eg, sugar-modified nucleosides such as LNA
  • an external region consisting entirely of LNA is called an LNA gapmer.
  • Chimeric antisense oligonucleotides that have an external region on only one side are also called hemigapmers, in particular.
  • the nucleosides contained in the inner region are chemically different from the nucleosides contained in the outer region.
  • the inner area is sometimes called the "gap” and the outer area is sometimes called the "wing".
  • a 14-base long gapmer having a wing region of 3 bases on the 5'side and a gap region of 8 bases, respectively, is sometimes called a 3-8-3 gapmer.
  • the antisense oligonucleotides are 2-10-2 gapmers, 2-9-3 gapmers, 3-9-2 gapmers, 3-8-3 gapmers, 3-7-4 gaps. It can be any of Mar, 4-7-3 Gap Mar, and 4-6-4 Gap Mar. In certain embodiments, the antisense oligonucleotides are 2-10-2 LNA gapmer, 2-9-3 LNA gapmer, 3-9-2 LNA gapmer, 3-8-3 LNA gapmer, 3-7-4 LNA gapmer. It can be any of Mar, 4-7-3 LNA Gap Mar, and 4-6-4 LNA Gap Mar.
  • the number of bases in the internal region can be 1 or more, for example, 2,3,4,5,6,7,8,9, or 10 bases, but is not limited thereto.
  • the number of bases in the external region can be 0 bases or more, for example, 1, 2, 3, 4, 5, or 6 bases independently on the 5'side and 3'side, but the number is limited to these. Not done.
  • the 5'side and 3'side wing regions may have different numbers of bases.
  • the wing region may be composed of the same or different sugar-modified nucleosides, and the sugar-modified nucleoside in the wing region can be, for example, LNA, but is not limited thereto.
  • Antisense oligonucleotides can, in certain embodiments, include modified nucleoside and / or modified nucleoside interlinks. Further, in a specific embodiment, the antisense oligonucleotide may be modified with one or both of the terminal hydroxyl groups of the oligonucleotide. For example, a phosphate group is added to one or both of the terminal hydroxyl groups of the oligonucleotide. You may be. In certain embodiments, the antisense oligonucleotide is, for example, at least 8 bases long or longer, eg, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 21. It can be base length, but is not limited to these. In some embodiments, an ASO of about 14 bases is preferably used.
  • the antisense oligonucleotides according to the present invention are p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO- disclosed in Examples. It can be any of 15-16.
  • p53-ASO-15 and p53-ASO-15-16 have a sequence complementary to the 189th to 202nd bases of SEQ ID NO: 132.
  • p53-ASO-15-11 and p53-ASO-15-12 have sequences complementary to the 185th to 202nd bases and the 183rd to 202nd bases of SEQ ID NO: 132, respectively. There is.
  • the antisense oligonucleotide according to the present invention has a sequence complementary to the 189th to 202nd bases of SEQ ID NO: 132, the 185th to 202nd bases, and the 183rd to 202nd bases. It can be an oligonucleotide. Such complementary oligonucleotides can include the modifications described herein. Also, the antisense oligonucleotides according to the invention are in the form of pharmaceutically acceptable salts, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. May be good. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.
  • the ASO according to the present invention can be produced by a method using known chemical synthesis, an enzymatic transcription method, or the like.
  • methods using known chemical synthesis include a phosphoramidite method, a phosphorothioate method, a phosphotriester method, and the like.
  • ABI3900 high-throughput nucleic acid synthesizer manufactured by Applied Biosystems
  • NTS H-6 nucleic acid synthesis It can be synthesized by a machine (manufactured by Nihon Techno Service Co., Ltd.) and an Oligoilot10 nucleic acid synthesizer (manufactured by GE Healthcare).
  • Examples of the enzymatic transcription method include transcription using an RNA polymerase such as T7, T3, and SP6 RNA polymerase using a plasmid or DNA having the desired base sequence as a template.
  • the ASO produced by the synthetic method or the transcription method is then purified by HPLC or the like.
  • HPLC purification ASO is eluted from the column using triethylammonium acetate (TEAA) or a mixed solution of hexalylammonium acetate (HAA) and acetonitrile. Then, the elution solution is dialyzed against 1000 times the elution volume of distilled water for 10 hours, the dialysis solution is freeze-dried, and then stored frozen until use. At the time of use, for example, it is dissolved in distilled water so that the final concentration is about 100 ⁇ M.
  • TEAA triethylammonium acetate
  • HAA hexalylammonium acetate
  • the nucleic acid used in the ASO according to the present invention may be any nucleoside or a molecule having a function equivalent to that of the nucleoside, which is polymerized via an internucleoside bond.
  • Nucleoside is a type of compound in which a base (nucleobase) and a sugar are bound.
  • the bases include purine bases such as adenine and guanine, pyrimidine bases such as thymine, cytosine and uracil, nicotinamide and dimethylisoaroxazine.
  • Typical nucleosides are adenosine, thymidine, guanosine, cytidine, and uridine.
  • Nucleotides are substances in which a phosphate group is bound to a nucleoside.
  • oligonucleotides also referred to as polynucleotides
  • RNA which is a polymer of ribonucleotides
  • DNA which is a polymer of deoxyribonucleotides
  • nucleotide polymers containing modified nucleosides Be done. Natural DNA and RNA have phosphodiester bonds as internucleoside bonds.
  • the nucleic acid used for ASO according to the present invention may contain modifications.
  • Nucleic acid modification positions include sugar moieties, backbone (linkage) moieties, nucleobase (base) moieties, and 3'or 5'terminal moieties.
  • the ASO used in the present invention may contain a morpholino nucleic acid and a peptide nucleic acid.
  • Modified nucleosides include, for example, ribo to improve or stabilize nuclease resistance, to increase affinity with complementary-stranded nucleic acids, to increase cell permeability, or to visualize, as compared to RNA or DNA.
  • Examples include nucleosides, deoxyribonucleosides, RNA or DNA-modified molecules, such as sugar-modified nucleosides such as 2'-MOE, LNA, and ENA.
  • the ASO of the present invention may contain, for example, the modified nucleic acid molecule disclosed in Khvorova & Watts (Nature Biotechnology 35, 238-248 (2017) doi: 10.1038 / nbt.3765).
  • Modified sugar refers to sugars that have substitutions and / or arbitrary changes from the natural sugar moiety (ie, the sugar moiety found in DNA (2'-H) or RNA (2'-OH)).
  • a modified nucleoside refers to a modified nucleoside containing a modified sugar.
  • the sugar-modified nucleoside may be any one obtained by adding or substituting an arbitrary chemical structural substance to a part or all of the chemical structure of the sugar of the nucleoside, for example, substituting with 2'-O-methylribose.
  • Modified nucleosides substituted with 2'-O-propylribose Modified nucleosides substituted with 2'-methoxyethoxyribose, Modified nucleosides substituted with 2'-O-methoxyethylribose, 2'- Modified nucleoside substituted with O- [2- (guanidium) ethyl] ribose, modified nucleoside substituted with 2'-O-fluororibose, bridge structure having two cyclic structures by introducing a bridge structure into the sugar moiety.
  • Type artificial nucleic acid (Bridged Nucleic Acid) (BNA), more specifically, Locked Nucleic Acid (LNA) in which an oxygen atom at the 2'position and a carbon atom at the 4'position are crosslinked via methylene, ethylene.
  • Cross-linked artificial nucleic acids (Ethylene bridged nucleic acid: ENA) [Nucleic Acid Research, 32, e175 (2004)], etc., and peptide nucleic acids (PNA) [Acc. Chem. Res., 32, 624 (1999)) ], Oxypeptide Nucleic Acid (OPNA) [J. Am. Chem. Soc., 123, 4653 (2001)], and Peptide Ribonucleic Acid (PRNA) [J. Am. Chem. Soc., 122, 6900 (2000)] Etc. can be mentioned.
  • 2'-O-methyl (2'-OMe) modification (2'-OMe-RNA) of RNA is a naturally occurring modification that improves the binding affinity and nuclease resistance of modified oligonucleotides and is immune. Reduces irritation.
  • nuclease resistance is further increased over 2'-OMe modification, and the binding affinity ( ⁇ Tm) of modified nucleotides is also significantly increased.
  • 2'-fluoro (2'-F) modification (2'-F-RNA) of RNA can also be used to increase the affinity of oligonucleotides.
  • examples of other 2'modified nucleic acids include 2'-F-ANA and Sekine et al.'S 2'-modified derivative (Patent No. 5194256, JP-A-2015-02994).
  • LNA Locked Nucleic Acid
  • LNA Locked Nucleic Acid
  • the 2'oxygen and 4'carbon of the ribose sugar of RNA are fixed in the ring structure. This modification increases specificity, affinity, and half-life, allowing effective delivery to the tissue of interest with lower toxicity.
  • oligomers longer than about 8 nucleotides fully modified with LNA are known to tend to aggregate and are commonly used in admixture with DNA and other sugar-modified nucleic acids.
  • CEt which is a methylation analog of LNA, is as useful as LNA.
  • Tricyclo-DNA tkCD is a constrained nucleotide based on a tricyclic skeleton.
  • modified nucleosides include atoms (eg, hydrogen atoms, oxygen atoms) or functional groups (eg, hydroxyl groups, amino groups) in the base portion of the nucleic acid, other atoms (eg, hydrogen atoms, sulfur atoms), functional groups.
  • nucleoside for example, lipid, phospholipid, phenazine, forate , Phenantridin, anthraquinone, aclysine, fluorescein, rhodamine, coumarin, dye, and other molecules to which another chemical substance is added may be used.
  • Modified nucleobases include any nucleobase except adenine, cytosine, guanine, timine, or uracil, including, for example, 5-methylcytosine, 5-fluorocytosine, 5-bromocytosine, 5-. Iodocytosine, N4-methylcytosine, 5-fluorouracil, 5-bromouracil, 5-iodouracil, 2-thiothymine, N6-methyladenine, 8-bromoadenine, N2-methylguanine, 8-bromoguanine, and inosine Can be mentioned.
  • At least one cytosine may be replaced with 5-methylcytosine, and in some embodiments, all cytosines are replaced with 5-methylcytosine. It may have been.
  • Nucleoside bond Natural DNA and RNA have a phosphodiester bond as a nucleoside bond.
  • the internucleoside bond may include modification.
  • a modified nucleoside bond is a nucleoside bond that has a substitution or arbitrary change from a naturally occurring nucleoside bond (that is, a phosphodiester bond), and a modified nucleoside bond is a nucleoside bond containing a phosphorus atom.
  • nucleoside bonds that do not contain phosphorus atoms are included.
  • the modified nucleoside bond may be one in which an arbitrary chemical substance is added or substituted to a part or all of the chemical structure of the phosphate diester bond of the nucleotide.
  • a modified nucleoside bond substituted with a phosphorothioate bond examples thereof include a modified nucleoside bond substituted with an N3'-P5'phosphoamidate bond.
  • Other modified nucleoside linkages include ( SC5'R p ) - ⁇ , ⁇ -CNA, PMO and the like.
  • Typical phosphorus-containing nucleoside bonds include, for example, phosphodiester bonds, phosphorothioate bonds (also referred to as thiophosphate bonds), phosphorodithioate bonds, phosphotriester bonds, and methylphosphonate bonds, methylthiophosphonate bonds, and borane phosphates. Examples include binding and phosphodiester bonding.
  • PS phosphorothioate
  • Phosphorothioate (PS) modifications were originally incorporated into oligonucleotides to confer nuclease resistance, but these modifications also have a significant impact on oligonucleotide transport and uptake.
  • PS increases the binding of receptor sites and plasma proteins by altering the charge of ASO, increasing the amount of ASO reaching the target tissue.
  • Heparin-binding proteins are one of the most compatible targets for phosphorothioate-modified oligonucleotides. Proper binding by plasma proteins suppresses rapid elimination from the blood by the renal system and promotes optimal delivery.
  • the ASO of the invention comprises at least one modified internucleotide bond, eg, 20% or more, 30% or more, 40% or more, 50% or more, 60% of the total number of internucleotide bonds. More than 70%, more than 80%, more than 90%, or more than 95% may be modified internucleotide bonds. In one embodiment of the invention, ASO is used in which all internucleotide bonds are modified internucleotide bonds (eg, phosphorothioate bonds).
  • Phosphorothioate linkages has a stereogenic phosphorus atom part
  • fully modified oligonucleotide is typically a mixture of 2 n-1 diastereomers (e.g., phosphorothioate oligonucleotides 14mer is 2 thirteen It becomes a mixture of diastereomers).
  • Sp and R p diastereomeric bonds are known to exhibit different properties.
  • R p diastereomers are less nuclease resistance than S p diastereomers, it joins with a complementary strand with a higher affinity.
  • chiral control may be performed during the synthesis of the modified nucleoside bond, and the synthesis may be controlled so that the specific phosphorothioate bond becomes a specific diastereomer.
  • Examples of molecules obtained by adding another chemical substance to an oligonucleotide / terminal-modified oligonucleotide nucleic acid in which a ligand or the like is linked include, for example, a 5'-polyamine addition derivative, a cholesterol addition derivative, a steroid addition derivative, a bile acid addition derivative, and a vitamin addition derivative. , Cy5 Derivatives, Cy3 Derivatives, 6-FAM Derivatives, Biotin Derivatives, etc. and Derivatives of Kitade et al. (PCT / JP2007 / 00877, PCT / JP2016 / 59398).
  • the site to which the ligand or the like is added may be the terminal (5'end or 3'end) of the oligonucleotide and / or the inside of the oligonucleotide.
  • the ligand or the like may be indirectly bound via hybridization with an oligonucleotide complementary to the ASO to which the ligand or the like is added (WO2013 / 089283A1).
  • ASO and cholesterol can be linked via triethylene glycol (TEG), for example, as shown below.
  • TOG triethylene glycol
  • GalNAc-linked oligonucleotides and PUFA-linked oligonucleotides are known as examples of terminal modification.
  • a ligand such as GalNAc may be directly or indirectly linked to the ASO used in the present invention.
  • Short oligonucleotides tend to be delivered more to the kidneys and long oligomers tend to be delivered more to the liver. Short oligonucleotides are less likely to bind to plasma proteins and, as a result, tend to have shorter half-lives in plasma, but multimers can be constructed using cleavable linkers and the like.
  • the ASO used in the present invention may be linked to another ASO using a cleavable linker or the like.
  • the ASO according to the present invention may have a phosphate group added to the 5'end and / or the 3'end.
  • Other terminal modifications include E-VP, methylphosphonate, phosphorothioate, C-methyl analog, etc., which are known to enhance the stability of oligonucleotides.
  • the ASO used in the present invention may include these terminal modifications.
  • Sequence design of ASO The sequence of ASO can be designed based on the base sequence of the target gene.
  • a method for designing an ASO sequence is known to those skilled in the art, and a large number of ASOs have been designed so far and their activities have been evaluated.
  • examples of antisense oligonucleotides targeting the p53 gene include EP1012267B1, EP1889911A2, WO98 / 33904, EP1598420A2, WO95 / 09916, WO20 / 248885, WO98 / 22142, WO1993 / 003770, US Pat. No. 5,654,415, US Pat. No. 5641754, US Pat. No. 5087617, Japanese Patent No.
  • ASO may be determined in consideration of the secondary or tertiary structure of the target RNA.
  • the present inventors use a unique algorithm named MobyDick TM for sequencing.
  • nucleic acids For the structure prediction of nucleic acids, the following references may be referred to: --Markham, N.R. & Zuker, M. (2005) DINAMelt web server for nucleic acid acid melting prediction. Nucleic Acids Res., 33, W577-W581; --Markham, NR & Zuker, M. (2008) UNAFold: software for nucleic acid folding and hybridization. In Keith, JM, editor, Bioinformatics, Volume II. Structure, Function and Applications, number 453 in Methods in Molecular Biology, chapter 1 , pages 3-31. Humana Press, Totowa, NJ. ISBN 978-1-60327-428-9.).
  • the antisense oligonucleotide (ASO) according to the present invention can be substantially identical to any one of the sequences of SEQ ID NO: 1 to SEQ ID NO: 125.
  • substantially the same means that the oligonucleotide does not have to be completely (100%) identical to the target sequence and has 80% or more identity.
  • the oligonucleotide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of any one of the sequences of SEQ ID NOs: 1 to 125. , Or an oligonucleotide having 100% identity.
  • One aspect of the invention is a pharmaceutical composition for inhibiting the expression of the p53 gene in a cell, an oligonucleotide containing a complementary region that is substantially complementary to at least a portion of the mRNA encoding the p53 gene.
  • the oligonucleotide is an antisense oligonucleotide having a sequence substantially the same as that of any one of the sequences of SEQ ID NO: 1 to SEQ ID NO: 125.
  • substantially complementary means that the oligonucleotide does not have to be completely (100%) complementary to the target sequence and is 80% or more, for example 85%, 90%, 95%, 98% or It means having 99% complement.
  • This oligonucleotide contains at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% of any one of the sequences of SEQ ID NOs: 1 to 125. It can be an oligonucleotide consisting of sequences having the same identity. In certain embodiments, the oligonucleotide consists of a sequence that is 100% identical to any one of the sequences of SEQ ID NO: 1 to SEQ ID NO: 125. In certain embodiments, the oligonucleotide may have additional sequences on the 5'and / or 3'side of the complementary region.
  • the antisense oligonucleotide is essentially a single-stranded molecule.
  • being essentially single-stranded means that in the process of delivering or formulating an oligonucleotide, a double-strand may be formed with a separate nucleic acid that is temporarily complementary.
  • oligonucleotide When an oligonucleotide hybridizes to a target RNA and exerts an antisense effect, it acts in the form of a single-stranded oligonucleotide, and finally a double strand is formed by the target RNA and ASO. ..
  • oligonucleotides having the sequences of SEQ ID NOs: 1 to 125 can also be used as part of siRNA.
  • Hybrid ASO International Publication No. 2013/089283 and Nishina et al., Nature Communications volume 6, Article number: 7969 (2015) describe double-stranded oligonucleotides (also called HDOs) containing RNA oligonucleotides complementary to ASO. It is described that the target gene is efficiently delivered and accumulated in the liver and the expression of the target gene in the liver is suppressed.
  • International Publication No. 2015/105083 describes ASO in which a GalNAc derivative is bound to HDO via a linker, and such antisense oligonucleotides are more efficient than tocopherol (Toc) modified products. It is described that the expression of the target gene is suppressed. Furthermore, in International Publication No.
  • single-stranded oligonucleotides in which ASO-complementary oligonucleotides are linked to form double strands in the molecule are equivalent to double-stranded oligonucleotides. It is described that it exhibits the above antisense effect. Therefore, in some aspects of the invention, the ASO may form a double strand with a nucleic acid strand complementary thereto. Further, in some aspects of the present invention, the ASO may be linked to a nucleic acid strand complementary thereto, and a double-stranded portion may be formed by intramolecular self-annealing.
  • ligands such as tocopherol (Toc) and GalNAc may be linked to the nucleic acid region complementary to ASO.
  • ligands such as tocopherol (Toc) and GalNAc may be linked to the nucleic acid region complementary to ASO.
  • the oligonucleotides of the present disclosure may be used as part of a siRNA duplex.
  • the pharmaceutical composition antisense nucleic acid can be formulated by itself, but is usually mixed with one or more pharmacologically acceptable carriers and any of the well-known technical fields of pharmaceutics. It is desirable to administer it as a pharmaceutical preparation produced by the above method.
  • the pharmaceutical composition may contain a mixture of multiple ASOs having different sequences.
  • the administration target includes human or non-human animals, for example, non-human mammals. It is desirable to use the most effective route of administration for treatment, including oral administration or parenteral administration such as oral, respiratory, rectal, subcutaneous, intramuscular, intravenous and transdermal administration. It can be done, preferably intravenously.
  • preparations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, and granules.
  • Liquid preparations such as emulsions and syrups include water, sucrose, sorbitol, sugars such as fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, and p-hydroxybenzoic acid. It can be produced by using preservatives such as esters, flavors such as strawberry flavor and peppermint as additives. Capsules, tablets, powders, granules, etc.
  • excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch, sodium alginate, lubricants such as magnesium stearate, talc, polyvinyl alcohol, hydroxy. It can be produced by using a binder such as propyl cellulose and gelatin, a surfactant such as a fatty acid ester, and a plastic agent such as glycerin as additives.
  • Injections, suppositories, sprays, etc. are examples of preparations suitable for parenteral administration.
  • the injection is prepared by using a carrier consisting of a salt solution, a glucose solution, or a mixture of both.
  • Suppositories are prepared using carriers such as cocoa butter, hydrogenated fats or carboxylic acids.
  • the spray agent is prepared using a carrier or the like that does not irritate the oral cavity and airway mucosa of the recipient and disperses the active ingredient as fine particles to facilitate absorption.
  • the carrier include lactose, glycerin, liposomes, and nanomicelles.
  • preparations such as aerosols and dry powders are possible. Further, also in these parenteral preparations, the components exemplified as additives in the oral preparation can be added.
  • the dose or frequency of administration varies depending on the target therapeutic effect, administration method, treatment period, age, body weight, etc., but is, for example, 10 ⁇ g / kg to 100 mg / kg per day for adults.
  • One aspect of the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising about 14-20 mer oligonucleotides (ASOs) for use in the treatment or prevention of a disease or condition in a patient.
  • the patient can be a human or non-human animal.
  • the term "about 14 mer” is understood to include at least the range of 1 base before and after that, that is, 13 mer, 14 mer, and 15 mer, and the term "about 20 mer” means 19 mer, 20 mer, and It is understood to include 21 mer.
  • a 14 mer ASO is preferably used.
  • the disease or condition is ischemic-reperfusion injury, hearing loss, hearing impairment, balance impairment, hearing loss, chemotherapy-induced alopecia, radiation therapy-induced alopecia, acute renal failure, acute renal injury.
  • Chronic kidney disease (CKD) side effects associated with anticancer drug therapy, late transplant function (DGF) in kidney transplant patients, spinal cord injury, brain injury, stroke, stroke, neurodegenerative disease, Parkinson's disease, Alzheimer's disease, tumor, It can be any of burns, wounds, hyperthermia, hypoxia, ischemia, organ transplantation, bone marrow transplantation (BMT), myocardial infarction / heart attack, cardiotoxicity, p53-positive cancer, and acute liver failure.
  • BMT bone marrow transplantation
  • One embodiment of the present invention is a pharmaceutical composition for treating or preventing a disease or symptom, or a pharmaceutical composition for use in treating or preventing a disease or symptom, any sequence selected from the following.
  • pharmaceutical compositions comprising, or comprising an ASO consisting of any of the sequences: p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO-15-16.
  • One aspect of the present invention relates to the use of oligonucleotides (ASOs) of about 14-20 mer in the manufacture of medicines for use in the treatment or prevention of diseases or disorders in patients.
  • ASOs oligonucleotides
  • a 14 mer ASO is preferably used.
  • one aspect of the present invention is a method for treating or preventing a disease or disorder in a patient, which comprises a step of administering about 14 to 20 mer of oligonucleotide (ASO) to the patient.
  • ASO oligonucleotide
  • a 14 mer ASO is preferably used.
  • one aspect of the present invention is a method for treating or preventing acute renal failure (acute kidney injury) in a patient, which comprises or consists of any sequence selected from the following. Consistent with methods comprising administering to a patient an oligonucleotide consisting of: p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO-15-16.
  • Acute Kidney Insufficiency occurs, for example, in patients undergoing major cardiovascular surgery after reduced local blood flow to the kidney during surgery and recovery of blood flow. Due to reperfusion injury, it may develop within hours to days after surgery, and the mortality rate 30 days after onset exceeds 50%.
  • ASOs according to the invention can be administered to patients to prevent, reduce their severity, or treat acute renal failure. Administration of ASO is, for example, from before the start of surgery (eg, 2 hours, 4 hours, or 6 hours) to within 8 hours after surgery (eg, 3 hours, 4 hours, or 5 hours after surgery). It can be done at any time. Administration can be single or multiple doses. Administration can be, for example, by intravenous injection.
  • Example 1 Design of antisense (ASO) for p53 , synthesis A sequence targeting p53 was designed for ASO and synthesized.
  • the human transcript NM_000546.5 (SEQ ID NO: 132, FIG. 1) registered in the NCBI Refseq collection was used for the design. The synthesis was outsourced to GeneDesign Co., Ltd.
  • the synthesized nucleotide sequences are shown below. Uppercase letters indicate RNA or sugar-modified nucleic acid, and lowercase letters indicate DNA. "5" represents 5-methylcytidine.
  • the parentheses in each nucleotide indicate the modification of the 2'position of ribose, and L indicates LNA.
  • G (L) represents LNA type guanosine.
  • the acute accent flex " ⁇ " between bases indicates that the nucleoside bond is a thiophosphate bond (phosphorothioate bond).
  • P53-ASO-01-23 shown below are 14-base long 2-10-2 gapmers with 2 bases 5'wing region and 3'wing region, respectively. No phosphate group was added to the 5'end and 3'end of these ASOs.
  • p53-ASO-01 to 23 which had been previously refolded (85 ° C., 5 min, then rapidly cooled on ice), were adjusted to a final concentration of 125 nM, respectively, and the non-cationic lipid carrier TransIT-TKO ( Mirus Cat no. MIR2150) Add 2.5 ⁇ L per well to each of the above serum-free mediums, mix well by pipetting to a final 50 ⁇ L, and incubate for 15 minutes at room temperature. The mixture was slowly added to each well for transfection. Cells were cultured for either 24 or 48 hours.
  • Total RNA was prepared using RNAiso Plus (total RNA extraction reagent) (Cat No. 9109 manufactured by TakaRa) or RNA extraction and purification kit Zymo-Spin IC Columns (ZYMO Research R2062).
  • the expression change of p53 mRNA was examined using RT-qPCR.
  • the Revertra Ace qPCR RT kit (Code No.FSQ-101) was used.
  • a reverse transcription reaction was performed using 150 to 300 ng of total RNA as a template according to the recommended conditions of the kit. Specifically, 150 to 300 ng / 8 ⁇ L of total RNA was prepared, heated at 65 ° C. for 5 minutes, and then 2 ⁇ L of 5xRT Master Mix included in the kit was added to each sample at 37 ° C.
  • a reaction solution for PCR was prepared as follows using TB Green Premix ExTaq II (TaKaRa Code: RR820). Each well was set to a final volume of 25 ⁇ L containing 400 nM of forward and reverse primers, 12.5 ⁇ L of TB Green Premix EX Tag II, and 2 ⁇ L of reverse transcriptase.
  • the PCR reaction was carried out on a 96-well plate using Thermal Cycler Dice Real Time Sysytem (manufactured by TakaRa).
  • the housekeeping gene GAPDH was used as an endogenous control. We also used the housekeeping gene UBC as a control.
  • the following primer sequences were used for each of the three genes.
  • the "Rel.Qty” value (relative amount) was calculated based on the PCR analysis results of Thermal Cycler Dice Real Time Sysytem (TaKaRa).
  • the "Rel.Qty” value is a value obtained by correcting the PCR analysis results of the p53 gene and the UBC gene with the GAPDH analysis result of the housekeeping gene set as a control ("/ GAPDH").
  • Example 3 Evaluation of ASO with the target site shifted back and forth (with transfection reagent) Based on the design of p53-ASO-15, the antisense sequence (ASO-24, ASO-15-18 to ASO-15-28) in which the position of ASO hybridizing to the target mRNA is shifted to the 5'side or the 3'side. SEQ ID NOs: 24-35) were designed. The chain length is 14 mer, which is the same as p53-ASO-15. In the sequence shown below, the left side is the 3'end and the right side is the 5'end, and the lowercase letters represent DNA, the uppercase letters represent LNA, and the uppercase letter C represents LNA-type 5-methylcytidine (hereinafter). Similarly).
  • the assay was performed in the same manner as in Example 2, and ASO was transfected into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect. The results are shown in FIG. Those whose design position was shifted to the 5'side or 3'side from the center (15-18 to 15-28) had a weaker suppression effect than ASO-15.
  • Example 4 Based on the design of antisense shortened p53-ASO-15, which has been found to have inhibitory activity on p53, the position of ASO that hybridizes to the target mRNA was designed to be shifted to the 5'side or 3'side. (ASO-25 to ASO-36; SEQ ID NOs: 36 to 47). The chain length was 13 mer, which was 1 nt shorter than p53-ASO-15.
  • the assay was performed in the same manner as in Example 2, and ASO was transfected into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect.
  • the results are shown in FIG. On Day 1, none showed a stronger inhibitory effect than ASO-15, which is 14 mer. 25 and 26 show an inhibitory effect of about 40%, which is the strongest in the 13mer series. These two ASOs are ASOs with the green part in the center and have an arrangement close to ASO-15, so they may show some effect. On Day 2, 25 and 33 showed a slightly weaker effect than ASO-15.
  • Example 5 Based on the design of antisense elongated p53-ASO-15, which has been found to have inhibitory activity on p53, the position of ASO was shifted to the 5'side or 3'side (ASO-37 to ASO). -49, ASO-15-40; SEQ ID NOs: 48-61). The chain length was 15 mer, which was 1 nt longer than p53-ASO-15.
  • the assay was performed in the same manner as in Example 2, and ASO was transfected into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect.
  • the results are shown in FIG.
  • QPI1002 was also transfected with 20 nM, but showed the same or slightly weaker inhibitory effect as ASO-15.
  • Example 6 Based on the design of further lengthened p53-ASO-15 of antisense, which was found to have inhibitory activity on p53, the position of ASO was shifted to the 5'side or 3'side (ASO-50 ⁇ ). ASO-63, ASO-15-10; SEQ ID NOs: 62-76). The chain length is 16 mer, which is 2 nt longer than p53-ASO-15.
  • the assay was performed in the same manner as in Example 2, and ASO was transfected into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect.
  • the results are shown in FIG. As a result of transfecting the 16mer series with the chain length extended to 16mer at 20 nM, none showed a clearly stronger inhibitory effect than ASO-15, which is 14 mer.
  • Example 7 Based on the design of p53-ASO-15, which is a further lengthened antisense that has been found to have inhibitory activity on p53, the position of ASO was shifted to the 5'side or 3'side (ASO-64-). ASO-78, ASO-15-41; SEQ ID NOs: 77-92). The chain length is 17 mer, which is 3 nt longer than p53-ASO-15 (hereinafter referred to as the 17 mer series).
  • the assay was performed in the same manner as in Example 2, and the 17mer series was transfected with ASO into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect.
  • the results are shown in FIG.
  • 15-41 was about the same as ASO-15 for both Days 1 and 2.
  • ASO-70 showed a slightly weaker effect than ASO-15 only on Day 1. After all, the effect of ASO centering on the green part is high.
  • Example 8 Based on the design of further lengthened p53-ASO-15 of antisense, which was found to have inhibitory activity on p53, the position of ASO was shifted to the 5'side or 3'side (ASO-79-). ASO-94, ASO- (95), ASO-15-11; SEQ ID NOs: 93-109). The chain length is 18 mer, which is 4 nt longer than p53-ASO-15 (hereinafter 18 mer series).
  • the assay was performed in the same manner as in Example 2, and the 18mer series was transfected with ASO into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect.
  • the results are shown in FIG. As a result of transfecting the 18mer series with the chain length extended to 18mer at 20 nM, none showed a clearly stronger inhibitory effect than ASO-15, which is 14 mer.
  • Example 9 Effect of modification of wing region Based on the design of p53-ASO-15, the number of LNAs located at both ends was changed and the effect on the expression suppression effect was investigated (ASO-15-29 to ASO-15). -33; SEQ ID NOs: 110-114). In addition, ASO in which LNAs at both ends were changed to 2'-O-methoxyethyl (MOE) was also evaluated for its inhibitory effect at the same time.
  • MOE 2'-O-methoxyethyl
  • the assay was performed in the same manner as in Example 2. The results are shown in FIG. 15-29 to 15-32 with the LNA (capital letters) shifted or increased are about the same as or slightly weaker than the ASO-15. 15-33 with 2'-MOE modification (capital italics) showed almost no inhibitory effect.
  • Example 10 Effect of other modifications The chain length was extended by 2 nt to the 5'side, 3'side, or both ends centering on p53-ASO-15. In addition, 15-16 in which all the bases were PS-bonded and 15-17 in which the gap region was narrowed were also evaluated at the same time (ASO-15-07 to ASO-15-17; SEQ ID NOs: 115 to 125).
  • the assay was performed in the same manner as in Example 2, and HeLa cells were transfected with a final concentration of 100 nM to evaluate the expression inhibitory effect.
  • the results are shown in FIG.
  • the base is extended in the black direction of the upper bar.
  • the same effect as ASO-15 was exhibited only when it was extended to the 3'side (the core sequence of ASO-15 was present at the 5'end).
  • 15-16 which had PS bonds between all bases including those between LNAs, showed a stronger inhibitory effect than the original.
  • 15-17 which increased the number of LNAs, had a slightly weaker inhibitory effect than ASO-15. It was p53-ASO-15-16 with PS bonds between the bases that showed a clearly stronger inhibitory effect than p53-ASO-15.
  • the structure of p53-ASO-15-16 (SEQ ID NO: 124) is 5'-G (L) ⁇ G (L) ⁇ c ⁇ a ⁇ g ⁇ t ⁇ g ⁇ a ⁇ c ⁇ c ⁇ c ⁇ g ⁇ G It can be written as (L) ⁇ A (L) -3'.
  • Example 11 P53-ASO-15-16-32 with cholesterol added to the 3'end of cholesterol- added p53-ASO-15-16 was transfected into HeLa cells at a final concentration of 20 nM, and the same assay as in Example 2 was performed. went. The results are shown in FIG. P53ASO-15-16-32 with cholesterol added to the 3'end markedly reduced p53 mRNA levels as compared to Mock or the negative control NTS1. Compared with 15-16, the inhibitory effect was slightly weakened on the first day after transfection, but had the same effect on the second day. From this result, it was shown that the inhibitory effect was maintained even when cholesterol was added as a ligand.
  • Example 12 p53-induced reporter gene assay
  • the amount of p53 protein was measured by a luciferase assay using a reporter plasmid with a p53 response element.
  • the expression-suppressing effect of p53-ASO-15 and Quark's siRNA QP1002 was evaluated by a luciferase assay. The result after one day is shown in FIG. ASO showed an effect from 1.2 nM and suppressed its expression in a concentration-dependent manner up to 100 nM.
  • the expression of QPI1002 (siRNA) was suppressed in a concentration-dependent manner, and the effect leveled off at concentrations above 3.7 nM with an effect of about 80%.
  • ASO-15 showed an inhibitory effect of about 50% at 3.7 nM.
  • QPI1002 showed an inhibitory effect of about 70% at 3.7 nM, and the inhibitory effect was almost leveled off. At concentrations lower than 1.2 nM, there was little difference between the two.
  • the IC 50 was 4.0 nM for ASO and 2.6 nM for QPI1002.
  • Example 13 Evaluation of concentration dependence by qPCR p53ASO-15 or QPI-1002 was TF to HCT116 cells at a concentration of 0.046 to 100 nM, and the expression inhibitory effect was measured by performing the same assay as in Example 2. The results are shown in FIG. At 24 hours after TF, p53-ASO-15 showed almost no inhibitory effect at 0.046 to 11 nM, and showed an inhibitory effect of 24% at 33 nM and 49% at 100 nM. The inhibitory effect of QPI-1002 under the same conditions showed almost no inhibitory effect at 0.046 to 11 nM, and showed an inhibitory effect of 23% at 33 nM and 59% at 100 nM.
  • p53-ASO-15 showed almost no inhibitory effect at 0.046 to 3.7 nM, and showed an inhibitory effect of 10% at 11 nM, 22% at 33 nM, and 52% at 100 nM.
  • the inhibitory effect of QPI-1002 under the same conditions showed almost no inhibitory effect at 0.046 to 3.7 nM, 15% at 10 nM, 31% at 33 nM, and 79% at 100 nM.
  • the sample described as ⁇ p53 uses RNA extracted from HCT116 cells in which the p53 gene is knocked out.
  • Example 14 Evaluation by Western blotting HCT116 cells were transfected (TF) with ASO or QPI-1002 at a concentration of 1 to 100 nM, and the cells were then recovered 48 hours later. The collected cells were divided into two groups, one of which prepared a whole cell lysate and the other of which prepared total RNA (Fig. 15). Western blotting was performed using the prepared whole cell lysate to measure p53 protein levels. In addition, real-time PCR was performed using the prepared total RNA to measure the p53 mRNA level. The results are shown in FIG. The p53 protein level was correlated with the mRNA level and was so attenuated that the p53 band was undetectable at 100 nM when ASO-15, 15-16 was used. On the other hand, QPI-1002 was at a level that could be detected even at a concentration of 100 nM, although the band intensity was weakened.
  • ASOs antisense oligonucleotides that act on transcripts of the p53 gene. By using these relatively short oligonucleotides, the amount of p53 mRNA can be reduced and protein expression can be suppressed. These ASOs may be useful in the treatment or prevention of acute renal failure, alopecia and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Cardiology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Hospice & Palliative Care (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Psychology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Physics & Mathematics (AREA)
  • Transplantation (AREA)
  • Urology & Nephrology (AREA)

Abstract

The present inventors have identified antisense oligonucleotides (ASOs) which act on a p53 gene transcription product. By using these relatively short oligonucleotides, the amount of p53 mRNA can be reduced and the expression of the protein can be suppressed. These ASOs can be useful in treatment or prevention of acute kidney failure and alopecia.

Description

核酸医薬とその使用Nucleic acid medicine and its use 関連出願の相互参照Cross-reference of related applications
 本願は、特願2019-124901号(出願日:2019年7月4日)の優先権の利益を享受する出願であり、これは引用することによりその全体が本明細書に取り込まれる。 This application is an application that enjoys the priority benefit of Japanese Patent Application No. 2019-124901 (Filing date: July 4, 2019), which is incorporated herein by reference in its entirety.
 本発明は,オリゴヌクレオチドを用いた遺伝子発現の調節に関する。より詳細には,遺伝子発現を調節するための比較的短いオリゴヌクレオチドを含有する医薬組成物とそれを用いた疾患の処置に関する。さらに詳細には,p53遺伝子を標的としたアンチセンスオリゴヌクレオチドを含有する医薬組成物とそれを用いた疾患の予防または治療方法に関する。 The present invention relates to the regulation of gene expression using oligonucleotides. More specifically, it relates to a pharmaceutical composition containing a relatively short oligonucleotide for regulating gene expression and treatment of a disease using the same. More specifically, the present invention relates to a pharmaceutical composition containing an antisense oligonucleotide targeting the p53 gene and a method for preventing or treating a disease using the same.
 従来的な医薬品開発における創薬技術では,タンパク質を創薬標的とする取組みが多く推進され,低分子医薬や抗体とはじめとするタンパク質やペプチドと作用する医薬による創薬が中心であった。近年,ゲノム科学や個別化医療など疾患の原因が遺伝子レベルで解明されてきたため,創薬標的を核酸とする取組みが進められており,低分子医薬品や抗体医薬品では狙いにくい治療標的にも対応できると考えられるため,核酸医薬が新しいモダリティ(創薬手法)として期待されつつある。 In the conventional drug discovery technology in drug development, many efforts to target proteins for drug discovery have been promoted, and drug discovery by drugs that act on proteins and peptides such as small molecule drugs and antibodies has been the main focus. In recent years, the causes of diseases such as genomic science and personalized medicine have been elucidated at the genetic level, so efforts are being made to use drug discovery targets as nucleic acids, and it is possible to respond to therapeutic targets that are difficult to target with small molecule drugs and antibody drugs. Therefore, nucleic acid drugs are expected as a new modality (drug discovery method).
 基礎研究としては,アンチセンス核酸やRNAi(RNA干渉)などの研究が行われ(非特許文献1),その技術に基づく医薬品開発が行われ,上市される製品も出始めている。さらに,タンパク質をコードしない核酸の機能も明らかとされつつあり,miRNA(マイクロRNA)として遺伝子発現調節技術として創薬への応用が進められている(非特許文献2)。 As basic research, research on antisense nucleic acids and RNAi (RNA interference) has been conducted (Non-Patent Document 1), drug development based on that technology has been carried out, and some products have begun to be put on the market. Furthermore, the function of nucleic acids that do not encode proteins is being clarified, and application to drug discovery as a gene expression regulation technique as miRNA (microRNA) is being promoted (Non-Patent Document 2).
 急性腎不全(ARF)(急性腎障害(AKI)とも呼ばれる)は,急激な腎機能の低下に伴い,体液の恒常性が維持できなくなった状態をいう。ARFは,腎機能の急速な悪化が数日以内に起こることを特徴とする臨床症候群であり,一般的には,血清クレアチニン値の急速な上昇,または血清クレアチニン値とBUNの急速な上昇に基づき,急性腎不全(急性腎障害)の診断が行われる。一般に,人口100万人あたり170~200の重度ARF症例が毎年発生している。手術,造影検査,抗癌剤投与など医療行為に関連して,ショックなどによる虚血,シスプラチン,アミノグリコシド,造影剤などの腎毒性物質に起因する尿細管壊死による急性腎不全が発症する場合があり,例えば,急性腎障害は心臓手術などの大手術を受けた患者に起こる腎虚血再灌流障害(IRE)の結果として発症する例も多い。手術,造影検査,抗悪性腫瘍薬や抗生物質の投与などによる急性腎不全は,細胞外液量が減少している状態において発症しやすく,前もって十分な補液を行っておくことにより,その発症の頻度が減少し,腎不全の程度を軽減し得ることが知られている。しかしながら現状,ARFに対する特異的な治療法は存在しておらず,急性腎不全の予防,治療方法には,さらなる改善が求められている。 Acute renal failure (ARF) (also called acute renal failure (AKI)) is a condition in which the homeostasis of body fluid cannot be maintained due to a rapid decline in renal function. ARF is a clinical syndrome characterized by rapid deterioration of renal function within a few days and is generally based on a rapid rise in serum creatinine levels or a rapid rise in serum creatinine and BUN. , Acute renal failure (acute renal injury) is diagnosed. In general, 170-200 severe ARF cases per million people occur each year. Acute renal failure due to renal tubular necrosis caused by nephrotoxic substances such as ischemia due to shock, cisplatin, aminoglycoside, and contrast media may develop in connection with medical practice such as surgery, contrast examination, and administration of anticancer drugs. Acute kidney injury often develops as a result of renal ischemia-reperfusion injury (IRE) in patients who have undergone major surgery such as heart surgery. Acute renal failure due to surgery, contrast examination, administration of antineoplastic drugs or antibiotics is likely to occur when the extracellular fluid volume is low, and it can be caused by sufficient fluid replacement in advance. It is known that the frequency is reduced and the degree of renal failure can be reduced. However, at present, there is no specific treatment method for ARF, and further improvement is required for the prevention and treatment method of acute renal failure.
 米国特許第9,334,499号には,急性腎不全を発症する危険性のある患者,または急性腎不全を発症した患者を治療するための方法であって,p53遺伝子の発現をダウンレギュレートするのに有効な量のp53遺伝子に対する二本鎖siRNA化合物を患者に投与することを含む方法が開示されている。また,同文献には,p53遺伝子発現のダウンレギュレーションが,癌の化学療法や放射線療法に起因する脱毛症に対しても有効となり得ることも開示されている。 U.S. Pat. No. 9,334,499 provides a method for treating patients at risk of developing acute renal failure or those who develop acute renal failure, which down-regulates the expression of the p53 gene. Methods are disclosed that include administering to a patient a double-stranded siRNA compound for an amount effective for p53 gene. The same document also discloses that down-regulation of p53 gene expression can be effective against alopecia caused by cancer chemotherapy and radiation therapy.
 米国特許第7,910,566号には,p53遺伝子を標的とした特定の塩基配列を有する二本鎖siRNA化合物を特定の時期に用いることを特徴とする,腎虚血再灌流後における急性腎不全の危険のある患者の処置方法が開示されている。この文献は,ラットの虚血再灌流誘導性ARFモデルにおいて,p53を標的としたsiRNAが虚血再灌流障害の影響から腎組織を保護し,ARFの重症度を抑え得ることを示している。 US Pat. No. 7,910,566 describes acute renal failure after renal ischemia-reperfusion, characterized in that a double-stranded siRNA compound having a specific nucleotide sequence targeting the p53 gene is used at a specific time. Treatment methods for patients at risk are disclosed. This document shows that in a rat ischemia-reperfusion-induced ARF model, p53-targeted siRNA can protect renal tissue from the effects of ischemia-reperfusion injury and reduce the severity of ARF.
米国特許第9,334,499号U.S. Pat. No. 9,334,499 米国特許第7,910,566号U.S. Pat. No. 7,910,566
 本発明は,p53遺伝子の発現を調節するための比較的短いオリゴヌクレオチド(アンチセンスオリゴヌクレオチド;以下,ASOとも言う)を含有する医薬組成物と,それを用いた疾患または状態の予防または治療方法を提供することを目的の一つとする。また本発明は,p53遺伝子の発現に対するノックダウン効率が高く,かつ細胞内への取り込み効率の高いASOを提供することも目的の一つとしている。 The present invention comprises a pharmaceutical composition containing a relatively short oligonucleotide (antisense oligonucleotide; hereinafter also referred to as ASO) for regulating the expression of the p53 gene, and a method for preventing or treating a disease or condition using the pharmaceutical composition. One of the purposes is to provide. Another object of the present invention is to provide ASO having high knockdown efficiency for expression of p53 gene and high efficiency of uptake into cells.
 本発明者らは,p53遺伝子の発現を調節することを目的として,p53遺伝子の転写産物に対して作用するASOを同定した。これらのASOを用いて,p53遺伝子の転写産物からの翻訳を抑制することにより,急性腎不全等のp53関連疾病を治療,予防し得ると考えられる。本発明は,本発明者らが開発したこれら核酸医薬に基づくものであり,以下の態様を包含する: The present inventors have identified an ASO that acts on a transcript of the p53 gene for the purpose of regulating the expression of the p53 gene. It is considered that p53-related diseases such as acute renal failure can be treated and prevented by suppressing the translation of the p53 gene from the transcript using these ASOs. The present invention is based on these nucleic acid medicines developed by the present inventors and includes the following aspects:
[態様1]細胞においてp53遺伝子の発現を阻害するための医薬組成物であって,p53遺伝子をコードするmRNAの少なくとも一部に実質的に相補的な相補性領域を含むオリゴヌクレオチドを有効成分として含有する,医薬組成物。
[態様2]前記p53遺伝子がヒトp53遺伝子である,態様1記載の医薬組成物。
[態様3]前記p53遺伝子が配列番号132の配列を有する,態様1または2記載の医薬組成物。
[態様4]前記オリゴヌクレオチドが本質的に一本鎖の分子である,態様1~3のいずれか記載の医薬組成物。
[態様5]前記オリゴヌクレオチドがアンチセンスオリゴヌクレオチド(ASO)である,態様1~4のいずれか記載の医薬組成物。
[態様6]前記アンチセンスオリゴヌクレオチド(ASO)がギャップマーである,態様5記載の医薬組成物。
[態様7]前記オリゴヌクレオチドが12~18塩基長である,態様1~6のいずれか記載の医薬組成物。
[態様8]前記オリゴヌクレオチドが14塩基長である,態様7記載の医薬組成物。
[態様9]前記オリゴヌクレオチドが2-10-2ギャップマーである,態様8記載の医薬組成物。
[態様10]前記オリゴヌクレオチド中の塩基が前記p53遺伝子に対して80%以上相補的である,態様1~9のいずれか記載の医薬組成物。
[態様11]前記オリゴヌクレオチド中の塩基が前記p53遺伝子に対して100%相補的である,態様1~10のいずれか記載の医薬組成物。
[態様12]前記オリゴヌクレオチドが修飾ヌクレオシドおよび/または修飾ヌクレオシド間結合を含む,態様1~11のいずれか記載の医薬組成物。
[態様13]修飾ヌクレオシドが架橋型核酸である,態様12記載の医薬組成物。
[態様14]架橋型核酸がLNAである,態様13記載の医薬組成物。
[態様15]修飾ヌクレオシド間結合がホスホロチオエート結合である,態様12~14のいずれか記載の医薬組成物。
[態様16]すべての修飾ヌクレオシド間結合がホスホロチオエート結合である,態様12~15のいずれか記載の医薬組成物。
[態様17]すべてのヌクレオシド間結合がホスホロチオエート結合である,態様1~16のいずれか記載の医薬組成物。
[態様18]修飾ヌクレオシド間結合がキラル制御されている,態様12~17のいずれか記載の医薬組成物。
[態様19]前記オリゴヌクレオチドの末端水酸基の一方または両方が修飾されている,態様1~18のいずれか記載の医薬組成物。
[態様20]前記オリゴヌクレオチドの末端水酸基の一方または両方にリン酸基が付加されている,態様1~19のいずれか記載の医薬組成物。
[態様21]前記オリゴヌクレオチドの末端水酸基の一方または両方が修飾されていない,態様1~18のいずれか記載の医薬組成物。
[態様22]前記オリゴヌクレオチドの末端水酸基の一方または両方にリン酸基が付加されていない,態様1~18のいずれか記載の医薬組成物。
[態様23]前記オリゴヌクレオチドが配列番号1から配列番号125のいずれか1つの配列を含むオリゴヌクレオチドである,態様1~22のいずれか記載の医薬組成物。
[態様24]前記オリゴヌクレオチドが配列番号1から配列番号125のいずれか1つの配列からなるオリゴヌクレオチドである,態様1~22のいずれか記載の医薬組成物。
[態様25]前記オリゴヌクレオチドが配列番号1から配列番号125のいずれか1つの配列に対して少なくとも80%,85%,90%,95%,96%,97%,98%,99%,または100%の同一性を有する配列からなるオリゴヌクレオチドである,態様1~22のいずれか記載の医薬組成物。
[態様26]対象における疾患または症状の治療または予防に用いるための医薬組成物である,態様1~25のいずれか記載の医薬組成物。
[態様27]前記疾患または症状が,p53遺伝子の発現に関連するものである,態様26記載の医薬組成物。
[態様28]前記疾患または症状が,虚血-再灌流障害,難聴,聴覚障害,バランス障害,失聴,化学療法誘発性脱毛症,放射線療法誘発性脱毛症,急性腎不全,急性腎障害,慢性腎臓病(CKD),抗癌剤療法に関連する副作用,腎移植患者における遅発性移植機能(DGF),脊髄損傷,脳損傷,発作,脳卒中,神経変性疾患,パーキンソン病,アルツハイマー病,腫瘍,熱傷,創傷,高熱症,低酸素,虚血,臓器移植,骨髄移植(BMT),心筋梗塞/心臓発作,心臓毒性,p53陽性の癌,および急性肝不全から成る群より選択される,態様26または27記載の医薬組成物。
[態様29]薬学的に許容される賦形剤,緩衝剤,および/または添加物を含有する,態様1~28のいずれか記載の医薬組成物。
[態様30]対象における疾患または症状の治療または予防に用いるための医薬組成物であって,p53遺伝子をコードするmRNAの少なくとも一部に実質的に相補的な相補性領域を含む,本質的に一本鎖のオリゴヌクレオチドを有効成分として含有し,該オリゴヌクレオチドが14塩基長のギャップマーであり,該ギャップマーの5’側および3’側のウイング領域がそれぞれ2塩基のLNAからなり,該ギャップマーの全てのヌクレオシド間結合がホスホロチオエート結合である,医薬組成物。
[態様31]対象における疾患または症状の治療または予防に用いるための医薬組成物であって,p53-ASO-15,p53-ASO-15-11,p53-ASO-15-12,およびp53-ASO-15-16から成る群より選択されるオリゴヌクレオチドを有効成分として含有する,医薬組成物。
[態様32]p53-ASO-15,p53-ASO-15-11,p53-ASO-15-12,およびp53-ASO-15-16から成る群より選択されるオリゴヌクレオチド,またはその塩。
[Aspect 1] A pharmaceutical composition for inhibiting the expression of the p53 gene in cells, wherein an oligonucleotide containing a complementary region substantially complementary to at least a part of mRNA encoding the p53 gene is used as an active ingredient. Contains, pharmaceutical composition.
[Aspect 2] The pharmaceutical composition according to Aspect 1, wherein the p53 gene is a human p53 gene.
[Aspect 3] The pharmaceutical composition according to Aspect 1 or 2, wherein the p53 gene has the sequence of SEQ ID NO: 132.
[Aspect 4] The pharmaceutical composition according to any one of aspects 1 to 3, wherein the oligonucleotide is essentially a single-stranded molecule.
[Aspect 5] The pharmaceutical composition according to any one of aspects 1 to 4, wherein the oligonucleotide is an antisense oligonucleotide (ASO).
[Aspect 6] The pharmaceutical composition according to Aspect 5, wherein the antisense oligonucleotide (ASO) is a gapmer.
[Aspect 7] The pharmaceutical composition according to any one of aspects 1 to 6, wherein the oligonucleotide has a length of 12 to 18 bases.
[Aspect 8] The pharmaceutical composition according to Aspect 7, wherein the oligonucleotide is 14 bases long.
[Aspect 9] The pharmaceutical composition according to Aspect 8, wherein the oligonucleotide is a 2-10-2 gapmer.
[Aspect 10] The pharmaceutical composition according to any one of aspects 1 to 9, wherein the base in the oligonucleotide is 80% or more complementary to the p53 gene.
[Aspect 11] The pharmaceutical composition according to any one of aspects 1 to 10, wherein the base in the oligonucleotide is 100% complementary to the p53 gene.
[Aspect 12] The pharmaceutical composition according to any one of aspects 1 to 11, wherein the oligonucleotide contains a modified nucleoside and / or a bond between modified nucleosides.
[Aspect 13] The pharmaceutical composition according to Aspect 12, wherein the modified nucleoside is a bridged nucleic acid.
[Aspect 14] The pharmaceutical composition according to aspect 13, wherein the cross-linked nucleic acid is LNA.
[Aspect 15] The pharmaceutical composition according to any of aspects 12 to 14, wherein the modified nucleoside bond is a phosphorothioate bond.
[Aspect 16] The pharmaceutical composition according to any of aspects 12 to 15, wherein all modified nucleoside bonds are phosphorothioate bonds.
[Aspect 17] The pharmaceutical composition according to any one of aspects 1 to 16, wherein all nucleoside bonds are phosphorothioate bonds.
[Aspect 18] The pharmaceutical composition according to any one of aspects 12 to 17, wherein the binding between modified nucleosides is chirally controlled.
[Aspect 19] The pharmaceutical composition according to any one of aspects 1 to 18, wherein one or both of the terminal hydroxyl groups of the oligonucleotide is modified.
[Aspect 20] The pharmaceutical composition according to any one of aspects 1 to 19, wherein a phosphate group is added to one or both of the terminal hydroxyl groups of the oligonucleotide.
[Aspect 21] The pharmaceutical composition according to any one of aspects 1 to 18, wherein one or both of the terminal hydroxyl groups of the oligonucleotide is not modified.
[Aspect 22] The pharmaceutical composition according to any one of aspects 1 to 18, wherein a phosphate group is not added to one or both of the terminal hydroxyl groups of the oligonucleotide.
[Aspect 23] The pharmaceutical composition according to any one of aspects 1 to 22, wherein the oligonucleotide is an oligonucleotide containing any one of the sequences of SEQ ID NO: 1 to SEQ ID NO: 125.
[Aspect 24] The pharmaceutical composition according to any one of aspects 1 to 22, wherein the oligonucleotide is an oligonucleotide consisting of any one sequence of SEQ ID NO: 1 to SEQ ID NO: 125.
[Aspect 25] The oligonucleotide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or any one of the sequences of SEQ ID NO: 1 to SEQ ID NO: 125. The pharmaceutical composition according to any one of aspects 1 to 22, which is an oligonucleotide consisting of a sequence having 100% identity.
[Aspect 26] The pharmaceutical composition according to any one of aspects 1 to 25, which is a pharmaceutical composition for use in treating or preventing a disease or symptom in a subject.
[Aspect 27] The pharmaceutical composition according to aspect 26, wherein the disease or symptom is related to the expression of the p53 gene.
[Aspect 28] The disease or symptom is ischemia-reperfusion disorder, hearing loss, hearing disorder, balance disorder, hearing loss, chemotherapy-induced alopecia, radiation therapy-induced alopecia, acute renal failure, acute renal disorder, Chronic kidney disease (CKD), side effects associated with anticancer drug therapy, delayed transplant function (DGF) in patients with bone marrow transplantation, spinal cord injury, brain injury, stroke, stroke, neurodegenerative disease, Parkinson's disease, Alzheimer's disease, tumor, burn , Wound, hyperthermia, hypoxia, ischemia, organ transplantation, bone marrow transplantation (BMT), myocardial infarction / heart attack, cardiotoxicity, p53-positive cancer, and acute liver failure, selected from the group, Aspect 26 or 27. The pharmaceutical composition.
[Aspect 29] The pharmaceutical composition according to any of aspects 1-28, which comprises a pharmaceutically acceptable excipient, buffer, and / or additive.
[Aspect 30] A pharmaceutical composition for use in the treatment or prevention of a disease or symptom in a subject, which comprises a complementary region that is substantially complementary to at least a portion of the mRNA encoding the p53 gene. It contains a single-stranded oligonucleotide as an active ingredient, the oligonucleotide is a 14-base long gapmer, and the wing regions on the 5'side and 3'side of the gapmer each consist of 2 bases of LNA. A pharmaceutical composition in which all nucleoside linkages of Gapmer are phosphorothioate linkages.
[Aspect 31] A pharmaceutical composition for use in the treatment or prevention of a disease or condition in a subject, p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO. A pharmaceutical composition containing an oligonucleotide selected from the group consisting of -15-16 as an active ingredient.
[Aspect 32] An oligonucleotide selected from the group consisting of p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO-15-16, or a salt thereof.
図1は,ヒトp53遺伝子の塩基配列(NM_000546.5)を示している(配列番号132)。FIG. 1 shows the nucleotide sequence of the human p53 gene (NM_000546.5) (SEQ ID NO: 132). 図2は,HeLa細胞を用いた,トランスフェクション試薬ありでのp53-ASO-01~23の添加により,p53のmRNAレベルが低下することを示すグラフである。縦軸は,p53のmRNAレベルの相対値を示している。FIG. 2 is a graph showing that the addition of p53-ASO-01-23 with a transfection reagent using HeLa cells reduces the mRNA level of p53. The vertical axis shows the relative value of the mRNA level of p53. 図3は,標的部位を前後にずらしたASOの評価結果を示すグラフである。縦軸は,p53のmRNAレベルの相対値を示している。左側はトランスフェクションから1日後の結果,右側は2日後の結果を示している。FIG. 3 is a graph showing the evaluation result of ASO in which the target site is shifted back and forth. The vertical axis shows the relative value of the mRNA level of p53. The left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection. 図4は,13塩基長に短鎖化したASOの評価結果を示すグラフである。縦軸は,p53のmRNAレベルの相対値を示している。左側はトランスフェクションから1日後の結果,右側は2日後の結果を示している。FIG. 4 is a graph showing the evaluation results of ASO shortened to 13 base lengths. The vertical axis shows the relative value of the mRNA level of p53. The left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection. 図5は,15塩基長に長鎖化したASOの評価結果を示すグラフである。縦軸は,p53のmRNAレベルの相対値を示している。左側はトランスフェクションから1日後の結果,右側は2日後の結果を示している。FIG. 5 is a graph showing the evaluation results of ASO having a long chain length of 15 bases. The vertical axis shows the relative value of the mRNA level of p53. The left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection. 図6は,16塩基長にさらに長鎖化したASOの評価結果を示すグラフである。縦軸は,p53のmRNAレベルの相対値を示している。左側はトランスフェクションから1日後の結果,右側は2日後の結果を示している。FIG. 6 is a graph showing the evaluation results of ASO having a longer chain length of 16 bases. The vertical axis shows the relative value of the mRNA level of p53. The left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection. 図7は,17塩基長にさらに長鎖化したASOの評価結果を示すグラフである。縦軸は,p53のmRNAレベルの相対値を示している。左側はトランスフェクションから1日後の結果,右側は2日後の結果を示している。FIG. 7 is a graph showing the evaluation results of ASO having a longer chain length of 17 bases. The vertical axis shows the relative value of the mRNA level of p53. The left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection. 図8は,18塩基長にさらに長鎖化したASOの評価結果を示すグラフである。縦軸は,p53のmRNAレベルの相対値を示している。左側はトランスフェクションから1日後の結果,右側は2日後の結果を示している。FIG. 8 is a graph showing the evaluation results of ASO having a longer chain length of 18 bases. The vertical axis shows the relative value of the mRNA level of p53. The left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection. 図9は,ウイング領域を改変したASOの評価結果を示すグラフである。縦軸は,p53のmRNAレベルの相対値を示している。左側はトランスフェクションから1日後の結果,右側は2日後の結果を示している。FIG. 9 is a graph showing the evaluation result of ASO in which the wing region is modified. The vertical axis shows the relative value of the mRNA level of p53. The left side shows the result 1 day after transfection, and the right side shows the result 2 days after transfection. 図10は,種々の改変を加えたASOの評価結果を示すグラフである。縦軸は,p53のmRNAレベルの相対値を示している。左側にトランスフェクションから1日後の結果,右側に2日後の結果が隣り合って示されている。FIG. 10 is a graph showing the evaluation results of ASO with various modifications. The vertical axis shows the relative value of the mRNA level of p53. The results one day after transfection are shown on the left side, and the results two days after transfection are shown side by side on the right side. 図11は,コレステロールを付加したASOの評価結果を示すグラフである。縦軸は,p53のmRNAレベルの相対値を示している。左側にトランスフェクションから1日後の結果,右側に2日後の結果が隣り合って示されている。FIG. 11 is a graph showing the evaluation results of ASO with added cholesterol. The vertical axis shows the relative value of the mRNA level of p53. The results one day after transfection are shown on the left side, and the results two days after transfection are shown side by side on the right side. 図12は,p53応答エレメントをもつ,レポータープラスミドを用いたルシフェラーゼアッセイにより,トランスフェクションの1日後にp53タンパク質量を測定した結果を示すグラフである。左側にp53-ASO-15を用いた結果が,右側にQPI1002を用いた結果が示されている。FIG. 12 is a graph showing the results of measuring the amount of p53 protein one day after transfection by a luciferase assay using a reporter plasmid with a p53 response element. The results using p53-ASO-15 are shown on the left side, and the results using QPI1002 are shown on the right side. 図13は,p53応答エレメントをもつ,レポータープラスミドを用いたルシフェラーゼアッセイにより,トランスフェクションの2日後にp53タンパク質量を測定した結果を示すグラフである。左側にp53-ASO-15を用いた結果が,右側にQPI1002を用いた結果が示されている。FIG. 13 is a graph showing the results of measuring the amount of p53 protein 2 days after transfection by a luciferase assay using a reporter plasmid having a p53 response element. The results using p53-ASO-15 are shown on the left side, and the results using QPI1002 are shown on the right side. 図14は,p53-ASO-15およびQuark社のsiRNAであるQP1002の発現抑制効果をqPCRによって評価した結果を示すグラフである。上段は1日後の結果,下段は2日後の結果を示している。FIG. 14 is a graph showing the results of evaluating the expression-suppressing effect of p53-ASO-15 and Quark's siRNA QP1002 by qPCR. The upper row shows the results after 1 day, and the lower row shows the results after 2 days. 図15は,ウエスタンブロッティングによる評価の実験プロトコールを示している。FIG. 15 shows an experimental protocol for evaluation by Western blotting. 図16は,ASO-15,15-16,およびQPI-1002の効果をウエスタンブロッティングにより評価した結果を示している。FIG. 16 shows the results of evaluating the effects of ASO-15, 15-16 and QPI-1002 by Western blotting.
 本発明者らは,比較的短いオリゴヌクレオチド(ASO)を用いて,効率よく細胞内におけるp53遺伝子の発現を調節する手法を開発した。以下に,本発明を詳細に説明する。 The present inventors have developed a method for efficiently regulating the expression of the p53 gene in cells using a relatively short oligonucleotide (ASO). The present invention will be described in detail below.
p53遺伝子
 p53遺伝子は,細胞内でのDNA修復や細胞増殖の停止,細胞増殖サイクルの抑制などに関与しており,細胞が癌化したときにはアポトーシスを起こすとされる遺伝子である。p53はいわゆる癌抑制遺伝子の一つとされ,この遺伝子の機能が障害すると癌が起こると考えられている。細胞が癌化するためには複数の癌遺伝子と癌抑制遺伝子の変化が必要と考えられているが,p53は悪性腫瘍において最も高頻度に異常が認められている遺伝子である。p53ポリペプチドは,例えば,ガンマ線照射などのDNA損傷条件,転写または複製の調節異常,および癌遺伝子による形質転換といった,種々の異なる刺激を細胞増殖の停止やアポトーシスに変換することにより,細胞ストレス応答メカニズムにおいて重要な役割を果たしている。p53ポリペプチドは,そのような刺激に対する応答としてアポトーシス,つまり,プログラムされた細胞死を誘導する。このように,p53は細胞の恒常性の維持やアポトーシス誘導といった重要な役割を有している。ほとんどの抗癌療法は,p53を有する正常な細胞にも傷害を与え,健康な細胞の損傷または死に関連する重篤な副作用を引き起こす。そのような副作用は,p53が誘導する正常細胞の細胞死に多く起因しており,抗癌療法の急性期における一時的なp53の抑制が,こういった重篤な毒性を回避するための治療戦略として提案されている。つまり,当業者には,p53遺伝子の転写産物にASOなどの薬剤を作用させて,p53タンパク質の発現を制御することにより,アポトーシス誘導に関係する疾患または症状を治療または予防できることが理解される。p53遺伝子の発現抑制は,p53遺伝子から転写,翻訳を経て合成されるタンパク質量を,薬剤を作用させていない場合に比べて,75%以下,50%以下,40%以下,30%以下,25%以下,20%以下,15%以下,10%以下,5%以下,または3%以下に低減させることにより行われ得る。本発明の態様の一つは,対象におけるp53遺伝子の発現に関連する疾患または症状の治療または予防に用いるための医薬組成物に関する。特定の実施態様においては,標的となる疾患または症状は,虚血-再灌流障害,難聴,聴覚障害,バランス障害,失聴,化学療法誘発性脱毛症,放射線療法誘発性脱毛症,急性腎不全,急性腎障害,慢性腎臓病(CKD),抗癌剤療法に関連する副作用,腎移植患者における遅発性移植機能(DGF),脊髄損傷,脳損傷,発作,脳卒中,神経変性疾患,パーキンソン病,アルツハイマー病,腫瘍,熱傷,創傷,高熱症,低酸素,虚血,臓器移植,骨髄移植(BMT),心筋梗塞/心臓発作,心臓毒性,p53陽性の癌,または急性肝不全であるが,標的はこれらに限定はされない。
p53 gene The p53 gene is involved in DNA repair in cells, arrest of cell growth, suppression of cell growth cycle, etc., and is a gene that is said to cause apoptosis when cells become cancerous. p53 is one of the so-called tumor suppressor genes, and it is thought that cancer occurs when the function of this gene is impaired. It is thought that changes in multiple oncogenes and tumor suppressor genes are necessary for cells to become cancerous, but p53 is the gene with the highest frequency of abnormalities in malignant tumors. The p53 polypeptide responds to cell stress by converting a variety of different stimuli, such as DNA damage conditions such as gamma irradiation, transcription or replication dysregulation, and transformation by oncogenes, into cell growth arrest or apoptosis. It plays an important role in the mechanism. The p53 polypeptide induces apoptosis, or programmed cell death, in response to such stimuli. Thus, p53 has important roles such as maintaining cell homeostasis and inducing apoptosis. Most anticancer therapies also damage normal cells with p53, causing serious side effects associated with damage or death of healthy cells. Such side effects are often attributed to p53-induced cell death of normal cells, and temporary suppression of p53 during the acute phase of anticancer therapy is a therapeutic strategy to avoid these serious toxicity. Has been proposed as. That is, it is understood by those skilled in the art that a disease or symptom related to induction of apoptosis can be treated or prevented by controlling the expression of the p53 protein by allowing a drug such as ASO to act on the transcript of the p53 gene. In the suppression of p53 gene expression, the amount of protein synthesized from the p53 gene through transcription and translation is 75% or less, 50% or less, 40% or less, 30% or less, 25, as compared with the case where no drug is allowed to act. It can be done by reducing to% or less, 20% or less, 15% or less, 10% or less, 5% or less, or 3% or less. One aspect of the invention relates to a pharmaceutical composition for use in the treatment or prevention of a disease or condition associated with the expression of the p53 gene in a subject. In certain embodiments, the targeted disease or condition is ischemic-reperfusion injury, hearing loss, hearing impairment, balance disorder, hearing loss, chemotherapy-induced alopecia, radiation therapy-induced alopecia, acute renal failure. , Acute kidney injury, Chronic kidney disease (CKD), Side effects associated with anticancer drug therapy, Delayed transplantation function (DGF) in patients with renal transplantation, Spinal cord injury, Brain injury, Attack, Stroke, Neurodegenerative disease, Parkinson's disease, Alzheimer's disease Disease, tumor, burn, wound, hyperthermia, hypoxia, ischemia, organ transplant, bone marrow transplant (BMT), myocardial infarction / heart attack, cardiotoxicity, p53-positive cancer, or acute liver failure, but the target is Not limited to these.
 p53遺伝子およびそのmRNAの塩基配列は公知であり,GenBankなどのデータベースから容易に入手することができる。例えば,ヒトp53遺伝子のmRNA配列としては,NCBIアクセッション番号NM_000546.5の配列(図1;配列番号132)を利用することができる。 The base sequence of the p53 gene and its mRNA is known and can be easily obtained from a database such as GenBank. For example, as the mRNA sequence of the human p53 gene, the sequence of NCBI accession number NM_000546.5 (FIG. 1; SEQ ID NO: 132) can be used.
アンチセンスオリゴヌクレオチド(ASO)
 アンチセンスオリゴヌクレオチド(ASOとも呼ばれる)は,標的核酸の少なくとも一部に対して実質的に相補的な配列を有し,対応する核酸塩基間のワトソン-クリック型,フーグスティーン型,または逆フーグスティーン型の水素結合によりハイブリダイズする一本鎖オリゴヌクレオチドを指す。アンチセンスオリゴヌクレオチドは,その標的核酸へのハイブリダイゼーションに起因する検出可能または測定可能なアンチセンス活性を示すことができる。アンチセンス効果が奏されるメカニズムは,アンチセンスオリゴヌクレオチドと標的核酸とのハイブリダイゼーションに起因する任意のメカニズムを含み,例えば,そのハイブリダイゼーションの結果または効果は,標的の分解または標的の占拠のいずれかであり得る。特定の実施形態において,アンチセンス活性は,標的核酸の量または発現の減少,またはそのような標的核酸によってコードされるタンパク質の量または発現の減少である。例えば,アンチセンス活性は,特定の実施形態においては,標的の分解(切断)によるアンチセンス阻害であり,これは,標的核酸に相補的なアンチセンスオリゴヌクレオチドの存在下における標的核酸レベルの低下を意味する。特に,4塩基以上の連続したDNAを少なくとも一部に含むアンチセンスオリゴヌクレオチドは,標的RNAとハイブリダイズして細胞内のRNase Hの基質となり,標的RNAの特異的な分解(切断)を誘導することができる。また,特定の実施形態において,アンチセンス活性は,標的の占拠による立体障害に起因するタンパク質結合阻害であり,その結果,翻訳の抑制やスプライシングの調節(例えば,エキソンスキッピング)が生じる。
Antisense oligonucleotide (ASO)
Antisense oligonucleotides (also called ASOs) have a sequence that is substantially complementary to at least a portion of the target nucleobase and is Watson-Crick, Hoogsteen, or reverse hoo between the corresponding nucleobases. Refers to a single-stranded oligonucleotide that hybridizes by a Gusteen-type hydrogen bond. Antisense oligonucleotides can exhibit detectable or measurable antisense activity due to hybridization to their target nucleic acid. The mechanism by which the antisense effect is exerted includes any mechanism resulting from hybridization of the antisense oligonucleotide with the target nucleic acid, for example, the result or effect of the hybridization can be either degradation of the target or occupation of the target. It can be. In certain embodiments, antisense activity is a reduction in the amount or expression of a target nucleic acid, or a reduction in the amount or expression of a protein encoded by such a target nucleic acid. For example, antisense activity, in certain embodiments, is antisense inhibition by degradation (cleave) of the target, which reduces the level of the target nucleic acid in the presence of antisense oligonucleotides complementary to the target nucleic acid. means. In particular, antisense oligonucleotides containing at least a part of continuous DNA of 4 bases or more hybridize with the target RNA and become a substrate for intracellular RNase H, which induces specific degradation (cleavage) of the target RNA. be able to. Also, in certain embodiments, antisense activity is protein binding inhibition due to steric hindrance due to target occupation, resulting in translational repression and splicing regulation (eg, exon skipping).
 アンチセンスオリゴヌクレオチドは,主にデオキシリボヌクレオシド(DNA),リボヌクレオシド(RNA),修飾ヌクレオシド,ヌクレオシド模倣物(モルホリノ核酸,ペプチド核酸など)から構成される一本鎖オリゴマーである。RNase H切断を誘導する複数のヌクレオシド(例えば,連続4塩基以上のデオキシリボヌクレオシド)を有する内部領域の両側,または片側に1以上のヌクレオシド(例えば,LNAなどの糖修飾ヌクレオシド)を有する外部領域を有するキメラアンチセンスオリゴヌクレオチドは,ギャップマーと呼ばれる。特に,外部領域がすべてLNAから成るものはLNAギャップマーと呼ばれる。外部領域を片側のみに有するキメラアンチセンスオリゴヌクレオチドは,特にヘミギャップマーとも呼ばれる。内部領域に含まれるヌクレオシドは,外部領域に含まれるヌクレオシドとは化学的に性質が異なる。内部領域は「ギャップ」と呼ばれ,外部領域は「ウイング」と呼ばれることがある。例えば,5’側と3’側にそれぞれ3塩基のウイング領域を有し,8塩基のギャップ領域を有する14塩基長のギャップマーは,3-8-3ギャップマーと呼ばれることがある。特定の実施形態においては,アンチセンスオリゴヌクレオチドは2-10-2ギャップマー,2-9-3ギャップマー,3-9-2ギャップマー,3-8-3ギャップマー,3-7-4ギャップマー,4-7-3ギャップマー,4-6-4ギャップマーのいずれかであり得る。特定の実施形態においては,アンチセンスオリゴヌクレオチドは2-10-2LNAギャップマー,2-9-3LNAギャップマー,3-9-2LNAギャップマー,3-8-3LNAギャップマー,3-7-4LNAギャップマー,4-7-3LNAギャップマー,4-6-4LNAギャップマーのいずれかであり得る。内部領域(ギャップ領域)の塩基数は,1塩基以上,例えば,2,3,4,5,6,7,8,9,または10塩基であり得るが,これらに限定はされない。外部領域(ウイング領域)の塩基数は,5’側,3’側それぞれ独立に,0塩基以上,例えば,1,2,3,4,5,または6塩基であり得るが,これらに限定はされない。5’側および3’側のウイング領域は,それぞれ異なる塩基数を有していてもよい。特定の実施形態においては,ウイング領域は同一または異なる糖修飾ヌクレオシドにより構成されていてもよく,ウイング領域の糖修飾ヌクレオシドは例えばLNAであり得るが,これに限定はされない。 Antisense oligonucleotides are single-stranded oligomers mainly composed of deoxyribonucleosides (DNA), ribonucleosides (RNAs), modified nucleosides, and nucleoside mimics (morpholinonucleic acids, peptide nucleic acids, etc.). It has an outer region having one or more nucleosides (eg, sugar-modified nucleosides such as LNA) on both sides or one side of an internal region having multiple nucleosides (eg, deoxyribonucleosides of 4 or more consecutive bases) that induce RNase H cleavage. Chimeric antisense oligonucleotides are called gapmers. In particular, an external region consisting entirely of LNA is called an LNA gapmer. Chimeric antisense oligonucleotides that have an external region on only one side are also called hemigapmers, in particular. The nucleosides contained in the inner region are chemically different from the nucleosides contained in the outer region. The inner area is sometimes called the "gap" and the outer area is sometimes called the "wing". For example, a 14-base long gapmer having a wing region of 3 bases on the 5'side and a gap region of 8 bases, respectively, is sometimes called a 3-8-3 gapmer. In certain embodiments, the antisense oligonucleotides are 2-10-2 gapmers, 2-9-3 gapmers, 3-9-2 gapmers, 3-8-3 gapmers, 3-7-4 gaps. It can be any of Mar, 4-7-3 Gap Mar, and 4-6-4 Gap Mar. In certain embodiments, the antisense oligonucleotides are 2-10-2 LNA gapmer, 2-9-3 LNA gapmer, 3-9-2 LNA gapmer, 3-8-3 LNA gapmer, 3-7-4 LNA gapmer. It can be any of Mar, 4-7-3 LNA Gap Mar, and 4-6-4 LNA Gap Mar. The number of bases in the internal region (gap region) can be 1 or more, for example, 2,3,4,5,6,7,8,9, or 10 bases, but is not limited thereto. The number of bases in the external region (wing region) can be 0 bases or more, for example, 1, 2, 3, 4, 5, or 6 bases independently on the 5'side and 3'side, but the number is limited to these. Not done. The 5'side and 3'side wing regions may have different numbers of bases. In certain embodiments, the wing region may be composed of the same or different sugar-modified nucleosides, and the sugar-modified nucleoside in the wing region can be, for example, LNA, but is not limited thereto.
 アンチセンスオリゴヌクレオチドは,特定の実施形態においては,修飾ヌクレオシドおよび/または修飾ヌクレオシド間結合を含むことができる。また,アンチセンスオリゴヌクレオチドは,特定の実施形態においては,オリゴヌクレオチドの末端水酸基の一方または両方が修飾されていてもよく,例えば,オリゴヌクレオチドの末端水酸基の一方または両方にリン酸基が付加されていてもよい。特定の実施形態において,アンチセンスオリゴヌクレオチドは,例えば,少なくとも8塩基長以上,例えば,8,9,10,11,12,13,14,15,16,17,18,19,20,または21塩基長であり得るが,これらに限定はされない。一部の実施態様では,約14塩基のASOが好適に使用される。 Antisense oligonucleotides can, in certain embodiments, include modified nucleoside and / or modified nucleoside interlinks. Further, in a specific embodiment, the antisense oligonucleotide may be modified with one or both of the terminal hydroxyl groups of the oligonucleotide. For example, a phosphate group is added to one or both of the terminal hydroxyl groups of the oligonucleotide. You may be. In certain embodiments, the antisense oligonucleotide is, for example, at least 8 bases long or longer, eg, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 21. It can be base length, but is not limited to these. In some embodiments, an ASO of about 14 bases is preferably used.
 本発明に係るアンチセンスオリゴヌクレオチドは,特定の実施形態においては,実施例に開示されるp53-ASO-15,p53-ASO-15-11,p53-ASO-15-12,およびp53-ASO-15-16のいずれかであり得る。p53-ASO-15およびp53-ASO-15-16は配列番号132の189番目の塩基から202番目の塩基に相補的な配列を有している。p53-ASO-15-11およびp53-ASO-15-12はそれぞれ,配列番号132の185番目の塩基から202番目の塩基および183番目の塩基から202番目の塩基に相補的な配列を有している。本発明に係るアンチセンスオリゴヌクレオチドは,配列番号132の189番目の塩基から202番目の塩基,185番目の塩基から202番目の塩基および183番目の塩基から202番目の塩基に相補的な配列を有するオリゴヌクレオチドであり得る。そのような相補的オリゴヌクレオチドは,本明細書中に述べる修飾を含むことができる。また,本発明に係るアンチセンスオリゴヌクレオチドは,薬学的に許容される塩,プロドラッグ,そのようなプロドラッグの薬学的に許容される塩,および他の生物学的同等物の形態であってもよい。適切な薬学的に許容される塩は,ナトリウム塩およびカリウム塩を含むが,これらに限定はされない。 The antisense oligonucleotides according to the present invention, in certain embodiments, are p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO- disclosed in Examples. It can be any of 15-16. p53-ASO-15 and p53-ASO-15-16 have a sequence complementary to the 189th to 202nd bases of SEQ ID NO: 132. p53-ASO-15-11 and p53-ASO-15-12 have sequences complementary to the 185th to 202nd bases and the 183rd to 202nd bases of SEQ ID NO: 132, respectively. There is. The antisense oligonucleotide according to the present invention has a sequence complementary to the 189th to 202nd bases of SEQ ID NO: 132, the 185th to 202nd bases, and the 183rd to 202nd bases. It can be an oligonucleotide. Such complementary oligonucleotides can include the modifications described herein. Also, the antisense oligonucleotides according to the invention are in the form of pharmaceutically acceptable salts, prodrugs, pharmaceutically acceptable salts of such prodrugs, and other bioequivalents. May be good. Suitable pharmaceutically acceptable salts include, but are not limited to, sodium and potassium salts.
 本発明に係るASOは,公知の化学合成を用いる方法,あるいは酵素的転写法等にて製造することができる。公知の化学合成を用いる方法として,ホスホロアミダイト法,ホスホロチオエート法,ホスホトリエステル法等を挙げることができ,例えば,ABI3900ハイスループット核酸合成機(アプライドバイオシステムズ社製)やNTS H-6核酸合成機(日本テクノサービス社製),Oligoilot10核酸合成機(GEヘルスケア社製)により合成することができる。酵素的転写法としては,目的の塩基配列を有するプラスミドまたはDNAを鋳型として,T7,T3,SP6RNAポリメラーゼ等のRNAポリメラーゼを用いた転写を挙げることができる。合成法または転写法により製造したASOは,次いでHPLC等にて精製する。例えばHPLC精製時には,triethylammonium acetate(TEAA)またはhexylammonium acetate(HAA)とアセトニトリルの混合溶液を用いて,ASOをカラムから溶出する。その後,溶出体積の1000倍量の蒸留水で溶出溶液を10時間透析し,透析溶液を凍結乾燥した後,使用時まで冷凍保存する。使用時には,例えば,蒸留水で最終濃度が100μM程度になるように溶解する。 The ASO according to the present invention can be produced by a method using known chemical synthesis, an enzymatic transcription method, or the like. Examples of methods using known chemical synthesis include a phosphoramidite method, a phosphorothioate method, a phosphotriester method, and the like. For example, ABI3900 high-throughput nucleic acid synthesizer (manufactured by Applied Biosystems) and NTS H-6 nucleic acid synthesis. It can be synthesized by a machine (manufactured by Nihon Techno Service Co., Ltd.) and an Oligoilot10 nucleic acid synthesizer (manufactured by GE Healthcare). Examples of the enzymatic transcription method include transcription using an RNA polymerase such as T7, T3, and SP6 RNA polymerase using a plasmid or DNA having the desired base sequence as a template. The ASO produced by the synthetic method or the transcription method is then purified by HPLC or the like. For example, during HPLC purification, ASO is eluted from the column using triethylammonium acetate (TEAA) or a mixed solution of hexalylammonium acetate (HAA) and acetonitrile. Then, the elution solution is dialyzed against 1000 times the elution volume of distilled water for 10 hours, the dialysis solution is freeze-dried, and then stored frozen until use. At the time of use, for example, it is dissolved in distilled water so that the final concentration is about 100 μM.
 本発明に係るASOに用いられる核酸としては,ヌクレオシドまたはそのヌクレオシドと同等の機能を有する分子がヌクレオシド間結合を介して重合した分子であればいかなるものでもよい。ヌクレオシドは,塩基(核酸塩基)と糖が結合した化合物の一種である。塩基としては,アデニン,グアニンなどのプリン塩基,チミン,シトシン,ウラシルなどのピリミジン塩基,ニコチンアミド,ジメチルイソアロキサジンなどを含む。アデノシン,チミジン,グアノシン,シチジン,ウリジンなどが代表的なヌクレオシドである。ヌクレオチドとは,ヌクレオシドにリン酸基が結合した物質である。オリゴヌクレオチド(ポリヌクレオチドとも言う)としては,例えばリボヌクレオチドの重合体であるRNA,デオキシリボヌクレオチドの重合体であるDNA,RNAおよびDNAが混合した重合体,修飾ヌクレオシドを含むヌクレオチド重合体が,それぞれ挙げられる。天然のDNA,RNAはヌクレオシド間結合として,ホスホジエステル結合を有している。本発明に係るASOに用いられる核酸は,修飾を含むものであってもよい。核酸修飾の位置には,糖部分,骨格(連結)部分,核酸塩基(塩基)部分,3’または5’末端部分が含まれる。また,本発明において用いられるASOには,モルホリノ核酸,ペプチド核酸が含まれていてもよい。 The nucleic acid used in the ASO according to the present invention may be any nucleoside or a molecule having a function equivalent to that of the nucleoside, which is polymerized via an internucleoside bond. Nucleoside is a type of compound in which a base (nucleobase) and a sugar are bound. The bases include purine bases such as adenine and guanine, pyrimidine bases such as thymine, cytosine and uracil, nicotinamide and dimethylisoaroxazine. Typical nucleosides are adenosine, thymidine, guanosine, cytidine, and uridine. Nucleotides are substances in which a phosphate group is bound to a nucleoside. Examples of oligonucleotides (also referred to as polynucleotides) include RNA, which is a polymer of ribonucleotides, DNA, which is a polymer of deoxyribonucleotides, polymers in which RNA and DNA are mixed, and nucleotide polymers containing modified nucleosides. Be done. Natural DNA and RNA have phosphodiester bonds as internucleoside bonds. The nucleic acid used for ASO according to the present invention may contain modifications. Nucleic acid modification positions include sugar moieties, backbone (linkage) moieties, nucleobase (base) moieties, and 3'or 5'terminal moieties. Further, the ASO used in the present invention may contain a morpholino nucleic acid and a peptide nucleic acid.
修飾ヌクレオシド
 修飾ヌクレオシドとしては,例えばRNAまたはDNAと比較して,ヌクレアーゼ耐性の向上または安定化させるため,相補鎖核酸とのアフィニティーをあげるため,細胞透過性をあげるため,あるいは可視化させるために,リボヌクレオシド,デオキシリボヌクレオシド,RNAまたはDNAに修飾を施した分子を挙げることができ,例えば,2’-MOE、LNA、ENAなどの糖部修飾ヌクレオシドが例示される。本発明のASOは,例えば,Khvorova & Watts(Nature Biotechnology 35, 238-248 (2017) doi:10.1038/nbt.3765)に開示の修飾核酸分子を含んでいてもよい。
Modified nucleosides Modified nucleosides include, for example, ribo to improve or stabilize nuclease resistance, to increase affinity with complementary-stranded nucleic acids, to increase cell permeability, or to visualize, as compared to RNA or DNA. Examples include nucleosides, deoxyribonucleosides, RNA or DNA-modified molecules, such as sugar-modified nucleosides such as 2'-MOE, LNA, and ENA. The ASO of the present invention may contain, for example, the modified nucleic acid molecule disclosed in Khvorova & Watts (Nature Biotechnology 35, 238-248 (2017) doi: 10.1038 / nbt.3765).
 修飾糖とは,天然糖部分(すなわち,DNA(2’-H)またはRNA(2’-OH)中に認められる糖部分)からの置換および/または任意の変化を有する糖を指し,糖部修飾ヌクレオシドとは,修飾糖を含む修飾ヌクレオシドを指す。糖部修飾ヌクレオシドは,ヌクレオシドの糖の化学構造の一部あるいは全てに対し,任意の化学構造物質を付加あるいは置換したものであればいかなるものでもよく,例えば,2’-O-メチルリボースで置換された修飾ヌクレオシド,2’-O-プロピルリボースで置換された修飾ヌクレオシド,2’-メトキシエトキシリボースで置換された修飾ヌクレオシド,2’-O-メトキシエチルリボースで置換された修飾ヌクレオシド,2’-O-[2-(グアニジウム)エチル]リボースで置換された修飾ヌクレオシド,2’-O-フルオロリボースで置換された修飾ヌクレオシド,糖部に架橋構造を導入することにより2つの環状構造を有する架橋構造型人工核酸(Bridged Nucleic Acid)(BNA),より具体的には,2’位の酸素原子と4’位の炭素原子がメチレンを介して架橋したロックト人工核酸(Locked Nucleic Acid:LNA),エチレン架橋構造型人工核酸(Ethylene bridged nucleic acid:ENA)[Nucleic Acid Research, 32, e175 (2004)]等があげられ,さらにペプチド核酸(PNA)[Acc. Chem. Res., 32, 624 (1999)],オキシペプチド核酸(OPNA)[J. Am. Chem. Soc., 123, 4653 (2001)],およびペプチドリボ核酸(PRNA)[J. Am. Chem. Soc., 122, 6900 (2000)]等を挙げることができる。 Modified sugar refers to sugars that have substitutions and / or arbitrary changes from the natural sugar moiety (ie, the sugar moiety found in DNA (2'-H) or RNA (2'-OH)). A modified nucleoside refers to a modified nucleoside containing a modified sugar. The sugar-modified nucleoside may be any one obtained by adding or substituting an arbitrary chemical structural substance to a part or all of the chemical structure of the sugar of the nucleoside, for example, substituting with 2'-O-methylribose. Modified nucleosides substituted with 2'-O-propylribose, Modified nucleosides substituted with 2'-methoxyethoxyribose, Modified nucleosides substituted with 2'-O-methoxyethylribose, 2'- Modified nucleoside substituted with O- [2- (guanidium) ethyl] ribose, modified nucleoside substituted with 2'-O-fluororibose, bridge structure having two cyclic structures by introducing a bridge structure into the sugar moiety. Type artificial nucleic acid (Bridged Nucleic Acid) (BNA), more specifically, Locked Nucleic Acid (LNA) in which an oxygen atom at the 2'position and a carbon atom at the 4'position are crosslinked via methylene, ethylene. Cross-linked artificial nucleic acids (Ethylene bridged nucleic acid: ENA) [Nucleic Acid Research, 32, e175 (2004)], etc., and peptide nucleic acids (PNA) [Acc. Chem. Res., 32, 624 (1999)) ], Oxypeptide Nucleic Acid (OPNA) [J. Am. Chem. Soc., 123, 4653 (2001)], and Peptide Ribonucleic Acid (PRNA) [J. Am. Chem. Soc., 122, 6900 (2000)] Etc. can be mentioned.
 RNAの2’-O-メチル(2’-OMe)修飾(2’-OMe-RNA)は,天然にも存在する修飾であり,修飾オリゴヌクレオチドの結合親和性とヌクレアーゼ耐性を向上させると共に,免疫刺激性を低下させる。2’-O-メトキシエチル(2’-MOE)は,ヌクレアーゼ耐性が2’-OMe修飾よりもさらに増加しており,修飾ヌクレオチドの結合親和性(ΔTm)も大幅に上昇している。RNAの2’-フルオロ(2’-F)修飾(2’-F-RNA)を用いてオリゴヌクレオチドの親和性を増加させることもできる。他の2’修飾核酸としては,2’-F-ANAや,関根らの2’ -修飾誘導体(特許第5194256号,特開2015-020994)を挙げることができる。 2'-O-methyl (2'-OMe) modification (2'-OMe-RNA) of RNA is a naturally occurring modification that improves the binding affinity and nuclease resistance of modified oligonucleotides and is immune. Reduces irritation. For 2'-O-methoxyethyl (2'-MOE), nuclease resistance is further increased over 2'-OMe modification, and the binding affinity (ΔTm) of modified nucleotides is also significantly increased. 2'-fluoro (2'-F) modification (2'-F-RNA) of RNA can also be used to increase the affinity of oligonucleotides. Examples of other 2'modified nucleic acids include 2'-F-ANA and Sekine et al.'S 2'-modified derivative (Patent No. 5194256, JP-A-2015-02994).
 リボースの2’酸素と4’炭素を連結したLNA(Locked nucleic acid)は,結合親和性に大幅な増加をもたらす。LNAでは,RNAのリボース糖の2’酸素と4’炭素が環構造において固定されている。この修飾は,特異性,親和性,および半減期を増加させ,目的の組織への効果的な送達を,より低い毒性で可能とする。しかし,LNAで完全に修飾された約8ヌクレオチドよりも長いオリゴマーは凝集する傾向があることが知られており,一般的には,DNAや他の糖部修飾核酸との混合で用いられる。 LNA (Locked Nucleic Acid), which links the 2'oxygen and 4'carbon of ribose, brings about a significant increase in binding affinity. In LNA, the 2'oxygen and 4'carbon of the ribose sugar of RNA are fixed in the ring structure. This modification increases specificity, affinity, and half-life, allowing effective delivery to the tissue of interest with lower toxicity. However, oligomers longer than about 8 nucleotides fully modified with LNA are known to tend to aggregate and are commonly used in admixture with DNA and other sugar-modified nucleic acids.
 LNAのメチル化類似体であるcEtもLNAと同様に有用である。トリシクロ-DNA(tcDNA)は,3環骨格に基づく拘束型ヌクレオチドである。 CEt, which is a methylation analog of LNA, is as useful as LNA. Tricyclo-DNA (tkCD) is a constrained nucleotide based on a tricyclic skeleton.
 修飾ヌクレオシドとしては,その他に,核酸の塩基部分の原子(例えば,水素原子,酸素原子)もしくは官能基(例えば,水酸基,アミノ基)が他の原子(例えば,水素原子,硫黄原子),官能基(例えば,アミノ基),もしくは炭素数1~6のアルキル基で置換されたものまたは保護基(例えばメチル基またはアシル基)で保護されたもの,ヌクレオシドに,例えば脂質,リン脂質,フェナジン,フォレート,フェナントリジン,アントラキノン,アクリジン,フルオレセイン,ローダミン,クマリン,色素など,別の化学物質を付加した分子等を用いてもよい。 Other modified nucleosides include atoms (eg, hydrogen atoms, oxygen atoms) or functional groups (eg, hydroxyl groups, amino groups) in the base portion of the nucleic acid, other atoms (eg, hydrogen atoms, sulfur atoms), functional groups. (For example, an amino group), or one substituted with an alkyl group having 1 to 6 carbon atoms or one protected with a protective group (for example, a methyl group or an acyl group), nucleoside, for example, lipid, phospholipid, phenazine, forate , Phenantridin, anthraquinone, aclysine, fluorescein, rhodamine, coumarin, dye, and other molecules to which another chemical substance is added may be used.
 修飾核酸塩基(または修飾塩基)には,アデニン,シトシン,グアニン,チミン,またはウラシル以外のあらゆる核酸塩基が含まれるが,例えば,5-メチルシトシン,5-フルオロシトシン,5-ブロモシトシン,5-ヨードシトシン,N4-メチルシトシン,5-フルオロウラシル,5-ブロモウラシル,5-ヨードウラシル,2-チオチミン,N6-メチルアデニン,8-ブロモアデニン,N2-メチルグアニン,8-ブロモグアニン,およびイノシンなどが挙げられる。例えば,配列番号1~125の配列を有するオリゴヌクレオチドは,少なくとも1つのシトシンが5-メチルシトシンにより置換されていてもよく,一部の実施形態においては,全てのシトシンが5-メチルシトシンにより置換されていてもよい。 Modified nucleobases (or modified bases) include any nucleobase except adenine, cytosine, guanine, timine, or uracil, including, for example, 5-methylcytosine, 5-fluorocytosine, 5-bromocytosine, 5-. Iodocytosine, N4-methylcytosine, 5-fluorouracil, 5-bromouracil, 5-iodouracil, 2-thiothymine, N6-methyladenine, 8-bromoadenine, N2-methylguanine, 8-bromoguanine, and inosine Can be mentioned. For example, in an oligonucleotide having the sequences of SEQ ID NOs: 1-125, at least one cytosine may be replaced with 5-methylcytosine, and in some embodiments, all cytosines are replaced with 5-methylcytosine. It may have been.
ヌクレオシド間結合
 天然のDNA,RNAはヌクレオシド間結合として,ホスホジエステル結合を有している。本発明の一つの態様においては,ヌクレオシド間結合は,修飾を含んでいてもよい。修飾ヌクレオシド間結合とは,天然に存在するヌクレオシド間結合(すなわち,ホスホジエステル結合)からの置換または任意の変化を有するヌクレオシド間結合を指し,修飾ヌクレオシド間結合には,リン原子を含むヌクレオシド間結合,およびリン原子を含まないヌクレオシド間結合が含まれる。修飾ヌクレオシド間結合としては,ヌクレオチドのリン酸ジエステル結合の化学構造の一部あるいは全てに対し,任意の化学物質を付加あるいは置換したものでもよく,例えば,ホスホロチオエート結合に置換された修飾ヌクレオシド間結合,N3’-P5’ホスフォアミデート結合に置換された修飾ヌクレオシド間結合等を挙げることができる。他の修飾ヌクレオシド間結合としては(SC5’)-α,β-CNA,PMOなどが挙げられる。
Nucleoside bond Natural DNA and RNA have a phosphodiester bond as a nucleoside bond. In one embodiment of the invention, the internucleoside bond may include modification. A modified nucleoside bond is a nucleoside bond that has a substitution or arbitrary change from a naturally occurring nucleoside bond (that is, a phosphodiester bond), and a modified nucleoside bond is a nucleoside bond containing a phosphorus atom. , And nucleoside bonds that do not contain phosphorus atoms are included. The modified nucleoside bond may be one in which an arbitrary chemical substance is added or substituted to a part or all of the chemical structure of the phosphate diester bond of the nucleotide. For example, a modified nucleoside bond substituted with a phosphorothioate bond, Examples thereof include a modified nucleoside bond substituted with an N3'-P5'phosphoamidate bond. Other modified nucleoside linkages include ( SC5'R p ) -α, β-CNA, PMO and the like.
 代表的なリン含有ヌクレオシド間結合としては,例えば,ホスホジエステル結合,ホスホロチオエート結合(チオリン酸結合ともいう),ホスホロジチオエート結合,ホスホトリエステル結合,およびメチルホスホネート結合,メチルチオホスホネート結合,ボラノホスフェート結合,ホスホロアミデート結合を挙げることができる。 Typical phosphorus-containing nucleoside bonds include, for example, phosphodiester bonds, phosphorothioate bonds (also referred to as thiophosphate bonds), phosphorodithioate bonds, phosphotriester bonds, and methylphosphonate bonds, methylthiophosphonate bonds, and borane phosphates. Examples include binding and phosphodiester bonding.
 主要な修飾ヌクレオシド間結合の一つであるホスホロチオエート(PS)結合は,ヌクレアーゼによる分解からオリゴヌクレオチドを保護するのに役立つ。ホスホロチオエート(PS)修飾は,もともとはヌクレアーゼ耐性を付与するためにオリゴヌクレオチドに組み込まれたものであるが,この修飾は,オリゴヌクレオチドの輸送と取り込みにも大きな影響を与える。PSは,ASOの電荷を変えることによって,受容体部位および血漿タンパク質への結合を増加させ,標的組織に到達するASOの量を増加させる。ヘパリン結合タンパク質は,ホスホロチオエート修飾オリゴヌクレオチドの最も親和性の高い標的の一つである。血漿タンパク質による適切な結合は,腎臓系による血液からの迅速な排除を抑制し,最適な送達を促進する。 The phosphorothioate (PS) bond, one of the major modified nucleoside bonds, helps protect the oligonucleotide from degradation by nucleases. Phosphorothioate (PS) modifications were originally incorporated into oligonucleotides to confer nuclease resistance, but these modifications also have a significant impact on oligonucleotide transport and uptake. PS increases the binding of receptor sites and plasma proteins by altering the charge of ASO, increasing the amount of ASO reaching the target tissue. Heparin-binding proteins are one of the most compatible targets for phosphorothioate-modified oligonucleotides. Proper binding by plasma proteins suppresses rapid elimination from the blood by the renal system and promotes optimal delivery.
 一部の実施態様において,本発明のASOは少なくとも1つの修飾ヌクレオチド間結合を含み,例えば,ヌクレオチド間結合の総数のうちの20%以上,30%以上,40%以上,50%以上,60%以上,70%以上,80%以上,90%以上,または95%以上が修飾ヌクレオチド間結合であってもよい。本発明の一実施態様においては,全てのヌクレオチド間結合が修飾ヌクレオチド間結合(例えばホスホロチオエート結合)であるASOが用いられる。 In some embodiments, the ASO of the invention comprises at least one modified internucleotide bond, eg, 20% or more, 30% or more, 40% or more, 50% or more, 60% of the total number of internucleotide bonds. More than 70%, more than 80%, more than 90%, or more than 95% may be modified internucleotide bonds. In one embodiment of the invention, ASO is used in which all internucleotide bonds are modified internucleotide bonds (eg, phosphorothioate bonds).
 ホスホロチオエート結合は,リン原子部分に立体中心を有しており,完全修飾オリゴヌクレオチドは通常,2n-1種のジアステレオマーの混合物となる(例えば,14merのホスホロチオエートオリゴヌクレオチドは,213種のジアステレオマーの混合物となる)。SおよびRジアステレオマー結合は,異なる特性を示すことが知られている。Rジアステレオマーは,Sジアステレオマーよりもヌクレアーゼ耐性が低いが,より高い親和性で相補鎖と結合する。本発明のASOにおいては,修飾ヌクレオシド間結合の合成時にキラル制御を行い,特定のホスホロチオエート結合が特定のジアステレオマーとなるように合成を制御してもよい。 Phosphorothioate linkages, has a stereogenic phosphorus atom part, fully modified oligonucleotide is typically a mixture of 2 n-1 diastereomers (e.g., phosphorothioate oligonucleotides 14mer is 2 thirteen It becomes a mixture of diastereomers). Sp and R p diastereomeric bonds are known to exhibit different properties. R p diastereomers are less nuclease resistance than S p diastereomers, it joins with a complementary strand with a higher affinity. In the ASO of the present invention, chiral control may be performed during the synthesis of the modified nucleoside bond, and the synthesis may be controlled so that the specific phosphorothioate bond becomes a specific diastereomer.
リガンド等を連結したオリゴヌクレオチド/末端修飾オリゴヌクレオチド
 核酸に別の化学物質を付加した分子としては,例えば,5’-ポリアミン付加誘導体,コレステロール付加誘導体,ステロイド付加誘導体,胆汁酸付加誘導体,ビタミン付加誘導体,Cy5付加誘導体,Cy3付加誘導体,6-FAM付加誘導体,ビオチン付加誘導体等および北出らの誘導体(PCT/JP2007/000087,PCT/JP2016/59398)を挙げることができる。リガンド等を付加する部位は,オリゴヌクレオチドの末端(5’末端または3’末端)および/またはオリゴヌクレオチドの内部であり得る。リガンド等は,リガンド等を付加したASOに相補的なオリゴヌクレオチドとのハイブリダイゼーションを介して間接的に結合していてもよい(WO2013/089283A1)。
Examples of molecules obtained by adding another chemical substance to an oligonucleotide / terminal-modified oligonucleotide nucleic acid in which a ligand or the like is linked include, for example, a 5'-polyamine addition derivative, a cholesterol addition derivative, a steroid addition derivative, a bile acid addition derivative, and a vitamin addition derivative. , Cy5 Derivatives, Cy3 Derivatives, 6-FAM Derivatives, Biotin Derivatives, etc. and Derivatives of Kitade et al. (PCT / JP2007 / 00877, PCT / JP2016 / 59398). The site to which the ligand or the like is added may be the terminal (5'end or 3'end) of the oligonucleotide and / or the inside of the oligonucleotide. The ligand or the like may be indirectly bound via hybridization with an oligonucleotide complementary to the ASO to which the ligand or the like is added (WO2013 / 089283A1).
 ASOとコレステロールとは,例えば以下に示すように,トリエチレングリコール(TEG)を介して連結されることができる。 ASO and cholesterol can be linked via triethylene glycol (TEG), for example, as shown below.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 末端修飾の例として,GalNAc連結オリゴヌクレオチドやPUFA連結オリゴヌクレオチドが知られている。GalNAcを末端に連結することにより,オリゴヌクレオチドの肝臓への送達効率を高めることができる。本発明において用いられるASOには,GalNAcなどのリガンドが直接または間接的に連結されていてもよい。 GalNAc-linked oligonucleotides and PUFA-linked oligonucleotides are known as examples of terminal modification. By linking GalNAc to the terminal, the efficiency of delivery of the oligonucleotide to the liver can be enhanced. A ligand such as GalNAc may be directly or indirectly linked to the ASO used in the present invention.
 短いオリゴヌクレオチドは,腎臓に多く送達され,長いオリゴマーは肝臓に多く送達される傾向がある。短いオリゴヌクレオチドは,血漿タンパク質に結合しにくく,結果として血漿中の半減期が短くなる傾向があるが,切断可能なリンカーなどを用いて多量体を構築することが可能である。本発明において用いられるASOは,切断可能なリンカーなどを用いて,他のASOに連結されていてもよい。 Short oligonucleotides tend to be delivered more to the kidneys and long oligomers tend to be delivered more to the liver. Short oligonucleotides are less likely to bind to plasma proteins and, as a result, tend to have shorter half-lives in plasma, but multimers can be constructed using cleavable linkers and the like. The ASO used in the present invention may be linked to another ASO using a cleavable linker or the like.
 本発明に係るASOは,5’末端および/または3’末端にリン酸基が付加されていてもよい。他の末端修飾としては,E-VP,メチルホスホネート,ホスホロチオエート,C-メチルアナログなどがあり,オリゴヌクレオチドの安定性を高めることが知られている。本発明において用いられるASOは,これらの末端修飾を含んでいてもよい。 The ASO according to the present invention may have a phosphate group added to the 5'end and / or the 3'end. Other terminal modifications include E-VP, methylphosphonate, phosphorothioate, C-methyl analog, etc., which are known to enhance the stability of oligonucleotides. The ASO used in the present invention may include these terminal modifications.
ASOの配列設計
 ASOの配列は,標的とする遺伝子の塩基配列に基づき設計することができる。ASO配列の設計方法は,当業者には公知であり,これまでに多数のASOが設計され,その活性が評価されている。例えば,p53遺伝子を標的としたアンチセンスオリゴヌクレオチドの例は,EP1012267B1,EP1889911A2,WO98/33904,EP1598420A2,WO95/09916,WO20/24885,WO98/22142,WO1993/003770,米国特許第5654415号,米国特許第5641754号,米国特許第5087617号,日本国特許第5671791号,Hata et al.Biochemical and Biophysical Research Communivcations 1991, 179, 528-534, Bayever et al. Leukemia & Lymphoma 1994, 12, 223-231, Mahdi et al. Journal of Cell Science 1995, 108, 1287-1293, Hirota et al. Jpn. J. Cancer Res. 1996, 87, 735-742, Dai et al. Acta Pharmacologica Sinica 2006, 27, 1453-1458,Robu et al. Pros Genetics 2007, 3, e78, alachkar et al.Journal of Pharmaceutical and Biomedical Analysis,2012,71, 228-232, Gorska et al. 2013, PLoS ONE 8(11): e78863, Swiatkowska et al. PLOS ONE, 2015, 10, e0141676, Swaitkowska et al. Acta Biochimica Polonica, 2016, 63, 645-651.に開示されている。ASOの配列は,標的とするRNAの二次構造あるいは三次構造を考慮して決定してもよい。本発明者らは,MobyDick(商標)と名付けた独自のアルゴリズムを配列決定の際に利用している。
Sequence design of ASO The sequence of ASO can be designed based on the base sequence of the target gene. A method for designing an ASO sequence is known to those skilled in the art, and a large number of ASOs have been designed so far and their activities have been evaluated. For example, examples of antisense oligonucleotides targeting the p53 gene include EP1012267B1, EP1889911A2, WO98 / 33904, EP1598420A2, WO95 / 09916, WO20 / 248885, WO98 / 22142, WO1993 / 003770, US Pat. No. 5,654,415, US Pat. No. 5641754, US Pat. No. 5087617, Japanese Patent No. 5671791, Hata et al. Biochemical and Biophysical Research Communivcations 1991, 179 , 528-534, Bayever et al. Leukemia & Lymphoma 1994, 12 , 223-231, Mahdi et al. Journal of Cell Science 1995, 108 , 1287-1293, Hirota et al. Jpn. J. Cancer Res. 1996, 87 , 735-742, Dai et al. Acta Pharmacologica Sinica 2006, 27 , 1453-1458, Robu et al. Pros Genetics 2007, 3 , e78, alachkar et al. Journal of Pharmaceutical and Biomedical Analysis, 2012, 71 , 228-232, Gorska et al. 2013, PLoS ONE 8 (11): e78863, Swiatkowska et al. PLOS ONE, 2015, 10 , e0141676, Swaitkowska et al. Acta Biochimica Polonica, 2016, 63 , 645-651. The sequence of ASO may be determined in consideration of the secondary or tertiary structure of the target RNA. The present inventors use a unique algorithm named MobyDick ™ for sequencing.
 なお,核酸の構造予測に関しては,以下の参考文献を参照してもよい:
- Markham, N. R. & Zuker, M. (2005) DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Res., 33, W577-W581; 
- Markham, N. R. & Zuker, M. (2008) UNAFold: software for nucleic acid folding and hybridization. In Keith, J. M., editor, Bioinformatics, Volume II. Structure, Function and Applications, number 453 in Methods in Molecular Biology, chapter 1, pages 3-31. Humana Press, Totowa, NJ. ISBN 978-1-60327-428-9.)。
For the structure prediction of nucleic acids, the following references may be referred to:
--Markham, N.R. & Zuker, M. (2005) DINAMelt web server for nucleic acid acid melting prediction. Nucleic Acids Res., 33, W577-W581;
--Markham, NR & Zuker, M. (2008) UNAFold: software for nucleic acid folding and hybridization. In Keith, JM, editor, Bioinformatics, Volume II. Structure, Function and Applications, number 453 in Methods in Molecular Biology, chapter 1 , pages 3-31. Humana Press, Totowa, NJ. ISBN 978-1-60327-428-9.).
 また,配列決定の際には,標的遺伝子のノックダウン効率だけでなく,毒性,オフターゲット効果,生物種間での共通性,安定性,細胞内への取り込み効率や,その他の因子も考慮に含めることができる。 In addition, when sequencing, not only the knockdown efficiency of the target gene, but also toxicity, off-target effect, commonality among species, stability, intracellular uptake efficiency, and other factors are taken into consideration. Can be included.
標的配列との相補性
 本発明に係るアンチセンスオリゴヌクレオチド(ASO)は,配列番号1から配列番号125のいずれか1つの配列に対して実質的に同一であり得る。ここで,実質的に同一とは,オリゴヌクレオチドが標的配列に対して完全(100%)に同一である必要はなく,80%以上の同一性を有することを意味する。特定の実施形態においては,オリゴヌクレオチドが配列番号1から配列番号125のいずれか1つの配列に対して少なくとも80%,85%,90%,95%,96%,97%,98%,99%,または100%の同一性を有するオリゴヌクレオチドであり得る。同一性の値は,WO2016/027747の記載に従って算出することができる(その内容は参照により本明細書に取り込まれる)。ASOによる発現または活性の阻害は,発現または活性の減少または阻止を指し,必ずしも発現または活性が完全に排除される必要はない。
Complementarity with Target Sequence The antisense oligonucleotide (ASO) according to the present invention can be substantially identical to any one of the sequences of SEQ ID NO: 1 to SEQ ID NO: 125. Here, substantially the same means that the oligonucleotide does not have to be completely (100%) identical to the target sequence and has 80% or more identity. In certain embodiments, the oligonucleotide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% of any one of the sequences of SEQ ID NOs: 1 to 125. , Or an oligonucleotide having 100% identity. The value of identity can be calculated according to the description of WO 2016/0277747 (the contents of which are incorporated herein by reference). Inhibition of expression or activity by ASO refers to reduction or inhibition of expression or activity, and expression or activity does not necessarily have to be completely eliminated.
 本発明の一つの態様は,細胞においてp53遺伝子の発現を阻害するための医薬組成物であって,p53遺伝子をコードするmRNAの少なくとも一部に実質的に相補的な相補性領域を含むオリゴヌクレオチドを有効成分として含有し,該オリゴヌクレオチドが配列番号1から配列番号125のいずれか1つの配列に対して実質的に同一な配列からなるアンチセンスオリゴヌクレオチドであることを特徴とする,医薬組成物に関する。ここで,実質的に相補的とは,オリゴヌクレオチドが標的配列に対して完全(100%)に相補的である必要はなく,80%以上,例えば85%,90%,95%,98%または99%の相補的を有することを意味する。このオリゴヌクレオチドは,配列番号1から配列番号125のいずれか1つの配列に対して少なくとも80%,85%,90%,95%,96%,97%,98%,99%,または100%の同一性を有する配列からなるオリゴヌクレオチドであり得る。特定の実施形態において,オリゴヌクレオチドは,配列番号1から配列番号125のいずれか1つの配列に対して100%同一な配列からなる。特定の実施態様では,オリゴヌクレオチドは,相補性領域の5’側および/または3’側に付加的な配列を有していてもよい。 One aspect of the invention is a pharmaceutical composition for inhibiting the expression of the p53 gene in a cell, an oligonucleotide containing a complementary region that is substantially complementary to at least a portion of the mRNA encoding the p53 gene. As an active ingredient, the oligonucleotide is an antisense oligonucleotide having a sequence substantially the same as that of any one of the sequences of SEQ ID NO: 1 to SEQ ID NO: 125. Regarding. Here, substantially complementary means that the oligonucleotide does not have to be completely (100%) complementary to the target sequence and is 80% or more, for example 85%, 90%, 95%, 98% or It means having 99% complement. This oligonucleotide contains at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% of any one of the sequences of SEQ ID NOs: 1 to 125. It can be an oligonucleotide consisting of sequences having the same identity. In certain embodiments, the oligonucleotide consists of a sequence that is 100% identical to any one of the sequences of SEQ ID NO: 1 to SEQ ID NO: 125. In certain embodiments, the oligonucleotide may have additional sequences on the 5'and / or 3'side of the complementary region.
 アンチセンスオリゴヌクレオチドの設計,調製および使用のための手法は,当業者にとり周知であるが,例えば,WO2016/027747を参照することができる(その内容は参照により本明細書に取り込まれる)。 Techniques for the design, preparation and use of antisense oligonucleotides are well known to those of skill in the art, but can be referred to, for example, WO 2016/0277747 (the contents of which are incorporated herein by reference).
オリゴヌクレオチドの送達
 オリゴヌクレオチドの細胞への送達には,トランスフェクション試薬,リポソーム,ベクター,ナノミセル,相補的核酸などのDDSツールが利用されうる。なお,本発明の一部の態様において,アンチセンスオリゴヌクレオチドは,本質的に一本鎖の分子である。ここで,本質的に一本鎖であるとは,オリゴヌクレオチドの送達や製剤化の過程において,一時的に相補的な別個の核酸と二本鎖を形成しても良いことを意味する。オリゴヌクレオチドが,標的RNAにハイブリダイズしてアンチセンス効果を発揮する際には,一本鎖のオリゴヌクレオチドの形で作用し,最終的には標的RNAとASOとにより二本鎖が形成される。なお,本発明の一部の態様において,配列番号1から125の配列を有するオリゴヌクレオチドは,siRNAの一部としても用いられうる。
Delivery of Oligonucleotides DDS tools such as transfection reagents, liposomes, vectors, nanomicelles, and complementary nucleic acids can be used to deliver oligonucleotides to cells. In some aspects of the invention, the antisense oligonucleotide is essentially a single-stranded molecule. Here, being essentially single-stranded means that in the process of delivering or formulating an oligonucleotide, a double-strand may be formed with a separate nucleic acid that is temporarily complementary. When an oligonucleotide hybridizes to a target RNA and exerts an antisense effect, it acts in the form of a single-stranded oligonucleotide, and finally a double strand is formed by the target RNA and ASO. .. In some embodiments of the present invention, oligonucleotides having the sequences of SEQ ID NOs: 1 to 125 can also be used as part of siRNA.
ハイブリッド型ASO
 国際公開第2013/089283号およびNishina et al., Nature Communications volume 6, Article number: 7969 (2015)には,ASOと相補的なRNAオリゴヌクレオチドを含む二本鎖オリゴヌクレオチド(HDOとも呼ばれる)がASOと比較して、効率よく肝臓に送達,集積され,肝臓での標的遺伝子の発現が抑制されることが記載されている。国際公開第2015/105083号には,HDOにGalNAc誘導体がリンカーを介して結合しているASOが記載されており,そのようなアンチセンスオリゴヌクレオチドを用いると,トコフェロール(Toc)修飾体より効率的に標的遺伝子の発現が抑制されることが記載されている。さらに,国際公開第2017/13112号には,ASOに相補的なオリゴヌクレオチドを連結させて,分子内で二本鎖を形成するようにした一本鎖オリゴヌクレオチドが,二本鎖オリゴヌクレオチドと同等以上のアンチセンス効果を示すことが記載されている。よって,本発明の一部の態様では,ASOは,それに相補的な核酸鎖と二本鎖を形成していてもよい。また,本発明の一部の態様では,ASOは,それに相補的な核酸鎖と連結されており,分子内のセルフアニーリングにより,二本鎖部分を形成していてもよい。さらに,本発明の一部の態様では,ASOに相補的な核酸領域にトコフェロール(Toc)やGalNAcなどのリガンドが連結されていてもよい。さらに,一部の態様では,本開示のオリゴヌクレオチドは,siRNA二重鎖の一部として用いられてもよい。
Hybrid ASO
International Publication No. 2013/089283 and Nishina et al., Nature Communications volume 6, Article number: 7969 (2015) describe double-stranded oligonucleotides (also called HDOs) containing RNA oligonucleotides complementary to ASO. It is described that the target gene is efficiently delivered and accumulated in the liver and the expression of the target gene in the liver is suppressed. International Publication No. 2015/105083 describes ASO in which a GalNAc derivative is bound to HDO via a linker, and such antisense oligonucleotides are more efficient than tocopherol (Toc) modified products. It is described that the expression of the target gene is suppressed. Furthermore, in International Publication No. 2017/13112, single-stranded oligonucleotides in which ASO-complementary oligonucleotides are linked to form double strands in the molecule are equivalent to double-stranded oligonucleotides. It is described that it exhibits the above antisense effect. Therefore, in some aspects of the invention, the ASO may form a double strand with a nucleic acid strand complementary thereto. Further, in some aspects of the present invention, the ASO may be linked to a nucleic acid strand complementary thereto, and a double-stranded portion may be formed by intramolecular self-annealing. Furthermore, in some aspects of the invention, ligands such as tocopherol (Toc) and GalNAc may be linked to the nucleic acid region complementary to ASO. Moreover, in some embodiments, the oligonucleotides of the present disclosure may be used as part of a siRNA duplex.
医薬組成物
 アンチセンス核酸はそれ単独で製剤化することもできるが,通常は薬理学的に許容される1つあるいはそれ以上の担体と一緒に混合し,製剤学の技術分野においてよく知られる任意の方法により製造した医薬製剤として投与するのが望ましい。医薬組成物には,異なる配列を有する複数のASOの混合物が含まれていてもよい。
The pharmaceutical composition antisense nucleic acid can be formulated by itself, but is usually mixed with one or more pharmacologically acceptable carriers and any of the well-known technical fields of pharmaceutics. It is desirable to administer it as a pharmaceutical preparation produced by the above method. The pharmaceutical composition may contain a mixture of multiple ASOs having different sequences.
 投与対象には,ヒトまたは非ヒト動物,例えば,非ヒト哺乳動物が含まれる。投与経路は,治療に際し最も効果的なものを使用するのが望ましく,経口投与,または口腔内,気道内,直腸内,皮下,筋肉内,静脈内および経皮などの非経口投与を挙げることができ,望ましくは静脈内投与を挙げることができる。 The administration target includes human or non-human animals, for example, non-human mammals. It is desirable to use the most effective route of administration for treatment, including oral administration or parenteral administration such as oral, respiratory, rectal, subcutaneous, intramuscular, intravenous and transdermal administration. It can be done, preferably intravenously.
 経口投与に適当な製剤としては,乳剤,シロップ剤,カプセル剤,錠剤,散剤,顆粒剤などがあげられる。乳剤およびシロップ剤のような液体調製物は,水,ショ糖,ソルビトール,果糖などの糖類,ポリエチレングリコール,プロピレングリコールなどのグリコール類,ゴマ油,オリーブ油,大豆油などの油類,p-ヒドロキシ安息香酸エステル類などの防腐剤,ストロベリーフレーバー,ペパーミントなどのフレーバー類などを添加剤として用いて製造できる。カプセル剤,錠剤,散剤,顆粒剤などは,乳糖,ブドウ糖,ショ糖,マンニトールなどの賦形剤,デンプン,アルギン酸ナトリウムなどの崩壊剤,ステアリン酸マグネシウム,タルクなどの滑沢剤,ポリビニルアルコール,ヒドロキシプロピルセルロース,ゼラチンなどの結合剤,脂肪酸エステルなどの界面活性剤,グリセリンなどの可塑剤などを添加剤として用いて製造できる。 Examples of preparations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, and granules. Liquid preparations such as emulsions and syrups include water, sucrose, sorbitol, sugars such as fructose, glycols such as polyethylene glycol and propylene glycol, oils such as sesame oil, olive oil and soybean oil, and p-hydroxybenzoic acid. It can be produced by using preservatives such as esters, flavors such as strawberry flavor and peppermint as additives. Capsules, tablets, powders, granules, etc. are excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch, sodium alginate, lubricants such as magnesium stearate, talc, polyvinyl alcohol, hydroxy. It can be produced by using a binder such as propyl cellulose and gelatin, a surfactant such as a fatty acid ester, and a plastic agent such as glycerin as additives.
 非経口投与に適当な製剤としては,注射剤,座剤,噴霧剤などがあげられる。注射剤は,塩溶液,ブドウ糖溶液あるいは両者の混合物からなる担体などを用いて調製される。座剤はカカオ脂,水素化脂肪またはカルボン酸などの担体を用いて調製される。また,噴霧剤は受容者の口腔および気道粘膜を刺激せず,かつ有効成分を微細な粒子として分散させ吸収を容易にさせる担体などを用いて調製される。 Injections, suppositories, sprays, etc. are examples of preparations suitable for parenteral administration. The injection is prepared by using a carrier consisting of a salt solution, a glucose solution, or a mixture of both. Suppositories are prepared using carriers such as cocoa butter, hydrogenated fats or carboxylic acids. In addition, the spray agent is prepared using a carrier or the like that does not irritate the oral cavity and airway mucosa of the recipient and disperses the active ingredient as fine particles to facilitate absorption.
 担体として具体的には乳糖,グリセリン,リポソーム,ナノミセルなどが例示される。本発明で用いる核酸,さらには用いる担体の性質により,エアロゾル,ドライパウダーなどの製剤が可能である。また,これらの非経口剤においても経口剤で添加剤として例示した成分を添加することもできる。 Specific examples of the carrier include lactose, glycerin, liposomes, and nanomicelles. Depending on the properties of the nucleic acid used in the present invention and the carrier used, preparations such as aerosols and dry powders are possible. Further, also in these parenteral preparations, the components exemplified as additives in the oral preparation can be added.
 投与量または投与回数は,目的とする治療効果,投与方法,治療期間,年齢,体重などにより異なるが,例えば,成人1日当たり10μg/kg~100mg/kgである。 The dose or frequency of administration varies depending on the target therapeutic effect, administration method, treatment period, age, body weight, etc., but is, for example, 10 μg / kg to 100 mg / kg per day for adults.
 本発明の一つの態様は,約14~20merのオリゴヌクレオチド(ASO)を含む,患者における疾患または症状の治療または予防に用いるための医薬組成物に関する。患者は,ヒトもしくは非ヒト動物であり得る。なお,本明細書において,約14merと言った場合は,少なくともその前後1塩基の範囲,すなわち13mer,14mer,および15merを含むものと解され,約20merと言った場合は,19mer,20mer,および21merを含むものと解される。一部の態様においては,14merのASOが好適に用いられる。 One aspect of the invention relates to a pharmaceutical composition comprising about 14-20 mer oligonucleotides (ASOs) for use in the treatment or prevention of a disease or condition in a patient. The patient can be a human or non-human animal. In this specification, the term "about 14 mer" is understood to include at least the range of 1 base before and after that, that is, 13 mer, 14 mer, and 15 mer, and the term "about 20 mer" means 19 mer, 20 mer, and It is understood to include 21 mer. In some embodiments, a 14 mer ASO is preferably used.
 特定の実施態様において,疾患または症状は,虚血-再灌流障害,難聴,聴覚障害,バランス障害,失聴,化学療法誘発性脱毛症,放射線療法誘発性脱毛症,急性腎不全,急性腎障害,慢性腎臓病(CKD),抗癌剤療法に関連する副作用,腎移植患者における遅発性移植機能(DGF),脊髄損傷,脳損傷,発作,脳卒中,神経変性疾患,パーキンソン病,アルツハイマー病,腫瘍,熱傷,創傷,高熱症,低酸素,虚血,臓器移植,骨髄移植(BMT),心筋梗塞/心臓発作,心臓毒性,p53陽性の癌,および急性肝不全のうちのいずれかであり得る。 In certain embodiments, the disease or condition is ischemic-reperfusion injury, hearing loss, hearing impairment, balance impairment, hearing loss, chemotherapy-induced alopecia, radiation therapy-induced alopecia, acute renal failure, acute renal injury. , Chronic kidney disease (CKD), side effects associated with anticancer drug therapy, late transplant function (DGF) in kidney transplant patients, spinal cord injury, brain injury, stroke, stroke, neurodegenerative disease, Parkinson's disease, Alzheimer's disease, tumor, It can be any of burns, wounds, hyperthermia, hypoxia, ischemia, organ transplantation, bone marrow transplantation (BMT), myocardial infarction / heart attack, cardiotoxicity, p53-positive cancer, and acute liver failure.
 本発明の一つの態様は,疾患または症状の治療もしくは予防のための医薬組成物,または疾患または症状の治療もしくは予防に用いるための医薬組成物であって,以下から選択されるいずれかの配列を含むか,いずれかの配列から成るASOを含む,医薬組成物に関する:p53-ASO-15,p53-ASO-15-11,p53-ASO-15-12,およびp53-ASO-15-16。 One embodiment of the present invention is a pharmaceutical composition for treating or preventing a disease or symptom, or a pharmaceutical composition for use in treating or preventing a disease or symptom, any sequence selected from the following. For pharmaceutical compositions comprising, or comprising an ASO consisting of any of the sequences: p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO-15-16.
医薬の製造における使用および治療方法
 本発明の一つの態様は,患者における疾患または障害の治療または予防に用いるための医薬の製造における,約14~20merのオリゴヌクレオチド(ASO)の使用に関する。一部の態様においては,14merのASOが好適に用いられる。
Use and Therapeutic Methods in the Manufacture of Medicines One aspect of the present invention relates to the use of oligonucleotides (ASOs) of about 14-20 mer in the manufacture of medicines for use in the treatment or prevention of diseases or disorders in patients. In some embodiments, a 14 mer ASO is preferably used.
 また,本発明の一つの態様は,患者における疾患または障害の治療または予防のための方法であって,該患者に約14~20merのオリゴヌクレオチド(ASO)を投与する工程を含むことを特徴とする,方法に関する。一部の態様においては,14merのASOが好適に用いられる。 In addition, one aspect of the present invention is a method for treating or preventing a disease or disorder in a patient, which comprises a step of administering about 14 to 20 mer of oligonucleotide (ASO) to the patient. Regarding the method. In some embodiments, a 14 mer ASO is preferably used.
 また,本発明の一つの態様は,患者における急性腎不全(急性腎障害)の治療もしくは予防のための方法であって,以下から選択されるいずれかの配列を含むか,いずれかの配列から成るオリゴヌクレオチドを患者に投与する工程を含む方法に関する:p53-ASO-15,p53-ASO-15-11,p53-ASO-15-12,およびp53-ASO-15-16。 In addition, one aspect of the present invention is a method for treating or preventing acute renal failure (acute kidney injury) in a patient, which comprises or consists of any sequence selected from the following. Consistent with methods comprising administering to a patient an oligonucleotide consisting of: p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO-15-16.
手術に関連する急性腎不全の予防および治療
 急性腎不全(ARF)は,例えば,心血管系の大手術を受けた患者においては,手術中の腎臓への局所血流の減少および血流回復後の再灌流障害に起因して,術後数時間から数日以内に発症するおそれがあり,発症後30日の死亡率は50%を超える。急性腎不全の予防,重症度の軽減,または治療を行うために,本発明に係るASOを患者に投与することができる。ASOの投与は,例えば,手術の開始前(例えば,2時間前,4時間前,または6時間前)から手術後8時間以内(例えば術後3時間後,4時間後,または5時間後)のいずれかの時点で行うことができる。投与は,単回または複数回のいずれでも行われ得る。投与は,例えば静脈注射により行われ得る。
Prevention and Treatment of Surgery-Related Acute Kidney Insufficiency Acute Kidney Insufficiency (ARF) occurs, for example, in patients undergoing major cardiovascular surgery after reduced local blood flow to the kidney during surgery and recovery of blood flow. Due to reperfusion injury, it may develop within hours to days after surgery, and the mortality rate 30 days after onset exceeds 50%. ASOs according to the invention can be administered to patients to prevent, reduce their severity, or treat acute renal failure. Administration of ASO is, for example, from before the start of surgery (eg, 2 hours, 4 hours, or 6 hours) to within 8 hours after surgery (eg, 3 hours, 4 hours, or 5 hours after surgery). It can be done at any time. Administration can be single or multiple doses. Administration can be, for example, by intravenous injection.
 以下に,実施例を示して本発明を具体的に説明するが,これらにより本発明は何ら制限を受けるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited by these.
例1:p53に対するアンチセンス(ASO)の設計,合成
 p53を標的とした配列をASOについて設計し,合成した。設計にはNCBI Refseqコレクションに登録されているヒト転写物NM_000546.5(配列番号132,図1)を利用した。合成は株式会社ジーンデザイン(GeneDesign)に委託した。
Example 1: Design of antisense (ASO) for p53 , synthesis A sequence targeting p53 was designed for ASO and synthesized. The human transcript NM_000546.5 (SEQ ID NO: 132, FIG. 1) registered in the NCBI Refseq collection was used for the design. The synthesis was outsourced to GeneDesign Co., Ltd.
 以下に合成した各ヌクレオチド配列を示す。大文字はRNAまたは糖修飾核酸,小文字はDNAを示す。「5」は5-メチルシチジンを表す。なお,各ヌクレオチドにおける括弧は,リボースの2’位の修飾を示し,LはLNAを示す。例えば,G(L)はLNA型のグアノシンを表す。また,塩基間のアクサンシルコンフレックス「^」(この記号はキャレット,ハットとも呼ばれる)はヌクレオシド間結合がチオリン酸結合(ホスホロチオエート結合)であることを示す。以下に示されるp53-ASO-01~23は,それぞれ2塩基の5’ウイング領域と3’ウイング領域を有する14塩基長の2-10-2ギャップマーである。なお、これらのASOの5’末端および3’末端にはリン酸基は付加されていない。 The synthesized nucleotide sequences are shown below. Uppercase letters indicate RNA or sugar-modified nucleic acid, and lowercase letters indicate DNA. "5" represents 5-methylcytidine. The parentheses in each nucleotide indicate the modification of the 2'position of ribose, and L indicates LNA. For example, G (L) represents LNA type guanosine. In addition, the acute accent flex "^" between bases (this symbol is also called a caret or hat) indicates that the nucleoside bond is a thiophosphate bond (phosphorothioate bond). P53-ASO-01-23 shown below are 14-base long 2-10-2 gapmers with 2 bases 5'wing region and 3'wing region, respectively. No phosphate group was added to the 5'end and 3'end of these ASOs.
p53-ASO-01(配列番号1)
5’-5(L)G(L)t^t^g^t^t^t^t^c^a^g^G(L)A(L)-3’
p53-ASO-02(配列番号2)
5’-T(L)G(L)a^a^c^c^a^t^t^g^t^t^5(L)A(L)-3’
p53-ASO-03(配列番号3)
5’-G(L)T(L)g^a^a^c^c^a^t^t^g^t^T(L)5(L)-3’
p53-ASO-04(配列番号4)
5’-5(L)A(L)c^g^c^c^c^a^c^g^g^a^T(L)5(L)-3’
p53-ASO-05(配列番号5)
5’-5(L)T(L)c^a^c^g^c^c^c^a^c^g^G(L)A(L)-3’
p53-ASO-06(配列番号6)
5’-5(L)A(L)t^c^t^c^g^a^a^g^c^g^5(L)T(L)-3’
p53-ASO-07(配列番号7)
5’-T(L)G(L)a^g^t^t^c^c^a^a^g^g^5(L)5(L)-3’
p53-ASO-08(配列番号8)
5’-5(L)5(L)t^t^g^a^g^t^t^c^c^a^A(L)G(L)-3’
p53-ASO-09(配列番号9)
5’-G(L)G(L)a^g^c^c^c^a^g^c^a^g^5(L)T(L)-3’
p53-ASO-10(配列番号10)
5’-5(L)G(L)g^a^g^c^c^c^a^g^c^a^G(L)5(L)-3’
p53-ASO-11(配列番号11)
5’-5(L)T(L)c^c^c^a^g^c^c^c^g^a^A(L)5(L)-3’
p53-ASO-12(配列番号12)
5’-5(L)5(L)c^a^g^c^c^c^g^a^a^c^G(L)5(L)-3’
p53-ASO-13(配列番号13)
5’-G(L)T(L)c^a^c^c^g^t^c^g^t^g^G(L)A(L)-3’
p53-ASO-14(配列番号14)
5’-T(L)5(L)c^a^g^g^g^a^a^g^c^g^T(L)G(L)-3’
p53-ASO-15(配列番号15)
5’-G(L)G(L)c^a^g^t^g^a^c^c^c^g^G(L)A(L)-3’
p53-ASO-16(配列番号16)
5’-5(L)5(L)c^a^c^a^g^c^t^g^c^a^5(L)A(L)-3’
p53-ASO-17(配列番号17)
5’-G(L)T(L)c^a^t^g^t^g^c^t^g^t^G(L)A(L)-3’
p53-ASO-18(配列番号18)
5’-A(L)G(L)t^g^t^t^t^c^t^g^t^c^A(L)T(L)-3’
p53-ASO-19(配列番号19)
5’-G(L)G(L)c^a^c^c^a^c^c^a^c^a^5(L)T(L)-3’
p53-ASO-20(配列番号20)
5’-5(L)T(L)c^c^a^t^c^c^a^g^t^g^G(L)T(L)-3’
p53-ASO-21(配列番号21)
5’-5(L)T(L)t^c^a^g^g^t^g^g^c^t^G(L)G(L)-3’
p53-ASO-22(配列番号22)
5’-T(L)T(L)t^a^t^g^g^c^g^g^g^a^G(L)G(L)-3’
p53-ASO-23(配列番号23)
5’-G(L)A(L)g^t^t^t^t^t^t^a^t^g^G(L)5(L)-3’
p53-ASO-01 (SEQ ID NO: 1)
5'-5 (L) G (L) t ^ t ^ g ^ t ^ t ^ t ^ t ^ c ^ a ^ g ^ G (L) A (L) -3'
p53-ASO-02 (SEQ ID NO: 2)
5'-T (L) G (L) a ^ a ^ c ^ c ^ a ^ t ^ t ^ g ^ t ^ t ^ 5 (L) A (L) -3'
p53-ASO-03 (SEQ ID NO: 3)
5'-G (L) T (L) g ^ a ^ a ^ c ^ c ^ a ^ t ^ t ^ g ^ t ^ T (L) 5 (L) -3'
p53-ASO-04 (SEQ ID NO: 4)
5'-5 (L) A (L) c ^ g ^ c ^ c ^ c ^ a ^ c ^ g ^ g ^ a ^ T (L) 5 (L) -3'
p53-ASO-05 (SEQ ID NO: 5)
5'-5 (L) T (L) c ^ a ^ c ^ g ^ c ^ c ^ c ^ a ^ c ^ g ^ G (L) A (L) -3'
p53-ASO-06 (SEQ ID NO: 6)
5'-5 (L) A (L) t ^ c ^ t ^ c ^ g ^ a ^ a ^ g ^ c ^ g ^ 5 (L) T (L) -3'
p53-ASO-07 (SEQ ID NO: 7)
5'-T (L) G (L) a ^ g ^ t ^ t ^ c ^ c ^ a ^ a ^ g ^ g ^ 5 (L) 5 (L) -3'
p53-ASO-08 (SEQ ID NO: 8)
5'-5 (L) 5 (L) t ^ t ^ g ^ a ^ g ^ t ^ t ^ c ^ c ^ a ^ A (L) G (L) -3'
p53-ASO-09 (SEQ ID NO: 9)
5'-G (L) G (L) a ^ g ^ c ^ c ^ c ^ a ^ g ^ c ^ a ^ g ^ 5 (L) T (L) -3'
p53-ASO-10 (SEQ ID NO: 10)
5'-5 (L) G (L) g ^ a ^ g ^ c ^ c ^ c ^ a ^ g ^ c ^ a ^ G (L) 5 (L) -3'
p53-ASO-11 (SEQ ID NO: 11)
5'-5 (L) T (L) c ^ c ^ c ^ a ^ g ^ c ^ c ^ c ^ g ^ a ^ A (L) 5 (L) -3'
p53-ASO-12 (SEQ ID NO: 12)
5'-5 (L) 5 (L) c ^ a ^ g ^ c ^ c ^ c ^ g ^ a ^ a ^ c ^ G (L) 5 (L) -3'
p53-ASO-13 (SEQ ID NO: 13)
5'-G (L) T (L) c ^ a ^ c ^ c ^ g ^ t ^ c ^ g ^ t ^ g ^ G (L) A (L) -3'
p53-ASO-14 (SEQ ID NO: 14)
5'-T (L) 5 (L) c ^ a ^ g ^ g ^ g ^ a ^ a ^ g ^ c ^ g ^ T (L) G (L) -3'
p53-ASO-15 (SEQ ID NO: 15)
5'-G (L) G (L) c ^ a ^ g ^ t ^ g ^ a ^ c ^ c ^ c ^ g ^ G (L) A (L) -3'
p53-ASO-16 (SEQ ID NO: 16)
5'-5 (L) 5 (L) c ^ a ^ c ^ a ^ g ^ c ^ t ^ g ^ c ^ a ^ 5 (L) A (L) -3'
p53-ASO-17 (SEQ ID NO: 17)
5'-G (L) T (L) c ^ a ^ t ^ g ^ t ^ g ^ c ^ t ^ g ^ t ^ G (L) A (L) -3'
p53-ASO-18 (SEQ ID NO: 18)
5'-A (L) G (L) t ^ g ^ t ^ t ^ t ^ c ^ t ^ g ^ t ^ c ^ A (L) T (L) -3'
p53-ASO-19 (SEQ ID NO: 19)
5'-G (L) G (L) c ^ a ^ c ^ c ^ a ^ c ^ c ^ a ^ c ^ a ^ 5 (L) T (L) -3'
p53-ASO-20 (SEQ ID NO: 20)
5'-5 (L) T (L) c ^ c ^ a ^ t ^ c ^ c ^ a ^ g ^ t ^ g ^ G (L) T (L) -3'
p53-ASO-21 (SEQ ID NO: 21)
5'-5 (L) T (L) t ^ c ^ a ^ g ^ g ^ t ^ g ^ g ^ c ^ t ^ G (L) G (L) -3'
p53-ASO-22 (SEQ ID NO: 22)
5'-T (L) T (L) t ^ a ^ t ^ g ^ g ^ c ^ g ^ g ^ g ^ a ^ G (L) G (L) -3'
p53-ASO-23 (SEQ ID NO: 23)
5'-G (L) A (L) g ^ t ^ t ^ t ^ t ^ t ^ t ^ a ^ t ^ g ^ G (L) 5 (L) -3'
例2:p53に対するアンチセンスの評価
 5%CO雰囲気下で37℃において,10%FBS(Cat no.F7524,SIGMA,非働化済),1%抗体含有D-MEM(和光純薬工業株式会社Cat no.041-29775)培地でHeLa細胞を直径10cmのシャーレに播種して,コンフルエンス近くに培養してから,トリプシン処理によってプレートから遊離させた。24ウェルプレート内で,2×10細胞数/500μL/1ウェル,計2ウェルとして(N=2),一晩培養した。次の日には,予めrefolding(85℃,5min後、氷上で急冷)を実施したp53-ASO-01~23をそれぞれ最終濃度125nMになるように,また,非カチオン性脂質担体TransIT-TKO(Mirus社製Cat no.MIR2150)1ウェルあたり2.5μLを上述の無血清培地にそれぞれ添加して,最終的に50μLなるようにピペッティングで良く混ぜたあと,室温で15分間インキュベートし,こちらの混合液を各ウェルにゆっくり添加して,形質移入を実施した。細胞を24または48時間のいずれかにわたり培養した。
Example 2: Evaluation of antisense against p53 D-MEM containing 10% FBS (Cat no.F7524, SIGMA, deactivated) and 1% antibody at 37 ° C. in a 5% CO 2 atmosphere (Wako Pure Chemical Industries, Ltd.) Cat no.041-29775) HeLa cells were seeded in a petri dish with a diameter of 10 cm in medium, cultured near the confluence, and then released from the plate by trypsin treatment. In a 24-well plate, 2 × 10 4 cell numbers / 500 μL / 1 well, total 2 wells (N = 2), were cultured overnight. On the next day, p53-ASO-01 to 23, which had been previously refolded (85 ° C., 5 min, then rapidly cooled on ice), were adjusted to a final concentration of 125 nM, respectively, and the non-cationic lipid carrier TransIT-TKO ( Mirus Cat no. MIR2150) Add 2.5 μL per well to each of the above serum-free mediums, mix well by pipetting to a final 50 μL, and incubate for 15 minutes at room temperature. The mixture was slowly added to each well for transfection. Cells were cultured for either 24 or 48 hours.
 トータルRNAはRNAiso Plus(トータルRNA抽出試薬)(TaKaRa社製 Cat No.9109)あるいはRNA抽出精製キットZymo-Spin IC Columns(ZYMO Research R2062)を用いて調製した。RT-qPCRを用いて,p53 mRNAの発現変化を調べた。まずはReverTra Ace qPCR RTキット(Code No.FSQ-101)を用いた。150~300ngのトータルRNAを鋳型として,キットの推奨条件に従って使用し,逆転写反応を行った。具体的には,150~300ng/8μLのトータルRNAを調製して,65℃,5分間加熱した後,キット内に含まれる5xRT Master Mixを各サンプルに2μL添加して,37℃,15分,50℃,5分,98℃,5分,以降4℃の4ステップで反応を行った。次にTB Green Premix ExTaq II(TaKaRa Code:RR820)を用いてPCR用反応液を以下のようにして調製した。各ウェルに400nMの順方向および逆方向プライマー並びに12.5μLのTB Green Premix EX Tag II,さらに2μLの逆転写反応液を含む最終量25μLに設定した。PCR反応を96穴プレートで,Thermal Cycler Dice Real Time Sysytem(TaKaRa社製)を用いて実施した。ハウスキーピング遺伝子のGAPDHを内因性対照として用いた。また,もう1つ,ハウスキーピング遺伝子のUBCも対照として使用した。3つの遺伝子について,それぞれ以下のプライマー配列を用いた。 Total RNA was prepared using RNAiso Plus (total RNA extraction reagent) (Cat No. 9109 manufactured by TakaRa) or RNA extraction and purification kit Zymo-Spin IC Columns (ZYMO Research R2062). The expression change of p53 mRNA was examined using RT-qPCR. First, the Revertra Ace qPCR RT kit (Code No.FSQ-101) was used. A reverse transcription reaction was performed using 150 to 300 ng of total RNA as a template according to the recommended conditions of the kit. Specifically, 150 to 300 ng / 8 μL of total RNA was prepared, heated at 65 ° C. for 5 minutes, and then 2 μL of 5xRT Master Mix included in the kit was added to each sample at 37 ° C. for 15 minutes. The reaction was carried out in 4 steps of 50 ° C., 5 minutes, 98 ° C., 5 minutes, and then 4 ° C. Next, a reaction solution for PCR was prepared as follows using TB Green Premix ExTaq II (TaKaRa Code: RR820). Each well was set to a final volume of 25 μL containing 400 nM of forward and reverse primers, 12.5 μL of TB Green Premix EX Tag II, and 2 μL of reverse transcriptase. The PCR reaction was carried out on a 96-well plate using Thermal Cycler Dice Real Time Sysytem (manufactured by TakaRa). The housekeeping gene GAPDH was used as an endogenous control. We also used the housekeeping gene UBC as a control. The following primer sequences were used for each of the three genes.
配列番号126
p53 5’プライマー: 5’-CCTCTCCCCAGCCAAAGAAG-3’
配列番号127
p53 3’プライマー: 5’-GCCTCATTCAGCTCTCGGAA-3’
配列番号128
GAPDH 5’プライマー: 5’-CCCACTCCTCCACCTTTGAC-3’
配列番号129
GAPDH 3’プライマー: 5’-ACCCTGTTGCTGTAGCCAAA-3’
配列番号130
UBC 5’プライマー: 5’-ATTTGGGTCGCGGTTCTTG-3’
配列番号131
UBC 3’プライマー: 5’-TGCCTTGACATTCTCGATGGT-3’
SEQ ID NO: 126
p53 5'primer: 5'-CCTCTCCCCAGCCAAAGAAG-3'
SEQ ID NO: 127
p53 3'Primer: 5'-GCCTCATTCAGCTCTCGGAA-3'
SEQ ID NO: 128
GAPDH 5'primer: 5'-CCCACTCCTCCCACCTTTGAC-3'
SEQ ID NO: 129
GAPDH 3'Primer: 5'-ACCCTGTTGCTGTAGCCAAA-3'
SEQ ID NO: 130
UBC 5'Primer: 5'-ATTTGGGTCGCGGTTCTTG-3'
SEQ ID NO: 131
UBC 3'Primer: 5'-TGCCTTGACATTCTCGATGGT-3'
 Thermal Cycler Dice Real Time Sysytem(TaKaRa)でのPCR分析結果をもとに,”Rel.Qty”値(相対量)を算出した。”Rel.Qty”値は,p53遺伝子およびUBC遺伝子のPCR分析結果を,コントロールとして設定したハウスキーピング遺伝子のGAPDHの分析結果で補正した値である(”/GAPDH”)。各サンプルのp53の”/GAPDH”値をmockの”/GAPDH”値で除算し,”/GAPDH(mock=1)”の値を求めた。また各サンプルとmockのp53の”Rel.Qty”値を対応するUBCの”Rel.Qty”値で除算した値”/UBC”を求めた。算出された各サンプルの”/UBC”の値をmockの”/UBC”の値で除算することで”/UBC(mock=1)”の値を求めた。算出された”/GAPDH(mock=1)”の値と,”/UBC(mock=1)”の値の平均値を求め,棒グラフを作成した(図2)。 The "Rel.Qty" value (relative amount) was calculated based on the PCR analysis results of Thermal Cycler Dice Real Time Sysytem (TaKaRa). The "Rel.Qty" value is a value obtained by correcting the PCR analysis results of the p53 gene and the UBC gene with the GAPDH analysis result of the housekeeping gene set as a control ("/ GAPDH"). The "/ GAPDH" value of p53 of each sample was divided by the "/ GAPDH" value of mock to obtain the value of "/ GAPDH (mock = 1)". Further, the value "/ UBC" obtained by dividing the "Rel.Qty" value of p53 of each sample and the mock by the "Rel.Qty" value of the corresponding UBC was obtained. The value of "/ UBC (mock = 1)" was obtained by dividing the calculated value of "/ UBC" of each sample by the value of "/ UBC" of mock. The average value of the calculated "/ GAPDH (mock = 1)" value and the "/ UBC (mock = 1)" value was obtained, and a bar graph was created (FIG. 2).
 その結果,HeLa細胞においてトランスフェクション試薬を使用した場合,ASO-01~23の添加により,p53のmRNAの発現量を低下させ得ることが約半数のサンプルで確認された(図2)。ASO-03~05,09,10,12,15,17,18,21,23の各ASOにつき,50%以下の阻害活性が培養1日後に認められた。 As a result, it was confirmed in about half of the samples that the expression level of p53 mRNA could be reduced by adding ASO-01 to 23 when a transfection reagent was used in HeLa cells (Fig. 2). Inhibitory activity of 50% or less was observed 1 day after culturing for each ASO of ASO-03-05,09,10,12,15,17,18,21,23.
 なお,ASO-15,23については,ホモロジー検索の結果,標的であるp53 mRNA以外に100%ハイブリダイズするヒト遺伝子配列が存在しないことが判明しており,これらのASOではオフターゲット効果が生じる可能性が低い。 As for ASO-15 and 23, as a result of homology search, it was found that there is no human gene sequence that hybridizes 100% other than the target p53 mRNA, and off-target effects may occur in these ASOs. Low sex.
例3:標的部位を前後にずらしたASOの評価(トランスフェクション試薬あり)
 p53-ASO-15の設計を基に,標的mRNAにハイブリダイズするASOの位置を5’側あるいは3’側にずらしたアンチセンス配列(ASO-24,ASO-15-18~ASO-15-28;配列番号24~35)を設計した。鎖長はp53-ASO-15と同じ14merである。なお,以下に示す配列は,左側が3’末端,右側が5’末端となっており,小文字はDNA,大文字はLNA,大文字のCは特にLNA型の5-メチルシチジンを表している(以下同様)。
Example 3: Evaluation of ASO with the target site shifted back and forth (with transfection reagent)
Based on the design of p53-ASO-15, the antisense sequence (ASO-24, ASO-15-18 to ASO-15-28) in which the position of ASO hybridizing to the target mRNA is shifted to the 5'side or the 3'side. SEQ ID NOs: 24-35) were designed. The chain length is 14 mer, which is the same as p53-ASO-15. In the sequence shown below, the left side is the 3'end and the right side is the 5'end, and the lowercase letters represent DNA, the uppercase letters represent LNA, and the uppercase letter C represents LNA-type 5-methylcytidine (hereinafter). Similarly).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 アッセイは実施例2と同様にして行い,終濃度20nMでASOをHeLa細胞にトランスフェクトし,発現抑制効果を評価した。結果を図3に示す。中心から5’側,あるいは3’側に設計位置をずらしたもの(15-18~15-28)は,ASO-15に比べると抑制効果が弱くなっていた。 The assay was performed in the same manner as in Example 2, and ASO was transfected into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect. The results are shown in FIG. Those whose design position was shifted to the 5'side or 3'side from the center (15-18 to 15-28) had a weaker suppression effect than ASO-15.
例4:p53に対する阻害活性が認められたアンチセンスの短鎖化
 p53-ASO-15の設計を基に,標的mRNAにハイブリダイズするASOの位置を5’側あるいは3’側にずらして設計した(ASO-25~ASO-36;配列番号36~47)。鎖長はp53-ASO-15よりも1nt短い13merとした。
Example 4: Based on the design of antisense shortened p53-ASO-15, which has been found to have inhibitory activity on p53, the position of ASO that hybridizes to the target mRNA was designed to be shifted to the 5'side or 3'side. (ASO-25 to ASO-36; SEQ ID NOs: 36 to 47). The chain length was 13 mer, which was 1 nt shorter than p53-ASO-15.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 アッセイは実施例2と同様にして行い,終濃度20nMでASOをHeLa細胞にトランスフェクトし,発現抑制効果を評価した。結果を図4に示す。Day1では14merであるASO-15よりも強い抑制効果を示すものはなかった。25,26が約40%程度の抑制効果を示し,13merシリーズでは最も強い。これら二つのASOはgroin部分が中心にあるASOでASO-15に近い配列のため,ある程度効果を示すのかもしれない。Day2では25,33がASO-15より若干弱い程度の効果を示した。 The assay was performed in the same manner as in Example 2, and ASO was transfected into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect. The results are shown in FIG. On Day 1, none showed a stronger inhibitory effect than ASO-15, which is 14 mer. 25 and 26 show an inhibitory effect of about 40%, which is the strongest in the 13mer series. These two ASOs are ASOs with the green part in the center and have an arrangement close to ASO-15, so they may show some effect. On Day 2, 25 and 33 showed a slightly weaker effect than ASO-15.
例5:p53に対する阻害活性が認められたアンチセンスの長鎖化
 p53-ASO-15の設計を基に,ASOの位置を5’側あるいは3’側にずらして設計した(ASO-37~ASO-49,ASO-15-40;配列番号48~61)。鎖長はp53-ASO-15よりも1nt長い15merとした。
Example 5: Based on the design of antisense elongated p53-ASO-15, which has been found to have inhibitory activity on p53, the position of ASO was shifted to the 5'side or 3'side (ASO-37 to ASO). -49, ASO-15-40; SEQ ID NOs: 48-61). The chain length was 15 mer, which was 1 nt longer than p53-ASO-15.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 アッセイは実施例2と同様にして行い,終濃度20nMでASOをHeLa細胞にトランスフェクトし,発現抑制効果を評価した。結果を図5に示す。鎖長を15merに伸長した15merシリーズを20nMでトランスフェクトした結果,14merであるASO-15よりも明確に強い抑制効果を示すものはなかった。38,37,15-40,43はやはりASO-15に近い配列である。そのため,抑制効果が強いのかもしれない。今回,QPI1002も20nMでトランスフェクトしたが,ASO-15と同程度,あるいは若干弱い抑制効果を示した。 The assay was performed in the same manner as in Example 2, and ASO was transfected into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect. The results are shown in FIG. As a result of transfecting the 15 mer series having a chain length extended to 15 mer with 20 nM, none showed a clearly stronger inhibitory effect than ASO-15, which is 14 mer. 38, 37, 15-40, 43 are also sequences close to ASO-15. Therefore, it may have a strong inhibitory effect. This time, QPI1002 was also transfected with 20 nM, but showed the same or slightly weaker inhibitory effect as ASO-15.
例6:p53に対する阻害活性が認められたアンチセンスのさらなる長鎖化
 p53-ASO-15の設計を基に,ASOの位置を5’側あるいは3’側にずらして設計した(ASO-50~ASO-63,ASO-15-10;配列番号62~76)。鎖長はp53-ASO-15よりも2nt長い16merである。
Example 6: Based on the design of further lengthened p53-ASO-15 of antisense, which was found to have inhibitory activity on p53, the position of ASO was shifted to the 5'side or 3'side (ASO-50 ~). ASO-63, ASO-15-10; SEQ ID NOs: 62-76). The chain length is 16 mer, which is 2 nt longer than p53-ASO-15.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 アッセイは実施例2と同様にして行い,終濃度20nMでASOをHeLa細胞にトランスフェクトし,発現抑制効果を評価した。結果を図6に示す。鎖長を16merに伸長した16merシリーズを20nMでトランスフェクトした結果,14merであるASO-15よりも明確に強い抑制効果を示すものはなかった。 The assay was performed in the same manner as in Example 2, and ASO was transfected into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect. The results are shown in FIG. As a result of transfecting the 16mer series with the chain length extended to 16mer at 20 nM, none showed a clearly stronger inhibitory effect than ASO-15, which is 14 mer.
例7:p53に対する阻害活性が認められたアンチセンスのさらなる長鎖化
 p53-ASO-15の設計を基に,ASOの位置を5’側あるいは3’側にずらして設計した(ASO-64~ASO-78,ASO-15-41;配列番号77~92)。鎖長はp53-ASO-15よりも3nt長い17merである(以後17merシリーズと呼ぶ)。
Example 7: Based on the design of p53-ASO-15, which is a further lengthened antisense that has been found to have inhibitory activity on p53, the position of ASO was shifted to the 5'side or 3'side (ASO-64-). ASO-78, ASO-15-41; SEQ ID NOs: 77-92). The chain length is 17 mer, which is 3 nt longer than p53-ASO-15 (hereinafter referred to as the 17 mer series).
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 アッセイは実施例2と同様にして行い,17merシリーズを終濃度20nMでASOをHeLa細胞にトランスフェクトし,発現抑制効果を評価した。結果を図7に示す。鎖長を17merに伸長した17merシリーズを20nMでトランスフェクトした結果,14merであるASO-15よりも明確に強い抑制効果を示すものはなかった。15-41がDay1,2共にASO-15と同程度であった。また,ASO-70はDay1でのみASO-15より若干弱い程度の効果を示した。やはりgroin部分を中心としたASOの効果が高い。 The assay was performed in the same manner as in Example 2, and the 17mer series was transfected with ASO into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect. The results are shown in FIG. As a result of transfecting the 17mer series with the chain length extended to 17mer at 20 nM, none showed a clearly stronger inhibitory effect than ASO-15, which is 14 mer. 15-41 was about the same as ASO-15 for both Days 1 and 2. In addition, ASO-70 showed a slightly weaker effect than ASO-15 only on Day 1. After all, the effect of ASO centering on the green part is high.
例8:p53に対する阻害活性が認められたアンチセンスのさらなる長鎖化
 p53-ASO-15の設計を基に,ASOの位置を5’側あるいは3’側にずらして設計した(ASO-79~ASO-94,ASO-(95),ASO-15-11;配列番号93~109)。鎖長はp53-ASO-15よりも4nt長い18merである(以後18merシリーズ)。
Example 8: Based on the design of further lengthened p53-ASO-15 of antisense, which was found to have inhibitory activity on p53, the position of ASO was shifted to the 5'side or 3'side (ASO-79-). ASO-94, ASO- (95), ASO-15-11; SEQ ID NOs: 93-109). The chain length is 18 mer, which is 4 nt longer than p53-ASO-15 (hereinafter 18 mer series).
Figure JPOXMLDOC01-appb-T000007
(配列番号95~111)
Figure JPOXMLDOC01-appb-T000007
(SEQ ID NO: 95-111)
 アッセイは実施例2と同様にして行い,18merシリーズを終濃度20nMでASOをHeLa細胞にトランスフェクトし,発現抑制効果を評価した。結果を図8に示す。鎖長を18merに伸長した18merシリーズを20nMでトランスフェクトした結果,14merであるASO-15よりも明確に強い抑制効果を示すものはなかった。 The assay was performed in the same manner as in Example 2, and the 18mer series was transfected with ASO into HeLa cells at a final concentration of 20 nM to evaluate the expression inhibitory effect. The results are shown in FIG. As a result of transfecting the 18mer series with the chain length extended to 18mer at 20 nM, none showed a clearly stronger inhibitory effect than ASO-15, which is 14 mer.
例9:ウイング領域の改変の影響
 p53-ASO-15の設計を基に,両端に位置するLNAの数を変更し,発現抑制効果に与える影響を調べた(ASO-15-29~ASO-15-33;配列番号110~114)。また,両末端のLNAを2’-O-メトキシエチル(MOE)に変更したASOも同時に抑制効果を評価した。
Example 9: Effect of modification of wing region Based on the design of p53-ASO-15, the number of LNAs located at both ends was changed and the effect on the expression suppression effect was investigated (ASO-15-29 to ASO-15). -33; SEQ ID NOs: 110-114). In addition, ASO in which LNAs at both ends were changed to 2'-O-methoxyethyl (MOE) was also evaluated for its inhibitory effect at the same time.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 アッセイは実施例2と同様にして行った。結果を図9に示す。LNA(大文字)の位置をずらした,あるいは増やした15-29~15-32はASO-15と同程度か,若干弱い。2’-MOE修飾(大文字斜体)を施した15-33は抑制効果をほとんど示さなかった。 The assay was performed in the same manner as in Example 2. The results are shown in FIG. 15-29 to 15-32 with the LNA (capital letters) shifted or increased are about the same as or slightly weaker than the ASO-15. 15-33 with 2'-MOE modification (capital italics) showed almost no inhibitory effect.
例10:他の改変の影響
 p53-ASO-15を中心に鎖長を5’側,3’側あるいは両端に2ntずつ延長した。また,塩基間をすべてPS結合化した15-16,ギャップ領域を狭めた15-17も同時に評価した(ASO-15-07~ASO-15-17;配列番号115~125)。
Example 10: Effect of other modifications The chain length was extended by 2 nt to the 5'side, 3'side, or both ends centering on p53-ASO-15. In addition, 15-16 in which all the bases were PS-bonded and 15-17 in which the gap region was narrowed were also evaluated at the same time (ASO-15-07 to ASO-15-17; SEQ ID NOs: 115 to 125).
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 アッセイは実施例2と同様にして行い,終濃度100nMでHeLa細胞にトランスフェクトし,発現抑制効果を評価した。結果を図10に示す。上段のバーの黒色方向に塩基を伸ばしている。ASO-15と同程度の効果を示すのは3’側に伸ばしたときのみ(ASO-15のコア配列が5’末端に存在しているもの)であった。LNA間も含めすべての塩基間をPS結合にした15-16はオリジナルよりも強い抑制効果を示した。LNA数を増やした15-17はASO-15よりも抑制効果が若干弱かった。p53-ASO-15よりも明確に強い抑制効果を示すのは塩基間をすべてPS結合にしたp53-ASO-15-16であった。p53-ASO-15-16(配列番号124)の構造は,5’-G(L)^G(L)^c^a^g^t^g^a^c^c^c^g^G(L)^A(L)-3’と表記されうる。 The assay was performed in the same manner as in Example 2, and HeLa cells were transfected with a final concentration of 100 nM to evaluate the expression inhibitory effect. The results are shown in FIG. The base is extended in the black direction of the upper bar. The same effect as ASO-15 was exhibited only when it was extended to the 3'side (the core sequence of ASO-15 was present at the 5'end). 15-16, which had PS bonds between all bases including those between LNAs, showed a stronger inhibitory effect than the original. 15-17, which increased the number of LNAs, had a slightly weaker inhibitory effect than ASO-15. It was p53-ASO-15-16 with PS bonds between the bases that showed a clearly stronger inhibitory effect than p53-ASO-15. The structure of p53-ASO-15-16 (SEQ ID NO: 124) is 5'-G (L) ^ G (L) ^ c ^ a ^ g ^ t ^ g ^ a ^ c ^ c ^ c ^ g ^ G It can be written as (L) ^ A (L) -3'.
例11:コレステロール付加
 p53-ASO-15-16の3’末端にコレステロールを付加したp53-ASO-15-16-32を終濃度20nMでHeLa細胞にトランスフェクトし,実施例2と同様なアッセイを行った。結果を図11に示す。3’末端にコレステロールを付加したp53ASO-15-16-32はMock,あるいはネガティブコントロールであるNTS1と比べて,顕著にp53mRNAレベルを減少させていた。15-16と比較すると,トランスフェクション後1日目では若干抑制効果が弱まったが,2日目では同等の効果を有していた。この結果からリガンドとしてコレステロールを付加しても抑制効果が維持されることが示された。
Example 11: P53-ASO-15-16-32 with cholesterol added to the 3'end of cholesterol- added p53-ASO-15-16 was transfected into HeLa cells at a final concentration of 20 nM, and the same assay as in Example 2 was performed. went. The results are shown in FIG. P53ASO-15-16-32 with cholesterol added to the 3'end markedly reduced p53 mRNA levels as compared to Mock or the negative control NTS1. Compared with 15-16, the inhibitory effect was slightly weakened on the first day after transfection, but had the same effect on the second day. From this result, it was shown that the inhibitory effect was maintained even when cholesterol was added as a ligand.
例12:p53誘導性レポーター遺伝子アッセイ
 p53応答エレメントをもつ,レポータープラスミドを用いたルシフェラーゼアッセイにより,p53タンパク質量を測定した。p53-ASO-15,およびQuark社のsiRNAであるQP1002の発現抑制効果をルシフェラーゼアッセイによって評価した。1日後の結果を図12に示す。ASOは1.2nMから効果を示し,100nMまで濃度依存的に発現を抑制した。QPI1002(siRNA)は濃度依存的に発現を抑制し,3.7nMから上の濃度では約80%の効果で頭打ちになっていた。
Example 12: p53-induced reporter gene assay The amount of p53 protein was measured by a luciferase assay using a reporter plasmid with a p53 response element. The expression-suppressing effect of p53-ASO-15 and Quark's siRNA QP1002 was evaluated by a luciferase assay. The result after one day is shown in FIG. ASO showed an effect from 1.2 nM and suppressed its expression in a concentration-dependent manner up to 100 nM. The expression of QPI1002 (siRNA) was suppressed in a concentration-dependent manner, and the effect leveled off at concentrations above 3.7 nM with an effect of about 80%.
 2日後の結果を図13に示す。Day2ではASO-15は3.7nMで約50%の抑制効果を示した。QPI1002は3.7nMで約70%の抑制効果を示し,抑制効果はほぼ頭打ちの状態であった。1.2nMより低濃度では両者に差はほとんどなかった。IC50はASOでは4.0nM、QPI1002では2.6nMであった。 The result after 2 days is shown in FIG. On Day 2, ASO-15 showed an inhibitory effect of about 50% at 3.7 nM. QPI1002 showed an inhibitory effect of about 70% at 3.7 nM, and the inhibitory effect was almost leveled off. At concentrations lower than 1.2 nM, there was little difference between the two. The IC 50 was 4.0 nM for ASO and 2.6 nM for QPI1002.
例13:qPCRによる濃度依存性の評価
 p53ASO-15あるいはQPI-1002を0.046~100nMの濃度でHCT116細胞にTFし,実施例2と同様のアッセイを行うことで発現抑制効果を測定した。結果を図14に示す。TF後24hrではp53-ASO-15は0.046~11nMでは抑制効果をほとんど示さず,33nMで24%,100nMで49%の抑制効果を示した。同条件下でのQPI-1002の抑制効果は0.046~11nMでは抑制効果をほとんど示さず,33nMで23%,100nMで59%の抑制効果を示した。TF後48hrではp53-ASO-15は0.046~3.7nMでは抑制効果をほとんど示さず,11nMで10%,33nMで22%,100nMで52%の抑制効果を示した。同条件下でのQPI-1002の抑制効果は0.046~3.7nMでは抑制効果をほとんど示さず,10nMでは15%,33nMで31%,100nMで79%の抑制効果を示した。なお、Δp53と表記したサンプルはp53遺伝子をノックアウトしたHCT116細胞から抽出したRNAを用いている。
Example 13: Evaluation of concentration dependence by qPCR p53ASO-15 or QPI-1002 was TF to HCT116 cells at a concentration of 0.046 to 100 nM, and the expression inhibitory effect was measured by performing the same assay as in Example 2. The results are shown in FIG. At 24 hours after TF, p53-ASO-15 showed almost no inhibitory effect at 0.046 to 11 nM, and showed an inhibitory effect of 24% at 33 nM and 49% at 100 nM. The inhibitory effect of QPI-1002 under the same conditions showed almost no inhibitory effect at 0.046 to 11 nM, and showed an inhibitory effect of 23% at 33 nM and 59% at 100 nM. At 48 hours after TF, p53-ASO-15 showed almost no inhibitory effect at 0.046 to 3.7 nM, and showed an inhibitory effect of 10% at 11 nM, 22% at 33 nM, and 52% at 100 nM. The inhibitory effect of QPI-1002 under the same conditions showed almost no inhibitory effect at 0.046 to 3.7 nM, 15% at 10 nM, 31% at 33 nM, and 79% at 100 nM. The sample described as Δp53 uses RNA extracted from HCT116 cells in which the p53 gene is knocked out.
例14:ウエスタンブロッティングによる評価
 HCT116細胞にASOあるいはQPI-1002を1~100nMの濃度でトランスフェクト(TF)し,その後48時間で細胞を回収した。回収した細胞は二群に分け,一方からは全細胞ライゼートを調製し,もう一方からはトータルRNAを調製した(図15)。調製した全細胞ライゼートを用いてウエスタンブロッティングを行いp53タンパク質レベルを測定した。また、調製したトータルRNAを用いてリアルタイムPCRを行いp53mRNAレベルを測定した。結果を図16に示す。p53タンパク質レベルはmRNAレベルと相関しており,ASO-15,15-16を用いた場合100nMではp53のバンドが検出されないほどに減弱していた。対して,QPI-1002は100nMの濃度でもバンド強度は弱くなるものの検出は可能なレベルであった。
Example 14: Evaluation by Western blotting HCT116 cells were transfected (TF) with ASO or QPI-1002 at a concentration of 1 to 100 nM, and the cells were then recovered 48 hours later. The collected cells were divided into two groups, one of which prepared a whole cell lysate and the other of which prepared total RNA (Fig. 15). Western blotting was performed using the prepared whole cell lysate to measure p53 protein levels. In addition, real-time PCR was performed using the prepared total RNA to measure the p53 mRNA level. The results are shown in FIG. The p53 protein level was correlated with the mRNA level and was so attenuated that the p53 band was undetectable at 100 nM when ASO-15, 15-16 was used. On the other hand, QPI-1002 was at a level that could be detected even at a concentration of 100 nM, although the band intensity was weakened.
 本明細書には,本発明の好ましい実施態様を示してあるが,そのような実施態様が単に例示の目的で提供されていることは,当業者には明らかであり,当業者であれば,本発明から逸脱することなく,様々な変形,変更,置換を加えることが可能であろう。本明細書に記載されている発明の様々な代替的実施形態が,本発明を実施する際に使用されうることが理解されるべきである。また,本明細書中において参照している特許および特許出願書類を含む,全ての刊行物に記載の内容は,その引用によって,本明細書中に明記された内容と同様に取り込まれていると解釈すべきである。 Although preferred embodiments of the present invention are shown herein, it will be apparent to those skilled in the art that such embodiments are provided solely for purposes of illustration, and those skilled in the art will appreciate it. It will be possible to make various modifications, modifications and substitutions without departing from the present invention. It should be understood that various alternative embodiments of the invention described herein can be used in practicing the invention. In addition, the content described in all publications, including the patents and patent application documents referred to in this specification, is incorporated by its citation in the same manner as the content specified in this specification. Should be interpreted.
 本発明者らは,p53遺伝子の転写産物に対して作用するアンチセンスオリゴヌクレオチド(ASO)を同定した。これらの比較的短いオリゴヌクレオチドを用いることで,p53 mRNAの量を低下させ,タンパク質の発現を抑制することができる。これらのASOは急性腎不全や脱毛症などの治療または予防に有用となりうる。

 
We have identified antisense oligonucleotides (ASOs) that act on transcripts of the p53 gene. By using these relatively short oligonucleotides, the amount of p53 mRNA can be reduced and protein expression can be suppressed. These ASOs may be useful in the treatment or prevention of acute renal failure, alopecia and the like.

Claims (32)

  1.  細胞においてp53遺伝子の発現を阻害するための医薬組成物であって,p53遺伝子をコードするmRNAの少なくとも一部に実質的に相補的な相補性領域を含むオリゴヌクレオチドを有効成分として含有する,医薬組成物。 A pharmaceutical composition for inhibiting the expression of the p53 gene in cells, which comprises, as an active ingredient, an oligonucleotide containing a complementary region substantially complementary to at least a part of mRNA encoding the p53 gene. Composition.
  2.  前記p53遺伝子がヒトp53遺伝子である,請求項1記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the p53 gene is a human p53 gene.
  3.  前記p53遺伝子が配列番号132の配列を有する,請求項1または2記載の医薬組成物。 The pharmaceutical composition according to claim 1 or 2, wherein the p53 gene has the sequence of SEQ ID NO: 132.
  4.  前記オリゴヌクレオチドが本質的に一本鎖の分子である,請求項1~3のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 3, wherein the oligonucleotide is essentially a single-strand molecule.
  5.  前記オリゴヌクレオチドがアンチセンスオリゴヌクレオチド(ASO)である,請求項1~4のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 4, wherein the oligonucleotide is an antisense oligonucleotide (ASO).
  6.  前記アンチセンスオリゴヌクレオチド(ASO)がギャップマーである,請求項5記載の医薬組成物。 The pharmaceutical composition according to claim 5, wherein the antisense oligonucleotide (ASO) is a gapmer.
  7.  前記オリゴヌクレオチドが12~18塩基長である,請求項1~6のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 6, wherein the oligonucleotide has a length of 12 to 18 bases.
  8.  前記オリゴヌクレオチドが14塩基長である,請求項7記載の医薬組成物。 The pharmaceutical composition according to claim 7, wherein the oligonucleotide has a length of 14 bases.
  9.  前記オリゴヌクレオチドが2-10-2ギャップマーである,請求項8記載の医薬組成物。 The pharmaceutical composition according to claim 8, wherein the oligonucleotide is a 2-10-2 gapmer.
  10.  前記オリゴヌクレオチド中の塩基が前記p53遺伝子に対して80%以上相補的である,請求項1~9のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 9, wherein the base in the oligonucleotide is 80% or more complementary to the p53 gene.
  11.  前記オリゴヌクレオチド中の塩基が前記p53遺伝子に対して100%相補的である,請求項1~10のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 10, wherein the base in the oligonucleotide is 100% complementary to the p53 gene.
  12.  前記オリゴヌクレオチドが修飾ヌクレオシドおよび/または修飾ヌクレオシド間結合を含む,請求項1~11のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 11, wherein the oligonucleotide contains a modified nucleoside and / or a bond between modified nucleosides.
  13.  修飾ヌクレオシドが架橋型核酸である,請求項12記載の医薬組成物。 The pharmaceutical composition according to claim 12, wherein the modified nucleoside is a bridged nucleic acid.
  14.  架橋型核酸がLNAである,請求項13記載の医薬組成物。 The pharmaceutical composition according to claim 13, wherein the cross-linked nucleic acid is LNA.
  15.  修飾ヌクレオシド間結合がホスホロチオエート結合である,請求項12~14のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 12 to 14, wherein the modified nucleoside bond is a phosphorothioate bond.
  16.  すべての修飾ヌクレオシド間結合がホスホロチオエート結合である,請求項12~15のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 12 to 15, wherein all the modified nucleoside bonds are phosphorothioate bonds.
  17.  すべてのヌクレオシド間結合がホスホロチオエート結合である,請求項1~16のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 16, wherein all nucleoside bonds are phosphorothioate bonds.
  18.  修飾ヌクレオシド間結合がキラル制御されている,請求項12~17のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 12 to 17, wherein the binding between modified nucleosides is chirally controlled.
  19.  前記オリゴヌクレオチドの末端水酸基の一方または両方が修飾されている,請求項1~18のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 18, wherein one or both of the terminal hydroxyl groups of the oligonucleotide is modified.
  20.  前記オリゴヌクレオチドの末端水酸基の一方または両方にリン酸基が付加されている,請求項1~19のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 19, wherein a phosphate group is added to one or both of the terminal hydroxyl groups of the oligonucleotide.
  21.  前記オリゴヌクレオチドの末端水酸基の一方または両方が修飾されていない,請求項1~18のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 18, wherein one or both of the terminal hydroxyl groups of the oligonucleotide is not modified.
  22.  前記オリゴヌクレオチドの末端水酸基の一方または両方にリン酸基が付加されていない,請求項1~18のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 18, wherein a phosphate group is not added to one or both of the terminal hydroxyl groups of the oligonucleotide.
  23.  前記オリゴヌクレオチドが配列番号1から配列番号125のいずれか1つの配列を含むオリゴヌクレオチドである,請求項1~22のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 22, wherein the oligonucleotide is an oligonucleotide containing any one sequence of SEQ ID NO: 1 to SEQ ID NO: 125.
  24.  前記オリゴヌクレオチドが配列番号1から配列番号125のいずれか1つの配列からなるオリゴヌクレオチドである,請求項1~22のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 22, wherein the oligonucleotide is an oligonucleotide consisting of any one sequence of SEQ ID NO: 1 to SEQ ID NO: 125.
  25.  前記オリゴヌクレオチドが配列番号1から配列番号125のいずれか1つの配列に対して少なくとも80%,85%,90%,95%,96%,97%,98%,99%,または100%の同一性を有する配列からなるオリゴヌクレオチドである,請求項1~22のいずれか一項記載の医薬組成物。 The oligonucleotide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to any one of SEQ ID NOs: 1 to 125. The pharmaceutical composition according to any one of claims 1 to 22, which is an oligonucleotide consisting of a sequence having sex.
  26.  対象における疾患または症状の治療または予防に用いるための医薬組成物である,請求項1~25のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 25, which is a pharmaceutical composition for use in treating or preventing a disease or symptom in a subject.
  27.  前記疾患または症状が,p53遺伝子の発現に関連するものである,請求項26記載の医薬組成物。 The pharmaceutical composition according to claim 26, wherein the disease or symptom is related to the expression of the p53 gene.
  28.  前記疾患または症状が,虚血-再灌流障害,難聴,聴覚障害,バランス障害,失聴,化学療法誘発性脱毛症,放射線療法誘発性脱毛症,急性腎不全,急性腎障害,慢性腎臓病(CKD),抗癌剤療法に関連する副作用,腎移植患者における遅発性移植機能(DGF),脊髄損傷,脳損傷,発作,脳卒中,神経変性疾患,パーキンソン病,アルツハイマー病,腫瘍,熱傷,創傷,高熱症,低酸素,虚血,臓器移植,骨髄移植(BMT),心筋梗塞/心臓発作,心臓毒性,p53陽性の癌,および急性肝不全から成る群より選択される,請求項26または27記載の医薬組成物。 The diseases or symptoms are ischemia-reperfusion disorder, hearing loss, hearing disorder, balance disorder, hearing loss, chemotherapy-induced alopecia, radiation therapy-induced alopecia, acute renal failure, acute renal disorder, chronic kidney disease ( CKD), side effects associated with anticancer drug therapy, delayed transplant function (DGF) in patients with renal transplantation, spinal cord injury, brain injury, stroke, stroke, neurodegenerative disease, Parkinson's disease, Alzheimer's disease, tumor, burn, wound, high fever 26 or 27, which is selected from the group consisting of disease, hypoxia, ischemia, organ transplantation, bone marrow transplantation (BMT), myocardial infarction / heart attack, cardiotoxicity, p53-positive cancer, and acute liver failure. Pharmaceutical composition.
  29.  薬学的に許容される賦形剤,緩衝剤,および/または添加物を含有する,請求項1~28のいずれか一項記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 28, which contains a pharmaceutically acceptable excipient, buffer, and / or additive.
  30.  対象における疾患または症状の治療または予防に用いるための医薬組成物であって,p53遺伝子をコードするmRNAの少なくとも一部に実質的に相補的な相補性領域を含む,本質的に一本鎖のオリゴヌクレオチドを有効成分として含有し,該オリゴヌクレオチドが14塩基長のギャップマーであり,該ギャップマーの5’側および3’側のウイング領域がそれぞれ2塩基のLNAからなり,該ギャップマーの全てのヌクレオシド間結合がホスホロチオエート結合である,医薬組成物。 A pharmaceutical composition for use in the treatment or prevention of a disease or condition in a subject, which is essentially single-stranded, comprising a complementary region that is substantially complementary to at least a portion of the mRNA encoding the p53 gene. It contains an oligonucleotide as an active ingredient, the oligonucleotide is a gapmer having a length of 14 bases, and the wing regions on the 5'side and 3'side of the gapmer each consist of 2 bases of LNA, and all of the gapmers. A pharmaceutical composition in which the internucleoside bond of the nucleotide is a phosphorothioate bond.
  31.  対象における疾患または症状の治療または予防に用いるための医薬組成物であって,p53-ASO-15,p53-ASO-15-11,p53-ASO-15-12,およびp53-ASO-15-16から成る群より選択されるオリゴヌクレオチドを有効成分として含有する,医薬組成物。 A pharmaceutical composition for use in the treatment or prevention of a disease or condition in a subject, p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO-15-16. A pharmaceutical composition containing an oligonucleotide selected from the group consisting of the above as an active ingredient.
  32.  p53-ASO-15,p53-ASO-15-11,p53-ASO-15-12,およびp53-ASO-15-16から成る群より選択されるオリゴヌクレオチド,またはその塩。

     
    An oligonucleotide selected from the group consisting of p53-ASO-15, p53-ASO-15-11, p53-ASO-15-12, and p53-ASO-15-16, or a salt thereof.

PCT/JP2020/025676 2019-07-04 2020-06-30 Nucleic acid drug and use thereof WO2021002359A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021500250A JP6934695B2 (en) 2019-07-04 2020-06-30 Nucleic acid medicine and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124901 2019-07-04
JP2019124901 2019-07-04

Publications (1)

Publication Number Publication Date
WO2021002359A1 true WO2021002359A1 (en) 2021-01-07

Family

ID=74101332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025676 WO2021002359A1 (en) 2019-07-04 2020-06-30 Nucleic acid drug and use thereof

Country Status (2)

Country Link
JP (1) JP6934695B2 (en)
WO (1) WO2021002359A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157730A1 (en) * 2020-02-06 2021-08-12 株式会社Veritas In Silico Nucleic acid drug and use thereof

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
CACERES G. ET AL.: "TP53 suppression promotes erythropoiesis in del(5q) MDS, suggesting a targeted therapeutic strategy in lenalidomide-resistant patients.", PNAS, vol. 110, no. 40, 2013, pages 16127 - 16132, XP055783288 *
CERALINE J. ET AL.: "INACTIVATION OF p53 IN NORMAL HUMAN CELLS INCREASES G2/ M ARREST AND SENSITIVITY TO DNA-DAMAGING AGENTS.", INT. J. CANCER, vol. 75, 1998, pages 432 - 438, XP055783295 *
CORTES J. ET AL.: "Phase 2 Randomized Study of p53 Antisense Oligonucleotide (Cenersen) Plus Idarubicin With or Without Cytarabine in Refractory and Relapsed Acute Myeloid Leukemia.", CANCER, vol. 118, 2012, pages 418 - 427, XP055783290 *
DMITRIEVA N. ET AL.: "p53 Protects renal inner medullary cells from hypertonic stress by restricting DNA replication.", AM J PHYSIOL RENAL PHYSIOL, vol. 281, 2001, pages F522 - F530, XP055783296 *
OKIBA SATOSHI ET AL: "Design of antisense oligonucleotide", FOLIA PHARMACOLOGICA JAPONICA, vol. 148, 2016, pages 100 - 104 *
PETTY RD. ET AL.: "Expression of the p53 tumour suppressor gene product is a determinant of chemosensitivity.", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 199, no. 1, 1994, pages 264 - 270, XP001016198 *
TAKEBA Y. ET AL.: "Irinotecan Activates p53 With Its Active Metabolite, Resulting in Human Hepatocellular Carcinoma Apoptosis.", J PHARMACOL SCI, vol. 104, 2007, pages 232 - 242, XP055783292 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021157730A1 (en) * 2020-02-06 2021-08-12 株式会社Veritas In Silico Nucleic acid drug and use thereof

Also Published As

Publication number Publication date
JPWO2021002359A1 (en) 2021-09-13
JP6934695B2 (en) 2021-09-15

Similar Documents

Publication Publication Date Title
JP7174384B2 (en) Chimeric double-stranded nucleic acid
WO2020196662A1 (en) Double-stranded nucleic acid complex and use thereof
JP7554488B2 (en) Blood-brain barrier penetrating heteroduplex nucleic acid
JP7129702B2 (en) Double-stranded nucleic acid complex with overhangs
JP6440170B2 (en) Chimeric single-stranded antisense polynucleotide and double-stranded antisense agent
JP4579911B2 (en) Regulation of survivin expression
EP4206213A1 (en) Compounds and methods for modulation of smn2
JP7333079B2 (en) Nucleic acids with reduced toxicity
KR20210142699A (en) Compounds, methods and pharmaceutical compositions for modulating expression of DUX4
KR20220069103A (en) Chemical modification of small interfering RNAs with minimal fluorine content
WO2021157730A1 (en) Nucleic acid drug and use thereof
JP2024514880A (en) Compositions and methods for modulating PNPLA3 expression
WO2021187392A1 (en) Heteronucleic acid containing morpholino nucleic acid
JP6934695B2 (en) Nucleic acid medicine and its use
CN117858949A (en) RNAi agents for inhibiting expression of mucin 5AC (MUC 5 AC), compositions thereof, and methods of use thereof
JPWO2019044974A1 (en) Small Guide Antisense Nucleic Acids and Their Use
WO2023127848A1 (en) Nucleic acid drug targeting ebv-related disorders
WO2021070959A1 (en) Modified heteronucleic acid
WO2023105898A1 (en) Antisense oligonucleotide complex
WO2023042876A1 (en) Heteronucleic acid including 2'-modified nucleoside
WO2023022229A1 (en) Modified heteronucleic acid containing morpholino nucleic acid
WO2022250050A1 (en) Heteronucleic acid containing scpbna or amna
WO2023080225A1 (en) Pharmaceutical composition for treatment of spinocerebellar ataxia
WO2020262555A1 (en) Side effect reducing agent for nucleic acid drug, medicinal composition comprising side effect reducing agent for nucleic acid drug, and method for reducing side effect inducing properties of nucleic acid drug
WO2023220351A1 (en) Compositions and methods for inhibiting snca expression

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021500250

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835586

Country of ref document: EP

Kind code of ref document: A1