WO2021002252A1 - Control device for variable valve timing mechanism and control method of same - Google Patents

Control device for variable valve timing mechanism and control method of same Download PDF

Info

Publication number
WO2021002252A1
WO2021002252A1 PCT/JP2020/024732 JP2020024732W WO2021002252A1 WO 2021002252 A1 WO2021002252 A1 WO 2021002252A1 JP 2020024732 W JP2020024732 W JP 2020024732W WO 2021002252 A1 WO2021002252 A1 WO 2021002252A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
rotation speed
motor rotation
angle
angle signal
Prior art date
Application number
PCT/JP2020/024732
Other languages
French (fr)
Japanese (ja)
Inventor
雅貴 小須田
宣彦 松尾
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2021002252A1 publication Critical patent/WO2021002252A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a control device for a variable valve timing mechanism that estimates a VTC (Variable valve Timing Control) angle from a motor drive current, and a control method thereof.
  • VTC Variariable valve Timing Control
  • Patent Document 1 describes an electric valve timing adjusting device that adjusts the valve timing of an engine by using the rotational torque of a motor.
  • the phase of the camshaft with respect to the actual crankshaft (camshaft phase) is calculated based on the camshaft angle, crankshaft angle, lubricating oil temperature, cooling water temperature, and motor shaft rotation angle.
  • the target camshaft phase is calculated according to the engine operating conditions.
  • the rotation angle of the motor shaft is detected by using the motor rotation angle sensor, and the phase angle of the variable valve timing (VTC) mechanism is interpolated by the measured value.
  • VTC variable valve timing
  • the present invention has been made in view of the above circumstances, and an object of the present invention is a control device for a variable valve timing mechanism capable of suppressing a deviation between an actual angle and an estimated angle without using a motor rotation angle sensor. And its control method.
  • the control device for the variable valve timing mechanism and the control method thereof is a variable valve timing mechanism that detects the phase angle of the cam based on the cam angle signal and controls the phase angle of the cam using an electric motor.
  • the cam angle signal is detected
  • the phase angle of the cam when the previous cam angle signal is detected is updated, and the motor is driven during the detection of the phase angle of the cam.
  • the motor rotation speed (rotation speed of the electric motor) is calculated based on the current (driving current of the electric motor) and the engine operating state
  • the motor rotation angle (rotation angle of the electric motor) is calculated based on the motor rotation speed.
  • the phase angle of the cam is estimated, the phase angle of the cam is interpolated from the motor rotation angle, and the estimated value of the motor rotation speed calculated based on the motor drive current and the engine operating state is used as the cam angle. It is characterized by changing to a calculated value based on a signal and an engine speed.
  • the motor rotation angle sensor can be obtained by changing the estimated value of the motor rotation speed calculated based on the motor drive current and the engine operating state to a calculated value based on the cam angle signal and the engine rotation speed. It is possible to suppress the deviation between the actual angle and the estimated angle without using it. As a result, it is possible to reduce the application of an inaccurate operating voltage to the VTC mechanism. As a result, the convergence of the VTC mechanism with respect to the target angle can be improved, and deterioration of vehicle performance can be suppressed.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 3 is a block diagram which extracts and shows the main part related to the control of the variable valve timing mechanism in the control device shown in FIG.
  • It is a schematic diagram for demonstrating the calculation of the motor rotation speed using a crank angle signal and a cam angle signal.
  • FIG. 1 is a system configuration diagram of an internal combustion engine to which the control device of the variable valve timing mechanism according to the embodiment of the present invention is applied.
  • the internal combustion engine (engine) 100 is mounted on a vehicle and used as a power source.
  • the internal combustion engine 100 may be of various types such as a V type or a horizontally opposed type in addition to the series type shown in the figure.
  • the intake duct 102 of the internal combustion engine 100 is provided with an intake air amount sensor 103 that detects the intake air flow rate QA of the internal combustion engine 100.
  • the intake valve 105 opens and closes the intake port of the combustion chamber 104 of each cylinder.
  • a fuel injection valve 106 is arranged for each cylinder at the intake port 102a on the upstream side of the intake valve 105.
  • an example is taken in which the fuel injection valve 106 injects fuel into the intake duct 102, but an in-cylinder direct injection type internal combustion engine that injects fuel directly into the combustion chamber 104 may be used.
  • the fuel injected from the fuel injection valve 106 is sucked together with air into the combustion chamber 104 through the intake valve 105, ignited and burned by spark ignition by the spark plug 107, and the pressure generated by the combustion causes the piston 108 to the crankshaft 109.
  • the crankshaft 109 is rotationally driven by pushing it down toward it.
  • the exhaust valve 110 opens and closes the exhaust port of the combustion chamber 104, and when the exhaust valve 110 opens, the exhaust gas in the combustion chamber 104 is discharged to the exhaust pipe 111.
  • a catalyst converter 112 provided with a three-way catalyst or the like is installed in the exhaust pipe 111, and the exhaust gas is purified by the catalyst converter 112.
  • the intake valve 105 opens as the intake camshaft 115a, which is rotationally driven by the crankshaft 109, rotates.
  • the exhaust valve 110 opens as the exhaust camshaft 115b, which is rotationally driven by the crankshaft 109, rotates.
  • the VTC mechanism 114 uses an electric motor (brushed DC motor) as an actuator to change the relative rotation phase angle of the intake camshaft 115a with respect to the crankshaft 109, thereby changing the phase of the valve operating angle of the intake valve 105, that is, intake air. It is an electric VTC mechanism that continuously changes the valve timing of the valve 105 in the advance direction and the retard direction. Further, an ignition module 116 for supplying ignition energy to the spark plug 107 is directly attached to the spark plug 107 provided for each cylinder. The ignition module 116 includes an ignition coil and a power transistor that controls energization of the ignition coil.
  • the control device (electronic control unit) 201 includes an electric VTC controller 201a that drives and controls the VTC mechanism 114, and an engine control module (hereinafter referred to as ECM) 201b that controls a fuel injection valve 106, an ignition module 116, and the like.
  • ECM engine control module
  • Each of the electric VTC controllers 201a and ECM201b is equipped with a microcomputer including a CPU, RAM, ROM, etc., and performs arithmetic processing according to a program stored in advance in a memory such as ROM to calculate and output the operation amount of various devices.
  • the electric VTC controller 201a includes a drive circuit such as an inverter that drives the electric motor of the VTC mechanism 114.
  • These electric VTC controllers 201a and ECM201b are configured to be able to transfer data to each other via CAN (Controller Area Network) 201c.
  • CAN Controller Area Network
  • an AT controller that controls an automatic transmission combined with an internal combustion engine is connected to the CAN201c as a communication network.
  • the crank angle sensor 203 and the accelerator pedal 207 output the rotation angle signal (referred to as the crank angle signal) POS of the crankshaft 109.
  • the amount of depression in other words, the accelerator opening sensor 206 that detects the accelerator opening ACC, the cam angle sensor 204 that outputs the rotation angle signal (called the cam angle signal) CAM of the intake camshaft 115a, and the cooling water of the internal combustion engine 100.
  • Water temperature sensor 208 that detects the temperature TW
  • air-fuel ratio sensor 209 that is installed in the exhaust pipe 111 on the upstream side of the catalytic converter 112 and detects the air-fuel ratio AF based on the oxygen concentration in the exhaust, in the oil pan (or engine oil)
  • the output signal from the oil temperature sensor 210 or the like that detects the oil temperature TO of the engine oil in the circulation path) is input, and further, from the ignition switch (engine switch) 205 that is the main switch for starting and stopping the internal combustion engine 100.
  • the signal IGNSW is input.
  • FIG. 2 shows an example of the signal patterns of the crank angle signal POS and the cam angle signal CAM.
  • the crank angle signal POS output by the crank angle sensor 203 is a pulse signal for each unit crank angle (for example, 10 deg.CA), and is a crank angle (4-cylinder engine) corresponding to a stroke phase difference (ignition interval) between cylinders.
  • the signal pattern is configured so that one or more pulses are missing for each crank angle (180 deg).
  • the crank angle sensor 203 outputs a rotation angle signal POS (unit crank angle signal) for each unit crank angle and a reference crank angle signal for each crank angle corresponding to the stroke phase difference (ignition interval) between cylinders.
  • the missing portion of the unit crank angle signal POS or the output position of the reference crank angle signal represents the reference piston position of each cylinder.
  • the cam angle sensor 204 outputs a cam angle signal CAM for each crank angle corresponding to the stroke phase difference (ignition interval) between cylinders.
  • the internal combustion engine 100 is a 4-cylinder engine
  • the crank angle corresponding to the stroke phase difference (ignition interval) between the cylinders is 180 deg. ..
  • the crank angle is 180 deg.
  • CA corresponds to a rotation angle of 90 deg of the intake camshaft 115a. That is, the cam angle sensor 204 outputs a cam angle signal CAM every time the intake camshaft 115a rotates 90 deg.
  • the cam angle signal CAM is a signal (cylinder discrimination signal) for discriminating the cylinder located at the reference piston position, and represents the cylinder number for each crank angle corresponding to the stroke phase difference (ignition interval) between the cylinders. It is output as a characteristic pulse.
  • the cam angle sensor 204 has two consecutive pulse signals for every 180 deg crank angle. By outputting one pulse signal, one pulse signal, and two consecutive pulse signals in this order, the cylinder located at the reference piston position can be specified based on the number of pulses.
  • the cam angle signal CAM can represent the cylinder number based on the number of pulses, or can represent the cylinder number based on the pulse width and amplitude.
  • FIGS. 3 to 5 show an example of the structure of the VTC mechanism 114 in FIG. 1, respectively.
  • the structure of the VTC mechanism 114 is not limited to that illustrated in FIGS. 3 to 5, and a voltage is applied to the brushed DC motor only during phase conversion to make the motor shaft portion relative to the sprocket portion. Other configurations can be adopted as long as they are rotated to change the phase of the camshaft.
  • the VTC mechanism 114 is rotatably mounted on a cylinder head via a bearing 44 and a timing sprocket (cam sprocket) 1 which is a drive rotating body rotationally driven by a crankshaft 109 of the internal combustion engine 100.
  • An intake camshaft 115a that is supported and rotates by a rotational force transmitted from the timing sprocket 1, a cover member 3 that is arranged in front of the timing sprocket 1 and fixed to the chain cover 40 by bolts, and a timing sprocket 1.
  • a phase changing mechanism 4 which is arranged between the intake camshafts 115a and changes the relative rotation phase angle of the intake camshaft 115a with respect to the timing sprocket 1 is provided.
  • the timing sprocket 1 is composed of a sprocket body 1a and a gear portion 1b that is integrally provided on the outer periphery of the sprocket body 1a and receives a rotational force from a crankshaft 109 via a wound timing chain 42. .. Further, the timing sprocket 1 is interposed between the circular groove 1c formed on the inner peripheral side of the sprocket body 1a and the outer periphery of the flange portion 2a integrally provided at the front end portion of the intake camshaft 115a. It is rotatably supported by the intake camshaft 115a by the ball bearing 43.
  • annular protrusion 1e is integrally formed on the outer peripheral edge of the front end portion of the sprocket body 1a.
  • annular member 19 which is coaxially positioned on the inner peripheral side of the annular protrusion 1e and has internal teeth 19a which are corrugated meshing portions on the inner circumference, and an annular plate 6 Is fastened and fixed together with the bolt 7 from the axial direction.
  • a stopper convex portion 1d which is an arc-shaped engaging portion, is formed on a part of the inner peripheral surface of the sprocket body 1a up to a predetermined length range along the circumferential direction.
  • the housing 5 is formed of an iron-based metal and functions as a yoke, and has an annular plate-shaped holding portion 5a integrally on the front end side, and the entire outer peripheral side including the holding portion 5a is covered by the cover member 3. It is arranged so as to be covered with a predetermined gap.
  • the intake camshaft 115a has a drive cam (not shown) that opens and operates the intake valve 105 on the outer periphery thereof, and a driven member 9 that is a driven rotating body at the front end is axially coupled by a cam bolt 10.
  • a stopper concave groove 2b which is a locking portion in which the stopper convex portion 1d of the sprocket body 1a engages, is formed in the flange portion 2a of the intake camshaft 115a along the circumferential direction.
  • the stopper concave groove 2b is formed in an arc shape having a predetermined length in the circumferential direction, and both end edges of the stopper convex portion 1d rotated in this length range abut on the opposing edges 2c and 2d in the circumferential direction, respectively. Therefore, the relative rotation positions of the intake camshaft 115a with respect to the timing sprocket 1 on the maximum advance side and the maximum retard side are regulated.
  • the angle range in which the stopper convex portion 1d can move in the stopper concave groove 2b is the variable range of the relative rotation phase angle of the intake camshaft 115a with respect to the crankshaft 109, in other words, the variable range of the valve timing.
  • a flange-shaped seating surface portion 10c is integrally formed on the end edge of the head portion 10a of the cambolt 10 on the shaft portion 10b side, and is formed on the outer periphery of the shaft portion 10b in the internal axial direction from the end portion of the intake camshaft 115a.
  • a male screw portion to be screwed to the female screw portion is formed.
  • the driven member 9 is formed of an iron-based metal material, and as shown in FIG. 4, is composed of a disk portion 9a formed on the front end side and a cylindrical cylindrical portion 9b integrally formed on the rear end side. Has been done.
  • the disk portion 9a is integrally provided with an annular step protrusion 9c having substantially the same outer diameter as the flange portion 2a of the intake camshaft 115a at a substantially central position in the radial direction of the rear end surface.
  • the outer peripheral surface of the annular step protrusion 9c and the outer peripheral surface of the flange portion 2a are inserted and arranged on the inner circumference of the inner ring 43a of the third ball bearing 43.
  • the outer ring 43b of the third ball bearing 43 is press-fitted and fixed to the inner peripheral surface of the circular groove 1c of the sprocket body 1a.
  • a cage 41 for holding a plurality of rollers 34 is integrally provided on the outer peripheral portion of the disk portion 9a.
  • the cage 41 is formed so as to project from the outer peripheral portion of the disk portion 9a in the same direction as the cylindrical portion 9b, and is formed by a plurality of elongated protrusions 41a having predetermined gaps at positions substantially equally spaced in the circumferential direction. ing.
  • the cylindrical portion 9b is formed with an insertion hole 9d through which the shaft portion 10b of the cam bolt 10 is inserted in the center, and a first needle bearing 28 is provided on the outer peripheral side of the cylindrical portion 9b.
  • the cover member 3 is formed of a synthetic resin material and is composed of a cover body 3a that bulges like a cup and a bracket 3b that is integrally provided on the outer periphery of the rear end portion of the cover body 3a.
  • the cover main body 3a is arranged so as to cover substantially the entire front end side of the phase changing mechanism 4, that is, the housing 5 from the axial holding portion 5b to the rear end portion side with a predetermined gap.
  • the bracket 3b is formed in a substantially annular shape, and bolt insertion holes 3f are formed through the six boss portions, respectively.
  • a bracket 3b is fixed to the cover member 3 via a plurality of bolts 47 to the chain cover 40, and double inner and outer slip rings 48a and 48b are provided on the inner peripheral surface of the front end portion 3c of the cover body 3a. It is buried and fixed with the end face exposed. Further, the upper end portion of the cover member 3 is provided with a connector portion 49 in which slip rings 48a and 48b and a connector terminal 49a connected via a conductive member are fixed.
  • the connector terminal 49a is supplied with power from a battery power source (not shown) via the control device 201.
  • a large-diameter first oil seal 50 which is a sealing member, is interposed between the inner peripheral surface on the rear end side of the cover body 3a and the outer peripheral surface of the housing 5.
  • the first oil seal 50 is formed to have a substantially U-shaped cross section, a core metal is embedded inside a synthetic rubber base material, and an annular base portion 50a on the outer peripheral side is inside the rear end portion of the cover body 3a. It is fitted and fixed in the circular groove 3d formed on the peripheral surface. Further, a seal surface 50b that abuts on the outer peripheral surface of the housing 5 is integrally formed on the inner peripheral side of the annular base portion 50a of the first oil seal 50.
  • the phase changing mechanism 4 includes an electric motor 12 arranged substantially coaxially on the front end side of the intake camshaft 115a, and a speed reducer 8 that reduces the rotational speed of the electric motor 12 and transmits it to the intake camshaft 115a.
  • the electric motor 12 is a DC motor with a brush, and has a housing 5 which is a yoke that rotates integrally with the timing sprocket 1, a motor shaft 13 which is an output shaft rotatably provided inside the housing 5, and a housing.
  • a pair of semi-arc-shaped permanent magnets 14 and 15 fixed to the inner peripheral surface of No. 5 and a stator 16 fixed to the inner bottom surface side of the holding portion 5a are provided.
  • the motor shaft 13 is formed in a tubular shape and functions as an armature.
  • An iron core rotor 17 having a plurality of poles is fixed to the outer periphery at a substantially central position in the axial direction, and an electromagnetic coil 18 is provided on the outer periphery of the iron core rotor 17. It is being wound.
  • a commutator 20 is press-fitted and fixed to the outer periphery of the front end portion of the motor shaft 13, and an electromagnetic coil 18 is connected to the commutator 20 in each segment divided into the same number as the number of poles of the iron core rotor 17.
  • the motor shaft 13 is a needle bearing 28, which is the first bearing, and a fourth ball, which is a bearing arranged on the axial side of the needle bearing 28, on the outer peripheral surface of the shaft portion 10b on the head portion 10a side of the cam bolt 10. It is rotatably supported via a bearing 35. Further, a cylindrical eccentric shaft portion 30 forming a part of the speed reducer 8 is integrally provided at the rear end portion of the motor shaft 13 on the intake camshaft 115a side.
  • a second oil seal 32 which is a friction member that prevents the lubricating oil from leaking from the inside of the speed reducer 8 into the electric motor 12, is provided between the outer peripheral surface of the motor shaft 13 and the inner peripheral surface of the plate 6. Has been done. The inner peripheral portion of the second oil seal 32 comes into contact with the outer peripheral surface of the motor shaft 13 to impart frictional resistance to the rotation of the motor shaft 13.
  • the speed reducer 8 includes an eccentric shaft portion 30 that performs eccentric rotational movement, a second ball bearing 33 that is a second bearing provided on the outer periphery of the eccentric shaft portion 30, and a roller provided on the outer periphery of the second ball bearing 33. It is mainly composed of 34, a cage 41 that allows the roller 34 to move in the radial direction while holding the roller 34 in the rolling direction, and a driven member 9 that is integrated with the cage 41.
  • the axis of the cam surface formed on the outer peripheral surface of the eccentric shaft portion 30 is slightly eccentric in the radial direction from the axis X of the motor shaft 13.
  • the second ball bearing 33, the roller 34, and the like are configured as planetary meshing portions.
  • the second ball bearing 33 is formed in a large diameter shape and is arranged so as to substantially overlap at the radial position of the first needle bearing 28, and the inner ring 33a of the second ball bearing 33 is an eccentric shaft portion 30.
  • the roller 34 is always in contact with the outer peripheral surface of the outer ring 33b of the second ball bearing 33 while being press-fitted and fixed to the outer peripheral surface.
  • an annular gap C is formed on the outer peripheral side of the outer ring 33b, and the entire second ball bearing 33 can move in the radial direction along with the eccentric rotation of the eccentric shaft portion 30, that is, the eccentric movement becomes possible. It has become.
  • Each roller 34 fits into the internal teeth 19a of the annular member 19 while moving in the radial direction with the eccentric movement of the second ball bearing 33, and is guided in the radial direction by the protrusion 41a of the cage 41 in the radial direction. It is designed to swing. Lubricating oil is supplied to the inside of the speed reducer 8 from the lubricating oil supply mechanism.
  • the lubricating oil supply mechanism is formed in the oil supply passage 44a formed inside the bearing 44 of the cylinder head and supplied with lubricating oil from the main oil gallery (not shown), and is formed in the internal axial direction of the intake cam shaft 115a to supply oil.
  • An oil supply hole 48 that communicates with the passage 44a via a groove groove, and one end of the driven member 9 that is formed through the oil supply hole 48 in the internal axial direction and the other end of which is the first needle bearing 28 and the second ball bearing. It is composed of a small-diameter oil supply hole 45 opened in the vicinity of 33, and three large-diameter oil discharge holes (not shown) that are also formed through the driven member 9.
  • the rotational force of the annular member 19 is transmitted from the roller 34 to the intake camshaft 115a via the cage 41 and the driven member 9.
  • the cam of the intake camshaft 115a opens and closes the intake valve 105.
  • the control device 201 energizes the electromagnetic coil 18 of the electric motor 12.
  • the electric motor 12 is driven.
  • this motor rotational force is transmitted to the intake camshaft 115a via the speed reducer 8.
  • each roller 34 is guided in the radial direction by the protrusion 41a of the cage 41 for each rotation of the motor shaft 13, and is one of the annular members 19. It overcomes the internal teeth 19a and moves while rolling to other adjacent internal teeth 19a, and this is sequentially repeated to transfer in the circumferential direction. Rotational force is transmitted to the driven member 9 while the rotation of the motor shaft 13 is decelerated by the rolling and contacting of each roller 34.
  • the reduction ratio when the rotation of the motor shaft 13 is transmitted to the driven member 9 can be arbitrarily set depending on the number of rollers 34 and the like.
  • the intake camshaft 115a rotates forward and reverse relative to the timing sprocket 1 to convert the relative rotation phase angle, and the opening / closing timing of the intake valve 105 is changed to the advance angle side or the retard angle side.
  • the forward / reverse relative rotation of the intake camshaft 115a with respect to the timing sprocket 1 is regulated by each side surface of the stopper convex portion 1d coming into contact with either one of the opposite edges 2c or 2d of the stopper concave groove 2b.
  • the driven member 9 rotates in the same direction as the rotation direction of the timing sprocket 1 with the eccentric rotation of the eccentric shaft portion 30, so that one side surface of the stopper convex portion 1d faces the stopper concave groove 2b on one side. It abuts on the edge 2c and further rotation in the same direction is restricted. As a result, the rotation phase angle of the intake camshaft 115a with respect to the timing sprocket 1 is changed to the maximum on the advance side.
  • the control device 201 variably controls the relative rotation phase angle of the intake camshaft 115a with respect to the crankshaft 109, that is, the valve timing of the intake valve 105 by controlling the energization of the electric motor 12 of the VTC mechanism 114. ..
  • the control device 201 has a target phase angle (in other words, a target advance amount, a target valve timing, a target conversion angle) based on an operating state of the internal combustion engine 100, for example, an engine load, an engine rotation speed, an engine temperature, a starting state, and the like. ) Is calculated, while the actual relative rotation phase angle of the intake camshaft 115a with respect to the crankshaft 109 is detected. Then, the control device 201 performs feedback control of the rotation phase by calculating and outputting the operation amount of the electric motor 12 so that the actual relative rotation phase angle approaches the target phase angle. In the feedback control, the control device 201 calculates the operation amount of the electric motor 12 by, for example, proportional integration control based on the deviation between the target phase angle and the actual relative rotation phase angle.
  • a target phase angle in other words, a target advance amount, a target valve timing, a target conversion angle
  • FIG. 6 extracts and shows the main parts related to the control of the VTC mechanism 114 in the control device 201 shown in FIG.
  • the signal IGNSW from the ignition switch 205 connected to the battery VBAT is input to the ECM201b and the electric VTC controller 201a, respectively, and is activated by the ignition on.
  • the ECM201b includes an input circuit 211 and a CPU 212.
  • the cam angle signal CAM from the cam angle sensor 204 and the crank angle signal POS from the crank angle sensor 203 are input to the input circuits 211 and the CPU 212, respectively.
  • the ECM201b controls the fuel injection valve 106, the ignition module 116, and the like based on these signals.
  • the CPU 212 calculates, for example, the target value (target phase angle) TGVTC (deg.CA) of the rotation phase adjusted by the VTC mechanism 114 based on the engine operating state, and the crank angle signal POS from the crank angle sensor 203 and the intake air.
  • the rotation phase ANG_CAMec (deg.CA) is calculated based on the cam angle signal CAM of the camshaft 115a. Further, it has a function of transmitting the calculated target value TGVTC, the calculated rotation phase ANG_CAMec, and the like to the electric VTC controller 201a by CAN communication.
  • the electric VTC controller 201a includes a CPU 213, drive circuits 214a and 214b, an internal power supply circuit 215, an input circuit 216, a CAN driver circuit 217, and the like.
  • the power supply terminal and the ground (GND) terminal of the electric VTC controller 201a are connected to the battery VBAT.
  • the internal power supply circuit 215 steps down the voltage of the battery VBAT to generate an internal power supply voltage of, for example, 5V, and supplies it to each circuit in the electric VTC controller 201a including the CPU 213.
  • the cam angle signal CAM from the cam angle sensor 204 and the crank angle signal POS from the crank angle sensor 203 are input to the input circuit 216 via the input circuit 211 of the ECM201b, and these cam angle signal CAM and the crank angle are input.
  • the signal POS is input to the CPU 213.
  • the CAN driver circuit 217 is for performing CAN communication between the electric VTC controller 201a and the ECM201b, transmits the transmission information CAN_TX from the CPU 213 to the ECM201b, and receives the reception information CAN_RX from the ECM201b in the CPU 213.
  • the drive circuits 214a and 214b control energization of the VTC mechanism 114 to the electric motor 12 based on the PWM (Pulse Width Modulation) signals PWM-P and PWP-N output from the CPU 213, respectively.
  • These drive circuits 214a and 214b are provided with current sensors 218a and 218b, respectively, and are adapted to detect the current flowing through the winding of the electric motor 12 and input it to the CPU 213.
  • FIG. 7 shows the concept of calculating the motor rotation speed using the crank angle signal POS and the cam angle signal CAM.
  • the phase angle of the cam is constant, the cam rotation speed and half of the engine speed are the same.
  • the VTC mechanism 114 changes, the phase of the cam changes, so that the rotation speed of the cam and the rotation speed of the engine deviate from each other.
  • the motor rotation speed can be calculated. That is, if the rotation speed of the cam and the rotation speed of the engine are known, the motor rotation speed can be calculated, and the motor rotation speed at this time can be obtained by the following equation.
  • Motor speed (cam speed- (engine speed / 2)) x reduction ratio
  • FIG. 8 shows the calculation of the cam rotation speed using the crank angle signal POS and the cam angle signal CAM.
  • the engine speed is calculated from the time from the fall of the crank angle signal POS to the next fall.
  • the cam rotation speed is calculated from the time from the fall to the rise of the cam angle signal CAM.
  • the motor rotation speed is calculated based on the time from the fall to the rise of the cam angle signal CAM and the engine rotation speed, and the estimated value of the motor rotation speed is calibrated.
  • the fall interval of the crank angle signal POS output from the crank angle sensor 203 is, for example, 10 deg. It is decided in advance by CA, and this 10 deg.
  • the engine speed can be calculated based on how long it took during CA (distance ⁇ time). Similarly, on the cam side, the speed can be calculated from "length ⁇ time required for signal detection" by using the rising and falling edges of the square wave signal.
  • the real angle connects the changing points of the VTC absolute angle that changes stepwise as shown by the solid line.
  • the motor rotation speed is calculated accurately and the motor rotation speed is calibrated. can do. As a result, the rotation speed close to the actual angle can be calculated even in the vicinity of the target angle where the error is the largest.
  • the electric VTC controller 201a has a motor torque estimation function (motor torque estimation unit 230), a VTC mechanism model (VTC mechanism model unit 231), a motor rotation speed calibration function (motor rotation speed calibration unit 232), and an integration function (integrator 233). , And a VTC angle calibration function (VTC angle calibration unit 234) and the like.
  • the motor drive current is input to the motor torque estimation unit 230, and the motor torque (TI characteristic) is estimated based on the physical model of the motor characteristics and parameters such as the torque constant.
  • the estimated motor torque is input to the VTC mechanism model unit 231 to calculate the motor rotation speed based on the physical model of the VTC mechanism 114 and parameters such as moment of inertia, friction and cam torque, and the estimated value of the motor rotation speed is calculated. Input to the motor rotation speed calibration unit 232.
  • the motor rotation speed calibration unit 232 calculates the cam rotation speed from the length and time from the fall to the rise of the cam angle signal CAM when the cam angle signal CAM rises, and the motor is calculated from the difference between the cam rotation speed and the engine speed. Calculate the rotation speed. Using this calculated motor rotation speed, calibrate the estimated value of the motor rotation speed output from the VTC mechanism model unit 231 (the estimated value of the motor rotation speed calculated based on the motor drive current and the engine operating state is used. It is configured to change to a calculated value based on the cam angle signal CAM and the engine speed).
  • the corrected estimated value of the motor rotation speed is integrated by the integrator 233 to obtain the VTC angle conversion amount, which is input to the VTC angle calibration unit 234.
  • the VTC angle calibration unit 234 calculates the absolute angle in response to the falling edge of the cam angle signal and calibrates the estimated angle.
  • the estimated angle calibrated from the VTC angle calibration unit 234 is output and fed back to the VTC angle conversion amount.
  • the motor rotation speed is calculated based on the cam angle signal CAM and the crank angle signal POS, and the estimated value is corrected. Since the difference between the cam rotation speed and the engine rotation speed is the motor rotation speed, more specifically, the motor rotation speed is calculated based on the cam rotation speed and the engine rotation speed, and the estimated value is corrected.
  • the cam rotation speed is calculated from the length and time from the fall to the rise of the cam angle signal. Therefore, the motor rotation speed can be calculated by calculating the motor rotation speed based on the period from the rise to the fall of the cam angle signal and the engine speed and correcting the estimated value.
  • FIG. 11 is a waveform diagram for explaining an example of the cam angle signal CAM and the calculation of the cam rotation speed.
  • the period ⁇ 1 from the continuous falling edge to the rising edge of the cam angle signal CAM is used.
  • the period ⁇ 2 from the fall of the phase angle detection pulse (continuous at equal intervals) in the cam angle signal CAM to the fall of the signal pulse for each cylinder the period ⁇ 3 until the rise, and even between a plurality of signal pulses. It may be selected and used from the period ⁇ 4 from the falling edge to the next falling edge, the period until the rising edge, or the period ⁇ 5 from the rising edge of the cam angle signal CAM to the falling edge of each cylinder signal.
  • FIG. 12A and 12B respectively show a method of calculating the engine speed.
  • the engine speed is calculated for each fall of the crank angle signal POS (10 deg. CA) except for the toothless portion of the crank angle signal POS, and the average value for two times is used (calculation target). ).
  • the cam angle signal CAM is obtained from a falling edge to a rising edge, for example, 20 deg. CA is the calculation target.
  • the missing tooth portion of the crank angle signal POS can be detected by using, for example, a counter of the crank angle signal POS.
  • 13A and 13B show the timing of calculation and calibration of the motor rotation speed, respectively.
  • the calculation and correction of the motor rotation speed are performed at the rise of the cam angle signal CAM or the fall of the crank angle signal POS after the rise of the cam angle signal CAM.
  • This execution timing is determined based on the positional relationship between the rising edge of the cam angle signal CAM and the falling edge of the crank angle signal POS. In this way, the calculation accuracy of the motor rotation speed can be ensured by calculating the motor rotation speed from the calculated values in which the cam rotation speed and the update timing of the engine rotation speed are close to each other.
  • the cam rotates at the rise of the cam angle signal CAM.
  • the motor rotation speed is calculated and calibrated at the timing when the speed is calculated.
  • the positional relationship between the rise of the cam angle signal CAM and the fall of the crank angle signal POS is determined from the time t1 from the fall of the crank angle signal POS to the rise of the cam angle signal CAM and the period ⁇ t of the previous crank angle signal POS. To do.
  • the cam rotation speed is calculated by the rise of the cam angle signal CAM. Then, the motor rotation speed is calculated and corrected.
  • the positional relationship between the rise of the cam angle signal CAM and the fall of the crank angle signal POS is the time from the fall of the crank angle signal POS to the rise of the cam angle signal CAM (t1 or t2) and the previous crank. It is determined from the period ⁇ t of the angular signal POS.
  • the motor rotation speed may be calculated and calibrated without determining the timing of the cam angle signal CAM and the crank angle signal POS as described above.
  • accuracy can be ensured without considering the timing.
  • it may be carried out at a predetermined time interval (ms).
  • ms time interval
  • the interval becomes narrower and an interrupt is inserted when the engine rotation is faster, and the interrupt is inserted slowly when the engine rotation is lower. Therefore, as the engine speed increases, interrupts increase and the calculation load increases. Therefore, by doing so, it is possible to suppress an increase in the calculation load due to an increase in interrupts.
  • FIG. 14 shows the correction of the estimated value of the rotation speed of the motor.
  • the correction of the estimated value of the motor rotation speed is performed by replacing (calibrating) the estimated value of the motor rotation speed with the calculated value.
  • FIG. 14 by performing calibration in response to the rise of the cam angle signal CAM, it is possible to correct the estimated value of the motor rotation speed and bring it closer to the actual value. As a result, the amount of erroneous calculation of the motor rotation speed estimated value can be reduced, and the accuracy of the angle estimated value can be improved.
  • the estimated value of the motor rotation speed this time may be corrected based on the calculated value of the motor rotation speed and the estimated value up to the previous calculation. For example, the estimated value of the motor rotation speed this time is replaced with the average value of the value calculated by the cam angle signal CAM and the previously estimated value.
  • FIG. 15 is a waveform diagram for explaining learning of the period (length) from the fall to the rise of the cam angle signal CAM.
  • the period (time) from the fall to the rise of the cam angle signal CAM may differ due to manufacturing variations of the cam angle sensor 204 and the like. Therefore, when the engine speed and the phase angle of the cam are constant, the length is learned based on the target time and the engine speed. By learning the variation of the cam angle signal CAM and correcting the calculated value in this way, it is possible to secure the calculation accuracy of the cam rotation speed and the motor rotation speed.
  • FIG. 16 is a waveform diagram for explaining the calculation and correction of the motor rotation speed according to the engine speed.
  • the frequency of inputting the cam angle signal CAM increases, so that the frequency of calculating the motor rotation speed increases, and the calculation load increases. Therefore, it is preferable to stop the calculation and correction of the motor rotation speed according to the engine speed (when the engine speed becomes high). As a result, interrupts when the engine is rotating at high speed can be reduced, and the calculation load can be reduced.
  • the calculation and correction of the motor rotation speed may be thinned out (reduced) according to the engine speed. For example, as shown by the downward arrow in FIG. 16, when the motor rotation speed is equal to or less than the predetermined rotation speed, the motor rotation speed is calculated and corrected in response to the rise of each cam angle signal CAM (including the pulse signal for cylinder discrimination). At a predetermined rotation speed or higher, the motor rotation speed is calculated and corrected every time the cam angle signal rises a predetermined number of times. Further, the calculation may be corrected according to the engine speed.
  • FIG. 17 shows a simulation result comparing the difference between the actual angle and the estimated angle of the VTC mechanism 114 in the conventional invention and the present invention
  • FIG. 18 is an enlarged view of the region 300 surrounded by the broken line in FIG.
  • the motor rotation speed has not been calibrated, and only the estimated VTC angle has been corrected in response to the fall of the cam angle signal CAM as shown by the broken line. That is, the absolute angle of the VTC angle is calculated at the fall of the cam angle signal CAM, and the estimated angle is calibrated with the absolute angle. Since the motor rotation speed is estimated based on the physical model and parameters, it does not always match the actual one and an error occurs, and as shown by arrow A2 in FIG. 18, the deviation of the estimated angle from the actual angle of the VTC mechanism 114 is large. It was getting bigger.
  • the motor rotation speed is calculated in response to the rise of the cam angle signal CAM, and the estimated value of the motor rotation speed is shown by the solid line. Is calibrating.
  • the deviation of the estimated value of the VTC angle due to the error of the motor rotation speed can be corrected for each rise of the cam angle signal CAM. Therefore, as shown by the arrow A1, the deviation of the estimated angle with respect to the actual angle of the VTC mechanism 114 can be corrected. Can be reduced.
  • FIG. 19A shows a simulation result comparing the VTC angle between the conventional method and the present invention
  • FIG. 19B shows a simulation result comparing the operating voltage between the conventional method and the present invention
  • 20A is an enlarged view of the area 310 surrounded by the broken line in FIG. 19A
  • FIG. 20B is an enlarged view of the area 320 surrounded by the broken line in FIG. 19B.
  • the error in the operating voltage can be reduced by reducing the deviation of the estimated angle from the actual angle of the VTC mechanism 114.
  • the operating voltage calculated from the actual angle is shown by a solid line in FIGS. 19B and 20B, and the operating voltage calculated from no calibration of the estimated angle (conventional) is shown by a broken line.
  • the operating voltage calculated from the calibration of the estimated angle (in the present invention) is shown by a solid line.
  • the operating voltage is calculated from the estimated angle by feedback control, the deviation of the estimated angle from the actual angle can be reduced. As a result, it is possible to reduce the application of an inaccurate operating voltage to the VTC mechanism. As a result, the erroneous operating voltage can be reduced, and the operating voltage can be made closer to the operating voltage calculated from the actual angle as compared with the conventional case. Therefore, the convergence of the VTC mechanism with respect to the target angle can be improved, and deterioration of vehicle performance can be suppressed.

Abstract

A control device for a variable valve timing mechanism comprises a controller that detects a phase angle of a cam on the basis of a cam angle signal, and controls the phase angle of the cam by using an electric motor. When the cam angle signal is detected, the controller updates the phase angle of the cam from when the cam angle signal was detected the previous time. While the phase angle of the cam is detected, motor rotation velocity is computed on the basis of motor drive current and an engine operation state, and a motor rotation angle is computed on the basis of the motor rotation velocity and the phase angle of the cam is estimated. Also, the controller interpolates the phase angle of the cam from the motor rotation angle, and changes an estimated value of the motor rotation velocity, the value having been calculated on the basis of the motor drive current and the engine operation state, to a computation value based on the cam angle signal and the number of engine revolutions.

Description

可変バルブタイミング機構の制御装置及びその制御方法Variable valve timing mechanism control device and its control method
 本発明は、VTC(Variable valve Timing Control)角度をモータ駆動電流から推定する可変バルブタイミング機構の制御装置及びその制御方法に関する。 The present invention relates to a control device for a variable valve timing mechanism that estimates a VTC (Variable valve Timing Control) angle from a motor drive current, and a control method thereof.
 特許文献1には、モータの回転トルクを利用してエンジンのバルブタイミングを調整する電動式のバルブタイミング調整装置が記載されている。この特許文献1では、カム軸角度、クランク軸角度、潤滑油の温度、冷却水の温度、及びモータ軸の回転角度に基づいて実際のクランク軸に対するカム軸の位相(カム軸位相)を算出するとともに、エンジン運転条件に応じて目標とするカム軸位相を算出している。この際、カム軸位相の算出は、エンジン回転角に同期して行われるため低回転時には更新が遅くなる。そこで、モータ回転角センサを用いてモータ軸の回転角度を検出し、可変バルブタイミング(VTC)機構の位相角を実測値で補間している。 Patent Document 1 describes an electric valve timing adjusting device that adjusts the valve timing of an engine by using the rotational torque of a motor. In Patent Document 1, the phase of the camshaft with respect to the actual crankshaft (camshaft phase) is calculated based on the camshaft angle, crankshaft angle, lubricating oil temperature, cooling water temperature, and motor shaft rotation angle. At the same time, the target camshaft phase is calculated according to the engine operating conditions. At this time, since the camshaft phase is calculated in synchronization with the engine rotation angle, the update is delayed at low rotation speeds. Therefore, the rotation angle of the motor shaft is detected by using the motor rotation angle sensor, and the phase angle of the variable valve timing (VTC) mechanism is interpolated by the measured value.
特開2013-83187号公報Japanese Unexamined Patent Publication No. 2013-83187
 ところで、VTCシステムのコスト削減などを目的に、モータ回転角センサの非搭載化が検討されている。センサを用いないで、カムの位相角の制御性を確保するには位相角を推定値で補間することが考えられる。しかし、推定値が実際の位相角に対して乖離すると、乖離度合いに応じて制御性が悪化する。 By the way, for the purpose of reducing the cost of the VTC system, the non-installation of the motor rotation angle sensor is being considered. In order to ensure the controllability of the phase angle of the cam without using a sensor, it is conceivable to interpolate the phase angle with an estimated value. However, if the estimated value deviates from the actual phase angle, the controllability deteriorates according to the degree of dissociation.
 本発明は上記のような事情に鑑みてなされたもので、その目的とするところは、モータ回転角センサを用いることなく、実角度と推定角度との乖離を抑制できる可変バルブタイミング機構の制御装置及びその制御方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is a control device for a variable valve timing mechanism capable of suppressing a deviation between an actual angle and an estimated angle without using a motor rotation angle sensor. And its control method.
 本発明の一態様に係る可変バルブタイミング機構の制御装置及びその制御方法は、カム角信号に基づいてカムの位相角を検出し、電動モータを用いてカムの位相角を制御する可変バルブタイミング機構の制御装置において、前記カム角信号が検出されたときに、前回の前記カム角信号が検出されたときの前記カムの位相角を更新し、前記カムの位相角の検出の間は、モータ駆動電流(電動モータの駆動電流)とエンジン運転状態とに基づいてモータ回転速度(電動モータの回転速度)を演算し、前記モータ回転速度に基づいてモータ回転角(電動モータの回転角)を演算して前記カムの位相角を推定し、前記モータ回転角から前記カムの位相角の補間を行い、前記モータ駆動電流とエンジン運転状態とに基づいて算出したモータ回転速度の推定値を、前記カム角信号とエンジン回転数とに基づく演算値に変更することを特徴とする。 The control device for the variable valve timing mechanism and the control method thereof according to one aspect of the present invention is a variable valve timing mechanism that detects the phase angle of the cam based on the cam angle signal and controls the phase angle of the cam using an electric motor. When the cam angle signal is detected, the phase angle of the cam when the previous cam angle signal is detected is updated, and the motor is driven during the detection of the phase angle of the cam. The motor rotation speed (rotation speed of the electric motor) is calculated based on the current (driving current of the electric motor) and the engine operating state, and the motor rotation angle (rotation angle of the electric motor) is calculated based on the motor rotation speed. The phase angle of the cam is estimated, the phase angle of the cam is interpolated from the motor rotation angle, and the estimated value of the motor rotation speed calculated based on the motor drive current and the engine operating state is used as the cam angle. It is characterized by changing to a calculated value based on a signal and an engine speed.
 本発明によれば、モータ駆動電流とエンジン運転状態とに基づいて算出したモータ回転速度の推定値を、カム角信号とエンジン回転数とに基づく演算値に変更することで、モータ回転角センサを用いることなく、実角度と推定角度との乖離を抑制できる。これによって、VTC機構に不正確な操作電圧が与えられるのを低減できる。この結果、VTC機構の目標角度に対する収束性が向上でき、車両性能の悪化を抑制できる。 According to the present invention, the motor rotation angle sensor can be obtained by changing the estimated value of the motor rotation speed calculated based on the motor drive current and the engine operating state to a calculated value based on the cam angle signal and the engine rotation speed. It is possible to suppress the deviation between the actual angle and the estimated angle without using it. As a result, it is possible to reduce the application of an inaccurate operating voltage to the VTC mechanism. As a result, the convergence of the VTC mechanism with respect to the target angle can be improved, and deterioration of vehicle performance can be suppressed.
本発明の実施形態に係る可変バルブタイミング機構の制御装置が適用される内燃機関のシステム構成図である。It is a system block diagram of the internal combustion engine to which the control device of the variable valve timing mechanism which concerns on embodiment of this invention is applied. 図1におけるクランク角信号及びカム角信号の波形図である。It is a waveform diagram of the crank angle signal and the cam angle signal in FIG. 図1における可変バルブタイミング機構を示す断面図である。It is sectional drawing which shows the variable valve timing mechanism in FIG. 図3のA-A線断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図3のB-B線断面図である。FIG. 3 is a cross-sectional view taken along the line BB of FIG. 図1に示した制御装置における可変バルブタイミング機構の制御に関係する要部を抽出して示すブロック図である。It is a block diagram which extracts and shows the main part related to the control of the variable valve timing mechanism in the control device shown in FIG. クランク角信号とカム角信号を使ったモータ回転速度の算出について説明するための模式図である。It is a schematic diagram for demonstrating the calculation of the motor rotation speed using a crank angle signal and a cam angle signal. クランク角信号とカム角信号を使ったカム回転速度の算出について説明するための波形図である。It is a waveform diagram for demonstrating the calculation of the cam rotation speed using a crank angle signal and a cam angle signal. 図6に示した電動VTCコントローラの機能ブロック図である。It is a functional block diagram of the electric VTC controller shown in FIG. モータ回転速度を算出する演算について説明するための波形図である。It is a waveform figure for demonstrating the calculation for calculating a motor rotation speed. カム角信号の例とカム回転速度の算出について説明するための波形図である。It is a waveform diagram for demonstrating the example of a cam angle signal and the calculation of a cam rotation speed. エンジン回転数の算出方法について説明するためのもので、クランク角信号の歯欠け部以外の波形図である。It is for demonstrating the calculation method of the engine speed, and is the waveform diagram other than the missing part of the crank angle signal. エンジン回転数の算出方法について説明するためのもので、カム角信号の立ち上がりがクランク角信号の歯欠け部と重なる場合の波形図である。This is a waveform diagram for explaining a method of calculating the engine speed, and is a waveform diagram when the rising edge of the cam angle signal overlaps with the missing tooth portion of the crank angle signal. モータ回転速度の算出・校正の実施タイミングについて説明するためのもので、前回のクランク角信号の立ち下がりからカム角信号の立ち上がりまでの期間が短い場合の波形図である。This is a waveform diagram for explaining the timing of calculating and calibrating the motor rotation speed, and is a waveform diagram when the period from the previous fall of the crank angle signal to the rise of the cam angle signal is short. モータ回転速度の算出・校正の実施タイミングについて説明するためのもので、前回のクランク角信号の立ち下がりからカム角信号の立ち上がりまでの期間が長く、次の更新の方が近い場合の波形図である。It is for explaining the execution timing of calculation and calibration of the motor rotation speed, and is a waveform diagram when the period from the fall of the previous crank angle signal to the rise of the cam angle signal is long and the next update is closer. is there. モータ回転速度の推定値の補正について説明するための波形図である。It is a waveform figure for demonstrating the correction of the estimated value of a motor rotation speed. カム角信号の立ち下がりから立ち上がりまでの期間の学習について説明するための波形図である。It is a waveform diagram for demonstrating learning of the period from the fall to the rise of a cam angle signal. エンジン回転数に応じたモータ回転速度の算出と補正について説明するための波形図である。It is a waveform diagram for demonstrating the calculation and correction of a motor rotation speed according to an engine rotation speed. 従来と本発明におけるVTC機構の実角度と推定角度の乖離を比較したシミュレーション結果を示す波形図である。It is a waveform diagram which shows the simulation result which compared the difference between the real angle and the estimated angle of the VTC mechanism in the prior art and the present invention. 図17における破線で囲んだ領域の拡大図である。It is an enlarged view of the area surrounded by the broken line in FIG. 従来と本発明におけるVTC角度を比較したシミュレーション結果を示す波形図である。It is a waveform diagram which shows the simulation result which compared the VTC angle in the prior art and this invention. 従来と本発明における操作電圧を比較したシミュレーション結果を示す波形図である。It is a waveform figure which shows the simulation result which compared the operation voltage in the prior art and this invention. 図19Aにおける破線で囲んだ領域の拡大図である。It is an enlarged view of the area surrounded by the broken line in FIG. 19A. 図19Bにおける破線で囲んだ領域の拡大図である。It is an enlarged view of the area surrounded by the broken line in FIG. 19B.
 以下、本発明の実施形態について図面を参照して説明する。
 図1は、本発明の実施形態に係る可変バルブタイミング機構の制御装置が適用される内燃機関のシステム構成図である。
 内燃機関(エンジン)100は、車両に搭載されて動力源として用いられる。この内燃機関100は、図示する直列型の他、V型あるいは水平対向型などの様々な形式とすることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram of an internal combustion engine to which the control device of the variable valve timing mechanism according to the embodiment of the present invention is applied.
The internal combustion engine (engine) 100 is mounted on a vehicle and used as a power source. The internal combustion engine 100 may be of various types such as a V type or a horizontally opposed type in addition to the series type shown in the figure.
 内燃機関100の吸気ダクト102には、内燃機関100の吸入空気流量QAを検出する吸入空気量センサ103を設けている。
 吸気バルブ105は、各気筒の燃焼室104の吸気口を開閉する。この吸気バルブ105の上流側の吸気ポート102aには、気筒毎に燃料噴射弁106を配置している。ここでは、燃料噴射弁106が吸気ダクト102内に燃料を噴射するものを例に取るが、燃焼室104内に直接燃料を噴射する筒内直接噴射式内燃機関であっても良い。
The intake duct 102 of the internal combustion engine 100 is provided with an intake air amount sensor 103 that detects the intake air flow rate QA of the internal combustion engine 100.
The intake valve 105 opens and closes the intake port of the combustion chamber 104 of each cylinder. A fuel injection valve 106 is arranged for each cylinder at the intake port 102a on the upstream side of the intake valve 105. Here, an example is taken in which the fuel injection valve 106 injects fuel into the intake duct 102, but an in-cylinder direct injection type internal combustion engine that injects fuel directly into the combustion chamber 104 may be used.
 燃料噴射弁106から噴射された燃料は、吸気バルブ105を介して燃焼室104内に空気と共に吸引され、点火プラグ107による火花点火によって着火燃焼し、該燃焼による圧力がピストン108をクランクシャフト109に向けて押し下げることで、クランクシャフト109を回転駆動する。
 また、排気バルブ110は、燃焼室104の排気口を開閉し、排気バルブ110が開くことで燃焼室104内の排ガスが排気管111に排出される。
The fuel injected from the fuel injection valve 106 is sucked together with air into the combustion chamber 104 through the intake valve 105, ignited and burned by spark ignition by the spark plug 107, and the pressure generated by the combustion causes the piston 108 to the crankshaft 109. The crankshaft 109 is rotationally driven by pushing it down toward it.
Further, the exhaust valve 110 opens and closes the exhaust port of the combustion chamber 104, and when the exhaust valve 110 opens, the exhaust gas in the combustion chamber 104 is discharged to the exhaust pipe 111.
 排気管111には三元触媒などを備えた触媒コンバータ112が設置され、触媒コンバータ112によって排気が浄化される。
 吸気バルブ105は、クランクシャフト109によって回転駆動される吸気カムシャフト115aの回転に伴って開動作する。また、排気バルブ110は、クランクシャフト109によって回転駆動される排気カムシャフト115bの回転に伴って開動作する。
A catalyst converter 112 provided with a three-way catalyst or the like is installed in the exhaust pipe 111, and the exhaust gas is purified by the catalyst converter 112.
The intake valve 105 opens as the intake camshaft 115a, which is rotationally driven by the crankshaft 109, rotates. Further, the exhaust valve 110 opens as the exhaust camshaft 115b, which is rotationally driven by the crankshaft 109, rotates.
 VTC機構114は、アクチュエータとしての電動モータ(ブラシ付DCモータ)によって、クランクシャフト109に対する吸気カムシャフト115aの相対回転位相角を変化させることで、吸気バルブ105のバルブ作動角の位相、つまり、吸気バルブ105のバルブタイミングを連続的に進角方向及び遅角方向に変化させる、電動式のVTC機構である。
 また、気筒毎に設けた点火プラグ107には、点火プラグ107に対して点火エネルギを供給する点火モジュール116がそれぞれ直付けされている。点火モジュール116は、点火コイル及び点火コイルへの通電を制御するパワートランジスタを備えている。
The VTC mechanism 114 uses an electric motor (brushed DC motor) as an actuator to change the relative rotation phase angle of the intake camshaft 115a with respect to the crankshaft 109, thereby changing the phase of the valve operating angle of the intake valve 105, that is, intake air. It is an electric VTC mechanism that continuously changes the valve timing of the valve 105 in the advance direction and the retard direction.
Further, an ignition module 116 for supplying ignition energy to the spark plug 107 is directly attached to the spark plug 107 provided for each cylinder. The ignition module 116 includes an ignition coil and a power transistor that controls energization of the ignition coil.
 制御装置(電子制御ユニット)201は、VTC機構114を駆動制御する電動VTCコントローラ201aと、燃料噴射弁106や点火モジュール116などを制御するエンジンコントロールモジュール(以下、ECMと称する)201bとを備えている。電動VTCコントローラ201a及びECM201bは、それぞれがCPU,RAM,ROMなどを含むマイクロコンピュータを備え、ROMなどのメモリに予め格納されたプログラムに従って演算処理を行うことで各種デバイスの操作量を演算して出力する。また、電動VTCコントローラ201aは、VTC機構114の電動モータを駆動するインバータなどの駆動回路を備えている。 The control device (electronic control unit) 201 includes an electric VTC controller 201a that drives and controls the VTC mechanism 114, and an engine control module (hereinafter referred to as ECM) 201b that controls a fuel injection valve 106, an ignition module 116, and the like. There is. Each of the electric VTC controllers 201a and ECM201b is equipped with a microcomputer including a CPU, RAM, ROM, etc., and performs arithmetic processing according to a program stored in advance in a memory such as ROM to calculate and output the operation amount of various devices. To do. Further, the electric VTC controller 201a includes a drive circuit such as an inverter that drives the electric motor of the VTC mechanism 114.
 これら電動VTCコントローラ201aとECM201bは、CAN(Controller Area Network)201cを介して相互にデータ転送を行えるように構成されている。
 なお、通信回路網としてのCAN201cには、電動VTCコントローラ201a,ECM201bの他、例えば内燃機関と組み合わされる自動変速機を制御するATコントローラなどが接続される。
These electric VTC controllers 201a and ECM201b are configured to be able to transfer data to each other via CAN (Controller Area Network) 201c.
In addition to the electric VTC controllers 201a and ECM201b, an AT controller that controls an automatic transmission combined with an internal combustion engine is connected to the CAN201c as a communication network.
 制御装置201には、吸入空気量センサ103から出力される吸入空気流量QAを入力する他、クランクシャフト109の回転角信号(クランク角信号と称する)POSを出力するクランク角センサ203、アクセルペダル207の踏込み量、換言すればアクセル開度ACCを検出するアクセル開度センサ206、吸気カムシャフト115aの回転角信号(カム角信号と称する)CAMを出力するカム角センサ204、内燃機関100の冷却水の温度TWを検出する水温センサ208、触媒コンバータ112の上流側の排気管111に設置され、排気中の酸素濃度に基づいて空燃比AFを検出する空燃比センサ209、オイルパン内(またはエンジンオイルの循環経路)におけるエンジンオイルの油温TOを検出する油温センサ210などからの出力信号を入力し、更に、内燃機関100の運転及び停止のメインスイッチであるイグニッションスイッチ(エンジンスイッチ)205からの信号IGNSWを入力する。 In addition to inputting the intake air flow rate QA output from the intake air amount sensor 103 to the control device 201, the crank angle sensor 203 and the accelerator pedal 207 output the rotation angle signal (referred to as the crank angle signal) POS of the crankshaft 109. The amount of depression, in other words, the accelerator opening sensor 206 that detects the accelerator opening ACC, the cam angle sensor 204 that outputs the rotation angle signal (called the cam angle signal) CAM of the intake camshaft 115a, and the cooling water of the internal combustion engine 100. Water temperature sensor 208 that detects the temperature TW, air-fuel ratio sensor 209 that is installed in the exhaust pipe 111 on the upstream side of the catalytic converter 112 and detects the air-fuel ratio AF based on the oxygen concentration in the exhaust, in the oil pan (or engine oil) The output signal from the oil temperature sensor 210 or the like that detects the oil temperature TO of the engine oil in the circulation path) is input, and further, from the ignition switch (engine switch) 205 that is the main switch for starting and stopping the internal combustion engine 100. The signal IGNSW is input.
 図2は、クランク角信号POSとカム角信号CAMの信号パターンの一例を示している。クランク角センサ203が出力するクランク角信号POSは、単位クランク角(例えば、10deg.CA)毎のパルス信号であって、気筒間の行程位相差(点火間隔)に相当するクランク角(4気筒機関でクランク角180deg)毎に、1個若しくは複数のパルスが欠落するように信号パターンが構成される。
 また、クランク角センサ203が、単位クランク角毎の回転角信号POS(単位クランク角信号)と、気筒間の行程位相差(点火間隔)に相当するクランク角毎の基準クランク角信号とを出力するよう構成することができる。ここで、単位クランク角信号POSの欠落箇所若しくは基準クランク角信号の出力位置は、各気筒の基準ピストン位置を表すことになる。
FIG. 2 shows an example of the signal patterns of the crank angle signal POS and the cam angle signal CAM. The crank angle signal POS output by the crank angle sensor 203 is a pulse signal for each unit crank angle (for example, 10 deg.CA), and is a crank angle (4-cylinder engine) corresponding to a stroke phase difference (ignition interval) between cylinders. The signal pattern is configured so that one or more pulses are missing for each crank angle (180 deg).
Further, the crank angle sensor 203 outputs a rotation angle signal POS (unit crank angle signal) for each unit crank angle and a reference crank angle signal for each crank angle corresponding to the stroke phase difference (ignition interval) between cylinders. Can be configured as Here, the missing portion of the unit crank angle signal POS or the output position of the reference crank angle signal represents the reference piston position of each cylinder.
 カム角センサ204は、気筒間の行程位相差(点火間隔)に相当するクランク角毎にカム角信号CAMを出力する。
 ここで、吸気カムシャフト115aは、クランクシャフト109の回転速度の半分の速度で回転するから、内燃機関100が4気筒機関で、気筒間の行程位相差(点火間隔)に相当するクランク角が180deg.CAであれば、クランク角180deg.CAは吸気カムシャフト115aの回転角90degに相当する。つまり、カム角センサ204は、吸気カムシャフト115aが90deg回転する毎に、カム角信号CAMを出力する。
The cam angle sensor 204 outputs a cam angle signal CAM for each crank angle corresponding to the stroke phase difference (ignition interval) between cylinders.
Here, since the intake camshaft 115a rotates at half the rotation speed of the crankshaft 109, the internal combustion engine 100 is a 4-cylinder engine, and the crank angle corresponding to the stroke phase difference (ignition interval) between the cylinders is 180 deg. .. In the case of CA, the crank angle is 180 deg. CA corresponds to a rotation angle of 90 deg of the intake camshaft 115a. That is, the cam angle sensor 204 outputs a cam angle signal CAM every time the intake camshaft 115a rotates 90 deg.
 カム角信号CAMは、基準ピストン位置に位置している気筒を判別させるための信号(気筒判別信号)であり、気筒間の行程位相差(点火間隔)に相当するクランク角毎に気筒番号を表す特性のパルスとして出力される。
 例えば、4気筒機関であって点火順を第1気筒、第3気筒、第4気筒、第2気筒とする場合、カム角センサ204は、クランク角180deg毎に、連続する2個のパルス信号、1個のパルス信号、1個のパルス信号、連続する2個のパルス信号をこの順で出力することで、基準ピストン位置に位置している気筒をパルス数に基づき特定することができる。また、カム角信号CAMは、パルス数で気筒番号を表したり、パルス幅や振幅に基づき気筒番号を表したりすることができる。
The cam angle signal CAM is a signal (cylinder discrimination signal) for discriminating the cylinder located at the reference piston position, and represents the cylinder number for each crank angle corresponding to the stroke phase difference (ignition interval) between the cylinders. It is output as a characteristic pulse.
For example, in the case of a 4-cylinder engine in which the ignition order is the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder, the cam angle sensor 204 has two consecutive pulse signals for every 180 deg crank angle. By outputting one pulse signal, one pulse signal, and two consecutive pulse signals in this order, the cylinder located at the reference piston position can be specified based on the number of pulses. Further, the cam angle signal CAM can represent the cylinder number based on the number of pulses, or can represent the cylinder number based on the pulse width and amplitude.
 図3~図5はそれぞれ、図1におけるVTC機構114の構造の一例を示している。
 なお、VTC機構114の構造は、図3~図5に例示したものに限定されるものではなく、ブラシ付DCモータに位相変換時のみ電圧を印加して、スプロケット部に対してモータシャフト部を回転させてカムシャフト部の位相を変換するものであれば他の構成も採用できる。
3 to 5 show an example of the structure of the VTC mechanism 114 in FIG. 1, respectively.
The structure of the VTC mechanism 114 is not limited to that illustrated in FIGS. 3 to 5, and a voltage is applied to the brushed DC motor only during phase conversion to make the motor shaft portion relative to the sprocket portion. Other configurations can be adopted as long as they are rotated to change the phase of the camshaft.
 VTC機構114は、図3に示すように、内燃機関100のクランクシャフト109によって回転駆動される駆動回転体であるタイミングスプロケット(カムスプロケット)1と、シリンダヘッド上に軸受44を介して回転自在に支持され、タイミングスプロケット1から伝達された回転力によって回転する吸気カムシャフト115aと、タイミングスプロケット1の前方位置に配置されて、チェーンカバー40にボルトによって固定されたカバー部材3と、タイミングスプロケット1と吸気カムシャフト115aの間に配置されて、タイミングスプロケット1に対する吸気カムシャフト115aの相対回転位相角を変更する位相変更機構4と、を備える。 As shown in FIG. 3, the VTC mechanism 114 is rotatably mounted on a cylinder head via a bearing 44 and a timing sprocket (cam sprocket) 1 which is a drive rotating body rotationally driven by a crankshaft 109 of the internal combustion engine 100. An intake camshaft 115a that is supported and rotates by a rotational force transmitted from the timing sprocket 1, a cover member 3 that is arranged in front of the timing sprocket 1 and fixed to the chain cover 40 by bolts, and a timing sprocket 1. A phase changing mechanism 4 which is arranged between the intake camshafts 115a and changes the relative rotation phase angle of the intake camshaft 115a with respect to the timing sprocket 1 is provided.
 タイミングスプロケット1は、スプロケット本体1aと、スプロケット本体1aの外周に一体に設けられて、巻回されたタイミングチェーン42を介してクランクシャフト109からの回転力を受けるギア部1bと、から構成される。
 また、タイミングスプロケット1は、スプロケット本体1aの内周側に形成された円形溝1cと吸気カムシャフト115aの前端部に一体に設けられたフランジ部2aの外周との間に介装された第3ボールベアリング43によって、吸気カムシャフト115aに回転自在に支持されている。
The timing sprocket 1 is composed of a sprocket body 1a and a gear portion 1b that is integrally provided on the outer periphery of the sprocket body 1a and receives a rotational force from a crankshaft 109 via a wound timing chain 42. ..
Further, the timing sprocket 1 is interposed between the circular groove 1c formed on the inner peripheral side of the sprocket body 1a and the outer periphery of the flange portion 2a integrally provided at the front end portion of the intake camshaft 115a. It is rotatably supported by the intake camshaft 115a by the ball bearing 43.
 スプロケット本体1aの前端部外周縁には、環状突起1eが一体に形成されている。
 スプロケット本体1aの前端部には、環状突起1eの内周側に同軸に位置決めされ、内周に波形状の噛み合い部である内歯19aが形成された環状部材19と、円環状のプレート6とがボルト7によって軸方向から共締め固定されている。
An annular protrusion 1e is integrally formed on the outer peripheral edge of the front end portion of the sprocket body 1a.
At the front end of the sprocket body 1a, an annular member 19 which is coaxially positioned on the inner peripheral side of the annular protrusion 1e and has internal teeth 19a which are corrugated meshing portions on the inner circumference, and an annular plate 6 Is fastened and fixed together with the bolt 7 from the axial direction.
 また、スプロケット本体1aの内周面の一部には、図5に示すように、円弧状の係合部であるストッパ凸部1dが周方向に沿って所定長さ範囲まで形成されている。
 プレート6の前端側外周には、位相変更機構4の後述する減速機8や電動モータ12の各構成部材を覆う状態で前方に突出した円筒状のハウジング5がボルト11によって固定されている。
Further, as shown in FIG. 5, a stopper convex portion 1d, which is an arc-shaped engaging portion, is formed on a part of the inner peripheral surface of the sprocket body 1a up to a predetermined length range along the circumferential direction.
A cylindrical housing 5 projecting forward while covering each component of the speed reducer 8 and the electric motor 12, which will be described later of the phase changing mechanism 4, is fixed to the outer periphery of the plate 6 on the front end side by bolts 11.
 ハウジング5は、鉄系金属によって形成されてヨークとして機能し、前端側に円環プレート状の保持部5aを一体に有していると共に、保持部5aを含めた外周側全体がカバー部材3によって所定の隙間をもって覆われた形で配置されている。
 吸気カムシャフト115aは、外周に吸気バルブ105を開作動させる駆動カム(図示省略)を有すると共に、前端部に従動回転体である従動部材9がカムボルト10によって軸方向から結合されている。
The housing 5 is formed of an iron-based metal and functions as a yoke, and has an annular plate-shaped holding portion 5a integrally on the front end side, and the entire outer peripheral side including the holding portion 5a is covered by the cover member 3. It is arranged so as to be covered with a predetermined gap.
The intake camshaft 115a has a drive cam (not shown) that opens and operates the intake valve 105 on the outer periphery thereof, and a driven member 9 that is a driven rotating body at the front end is axially coupled by a cam bolt 10.
 また、吸気カムシャフト115aのフランジ部2aには、図5に示すように、スプロケット本体1aのストッパ凸部1dが係入する係止部であるストッパ凹溝2bが円周方向に沿って形成されている。
 このストッパ凹溝2bは、円周方向へ所定長さの円弧状に形成され、この長さ範囲で回動したストッパ凸部1dの両端縁が周方向の対向縁2c,2dにそれぞれ当接することによって、タイミングスプロケット1に対する吸気カムシャフト115aの最大進角側、最大遅角側の相対回転位置を規制するようになっている。
Further, as shown in FIG. 5, a stopper concave groove 2b, which is a locking portion in which the stopper convex portion 1d of the sprocket body 1a engages, is formed in the flange portion 2a of the intake camshaft 115a along the circumferential direction. ing.
The stopper concave groove 2b is formed in an arc shape having a predetermined length in the circumferential direction, and both end edges of the stopper convex portion 1d rotated in this length range abut on the opposing edges 2c and 2d in the circumferential direction, respectively. Therefore, the relative rotation positions of the intake camshaft 115a with respect to the timing sprocket 1 on the maximum advance side and the maximum retard side are regulated.
 つまり、ストッパ凸部1dがストッパ凹溝2b内で移動できる角度範囲が、クランクシャフト109に対する吸気カムシャフト115aの相対回転位相角の可変範囲、換言すれば、バルブタイミングの可変範囲となる。
 カムボルト10の頭部10aの軸部10b側の端縁には、フランジ状の座面部10cが一体に形成され、軸部10bの外周には、吸気カムシャフト115aの端部から内部軸方向に形成された雌ねじ部に螺着する雄ねじ部が形成されている。
That is, the angle range in which the stopper convex portion 1d can move in the stopper concave groove 2b is the variable range of the relative rotation phase angle of the intake camshaft 115a with respect to the crankshaft 109, in other words, the variable range of the valve timing.
A flange-shaped seating surface portion 10c is integrally formed on the end edge of the head portion 10a of the cambolt 10 on the shaft portion 10b side, and is formed on the outer periphery of the shaft portion 10b in the internal axial direction from the end portion of the intake camshaft 115a. A male screw portion to be screwed to the female screw portion is formed.
 従動部材9は、鉄系金属材によって形成され、図4に示すように、前端側に形成された円板部9aと、後端側に一体に形成された円筒状の円筒部9bとから構成されている。
 円板部9aには、後端面の径方向ほぼ中央位置に吸気カムシャフト115aのフランジ部2aとほぼ同外径の環状段差突起9cが一体に設けられる。
The driven member 9 is formed of an iron-based metal material, and as shown in FIG. 4, is composed of a disk portion 9a formed on the front end side and a cylindrical cylindrical portion 9b integrally formed on the rear end side. Has been done.
The disk portion 9a is integrally provided with an annular step protrusion 9c having substantially the same outer diameter as the flange portion 2a of the intake camshaft 115a at a substantially central position in the radial direction of the rear end surface.
 そして、環状段差突起9cの外周面とフランジ部2aの外周面が第3ボールベアリング43の内輪43aの内周に挿通配置されている。第3ボールベアリング43の外輪43bは、スプロケット本体1aの円形溝1cの内周面に圧入固定されている。
 また、円板部9aの外周部には、複数のローラ34を保持する保持器41が一体に設けられている。
The outer peripheral surface of the annular step protrusion 9c and the outer peripheral surface of the flange portion 2a are inserted and arranged on the inner circumference of the inner ring 43a of the third ball bearing 43. The outer ring 43b of the third ball bearing 43 is press-fitted and fixed to the inner peripheral surface of the circular groove 1c of the sprocket body 1a.
Further, a cage 41 for holding a plurality of rollers 34 is integrally provided on the outer peripheral portion of the disk portion 9a.
 保持器41は、円板部9aの外周部から円筒部9bと同じ方向へ突出して形成され、円周方向へほぼ等間隔の位置に所定の隙間をもった複数の細長い突起部41aによって形成されている。
 円筒部9bは、中央にカムボルト10の軸部10bが挿通される挿通孔9dが貫通形成され、円筒部9bの外周側に第1ニードルベアリング28が設けられている。
The cage 41 is formed so as to project from the outer peripheral portion of the disk portion 9a in the same direction as the cylindrical portion 9b, and is formed by a plurality of elongated protrusions 41a having predetermined gaps at positions substantially equally spaced in the circumferential direction. ing.
The cylindrical portion 9b is formed with an insertion hole 9d through which the shaft portion 10b of the cam bolt 10 is inserted in the center, and a first needle bearing 28 is provided on the outer peripheral side of the cylindrical portion 9b.
 カバー部材3は、合成樹脂材によって形成され、カップ状に膨出したカバー本体3aと、該カバー本体3aの後端部外周に一体に設けたブラケット3bとから構成される。
 カバー本体3aは、位相変更機構4の前端側、つまりハウジング5の軸方向の保持部5bから後端部側のほぼ全体を、所定隙間をもって覆うように配置されている。一方、ブラケット3bは、ほぼ円環状に形成され、6つのボス部にそれぞれボルト挿通孔3fが貫通形成されている。
The cover member 3 is formed of a synthetic resin material and is composed of a cover body 3a that bulges like a cup and a bracket 3b that is integrally provided on the outer periphery of the rear end portion of the cover body 3a.
The cover main body 3a is arranged so as to cover substantially the entire front end side of the phase changing mechanism 4, that is, the housing 5 from the axial holding portion 5b to the rear end portion side with a predetermined gap. On the other hand, the bracket 3b is formed in a substantially annular shape, and bolt insertion holes 3f are formed through the six boss portions, respectively.
 また、カバー部材3には、ブラケット3bがチェーンカバー40に複数のボルト47を介して固定され、カバー本体3aの前端部3cの内周面に、内外2重のスリップリング48a,48bが各内端面を露出した状態で埋設固定されている。
 さらに、カバー部材3の上端部には、内部にスリップリング48a,48bと導電部材を介して接続されたコネクタ端子49aが固定されたコネクタ部49を設けてある。
Further, a bracket 3b is fixed to the cover member 3 via a plurality of bolts 47 to the chain cover 40, and double inner and outer slip rings 48a and 48b are provided on the inner peripheral surface of the front end portion 3c of the cover body 3a. It is buried and fixed with the end face exposed.
Further, the upper end portion of the cover member 3 is provided with a connector portion 49 in which slip rings 48a and 48b and a connector terminal 49a connected via a conductive member are fixed.
 なお、コネクタ端子49aには、制御装置201を介して図外のバッテリー電源からの電力が供給されるようになっている。
 カバー本体3aの後端部側の内周面とハウジング5の外周面との間には、シール部材である大径な第1オイルシール50が介装されている。
The connector terminal 49a is supplied with power from a battery power source (not shown) via the control device 201.
A large-diameter first oil seal 50, which is a sealing member, is interposed between the inner peripheral surface on the rear end side of the cover body 3a and the outer peripheral surface of the housing 5.
 第1オイルシール50は、横断面ほぼコ字形状に形成され、合成ゴムの基材の内部に芯金が埋設されていると共に、外周側の円環状基部50aがカバー本体3a後端部の内周面に形成された円形溝3d内に嵌着固定されている。
 また、第1オイルシール50の円環状基部50aの内周側には、ハウジング5の外周面に当接するシール面50bが一体に形成されている。
The first oil seal 50 is formed to have a substantially U-shaped cross section, a core metal is embedded inside a synthetic rubber base material, and an annular base portion 50a on the outer peripheral side is inside the rear end portion of the cover body 3a. It is fitted and fixed in the circular groove 3d formed on the peripheral surface.
Further, a seal surface 50b that abuts on the outer peripheral surface of the housing 5 is integrally formed on the inner peripheral side of the annular base portion 50a of the first oil seal 50.
 位相変更機構4は、吸気カムシャフト115aのほぼ同軸上前端側に配置された電動モータ12と、電動モータ12の回転速度を減速して吸気カムシャフト115aに伝達する減速機8と、から構成されている。
 電動モータ12は、ブラシ付きのDCモータであって、タイミングスプロケット1と一体に回転するヨークであるハウジング5と、ハウジング5の内部に回転自在に設けられた出力軸であるモータ軸13と、ハウジング5の内周面に固定された半円弧状の一対の永久磁石14,15と、保持部5aの内底面側に固定された固定子16と、を備えている。
The phase changing mechanism 4 includes an electric motor 12 arranged substantially coaxially on the front end side of the intake camshaft 115a, and a speed reducer 8 that reduces the rotational speed of the electric motor 12 and transmits it to the intake camshaft 115a. ing.
The electric motor 12 is a DC motor with a brush, and has a housing 5 which is a yoke that rotates integrally with the timing sprocket 1, a motor shaft 13 which is an output shaft rotatably provided inside the housing 5, and a housing. A pair of semi-arc-shaped permanent magnets 14 and 15 fixed to the inner peripheral surface of No. 5 and a stator 16 fixed to the inner bottom surface side of the holding portion 5a are provided.
 モータ軸13は、筒状に形成されてアーマチュアとして機能し、軸方向のほぼ中央位置の外周に複数の極を持つ鉄心ロータ17が固定されると共に、鉄心ロータ17の外周には電磁コイル18が巻回されている。
 また、モータ軸13の前端部外周には、コミュテータ20が圧入固定されており、コミュテータ20には、鉄心ロータ17の極数と同数に分割された各セグメントに電磁コイル18が接続されている。
The motor shaft 13 is formed in a tubular shape and functions as an armature. An iron core rotor 17 having a plurality of poles is fixed to the outer periphery at a substantially central position in the axial direction, and an electromagnetic coil 18 is provided on the outer periphery of the iron core rotor 17. It is being wound.
A commutator 20 is press-fitted and fixed to the outer periphery of the front end portion of the motor shaft 13, and an electromagnetic coil 18 is connected to the commutator 20 in each segment divided into the same number as the number of poles of the iron core rotor 17.
 モータ軸13は、カムボルト10の頭部10a側の軸部10bの外周面に、第1軸受であるニードルベアリング28と該ニードルベアリング28の軸方向の側部に配置された軸受である第4ボールベアリング35を介して回転自在に支持されている。
 また、モータ軸13の吸気カムシャフト115a側の後端部には、減速機8の一部を構成する円筒状の偏心軸部30が一体に設けられている。
The motor shaft 13 is a needle bearing 28, which is the first bearing, and a fourth ball, which is a bearing arranged on the axial side of the needle bearing 28, on the outer peripheral surface of the shaft portion 10b on the head portion 10a side of the cam bolt 10. It is rotatably supported via a bearing 35.
Further, a cylindrical eccentric shaft portion 30 forming a part of the speed reducer 8 is integrally provided at the rear end portion of the motor shaft 13 on the intake camshaft 115a side.
 また、モータ軸13の外周面とプレート6の内周面との間には、減速機8内部から電動モータ12内への潤滑油のリークを阻止するフリクション部材である第2オイルシール32が設けられている。
 第2オイルシール32は、内周部がモータ軸13の外周面に弾接することによって、モータ軸13の回転に対して摩擦抵抗を付与する。
A second oil seal 32, which is a friction member that prevents the lubricating oil from leaking from the inside of the speed reducer 8 into the electric motor 12, is provided between the outer peripheral surface of the motor shaft 13 and the inner peripheral surface of the plate 6. Has been done.
The inner peripheral portion of the second oil seal 32 comes into contact with the outer peripheral surface of the motor shaft 13 to impart frictional resistance to the rotation of the motor shaft 13.
 減速機8は、偏心回転運動を行う偏心軸部30と、偏心軸部30の外周に設けられた第2軸受である第2ボールベアリング33と、第2ボールベアリング33の外周に設けられたローラ34と、ローラ34を転動方向に保持しつつ径方向の移動を許容する保持器41と、保持器41と一体の従動部材9とで主に構成されている。
 偏心軸部30の外周面に形成されたカム面の軸心が、モータ軸13の軸心Xから径方向へ僅かに偏心している。なお、第2ボールベアリング33とローラ34などが遊星噛み合い部として構成されている。
The speed reducer 8 includes an eccentric shaft portion 30 that performs eccentric rotational movement, a second ball bearing 33 that is a second bearing provided on the outer periphery of the eccentric shaft portion 30, and a roller provided on the outer periphery of the second ball bearing 33. It is mainly composed of 34, a cage 41 that allows the roller 34 to move in the radial direction while holding the roller 34 in the rolling direction, and a driven member 9 that is integrated with the cage 41.
The axis of the cam surface formed on the outer peripheral surface of the eccentric shaft portion 30 is slightly eccentric in the radial direction from the axis X of the motor shaft 13. The second ball bearing 33, the roller 34, and the like are configured as planetary meshing portions.
 第2ボールベアリング33は、大径状に形成されて、第1ニードルベアリング28の径方向位置で全体がほぼオーバラップする状態に配置され、第2ボールベアリング33の内輪33aが偏心軸部30の外周面に圧入固定されていると共に、第2ボールベアリング33の外輪33bの外周面にはローラ34が常時当接している。
 また、外輪33bの外周側には円環状の隙間Cが形成され、この隙間Cによって第2ボールベアリング33全体が偏心軸部30の偏心回転に伴って径方向へ移動可能、つまり偏心動可能になっている。
The second ball bearing 33 is formed in a large diameter shape and is arranged so as to substantially overlap at the radial position of the first needle bearing 28, and the inner ring 33a of the second ball bearing 33 is an eccentric shaft portion 30. The roller 34 is always in contact with the outer peripheral surface of the outer ring 33b of the second ball bearing 33 while being press-fitted and fixed to the outer peripheral surface.
Further, an annular gap C is formed on the outer peripheral side of the outer ring 33b, and the entire second ball bearing 33 can move in the radial direction along with the eccentric rotation of the eccentric shaft portion 30, that is, the eccentric movement becomes possible. It has become.
 各ローラ34は、第2ボールベアリング33の偏心動に伴って径方向へ移動しつつ環状部材19の内歯19aに嵌入すると共に、保持器41の突起部41aによって周方向にガイドされつつ径方向に揺動運動させるようになっている。
 減速機8の内部には、潤滑油供給機構から潤滑油が供給される。
Each roller 34 fits into the internal teeth 19a of the annular member 19 while moving in the radial direction with the eccentric movement of the second ball bearing 33, and is guided in the radial direction by the protrusion 41a of the cage 41 in the radial direction. It is designed to swing.
Lubricating oil is supplied to the inside of the speed reducer 8 from the lubricating oil supply mechanism.
 潤滑油供給機構は、シリンダヘッドの軸受44の内部に形成されて図外のメインオイルギャラリーから潤滑油が供給される油供給通路44aと、吸気カムシャフト115aの内部軸方向に形成されて油供給通路44aにグルーブ溝を介して連通した油供給孔48と、従動部材9の内部軸方向に貫通形成されて一端が油供給孔48に開口し他端が第1ニードルベアリング28と第2ボールベアリング33の付近に開口した小径なオイル供給孔45と、同じく従動部材9に貫通形成された大径な3つのオイル排出孔(図示省略)と、から構成されている。 The lubricating oil supply mechanism is formed in the oil supply passage 44a formed inside the bearing 44 of the cylinder head and supplied with lubricating oil from the main oil gallery (not shown), and is formed in the internal axial direction of the intake cam shaft 115a to supply oil. An oil supply hole 48 that communicates with the passage 44a via a groove groove, and one end of the driven member 9 that is formed through the oil supply hole 48 in the internal axial direction and the other end of which is the first needle bearing 28 and the second ball bearing. It is composed of a small-diameter oil supply hole 45 opened in the vicinity of 33, and three large-diameter oil discharge holes (not shown) that are also formed through the driven member 9.
 次に、上述したVTC機構114の作動について説明する。
 まず、内燃機関100のクランクシャフト109が回転駆動すると、タイミングチェーン42を介してタイミングスプロケット1が回転し、その回転力によりハウジング5と環状部材19とプレート6を介して電動モータ12が同期回転する。
Next, the operation of the VTC mechanism 114 described above will be described.
First, when the crankshaft 109 of the internal combustion engine 100 is rotationally driven, the timing sprocket 1 rotates via the timing chain 42, and the rotational force causes the electric motor 12 to rotate synchronously via the housing 5, the annular member 19, and the plate 6. ..
 一方、環状部材19の回転力が、ローラ34から保持器41及び従動部材9を経由して吸気カムシャフト115aに伝達される。これによって、吸気カムシャフト115aのカムが吸気バルブ105を開閉作動させる。
 そして、制御装置201は、VTC機構114によってクランクシャフト109に対する吸気カムシャフト115aの相対回転位相角、つまり、吸気バルブ105のバルブタイミングを変更するときは、電動モータ12の電磁コイル18に通電し、電動モータ12を駆動させる。電動モータ12が回転駆動されると、このモータ回転力が減速機8を介して吸気カムシャフト115aに伝達される。
On the other hand, the rotational force of the annular member 19 is transmitted from the roller 34 to the intake camshaft 115a via the cage 41 and the driven member 9. As a result, the cam of the intake camshaft 115a opens and closes the intake valve 105.
Then, when the VTC mechanism 114 changes the relative rotation phase angle of the intake camshaft 115a with respect to the crankshaft 109, that is, the valve timing of the intake valve 105, the control device 201 energizes the electromagnetic coil 18 of the electric motor 12. The electric motor 12 is driven. When the electric motor 12 is rotationally driven, this motor rotational force is transmitted to the intake camshaft 115a via the speed reducer 8.
 すなわち、モータ軸13の回転に伴い偏心軸部30が偏心回転すると、各ローラ34がモータ軸13の1回転毎に保持器41の突起部41aに径方向へガイドされながら環状部材19の1つの内歯19aを乗り越えて隣接する他の内歯19aに転動しながら移動し、これを順次繰り返しながら円周方向へ転接する。
 この各ローラ34の転接によってモータ軸13の回転が減速されつつ従動部材9に回転力が伝達される。なお、モータ軸13の回転が従動部材9に伝達されるときの減速比は、ローラ34の個数などによって任意に設定することが可能である。
That is, when the eccentric shaft portion 30 rotates eccentrically with the rotation of the motor shaft 13, each roller 34 is guided in the radial direction by the protrusion 41a of the cage 41 for each rotation of the motor shaft 13, and is one of the annular members 19. It overcomes the internal teeth 19a and moves while rolling to other adjacent internal teeth 19a, and this is sequentially repeated to transfer in the circumferential direction.
Rotational force is transmitted to the driven member 9 while the rotation of the motor shaft 13 is decelerated by the rolling and contacting of each roller 34. The reduction ratio when the rotation of the motor shaft 13 is transmitted to the driven member 9 can be arbitrarily set depending on the number of rollers 34 and the like.
 これにより、吸気カムシャフト115aがタイミングスプロケット1に対して正逆相対回転して相対回転位相角が変換されて、吸気バルブ105の開閉タイミングが進角側あるいは遅角側に変更される。
 ここで、タイミングスプロケット1に対する吸気カムシャフト115aの正逆相対回転は、ストッパ凸部1dの各側面がストッパ凹溝2bの各対向縁2c,2dのいずれか一方に当接することによって規制される。
As a result, the intake camshaft 115a rotates forward and reverse relative to the timing sprocket 1 to convert the relative rotation phase angle, and the opening / closing timing of the intake valve 105 is changed to the advance angle side or the retard angle side.
Here, the forward / reverse relative rotation of the intake camshaft 115a with respect to the timing sprocket 1 is regulated by each side surface of the stopper convex portion 1d coming into contact with either one of the opposite edges 2c or 2d of the stopper concave groove 2b.
 すなわち、従動部材9が、偏心軸部30の偏心回動に伴ってタイミングスプロケット1の回転方向と同方向に回転することによって、ストッパ凸部1dの一側面がストッパ凹溝2bの一方側の対向縁2cに当接してそれ以上の同方向の回転が規制される。これにより、吸気カムシャフト115aは、タイミングスプロケット1に対する相対回転位相角が進角側へ最大に変更される。 That is, the driven member 9 rotates in the same direction as the rotation direction of the timing sprocket 1 with the eccentric rotation of the eccentric shaft portion 30, so that one side surface of the stopper convex portion 1d faces the stopper concave groove 2b on one side. It abuts on the edge 2c and further rotation in the same direction is restricted. As a result, the rotation phase angle of the intake camshaft 115a with respect to the timing sprocket 1 is changed to the maximum on the advance side.
 一方、従動部材9が、タイミングスプロケット1の回転方向と逆方向に回転することによって、ストッパ凸部1dの他側面がストッパ凹溝2bの他方側の対向縁2dに当接してそれ以上の同方向の回転が規制される。これにより、吸気カムシャフト115aは、タイミングスプロケット1に対する相対回転位相が遅角側へ最大に変更される。
 このように、制御装置201は、VTC機構114の電動モータ12の通電を制御することによってクランクシャフト109に対する吸気カムシャフト115aの相対回転位相角、つまり、吸気バルブ105のバルブタイミングを可変に制御する。
On the other hand, when the driven member 9 rotates in the direction opposite to the rotation direction of the timing sprocket 1, the other side surface of the stopper convex portion 1d comes into contact with the opposite edge 2d on the other side of the stopper concave groove 2b and further in the same direction. Rotation is regulated. As a result, the rotation phase of the intake camshaft 115a with respect to the timing sprocket 1 is changed to the maximum on the retard side.
In this way, the control device 201 variably controls the relative rotation phase angle of the intake camshaft 115a with respect to the crankshaft 109, that is, the valve timing of the intake valve 105 by controlling the energization of the electric motor 12 of the VTC mechanism 114. ..
 制御装置201は、内燃機関100の運転状態、例えば、機関負荷、機関回転速度、機関温度、始動状態などに基づいて目標位相角(換言すれば、目標進角量、目標バルブタイミング、目標変換角)を演算する一方、クランクシャフト109に対する吸気カムシャフト115aの実際の相対回転位相角を検出する。
 そして、制御装置201は、目標位相角に実際の相対回転位相角が近づくように電動モータ12の操作量を演算して出力する、回転位相のフィードバック制御を実施する。上記フィードバック制御において、制御装置201は、例えば目標位相角と実際の相対回転位相角との偏差に基づく比例積分制御などによって、電動モータ12の操作量を演算する。
The control device 201 has a target phase angle (in other words, a target advance amount, a target valve timing, a target conversion angle) based on an operating state of the internal combustion engine 100, for example, an engine load, an engine rotation speed, an engine temperature, a starting state, and the like. ) Is calculated, while the actual relative rotation phase angle of the intake camshaft 115a with respect to the crankshaft 109 is detected.
Then, the control device 201 performs feedback control of the rotation phase by calculating and outputting the operation amount of the electric motor 12 so that the actual relative rotation phase angle approaches the target phase angle. In the feedback control, the control device 201 calculates the operation amount of the electric motor 12 by, for example, proportional integration control based on the deviation between the target phase angle and the actual relative rotation phase angle.
 図6は、図1に示した制御装置201における、VTC機構114の制御に関係する要部を抽出して示している。バッテリーVBATに接続されたイグニッションスイッチ205からの信号IGNSWを、ECM201bと電動VTCコントローラ201aにそれぞれ入力してイグニッションオンにより起動する。ECM201bは、入力回路211とCPU212を備えている。カム角センサ204からのカム角信号CAM、及びクランク角センサ203からのクランク角信号POSをそれぞれ入力回路211とCPU212に入力する。ECM201bは、これらの信号に基づいて燃料噴射弁106や点火モジュール116などを制御する。 FIG. 6 extracts and shows the main parts related to the control of the VTC mechanism 114 in the control device 201 shown in FIG. The signal IGNSW from the ignition switch 205 connected to the battery VBAT is input to the ECM201b and the electric VTC controller 201a, respectively, and is activated by the ignition on. The ECM201b includes an input circuit 211 and a CPU 212. The cam angle signal CAM from the cam angle sensor 204 and the crank angle signal POS from the crank angle sensor 203 are input to the input circuits 211 and the CPU 212, respectively. The ECM201b controls the fuel injection valve 106, the ignition module 116, and the like based on these signals.
 CPU212は、例えばVTC機構114で調整される回転位相の目標値(目標位相角)TGVTC(deg.CA)を機関運転状態に基づいて演算し、クランク角センサ203からのクランク角信号POS、及び吸気カムシャフト115aのカム角信号CAMに基づき回転位相ANG_CAMec(deg.CA)を算出する。更に、演算した目標値TGVTCや算出した回転位相ANG_CAMecなどを、CAN通信により電動VTCコントローラ201aに向けて送信する機能を有する。 The CPU 212 calculates, for example, the target value (target phase angle) TGVTC (deg.CA) of the rotation phase adjusted by the VTC mechanism 114 based on the engine operating state, and the crank angle signal POS from the crank angle sensor 203 and the intake air. The rotation phase ANG_CAMec (deg.CA) is calculated based on the cam angle signal CAM of the camshaft 115a. Further, it has a function of transmitting the calculated target value TGVTC, the calculated rotation phase ANG_CAMec, and the like to the electric VTC controller 201a by CAN communication.
 一方、電動VTCコントローラ201aは、CPU213、駆動回路214a,214b、内部電源回路215、入力回路216及びCANドライバ回路217などを備えている。この電動VTCコントローラ201aの電源端子とグランド(GND)端子を、バッテリーVBATに接続する。これによって、駆動回路214a,214bと内部電源回路215にヒュージブルリンク219を介して電源が供給される。内部電源回路215は、バッテリーVBATの電圧を降圧して、例えば5Vの内部電源電圧を生成し、CPU213を含む電動VTCコントローラ201a内の各回路に供給する。 On the other hand, the electric VTC controller 201a includes a CPU 213, drive circuits 214a and 214b, an internal power supply circuit 215, an input circuit 216, a CAN driver circuit 217, and the like. The power supply terminal and the ground (GND) terminal of the electric VTC controller 201a are connected to the battery VBAT. As a result, power is supplied to the drive circuits 214a and 214b and the internal power supply circuit 215 via the fusible link 219. The internal power supply circuit 215 steps down the voltage of the battery VBAT to generate an internal power supply voltage of, for example, 5V, and supplies it to each circuit in the electric VTC controller 201a including the CPU 213.
 入力回路216には、ECM201bの入力回路211を介して、カム角センサ204からのカム角信号CAMと、クランク角センサ203からのクランク角信号POSを入力し、これらのカム角信号CAMとクランク角信号POSをCPU213に入力する。
 CANドライバ回路217は、電動VTCコントローラ201aとECM201bとの間でCAN通信を行うためのものであり、CPU213からの送信情報CAN_TXをECM201bに送信し、ECM201bからの受信情報CAN_RXをCPU213で受信する。
The cam angle signal CAM from the cam angle sensor 204 and the crank angle signal POS from the crank angle sensor 203 are input to the input circuit 216 via the input circuit 211 of the ECM201b, and these cam angle signal CAM and the crank angle are input. The signal POS is input to the CPU 213.
The CAN driver circuit 217 is for performing CAN communication between the electric VTC controller 201a and the ECM201b, transmits the transmission information CAN_TX from the CPU 213 to the ECM201b, and receives the reception information CAN_RX from the ECM201b in the CPU 213.
 駆動回路214a,214bはそれぞれ、CPU213から出力されるPWM(Pulse Width Modulation)信号PWM-P,PWP-Nに基づいて、VTC機構114の電動モータ12への通電を制御する。これら駆動回路214a,214bはそれぞれ、電流センサ218a,218bを備えており、電動モータ12の巻線に流れる電流を検知してCPU213に入力するようになっている。 The drive circuits 214a and 214b control energization of the VTC mechanism 114 to the electric motor 12 based on the PWM (Pulse Width Modulation) signals PWM-P and PWP-N output from the CPU 213, respectively. These drive circuits 214a and 214b are provided with current sensors 218a and 218b, respectively, and are adapted to detect the current flowing through the winding of the electric motor 12 and input it to the CPU 213.
 図7は、クランク角信号POSとカム角信号CAMを使ったモータ回転速度の算出について、その考え方を示している。カムの位相角が一定のときには、カム回転速度とエンジン回転数の2分の1は一致している。VTC機構114が変化するときには、カムの位相が変化するので、カムの回転速度とエンジン回転速度がずれてくる。VTC機構114においては、電動モータ12でこの偏差を生んでいるので、モータ回転速度を算出することができる。
 つまり、カムの回転速度とエンジンの回転数が分かれば、モータ回転速度を算出することができ、このときのモータ回転速度は次式で求められる。
 モータ回転速度=(カム回転速度-(エンジン回転数÷2))×減速比
FIG. 7 shows the concept of calculating the motor rotation speed using the crank angle signal POS and the cam angle signal CAM. When the phase angle of the cam is constant, the cam rotation speed and half of the engine speed are the same. When the VTC mechanism 114 changes, the phase of the cam changes, so that the rotation speed of the cam and the rotation speed of the engine deviate from each other. In the VTC mechanism 114, since the electric motor 12 produces this deviation, the motor rotation speed can be calculated.
That is, if the rotation speed of the cam and the rotation speed of the engine are known, the motor rotation speed can be calculated, and the motor rotation speed at this time can be obtained by the following equation.
Motor speed = (cam speed- (engine speed / 2)) x reduction ratio
 図8は、クランク角信号POSとカム角信号CAMを使ったカム回転速度の算出について示している。エンジン回転数は、クランク角信号POSの立ち下がりから次の立ち下がりまでの時間から算出する。また、カム回転速度は、カム角信号CAMの立ち下がりから立ち上がりまでの時間から算出する。そして、カム角信号CAMの立ち下がりから立ち上がりまでの時間と、エンジン回転数とに基づいてモータ回転速度を算出し、モータ回転速度の推定値を校正する。 FIG. 8 shows the calculation of the cam rotation speed using the crank angle signal POS and the cam angle signal CAM. The engine speed is calculated from the time from the fall of the crank angle signal POS to the next fall. The cam rotation speed is calculated from the time from the fall to the rise of the cam angle signal CAM. Then, the motor rotation speed is calculated based on the time from the fall to the rise of the cam angle signal CAM and the engine rotation speed, and the estimated value of the motor rotation speed is calibrated.
 クランク角センサ203から出力されるクランク角信号POSの立ち下がりの間隔は、例えば10deg.CAで予め決まっており、この10deg.CAの間にどれだけの時間がかかったか(距離÷時間)でエンジン回転数を算出することができる。カム側も同様に、矩形波の信号の立ち上がりや立ち下がりを使って、「長さ÷信号検出にかかった時間」から速度を算出することができる。 The fall interval of the crank angle signal POS output from the crank angle sensor 203 is, for example, 10 deg. It is decided in advance by CA, and this 10 deg. The engine speed can be calculated based on how long it took during CA (distance ÷ time). Similarly, on the cam side, the speed can be calculated from "length ÷ time required for signal detection" by using the rising and falling edges of the square wave signal.
 図8に一点鎖線で示すVTC機構114の目標角度に対して、実角度は実線で示すように、階段状に変化するVTC絶対角度の変化点を結ぶようになる。VTC角度(=カムの位相角)の応答波形は、カム角信号CAMの立ち下がりから次の立ち下がりまでの長いスパンで取ると、破線で示すように平均的な速度になり、目標角度と一致しない。これに対し、カム角信号CAMの立ち下がりから立ち上がりという短い区間でカムの回転速度を算出し、そこからモータ回転速度を算出することで、精度良くモータ回転速度を算出し、モータ回転速度を校正することができる。これによって、誤差が最も大きくなる目標角度近傍でも実角度に近い回転速度を算出できる。 With respect to the target angle of the VTC mechanism 114 shown by the alternate long and short dash line in FIG. 8, the real angle connects the changing points of the VTC absolute angle that changes stepwise as shown by the solid line. The response waveform of the VTC angle (= cam phase angle) has an average velocity as shown by the broken line when taken over a long span from the fall of the cam angle signal CAM to the next fall, and matches the target angle. do not do. On the other hand, by calculating the rotation speed of the cam in a short section from the fall to the rise of the cam angle signal CAM and calculating the motor rotation speed from it, the motor rotation speed is calculated accurately and the motor rotation speed is calibrated. can do. As a result, the rotation speed close to the actual angle can be calculated even in the vicinity of the target angle where the error is the largest.
 次に、図9の機能ブロック図を参照して、上述したクランク角信号POSとカム角信号CAMを使って、モータ回転速度を算出する具体的な電動VTCコントローラ201aの構成について説明する。電動VTCコントローラ201aは、モータトルク推定機能(モータトルク推定部230)、VTC機構モデル(VTC機構モデル部231)、モータ回転速度校正機能(モータ回転速度校正部232)、積分機能(積分器233)、及びVTC角度校正機能(VTC角度校正部234)などを有する。 Next, with reference to the functional block diagram of FIG. 9, a specific configuration of the electric VTC controller 201a for calculating the motor rotation speed by using the crank angle signal POS and the cam angle signal CAM described above will be described. The electric VTC controller 201a has a motor torque estimation function (motor torque estimation unit 230), a VTC mechanism model (VTC mechanism model unit 231), a motor rotation speed calibration function (motor rotation speed calibration unit 232), and an integration function (integrator 233). , And a VTC angle calibration function (VTC angle calibration unit 234) and the like.
 そして、モータトルク推定部230にモータ駆動電流を入力し、モータ特性の物理モデルとトルク定数などのパラメータに基づいてモータトルク(T-I特性)を推定する。この推定したモータトルクをVTC機構モデル部231に入力して、VTC機構114の物理モデルと慣性モーメント、フリクション及びカムトルクなどのパラメータに基づいてモータ回転速度を算出し、このモータ回転速度の推定値をモータ回転速度校正部232に入力する。 Then, the motor drive current is input to the motor torque estimation unit 230, and the motor torque (TI characteristic) is estimated based on the physical model of the motor characteristics and parameters such as the torque constant. The estimated motor torque is input to the VTC mechanism model unit 231 to calculate the motor rotation speed based on the physical model of the VTC mechanism 114 and parameters such as moment of inertia, friction and cam torque, and the estimated value of the motor rotation speed is calculated. Input to the motor rotation speed calibration unit 232.
 モータ回転速度校正部232では、カム角信号CAMの立ち上がり時に、カム角信号CAMの立ち下がりから立ち上がりまでの長さと時間からカム回転速度を算出し、カム回転速度とエンジン回転数との差分からモータ回転速度を算出する。この算出したモータ回転速度を用いて、VTC機構モデル部231から出力されるモータ回転速度の推定値を校正する(モータ駆動電流とエンジン運転状態とに基づいて算出したモータ回転速度の推定値を、カム角信号CAMとエンジン回転数とに基づく演算値に変更する)ように構成されている。 The motor rotation speed calibration unit 232 calculates the cam rotation speed from the length and time from the fall to the rise of the cam angle signal CAM when the cam angle signal CAM rises, and the motor is calculated from the difference between the cam rotation speed and the engine speed. Calculate the rotation speed. Using this calculated motor rotation speed, calibrate the estimated value of the motor rotation speed output from the VTC mechanism model unit 231 (the estimated value of the motor rotation speed calculated based on the motor drive current and the engine operating state is used. It is configured to change to a calculated value based on the cam angle signal CAM and the engine speed).
 補正されたモータ回転速度の推定値は、積分器233で積分されてVTC角度変換量が求められ、VTC角度校正部234に入力される。VTC角度校正部234では、カム角信号の立ち下がりに応答して絶対角度を算出して推定角度を校正する。このVTC角度校正部234から校正された推定角度を出力するとともに、VTC角度変換量にフィードバックするようになっている。 The corrected estimated value of the motor rotation speed is integrated by the integrator 233 to obtain the VTC angle conversion amount, which is input to the VTC angle calibration unit 234. The VTC angle calibration unit 234 calculates the absolute angle in response to the falling edge of the cam angle signal and calibrates the estimated angle. The estimated angle calibrated from the VTC angle calibration unit 234 is output and fed back to the VTC angle conversion amount.
 次に、モータ回転速度の演算について、図10により詳しく説明する。モータ回転速度は、カム角信号CAMとクランク角信号POSとに基づいて演算し、推定値を補正する。カム回転速度とエンジン回転数の差がモータ回転速度になるので、より詳しくは、モータ回転速度は、カム回転速度とエンジン回転数とに基づいて演算し、推定値を補正する。カム回転速度は、カム角信号の立ち下がりから立ち上がりまでの長さと時間から算出する。よって、カム角信号の立ち上がりから立ち下がりまでの期間とエンジン回転数とに基づいて、モータ回転速度を演算し、推定値を補正することでモータ回転速度を算出できる。 Next, the calculation of the motor rotation speed will be described in detail with reference to FIG. The motor rotation speed is calculated based on the cam angle signal CAM and the crank angle signal POS, and the estimated value is corrected. Since the difference between the cam rotation speed and the engine rotation speed is the motor rotation speed, more specifically, the motor rotation speed is calculated based on the cam rotation speed and the engine rotation speed, and the estimated value is corrected. The cam rotation speed is calculated from the length and time from the fall to the rise of the cam angle signal. Therefore, the motor rotation speed can be calculated by calculating the motor rotation speed based on the period from the rise to the fall of the cam angle signal and the engine speed and correcting the estimated value.
 図11は、カム角信号CAMの例と、カム回転速度の算出について説明するための波形図である。本発明では、基本的には、カム角信号CAMの連続する立ち下がりから立ち上がりの期間Δ1を使用する。しかし、カム角信号CAMにおける位相角検出用パルス(等間隔で連続する)の立ち下がりから、各気筒用信号パルスの立ち下がりまでの期間Δ2や立ち上がりまでの期間Δ3、更には複数の信号パルス間の立ち下がりから次の下がりまでの期間Δ4や立ち上がりまでの期間、あるいはカム角信号CAMの立ち上がりから各気筒信号の立ち下がりまでの期間Δ5などから選択して使用してもよい。 FIG. 11 is a waveform diagram for explaining an example of the cam angle signal CAM and the calculation of the cam rotation speed. In the present invention, basically, the period Δ1 from the continuous falling edge to the rising edge of the cam angle signal CAM is used. However, the period Δ2 from the fall of the phase angle detection pulse (continuous at equal intervals) in the cam angle signal CAM to the fall of the signal pulse for each cylinder, the period Δ3 until the rise, and even between a plurality of signal pulses. It may be selected and used from the period Δ4 from the falling edge to the next falling edge, the period until the rising edge, or the period Δ5 from the rising edge of the cam angle signal CAM to the falling edge of each cylinder signal.
 図12A及び図12Bはそれぞれ、エンジン回転数の算出方法について示している。図12Aに示すように、クランク角信号POSの歯欠け部以外では、エンジン回転数は、クランク角信号POSの立ち下がり毎に算出し(10deg.CA)、2回分の平均値を用いる(算出対象)。カム角信号CAMは、立ち下がりから立ち上がりまでの、例えば20deg.CAが算出対象となる。
 なお、クランク角信号POSの歯欠け部は、例えばクランク角信号POSのカウンタを使って検出できる。
12A and 12B respectively show a method of calculating the engine speed. As shown in FIG. 12A, the engine speed is calculated for each fall of the crank angle signal POS (10 deg. CA) except for the toothless portion of the crank angle signal POS, and the average value for two times is used (calculation target). ). The cam angle signal CAM is obtained from a falling edge to a rising edge, for example, 20 deg. CA is the calculation target.
The missing tooth portion of the crank angle signal POS can be detected by using, for example, a counter of the crank angle signal POS.
 一方、図12Bに示すように、カム角信号CAMの立ち上がりがクランク角信号POSの歯欠け部と重なる場合は、クランク角信号POSの歯欠け後のクランク角信号POSの立ち下がりでの算出値を用いる。すなわち、カム角信号CAMの立ち上がり(本例ではカム角信号CAMの立ち下がりから例えば20deg.CA)後のクランク角信号POSの立ち下がり(クランク角信号POSの立ち下がりから例えば30deg.CA後)で、モータ回転速度を算出して校正する。このように、カム回転速度とエンジン回転数の算出対象の長さを揃えることで、モータ回転速度の算出精度を確保できる。
 この演算の際、エンジン回転数は、最新値のみを用いても良いが、エンジン回転数の挙動に応じて最新値と平均値を切り替えても良い。エンジン回転数が一定の場合には、最新値を用いても精度を確保できる。
On the other hand, as shown in FIG. 12B, when the rising edge of the cam angle signal CAM overlaps with the missing tooth portion of the crank angle signal POS, the calculated value at the falling edge of the crank angle signal POS after the missing tooth of the crank angle signal POS is calculated. Use. That is, at the rise of the cam angle signal CAM (in this example, 20 deg. CA from the fall of the cam angle signal CAM) and then the fall of the crank angle signal POS (for example, 30 deg. CA after the fall of the crank angle signal POS). , Calculate and calibrate the motor rotation speed. In this way, by aligning the lengths of the cam rotation speed and the calculation target of the engine rotation speed, the calculation accuracy of the motor rotation speed can be ensured.
At the time of this calculation, only the latest value may be used for the engine speed, but the latest value and the average value may be switched according to the behavior of the engine speed. When the engine speed is constant, accuracy can be ensured even if the latest value is used.
 図13A及び図13Bはそれぞれ、モータ回転速度の算出・校正の実施タイミングを示している。モータ回転速度の算出と補正は、カム角信号CAMの立ち上がり、またはカム角信号CAMの立ち上がり後のクランク角信号POSの立ち下がりで実施する。この実施タイミングは、カム角信号CAMの立ち上がりとクランク角信号POSの立ち下がりの位置関係に基づいて判定する。このように、カム回転速度とエンジン回転数の更新タイミングが近い算出値からモータ回転速度を算出することで、モータ回転速度の算出精度を確保できる。 13A and 13B show the timing of calculation and calibration of the motor rotation speed, respectively. The calculation and correction of the motor rotation speed are performed at the rise of the cam angle signal CAM or the fall of the crank angle signal POS after the rise of the cam angle signal CAM. This execution timing is determined based on the positional relationship between the rising edge of the cam angle signal CAM and the falling edge of the crank angle signal POS. In this way, the calculation accuracy of the motor rotation speed can be ensured by calculating the motor rotation speed from the calculated values in which the cam rotation speed and the update timing of the engine rotation speed are close to each other.
 図13Aに示すように、前回のクランク角信号POSの立ち下がりからカム角信号CAMの立ち上がりまでの期間が短い場合には、エンジン回転数を更新した後、カム角信号CAMの立ち上がりでカムの回転速度を算出したタイミングでモータ回転速度を算出して校正する。カム角信号CAMの立ち上がりとクランク角信号POSの立ち下がりの位置関係は、クランク角信号POSの立ち下がりからカム角信号CAMの立ち上がりまでの時間t1と、前回のクランク角信号POSの周期Δtから判定する。
 そして、クランク角信号POSの立ち下がりからカム角信号CAMの立ち上がりまでの時間t1が、前回のクランク角信号POSの周期Δtの半分以下の場合に、カム角信号CAMの立ち上がりでカム回転速度を算出し、モータ回転速度を算出して補正する。
As shown in FIG. 13A, when the period from the fall of the previous crank angle signal POS to the rise of the cam angle signal CAM is short, after updating the engine speed, the cam rotates at the rise of the cam angle signal CAM. The motor rotation speed is calculated and calibrated at the timing when the speed is calculated. The positional relationship between the rise of the cam angle signal CAM and the fall of the crank angle signal POS is determined from the time t1 from the fall of the crank angle signal POS to the rise of the cam angle signal CAM and the period Δt of the previous crank angle signal POS. To do.
Then, when the time t1 from the fall of the crank angle signal POS to the rise of the cam angle signal CAM is less than half of the period Δt of the previous crank angle signal POS, the cam rotation speed is calculated by the rise of the cam angle signal CAM. Then, the motor rotation speed is calculated and corrected.
 これに対し、図13Bに示すように、前回のクランク角信号POSの立ち下がりからカム角信号CAMの立ち上がりまでの期間が長く次の更新の方が近い場合には、カム角信号CAMの立ち上がりでカム回転速度を算出した後、エンジン回転数の次の更新まで待って、このタイミングでモータ回転数を算出して校正する。すなわち、クランク角信号POSの立ち下がりからカム角信号CAMの立ち上がりまでの時間t2が、前回のクランク角信号POSの周期Δtの半分以上である場合には、カム角信号CAMの立ち上がり後のクランク角信号POSの立ち下がりでエンジン回転数を算出し、モータ回転速度を算出して補正する。 On the other hand, as shown in FIG. 13B, when the period from the fall of the previous crank angle signal POS to the rise of the cam angle signal CAM is long and the next update is closer, the rise of the cam angle signal CAM After calculating the cam rotation speed, wait until the next update of the engine speed, and then calculate and calibrate the motor speed at this timing. That is, when the time t2 from the fall of the crank angle signal POS to the rise of the cam angle signal CAM is half or more of the period Δt of the previous crank angle signal POS, the crank angle after the rise of the cam angle signal CAM The engine speed is calculated at the fall of the signal POS, and the motor speed is calculated and corrected.
 この判定に関しては、カム角信号CAMの立ち上がりとクランク角信号POSの立ち下がりの位置関係は、クランク角信号POSの立ち下がりからカム角信号CAMの立ち上がりまでの時間(t1またはt2)と前回のクランク角信号POSの周期Δtとから判定する。 Regarding this determination, the positional relationship between the rise of the cam angle signal CAM and the fall of the crank angle signal POS is the time from the fall of the crank angle signal POS to the rise of the cam angle signal CAM (t1 or t2) and the previous crank. It is determined from the period Δt of the angular signal POS.
 なお、上述したようなカム角信号CAMとクランク角信号POSのタイミングを判定せずに、モータ回転速度の算出と校正を実施しても良い。エンジン回転数が一定の場合には、タイミングを考慮しなくても精度を確保できる。
 また、所定の時間間隔(ms)で実施しても良い。クランク角信号POSの立ち下がりタイミングやカム角信号CAMの立ち上がりタイミングは、エンジン回転が速くなれば間隔が狭くなって割り込みが入り、エンジン回転が低くなれば長くなってゆっくり割り込みが入る。よって、エンジン回転が上がるほど割り込みが増えて演算負荷が高くなるので、このようにすることで割り込みの増加による演算負荷の増大を抑制できる。
The motor rotation speed may be calculated and calibrated without determining the timing of the cam angle signal CAM and the crank angle signal POS as described above. When the engine speed is constant, accuracy can be ensured without considering the timing.
Further, it may be carried out at a predetermined time interval (ms). As for the fall timing of the crank angle signal POS and the rise timing of the cam angle signal CAM, the interval becomes narrower and an interrupt is inserted when the engine rotation is faster, and the interrupt is inserted slowly when the engine rotation is lower. Therefore, as the engine speed increases, interrupts increase and the calculation load increases. Therefore, by doing so, it is possible to suppress an increase in the calculation load due to an increase in interrupts.
 図14は、モータの回転速度の推定値の補正について示している。モータ回転速度の推定値の補正は、モータ回転速度の推定値を算出値で置き換える(校正する)ことで行う。図14に示すように、カム角信号CAMの立ち上がりに応答して校正を行うことで、モータ回転速度の推定値を補正して実値に近づけることができる。この結果、モータ回転速度推定値の誤演算量を低減して、角度推定値の精度を向上できる。
 なお、モータ回転速度の算出値と前回演算までの推定値とに基づいて、今回のモータ回転速度の推定値を補正しても良い。例えば、今回のモータ回転速度の推定値を、カム角信号CAMによる算出値と前回推定値との平均値で置き換える。
FIG. 14 shows the correction of the estimated value of the rotation speed of the motor. The correction of the estimated value of the motor rotation speed is performed by replacing (calibrating) the estimated value of the motor rotation speed with the calculated value. As shown in FIG. 14, by performing calibration in response to the rise of the cam angle signal CAM, it is possible to correct the estimated value of the motor rotation speed and bring it closer to the actual value. As a result, the amount of erroneous calculation of the motor rotation speed estimated value can be reduced, and the accuracy of the angle estimated value can be improved.
The estimated value of the motor rotation speed this time may be corrected based on the calculated value of the motor rotation speed and the estimated value up to the previous calculation. For example, the estimated value of the motor rotation speed this time is replaced with the average value of the value calculated by the cam angle signal CAM and the previously estimated value.
 図15は、カム角信号CAMの立ち下がりから立ち上がりまでの期間(長さ)の学習について説明するための波形図である。カム角センサ204の製造ばらつきなどにより、カム角信号CAMの立ち下がりから立ち上がりまでの期間(時間)が異なることがある。よって、エンジン回転数及びカムの位相角が一定のとき、対象の時間とエンジン回転数とに基づいてその長さを学習する。このように、カム角信号CAMのばらつきを学習して演算値を補正することで、カム回転速度及びモータ回転速度の算出精度を確保できる。 FIG. 15 is a waveform diagram for explaining learning of the period (length) from the fall to the rise of the cam angle signal CAM. The period (time) from the fall to the rise of the cam angle signal CAM may differ due to manufacturing variations of the cam angle sensor 204 and the like. Therefore, when the engine speed and the phase angle of the cam are constant, the length is learned based on the target time and the engine speed. By learning the variation of the cam angle signal CAM and correcting the calculated value in this way, it is possible to secure the calculation accuracy of the cam rotation speed and the motor rotation speed.
 算出方法としては、カム角信号CAMの立ち下がりから立ち上がりまでの長さをΔL、カム角信号CAMの立ち下がりから立ち上がりまでの時間をTt、カム回転速度をCr、及びエンジン回転数をErとすると、カム回転速度Crは、
 Cr=ΔL÷Tt
カムの位相角が一定のとき、
 Cr=Er÷2
なので、カム角信号CAMの立ち下がりから立ち上がりまでの長さΔLは、
 ΔL=(Er÷2)×Tt
となる。
As a calculation method, it is assumed that the length from the fall to the rise of the cam angle signal CAM is ΔL, the time from the fall to the rise of the cam angle signal CAM is Tt, the cam rotation speed is Cr, and the engine speed is Er. , Cam rotation speed Cr
Cr = ΔL ÷ Tt
When the phase angle of the cam is constant
Cr = Er ÷ 2
Therefore, the length ΔL from the fall to the rise of the cam angle signal CAM is
ΔL = (Er ÷ 2) × Tt
Will be.
 図16は、エンジン回転数に応じたモータ回転速度の算出と補正について説明するための波形図である。エンジン回転数が高くなると、カム角信号CAMの入力頻度が高くなるため、モータ回転速度の算出頻度が高くなり、演算負荷が増大する。よって、エンジン回転数に応じて(エンジン回転数が高くなったときに)、モータ回転速度の算出と補正を停止すると良い。これによって、エンジンが高回転時の割り込みを低減し、演算負荷を軽減できる。 FIG. 16 is a waveform diagram for explaining the calculation and correction of the motor rotation speed according to the engine speed. As the engine speed increases, the frequency of inputting the cam angle signal CAM increases, so that the frequency of calculating the motor rotation speed increases, and the calculation load increases. Therefore, it is preferable to stop the calculation and correction of the motor rotation speed according to the engine speed (when the engine speed becomes high). As a result, interrupts when the engine is rotating at high speed can be reduced, and the calculation load can be reduced.
 あるいは、エンジン回転数に応じて、モータ回転速度の算出と補正を間引いて(少なくして)も良い。例えば図16に下向きの矢印で示すように、モータ回転速度が所定回転数以下では各カム角信号CAMの立ち上がり(気筒判別用のパルス信号を含む)に応答してモータ回転速度の算出と補正を行い、所定回転数以上ではカム角信号が所定回数立ち上がる毎にモータ回転速度の算出と補正を行う。
 更に、エンジン回転数に応じて演算の補正を行うようにしても良い。
Alternatively, the calculation and correction of the motor rotation speed may be thinned out (reduced) according to the engine speed. For example, as shown by the downward arrow in FIG. 16, when the motor rotation speed is equal to or less than the predetermined rotation speed, the motor rotation speed is calculated and corrected in response to the rise of each cam angle signal CAM (including the pulse signal for cylinder discrimination). At a predetermined rotation speed or higher, the motor rotation speed is calculated and corrected every time the cam angle signal rises a predetermined number of times.
Further, the calculation may be corrected according to the engine speed.
 図17は、従来と本発明におけるVTC機構114の実角度と推定角度の乖離を比較したシミュレーション結果を示しており、図18は、図17における破線で囲んだ領域300の拡大図である。
 従来は、モータ回転速度の校正は行っておらず、破線で示すようにカム角信号CAMの立ち下がりに応答して、VTC角度の推定角度のみを補正していた。すなわち、カム角信号CAMの立ち下がりで、VTC角度の絶対角度を算出し、推定角度を絶対角度で校正する。モータ回転速度は、物理モデルとパラメータに基づいて推定しているため、必ずしも実際と一致せず誤差が発生し、図18に矢印A2で示すようにVTC機構114の実角度に対する推定角度の乖離が大きくなっていた。
FIG. 17 shows a simulation result comparing the difference between the actual angle and the estimated angle of the VTC mechanism 114 in the conventional invention and the present invention, and FIG. 18 is an enlarged view of the region 300 surrounded by the broken line in FIG.
Conventionally, the motor rotation speed has not been calibrated, and only the estimated VTC angle has been corrected in response to the fall of the cam angle signal CAM as shown by the broken line. That is, the absolute angle of the VTC angle is calculated at the fall of the cam angle signal CAM, and the estimated angle is calibrated with the absolute angle. Since the motor rotation speed is estimated based on the physical model and parameters, it does not always match the actual one and an error occurs, and as shown by arrow A2 in FIG. 18, the deviation of the estimated angle from the actual angle of the VTC mechanism 114 is large. It was getting bigger.
 これに対し、本発明では、上述したVTC角度の推定角度の補正に加えて、カム角信号CAMの立ち上がりに応答して、モータ回転速度を算出し、実線で示すようにモータ回転速度の推定値を校正している。これによって、カム角信号CAMの立ち上がり毎にモータ回転速度の誤差に起因するVTC角度の推定値のズレを修正できるので、矢印A1で示すように、VTC機構114の実角度に対する推定角度の乖離を低減できる。 On the other hand, in the present invention, in addition to the above-mentioned correction of the estimated VTC angle, the motor rotation speed is calculated in response to the rise of the cam angle signal CAM, and the estimated value of the motor rotation speed is shown by the solid line. Is calibrating. As a result, the deviation of the estimated value of the VTC angle due to the error of the motor rotation speed can be corrected for each rise of the cam angle signal CAM. Therefore, as shown by the arrow A1, the deviation of the estimated angle with respect to the actual angle of the VTC mechanism 114 can be corrected. Can be reduced.
 図19Aは、従来と本発明におけるVTC角度を比較したシミュレーション結果を示し、図19Bは、同じく従来と本発明における操作電圧を比較したシミュレーション結果を示している。また、図20Aは、図19Aにおける破線で囲んだ領域310の拡大図、図20Bは、図19Bにおける破線で囲んだ領域320の拡大図である。
 上述したように、VTC機構114の実角度に対する推定角度の乖離が低減されることで、操作電圧の誤差を小さくできる。実角度から算出した操作電圧は、図19B及び図20Bに実線で示すようになり、推定角度の校正無し(従来)から算出した操作電圧は、破線で示すようになる。また、推定角度の校正有り(本発明)から算出した操作電圧は実線で示すようになる。
FIG. 19A shows a simulation result comparing the VTC angle between the conventional method and the present invention, and FIG. 19B shows a simulation result comparing the operating voltage between the conventional method and the present invention. 20A is an enlarged view of the area 310 surrounded by the broken line in FIG. 19A, and FIG. 20B is an enlarged view of the area 320 surrounded by the broken line in FIG. 19B.
As described above, the error in the operating voltage can be reduced by reducing the deviation of the estimated angle from the actual angle of the VTC mechanism 114. The operating voltage calculated from the actual angle is shown by a solid line in FIGS. 19B and 20B, and the operating voltage calculated from no calibration of the estimated angle (conventional) is shown by a broken line. In addition, the operating voltage calculated from the calibration of the estimated angle (in the present invention) is shown by a solid line.
 矢印A1,A2で対比して示すように、本発明によれば、推定角度から操作電圧をフィードバック制御で算出しているので、推定角度の実角度に対する乖離を減らすことができる。これによって、VTC機構に不正確な操作電圧が与えられるのを低減できる。この結果、誤った操作電圧を低減することができ、従来に比べて操作電圧を実角度から算出した操作電圧に近付けることができる。従って、VTC機構の目標角度に対する収束性が向上でき、車両性能の悪化を抑制できる。 As shown by comparing the arrows A1 and A2, according to the present invention, since the operating voltage is calculated from the estimated angle by feedback control, the deviation of the estimated angle from the actual angle can be reduced. As a result, it is possible to reduce the application of an inaccurate operating voltage to the VTC mechanism. As a result, the erroneous operating voltage can be reduced, and the operating voltage can be made closer to the operating voltage calculated from the actual angle as compared with the conventional case. Therefore, the convergence of the VTC mechanism with respect to the target angle can be improved, and deterioration of vehicle performance can be suppressed.
 12…電動モータ、100…内燃機関(エンジン)、114…VTC機構、201…制御装置、201a…電動VTCコントローラ、201b…エンジンコントロールモジュール(ECM)、201c…CAN、203…クランク角センサ、204…カム角センサ、205…イグニッションスイッチ、230…モータトルク推定部、231…VTC機構モデル部、232…モータ回転速度校正部、233…積分器、234…VTC角度校正部、CAM…カム角信号、POS…クランク角信号 12 ... Electric motor, 100 ... Internal combustion engine (engine), 114 ... VTC mechanism, 201 ... Control device, 201a ... Electric VTC controller, 201b ... Engine control module (ECM), 201c ... CAN, 203 ... Crank angle sensor, 204 ... Cam angle sensor, 205 ... Ignition switch, 230 ... Motor torque estimation unit, 231 ... VTC mechanism model unit, 232 ... Motor rotation speed calibration unit, 233 ... Integrator, 234 ... VTC angle calibration unit, CAM ... Cam angle signal, POS … Crank angle signal

Claims (14)

  1.  カム角信号に基づいてカムの位相角を検出し、電動モータを用いてカムの位相角を制御するコントローラを備える可変バルブタイミング機構の制御装置において、
     前記コントローラは、
     前記カム角信号が検出されたときに、前回の前記カム角信号が検出されたときの前記カムの位相角を更新し、前記カムの位相角の検出の間は、モータ駆動電流とエンジン運転状態とに基づいてモータ回転速度を演算し、
     前記モータ回転速度に基づいてモータ回転角を演算して前記カムの位相角を推定し、
     前記モータ回転角から前記カムの位相角の補間を行い、
     前記モータ駆動電流とエンジン運転状態とに基づいて算出したモータ回転速度の推定値を、前記カム角信号とエンジン回転数とに基づく演算値に変更する、
     ように構成されている可変バルブタイミング機構の制御装置。
    In a control device of a variable valve timing mechanism including a controller that detects a cam phase angle based on a cam angle signal and controls a cam phase angle using an electric motor.
    The controller
    When the cam angle signal is detected, the phase angle of the cam when the previous cam angle signal is detected is updated, and the motor drive current and the engine operating state are updated during the detection of the phase angle of the cam. Calculate the motor rotation speed based on and
    The motor rotation angle is calculated based on the motor rotation speed to estimate the phase angle of the cam.
    Interpolating the phase angle of the cam from the motor rotation angle
    The estimated value of the motor rotation speed calculated based on the motor drive current and the engine operating state is changed to a calculated value based on the cam angle signal and the engine rotation speed.
    A control device for a variable valve timing mechanism that is configured as such.
  2.  前記コントローラは、前記モータ回転速度の推定値を、カム回転速度とエンジン回転数とに基づく演算値で補正するように更に構成されている、請求項1に記載の可変バルブタイミング機構の制御装置。 The control device for the variable valve timing mechanism according to claim 1, wherein the controller is further configured to correct an estimated value of the motor rotation speed with a calculated value based on a cam rotation speed and an engine rotation speed.
  3.  前記コントローラは、前記モータ回転速度の推定値を、前記カム角信号の立ち下がりから立ち上がりまでの期間とエンジン回転数とに基づいて算出した演算値で置き換えるように更に構成されている、請求項1に記載の可変バルブタイミング機構の制御装置。 The controller is further configured to replace the estimated value of the motor rotation speed with a calculated value calculated based on the period from the fall to the rise of the cam angle signal and the engine speed. The control device of the variable valve timing mechanism described in 1.
  4.  前記コントローラは、前記カム角信号を用いて算出した演算値と、前回の演算までのモータ回転速度の推定値とに基づいて、今回のモータ回転速度の推定値を補正するように更に構成されている、請求項1に記載の可変バルブタイミング機構の制御装置。 The controller is further configured to correct the estimated value of the motor rotation speed this time based on the calculated value calculated using the cam angle signal and the estimated value of the motor rotation speed up to the previous calculation. The control device for the variable valve timing mechanism according to claim 1.
  5.  前記カム角信号は、位相角検出用パルスと各気筒用信号パルスを含み、前記コントローラは、複数の信号パルス間の立ち下がりから立ち上がり期間の中から選択して使用するように更に構成されている、請求項1に記載の可変バルブタイミング機構の制御装置。 The cam angle signal includes a phase angle detection pulse and a signal pulse for each cylinder, and the controller is further configured to be used by selecting from a falling to rising period between a plurality of signal pulses. The control device for the variable valve timing mechanism according to claim 1.
  6.  前記コントローラは、前記カム角信号の立ち下がりから立ち上がりまでの期間を学習し、前記モータ回転速度の算出時に校正するように更に構成されている、請求項1に記載の可変バルブタイミング機構の制御装置。 The control device for a variable valve timing mechanism according to claim 1, wherein the controller learns a period from a fall to a rise of the cam angle signal and is further configured to calibrate when calculating the motor rotation speed. ..
  7.  前記コントローラは、前記エンジン回転数に応じて前記モータ回転速度の補正を停止するように更に構成されている、請求項1に記載の可変バルブタイミング機構の制御装置。 The control device for the variable valve timing mechanism according to claim 1, wherein the controller is further configured to stop the correction of the motor rotation speed according to the engine speed.
  8.  カム角信号に基づいてカムの位相角を検出し、電動モータを用いてカムの位相角を制御する可変バルブタイミング機構の制御方法において、
     前記カム角信号が検出されたときに、前回の前記カム角信号が検出されたときの前記カムの位相角を更新し、前記カムの位相角の検出の間は、モータ駆動電流とエンジン運転状態とに基づいてモータ回転速度を演算することと、
     前記モータ回転速度に基づいてモータ回転角を演算して前記カムの位相角を推定し、
     前記モータ回転角から前記カムの位相角の補間を行うことと、
     前記モータ駆動電流とエンジン運転状態とに基づいて算出したモータ回転速度の推定値を、前記カム角信号とエンジン回転数とに基づく演算値に変更することと
     を具備する可変バルブタイミング機構の制御方法。
    In the control method of the variable valve timing mechanism that detects the phase angle of the cam based on the cam angle signal and controls the phase angle of the cam using an electric motor.
    When the cam angle signal is detected, the phase angle of the cam when the previous cam angle signal is detected is updated, and the motor drive current and the engine operating state are updated during the detection of the phase angle of the cam. To calculate the motor rotation speed based on
    The motor rotation angle is calculated based on the motor rotation speed to estimate the phase angle of the cam.
    Interpolating the phase angle of the cam from the motor rotation angle and
    A control method for a variable valve timing mechanism, which comprises changing an estimated value of a motor rotation speed calculated based on the motor drive current and an engine operating state to a calculated value based on the cam angle signal and the engine rotation speed. ..
  9.  前記モータ回転速度の推定値を、カム回転速度とエンジン回転数とに基づく演算値で補正することを更に具備する、請求項8に記載の可変バルブタイミング機構の制御方法。 The control method for the variable valve timing mechanism according to claim 8, further comprising correcting the estimated value of the motor rotation speed with a calculated value based on the cam rotation speed and the engine rotation speed.
  10.  前記モータ回転速度の推定値を、前記カム角信号の立ち下がりから立ち上がりまでの期間とエンジン回転数とに基づいて算出した演算値で置き換えることを更に具備する、請求項8に記載の可変バルブタイミング機構の制御方法。 The variable valve timing according to claim 8, further comprising replacing the estimated value of the motor rotation speed with a calculated value calculated based on the period from the fall to the rise of the cam angle signal and the engine speed. How to control the mechanism.
  11.  前記カム角信号を用いて算出した演算値と、前回の演算までのモータ回転速度の推定値とに基づいて、今回のモータ回転速度の推定値を補正することを更に具備する、請求項8に記載の可変バルブタイミング機構の制御方法。 The eighth aspect of the present invention further comprises correcting the estimated value of the motor rotation speed this time based on the calculated value calculated by using the cam angle signal and the estimated value of the motor rotation speed up to the previous calculation. The method of controlling the variable valve timing mechanism described.
  12.  前記カム角信号は、位相角検出用パルスと各気筒用信号パルスを含み、前記コントローラは、複数の信号パルス間の立ち下がりから立ち上がり期間の中から選択して使用することを更に具備する、請求項8に記載の可変バルブタイミング機構の制御方法。 The cam angle signal includes a phase angle detection pulse and a signal pulse for each cylinder, and the controller is further provided to be used by selecting from a falling to rising period between a plurality of signal pulses. Item 8. The control method of the variable valve timing mechanism according to Item 8.
  13.  前記カム角信号の立ち下がりから立ち上がりまでの期間を学習し、前記モータ回転速度の算出時に校正することを更に具備する、請求項8に記載の可変バルブタイミング機構の制御方法。 The control method of the variable valve timing mechanism according to claim 8, further comprising learning the period from the fall to the rise of the cam angle signal and calibrating it at the time of calculating the motor rotation speed.
  14.  前記エンジン回転数に応じて前記モータ回転速度の補正を停止することを更に具備する、請求項8に記載の可変バルブタイミング機構の制御方法。 The control method of the variable valve timing mechanism according to claim 8, further comprising stopping the correction of the motor rotation speed according to the engine speed.
PCT/JP2020/024732 2019-07-03 2020-06-24 Control device for variable valve timing mechanism and control method of same WO2021002252A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-124478 2019-07-03
JP2019124478A JP2021011820A (en) 2019-07-03 2019-07-03 Control device of variable valve timing mechanism and method of controlling the same

Publications (1)

Publication Number Publication Date
WO2021002252A1 true WO2021002252A1 (en) 2021-01-07

Family

ID=74100266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024732 WO2021002252A1 (en) 2019-07-03 2020-06-24 Control device for variable valve timing mechanism and control method of same

Country Status (2)

Country Link
JP (1) JP2021011820A (en)
WO (1) WO2021002252A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024054435A (en) * 2021-02-26 2024-04-17 日立Astemo株式会社 Valve timing control device for internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070754A (en) * 2004-08-31 2006-03-16 Denso Corp Variable valve timing control device of internal combustion engine
JP2008051111A (en) * 2007-10-05 2008-03-06 Toyota Motor Corp Valve driving system for internal combustion engine
JP2008057370A (en) * 2006-08-30 2008-03-13 Denso Corp Variable valve timing control device of internal combustion engine
JP2012144993A (en) * 2011-01-07 2012-08-02 Denso Corp Fault diagnostic device of motor rotating state detecting system of variable valve timing control system
JP2018145874A (en) * 2017-03-06 2018-09-20 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
JP2020079581A (en) * 2018-11-14 2020-05-28 日立オートモティブシステムズ株式会社 Control device for variable valve timing mechanism and control method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006070754A (en) * 2004-08-31 2006-03-16 Denso Corp Variable valve timing control device of internal combustion engine
JP2008057370A (en) * 2006-08-30 2008-03-13 Denso Corp Variable valve timing control device of internal combustion engine
JP2008051111A (en) * 2007-10-05 2008-03-06 Toyota Motor Corp Valve driving system for internal combustion engine
JP2012144993A (en) * 2011-01-07 2012-08-02 Denso Corp Fault diagnostic device of motor rotating state detecting system of variable valve timing control system
JP2018145874A (en) * 2017-03-06 2018-09-20 日立オートモティブシステムズ株式会社 Control device and control method for internal combustion engine
JP2020079581A (en) * 2018-11-14 2020-05-28 日立オートモティブシステムズ株式会社 Control device for variable valve timing mechanism and control method thereof

Also Published As

Publication number Publication date
JP2021011820A (en) 2021-02-04

Similar Documents

Publication Publication Date Title
JP6266364B2 (en) Control device for internal combustion engine
JP5591202B2 (en) Control device for variable valve timing mechanism
JP5591204B2 (en) Control device for variable valve timing mechanism
JP6378112B2 (en) Rotation detection abnormality diagnosis device and method, and rotational position control device using the same
WO2020100939A1 (en) Control device for variable valve timing mechanism and control method thereof
JP6716477B2 (en) Control device and control method for variable valve timing device
JP4267635B2 (en) Variable valve timing device
CN110374710B (en) Control device for valve timing control mechanism
WO2021002252A1 (en) Control device for variable valve timing mechanism and control method of same
JP6739377B2 (en) Control device and control method for internal combustion engine
JP6941078B2 (en) Variable valve timing mechanism control device and control method
JP7064454B2 (en) Variable valve timing device control device and control method
JP6672393B2 (en) Valve timing control device
JP2015218623A (en) Internal combustion engine control unit
JP7324378B2 (en) Control device for variable valve timing mechanism and control method thereof
WO2022249612A1 (en) Control device for variable valve timing mechanism and control method therefor
JP2018123806A (en) Controller of internal combustion engine and control method of variable mechanism of internal combustion engine
JP2022060759A (en) Control device of variable valve timing mechanism and control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835263

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835263

Country of ref document: EP

Kind code of ref document: A1