WO2021002067A1 - Pump device, method for controlling pump device, and pump system - Google Patents

Pump device, method for controlling pump device, and pump system Download PDF

Info

Publication number
WO2021002067A1
WO2021002067A1 PCT/JP2020/012907 JP2020012907W WO2021002067A1 WO 2021002067 A1 WO2021002067 A1 WO 2021002067A1 JP 2020012907 W JP2020012907 W JP 2020012907W WO 2021002067 A1 WO2021002067 A1 WO 2021002067A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
motor
pump device
threshold value
measurement data
Prior art date
Application number
PCT/JP2020/012907
Other languages
French (fr)
Japanese (ja)
Inventor
麻美子 野田
和也 平本
修 楯石
孝志 関口
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2021002067A1 publication Critical patent/WO2021002067A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/02Stopping of pumps, or operating valves, on occurrence of unwanted conditions

Definitions

  • the present invention relates to a pump device, a control method thereof, and a pump system.
  • Submersible pumps are generally used for septic tank drainage, miscellaneous drainage / equipment drainage, rainwater / spring drainage, etc. Therefore, the submersible pump is required to respond particularly quickly to an emergency such as a failure or a power failure so that the submersible pump is always driven.
  • Patent Document 1 describes a control system that shuts off the power supply from the power supply to the pump when an abnormal signal indicating an abnormal operating state is detected, as a technique particularly preferably used for a submersible pump.
  • Patent Document 2 describes a device in which a water immersion detection sensor is provided in a submersible pump and the electric motor is stopped at the time of water immersion in the oil chamber.
  • the pump is kept stopped for a long time.
  • An object of an embodiment of the present invention is to provide a pump device capable of shortening the stop time of a submersible pump when an abnormal operating state occurs as compared with the conventional case.
  • An object of the present invention is to provide a control method of a pump device capable of shortening the stop time of a submersible pump when an abnormal operating state occurs as compared with the conventional case.
  • An object of the present invention is to provide a pump system including a pump device capable of shortening the stop time of a submersible pump when an abnormal operating state occurs as compared with the conventional case.
  • the pump device includes an impeller and a motor configured to drive a rotating shaft that rotates the impeller, so as to measure a state in the pump device.
  • a motor is connected to an inverter controlled by a control device, including a sensor unit including at least one sensor configured and a communication board configured to receive measurement data of at least one sensor from the sensor unit.
  • the control device determines the presence or absence of an abnormal state in the pump device based on the measurement data of at least one sensor, and based on the determination result, the motor is set to the normal operation mode and the motor is set to the normal operation mode.
  • the pumping device is configured to switch between low power operating modes, which also operate at low power, and the communication board is configured to transmit the measurement data of at least one sensor received to the control device. Can be provided.
  • an impeller configured to drive a rotating shaft for rotating the impeller, and at least one configured to measure a state in the pump device. It is a control method of a sensor unit including a sensor and a pump device including the sensor. Based on the measurement data of at least one sensor acquired from the sensor unit, the presence or absence of an abnormal state in the pump device is determined, and the determination result is obtained. Based on this, it is possible to provide a control method including a step of switching the motor between a normal operation mode and a low output operation mode in which the motor is operated at a lower output than the normal operation mode.
  • FIG. 1 It is schematic cross-sectional view which shows the submersible pump as an example of the pump device by one Embodiment of this invention. It is a schematic block diagram which shows the structural example of the pump system including the submersible pump of FIG. It is a schematic block diagram which shows the structural example of the control part shown in FIG. It is a flow chart which shows an example of processing by a control part. It is a schematic block diagram which shows the structural example of the pump system by another embodiment of this invention.
  • FIG. 1 shows an example of a pump device according to an embodiment of the present invention.
  • the pumping device is a submersible pump 100.
  • the submersible pump 100 includes an impeller 102 that rotates about the axis AL, and a pump casing 104 and a pump bracket 106 that define a pump chamber 103 that houses the impeller 102.
  • the impeller 102 is connected to the rotating shaft 108 and rotates with the rotation of the rotating shaft 108.
  • the pump casing 104 has a suction port 104a and a discharge port 104b, and together with the pump bracket 106, defines a water flow path. By rotating the impeller 102, water is transferred from the suction port 104a to the discharge port 104b.
  • the pump bracket 106 is fixed to the pump casing 104 with screws or the like and covers the back surface (upper side in FIG. 1) of the impeller 102.
  • a through hole (reference numeral omitted) for inserting the rotating shaft 108 is formed in the bottom portion of the pump bracket 106 that covers the back surface of the impeller 102. Further, the through hole is provided with a mechanical seal 110 for sealing the rotating shaft 108.
  • the motor 112 provides the impeller 102 with rotational driving force.
  • the motor 112 includes a rotating shaft 108 that rotates about the axis AL, a rotor 114 that rotates integrally with the rotating shaft 108, and a stator 116 provided on the outer peripheral side of the rotor 114.
  • the stator 116 has a stator core 116a and a stator coil 116b wound around the stator core 116a.
  • a power line is connected to the stator coil 116b, and power is supplied from an external power source (for example, a commercial power source) through the cable 118. Specifically, electric power is supplied to the stator coil 116 of the motor 112 via an external control device (not shown in FIG. 1) connected to an external power source.
  • the control device includes an inverter connected to the motor 112 and a control unit that communicates with the inverter.
  • the control unit determines the presence or absence of an abnormal state in the submersible pump 100 by a process described later, and based on the determination result, sets the motor 112 between the normal operation mode and the low output operation (in other words, modest operation) mode. It can be switched with. In the low power operation mode, the motor 112 is operated at a lower power than in normal operation.
  • a tubular motor frame 120 is provided so as to cover the outer circumferences of the rotor 114 and the stator 116.
  • the stator core 116a is fixed to the inner peripheral surface of the motor frame 120.
  • the pump casing 104 side (lower side in FIG. 1) of the motor 112 is referred to as a “load side”, and the opposite side (upper side in FIG. 1) is referred to as a “counterload side”.
  • the load-side bearing housing 122 is fixed to the inner peripheral surface of the load-side end of the motor frame 120.
  • the load-side bearing housing 122 accommodates the load-side bearing 124 for axially supporting the rotating shaft 108.
  • the load side bearing housing 122 is provided with a mechanical seal 110 for sealing the rotating shaft 108.
  • the internal space of the load-side bearing housing 122 and the pump bracket 106 forms a lubricating oil chamber 126 filled with lubricating oil for the mechanical seal 110.
  • the mechanical seal 110 can prevent the water transferred by the impeller 104 from entering the motor chamber 128.
  • the counterload side bearing housing 130 is fixed to the inner peripheral surface of the counterload side end of the motor frame 120.
  • the counterload side bearing housing 130 accommodates the counterload side bearing 132 for pivotally supporting the rotating shaft 108.
  • the upper cover 134 is fixed to the opposite end of the motor frame 120 and seals the upper opening of the tubular motor frame 120.
  • the cable 118 is arranged in the motor chamber 128 through the opening (reference numeral omitted) of the upper cover 134.
  • the internal space of the submersible pump 100 defined by the upper cover 134, the motor frame 120, and the load side bearing housing 122 is referred to as a motor chamber 128.
  • the motor 112 of the submersible pump 100 can be operated in the normal operation mode or the modest operation mode (in other words, the low output operation mode) by the external control device, depending on the state in the submersible pump 100.
  • the submersible pump 100 includes various sensors that detect the state inside the submersible pump 100, and a sensor substrate that is electrically connected to these sensors.
  • the sensor and the sensor substrate are collectively referred to as a sensor unit.
  • the sensor unit is a component that outputs measurement data of the sensor to the communication board 12 described later.
  • the sensor unit may include at least one sensor. Further, the sensor unit does not have to include the sensor substrate.
  • the sensor board processes the measured value signal from the sensor and transmits the processed data to the communication board 12.
  • the communication board 12 outputs the received data to the control device.
  • the two sensor substrates 10a and 10b are arranged in the motor chamber 128 on the counterload side bearing housing 130 and the load side bearing housing 122, respectively.
  • the number and installation positions of the sensor substrates are not limited to the illustrated examples.
  • the sensor substrates 10a and 10b can be omitted. In that case, the measured value signals of the various sensors are directly output to the communication board 12 and processed by the communication board 12.
  • the counterload side temperature sensor 14a, the load side temperature sensor 14b, the counterload side vibration sensor 15a, the load side vibration sensor 15b, and the oil deterioration detector 16 are arranged as sensors for detecting the state inside the submersible pump 100.
  • the counterload side temperature sensor 14a and the load side temperature sensor 14b may be, for example, a thermocouple, and are arranged in the motor chamber 128 in order to monitor the temperature rise of the motor 112.
  • the counterload side temperature sensor 14a and the load side temperature sensor 14b are arranged at the counterload side coil end and the load side coil end of the stator 116 of the motor 112, respectively.
  • the coil end refers to a portion of the stator coil 116b that protrudes from the end surface of the stator core 116a on one side in the axial direction.
  • the counterload side temperature sensor 14a and the load side temperature sensor 14b may be attached to the counterload side bearing 132 and the load side bearing 124, respectively, so as to monitor the temperature of the bearing of the rotating shaft 108, for example. .. Further, one of the non-load side temperature sensor 14a and the load side temperature sensor 14b may be omitted.
  • a counterload side vibration sensor 15a such as an acceleration sensor and a speed sensor and a load side vibration sensor 15b are arranged in the motor chamber 128.
  • the anti-load side vibration sensor 15a and the load side vibration sensor 15b measure the anti-load side bearing 132 and the load side bearing 124 of the rotating shaft 108 in order to monitor the vibration of the rotating shaft 108.
  • the anti-load side vibration sensor 15a is mounted on the anti-load side sensor substrate 10a fixed to the anti-load side bearing housing 130
  • the load side vibration sensor 15b is the load fixed to the load side bearing housing 122. It is mounted on the side sensor board 10b.
  • the installation positions of the anti-load side vibration sensor 15a and the load side vibration sensor 15b are not particularly limited as long as the vibration of the rotating shaft 108 can be monitored. Further, one of the anti-load side vibration sensor 15a and the load side vibration sensor 15b may be omitted.
  • the oil deterioration detector (in other words, the oil sensor) 16 is arranged in the lubricating oil chamber 126.
  • the illustrated oil deterioration detector 16 can have, for example, the configuration described in JP-A-2002-310091.
  • the oil deterioration detector 16 is attached to the load-side bearing housing 122 via an electrically insulating attachment portion (not shown) so that the electrode portion 16a projects into the lubricating oil chamber 126.
  • the oil deterioration detector 16 electrically conducts the electrode portion 16a so that a signal is output to the load-side sensor substrate 10b. It is configured in.
  • the configuration of the oil deterioration detector 16 is not particularly limited.
  • the oil deterioration detector 16 may be configured to detect the degree of contamination of the lubricating oil by, for example, a throwing / receiving receiver.
  • the temperature sensor, the vibration sensor and the oil deterioration detector are provided as the sensors for detecting the state in the submersible pump 100, and at least one of these is provided. Just do it. Further, in addition to the temperature sensor, the vibration sensor and the oil deterioration detector, a sensor for detecting an abnormal state in the submersible pump 100 can be appropriately included in the sensor unit.
  • the submersible pump 100 is a sensor that detects the state inside the submersible pump 100 (in this embodiment, the anti-load side and load side temperature sensors 14a and 14b, the anti-load side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16).
  • the communication board 12 supplies power to the non-load side and load side sensor boards 10a and 10b, and receives signals (in other words, measurement data of the above sensor) from the non-load side and load side sensor boards 10a and 10b. It is configured as follows.
  • the communication board 12 is a PLC (Power Line Communications) board, and is configured to be able to communicate with an external control device via a power line coupled to a cable 118 for driving a motor.
  • the communication board 12 does not necessarily have to be a PLC board.
  • FIG. 2 is a schematic block diagram showing a configuration of a pump system 20 according to an embodiment of the present invention.
  • the pump system 20 includes, as an example, the submersible pump 100 of the first embodiment.
  • the pump system 20 includes a submersible pump 100 and a control device 22 that controls the operation of the submersible pump 100.
  • the control device 22 includes an inverter 26 connected to the commercial power supply 24 and connected to the motor 112 of the submersible pump 100, and a control unit 28 electrically connected to the inverter 26.
  • the inverter 26 converts the three-phase AC voltage supplied from the commercial power supply 24 into a three-phase AC voltage having a desired frequency and a desired magnitude, and supplies the converted three-phase AC voltage to the motor 112.
  • the control unit 28 controls the motor 112 by controlling the inverter 26.
  • the control unit 28 can be supplied with electric power from the commercial power supply 24 via the inverter 26 or directly from the commercial power supply 24.
  • the sensors indicating the state inside the submersible pump 100 are the sensors described above. It is electrically connected to the communication board 12 via the boards 10a and 10b so as to be communicable. In FIG. 2, the sensor and the sensor substrate are collectively referred to as a sensor unit.
  • the communication board 12 is electrically connected to the control unit 28 of the control device 22 so as to be able to communicate with each other.
  • the control unit 28 is a counterload side and load side temperature sensors 14a and 14b, antiload side and load side vibration sensors 15a and 15b, and an oil deterioration detector 16 acquired from the sensor substrates 10a and 10b.
  • the inverter 26 is controlled based on the measurement data. Specifically, the control unit 28 determines measurement data of at least one of the counterload side and load side temperature sensors 14a and 14b, the counterload side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16.
  • the inverter 26 is controlled so that the output of the motor 112 gradually or gradually decreases when the threshold value (hereinafter referred to as the first threshold value) is reached (in other words, low output operation or modest operation is performed). be able to.
  • the threshold value hereinafter referred to as the first threshold value
  • the measurement data of at least one of the anti-load side and load side temperature sensors 14a and 14b, the anti-load side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16 is the first.
  • the motor 112 can be stopped when a second threshold value larger than the threshold value is reached.
  • the first threshold value and the second threshold value of the measurement data are preset for each of the anti-load side and load side temperature sensors 14a and 14b, the anti-load side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16. , Stored in the control unit 28.
  • the pump system 20 can be provided with a notification device 30 capable of communicating with the control unit 28 of the control device 22.
  • the notification device 30 can be installed outside the submersible pump 100 (for example, on the ground), and the communication between the control unit 28 and the notification device 30 may be wired communication or wireless communication. ..
  • the measurement data of at least one of the anti-load side and load side temperature sensors 14a and 14b, the anti-load side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16 reaches the first threshold value. At that time, an alarm signal indicating that the submersible pump 100 is in an abnormal state can be output to the notification unit 32 of the notification device 30.
  • the notification device 30 can acquire various states (for example, start / stop of the motor 112, current value, failure state, various operation histories, etc.) in the pump system 20 and various set values required for other operations from the control unit 28. It may have a display unit 34 for displaying data.
  • the display unit 34 can be configured to be communicable with the control unit 28 via or directly from the notification unit 32.
  • the reporting unit 32 When the reporting unit 32 receives the alarm signal, it can notify the administrator / maintenance / inspector of the pump system 20 that the alarm signal has been received.
  • the reporting unit 32 can be composed of visual display and / or voice reporting means, for example, a telephone, a PC (personal computer), a facsimile, and / or a personal mobile phone installed in the management facility.
  • the reporting means can be determined in advance and stored in the control unit 28.
  • the reporting unit 32 and / or the display unit 34 can be configured so that the administrator / maintenance / inspector of the pump system 20 can identify a sensor indicating abnormal measurement data.
  • control unit 28 includes a setting unit 40, a storage unit 42, a calculation unit 44, a communication unit 46, and an IO unit (in other words, an input / output unit) 48.
  • Each part of the control unit 28 may be connected to each other via a bus, or each part may be connected by communication, or both a bus connection and a communication connection may be mixed.
  • various data for the operation of the submersible pump 100 such as the rated current value of the pump, are set.
  • the data can include first and second thresholds of the measurement data described above.
  • the setting unit 40 stores the set data in the storage unit 42.
  • the first and second threshold values may be stored in the storage medium 50 built in the communication unit 46.
  • the storage unit 42 stores the data set by the setting unit 40 and the control program of the submersible pump 100.
  • the calculation unit 44 executes the processing of the control unit 28 by reading the control program from the storage unit 42 and executing it.
  • the calculation unit 44 can include a determination unit that compares the measurement data of each sensor 14a, 14b, 15a, 15b, 16 with the first and second threshold values stored in the storage unit 42 or the storage medium 50. ..
  • the communication unit 46 includes an integrated circuit 52 and a storage medium 50.
  • the integrated circuit 52 and the storage medium 50 are driven by electric power supplied from the commercial power supply 24 or the inverter 26 to the control unit 28.
  • the IO unit 48 performs input / output between the arithmetic unit 44, the inverter 26, and the communication board 12.
  • the calculation unit 44 makes the motor 112 modest.
  • the inverter 26 is controlled so as to start or stop.
  • the measurement data may always be input from the communication board 12 to the control unit 28 as continuous values.
  • the calculation unit 44 stores data indicating modest operation or stop of the motor 112 when the measurement data of the sensors 14a, 14b, 15a, 15b, 16 reaches the first threshold value or the second threshold value. To memorize.
  • the integrated circuit 52 reads the data from the storage medium 50 and transmits an alarm signal to the reporting unit 32 of the reporting device 30.
  • the calculation unit 44 of the control unit 28 sets the first and second threshold values for the vibration sensors 15a and 15b, the temperature sensors 14a and 14b, and the oil deterioration detector 16 in a predetermined order. Make a comparison. Specifically, the calculation unit 44 determines whether or not the measurement data of each of the vibration sensors 15a and 15b is smaller than the first threshold value (referred to as vibration threshold value 1) (step 1). In step 1, when the measurement data of the vibration sensors 15a and 15b is smaller than the first threshold value (YES), the calculation unit 44 determines that the measurement data of the temperature sensors 14a and 14b is the first threshold value (temperature threshold value).
  • step 2 It is determined whether or not it is smaller than (referred to as 1) (step 2).
  • step 2 when the measurement data of the temperature sensors 14a and 14b are smaller than the first threshold value (YES), the calculation unit 44 determines that the measurement data of the oil deterioration detector 16 is the first threshold value (referred to as oil threshold value 1). ) Is smaller (step 3).
  • step 3 when the measurement data of the oil deterioration detector 16 is smaller than the first threshold value (YES), all the measurement data of vibration, temperature, and lubricating oil are smaller than the first threshold value.
  • the motor 112 is operated normally (step 4).
  • step 1 when at least one of the measurement data of the vibration sensors 15a and 15b has reached the first threshold value (NO), the calculation unit 44 has the measurement data of the second vibration sensors 15a and 15b. It is determined whether or not it is smaller than the threshold value (referred to as vibration threshold value 2) of (step 5).
  • step 5 when the measurement data of the vibration sensors 15a and 15b is smaller than the second threshold value (YES), the calculation unit 44 determines that the measurement data of the temperature sensors 14a and 14b is the second threshold value (temperature threshold value). It is determined whether or not it is smaller than (referred to as 2) (step 6).
  • step 5 when the measurement data of at least one of the vibration sensors 15a and 15b has reached the second threshold value (NO), the calculation unit 44 stops the output of the inverter 26 and stops the motor 112 (step 9). ).
  • step 6 when the measurement data of the temperature sensors 14a and 14b are smaller than the second threshold value (YES), the calculation unit 44 determines that the measurement data of the oil deterioration detector 16 is the second threshold value (oil threshold value 2). It is determined whether or not it is smaller than (referred to as) (step 7). In step 6, when the measurement data of at least one of the temperature sensors 14a and 14b has reached the second threshold value (NO), the calculation unit 44 stops the output of the inverter 26 and stops the motor 112 (step 9). ).
  • step 7 when the measurement data of the oil deterioration detector 16 is smaller than the second threshold value (YES), all the measurement data of vibration, temperature, and lubricating oil are smaller than the second threshold value, so that the calculation unit 44 uses the motor.
  • Control the inverter 26 to start modest operation of 112 step 8). That is, the operation of the submersible pump 100 is continued while the output of the motor 112 is gradually or gradually reduced.
  • the calculation unit 44 may output an alarm signal to the notification unit 32 of the notification device 30 via the communication unit 46.
  • step 7 when the measurement data of the oil deterioration detector 16 has reached the second threshold value (NO), the calculation unit 44 stops the output of the inverter 26 and stops the motor 112 (step 9).
  • the vibration sensors 15a and 15b, the temperature sensors 14a and 14b, and the oil deterioration detector 16 has reached the first threshold value
  • the motor 112 is stopped.
  • the determination process for the measurement data is performed in the order of the vibration sensors 15a and 15b, the temperature sensors 14a and 14b, and the oil deterioration detector 16.
  • the order of determination processing can be appropriately changed depending on the usage conditions of the motor 112.
  • the determination process may be performed in the order of the temperature sensors 14a and 14b, the oil deterioration detector 16, and the vibration sensors 15a and 15b.
  • any sensor may be determined first.
  • any sensor may be determined first.
  • the submersible pump 100 While the submersible pump 100 is operated, the above determination process is repeated. Therefore, when all the measurement data of vibration, temperature, and lubricating oil become smaller than the first threshold value after the start of the modest operation, the submersible pump 100 can be automatically switched from the modest operation to the normal operation. Further, when at least one of the measurement data of vibration, temperature and lubricating oil reaches the second threshold value, the operation of the submersible pump 100 can be automatically stopped.
  • the pump device may be stopped at the time when the parts replacement work or the like is started at the site.
  • the stop time of the pump device can be shortened as compared with the conventional case.
  • FIG. 5 shows a pump system 20A according to another embodiment of the present invention.
  • the inverter 26 is built in the submersible pump 100.
  • the communication board 12 can directly communicate with the inverter 26.
  • the control unit 28 can execute the above determination process and output a control signal for controlling the inverter 26 to the inverter 26 via the communication board 12.
  • the pump systems 20 and 20A may be provided with a battery device for supplying electric power to the motor 112 in the event of a power failure, and may be configured so that the motor 112 can be operated at a low output by the electric power from the battery device.
  • the above determination process can be used.
  • a threshold value different from the first and second threshold values can be set for any of the sensors, and the motor 112 can be operated at a low output so that the measurement data of the sensor does not reach this threshold value.
  • the present invention includes the following aspects.
  • a pump device including an impeller and a motor configured to drive a rotating shaft that rotates the impeller.
  • a sensor unit including at least one sensor configured to measure a state in the pumping apparatus and a communication board configured to receive measurement data of at least one sensor from the sensor unit.
  • the motor is connected to an inverter controlled by a controller
  • the control device determines the presence or absence of an abnormal state in the pump device based on the measurement data of at least one sensor, and based on the determination result, sets the motor in the normal operation mode and the motor at a lower output than in the normal operation mode. It is configured to switch between the low power operation mode to operate and
  • the communication board is a pump device configured to transmit measurement data of at least one received sensor to a control device. 2.
  • the sensor unit includes a sensor substrate that is electrically connected to at least one sensor.
  • the control device is set with a predetermined threshold value for measurement data.
  • the control device is configured to gradually or gradually reduce the output of the motor during the low power operation mode until the measurement data of at least one sensor becomes smaller than a predetermined threshold.
  • the sensor unit includes a plurality of sensors, and for each of the plurality of sensors, a first threshold value of measurement data and a second threshold value larger than the first threshold value are set in the control device.
  • control device when the measurement data of at least one of the plurality of sensors is equal to or larger than the first threshold value and all the measurement data of the plurality of sensors are smaller than the second threshold value. In addition, it is configured to start the low power operation mode. Or 2.
  • the control device is configured to gradually or gradually reduce the output of the motor during the low power operation mode until all the measurement data of the plurality of sensors becomes smaller than the first threshold value.
  • the control device is configured to stop the motor when the measurement data of at least one of the plurality of sensors is larger than the second threshold value. Or 5.
  • the inverter is built into the control device. ⁇ 6.
  • the inverter is built into the pump device.
  • the pump device according to any one of. 9.
  • the sensor unit includes at least one of a temperature sensor arranged in the motor chamber of the pump device, a vibration sensor arranged in the motor chamber, and an oil deterioration detector arranged in the lubricating oil chamber of the pump device. 1. 1. ⁇ 8.
  • the sensor portion includes a temperature sensor, and the temperature sensor includes at least one of a load side end coil portion of the motor, a counterload side end coil portion of the motor, a load side bearing of the rotating shaft, and a counterload side bearing of the rotating shaft. Arranged to measure temperature, 9.
  • the sensor unit includes a vibration sensor, and the vibration sensor is arranged so as to measure the vibration of at least one of the load side bearing of the rotating shaft and the counterload side bearing of the rotating shaft.
  • the communication board is a PLC (Power Line Communications) board.
  • the pump device is a submersible pump.
  • a pump system including a pump device and a control device according to any of the above. 15.
  • a reporting device that is electrically connected to the control device, 14.
  • a pump device comprising an impeller, a motor configured to drive a rotating shaft that rotates the impeller, and a sensor unit comprising at least one sensor configured to measure a condition in the pump device. It ’s a control method, The presence or absence of an abnormal state in the pump device is determined based on the measurement data of at least one sensor acquired from the sensor unit, and the motor is set to the normal operation mode and the motor is set to the normal operation mode based on the determination result.
  • a control method that includes the step of switching between low power operation modes that operate at low power. 17.
  • the control device gradually or gradually reduces the output of the motor until the measurement data of at least one sensor becomes smaller than a predetermined threshold value.
  • the sensor unit includes a plurality of sensors, and the control method is For each of the plurality of sensors, a step of setting a first threshold value of measurement data and a second threshold value larger than the first threshold value in the control device that controls the motor, and When the measurement data of at least one of the plurality of sensors is equal to or larger than the first threshold value by the control device, and all the measurement data of the plurality of sensors are smaller than the second threshold value. 16. Including the step of initiating the low power operation mode. The control method described in. 19. 18.
  • the step of gradually or gradually reducing the output of the motor until all the measurement data of the plurality of sensors becomes smaller than the first threshold value is included.
  • the control method described in. 20. 18.
  • the sensor unit includes at least one of a temperature sensor arranged in the motor chamber of the pump device, a vibration sensor arranged in the motor chamber, and an oil deterioration detector arranged in the lubricating oil chamber of the pump device. 16. ⁇ 20.
  • the present invention can be widely applied to pump devices and pump systems.

Abstract

The objective of the present invention is to provide a pump device with which it is possible for the stoppage time of an underwater pump when an abnormal operating state arises to be made shorter than in a conventional case. This pump device includes an impeller, and a motor configured to drive a rotating shaft which rotates the impeller, and includes a sensor unit including at least one sensor configured to measure a state within the pump device, and a communication board configured to receive measured data of the at least one sensor from the sensor unit, wherein: the motor is connected to an inverter which is controlled by a control device; the control device is configured to determine the presence or absence of an abnormal state within the pump device on the basis of the measured data of the at least one sensor, and, on the basis of the determination result, to switch the motor between a normal operating mode and a low-output operating mode for operating the motor with a lower output than in the normal operating mode; and the communication board is configured to transmit the received measured data of the at least one sensor to the control device.

Description

ポンプ装置、ポンプ装置の制御方法及びポンプシステムPumping device, control method of pumping device and pump system
 本発明は、ポンプ装置、その制御方法及びポンプシステムに関する。 The present invention relates to a pump device, a control method thereof, and a pump system.
 水中ポンプは、一般に、浄化槽の排水、雑排水・設備排水、雨水・湧水の排水等に用いられる。従って、水中ポンプは、常に駆動し続けるように、故障時や停電時等の緊急時に対して特に迅速に対応することが要求される。 Submersible pumps are generally used for septic tank drainage, miscellaneous drainage / equipment drainage, rainwater / spring drainage, etc. Therefore, the submersible pump is required to respond particularly quickly to an emergency such as a failure or a power failure so that the submersible pump is always driven.
 特許文献1は、特に水中ポンプに好適に使用される技術として、異常運転状態を示す異常信号を検知すると、電源からポンプへの電力供給を遮断する制御システムを記載している。また、特許文献2は、水中ポンプ内に浸水検出センサを設け、オイル室内への浸水時点で電動機を停止させる装置を記載している。 Patent Document 1 describes a control system that shuts off the power supply from the power supply to the pump when an abnormal signal indicating an abnormal operating state is detected, as a technique particularly preferably used for a submersible pump. Further, Patent Document 2 describes a device in which a water immersion detection sensor is provided in a submersible pump and the electric motor is stopped at the time of water immersion in the oil chamber.
 しかし、異常状態の発生直後に水中ポンプの運転を停止すると、排水すべき水が排出されずに各種槽から溢れ出し、近傍設備を浸水させる虞がある。また、水中ポンプは、内部点検及び/又は部品等の交換のために水中から引き上げる必要があるので、ポンプが停止してから部品等を交換するまで多くの時間を要する。従って、ポンプを長い時間停止させておくことになる。 However, if the operation of the submersible pump is stopped immediately after the occurrence of an abnormal condition, the water to be drained may not be discharged and overflow from various tanks, flooding nearby equipment. Further, since the submersible pump needs to be pulled out of the water for internal inspection and / or replacement of parts and the like, it takes a lot of time from the stop of the pump to the replacement of parts and the like. Therefore, the pump is kept stopped for a long time.
特開平9-14148号公報Japanese Unexamined Patent Publication No. 9-14148 特開2002-310091号公報JP-A-2002-310091
 本発明の一実施形態は、異常運転状態発生の際の水中ポンプの停止時間を従来よりも短縮することができるポンプ装置を提供することを課題とする。本発明の一実施形態は、異常運転状態発生の際の水中ポンプの停止時間を従来よりも短縮することができるポンプ装置の制御方法を提供することを課題とする。本発明の一実施形態は、異常運転状態発生の際の水中ポンプの停止時間を従来よりも短縮することができるポンプ装置を含む、ポンプシステムを提供することを課題とする。 An object of an embodiment of the present invention is to provide a pump device capable of shortening the stop time of a submersible pump when an abnormal operating state occurs as compared with the conventional case. An object of the present invention is to provide a control method of a pump device capable of shortening the stop time of a submersible pump when an abnormal operating state occurs as compared with the conventional case. An object of the present invention is to provide a pump system including a pump device capable of shortening the stop time of a submersible pump when an abnormal operating state occurs as compared with the conventional case.
 本発明の一実施形態によれば、羽根車と、羽根車を回転させる回転軸を駆動するように構成されるモータと、を含むポンプ装置であって、ポンプ装置内の状態を測定するように構成される少なくとも1つのセンサを含むセンサ部と、センサ部から少なくとも1つのセンサの測定データを受信するように構成される通信基板と、を含み、モータは、制御装置によって制御されるインバータに接続されており、制御装置は、少なくとも1つのセンサの測定データに基づいてポンプ装置内の異常状態の有無を判定し、判定結果に基づいて、モータを、通常運転モードと、モータを通常運転モードよりも低い出力で運転する低出力運転モードとの間で切り替えるように構成されており、通信基板は、受信した少なくとも1つのセンサの測定データを制御装置に送信するように構成されている、ポンプ装置を提供することができる。 According to one embodiment of the present invention, the pump device includes an impeller and a motor configured to drive a rotating shaft that rotates the impeller, so as to measure a state in the pump device. A motor is connected to an inverter controlled by a control device, including a sensor unit including at least one sensor configured and a communication board configured to receive measurement data of at least one sensor from the sensor unit. The control device determines the presence or absence of an abnormal state in the pump device based on the measurement data of at least one sensor, and based on the determination result, the motor is set to the normal operation mode and the motor is set to the normal operation mode. The pumping device is configured to switch between low power operating modes, which also operate at low power, and the communication board is configured to transmit the measurement data of at least one sensor received to the control device. Can be provided.
 また、本発明の一実施形態によれば、羽根車と、羽根車を回転させる回転軸を駆動するように構成されるモータと、ポンプ装置内の状態を測定するように構成される少なくとも1つのセンサを含むセンサ部と、を含むポンプ装置の制御方法であって、センサ部から取得される、少なくとも1つのセンサの測定データに基づいてポンプ装置内の異常状態の有無を判定し、判定結果に基づいて、モータを、通常運転モードと、モータを通常運転モードよりも低い出力で運転する低出力運転モードとの間で切り替える工程を含む、制御方法を提供することができる。 Further, according to one embodiment of the present invention, an impeller, a motor configured to drive a rotating shaft for rotating the impeller, and at least one configured to measure a state in the pump device. It is a control method of a sensor unit including a sensor and a pump device including the sensor. Based on the measurement data of at least one sensor acquired from the sensor unit, the presence or absence of an abnormal state in the pump device is determined, and the determination result is obtained. Based on this, it is possible to provide a control method including a step of switching the motor between a normal operation mode and a low output operation mode in which the motor is operated at a lower output than the normal operation mode.
本発明の一実施形態によるポンプ装置の一例としての水中ポンプを示す概略断面図である。It is schematic cross-sectional view which shows the submersible pump as an example of the pump device by one Embodiment of this invention. 図1の水中ポンプを含むポンプシステムの構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of the pump system including the submersible pump of FIG. 図2に示す制御部の構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of the control part shown in FIG. 制御部による処理の一例を示すフロー図である。It is a flow chart which shows an example of processing by a control part. 本発明の他の実施形態によるポンプシステムの構成例を示す概略ブロック図である。It is a schematic block diagram which shows the structural example of the pump system by another embodiment of this invention.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明はあくまでも一例を示すものであって、本願発明の技術的範囲を以下の実施形態に限定する趣旨ではない。また、図面では、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。尚、以下の説明において、「上」、「下」等の方向を示す用語は、図1に示す水中ポンプの設置状態における方向を意味する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description is merely an example, and does not mean that the technical scope of the present invention is limited to the following embodiments. Further, in the drawings, the same or corresponding components are designated by the same reference numerals, and duplicate description will be omitted. In the following description, the terms indicating the directions such as "up" and "down" mean the directions in the installed state of the submersible pump shown in FIG.
 図1は、本発明の一実施形態によるポンプ装置の一例を示す。図示の例では、ポンプ装置は水中ポンプ100である。水中ポンプ100は、軸線ALを中心に回転する羽根車102と、羽根車102を収容するポンプ室103を画定するポンプケーシング104およびポンプブラケット106と、を備える。羽根車102は、回転軸108に接続され、回転軸108の回転に伴って回転する。ポンプケーシング104は、吸込口104aおよび吐出口104bを有し、ポンプブラケット106と共に水の流路を画定する。羽根車102が回転することにより、吸込口104aから吐出口104bへ水が移送される。 FIG. 1 shows an example of a pump device according to an embodiment of the present invention. In the illustrated example, the pumping device is a submersible pump 100. The submersible pump 100 includes an impeller 102 that rotates about the axis AL, and a pump casing 104 and a pump bracket 106 that define a pump chamber 103 that houses the impeller 102. The impeller 102 is connected to the rotating shaft 108 and rotates with the rotation of the rotating shaft 108. The pump casing 104 has a suction port 104a and a discharge port 104b, and together with the pump bracket 106, defines a water flow path. By rotating the impeller 102, water is transferred from the suction port 104a to the discharge port 104b.
 ポンプブラケット106は、ポンプケーシング104にビスなどで固定され、羽根車102の背面(図1中、上側)を覆う。ポンプブラケット106における羽根車102の背面を覆う底部には、回転軸108が挿通するための貫通孔(符号省略)が形成されている。さらに、この貫通孔には、回転軸108を封止するためのメカニカルシール110が設けられている。 The pump bracket 106 is fixed to the pump casing 104 with screws or the like and covers the back surface (upper side in FIG. 1) of the impeller 102. A through hole (reference numeral omitted) for inserting the rotating shaft 108 is formed in the bottom portion of the pump bracket 106 that covers the back surface of the impeller 102. Further, the through hole is provided with a mechanical seal 110 for sealing the rotating shaft 108.
 モータ112が、羽根車102に回転駆動力を提供する。モータ112は、軸線ALを中心に回転する回転軸108と、回転軸108と一体に回転するロータ114と、ロータ114の外周側に設けられたステータ116と、を備える。ステータ116は、ステータコア116aと、ステータコア116aに巻回されるステータコイル116bと、を有する。ステータコイル116bには、電力ラインが接続され、ケーブル118を通じて外部電源(例えば、商用電源)から電力が供給される。具体的には、電力は、外部電源に接続された外部の制御装置(図1には図示せず)を介してモータ112のステータコイル116に供給される。後述するように、制御装置は、モータ112に接続されるインバータと、インバータと通信する制御部とを含んでいる。制御部は、後述する処理によって、水中ポンプ100内の異常状態の有無を判定し、判定結果に基づいて、モータ112を通常運転モードと低出力運転(換言すれば、控えめ運転)モードとの間で切り替え可能である。低出力運転モードでは、モータ112は、通常運転よりも低い出力で運転される。 The motor 112 provides the impeller 102 with rotational driving force. The motor 112 includes a rotating shaft 108 that rotates about the axis AL, a rotor 114 that rotates integrally with the rotating shaft 108, and a stator 116 provided on the outer peripheral side of the rotor 114. The stator 116 has a stator core 116a and a stator coil 116b wound around the stator core 116a. A power line is connected to the stator coil 116b, and power is supplied from an external power source (for example, a commercial power source) through the cable 118. Specifically, electric power is supplied to the stator coil 116 of the motor 112 via an external control device (not shown in FIG. 1) connected to an external power source. As will be described later, the control device includes an inverter connected to the motor 112 and a control unit that communicates with the inverter. The control unit determines the presence or absence of an abnormal state in the submersible pump 100 by a process described later, and based on the determination result, sets the motor 112 between the normal operation mode and the low output operation (in other words, modest operation) mode. It can be switched with. In the low power operation mode, the motor 112 is operated at a lower power than in normal operation.
 筒状のモータフレーム120が、ロータ114及びステータ116の外周を覆うように設けられている。モータフレーム120の内周面に、ステータコア116aが固定される。以下、モータ112におけるポンプケーシング104側(図1中、下側)を「負荷側」といい、その反対側(図1中、上側)を「反負荷側」という。 A tubular motor frame 120 is provided so as to cover the outer circumferences of the rotor 114 and the stator 116. The stator core 116a is fixed to the inner peripheral surface of the motor frame 120. Hereinafter, the pump casing 104 side (lower side in FIG. 1) of the motor 112 is referred to as a “load side”, and the opposite side (upper side in FIG. 1) is referred to as a “counterload side”.
 モータフレーム120の負荷側端部の内周面に負荷側軸受ハウジング122が固定される。負荷側軸受ハウジング122は、回転軸108を軸支するための負荷側軸受124を収容する。また、負荷側軸受ハウジング122には、回転軸108を封止するためのメカニカルシール110が設けられている。負荷側軸受ハウジング122及びポンプブラケット106の内部空間は、メカニカルシール110のための潤滑油で満たされる潤滑油室126を形成する。メカニカルシール110によって、羽根車104によって移送される水がモータ室128に侵入するのを防止できる。 The load-side bearing housing 122 is fixed to the inner peripheral surface of the load-side end of the motor frame 120. The load-side bearing housing 122 accommodates the load-side bearing 124 for axially supporting the rotating shaft 108. Further, the load side bearing housing 122 is provided with a mechanical seal 110 for sealing the rotating shaft 108. The internal space of the load-side bearing housing 122 and the pump bracket 106 forms a lubricating oil chamber 126 filled with lubricating oil for the mechanical seal 110. The mechanical seal 110 can prevent the water transferred by the impeller 104 from entering the motor chamber 128.
 モータフレーム120の反負荷側端部の内周面に、反負荷側軸受ハウジング130が固定される。反負荷側軸受ハウジング130は、回転軸108を軸支するための反負荷側軸受132を収容する。上部カバー134が、モータフレーム120の反負荷側端部に固定され、筒状のモータフレーム120の上部開口を密閉する。ケーブル118は、上部カバー134の開口部(符号省略)を通してモータ室128内に配置される。尚、本実施形態では、上部カバー134と、モータフレーム120と、負荷側軸受ハウジング122とにより画定される、水中ポンプ100の内部空間をモータ室128と称する。 The counterload side bearing housing 130 is fixed to the inner peripheral surface of the counterload side end of the motor frame 120. The counterload side bearing housing 130 accommodates the counterload side bearing 132 for pivotally supporting the rotating shaft 108. The upper cover 134 is fixed to the opposite end of the motor frame 120 and seals the upper opening of the tubular motor frame 120. The cable 118 is arranged in the motor chamber 128 through the opening (reference numeral omitted) of the upper cover 134. In the present embodiment, the internal space of the submersible pump 100 defined by the upper cover 134, the motor frame 120, and the load side bearing housing 122 is referred to as a motor chamber 128.
 上記したように、外部の制御装置によって、水中ポンプ100のモータ112は、水中ポンプ100内の状態に応じて、通常運転モードまたは控えめ運転モード(換言すれば、低出力運転モード)で動作可能である。この目的のため、水中ポンプ100は、水中ポンプ100内の状態を検知する各種センサと、これらセンサと電気的に接続されるセンサ基板と、を備えている。尚、本実施形態では、センサ及びセンサ基板を総称してセンサ部と称する。センサ部は、後述する通信基板12にセンサの測定データを出力する構成要素である。センサ部は、少なくとも1つのセンサを含んでいればよい。また、センサ部は、センサ基板を含んでいなくてもよい。 As described above, the motor 112 of the submersible pump 100 can be operated in the normal operation mode or the modest operation mode (in other words, the low output operation mode) by the external control device, depending on the state in the submersible pump 100. is there. For this purpose, the submersible pump 100 includes various sensors that detect the state inside the submersible pump 100, and a sensor substrate that is electrically connected to these sensors. In the present embodiment, the sensor and the sensor substrate are collectively referred to as a sensor unit. The sensor unit is a component that outputs measurement data of the sensor to the communication board 12 described later. The sensor unit may include at least one sensor. Further, the sensor unit does not have to include the sensor substrate.
 センサ基板は、センサからの測定値信号を処理し、処理後のデータを通信基板12に送信する。通信基板12は、受信したデータを制御装置に出力する。図示の例では、2つのセンサ基板10a、10bが、モータ室128内で、それぞれ、反負荷側軸受ハウジング130及び負荷側軸受ハウジング122上に配置されている。しかし、センサ基板の数及び設置位置は、図示の例に限られない。また、他の実施形態では、センサ基板10a、10bは、省略することができる。その場合、各種センサの測定値信号は、通信基板12に直接出力され、通信基板12で処理される。 The sensor board processes the measured value signal from the sensor and transmits the processed data to the communication board 12. The communication board 12 outputs the received data to the control device. In the illustrated example, the two sensor substrates 10a and 10b are arranged in the motor chamber 128 on the counterload side bearing housing 130 and the load side bearing housing 122, respectively. However, the number and installation positions of the sensor substrates are not limited to the illustrated examples. Further, in other embodiments, the sensor substrates 10a and 10b can be omitted. In that case, the measured value signals of the various sensors are directly output to the communication board 12 and processed by the communication board 12.
 水中ポンプ100内の状態を検知するセンサとして、本実施形態では、反負荷側温度センサ14a、負荷側温度センサ14b、反負荷側振動センサ15a、負荷側振動センサ15b及びオイル劣化検出器16が配置されている。反負荷側温度センサ14aと負荷側温度センサ14bは、例えば、熱電対であってよく、モータ112の温度上昇を監視するために、モータ室128内に配置される。図示の例では、反負荷側温度センサ14a及び負荷側温度センサ14bは、モータ112のステータ116の反負荷側コイルエンド及び負荷側コイルエンドに、それぞれ、配置されている。尚、コイルエンドとは、ステータコア116aの軸方向一方側の端面から突出する、ステータコイル116bの部分を指す。しかし、反負荷側温度センサ14a及び負荷側温度センサ14bは、例えば、回転軸108の軸受の温度を監視するように、反負荷側軸受132及び負荷側軸受124に、それぞれ、取り付けられてもよい。また、反負荷側温度センサ14a及び負荷側温度センサ14bは、その一方が省略されてもよい。 In this embodiment, the counterload side temperature sensor 14a, the load side temperature sensor 14b, the counterload side vibration sensor 15a, the load side vibration sensor 15b, and the oil deterioration detector 16 are arranged as sensors for detecting the state inside the submersible pump 100. Has been done. The counterload side temperature sensor 14a and the load side temperature sensor 14b may be, for example, a thermocouple, and are arranged in the motor chamber 128 in order to monitor the temperature rise of the motor 112. In the illustrated example, the counterload side temperature sensor 14a and the load side temperature sensor 14b are arranged at the counterload side coil end and the load side coil end of the stator 116 of the motor 112, respectively. The coil end refers to a portion of the stator coil 116b that protrudes from the end surface of the stator core 116a on one side in the axial direction. However, the counterload side temperature sensor 14a and the load side temperature sensor 14b may be attached to the counterload side bearing 132 and the load side bearing 124, respectively, so as to monitor the temperature of the bearing of the rotating shaft 108, for example. .. Further, one of the non-load side temperature sensor 14a and the load side temperature sensor 14b may be omitted.
 また、本実施形態では、例えば加速度センサ、速度センサ等の反負荷側振動センサ15a及び負荷側振動センサ15bがモータ室128内に配置されている。本実施形態では、反負荷側振動センサ15a及び負荷側振動センサ15bは、回転軸108の振動を監視するために、回転軸108の反負荷側軸受132及び負荷側軸受124を測定対象とする。図示の例では、反負荷側振動センサ15aは、反負荷側軸受ハウジング130に固定された反負荷側センサ基板10aに実装され、負荷側振動センサ15bは、負荷側軸受ハウジング122に固定された負荷側センサ基板10bに実装されている。しかし、回転軸108の振動を監視可能な位置であれば、反負荷側振動センサ15a及び負荷側振動センサ15bの設置位置は特に限られない。また、反負荷側振動センサ15a及び負荷側振動センサ15bは、その一方が省略されてもよい。 Further, in the present embodiment, for example, a counterload side vibration sensor 15a such as an acceleration sensor and a speed sensor and a load side vibration sensor 15b are arranged in the motor chamber 128. In the present embodiment, the anti-load side vibration sensor 15a and the load side vibration sensor 15b measure the anti-load side bearing 132 and the load side bearing 124 of the rotating shaft 108 in order to monitor the vibration of the rotating shaft 108. In the illustrated example, the anti-load side vibration sensor 15a is mounted on the anti-load side sensor substrate 10a fixed to the anti-load side bearing housing 130, and the load side vibration sensor 15b is the load fixed to the load side bearing housing 122. It is mounted on the side sensor board 10b. However, the installation positions of the anti-load side vibration sensor 15a and the load side vibration sensor 15b are not particularly limited as long as the vibration of the rotating shaft 108 can be monitored. Further, one of the anti-load side vibration sensor 15a and the load side vibration sensor 15b may be omitted.
 また、本実施形態では、潤滑油室126にオイル劣化検出器(換言すれば、オイルセンサ)16が配置される。図示されるオイル劣化検出器16は、例えば特開2002-310091号公報に記載される構成を有することができる。この例では、オイル劣化検出器16は、電極部16aが潤滑油室126内に突出するように、電気絶縁性を有する取付部(図示省略)を介して負荷側軸受ハウジング122に取り付けられる。オイル劣化検出器16は、ポンプ室103内の水が潤滑油室126の潤滑油に混入すると、電極部16aが電気的に導通し、これにより、負荷側センサ基板10bに信号が出力されるように構成されている。しかし、オイル劣化検出器16の構成は特に限られない。オイル劣化検出器16は、例えば、投・受光器によって潤滑油の汚染度を検出するように構成されていてもよい。 Further, in the present embodiment, the oil deterioration detector (in other words, the oil sensor) 16 is arranged in the lubricating oil chamber 126. The illustrated oil deterioration detector 16 can have, for example, the configuration described in JP-A-2002-310091. In this example, the oil deterioration detector 16 is attached to the load-side bearing housing 122 via an electrically insulating attachment portion (not shown) so that the electrode portion 16a projects into the lubricating oil chamber 126. When the water in the pump chamber 103 is mixed with the lubricating oil in the lubricating oil chamber 126, the oil deterioration detector 16 electrically conducts the electrode portion 16a so that a signal is output to the load-side sensor substrate 10b. It is configured in. However, the configuration of the oil deterioration detector 16 is not particularly limited. The oil deterioration detector 16 may be configured to detect the degree of contamination of the lubricating oil by, for example, a throwing / receiving receiver.
 尚、本実施形態では、水中ポンプ100内の状態を検知するセンサとして、温度センサ、振動センサ及びオイル劣化検出器の全てが設けられている必要はなく、これらのうち少なくとも1つが設けられていればよい。また、温度センサ、振動センサ及びオイル劣化検出器以外にも、適宜、水中ポンプ100内の異常状態を検知するセンサを、センサ部に含めることができる。 In the present embodiment, it is not necessary that all of the temperature sensor, the vibration sensor and the oil deterioration detector are provided as the sensors for detecting the state in the submersible pump 100, and at least one of these is provided. Just do it. Further, in addition to the temperature sensor, the vibration sensor and the oil deterioration detector, a sensor for detecting an abnormal state in the submersible pump 100 can be appropriately included in the sensor unit.
 水中ポンプ100は、水中ポンプ100内の状態を検知するセンサ(本実施形態では反負荷側及び負荷側温度センサ14a、14b、反負荷側及び負荷側振動センサ15a、15b及びオイル劣化検出器16)を、外部の制御装置と通信させる通信基板12を備えている。図示されるように、センサは、反負荷側及び負荷側センサ基板10a、10bを介して通信基板12と電気的に接続されることができる。 The submersible pump 100 is a sensor that detects the state inside the submersible pump 100 (in this embodiment, the anti-load side and load side temperature sensors 14a and 14b, the anti-load side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16). Is provided with a communication board 12 for communicating with an external control device. As shown, the sensor can be electrically connected to the communication board 12 via the counterload side and load side sensor boards 10a and 10b.
 通信基板12は、反負荷側及び負荷側センサ基板10a、10bに電源を供給し、反負荷側及び負荷側センサ基板10a、10bからの信号(換言すれば、上記センサの測定データ)を受信するように構成されている。本実施形態では、通信基板12は、PLC(Power Line Communications)基板であり、モータ駆動用のケーブル118に結合された電力ラインを介して外部の制御装置と通信可能に構成されている。しかし、通信基板12は、必ずしもPLC基板でなくてもよい。 The communication board 12 supplies power to the non-load side and load side sensor boards 10a and 10b, and receives signals (in other words, measurement data of the above sensor) from the non-load side and load side sensor boards 10a and 10b. It is configured as follows. In the present embodiment, the communication board 12 is a PLC (Power Line Communications) board, and is configured to be able to communicate with an external control device via a power line coupled to a cable 118 for driving a motor. However, the communication board 12 does not necessarily have to be a PLC board.
 以下、水中ポンプ100の制御方法について説明する。図2は、本発明の一実施形態によるポンプシステム20の構成を示す概略ブロック図である。ポンプシステム20は、一例として、第1実施形態の水中ポンプ100を含む。図2に示すように、ポンプシステム20は、水中ポンプ100と、水中ポンプ100の動作を制御する制御装置22と、を備える。ここで、制御装置22は、商用電源24と接続され且つ水中ポンプ100のモータ112と接続されるインバータ26と、インバータ26と電気的に接続された制御部28と、を備える。インバータ26は、商用電源24から供給された3相交流電圧を、所望の周波数で所望の大きさの3相交流電圧に変換し、変換後の3相交流電圧をモータ112に供給する。制御部28は、インバータ26を制御することによりモータ112を制御する。尚、制御部28は、商用電源24からインバータ26を介して、または商用電源24から直接電力を供給されることができる。 The control method of the submersible pump 100 will be described below. FIG. 2 is a schematic block diagram showing a configuration of a pump system 20 according to an embodiment of the present invention. The pump system 20 includes, as an example, the submersible pump 100 of the first embodiment. As shown in FIG. 2, the pump system 20 includes a submersible pump 100 and a control device 22 that controls the operation of the submersible pump 100. Here, the control device 22 includes an inverter 26 connected to the commercial power supply 24 and connected to the motor 112 of the submersible pump 100, and a control unit 28 electrically connected to the inverter 26. The inverter 26 converts the three-phase AC voltage supplied from the commercial power supply 24 into a three-phase AC voltage having a desired frequency and a desired magnitude, and supplies the converted three-phase AC voltage to the motor 112. The control unit 28 controls the motor 112 by controlling the inverter 26. The control unit 28 can be supplied with electric power from the commercial power supply 24 via the inverter 26 or directly from the commercial power supply 24.
 水中ポンプ100内の状態を示すセンサ(本実施形態では、反負荷側及び負荷側温度センサ14a、14b、反負荷側及び負荷側振動センサ15a、15b及びオイル劣化検出器16)が、上記したセンサ基板10a、10bを介して通信基板12と通信可能に電気的に接続されている。尚、図2では、センサ及びセンサ基板を総称してセンサ部と称している。通信基板12は、制御装置22の制御部28と通信可能に電気的に接続されている。後述するように、制御部28は、センサ基板10a、10bから取得される、反負荷側及び負荷側温度センサ14a、14b、反負荷側及び負荷側振動センサ15a、15b及びオイル劣化検出器16の測定データに基づき、インバータ26を制御する。具体的には、制御部28は、反負荷側及び負荷側温度センサ14a、14b、反負荷側及び負荷側振動センサ15a、15b及びオイル劣化検出器16のうち少なくとも1つのセンサの測定データが所定の閾値(以下、第1の閾値)に達したときに、モータ112の出力が段階的または漸次的に小さくなるようにインバータ26を制御する(換言すれば、低出力運転または控えめ運転を行う)ことができる。また、制御部28は、反負荷側及び負荷側温度センサ14a、14b、反負荷側及び負荷側振動センサ15a、15b及びオイル劣化検出器16のうち少なくとも1つのセンサの測定データが、第1の閾値より大きい第2の閾値に達したときに、モータ112を停止することができる。反負荷側及び負荷側温度センサ14a、14b、反負荷側及び負荷側振動センサ15a、15b及びオイル劣化検出器16の各々について、測定データの第1の閾値及び第2の閾値が、予め設定され、制御部28に記憶されている。 The sensors indicating the state inside the submersible pump 100 (in this embodiment, the anti-load side and load side temperature sensors 14a and 14b, the anti-load side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16) are the sensors described above. It is electrically connected to the communication board 12 via the boards 10a and 10b so as to be communicable. In FIG. 2, the sensor and the sensor substrate are collectively referred to as a sensor unit. The communication board 12 is electrically connected to the control unit 28 of the control device 22 so as to be able to communicate with each other. As will be described later, the control unit 28 is a counterload side and load side temperature sensors 14a and 14b, antiload side and load side vibration sensors 15a and 15b, and an oil deterioration detector 16 acquired from the sensor substrates 10a and 10b. The inverter 26 is controlled based on the measurement data. Specifically, the control unit 28 determines measurement data of at least one of the counterload side and load side temperature sensors 14a and 14b, the counterload side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16. The inverter 26 is controlled so that the output of the motor 112 gradually or gradually decreases when the threshold value (hereinafter referred to as the first threshold value) is reached (in other words, low output operation or modest operation is performed). be able to. Further, in the control unit 28, the measurement data of at least one of the anti-load side and load side temperature sensors 14a and 14b, the anti-load side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16 is the first. The motor 112 can be stopped when a second threshold value larger than the threshold value is reached. The first threshold value and the second threshold value of the measurement data are preset for each of the anti-load side and load side temperature sensors 14a and 14b, the anti-load side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16. , Stored in the control unit 28.
 また、本実施形態では、ポンプシステム20は、制御装置22の制御部28と通信可能な通報装置30を備えることができる。通報装置30は、水中ポンプ100の外部(例えば、地上)に設置されることができ、制御部28と通報装置30との間の通信は、有線通信であっても無線通信であってもよい。制御部28は、反負荷側及び負荷側温度センサ14a、14b、反負荷側及び負荷側振動センサ15a、15b及びオイル劣化検出器16のうち少なくとも1つのセンサの測定データが第1の閾値に達したときに、水中ポンプ100が異常状態にあることを示す警報信号を、通報装置30の通報部32に出力することができる。通報装置30は、ポンプシステム20における各種状態(例えばモータ112の運転/停止、電流値、故障状態、各種運転履歴等)やその他運転に必要な各種設定値など、制御部28より取得可能な各種データを表示する表示部34を有していてよい。表示部34は、通報部32を介してまたは直接に制御部28と通信可能に構成することができる。 Further, in the present embodiment, the pump system 20 can be provided with a notification device 30 capable of communicating with the control unit 28 of the control device 22. The notification device 30 can be installed outside the submersible pump 100 (for example, on the ground), and the communication between the control unit 28 and the notification device 30 may be wired communication or wireless communication. .. In the control unit 28, the measurement data of at least one of the anti-load side and load side temperature sensors 14a and 14b, the anti-load side and load side vibration sensors 15a and 15b, and the oil deterioration detector 16 reaches the first threshold value. At that time, an alarm signal indicating that the submersible pump 100 is in an abnormal state can be output to the notification unit 32 of the notification device 30. The notification device 30 can acquire various states (for example, start / stop of the motor 112, current value, failure state, various operation histories, etc.) in the pump system 20 and various set values required for other operations from the control unit 28. It may have a display unit 34 for displaying data. The display unit 34 can be configured to be communicable with the control unit 28 via or directly from the notification unit 32.
 通報部32は、警報信号を受信すると、警報信号を受信したことをポンプシステム20の管理者・保守点検者等に通報することができる。通報部32は、視覚表示及び/または音声による通報手段、例えば、管理施設内に設置される電話、PC(パーソナルコンピュータ)、ファクシミリ、及び/または個人の携帯電話等で構成することができる。通報手段は、予め決定し、制御部28で記憶しておくことができる。通報部32及び/または表示部34は、ポンプシステム20の管理者・保守点検者等が、異常な測定データを示すセンサを特定することができるように構成されることができる。 When the reporting unit 32 receives the alarm signal, it can notify the administrator / maintenance / inspector of the pump system 20 that the alarm signal has been received. The reporting unit 32 can be composed of visual display and / or voice reporting means, for example, a telephone, a PC (personal computer), a facsimile, and / or a personal mobile phone installed in the management facility. The reporting means can be determined in advance and stored in the control unit 28. The reporting unit 32 and / or the display unit 34 can be configured so that the administrator / maintenance / inspector of the pump system 20 can identify a sensor indicating abnormal measurement data.
 次に、図3の概略ブロック図を参照して、制御部28の構成の一例について説明する。図示の例では、制御部28は、設定部40と、記憶部42と、演算部44と、通信部46と、IO部(換言すれば、入出力部)48と、を備える。制御部28の各部はバスを介して互いに接続されているか、もしくは、通信にて各部を接続してもよいし、バス接続と通信接続の両方が混在してもよい。 Next, an example of the configuration of the control unit 28 will be described with reference to the schematic block diagram of FIG. In the illustrated example, the control unit 28 includes a setting unit 40, a storage unit 42, a calculation unit 44, a communication unit 46, and an IO unit (in other words, an input / output unit) 48. Each part of the control unit 28 may be connected to each other via a bus, or each part may be connected by communication, or both a bus connection and a communication connection may be mixed.
 設定部40では、ポンプ定格電流値等、水中ポンプ100の運転のための各種データが設定される。データは、上述した測定データの第1及び第2の閾値を含むことができる。設定部40は、設定されたデータを記憶部42に記憶させる。しかし、第1及び第2の閾値は、通信部46に内蔵される記憶媒体50に記憶させてもよい。 In the setting unit 40, various data for the operation of the submersible pump 100, such as the rated current value of the pump, are set. The data can include first and second thresholds of the measurement data described above. The setting unit 40 stores the set data in the storage unit 42. However, the first and second threshold values may be stored in the storage medium 50 built in the communication unit 46.
 記憶部42には、設定部40により設定されたデータと、水中ポンプ100の制御プログラムが記憶される。 The storage unit 42 stores the data set by the setting unit 40 and the control program of the submersible pump 100.
 演算部44は、記憶部42から制御プログラムを読み出して実行することにより、制御部28の処理を実行する。演算部44は、各センサ14a、14b、15a、15b、16の測定データと、記憶部42または記憶媒体50に記憶された第1及び第2の閾値とを比較する判定部を含むことができる。 The calculation unit 44 executes the processing of the control unit 28 by reading the control program from the storage unit 42 and executing it. The calculation unit 44 can include a determination unit that compares the measurement data of each sensor 14a, 14b, 15a, 15b, 16 with the first and second threshold values stored in the storage unit 42 or the storage medium 50. ..
 通信部46は、集積回路52と記憶媒体50とを備える。集積回路52及び記憶媒体50は、商用電源24またはインバータ26から制御部28に供給される電力によって駆動される。 The communication unit 46 includes an integrated circuit 52 and a storage medium 50. The integrated circuit 52 and the storage medium 50 are driven by electric power supplied from the commercial power supply 24 or the inverter 26 to the control unit 28.
 IO部48は、演算部44と、インバータ26と、通信基板12との入出力を行う。後述する処理によって、演算部44は、通信基板12から入力される各センサ14a、14b、15a、15b、16の測定データが第1の閾値または第2の閾値に達した場合、モータ112を控えめ運転または停止させるようにインバータ26を制御する。測定データは、連続値として、常に通信基板12から制御部28に入力されてよい。また、演算部44は、各センサ14a、14b、15a、15b、16の測定データが第1の閾値または第2の閾値に達した場合、モータ112の控えめ運転または停止を示すデータを記憶媒体50に記憶させる。集積回路52は、記憶媒体50から当該データを読み出し、通報装置30の通報部32へ警報信号を送信する。 The IO unit 48 performs input / output between the arithmetic unit 44, the inverter 26, and the communication board 12. By the process described later, when the measurement data of the sensors 14a, 14b, 15a, 15b, 16 input from the communication board 12 reaches the first threshold value or the second threshold value, the calculation unit 44 makes the motor 112 modest. The inverter 26 is controlled so as to start or stop. The measurement data may always be input from the communication board 12 to the control unit 28 as continuous values. Further, the calculation unit 44 stores data indicating modest operation or stop of the motor 112 when the measurement data of the sensors 14a, 14b, 15a, 15b, 16 reaches the first threshold value or the second threshold value. To memorize. The integrated circuit 52 reads the data from the storage medium 50 and transmits an alarm signal to the reporting unit 32 of the reporting device 30.
 次に、図4に参照して、制御部28の処理の一例について具体的に説明する。図4の例では、制御部28の演算部44が、振動センサ15a、15b、温度センサ14a、14b、及びオイル劣化検出器16について、予め決められた順序に従って、第1及び第2の閾値との比較を行う。具体的には、演算部44は、振動センサ15a、15bの各々について、測定データが第1の閾値(振動閾値1と称する)より小さいか否かを判定する(ステップ1)。ステップ1で、振動センサ15a、15bの各々の測定データが第1の閾値より小さい場合(YES)、演算部44は、温度センサ14a、14bの各々について、測定データが第1の閾値(温度閾値1と称する)より小さいか否かを判定する(ステップ2)。ステップ2で、温度センサ14a、14bの各々の測定データが第1の閾値より小さい場合(YES)、演算部44は、オイル劣化検出器16の測定データが第1の閾値(オイル閾値1と称する)より小さいか否かを判定する(ステップ3)。ステップ3で、オイル劣化検出器16の測定データが第1の閾値より小さい場合(YES)は、振動、温度、潤滑油の全ての測定データが第1の閾値より小さいので、演算部44は、モータ112を通常運転させる(ステップ4)。 Next, an example of the processing of the control unit 28 will be specifically described with reference to FIG. In the example of FIG. 4, the calculation unit 44 of the control unit 28 sets the first and second threshold values for the vibration sensors 15a and 15b, the temperature sensors 14a and 14b, and the oil deterioration detector 16 in a predetermined order. Make a comparison. Specifically, the calculation unit 44 determines whether or not the measurement data of each of the vibration sensors 15a and 15b is smaller than the first threshold value (referred to as vibration threshold value 1) (step 1). In step 1, when the measurement data of the vibration sensors 15a and 15b is smaller than the first threshold value (YES), the calculation unit 44 determines that the measurement data of the temperature sensors 14a and 14b is the first threshold value (temperature threshold value). It is determined whether or not it is smaller than (referred to as 1) (step 2). In step 2, when the measurement data of the temperature sensors 14a and 14b are smaller than the first threshold value (YES), the calculation unit 44 determines that the measurement data of the oil deterioration detector 16 is the first threshold value (referred to as oil threshold value 1). ) Is smaller (step 3). In step 3, when the measurement data of the oil deterioration detector 16 is smaller than the first threshold value (YES), all the measurement data of vibration, temperature, and lubricating oil are smaller than the first threshold value. The motor 112 is operated normally (step 4).
 一方、ステップ1で、振動センサ15a、15bの少なくとも一方の測定データが第1の閾値に達していた場合(NO)、演算部44は、振動センサ15a、15bの各々について、測定データが第2の閾値(振動閾値2と称する)より小さいか否かを判定する(ステップ5)。ステップ5で、振動センサ15a、15bの各々の測定データが第2の閾値より小さい場合(YES)、演算部44は、温度センサ14a、14bの各々について、測定データが第2の閾値(温度閾値2と称する)より小さいか否かを判定する(ステップ6)。ステップ5で、振動センサ15a、15bの少なくとも一方の測定データが第2の閾値に達していた場合(NO)、演算部44は、インバータ26の出力を停止させ、モータ112を停止する(ステップ9)。 On the other hand, in step 1, when at least one of the measurement data of the vibration sensors 15a and 15b has reached the first threshold value (NO), the calculation unit 44 has the measurement data of the second vibration sensors 15a and 15b. It is determined whether or not it is smaller than the threshold value (referred to as vibration threshold value 2) of (step 5). In step 5, when the measurement data of the vibration sensors 15a and 15b is smaller than the second threshold value (YES), the calculation unit 44 determines that the measurement data of the temperature sensors 14a and 14b is the second threshold value (temperature threshold value). It is determined whether or not it is smaller than (referred to as 2) (step 6). In step 5, when the measurement data of at least one of the vibration sensors 15a and 15b has reached the second threshold value (NO), the calculation unit 44 stops the output of the inverter 26 and stops the motor 112 (step 9). ).
 ステップ6で、温度センサ14a、14bの各々の測定データが第2の閾値より小さい場合(YES)、演算部44は、オイル劣化検出器16について、測定データが第2の閾値(オイル閾値2と称する)より小さいか否かを判定する(ステップ7)。ステップ6で、温度センサ14a、14bの少なくとも一方の測定データが第2の閾値に達していた場合(NO)、演算部44は、インバータ26の出力を停止させ、モータ112を停止する(ステップ9)。 In step 6, when the measurement data of the temperature sensors 14a and 14b are smaller than the second threshold value (YES), the calculation unit 44 determines that the measurement data of the oil deterioration detector 16 is the second threshold value (oil threshold value 2). It is determined whether or not it is smaller than (referred to as) (step 7). In step 6, when the measurement data of at least one of the temperature sensors 14a and 14b has reached the second threshold value (NO), the calculation unit 44 stops the output of the inverter 26 and stops the motor 112 (step 9). ).
 ステップ7で、オイル劣化検出器16の測定データが第2の閾値より小さい場合(YES)、振動、温度、潤滑油の測定データの全てが第2の閾値より小さいので、演算部44は、モータ112の控えめ運転を開始するようにインバータ26を制御する(ステップ8)。すなわち、モータ112の出力を段階的または漸次的に小さくしながら、水中ポンプ100の運転を継続する。このとき、演算部44は、通信部46を介して通報装置30の通報部32に警報信号を出力してもよい。 In step 7, when the measurement data of the oil deterioration detector 16 is smaller than the second threshold value (YES), all the measurement data of vibration, temperature, and lubricating oil are smaller than the second threshold value, so that the calculation unit 44 uses the motor. Control the inverter 26 to start modest operation of 112 (step 8). That is, the operation of the submersible pump 100 is continued while the output of the motor 112 is gradually or gradually reduced. At this time, the calculation unit 44 may output an alarm signal to the notification unit 32 of the notification device 30 via the communication unit 46.
 ステップ7で、オイル劣化検出器16の測定データが第2の閾値に達していた場合(NO)、演算部44は、インバータ26の出力を停止させ、モータ112を停止する(ステップ9)。 In step 7, when the measurement data of the oil deterioration detector 16 has reached the second threshold value (NO), the calculation unit 44 stops the output of the inverter 26 and stops the motor 112 (step 9).
 このように、振動センサ15a、15b、温度センサ14a、14b、及びオイル劣化検出器16のうち少なくとも1つの測定データが第1の閾値に達しており、且つ、振動センサ15a、15b、温度センサ14a、14b、及びオイル劣化検出器16の全ての測定データが第2の閾値より小さい場合には、モータ112の控えめ運転が開始される。振動センサ15a、15b、温度センサ14a、14b、及びオイル劣化検出器16のうち少なくとも1つの測定データが第2の閾値に達した場合には、モータ112が停止される。 As described above, at least one of the measurement data of the vibration sensors 15a and 15b, the temperature sensors 14a and 14b, and the oil deterioration detector 16 has reached the first threshold value, and the vibration sensors 15a and 15b and the temperature sensor 14a , 14b, and when all the measurement data of the oil deterioration detector 16 is smaller than the second threshold value, the modest operation of the motor 112 is started. When the measurement data of at least one of the vibration sensors 15a and 15b, the temperature sensors 14a and 14b, and the oil deterioration detector 16 reaches the second threshold value, the motor 112 is stopped.
 尚、図示の例では、測定データについての判定処理は、振動センサ15a、15b、温度センサ14a、14b、オイル劣化検出器16の順に行われている。しかし、モータ112の使用条件によって、判定処理の順序は、適宜変更することができる。例えば、温度センサ14a、14b、オイル劣化検出器16、振動センサ15a、15b、の順に判定処理が行われてもよい。 In the illustrated example, the determination process for the measurement data is performed in the order of the vibration sensors 15a and 15b, the temperature sensors 14a and 14b, and the oil deterioration detector 16. However, the order of determination processing can be appropriately changed depending on the usage conditions of the motor 112. For example, the determination process may be performed in the order of the temperature sensors 14a and 14b, the oil deterioration detector 16, and the vibration sensors 15a and 15b.
 また、振動センサ15a、15bについて、いずれのセンサが先に判定されてもよい。同様に、温度センサ14a、14bについて、いずれのセンサが先に判定されてもよい。 Further, with respect to the vibration sensors 15a and 15b, any sensor may be determined first. Similarly, with respect to the temperature sensors 14a and 14b, any sensor may be determined first.
 水中ポンプ100が運転される間、上記の判定処理が繰り返される。従って、控えめ運転開始後、振動、温度、潤滑油の測定データの全てが第1の閾値より小さくなった場合には、水中ポンプ100を、控えめ運転から通常運転に自動的に切り替えることができる。また、振動、温度、潤滑油の測定データの少なくとも1つが第2の閾値に達すると、水中ポンプ100の運転を自動的に停止することができる。 While the submersible pump 100 is operated, the above determination process is repeated. Therefore, when all the measurement data of vibration, temperature, and lubricating oil become smaller than the first threshold value after the start of the modest operation, the submersible pump 100 can be automatically switched from the modest operation to the normal operation. Further, when at least one of the measurement data of vibration, temperature and lubricating oil reaches the second threshold value, the operation of the submersible pump 100 can be automatically stopped.
 このように構成された本発明の実施形態によれば、異常運転状態発生の際、ポンプ装置の運転を継続しながら新しいポンプ装置または交換部品を現場に用意することが可能になる。従って、ポンプ装置は、現場で部品交換作業等が開始される時点で停止させればよい。これにより、従来と比較して、ポンプ装置の停止時間を短縮することができる。また、異常値を示すセンサを特定することによって、ポンプ装置を停止する前に、ポンプ内部の異常発生部位を特定することができる。 According to the embodiment of the present invention configured in this way, when an abnormal operation state occurs, it becomes possible to prepare a new pump device or replacement parts at the site while continuing the operation of the pump device. Therefore, the pump device may be stopped at the time when the parts replacement work or the like is started at the site. As a result, the stop time of the pump device can be shortened as compared with the conventional case. Further, by identifying the sensor indicating the abnormal value, it is possible to identify the abnormal occurrence site inside the pump before stopping the pump device.
 図5は、本発明の他の実施形態によるポンプシステム20Aを示す。ポンプシステム20Aでは、インバータ26が、水中ポンプ100に内蔵されていている。この場合、通信基板12は、インバータ26と直接通信することができる。制御部28は、上記の判定処理を実行し、インバータ26を制御する制御信号を、通信基板12を介してインバータ26に出力することができる。 FIG. 5 shows a pump system 20A according to another embodiment of the present invention. In the pump system 20A, the inverter 26 is built in the submersible pump 100. In this case, the communication board 12 can directly communicate with the inverter 26. The control unit 28 can execute the above determination process and output a control signal for controlling the inverter 26 to the inverter 26 via the communication board 12.
 尚、ポンプシステム20、20Aは、停電時にモータ112に電力を供給するためのバッテリー装置を備え、バッテリー装置からの電力によってモータ112を低出力運転することができるように構成されていてもよい。この場合、上記の判定処理を利用することができる。例えば、いずれかのセンサについて第1及び第2の閾値とは別の閾値を設定し、当該センサの測定データがこの閾値に達しないようにモータ112を低出力運転することができる。 The pump systems 20 and 20A may be provided with a battery device for supplying electric power to the motor 112 in the event of a power failure, and may be configured so that the motor 112 can be operated at a low output by the electric power from the battery device. In this case, the above determination process can be used. For example, a threshold value different from the first and second threshold values can be set for any of the sensors, and the motor 112 can be operated at a low output so that the measurement data of the sensor does not reach this threshold value.
 以上、本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明にはその均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。 Although the embodiments of the present invention have been described above, the above-described embodiments of the invention are for facilitating the understanding of the present invention and do not limit the present invention. The present invention can be modified and improved without departing from the spirit thereof, and it goes without saying that the present invention includes an equivalent thereof. In addition, any combination or omission of the claims and the components described in the specification is possible within the range in which at least a part of the above-mentioned problems can be solved or at least a part of the effect is exhibited. Is.
 本発明は、以下の態様を含む。
1.羽根車と、羽根車を回転させる回転軸を駆動するように構成されるモータと、を含むポンプ装置であって、
 ポンプ装置内の状態を測定するように構成される少なくとも1つのセンサを含むセンサ部と、センサ部から少なくとも1つのセンサの測定データを受信するように構成される通信基板と、を含み、
 モータは、制御装置によって制御されるインバータに接続されており、
 制御装置は、少なくとも1つのセンサの測定データに基づいてポンプ装置内の異常状態の有無を判定し、判定結果に基づいて、モータを、通常運転モードと、モータを通常運転モードよりも低い出力で運転する低出力運転モードとの間で切り替えるように構成されており、
 通信基板は、受信した少なくとも1つのセンサの測定データを制御装置に送信するように構成されている、ポンプ装置。
2.センサ部は、少なくとも1つのセンサと電気的に接続されるセンサ基板を含む、1.に記載のポンプ装置。
3.少なくとも1つのセンサについて、制御装置に、測定データの所定の閾値が設定されており、
 制御装置は、低出力運転モードの間、少なくとも1つのセンサの測定データが所定の閾値より小さくなるまでモータの出力を段階的または漸次的に減少するように構成される、1.または2.に記載のポンプ装置。
4.センサ部が、複数のセンサを含み、複数のセンサの各々について、制御装置に、測定データの第1の閾値及び第1の閾値より大きい第2の閾値が設定されており、
 制御装置は、複数のセンサのうち少なくとも1つのセンサの測定データが、第1の閾値と等しいか第1の閾値より大きく、且つ、複数のセンサの全ての測定データが第2の閾値より小さい場合に、低出力運転モードを開始するように構成されている、1.または2.に記載のポンプ装置。
5.制御装置は、低出力運転モードの間、複数のセンサの全ての測定データが第1の閾値より小さくなるまでモータの出力を段階的または漸次的に減少するように構成されている、4.に記載のポンプ装置。
6.制御装置は、複数のセンサのうち少なくとも1つのセンサの測定データが第2の閾値より大きい場合にモータを停止するように構成されている、4.または5.に記載のポンプ装置。
7.インバータは、制御装置に内蔵されている、1.~6.のいずれかに記載のポンプ装置。
8.インバータは、ポンプ装置に内蔵されている、1.~6.のいずれかに記載のポンプ装置。
9.センサ部は、ポンプ装置のモータ室内に配置される温度センサ、モータ室内に配置される振動センサ、及びポンプ装置の潤滑油室内に配置されるオイル劣化検出器、のうちの少なくとも1つを含む、1.~8.のいずれかに記載のポンプ装置。
10.センサ部は、温度センサを含み、温度センサは、モータの負荷側エンドコイル部、モータの反負荷側エンドコイル部、回転軸の負荷側軸受、及び回転軸の反負荷側軸受のうち少なくとも1つの温度を測定するように配置される、9.に記載のポンプ装置。
11.センサ部は、振動センサを含み、振動センサは、回転軸の負荷側軸受及び回転軸の反負荷側軸受のうち少なくとも1つの振動を測定するように配置される、9.または10.に記載のポンプ装置。
12.通信基板が、PLC(Power Line Communications)基板である、1.~11.のいずれかに記載のポンプ装置。
13.ポンプ装置が、水中ポンプである、1.~12.のいずれかに記載のポンプ装置。
14.1.~13.のいずれかに記載のポンプ装置と、制御装置と、を含む、ポンプシステム。
15.さらに、制御装置と電気的に接続される通報装置を含む、14.に記載のポンプシステム。
16.羽根車と、羽根車を回転させる回転軸を駆動するように構成されるモータと、ポンプ装置内の状態を測定するように構成される少なくとも1つのセンサを含むセンサ部と、を含むポンプ装置の制御方法であって、
 センサ部から取得される、少なくとも1つのセンサの測定データに基づいてポンプ装置内の異常状態の有無を判定し、判定結果に基づいて、モータを、通常運転モードと、モータを通常運転モードよりも低い出力で運転する低出力運転モードとの間で切り替える工程を含む、制御方法。
17.少なくとも1つのセンサについて、モータを制御する制御装置に、測定データの所定の閾値を設定する工程と、
 低出力運転モードの間、制御装置によって、少なくとも1つのセンサの測定データが所定の閾値より小さくなるまでモータの出力を段階的または漸次的に減少させる工程と、を含む、16.に記載の制御方法。
18.センサ部は、複数のセンサを含み、制御方法は、
 複数のセンサの各々について、モータを制御する制御装置に、測定データの第1の閾値及び第1の閾値より大きい第2の閾値を設定する工程と、
 制御装置によって、複数のセンサのうち少なくとも1つのセンサの測定データが第1の閾値と等しいか第1の閾値より大きく、且つ、複数のセンサの全ての測定データが第2の閾値より小さい場合に低出力運転モードを開始する工程を含む、16.に記載の制御方法。
19.低出力運転モードの間、複数のセンサの全ての測定データが第1の閾値より小さくなるまでモータの出力を段階的または漸次的に減少する工程を含む、18.に記載の制御方法。
20.複数のセンサのうち少なくとも1つのセンサの測定データが第2の閾値より大きい場合にモータを停止する工程を含む、18.または19.に記載の制御方法。
21.センサ部は、ポンプ装置のモータ室内に配置される温度センサ、モータ室内に配置される振動センサ、及びポンプ装置の潤滑油室内に配置されるオイル劣化検出器、のうちの少なくとも1つを含む、16.~20.のいずれかに記載の制御方法。
The present invention includes the following aspects.
1. 1. A pump device including an impeller and a motor configured to drive a rotating shaft that rotates the impeller.
A sensor unit including at least one sensor configured to measure a state in the pumping apparatus and a communication board configured to receive measurement data of at least one sensor from the sensor unit.
The motor is connected to an inverter controlled by a controller
The control device determines the presence or absence of an abnormal state in the pump device based on the measurement data of at least one sensor, and based on the determination result, sets the motor in the normal operation mode and the motor at a lower output than in the normal operation mode. It is configured to switch between the low power operation mode to operate and
The communication board is a pump device configured to transmit measurement data of at least one received sensor to a control device.
2. 2. The sensor unit includes a sensor substrate that is electrically connected to at least one sensor. The pump device described in.
3. 3. For at least one sensor, the control device is set with a predetermined threshold value for measurement data.
The control device is configured to gradually or gradually reduce the output of the motor during the low power operation mode until the measurement data of at least one sensor becomes smaller than a predetermined threshold. Or 2. The pump device described in.
4. The sensor unit includes a plurality of sensors, and for each of the plurality of sensors, a first threshold value of measurement data and a second threshold value larger than the first threshold value are set in the control device.
In the control device, when the measurement data of at least one of the plurality of sensors is equal to or larger than the first threshold value and all the measurement data of the plurality of sensors are smaller than the second threshold value. In addition, it is configured to start the low power operation mode. Or 2. The pump device described in.
5. The control device is configured to gradually or gradually reduce the output of the motor during the low power operation mode until all the measurement data of the plurality of sensors becomes smaller than the first threshold value. The pump device described in.
6. The control device is configured to stop the motor when the measurement data of at least one of the plurality of sensors is larger than the second threshold value. Or 5. The pump device described in.
7. The inverter is built into the control device. ~ 6. The pump device according to any one of.
8. The inverter is built into the pump device. ~ 6. The pump device according to any one of.
9. The sensor unit includes at least one of a temperature sensor arranged in the motor chamber of the pump device, a vibration sensor arranged in the motor chamber, and an oil deterioration detector arranged in the lubricating oil chamber of the pump device. 1. 1. ~ 8. The pump device according to any one of.
10. The sensor portion includes a temperature sensor, and the temperature sensor includes at least one of a load side end coil portion of the motor, a counterload side end coil portion of the motor, a load side bearing of the rotating shaft, and a counterload side bearing of the rotating shaft. Arranged to measure temperature, 9. The pump device described in.
11. The sensor unit includes a vibration sensor, and the vibration sensor is arranged so as to measure the vibration of at least one of the load side bearing of the rotating shaft and the counterload side bearing of the rotating shaft. Or 10. The pump device described in.
12. The communication board is a PLC (Power Line Communications) board. ~ 11. The pump device according to any one of.
13. The pump device is a submersible pump. ~ 12. The pump device according to any one of.
14.1. ~ 13. A pump system, including a pump device and a control device according to any of the above.
15. In addition, including a reporting device that is electrically connected to the control device, 14. The pump system described in.
16. A pump device comprising an impeller, a motor configured to drive a rotating shaft that rotates the impeller, and a sensor unit comprising at least one sensor configured to measure a condition in the pump device. It ’s a control method,
The presence or absence of an abnormal state in the pump device is determined based on the measurement data of at least one sensor acquired from the sensor unit, and the motor is set to the normal operation mode and the motor is set to the normal operation mode based on the determination result. A control method that includes the step of switching between low power operation modes that operate at low power.
17. A step of setting a predetermined threshold value of measurement data in a control device that controls a motor for at least one sensor, and
16. During the low power operation mode, the control device gradually or gradually reduces the output of the motor until the measurement data of at least one sensor becomes smaller than a predetermined threshold value. The control method described in.
18. The sensor unit includes a plurality of sensors, and the control method is
For each of the plurality of sensors, a step of setting a first threshold value of measurement data and a second threshold value larger than the first threshold value in the control device that controls the motor, and
When the measurement data of at least one of the plurality of sensors is equal to or larger than the first threshold value by the control device, and all the measurement data of the plurality of sensors are smaller than the second threshold value. 16. Including the step of initiating the low power operation mode. The control method described in.
19. 18. During the low power operation mode, the step of gradually or gradually reducing the output of the motor until all the measurement data of the plurality of sensors becomes smaller than the first threshold value is included. The control method described in.
20. 18. The step of stopping the motor when the measurement data of at least one of the plurality of sensors is larger than the second threshold value. Or 19. The control method described in.
21. The sensor unit includes at least one of a temperature sensor arranged in the motor chamber of the pump device, a vibration sensor arranged in the motor chamber, and an oil deterioration detector arranged in the lubricating oil chamber of the pump device. 16. ~ 20. The control method described in any of the above.
 本発明は、ポンプ装置およびポンプシステムに広く適用することができる。 The present invention can be widely applied to pump devices and pump systems.
AL 軸線
10a 反負荷側センサ基板
10b 負荷側センサ基板
12 通信基板
14a 反負荷側温度センサ
14b 負荷側温度センサ
15a 反負荷側振動センサ
15b 負荷側振動センサ
16 オイル劣化検出器
16a 電極部
18 電力ライン
20、20A ポンプシステム
22 制御装置
24 商用電源
26 インバータ
28 制御部
30 通報装置
32 通報部
34 表示部
40 設定部
42 記憶部
44 演算部
46 通信部
48 IO部
50 記憶媒体
52 集積回路
100 水中ポンプ
102 羽根車
103 ポンプ室
104 ポンプケーシング
104a 吸込口
104b 吐出口
106 ポンプブラケット
108 回転軸
110 メカニカルシール
112 モータ
114 ロータ
116 ステータ
116a ステータコア
116b ステータコイル
118 ケーブル
120 モータフレーム
122 負荷側軸受ハウジング
124 負荷側軸受
126 潤滑油室
128 モータ室
130 反負荷側軸受ハウジング
132 反負荷側軸受
134 上部カバー
 
AL Axis 10a Anti-load side sensor board 10b Load side sensor board 12 Communication board 14a Anti-load side temperature sensor 14b Load side temperature sensor 15a Anti-load side vibration sensor 15b Load side vibration sensor 16 Oil deterioration detector 16a Electrode 18 Power line 20 , 20A Pump system 22 Control device 24 Commercial power supply 26 Inverter 28 Control unit 30 Notification device 32 Notification unit 34 Display unit 40 Setting unit 42 Storage unit 44 Calculation unit 46 Communication unit 48 IO unit 50 Storage medium 52 Integrated circuit 100 Submersible pump 102 blades Car 103 Pump chamber 104 Pump casing 104a Suction port 104b Discharge port 106 Pump bracket 108 Rotating shaft 110 Mechanical seal 112 Motor 114 Rotor 116 Stator 116a Stator core 116b Stator coil 118 Cable 120 Motor frame 122 Load side bearing housing 124 Load side bearing 126 Lubricating oil Room 128 Motor room 130 Non-load side bearing housing 132 Non-load side bearing 134 Top cover

Claims (21)

  1.  羽根車と、前記羽根車を回転させる回転軸を駆動するように構成されるモータと、を含むポンプ装置であって、
     前記ポンプ装置内の状態を測定するように構成される少なくとも1つのセンサを含むセンサ部と、前記センサ部から前記少なくとも1つのセンサの測定データを受信するように構成される通信基板と、を含み、
     前記モータは、制御装置によって制御されるインバータに接続されており、
     前記制御装置は、前記少なくとも1つのセンサの測定データに基づいて前記ポンプ装置内の異常状態の有無を判定し、判定結果に基づいて、前記モータを、通常運転モードと、前記モータを前記通常運転モードよりも低い出力で運転する低出力運転モードとの間で切り替えるように構成されており、
     前記通信基板は、受信した前記少なくとも1つのセンサの測定データを前記制御装置に送信するように構成されている、ポンプ装置。
    A pump device including an impeller and a motor configured to drive a rotating shaft that rotates the impeller.
    A sensor unit including at least one sensor configured to measure a state in the pump device and a communication board configured to receive measurement data of the at least one sensor from the sensor unit are included. ,
    The motor is connected to an inverter controlled by a control device.
    The control device determines the presence or absence of an abnormal state in the pump device based on the measurement data of the at least one sensor, and based on the determination result, sets the motor in the normal operation mode and the motor in the normal operation. It is configured to switch between a low power operation mode that operates at a lower output than the mode.
    The communication board is a pump device configured to transmit the received measurement data of at least one sensor to the control device.
  2.  前記センサ部は、前記少なくとも1つのセンサと電気的に接続されるセンサ基板を含む、請求項1に記載のポンプ装置。 The pump device according to claim 1, wherein the sensor unit includes a sensor substrate that is electrically connected to at least one sensor.
  3.  前記少なくとも1つのセンサについて、前記制御装置に、測定データの所定の閾値が設定されており、
     前記制御装置は、前記低出力運転モードの間、前記少なくとも1つのセンサの測定データが前記所定の閾値より小さくなるまで前記モータの出力を段階的または漸次的に減少するように構成される、請求項1または2に記載のポンプ装置。
    For the at least one sensor, the control device is set with a predetermined threshold value of measurement data.
    The control device is configured to gradually or gradually reduce the output of the motor during the low power operation mode until the measurement data of the at least one sensor becomes smaller than the predetermined threshold value. Item 2. The pump device according to item 1 or 2.
  4.  前記センサ部が複数のセンサを含み、前記複数のセンサの各々について、前記制御装置に、測定データの第1の閾値及び前記第1の閾値より大きい第2の閾値が設定されており、
     前記制御装置は、前記複数のセンサのうち少なくとも1つのセンサの測定データが、前記第1の閾値と等しいか前記第1の閾値より大きく、且つ、前記複数のセンサの全ての測定データが前記第2の閾値より小さい場合に、前記低出力運転モードを開始するように構成されている、請求項1または2に記載のポンプ装置。
    The sensor unit includes a plurality of sensors, and for each of the plurality of sensors, a first threshold value of measurement data and a second threshold value larger than the first threshold value are set in the control device.
    In the control device, the measurement data of at least one of the plurality of sensors is equal to or larger than the first threshold value, and all the measurement data of the plurality of sensors are the first. The pump device according to claim 1 or 2, wherein the low power operation mode is started when the threshold value is smaller than the threshold value of 2.
  5.  前記制御装置は、前記低出力運転モードの間、前記複数のセンサの全ての測定データが前記第1の閾値より小さくなるまで前記モータの出力を段階的または漸次的に減少するように構成されている、請求項4に記載のポンプ装置。 The control device is configured to gradually or gradually reduce the output of the motor during the low power operation mode until all the measurement data of the plurality of sensors becomes smaller than the first threshold value. The pump device according to claim 4.
  6.  前記制御装置は、前記複数のセンサのうち少なくとも1つのセンサの測定データが前記第2の閾値より大きい場合に前記モータを停止するように構成されている、請求項4または5に記載のポンプ装置。 The pump device according to claim 4 or 5, wherein the control device is configured to stop the motor when the measurement data of at least one of the plurality of sensors is larger than the second threshold value. ..
  7.  前記インバータは、前記制御装置に内蔵されている、請求項1~6のいずれか一項に記載のポンプ装置。 The pump device according to any one of claims 1 to 6, wherein the inverter is built in the control device.
  8.  前記インバータは、前記ポンプ装置に内蔵されている、請求項1~6のいずれか一項に記載のポンプ装置。 The pump device according to any one of claims 1 to 6, wherein the inverter is built in the pump device.
  9.  前記センサ部は、前記ポンプ装置のモータ室内に配置される温度センサ、前記モータ室内に配置される振動センサ、及び前記ポンプ装置の潤滑油室内に配置されるオイル劣化検出器、のうちの少なくとも1つを含む、請求項1~8のいずれか一項に記載のポンプ装置。 The sensor unit is at least one of a temperature sensor arranged in the motor chamber of the pump device, a vibration sensor arranged in the motor chamber, and an oil deterioration detector arranged in the lubricating oil chamber of the pump device. The pump device according to any one of claims 1 to 8, including one.
  10.  前記センサ部は、前記温度センサを含み、前記温度センサは、前記モータの負荷側エンドコイル部、前記モータの反負荷側エンドコイル部、前記回転軸の負荷側軸受、及び前記回転軸の反負荷側軸受のうち少なくとも1つの温度を測定するように配置される、請求項9に記載のポンプ装置。 The sensor portion includes the temperature sensor, and the temperature sensor includes a load side end coil portion of the motor, a counterload side end coil portion of the motor, a load side bearing of the rotating shaft, and a counterload of the rotating shaft. The pump device according to claim 9, which is arranged to measure the temperature of at least one of the side bearings.
  11.  前記センサ部は、前記振動センサを含み、前記振動センサは、前記回転軸の負荷側軸受及び前記回転軸の反負荷側軸受のうち少なくとも1つの振動を測定するように配置される、請求項9または10に記載のポンプ装置。 9. The sensor unit includes the vibration sensor, and the vibration sensor is arranged so as to measure vibration of at least one of a load side bearing of the rotating shaft and a counterload side bearing of the rotating shaft. Or the pump device according to 10.
  12.  前記通信基板が、PLC(Power Line Communications)基板である、請求項1~11のいずれか一項に記載のポンプ装置。 The pump device according to any one of claims 1 to 11, wherein the communication board is a PLC (Power Line Communications) board.
  13.  前記ポンプ装置が、水中ポンプである、請求項1~12のいずれか一項に記載のポンプ装置。 The pump device according to any one of claims 1 to 12, wherein the pump device is a submersible pump.
  14.  請求項1~13のいずれか一項に記載のポンプ装置と、前記制御装置と、を含む、ポンプシステム。 A pump system including the pump device according to any one of claims 1 to 13 and the control device.
  15.  さらに、前記制御装置と電気的に接続される通報装置を含む、請求項14に記載のポンプシステム。 The pump system according to claim 14, further comprising a reporting device that is electrically connected to the control device.
  16.  羽根車と、前記羽根車を回転させる回転軸を駆動するように構成されるモータと、ポンプ装置内の状態を測定するように構成される少なくとも1つのセンサを含むセンサ部と、を含むポンプ装置の制御方法であって、
     前記センサ部から取得される、前記少なくとも1つのセンサの測定データに基づいて前記ポンプ装置内の異常状態の有無を判定し、判定結果に基づいて、前記モータを、通常運転モードと、前記モータを前記通常運転モードよりも低い出力で運転する低出力運転モードとの間で切り替える工程を含む、制御方法。
    A pump device including an impeller, a motor configured to drive a rotating shaft that rotates the impeller, and a sensor unit including at least one sensor configured to measure a state in the pump device. It is a control method of
    The presence or absence of an abnormal state in the pump device is determined based on the measurement data of the at least one sensor acquired from the sensor unit, and the motor is set to the normal operation mode and the motor based on the determination result. A control method including a step of switching between a low output operation mode for operating at a lower output than the normal operation mode.
  17.  前記少なくとも1つのセンサについて、前記モータを制御する制御装置に、測定データの所定の閾値を設定する工程と、
     前記低出力運転モードの間、前記制御装置によって、前記少なくとも1つのセンサの測定データが前記所定の閾値より小さくなるまで前記モータの出力を段階的または漸次的に減少させる工程を含む、請求項16に記載の制御方法。
    For the at least one sensor, a step of setting a predetermined threshold value of measurement data in a control device that controls the motor, and
    16. A step 16 comprising the step of gradually or gradually reducing the output of the motor by the control device during the low power operation mode until the measurement data of the at least one sensor becomes smaller than the predetermined threshold value. The control method described in.
  18.  前記センサ部は、複数のセンサを含み、前記制御方法は、
     前記複数のセンサの各々について、前記モータを制御する制御装置に、測定データの第1の閾値及び前記第1の閾値より大きい第2の閾値を設定する工程と、
     前記制御装置によって、前記複数のセンサのうち少なくとも1つのセンサの測定データが前記第1の閾値と等しいか前記第1の閾値より大きく、且つ、前記複数のセンサの全ての測定データが前記第2の閾値より小さい場合に、前記低出力運転モードを開始する工程を含む、請求項16に記載の制御方法。
    The sensor unit includes a plurality of sensors, and the control method
    For each of the plurality of sensors, a step of setting a first threshold value of measurement data and a second threshold value larger than the first threshold value in a control device that controls the motor, and
    By the control device, the measurement data of at least one of the plurality of sensors is equal to or larger than the first threshold value, and all the measurement data of the plurality of sensors are the second. 16. The control method according to claim 16, further comprising a step of starting the low output operation mode when the value is smaller than the threshold value of.
  19.  前記低出力運転モードの間、前記複数のセンサの全ての測定データが前記第1の閾値より小さくなるまで前記モータの出力を段階的または漸次的に減少する工程を含む、請求項18に記載の制御方法。 18. The method of claim 18, further comprising a step of gradually or gradually reducing the output of the motor until all the measured data of the plurality of sensors becomes smaller than the first threshold value during the low power operation mode. Control method.
  20.  前記複数のセンサのうち少なくとも1つのセンサの測定データが前記第2の閾値より大きい場合に前記モータを停止する工程を含む、請求項18または19に記載の制御方法。 The control method according to claim 18 or 19, which comprises a step of stopping the motor when the measurement data of at least one of the plurality of sensors is larger than the second threshold value.
  21.  前記センサ部は、前記ポンプ装置のモータ室内に配置される温度センサ、前記モータ室内に配置される振動センサ、及び前記ポンプ装置の潤滑油室内に配置されるオイル劣化検出器、のうちの少なくとも1つを含む、請求項16~20のいずれか一項に記載の制御方法。 The sensor unit is at least one of a temperature sensor arranged in the motor chamber of the pump device, a vibration sensor arranged in the motor chamber, and an oil deterioration detector arranged in the lubricating oil chamber of the pump device. The control method according to any one of claims 16 to 20, comprising one.
PCT/JP2020/012907 2019-07-01 2020-03-24 Pump device, method for controlling pump device, and pump system WO2021002067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-122985 2019-07-01
JP2019122985A JP2021008855A (en) 2019-07-01 2019-07-01 Pump device, control method of pump device and pump system

Publications (1)

Publication Number Publication Date
WO2021002067A1 true WO2021002067A1 (en) 2021-01-07

Family

ID=74101287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012907 WO2021002067A1 (en) 2019-07-01 2020-03-24 Pump device, method for controlling pump device, and pump system

Country Status (2)

Country Link
JP (1) JP2021008855A (en)
WO (1) WO2021002067A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510270A (en) * 1991-07-04 1993-01-19 Ebara Corp Device for preventing over-load of pump device
US6481973B1 (en) * 1999-10-27 2002-11-19 Little Giant Pump Company Method of operating variable-speed submersible pump unit
JP2008008204A (en) * 2006-06-29 2008-01-17 Ebara Corp Control device for drainage pumping station

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0510270A (en) * 1991-07-04 1993-01-19 Ebara Corp Device for preventing over-load of pump device
US6481973B1 (en) * 1999-10-27 2002-11-19 Little Giant Pump Company Method of operating variable-speed submersible pump unit
JP2008008204A (en) * 2006-06-29 2008-01-17 Ebara Corp Control device for drainage pumping station

Also Published As

Publication number Publication date
JP2021008855A (en) 2021-01-28

Similar Documents

Publication Publication Date Title
TWI809023B (en) Pump apparatus, test operation method of pump apparatus, motor assembly and method for identifying abnormal vibration of motor assembly
KR20150131602A (en) Underwater pump system
KR102111331B1 (en) Water pump control system using real-time wireless communication
KR102040176B1 (en) Apparatus for Smart Monitoring & Control Unit and Pump equipped therewith
KR102064173B1 (en) Motor control apparatus for controlling the maximum efficiency point of the motor and diagnosing faults
CN111902634B (en) Fault protection of pump-motor assembly
CN105465909A (en) Outdoor device and air conditioner
US20210310901A1 (en) Bearing frame monitoring system
WO2018123452A1 (en) Pump device
KR102208830B1 (en) Apparatus and method for monitoring of motor pump
KR20140044734A (en) Dry vacuum pump apparatus and control apparatus for the same
CN108303584A (en) Detection method and water dispenser
JP5561942B2 (en) Rotating machine system
US8054609B2 (en) System to control, protect and monitor the status of forced cooling motors for power transformers and similar
JP2019120145A (en) Pump device and pump device test run method
EP3151394B1 (en) Rotating electric machine assembly body
KR20110024689A (en) Submerged motor pump with surveillance camera
WO2021002067A1 (en) Pump device, method for controlling pump device, and pump system
KR101228415B1 (en) Water pump system for drainage and control method of water pump using this
KR102148753B1 (en) Control panel of dirty water and drainage pump and control system of dirty water and drainage pump comprising the same
KR102183933B1 (en) Agitator with selfdiagnosis and recovery function
JPH11153098A (en) Freezing preventive device for canned motor pump
JP2019122065A (en) Motor assembly and pump apparatus
KR20020023685A (en) a self-control system of a stirrer error
KR102047446B1 (en) Underwater motor pump having wireless communication module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834938

Country of ref document: EP

Kind code of ref document: A1