WO2021002032A1 - Interlayer film for laminated glass, and laminated glass - Google Patents

Interlayer film for laminated glass, and laminated glass Download PDF

Info

Publication number
WO2021002032A1
WO2021002032A1 PCT/JP2019/045500 JP2019045500W WO2021002032A1 WO 2021002032 A1 WO2021002032 A1 WO 2021002032A1 JP 2019045500 W JP2019045500 W JP 2019045500W WO 2021002032 A1 WO2021002032 A1 WO 2021002032A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminated glass
interlayer film
resin
weight
Prior art date
Application number
PCT/JP2019/045500
Other languages
French (fr)
Japanese (ja)
Inventor
由貴 石川
晋治 河田
達矢 岩本
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2019567387A priority Critical patent/JP7372840B2/en
Publication of WO2021002032A1 publication Critical patent/WO2021002032A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties

Definitions

  • the present invention relates to an interlayer film for laminated glass used for obtaining laminated glass.
  • the present invention also relates to a laminated glass using the above-mentioned interlayer film for laminated glass.
  • Laminated glass has excellent safety because the amount of scattered glass fragments is small even if it is damaged by an external impact. Therefore, the laminated glass is widely used in automobiles, railroad vehicles, aircraft, ships, buildings, and the like.
  • the laminated glass is manufactured by sandwiching an interlayer film for laminated glass between two glass plates.
  • Patent Document 1 contains a modified polyvinyl acetate and a plasticizer, and the modified polyvinyl acetate has a vinyl acetate structural unit and a fatty acid vinyl ester structural unit.
  • An interlayer film for laminated glass is disclosed.
  • Patent Document 1 includes a first layer and a second layer laminated on the first surface of the first layer, and the first layer is the modified polyvinyl acetate.
  • a laminated glass interlayer film containing the above plasticizer and having a second layer containing a polyvinyl acetal resin is disclosed.
  • a multilayer interlayer film having a structure of two or more layers may be used. Further, in the multilayer interlayer film, different resins may be used for different layers. However, in an interlayer film in which layers containing different resins are laminated, peeling (delamination) is likely to occur at the interface between these layers.
  • the interlayer film described in Patent Document 1 can improve the sound insulation of the laminated glass to some extent. However, in the interlayer film described in Patent Document 1, delamination may occur when a multilayer interlayer film is used. Further, in the interlayer film described in Patent Document 1, the interlayer film becomes cloudy and the transparency of the laminated glass is lowered depending on the ratio of the vinyl acetate structural unit and the fatty acid vinyl ester structural unit of the modified polyvinyl acetate. Sometimes.
  • an interlayer film for laminated glass having a structure of two or more layers, which is laminated on a first layer containing a resin and a first surface of the first layer.
  • a second layer containing a resin is provided, the first layer and the second layer contain different resins, and the glass transition temperature of the first layer is the glass transition temperature of the second layer.
  • the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH / g or less
  • an interlayer film is sandwiched between two clear glasses to obtain a laminated glass X
  • the laminated glass X of the laminated glass X is obtained.
  • An interlayer film for laminated glass having a haze of 0.5% or less (in this specification, "interlayer film for laminated glass” may be abbreviated as "intermediate film”) is provided.
  • the first layer contains a resin having an acid value of 5 mgKOH / g or more and 500 mgKOH / g or less.
  • the first layer contains a resin having a carboxyl group.
  • the content of the carboxyl group is 4% by weight or more and 15% by weight or less in 100% by weight of the resin having a carboxyl group.
  • the resin having a carboxyl group is a (meth) acrylic polymer having a carboxyl group.
  • the first layer contains a plasticizer.
  • the interlayer film has a structure of three or more layers and is laminated on a second surface of the first layer opposite to the first surface. It also has a third layer.
  • the first laminated glass member, the second laminated glass member, and the above-mentioned interlayer film for laminated glass are provided, and the first laminated glass member and the second laminated glass are provided.
  • a laminated glass is provided in which the interlayer film for laminated glass is arranged between the member and the member.
  • the first laminated glass member, the second laminated glass member, and a laminated glass interlayer film having a structure of two or more layers are provided, and the first laminated glass member and the above.
  • the laminated glass interlayer film is arranged between the second laminated glass member, and the interlayer film is laminated on the first layer containing a resin and the first surface of the first layer.
  • the first layer and the second layer contain different resins, and the glass transition temperature of the first layer is such that the first layer and the second layer contain different resins.
  • a laminated glass having an acid value of 3 mgKOH / g or more and 500 mgKOH / g or less and a haze of 0.5% or less, which is lower than the glass transition temperature of the second layer.
  • the first layer contains a resin having an acid value of 5 mgKOH / g or more and 500 mgKOH / g or less.
  • the first layer contains a resin having a carboxyl group.
  • the content of the carboxyl group is 4% by weight or more and 15% by weight or less in 100% by weight of the resin having a carboxyl group.
  • the resin having a carboxyl group is a (meth) acrylic polymer having a carboxyl group.
  • the first layer comprises a plasticizer.
  • the interlayer film has a structure of three or more layers, and the interlayer film is a second layer opposite to the first surface of the first layer. It is provided with a third layer laminated on the surface of the.
  • the laminated glass interlayer film according to the present invention has a structure of two or more layers.
  • the laminated glass interlayer film according to the present invention includes a first layer containing a resin and a second layer laminated on the first surface of the first layer and containing a resin.
  • the first layer and the second layer contain different resins.
  • the glass transition temperature of the first layer is lower than the glass transition temperature of the second layer, and the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH /. It is less than or equal to g.
  • the haze of the laminated glass X is 0.5% or less. Since the interlayer film for laminated glass according to the present invention has the above-mentioned structure, delamination of the interlayer film can be suppressed even though layers containing different resins are laminated, and the interlayer film can be laminated. The transparency of the glass can be increased.
  • the laminated glass according to the present invention includes a first laminated glass member, a second laminated glass member, and an interlayer film for laminated glass having a structure of two or more layers.
  • the interlayer film for laminated glass is arranged between the first laminated glass member and the second laminated glass member.
  • the interlayer film includes a first layer containing a resin and a second layer laminated on the first surface of the first layer and containing a resin.
  • the first layer and the second layer contain different resins, and the glass transition temperature of the first layer is the glass of the second layer.
  • the laminated glass according to the present invention has a haze of 0.5% or less. Since the laminated glass according to the present invention has the above-mentioned structure, delamination of the interlayer film can be suppressed even though layers containing different resins are laminated, and the laminated glass is transparent. You can improve your sex.
  • FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of a laminated glass using the interlayer film for laminated glass shown in FIG.
  • the laminated glass interlayer film according to the present invention (hereinafter, may be abbreviated as "intermediate film”) has a structure of two or more layers.
  • the interlayer film according to the present invention includes a first layer containing a resin and a second layer laminated on the first surface of the first layer and containing a resin.
  • the first layer and the second layer contain different resins.
  • the “different resin” means a resin in which the content of different types of structural units is 50 mol% or more when the two resins are compared. Therefore, for example, the polyvinyl acetate resin and the polyvinyl butyral resin are different resins. Further, for example, the acrylic resin and the polyvinyl butyral resin are different resins. On the other hand, for example, polyvinyl butyral resin A (hydroxyl content 30.5 mol%, acetylation degree 1 mol%, acetalization degree (butyralization degree) 68.5 mol%) and polyvinyl butyral resin B (containing hydroxyl groups).
  • the resin is not different from the rate of 24 mol%, the degree of acetylation of 12 mol%, and the degree of acetalization (butyralization degree) of 64 mol%). Since the polyvinyl butyral resin A and the polyvinyl butyral resin B have a content of 50% or more of structural units of the same type, they are regarded as the same resin in the present specification.
  • the glass transition temperature of the first layer is lower than the glass transition temperature of the second layer, and the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH / g or less. is there.
  • the haze of the laminated glass X is 0.5% or less.
  • the interlayer film for laminated glass according to the present invention has the above-mentioned structure, delamination of the interlayer film can be suppressed even though layers containing different resins are laminated, and the interlayer film can be laminated.
  • the transparency of the glass can be increased.
  • the laminated glass interlayer film according to the present invention even though the first layer and the second layer contain different resins, peeling at the interface between the first layer and the second layer can be suppressed. Moreover, the transparency of the laminated glass can be improved.
  • the interlayer film for laminated glass according to the present invention has the above-mentioned structure, the sound insulation of the laminated glass can be improved.
  • the interlayer film has a structure of two or more layers.
  • the interlayer film may have a two-layer structure, a three-layer structure, or a three-layer or more structure.
  • the interlayer film includes a first layer containing a resin and a second layer containing a resin.
  • a second layer is laminated on the first surface of the first layer.
  • the interlayer film may include a third layer laminated on a second surface of the first layer opposite to the first surface.
  • the third layer preferably contains a resin.
  • the first and second layers may be the surface layer of the interlayer film and may not be the surface layer.
  • the second and third layers may be the surface layer of the interlayer film and may not be the surface layer.
  • Another layer may be provided on the surface of the second layer opposite to the first layer.
  • Another layer may be provided on the surface of the third layer opposite to the first layer.
  • the second layer and the third layer are preferably surface layers of an interlayer film.
  • the glass transition temperature of the first layer is lower than the glass transition temperature of the second layer from the viewpoint of exerting the effect of the present invention and enhancing the sound insulation of the laminated glass.
  • the absolute value of the difference between the glass transition temperature of the first layer and the glass transition temperature of the second layer is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 35 ° C. or higher, preferably 60 ° C. or lower, and more preferably 50 ° C. or lower.
  • the glass transition temperature of the first layer is lower than the glass transition temperature of the third layer.
  • the first layer and the third layer contain different resins and the glass transition temperature of the first layer is lower than the glass transition temperature of the third layer, the first layer Although the third layer and the third layer contain different resins, peeling at the interface between the first layer and the third layer can be suppressed.
  • the absolute value of the difference between the glass transition temperature of the first layer and the glass transition temperature of the third layer is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 35 ° C. or higher, preferably 60 ° C. or lower, and more preferably 50 ° C. or lower.
  • the glass transition temperature of the first layer is preferably -20 ° C or higher, more preferably -15 ° C or higher, further preferably -10 ° C or higher, and particularly preferably -7. ° C. or higher, preferably 20 ° C. or lower, more preferably 10 ° C. or lower, still more preferably 5 ° C. or lower, particularly preferably 0 ° C. or lower.
  • the glass transition temperature of the second layer is preferably 20 ° C. or higher, more preferably 25 ° C. or higher, further preferably 30 ° C. or higher, particularly preferably 34 ° C. or higher. Is 60 ° C. or lower, more preferably 50 ° C. or lower, still more preferably 45 ° C. or lower, and particularly preferably 40 ° C. or lower.
  • the glass transition temperature of the third layer is preferably 20 ° C. or higher, more preferably 25 ° C. or higher, further preferably 30 ° C. or higher, particularly preferably 34 ° C. or higher. Is 60 ° C. or lower, more preferably 50 ° C. or lower, still more preferably 45 ° C. or lower, and particularly preferably 40 ° C. or lower.
  • the glass transition temperature is determined by viscoelasticity measurement. Specifically, the viscoelasticity measurement is performed as follows.
  • the test piece Store the test piece in an environment with a room temperature of 23 ⁇ 2 ° C and a humidity of 25 ⁇ 5% for 12 hours.
  • the viscoelasticity is measured using a viscoelasticity measuring device (for example, "ARES-G2" manufactured by TA Instruments).
  • a parallel plate having a diameter of 8 mm is used as a jig, and the measurement is performed under the conditions of a shear mode, a temperature lowering rate of 3 ° C./min from 100 ° C. to ⁇ 20 ° C., a frequency of 1 Hz, and a strain of 1%.
  • the tan ⁇ at the peak temperature of tan ⁇ of the first layer is preferably 2.0 or more, more preferably 2.2 or more, further preferably 2.4 or more, particularly preferably 2.5 or more, and preferably 10 or less. , More preferably 8 or less. In this case, the sound insulation of the laminated glass can be further improved.
  • the tan ⁇ at the peak temperature of the tan ⁇ of the first layer can be measured by viscoelasticity measurement as follows.
  • a dynamic viscoelasticity measuring device for example, “DVA-200” manufactured by IT Measurement Control Co., Ltd.
  • DVA-200 manufactured by IT Measurement Control Co., Ltd.
  • Measure viscoelasticity In the shear mode, the temperature is raised from ⁇ 50 ° C. to 200 ° C. at a heating rate of 3 ° C./min, and the measurement is performed under the conditions of frequency 1 Hz and strain 1%.
  • the viscoelasticity measurement may be performed using the interlayer film itself.
  • the peak of tan ⁇ derived from the first layer, the second layer, the third layer and the like may be read from the measurement result.
  • the glass transition temperature of the layer to be measured may be measured by peeling off each layer of the interlayer film.
  • the laminated glass member and the interlayer film may be peeled off after cooling the laminated glass with liquid nitrogen or the like, and viscoelasticity measurement may be performed using the peeled interlayer film.
  • the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH / g or less. If the acid value of the first layer is less than 3 mgKOH / g or more than 500 mgKOH / g, delamination of the interlayer film is likely to occur. Further, if the acid value of the first layer exceeds 500 mgKOH / g, the laminated glass may become cloudy or equipment such as an extruder may be corroded.
  • the acid value of the first layer is preferably 15 mgKOH / g or more, more preferably 20 mgKOH / g or more, preferably 200 mgKOH / g or less, more preferably. Is 150 mgKOH / g or less.
  • the acid value of the first layer is measured according to the potentiometric titration method described in JIS K0070. Specifically, it can be measured as follows.
  • the obtained solution was subjected to a potentiometric titrator (for example, "AT-710" manufactured by Kyoto Electronics Co., Ltd., electrode: “H-171, R-173" manufactured by Kyoto Electronics Co., Ltd.) and 0.1 mol / L potassium hydroxide ethanol.
  • Titration is performed using a solution, and the obtained inflection point is used as the end point of the titration, and the acid value is calculated from the following formula.
  • the sample for acid value measurement may be prepared using a composition for forming the first layer, and may be obtained by separating the first layer from a laminated glass or an interlayer film. You may.
  • a method of obtaining a sample (first layer) for acid value measurement from the laminated glass after cooling with liquid nitrogen or the like to peel off the laminated glass member and the interlayer film, the first layer in the interlayer film
  • a method of peeling the second layer (and the third layer) and the like can be mentioned.
  • Examples of the method of obtaining the first layer for acid value measurement from the interlayer film include a method of peeling the first layer and the second layer (and the third layer).
  • Laminated glass X is produced by sandwiching the interlayer film according to the present invention between two clear glasses.
  • the laminated glass X is manufactured to measure the haze of the laminated glass X.
  • the thickness of the clear glass used for producing the laminated glass X is preferably 2 mm.
  • the laminated glass X is preferably produced as follows.
  • An interlayer film is sandwiched between two pieces of clear glass having a thickness of 2 mm to obtain a laminated body.
  • the obtained laminate was placed in a rubber bag, degassed at a vacuum degree of 2.6 kPa for 20 minutes, then transferred into an oven with the degassed, held at 90 ° C. for 30 minutes, and vacuum pressed. Is pre-crimped.
  • the pre-crimped laminate is crimped in an autoclave at 135 ° C. and a pressure of 1.2 MPa for 20 minutes to obtain a laminated glass X having a size of 25 mm in length and 300 mm in width.
  • the laminated glass X may be produced by peeling the interlayer film of the laminated glass from the laminated glass member.
  • the haze of the laminated glass X is 0.5% or less.
  • the haze of the laminated glass X is preferably 0.4% or less, more preferably 0.3% or less.
  • the haze of the laminated glass X is measured in accordance with JIS K6714.
  • the interlayer film according to the present invention is arranged between two clear float glasses having a thickness of 2 mm to obtain a laminated glass Y having a size of 300 mm in length and 300 mm in width.
  • the peeling area at the interface between the first layer and the second layer was preferably 50% or less, more preferably 50% or less. Is 40% or less, more preferably 30% or less.
  • the impact resistance test at ⁇ 20 ° C. is a temperature condition in which delamination is more likely to occur than, for example, an impact resistance test at 20 ° C. or an impact resistance test at 40 ° C.
  • Laminated glass Y is stored at -20 ⁇ 2 ° C for 4 hours or more.
  • the mass is 227 ⁇ 2 g and the diameter is 38 mm at the vertical center position and the horizontal center position of the laminated glass Y at ⁇ 20 ⁇ 2 ° C. in accordance with JIS R3211 or JIS R3212. Drop the steel ball from the height of 9.5m. The peeled area at the interface between the first layer and the second layer of the interlayer film is determined.
  • the peeled area can be calculated by, for example, the following formula.
  • Peeling area (%) 100-[(Area where the first layer and the second layer are adhered after the impact resistance test at -20 ° C) / (Impact resistance test at -20 ° C) Area where the first layer and the second layer are adhered before the implementation of) ⁇ 100]
  • the laminated glass Y is photographed from above with a digital camera or the like, and the bonded portion and the peeled portion are image-analyzed. It can be obtained by calculating the area.
  • the laminated glass Y is manufactured to carry out an impact resistance test at -20 ° C.
  • the laminated glass Y is preferably produced as follows.
  • An interlayer film is sandwiched between two 2 mm thick clear float glasses to obtain a laminate.
  • the obtained laminate was placed in a rubber bag, degassed at a vacuum degree of 2.6 kPa for 20 minutes, then transferred into an oven with the degassed, held at 90 ° C. for 30 minutes, and vacuum pressed. Is pre-crimped.
  • the pre-bonded laminate is crimped in an autoclave at 135 ° C. and a pressure of 1.2 MPa for 20 minutes to obtain a laminated glass Y having a size of 300 mm in length and 300 mm in width.
  • the laminated glass Y may be produced by peeling the interlayer film of the laminated glass from the laminated glass member.
  • FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the first embodiment of the present invention.
  • the interlayer film 11 shown in FIG. 1 is a multilayer interlayer film having a structure of two or more layers.
  • the interlayer film 11 is used to obtain a laminated glass.
  • the interlayer film 11 is an interlayer film for laminated glass.
  • the interlayer film 11 includes a first layer 1, a second layer 2, and a third layer 3.
  • the interlayer film 11 has a three-layer structure.
  • a second layer 2 is arranged and laminated on the first surface 1a of the first layer 1.
  • the third layer 3 is arranged and laminated on the second surface 1b opposite to the first surface 1a of the first layer 1.
  • the first layer 1 is an intermediate layer.
  • the second layer 2 and the third layer 3 are protective layers, respectively, and are surface layers in the present embodiment.
  • the first layer 1 is arranged between the second layer 2 and the third layer 3 and is sandwiched between the first layer 1. Therefore, the interlayer film 11 has a multilayer structure in which the second layer 2, the first layer 1, and the third layer 3 are laminated in this order (second layer 2 / first layer 1 / third). It has a layer 3).
  • the interlayer film contains a resin (hereinafter, may be referred to as resin (0)).
  • the first layer contains a resin (hereinafter, may be referred to as a resin (1)).
  • the second layer contains a resin (hereinafter, may be referred to as a resin (2)).
  • the third layer preferably contains a resin (hereinafter, may be referred to as resin (3)).
  • the resin (1) and the resin (2) contain different resins.
  • the resin (1) and the resin (2) may be different resins.
  • the resin (1) and the resin (3) may be the same resin, may contain different resins, or may be different resins.
  • the resin (2) and the resin (3) may be the same resin, may contain different resins, or may be different resins.
  • the resin (1) and the resin (2) are different from each other, and the resin (1) and the resin (3) are different resins. It is preferable to have.
  • the resin (0), the resin (1), the resin (2), and the resin (3) only one type may be used, or two or more types may be used in combination.
  • Examples of the resin (0), the resin (1), the resin (2), and the resin (3) include a cured resin (cured product), a thermoplastic resin, and a modified resin obtained by modifying these resins. Can be mentioned.
  • the cured resin examples include resins obtained by curing a photocurable compound, a moisture-curable compound, and the like.
  • the resin may be a cured product obtained by curing a photocurable compound or a moisture-curable compound.
  • the cured product obtained by curing the photocurable compound or the moisture-curable compound may be a thermoplastic resin.
  • the photocurable compound or the moisture-curable compound is preferably a curable compound having a (meth) acryloyl group, and more preferably a (meth) acrylic polymer.
  • the resin is preferably a curable compound having a (meth) acryloyl group, and more preferably a (meth) acrylic polymer.
  • thermoplastic resin examples include polyvinyl acetate, polyester resin, polyvinyl acetal resin, vinyl acetate resin, polystyrene, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, ionomer resin, and polyvinyl alcohol.
  • examples thereof include resins, polyolefin resins such as aliphatic polyolefins, and (meth) acrylic resins (polymers having a (meth) acryloyl group).
  • the polyoxymethylene (or polyacetal) resin is included in the polyvinyl acetal resin.
  • a thermoplastic resin other than these may be used.
  • the thermoplastic resin may be a thermoplastic elastomer.
  • the thermoplastic resin is a resin that softens when heated and exhibits plasticity, and solidifies when cooled to room temperature (25 ° C.), for example.
  • the thermoplastic elastomer means a resin that softens and exhibits plasticity when heated, and solidifies when cooled to room temperature (25 ° C.) and exhibits rubber elasticity, among other thermoplastic resins.
  • thermoplastic resin exemplified above can be a thermoplastic elastomer by adjusting the molecular structure, degree of polymerization, etc. of the resin.
  • the thermoplastic resin is preferably a polymer having a (meth) acryloyl group, and more preferably a (meth) acrylic polymer.
  • the thermoplastic resin is preferably a polyvinyl acetal resin, an ionomer resin or an ethylene-vinyl acetate copolymer resin, and more preferably a polyvinyl acetal resin.
  • the (meth) acrylic polymer is preferably a polymer of a polymerizable composition containing a compound having a (meth) acryloyl group.
  • the above-mentioned polymerizable composition contains a polymerization component.
  • the polymerizable composition may contain a photoreaction initiator.
  • the polymerizable composition may contain an auxiliary agent for accelerating the reaction together with the photoreaction initiator.
  • Representative examples of the compound having a (meth) acryloyl group include (meth) acrylic acid ester and N-substituted acrylamide having an amide group.
  • the (meth) acrylic polymer is preferably a poly (meth) acrylic acid ester.
  • the polymerization component is a (meth) acrylic acid ester having a cyclic ether structure, a (meth) acrylic acid ester having an alicyclic structure, a (meth) acrylic acid ester having an aromatic ring, and a (meth) acrylic acid ester having a polar group.
  • the side chain preferably contains an acyclic (meth) acrylic acid ester having 6 or less carbon atoms, or an N-substituted acrylamide having an amide group.
  • Examples of the (meth) acrylic acid ester having a cyclic ether structure include glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate glycidyl ether, 3-hydroxypropyl (meth) acrylate glycidyl ether, and 4-hydroxybutyl acrylate glycidyl ether.
  • the (meth) acrylic acid ester having the cyclic ether structure is preferably tetrahydrofurfuryl (meth) acrylate or cyclic trimethylolpropane formal acrylate.
  • Examples of the (meth) acrylic acid ester having the alicyclic structure include isobolonyl (meth) acrylate and cyclohexyl (meth) acrylate.
  • Examples of the (meth) acrylic acid ester having the aromatic ring include benzyl acrylate and phenoxypolyethylene glycol acrylate.
  • Examples of the (meth) acrylic acid ester having the above polar group include (meth) acrylic acid ester having a hydroxyl group, an amide group, an amino group, an isocyanate group, a carboxyl group and the like as the polar group.
  • Examples of the (meth) acrylic acid ester having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate. Be done.
  • Examples of the (meth) acrylic acid ester having an isocyanate group include triallyl isocyanurate and its derivatives.
  • Examples of the (meth) acrylic acid ester having a carboxyl group include acrylic acid, ⁇ -carboxy-polycaprolactone monoacrylate, and 2-acryloyloxyethyl succinic acid.
  • the (meth) acrylic acid ester may be a polyvalent carboxylic acid ester having a (meth) acryloyl group.
  • examples of the polyvalent carboxylic acid ester having the (meth) acryloyl group include 2-acryloyloxyethyl succinate and the like.
  • Examples of the acyclic (meth) acrylic acid ester having 6 or less carbon atoms in the side chain include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. ..
  • the content of the acyclic (meth) acrylic acid ester having 8 or more carbon atoms in the side chain in 100% by weight of the above-mentioned polymerization component shall be less than 20% by weight. Is preferable.
  • N-substituted acrylamide having an amide group examples include N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (meth) acryloyl morpholine, N-isopropyl (meth) acrylamide, and N. -Hydroxyethyl (meth) acrylamide and the like can be mentioned.
  • Examples of the (meth) acrylic acid ester include diethylene glycol monoethyl ether (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-acryloyloxyethyl-2-hydroxypropylphthalate, and 2-acryloyl, in addition to the above compounds.
  • Examples thereof include pentaerythritol hexa (meth) acrylate, tri (2-acryloyloxyethyl) phosphate, tetramethylol methanetri (meth) acrylate, tetramethylol propanetetra (meth) acrylate and derivatives thereof.
  • the (meth) acrylic polymer may be a homopolymer of the above-mentioned (meth) acrylic acid ester, or may be a copolymer of a polymerization component containing the above-mentioned (meth) acrylic acid ester.
  • photoreaction initiator examples include 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1- (4-).
  • the photoreaction initiator is preferably benzyldimethylketal, 1-hydroxycyclohexylphenylketone, or bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide.
  • the content of the photoreaction initiator in 100% by weight of the polymerizable composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 10% by weight or less, and more preferably 5. It is less than% by weight.
  • the content of the photoreaction initiator is at least the above lower limit and at least the above upper limit, the photoreactivity and storage stability are further enhanced.
  • a photocurable device such as an ultraviolet irradiation device in order to polymerize the photocurable compound.
  • the ultraviolet irradiation device include a box type device and a belt conveyor type device.
  • the ultraviolet lamp installed in the ultraviolet irradiation device include an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a chemical lamp, a metal halide lamp, an excima lamp, and a UV-LED.
  • the ultraviolet lamp is preferably a chemical lamp or a UV-LED.
  • the ultraviolet irradiation amount (integrated irradiation amount) is preferably 500 mJ or more, more preferably 1000 mJ or more, still more preferably 1500 mJ or more, and particularly preferably 2000 mJ or more.
  • the ultraviolet irradiation amount (integrated irradiation amount) is preferably 20000 mJ or less, more preferably 10000 mJ or less, and further preferably 8000 mJ or less.
  • the ultraviolet irradiation amount (integrated irradiation amount) is at least the above lower limit, unreacted monomers can be reduced.
  • the irradiation intensity of the ultraviolet irradiation is preferably 0.1 mW or more, more preferably 0.5 mW or more, still more preferably 1 mW or more, and particularly preferably 2 mW or more.
  • the polyvinyl acetate is preferably a polymer of a polymerizable composition containing vinyl acetate and the monomer having a functional group.
  • Examples of the monomer having the above functional group include 3-methyl-3-butene-1-ol, ethylene glycol monovinyl ether, isopropylacrylamide and the like.
  • Examples of the monomer having a carboxyl group as the functional group include acrylic acid and itaconic acid.
  • the weight average molecular weight of polyvinyl acetate is preferably 250,000 or more, more preferably 300,000 or more, still more preferably 400,000 or more, and particularly preferably 500,000 or more. From the viewpoint of improving the interlayer adhesive strength, the weight average molecular weight of polyvinyl acetate is preferably 1.2 million or less, more preferably 900,000 or less.
  • the above weight average molecular weight indicates the polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
  • the method for synthesizing the above-mentioned polyvinyl acetate by polymerizing the above-mentioned polymerizable composition is not particularly limited. Examples of this synthesis method include a solution polymerization method, a suspension polymerization method, and a UV polymerization method.
  • the method for synthesizing polyvinyl acetate is a solution polymerization method from the viewpoint of effectively enhancing the sound insulation and interlayer adhesion in the interlayer film having enhanced transparency and transparency. Is preferable.
  • polyester resin examples include polyethylene terephthalate and polyethylene naphthalate.
  • the polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol (PVA) with an aldehyde.
  • the polyvinyl acetal resin is preferably an acetal product of polyvinyl alcohol.
  • the polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate.
  • the saponification degree of the polyvinyl alcohol is generally in the range of 70 mol% to 99.9 mol%.
  • the average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 1500 or more, still more preferably 1600 or more, preferably 5000 or less, more preferably 4000 or less, still more preferably. It is 3500 or less, particularly preferably 3000 or less.
  • the average degree of polymerization is at least the above lower limit, the penetration resistance of the laminated glass is further increased.
  • the average degree of polymerization is not more than the above upper limit, molding of the interlayer film becomes easy.
  • the average degree of polymerization of the above polyvinyl alcohol is determined by a method based on JIS K6726 "polyvinyl alcohol test method".
  • the carbon number of the acetal group contained in the above polyvinyl acetal resin is not particularly limited.
  • the aldehyde used in producing the polyvinyl acetal resin is not particularly limited.
  • the acetal group in the polyvinyl acetal resin preferably has 3 to 5 carbon atoms, and more preferably 3 or 4 carbon atoms. When the acetal group in the polyvinyl acetal resin has 3 or more carbon atoms, the glass transition temperature of the interlayer film becomes sufficiently low.
  • the above aldehyde is not particularly limited. Generally, an aldehyde having 1 to 10 carbon atoms is preferably used. Examples of the aldehyde having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutylaldehyde, n-barrelaldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, and n-octylaldehyde. Examples thereof include n-nonylaldehyde, n-decylaldehyde and benzaldehyde.
  • Propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde are preferred, propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferred, and n-butyraldehyde is even more preferred. Only one kind of the above aldehyde may be used, or two or more kinds may be used in combination.
  • the hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin is preferably 15 mol% or more, more preferably 18 mol% or more, preferably 40 mol% or less, and more preferably 35 mol% or less.
  • the content of the hydroxyl groups is at least the above lower limit, the adhesive strength of the interlayer film becomes even higher. Further, when the content of the hydroxyl group is not more than the above upper limit, the flexibility of the interlayer film is increased and the handling of the interlayer film becomes easy.
  • the hydroxyl group content of the polyvinyl acetal resin is a value obtained by dividing the amount of ethylene groups to which the hydroxyl groups are bonded by the total amount of ethylene groups in the main chain and indicating the mole fraction as a percentage.
  • the amount of ethylene groups to which the hydroxyl groups are bonded can be measured according to, for example, JIS K6728 “Polyvinyl butyral test method”.
  • the degree of acetylation of the polyvinyl acetal resin is preferably 0.01 mol% or more, more preferably 0.5 mol% or more, preferably 10 mol% or less, and more preferably 2 mol% or less.
  • the degree of acetylation is at least the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer becomes high.
  • the degree of acetylation is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass becomes high.
  • the degree of acetylation is a value obtained by dividing the amount of ethylene groups to which acetyl groups are bonded by the total amount of ethylene groups in the main chain, and indicating the mole fraction as a percentage.
  • the amount of ethylene group to which the acetyl group is bonded can be measured according to, for example, JIS K6728 “Polyvinyl Butyral Test Method”.
  • the degree of acetalization of the polyvinyl acetal resin is preferably 55 mol% or more, more preferably 60 mol% or more, preferably 75 mol% or less, more preferably 71 mol%. It is as follows. When the degree of acetalization is at least the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer becomes high. When the degree of acetalization is not more than the above upper limit, the reaction time required for producing the polyvinyl acetal resin is shortened.
  • the above acetalization degree is obtained as follows. First, the value obtained by subtracting the amount of ethylene groups to which the hydroxyl groups are bonded and the amount of ethylene groups to which the acetyl groups are bonded is obtained from the total amount of ethylene groups in the main chain. The obtained value is divided by the total amount of ethylene groups in the main chain to obtain the mole fraction. The value obtained by expressing this mole fraction as a percentage is the degree of acetalization.
  • the hydroxyl group content (hydroxyl group amount), acetalization degree (butyralization degree), and acetylation degree are preferably calculated from the results measured by a method based on JIS K6728 "polyvinyl butyral test method". However, the measurement by ASTM D1396-92 may be used.
  • the polyvinyl acetal resin is a polyvinyl butyral resin
  • the hydroxyl group content (hydroxyl group amount), acetalization degree (butyralization degree), and acetylation degree are based on JIS K6728 "Polyvinyl butyral test method”. Can be calculated from the results measured by.
  • Resin contained in the first layer As the resin (1), the resin described above can be used.
  • the first layer preferably contains a resin having an acid value of 5 mgKOH / g or more and 500 mgKOH / g or less (hereinafter, may be referred to as resin (1A)).
  • the resin (1) preferably contains the resin (1A).
  • the resin (1) may be the resin (1A).
  • the acid value of the first layer can be easily controlled within the above-mentioned range, and as a result, delamination of the interlayer film can be effectively suppressed.
  • the resin (1) may contain a resin other than the resin (1A).
  • the acid value of the resin (1A) is preferably 200 mgKOH / g or less, more preferably 150 mgKOH / g or less.
  • the acid value of the resin (1) is measured according to the potentiometric titration method described in JIS K0070. Specifically, it can be measured as follows.
  • Acid value (mgKOH / g) (V1-V0) x N x 56.11 x f / S S: Mass (g) of the sample (resin (1))
  • V0 Titration in blank test (ml)
  • V1 Titration (ml) in a test using a sample (resin (1))
  • N Concentration of titrant (0.1 mol / L)
  • the resin (1) itself may be used, or the resin (1) may be separated from the first layer.
  • the method for separating the resin (1) from the first layer include the following methods.
  • the first layer is dissolved in a good solvent (eg, methyl ethyl ketone, tetrahydrofuran, etc.).
  • a poor solvent for example, ethanol, methanol, etc.
  • the obtained high-volume component is further subjected to liquid chromatography or the like to obtain a high-molecular-weight component (resin) and a low-molecular-weight component of the first layer.
  • a good solvent eg, methyl ethyl ketone, tetrahydrofuran, etc.
  • a poor solvent for example, ethanol, methanol, etc.
  • the obtained high-volume component is further subjected to liquid chromatography or the like to obtain a high-molecular-weight component (resin) and a low-molecular-weight component of the first layer
  • the content of the resin (1A) in 100% by weight of the first layer is preferably 30% by weight or more, more preferably 50% by weight or more, preferably 90% by weight or less, more preferably 80% by weight or less. More preferably, it is 75% by weight or less.
  • the content of the resin (1A) is at least the above lower limit and at least the above upper limit, the acid value of the first layer can be easily controlled within the above range, and as a result, delamination of the interlayer film is further improved. It can be suppressed more effectively.
  • the content of the resin (1A) in 100% by weight of the resin contained in the first layer is preferably 50% by weight or more, more preferably 70% by weight or more. ..
  • the acid value of the first layer can be easily controlled within the above range, and as a result, delamination of the interlayer film is more effectively performed. It can be suppressed.
  • the first layer preferably contains a resin having a carboxyl group.
  • the resin (1) and the resin (1A) preferably contain a resin having a carboxyl group.
  • the acid value of the first layer can be easily controlled within the above-mentioned range, and as a result, delamination of the interlayer film can be effectively suppressed.
  • the resin (1) and the resin (1A) may be resins having a carboxyl group. Further, the resin having a carboxyl group may be different from the resin (1A).
  • the content of the carboxyl group in 100% by weight of the resin having a carboxyl group is preferably 4% by weight or more, more preferably 5% by weight or more, preferably 15% by weight or less, and more preferably 13% by weight or less.
  • the acid value of the first layer can be easily controlled within the above range, and as a result, delamination of the interlayer film is further effective. Can be suppressed.
  • the content of the above carboxyl group can be measured by 1 H-NMR or the like.
  • the resin having a carboxyl group is a (meth) acrylic polymer having a carboxyl group, or It is preferably polyvinyl acetate having a carboxyl group, and more preferably a (meth) acrylic polymer having a carboxyl group.
  • the (meth) acrylic polymer having a carboxyl group can be obtained, for example, by curing a polymerizable composition containing the (meth) acrylic acid ester having a carboxyl group.
  • the polyvinyl acetate having a carboxyl group can be obtained, for example, by using a polymerizable composition containing vinyl acetate and the monomer having a carboxyl group.
  • the content of the resin having a carboxyl group in 100% by weight of the first layer is preferably 4% by weight or more, more preferably 5% by weight or more, preferably 15% by weight or less, and more preferably 13% by weight or less. Is.
  • the content of the resin having a carboxyl group is not less than the above lower limit and not more than the above upper limit, the acid value of the first layer can be easily controlled within the above range, and as a result, delamination of the interlayer film is caused. It can be suppressed even more effectively.
  • the content of the resin having a carboxyl group in 100% by weight of the resin contained in the first layer is preferably 4% by weight or more, more preferably 5% by weight or more. It is preferably 15% by weight or less, more preferably 13% by weight or less.
  • the acid value of the first layer can be easily controlled within the above range, and as a result, delamination of the interlayer film is caused. It can be suppressed even more effectively.
  • the first layer contains two or more kinds of resins, it is preferable that the first layer does not have a phase-separated structure such as a co-continuous structure and a sea-island structure.
  • the content of the resin (1) in 100% by weight of the first layer is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, still more preferably 60% by weight. As mentioned above, it is particularly preferably 65% by weight or more.
  • Resin contained in the second and third layers (resin (2), resin (3)): As the resin (2) and the resin (3), the above-mentioned resin can be used.
  • the resin (2) and the resin (3) each contain the thermoplastic resin.
  • the above thermoplastic resin is more preferable.
  • the resin (2) is preferably the polyvinyl acetal resin, and the resin. (3) is preferably the above-mentioned polyvinyl acetal resin.
  • the resin (2) and the resin (3) are the same resin.
  • the content of the thermoplastic resin in 100% by weight of the resin contained in the second layer is preferably 10% by weight or more, more preferably 30% by weight or more, and even more. It is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more.
  • the main component (50% by weight or more) of the resin (2) is preferably the thermoplastic resin.
  • the content of the polyvinyl acetal resin in 100% by weight of the thermoplastic resin contained in the second layer is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and further. It is preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more.
  • the main component (50% by weight or more) of the thermoplastic resin in the second layer is preferably a polyvinyl acetal resin.
  • the content of the thermoplastic resin in 100% by weight of the resin contained in the third layer is preferably 10% by weight or more, more preferably 30% by weight or more, and even more. It is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more.
  • the main component (50% by weight or more) of the resin (3) is preferably the thermoplastic resin.
  • the content of the polyvinyl acetal resin in 100% by weight of the thermoplastic resin contained in the third layer is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and further. It is preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more.
  • the main component (50% by weight or more) of the thermoplastic resin in the third layer is preferably a polyvinyl acetal resin.
  • the interlayer film preferably contains a plasticizer.
  • the first layer preferably contains a plasticizer (hereinafter, may be referred to as a plasticizer (1)).
  • the second layer preferably contains a plasticizer (hereinafter, may be referred to as a plasticizer (2)).
  • the third layer preferably contains a plasticizer (hereinafter, may be referred to as a plasticizer (3)).
  • the use of plasticizers tends to further increase the adhesive strength between the layers. Further, when the polyvinyl acetal resin and the plasticizer are used in combination, the impact resistance and the penetration resistance are further improved, and the adhesive force of the layer containing the polyvinyl acetal resin and the plasticizer to the laminated glass member or another layer is appropriately increased.
  • the plasticizer is not particularly limited.
  • the plasticizer (1), the plasticizer (2), and the plasticizer (3) may be the same or different. As the plasticizer (1), the plasticizer (2), and the plasticizer (3), only one type may be used, or two or more types may be used in combination
  • plasticizer examples include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphoric acid plasticizers such as organic phosphoric acid plasticizers and organic subphosphate plasticizers. .. Organic ester plasticizers are preferred.
  • the plasticizer is preferably a liquid plasticizer.
  • Examples of the monobasic organic acid ester include glycol esters obtained by reacting glycol with a monobasic organic acid.
  • Examples of the glycol include triethylene glycol, tetraethylene glycol, tripropylene glycol and the like.
  • Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptyl acid, n-octyl acid, 2-ethylhexic acid, n-nonyl acid and decyl acid.
  • polybasic organic acid ester examples include an ester compound of a multibasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms.
  • polybasic organic acid examples include adipic acid, sebacic acid, azelaic acid and the like.
  • organic ester plasticizer examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, and triethylene glycol dicaprelate.
  • Triethylene Glycol Di-n-Octanoate Triethylene Glycol Di-n-Heptanoate, Tetraethylene Glycol Di-n-Heptanoate, Dibutyl Sevacate, Dioctyl Azelate, Dibutyl Carbitol Adipate, Ethylene Glycol Di-2-Ethyl Butyrate, 1,3-propylene glycol di-2-ethylbutyrate, 1,4-butylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, dipropylene glycol Di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, diethylene glycol dicaprylate, dihexyl adipate, dioctyl adipate, hexylcyclohe
  • organophosphate plasticizer examples include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate and the like.
  • the plasticizer is preferably a diester plasticizer represented by the following formula (1).
  • R1 and R2 each represent an organic group having 2 to 10 carbon atoms
  • R3 represents an ethylene group, an isopropylene group or an n-propylene group
  • p represents an integer of 3 to 10.
  • Each of R1 and R2 in the above formula (1) is preferably an organic group having 5 to 10 carbon atoms, and more preferably an organic group having 6 to 10 carbon atoms.
  • the plasticizer preferably contains triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate. ..
  • the plasticizer more preferably contains triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and further preferably contains triethylene glycol di-2-ethylhexanoate. preferable.
  • the content of the plasticizer (1) with respect to 100 parts by weight of the resin (1) is defined as the content (1).
  • the content (1) is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, further preferably 30 parts by weight or more, particularly preferably 35 parts by weight or more, preferably 100 parts by weight or less, and more preferably 80 parts by weight or more. It is less than or equal to parts by weight, more preferably 70 parts by weight or less, and particularly preferably 65 parts by weight or less.
  • the content (1) is at least the above lower limit, delamination of the interlayer film can be suppressed more effectively, and the sound insulation of the laminated glass can be further improved.
  • the content (1) is not more than the above upper limit, the penetration resistance of the laminated glass is further increased.
  • the content of the plasticizer (2) with respect to 100 parts by weight of the resin (2) is defined as the content (2).
  • the content (2) is preferably 20 parts by weight or more, more preferably 25 parts by weight or more, further preferably 30 parts by weight or more, preferably 45 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 37. It is less than a part by weight.
  • the content (2) is at least the above lower limit, delamination of the interlayer film can be suppressed more effectively, and the sound insulation of the laminated glass can be further improved.
  • the content (2) is not more than the above upper limit, the penetration resistance of the laminated glass is further increased.
  • the bending rigidity becomes even higher.
  • the content of the plasticizer (3) with respect to 100 parts by weight of the resin (3) is defined as the content (3).
  • the content (3) is preferably 20 parts by weight or more, more preferably 25 parts by weight or more, still more preferably 30 parts by weight or more, preferably 45 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 37. It is less than a part by weight.
  • the content (3) is at least the above lower limit, delamination of the interlayer film can be suppressed more effectively, and the sound insulation of the laminated glass can be further improved.
  • the content (3) is not more than the above upper limit, the penetration resistance of the laminated glass is further increased.
  • the bending rigidity becomes even higher.
  • the above-mentioned content (1) and the above-mentioned content (2) may be the same or different.
  • the content (1) and the content (3) may be the same or different. From the viewpoint of enhancing the sound insulation of the laminated glass, the content (1) and the content (2) are the same, or the content (1) is larger than the content (2). Is preferable, and the content (1) is more preferably higher than the content (2). From the viewpoint of enhancing the sound insulation of the laminated glass, the content (1) and the content (3) are the same, or the content (1) is larger than the content (3). Is preferable, and the content (1) is more preferably higher than the content (3).
  • the absolute value of the difference between the content (2) and the content (1), and the difference between the content (3) and the content (1) is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, and further preferably 15 parts by weight or more.
  • the absolute value of the difference between the content (2) and the content (1) and the absolute value of the difference between the content (3) and the content (1) are preferably 80 parts by weight or less, respectively. It is more preferably 75 parts by weight or less, still more preferably 70 parts by weight or less.
  • the interlayer film may contain a heat-shielding substance.
  • the first layer may contain a heat-shielding substance.
  • the second layer may contain a heat-shielding substance.
  • the third layer may contain a heat-shielding substance. Only one kind of the heat-shielding substance may be used, or two or more kinds thereof may be used in combination.
  • the heat-shielding substance may contain at least one component X of the phthalocyanine compound, the naphthalocyanine compound and the anthracyanine compound, or may contain heat-shielding particles. In this case, the heat-shielding substance may contain both the component X and the heat-shielding particles.
  • the above component X is not particularly limited.
  • As the component X conventionally known phthalocyanine compounds, naphthalocyanine compounds and anthracyanine compounds can be used.
  • the component X examples include phthalocyanine, phthalocyanine derivatives, naphthalocyanine, naphthalocyanine derivatives, anthracyanine and anthracyanine derivatives, and the like.
  • the phthalocyanine compound and the phthalocyanine derivative each preferably have a phthalocyanine skeleton.
  • the naphthalocyanine compound and the derivative of the naphthalocyanine each have a naphthalocyanine skeleton.
  • the anthracyanine compound and the derivative of the anthracynin each have an anthracyanine skeleton.
  • the above component X may contain a vanadium atom or a copper atom.
  • the component X may contain a vanadium atom or may contain a copper atom.
  • the component X may be at least one of a vanadium atom or a copper atom-containing phthalocyanine and a vanadium atom or a copper atom-containing phthalocyanine derivative.
  • the interlayer film may contain heat-shielding particles.
  • the first layer may contain heat shield particles.
  • the second layer may contain heat shield particles.
  • the third layer may contain the heat shield particles.
  • the heat-shielding particles are heat-shielding substances. Infrared rays (heat rays) can be effectively blocked by using heat shield particles. Only one type of the heat shield particles may be used, or two or more types may be used in combination.
  • Metal oxide particles can be used as the heat shield particles.
  • the heat shield particles particles formed of metal oxides (metal oxide particles) can be used.
  • infrared rays have a large thermal effect, and when infrared rays are absorbed by a substance, they are emitted as heat. For this reason, infrared rays are generally called heat rays.
  • heat shield particles By using the heat shield particles, infrared rays (heat rays) can be effectively blocked.
  • the heat-shielding particles mean particles that can absorb infrared rays.
  • heat shield particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles).
  • Aluminum-doped zinc oxide particles (AZO particles), niob-doped titanium oxide particles, sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, tallium-doped tungsten oxide particles, rubidium-doped tungsten oxide particles, tin-doped indium oxide particles (ITO particles) , Tin-doped zinc oxide particles, silicon-doped zinc oxide particles and other metal oxide particles, hexaborated lanthanum (LaB 6 ) particles and the like. Heat-shielding particles other than these may be used.
  • the interlayer film may contain at least one metal salt (hereinafter, may be referred to as metal salt M) among the alkali metal salt and the alkaline earth metal salt.
  • the alkaline earth metal means six kinds of metals, Be, Mg, Ca, Sr, Ba, and Ra.
  • the first layer may contain the metal salt M.
  • the second layer may contain the metal salt M.
  • the third layer may contain the metal salt M.
  • the metal salt M may contain at least one metal selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
  • the metal salt M an alkali metal salt of an organic acid having 2 to 16 carbon atoms and an alkaline earth metal salt of an organic acid having 2 to 16 carbon atoms can be used.
  • the metal salt M may contain a magnesium carboxylic acid salt having 2 to 16 carbon atoms or a potassium carboxylic acid salt having 2 to 16 carbon atoms.
  • magnesium carboxylic acid salt having 2 to 16 carbon atoms and the potassium carboxylic acid salt having 2 to 16 carbon atoms include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutyrate, and 2-ethylbutanoic acid. Examples thereof include potassium, magnesium 2-ethylhexanoate and potassium 2-ethylhexanoate.
  • the interlayer film may contain an ultraviolet shielding agent.
  • the first layer may contain an ultraviolet shielding agent.
  • the second layer may contain an ultraviolet shielding agent.
  • the third layer may contain an ultraviolet shielding agent. Due to the use of the ultraviolet shielding agent, the visible light transmittance is less likely to decrease even if the interlayer film and the laminated glass are used for a long period of time. Only one kind of the above-mentioned ultraviolet shielding agent may be used, or two or more kinds may be used in combination.
  • the above UV shielding agent includes a UV absorbing agent.
  • the ultraviolet shielding agent is preferably an ultraviolet absorber.
  • the amount of the ultraviolet absorber is smaller than that of the photoinitiator (inhibits polymerization) when the photocurable compound is polymerized.
  • the photocurable compound may be polymerized with a photoinitiator and then an ultraviolet absorber may be contained in a separate step.
  • the ultraviolet shielding agent examples include an ultraviolet shielding agent containing a metal atom, an ultraviolet shielding agent containing a metal oxide, an ultraviolet shielding agent having a benzotriazole structure (benzotriazole compound), and an ultraviolet shielding agent having a benzophenone structure (benzophenone compound). ), An ultraviolet shielding agent having a triazine structure (triazine compound), an ultraviolet shielding agent having a malonic acid ester structure (malonic acid ester compound), an ultraviolet shielding agent having a oxalic acid anilide structure (a oxalate anilide compound), and a benzoate structure. Examples thereof include an ultraviolet shielding agent (benzoate compound).
  • Examples of the ultraviolet shielding agent containing the metal atom include platinum particles, particles in which the surface of platinum particles is coated with silica, palladium particles, and particles in which the surface of palladium particles is coated with silica.
  • the UV shielding agent is preferably not heat shielding particles.
  • Examples of the ultraviolet shielding agent containing the metal oxide include zinc oxide, titanium oxide, cerium oxide and the like. Further, the surface of the ultraviolet shielding agent containing the metal oxide may be coated. Examples of the coating material on the surface of the ultraviolet shielding agent containing the metal oxide include an insulating metal oxide, a hydrolyzable organosilicon compound, and a silicone compound.
  • the insulating metal oxide examples include silica, alumina and zirconia.
  • the insulating metal oxide has, for example, a bandgap energy of 5.0 eV or more.
  • Examples of the ultraviolet shielding agent having a benzotriazole structure include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole ("TinuvinP” manufactured by BASF), 2- (2'-hydroxy-3', 5'-di-t-butylphenyl) benzotriazole (BASF "Tinuvin320”), 2- (2'-hydroxy-3'-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (BASF) "Tinuvin 326" manufactured by BASF) and 2- (2'-hydroxy-3', 5'-di-amylphenyl) benzotriazole ("Tinuvin 328" manufactured by BASF) and the like.
  • TeinuvinP 2- (2'-hydroxy-5'-methylphenyl) benzotriazole
  • BASF 2- (2'-hydroxy-3', 5'-di-t-butylphenyl) benzotriazole
  • BASF 2- (2'-hydroxy-3', 5'-di-t
  • Examples of the ultraviolet shielding agent having a benzophenone structure include octabenzone (“Chimassorb81” manufactured by BASF) and the like.
  • UV shielding agent having the above triazine structure
  • examples of the ultraviolet shielding agent having the above triazine structure include "LA-F70” manufactured by ADEKA and 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-[(hexyl).
  • Oxy] -phenol (“Tinuvin1577FF” manufactured by BASF) and the like can be mentioned.
  • Examples of the ultraviolet shielding agent having a malonic acid ester structure include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene).
  • -Bis (1,2,2,6,6-pentamethyl4-piperidinyl) malonate and the like can be mentioned.
  • Examples of commercially available products of the ultraviolet shielding agent having the above-mentioned malonic acid ester structure include Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant).
  • Examples of the ultraviolet shielding agent having the oxalic acid anilide structure include N- (2-ethylphenyl) -N'-(2-ethoxy-5-t-butylphenyl) oxalic acid diamide and N- (2-ethylphenyl)-.
  • a oxalic acid having an aryl group substituted on a nitrogen atom such as N'-(2-ethoxy-phenyl) oxalic acid diamide and 2-ethyl-2'-ethoxy-oxalanilide ("Sanduvor VSU" manufactured by Clariant). Examples include diamides.
  • ultraviolet shielding agent having the benzoate structure examples include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (“Tinuvin 120” manufactured by BASF) and the like. ..
  • the interlayer film may contain an antioxidant.
  • the first layer may contain an antioxidant.
  • the second layer may contain an antioxidant.
  • the third layer may contain an antioxidant. Only one kind of the above-mentioned antioxidant may be used, or two or more kinds may be used in combination.
  • antioxidants examples include phenolic antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants and the like.
  • the above-mentioned phenolic antioxidant is an antioxidant having a phenol skeleton.
  • the sulfur-based antioxidant is an antioxidant containing a sulfur atom.
  • the phosphorus-based antioxidant is an antioxidant containing a phosphorus atom.
  • phenolic antioxidant examples include 2,6-di-t-butyl-p-cresol (BHT), butylhydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, and stearyl-.
  • Examples of the phosphorus-based antioxidant include tridecylphosphite, tris (tridecyl) phosphite, triphenylphosphite, trinonylphenylphosphite, bis (tridecyl) pentaerythritol diphosphite, and bis (decyl) pentaerythritol diphos.
  • antioxidants examples include BASF's "IRGANOX 245", BASF's “IRGAFOS 168", BASF's “IRGAFOS 38", Sumitomo Chemical's “Smilizer BHT”, and Sakai Chemical's. Examples thereof include “H-BHT” and "IRGANOX 1010" manufactured by BASF.
  • the interlayer film, the first layer, the second layer, and the third layer are each other than a coupling agent, a dispersant, a surfactant, a flame retardant, an antistatic agent, and a metal salt, if necessary. It may contain additives such as an adhesive strength modifier, a moisture resistant agent, a fluorescent whitening agent, and an infrared absorber. Only one of these additives may be used, or two or more of these additives may be used in combination.
  • the thickness of the interlayer film is not particularly limited. From the viewpoint of practical use and from the viewpoint of sufficiently increasing the penetration resistance and flexural rigidity of the laminated glass, the thickness of the interlayer film is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, and more. It is preferably 1.5 mm or less. When the thickness of the interlayer film is at least the above lower limit, the penetration resistance and flexural rigidity of the laminated glass are further increased. When the thickness of the interlayer film is not more than the above upper limit, the transparency of the interlayer film becomes even better.
  • T be the thickness of the interlayer film.
  • the thickness of the first layer is preferably 0.005 T or more, more preferably 0.01 T or more, still more preferably 0.02 T or more, preferably 0.17 T or less, more preferably 0.15 T or less, and more preferably. It is 0.13T or less, more preferably 0.1T or less, still more preferably 0.08T or less.
  • the thickness is at least the above lower limit and at least the above upper limit, the sound insulation property is further improved over a wide temperature range.
  • each of the second layer and the third layer is 0.01 T or more, more preferably 0.02 T or more, preferably 0.17 T or less, more preferably 0.15 T or less, and more preferably 0.13 T. Below, it is more preferably 0.1 T or less, still more preferably 0.08 T or less. When the thickness is at least the above lower limit and at least the above upper limit, the sound insulation property is further improved over a wide temperature range.
  • the interlayer film may be an interlayer film having a uniform thickness or an interlayer film having a variable thickness.
  • the cross-sectional shape of the interlayer film may be rectangular or wedge-shaped.
  • the interlayer film may be rolled into a roll of the interlayer film.
  • the roll body may include a winding core and an interlayer film wound around the outer circumference of the winding core.
  • the distance between one end and the other end of the interlayer film is preferably 3 m or less, more preferably 2 m or less, particularly preferably 1.5 m or less, preferably 0.5 m or more, more preferably 0.8 m or more, particularly. It is preferably 1 m or more.
  • the method for producing the interlayer film according to the present invention is not particularly limited.
  • Examples of the method for producing an interlayer film according to the present invention include a method of forming each layer using each resin composition for forming each layer and then laminating the obtained layers, and a method for forming each layer. Examples thereof include a method of laminating each layer by coextruding each resin composition using an extruder. Since it is suitable for continuous production, a manufacturing method of extrusion molding is preferable.
  • the same polyvinyl acetal resin is contained in the second layer and the third layer because the production efficiency of the interlayer film is excellent. It is more preferable that the same polyvinyl acetal resin and the same plasticizer are contained in the second layer and the third layer because the production efficiency of the interlayer film is excellent. It is more preferable that the second layer and the third layer are formed of the same resin composition because the production efficiency of the interlayer film is excellent.
  • the interlayer film has an uneven shape on at least one of the surfaces on both sides. It is more preferable that the interlayer film has an uneven shape on both surfaces.
  • the method for forming the uneven shape is not particularly limited, and examples thereof include a lip embossing method, an embossing roll method, a calender roll method, and a deformed extrusion method.
  • the embossing roll method is preferable because it is possible to form an emboss having a large number of uneven shapes that are quantitatively constant.
  • the laminated glass according to the present invention includes a first laminated glass member, a second laminated glass member, and the above-mentioned interlayer film for laminated glass.
  • the above-mentioned interlayer film for laminated glass is arranged between the first laminated glass member and the second laminated glass member.
  • the laminated glass according to the present invention includes a first laminated glass member, a second laminated glass member, and an interlayer film for laminated glass having a structure of two or more layers.
  • the interlayer film for laminated glass is arranged between the first laminated glass member and the second laminated glass member.
  • the interlayer film includes a first layer containing a resin and a second layer laminated on the first surface of the first layer and containing a resin.
  • the first layer and the second layer contain different resins, and the glass transition temperature of the first layer is the glass of the second layer. It is preferably lower than the transition temperature and the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH / g or less.
  • the haze is preferably 0.5% or less.
  • the laminated glass according to the present invention has the above-mentioned structure, it is possible to suppress delamination of the interlayer film even though different layers contain different resins, and to improve the transparency of the laminated glass. Can be done.
  • the haze of the laminated glass is preferably 0.4% or less, more preferably 0.3% or less.
  • the haze of the laminated glass is measured in accordance with JIS K6714.
  • the peeled area at the interface between the first layer and the second layer was preferably 50% or less, more preferably 40%. Below, it is more preferably 30% or less.
  • the impact resistance test at ⁇ 20 ° C. is a temperature condition in which delamination is more likely to occur than, for example, an impact resistance test at 20 ° C. or an impact resistance test at 40 ° C.
  • Impact resistance test at -20 ° C Store the laminated glass at -20 ⁇ 2 ° C for 4 hours or more. Regarding the laminated glass after storage, steel with a mass of 227 ⁇ 2 g and a diameter of 38 mm at the vertical center position and the horizontal center position of the laminated glass at -20 ⁇ 2 ° C in accordance with JIS R3211 or JIS R3212. Drop the ball from a height of 9.5m. The peeled area at the interface between the first layer and the second layer of the interlayer film is determined.
  • the laminated glass used in the impact resistance test at ⁇ 20 ° C. is preferably a laminated glass having a size of 300 mm in length and 300 mm in width.
  • the peeled area can be obtained by, for example, the above formula.
  • FIG. 2 is a cross-sectional view schematically showing an example of a laminated glass using the interlayer film for laminated glass shown in FIG.
  • the laminated glass 31 shown in FIG. 2 includes a first laminated glass member 21, a second laminated glass member 22, and an interlayer film 11.
  • the interlayer film 11 is arranged between the first laminated glass member 21 and the second laminated glass member 22 and is sandwiched therein.
  • the first laminated glass member 21 is laminated on the first surface 11a of the interlayer film 11.
  • the second laminated glass member 22 is laminated on the second surface 11b opposite to the first surface 11a of the interlayer film 11.
  • the first laminated glass member 21 is laminated on the outer surface 2a of the second layer 2.
  • the second laminated glass member 22 is laminated on the outer surface 3a of the third layer 3.
  • the first laminated glass member is preferably a first glass plate.
  • the second laminated glass member is preferably a second glass plate.
  • first and second laminated glass members include a glass plate and a PET (polyethylene terephthalate) film.
  • the laminated glass includes not only a laminated glass in which an interlayer film is sandwiched between two glass plates, but also a laminated glass in which an interlayer film is sandwiched between a glass plate and a PET film or the like.
  • the laminated glass is a laminated body provided with a glass plate, and it is preferable that at least one glass plate is used.
  • the first laminated glass member and the second laminated glass member are glass plates or PET films, respectively, and the laminated glass is one of the first laminated glass member and the second laminated glass member. It is preferable to provide a glass plate as at least one. It is particularly preferable that both the first and second laminated glass members are glass plates.
  • the glass plate examples include inorganic glass and organic glass.
  • the inorganic glass examples include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, template glass, wire-reinforced plate glass, and green glass.
  • the organic glass is a synthetic resin glass that replaces the inorganic glass.
  • examples of the organic glass include a polycarbonate plate and a poly (meth) acrylic resin plate.
  • Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
  • each of the first laminated glass member and the second laminated glass member is preferably 1 mm or more, preferably 5 mm or less, and more preferably 3 mm or less.
  • the thickness of the glass plate is preferably 0.5 mm or more, more preferably 0.7 mm or more, preferably 5 mm or less, and more preferably 3 mm or less.
  • the thickness of the PET film is preferably 0.03 mm or more, preferably 0.5 mm or less.
  • the manufacturing method of the above laminated glass is not particularly limited.
  • an interlayer film is sandwiched between the first laminated glass member and the second laminated glass member and passed through a pressing roll, or placed in a rubber bag and sucked under reduced pressure.
  • the air remaining between the laminated glass member, the second laminated glass member, and the interlayer film is degassed.
  • pre-adhesion is performed at about 70 ° C. to 110 ° C. to obtain a laminate.
  • the laminate is placed in an autoclave or pressed, and pressure-bonded at a pressure of about 120 ° C. to 150 ° C. and 1 MPa to 1.5 MPa. In this way, laminated glass can be obtained.
  • each layer in the interlayer film may be laminated.
  • the interlayer film and the laminated glass can be used for automobiles, railroad vehicles, aircraft, ships, buildings, etc.
  • the interlayer film and the laminated glass can be used for purposes other than these.
  • the interlayer film and the laminated glass are preferably an interlayer film and a laminated glass for vehicles or buildings, and more preferably an interlayer film and a laminated glass for vehicles.
  • the interlayer film and the laminated glass can be used for windshields, side glasses, rear glasses, roof glasses and the like of automobiles.
  • the interlayer film and the laminated glass are preferably used for automobiles.
  • the interlayer film is suitably used for obtaining laminated glass for automobiles.
  • n-butyraldehyde having 4 carbon atoms is used for acetalization.
  • degree of acetalization degree of butyralization
  • degree of acetylation degree of acetylation
  • content of hydroxyl groups were measured by a method based on JIS K6728 “Polyvinyl butyral test method”.
  • ASTM D1396-92 the same numerical value as the method based on JIS K6728 "Polyvinyl butyral test method” was shown.
  • Polyvinyl acetal resin polyvinyl butyral resin (PVB), average degree of polymerization 1700, hydroxyl group content 30.5 mol%, acetylation degree 1 mol%, acetalization degree (butyralization degree) 68.5 mol%)
  • (Meta) Acrylic Polymers (1)-(4), (X1) The polymerizable composition having the compounding composition shown in Table 1 below is sandwiched between two single-sided release-treated PET sheets (manufactured by Nippers, thickness 50 ⁇ m) so that the thickness is 1 mm. Was formed. Spacers were arranged around the two PET sheets. By irradiating the polymerizable composition layer with ultraviolet rays at an irradiation amount of 3000 mJ / cm 2 at 3 mW using a chemical lamp, the polymerizable composition was cured by a reaction, and the (meth) acrylic polymers (1) to ( 4) and (X1) were obtained.
  • Polyvinyl acetate (1) A glass polymerization container equipped with a reflux condenser, a dropping funnel, a thermometer and a nitrogen inlet was prepared. 100 parts by weight of vinyl acetate monomer was placed in this polymerization vessel, and the inside of the polymerization vessel was replaced with nitrogen by heating and stirring at 60 ° C. Next, the compounding composition shown in Table 2 below was added dropwise over 4 hours, and after completion of the addition, the mixture was polymerized for 1 hour to obtain a solution containing polyvinyl acetate (1). The solution was dried in an oven at 110 ° C. for 3 hours to give polyvinyl acetate (1). In polyvinyl acetate (1), the proportion of structural units derived from carboxylic acid was 4% by weight.
  • Polyvinyl acetate (X1), (X2) A glass polymerization container equipped with a reflux condenser, a dropping funnel, a thermometer and a nitrogen inlet was prepared. In this polymerization vessel, 270 parts by weight of ion-exchanged water and 0.1 part by weight of polyvinyl alcohol (ketenization degree 88%, polymerization degree 300) were placed, and the mixture was heated and stirred to dissolve the polyvinyl alcohol. Next, the temperature in the polymerization vessel was set to 58 ° C., the compounding composition shown in Table 2 below was added, and the mixture was polymerized for 6 hours to obtain particles of polyvinyl acetate (X1) and (X2).
  • the content of carboxyl groups in 100% by weight of the (meth) acrylic polymer and the content of carboxyl groups in 100% by weight of polyvinyl acetate were set to H-. Obtained by NMR.
  • composition for forming the first layer Preparation of composition for forming the first layer: The following ingredients were mixed and thoroughly kneaded with a mixing roll to obtain a composition for forming the first layer.
  • compositions for forming the second and third layers The following ingredients were mixed and thoroughly kneaded with a mixing roll to obtain a composition for forming the second layer and the third layer.
  • Preparation of interlayer film The composition for forming the first layer and the composition for forming the second layer and the third layer are co-extruded using a co-extruder to obtain a second layer (thickness).
  • Laminated glass production An interlayer film was sandwiched between two clear float glasses having a width of 25 mm, a length of 300 mm and a thickness of 2 mm according to JIS R3202 to obtain a laminate.
  • the obtained laminate was placed in a rubber bag, degassed at a vacuum degree of 2.6 kPa for 20 minutes, then transferred into an oven with the degassed, held at 90 ° C. for 30 minutes, and vacuum pressed. Was pre-crimped.
  • the pre-bonded laminate was pressure-bonded in an autoclave at 135 ° C. and a pressure of 1.2 MPa for 20 minutes to obtain a laminated glass (1).
  • a laminated glass (2) was obtained in the same manner as the laminated glass (1) except that clear float glass having a length of 300 mm, a width of 300 mm and a thickness of 2 mm was used.
  • the obtained laminated glass (1) corresponds to the above-mentioned laminated glass X
  • the obtained laminated glass (2) corresponds to the above-mentioned laminated glass Y.
  • Example 2 to 5 and Comparative Examples 1 to 3 An interlayer film, a laminated glass (1), and a laminated glass (2) were obtained in the same manner as in Example 1 except that the type of resin, the type and content of the plasticizer were changed as shown in Tables 3 and 4. It was.
  • the obtained solution is subjected to a potentiometric titration device (“AT-710” manufactured by Kyoto Electronics Industry Co., Ltd., electrode: “H-171, R-173” manufactured by Kyoto Electronics Industry Co., Ltd.” ) And 0.1 mol / L potassium hydroxide ethanol solution were used for titration, and the obtained inflection point was used as the end point of the titration.
  • the acid value of the first layer was calculated using the above formula.
  • the obtained solution is subjected to a potentiometric titration device (“AT-710” manufactured by Kyoto Electronics Industry Co., Ltd., electrode: “H-171, R-173” manufactured by Kyoto Electronics Industry Co., Ltd.” ) And 0.1 mol / L potassium hydroxide ethanol solution were used for titration, and the obtained inflection point was used as the end point of the titration.
  • the acid value of each resin was calculated using the above formula.
  • Tg Glass transition temperature of the first layer, the second layer and the third layer
  • a test piece (1) having a thickness of 0.5 mm is prepared by arbitrarily cutting and superimposing the first layer, and the thickness is obtained by arbitrarily cutting and superimposing the second layer.
  • a test piece (2) having a size of 0.5 mm was prepared. The test piece (1) and the test piece (2) were stored for 12 hours in an environment of room temperature 23 ⁇ 2 ° C. and humidity 25 ⁇ 5%. Next, the viscoelasticity was measured using a viscoelasticity measuring device (“ARES-G2” manufactured by TA Instruments).
  • ARES-G2 viscoelasticity measuring device
  • a parallel plate having a diameter of 8 mm was used as a jig, and the measurement was carried out under the conditions of shearing mode, the temperature was lowered from 100 ° C. to ⁇ 20 ° C. at a temperature lowering rate of 3 ° C./min, and the frequency was 1 Hz and the strain was 1%. Since the second layer and the third layer have the same composition, the glass transition temperature of the second layer and the glass transition temperature of the third layer are the same.
  • the first layer was prepared in the same manner as in the method for producing the interlayer film.
  • a test piece (1) having a thickness of 0.5 mm was prepared by arbitrarily cutting the first layer and superimposing the first layer.
  • a dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Measurement Control Co., Ltd.) was used. The viscoelasticity was measured. In the shear mode, the measurement was carried out under the condition of raising the temperature from ⁇ 50 ° C. to 200 ° C. at a heating rate of 3 ° C./min, and the condition of frequency 1 Hz and strain 1%.
  • the laminated glass (2) was stored at -20 ⁇ 2 ° C for 4 hours or more. Regarding the laminated glass (2) after storage, the mass is 227 ⁇ at the vertical center position and the horizontal center position of the laminated glass (2) at ⁇ 20 ⁇ 2 ° C. in accordance with JIS R3211 or JIS R3212. A 2 g steel ball having a diameter of 38 mm was dropped from a height of 9.5 m. The peeled area at the interface between the first layer and the second layer of the interlayer film was determined using the above formula.
  • the obtained laminated glass (1) was vibrated by a vibration generator for a damping test (“Shinken G21-005D” manufactured by Shinken Co., Ltd.).
  • the vibration characteristics obtained from this were amplified by a mechanical impedance measuring device (“XG-81” manufactured by Rion Co., Ltd.), and the vibration spectrum was analyzed by an FFT spectrum analyzer (“FFT analyzer SA-01A2” manufactured by Rion Co., Ltd.).
  • IBOA Isobornyl acrylate (manufactured by Nippon Shokubai Co., Ltd.) CTFA (# 200): Cyclic trimethylolpropane formal acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., Viscoat # 200)
  • Aac Acrylic acid (manufactured by Nippon Shokubai)
  • BA n-Butyl acrylate (manufactured by Nippon Shokubai) 4HBA: 4-Hydroxybutyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
  • M5300 ⁇ -carboxy-polycaprolactone monoacrylate (manufactured by Toagosei Co., Ltd.)
  • CHA Cyclohexyl acrylate (Osaka Organic Chemical Industry Co., Ltd., Viscoat # 155)
  • HPA Hydroxypropyl acrylate (manufactured by Osaka Organic Chemical Industry

Landscapes

  • Joining Of Glass To Other Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided is an interlayer film for laminated glass, the interlayer film being able to suppress separation between layers of the interlayer film, despite the layers which contain mutually different resins being stacked, and also being able to increase the transparency of the laminated glass. The interlayer film for laminated glass according to the present invention is for laminated glass having a structure composed of at least two layers. The interlayer film comprises: a first layer including a resin; and a second layer disposed on a first surface of the first layer and including a resin. The first layer and the second layer contain different resins. The glass transition temperature of the fist layer is lower than the glass transition temperature of the second layer. The acid value of the first layer is 3 to 500 mg KOH/g. The haze of laminated glass X obtained by sandwiching the interlayer film between two sheets of clear glass is 0.5% or less.

Description

合わせガラス用中間膜及び合わせガラスLaminated glass interlayer film and laminated glass
 本発明は、合わせガラスを得るために用いられる合わせガラス用中間膜に関する。また、本発明は、上記合わせガラス用中間膜を用いた合わせガラスに関する。 The present invention relates to an interlayer film for laminated glass used for obtaining laminated glass. The present invention also relates to a laminated glass using the above-mentioned interlayer film for laminated glass.
 合わせガラスは、外部衝撃を受けて破損してもガラスの破片の飛散量が少なく、安全性に優れている。このため、上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に広く使用されている。上記合わせガラスは、2つのガラス板の間に合わせガラス用中間膜を挟み込むことにより、製造されている。 Laminated glass has excellent safety because the amount of scattered glass fragments is small even if it is damaged by an external impact. Therefore, the laminated glass is widely used in automobiles, railroad vehicles, aircraft, ships, buildings, and the like. The laminated glass is manufactured by sandwiching an interlayer film for laminated glass between two glass plates.
 上記合わせガラス用中間膜の一例として、下記の特許文献1には、変性ポリ酢酸ビニルと、可塑剤とを含み、上記変性ポリ酢酸ビニルが、酢酸ビニル構造単位と脂肪酸ビニルエステル構造単位とを有する合わせガラス用中間膜が開示されている。また、特許文献1には、第1の層と、該第1の層の第1の表面に積層された第2の層とを備え、該第1の層が、上記変性ポリ酢酸ビニルと、上記可塑剤とを含み、該第2の層がポリビニルアセタール樹脂を含む合わせガラス用中間膜が開示されている。 As an example of the interlayer film for laminated glass, the following Patent Document 1 contains a modified polyvinyl acetate and a plasticizer, and the modified polyvinyl acetate has a vinyl acetate structural unit and a fatty acid vinyl ester structural unit. An interlayer film for laminated glass is disclosed. Further, Patent Document 1 includes a first layer and a second layer laminated on the first surface of the first layer, and the first layer is the modified polyvinyl acetate. A laminated glass interlayer film containing the above plasticizer and having a second layer containing a polyvinyl acetal resin is disclosed.
WO2014/069593A1WO2014 / 0695993A1
 合わせガラスの遮音性を高めるために、2層以上の構造を有する多層の中間膜が用いられることがある。また、多層の中間膜では、異なる層に異なる樹脂が用いられることがある。しかしながら、異なる樹脂を含む層同士が積層された中間膜では、これらの層の界面において剥離(層間剥離)が生じやすい。 In order to improve the sound insulation of laminated glass, a multilayer interlayer film having a structure of two or more layers may be used. Further, in the multilayer interlayer film, different resins may be used for different layers. However, in an interlayer film in which layers containing different resins are laminated, peeling (delamination) is likely to occur at the interface between these layers.
 特許文献1に記載の中間膜では、合わせガラスの遮音性をある程度高めることができる。しかしながら、特許文献1に記載の中間膜では、多層の中間膜とした場合に、層間剥離が生じることがある。また、特許文献1に記載の中間膜では、変性ポリ酢酸ビニルが有する上記酢酸ビニル構造単位と上記脂肪酸ビニルエステル構造単位との比率によっては、中間膜が白濁し、合わせガラスの透明性が低下することがある。 The interlayer film described in Patent Document 1 can improve the sound insulation of the laminated glass to some extent. However, in the interlayer film described in Patent Document 1, delamination may occur when a multilayer interlayer film is used. Further, in the interlayer film described in Patent Document 1, the interlayer film becomes cloudy and the transparency of the laminated glass is lowered depending on the ratio of the vinyl acetate structural unit and the fatty acid vinyl ester structural unit of the modified polyvinyl acetate. Sometimes.
 本発明の目的は、異なる樹脂を含む層同士が積層されているにもかかわらず中間膜の層間剥離を抑えることができ、かつ、合わせガラスの透明性を高めることができる合わせガラス用中間膜を提供することである。また、本発明は、上記合わせガラス用中間膜を用いた合わせガラスを提供することも目的とする。 An object of the present invention is to provide an interlayer film for laminated glass, which can suppress delamination of the interlayer film even though layers containing different resins are laminated and can enhance the transparency of the laminated glass. Is to provide. Another object of the present invention is to provide a laminated glass using the above-mentioned interlayer film for laminated glass.
 本発明の広い局面によれば、2層以上の構造を有する合わせガラス用中間膜であり、樹脂を含む第1の層と、前記第1の層の第1の表面に積層されており、かつ樹脂を含む第2の層とを備え、前記第1の層と前記第2の層とが、異なる樹脂を含み、前記第1の層のガラス転移温度が、前記第2の層のガラス転移温度よりも低く、前記第1の層の酸価が3mgKOH/g以上500mgKOH/g以下であり、中間膜をクリアガラス2枚の間に挟み込んで合わせガラスXを得たときに、前記合わせガラスXのヘイズが0.5%以下である、合わせガラス用中間膜(本明細書において、「合わせガラス用中間膜」を「中間膜」と略記することがある)が提供される。 According to a broad aspect of the present invention, it is an interlayer film for laminated glass having a structure of two or more layers, which is laminated on a first layer containing a resin and a first surface of the first layer. A second layer containing a resin is provided, the first layer and the second layer contain different resins, and the glass transition temperature of the first layer is the glass transition temperature of the second layer. When the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH / g or less, and an interlayer film is sandwiched between two clear glasses to obtain a laminated glass X, the laminated glass X of the laminated glass X is obtained. An interlayer film for laminated glass having a haze of 0.5% or less (in this specification, "interlayer film for laminated glass" may be abbreviated as "intermediate film") is provided.
 本発明に係る中間膜のある特定の局面では、前記第1の層が、酸価が5mgKOH/g以上500mgKOH/g以下である樹脂を含む。 In a specific aspect of the interlayer film according to the present invention, the first layer contains a resin having an acid value of 5 mgKOH / g or more and 500 mgKOH / g or less.
 本発明に係る中間膜のある特定の局面では、前記第1の層が、カルボキシル基を有する樹脂を含む。 In certain aspects of the interlayer film according to the present invention, the first layer contains a resin having a carboxyl group.
 本発明に係る中間膜のある特定の局面では、前記カルボキシル基を有する樹脂100重量%中、カルボキシル基の含有率が4重量%以上15重量%以下である。 In a specific aspect of the interlayer film according to the present invention, the content of the carboxyl group is 4% by weight or more and 15% by weight or less in 100% by weight of the resin having a carboxyl group.
 本発明に係る中間膜のある特定の局面では、前記カルボキシル基を有する樹脂が、カルボキシル基を有する(メタ)アクリル重合体である。 In a specific aspect of the interlayer film according to the present invention, the resin having a carboxyl group is a (meth) acrylic polymer having a carboxyl group.
 本発明に係る中間膜のある特定の局面では、前記第1の層が、可塑剤を含む。 In certain aspects of the interlayer film according to the present invention, the first layer contains a plasticizer.
 本発明に係る中間膜のある特定の局面では、前記中間膜は、3層以上の構造を有し、前記第1の層の前記第1の表面とは反対側の第2の表面に積層された第3の層を備える。 In a particular aspect of the interlayer film according to the present invention, the interlayer film has a structure of three or more layers and is laminated on a second surface of the first layer opposite to the first surface. It also has a third layer.
 本発明の広い局面によれば、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した合わせガラス用中間膜とを備え、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されている、合わせガラスが提供される。 According to a broad aspect of the present invention, the first laminated glass member, the second laminated glass member, and the above-mentioned interlayer film for laminated glass are provided, and the first laminated glass member and the second laminated glass are provided. A laminated glass is provided in which the interlayer film for laminated glass is arranged between the member and the member.
 本発明の広い局面によれば、第1の合わせガラス部材と、第2の合わせガラス部材と、2層以上の構造を有する合わせガラス用中間膜とを備え、前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されており、前記中間膜は、樹脂を含む第1の層と、前記第1の層の第1の表面に積層されており、かつ樹脂を含む第2の層とを備え、前記中間膜において、前記第1の層と前記第2の層とが、異なる樹脂を含み、前記第1の層のガラス転移温度が、前記第2の層のガラス転移温度よりも低く、前記第1の層の酸価が3mgKOH/g以上500mgKOH/g以下であり、ヘイズが0.5%以下である、合わせガラスが提供される。 According to a broad aspect of the present invention, the first laminated glass member, the second laminated glass member, and a laminated glass interlayer film having a structure of two or more layers are provided, and the first laminated glass member and the above. The laminated glass interlayer film is arranged between the second laminated glass member, and the interlayer film is laminated on the first layer containing a resin and the first surface of the first layer. In the interlayer film, the first layer and the second layer contain different resins, and the glass transition temperature of the first layer is such that the first layer and the second layer contain different resins. Provided is a laminated glass having an acid value of 3 mgKOH / g or more and 500 mgKOH / g or less and a haze of 0.5% or less, which is lower than the glass transition temperature of the second layer.
 本発明に係る合わせガラスのある特定の局面では、前記第1の層が、酸価が5mgKOH/g以上500mgKOH/g以下である樹脂を含む。 In a specific aspect of the laminated glass according to the present invention, the first layer contains a resin having an acid value of 5 mgKOH / g or more and 500 mgKOH / g or less.
 本発明に係る合わせガラスのある特定の局面では、前記第1の層が、カルボキシル基を有する樹脂を含む。 In a specific aspect of the laminated glass according to the present invention, the first layer contains a resin having a carboxyl group.
 本発明に係る合わせガラスのある特定の局面では、前記カルボキシル基を有する樹脂100重量%中、カルボキシル基の含有率が4重量%以上15重量%以下である。 In a specific aspect of the laminated glass according to the present invention, the content of the carboxyl group is 4% by weight or more and 15% by weight or less in 100% by weight of the resin having a carboxyl group.
 本発明に係る合わせガラスのある特定の局面では、前記カルボキシル基を有する樹脂が、カルボキシル基を有する(メタ)アクリル重合体である。 In a specific aspect of the laminated glass according to the present invention, the resin having a carboxyl group is a (meth) acrylic polymer having a carboxyl group.
 本発明に係る合わせガラスのある特定の局面では、前記第1の層が、可塑剤を含む。 In certain aspects of the laminated glass according to the present invention, the first layer comprises a plasticizer.
 本発明に係る合わせガラスのある特定の局面では、前記中間膜は、3層以上の構造を有し、前記中間膜は、前記第1の層の前記第1の表面とは反対側の第2の表面に積層された第3の層を備える。 In a particular aspect of the laminated glass according to the present invention, the interlayer film has a structure of three or more layers, and the interlayer film is a second layer opposite to the first surface of the first layer. It is provided with a third layer laminated on the surface of the.
 本発明に係る合わせガラス用中間膜は、2層以上の構造を有する。本発明に係る合わせガラス用中間膜は、樹脂を含む第1の層と、上記第1の層の第1の表面に積層されており、かつ樹脂を含む第2の層とを備える。本発明に係る合わせガラス用中間膜では、上記第1の層と上記第2の層とが、異なる樹脂を含む。本発明に係る合わせガラス用中間膜では、上記第1の層のガラス転移温度が、上記第2の層のガラス転移温度よりも低く、上記第1の層の酸価が3mgKOH/g以上500mgKOH/g以下である。本発明に係る合わせガラス用中間膜では、該中間膜をクリアガラス2枚の間に挟み込んで合わせガラスXを得たときに、上記合わせガラスXのヘイズが0.5%以下である。本発明に係る合わせガラス用中間膜では、上記の構成が備えられているので、異なる樹脂を含む層同士が積層されているにもかかわらず中間膜の層間剥離を抑えることができ、かつ、合わせガラスの透明性を高めることができる。 The laminated glass interlayer film according to the present invention has a structure of two or more layers. The laminated glass interlayer film according to the present invention includes a first layer containing a resin and a second layer laminated on the first surface of the first layer and containing a resin. In the interlayer film for laminated glass according to the present invention, the first layer and the second layer contain different resins. In the laminated glass interlayer film according to the present invention, the glass transition temperature of the first layer is lower than the glass transition temperature of the second layer, and the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH /. It is less than or equal to g. In the laminated glass interlayer film according to the present invention, when the interlayer film is sandwiched between two clear glasses to obtain a laminated glass X, the haze of the laminated glass X is 0.5% or less. Since the interlayer film for laminated glass according to the present invention has the above-mentioned structure, delamination of the interlayer film can be suppressed even though layers containing different resins are laminated, and the interlayer film can be laminated. The transparency of the glass can be increased.
 本発明に係る合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、2層以上の構造を有する合わせガラス用中間膜とを備える。本発明に係る合わせガラスでは、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、上記合わせガラス用中間膜が配置されている。本発明に係る合わせガラスでは、上記中間膜は、樹脂を含む第1の層と、上記第1の層の第1の表面に積層されており、かつ樹脂を含む第2の層とを備える。本発明に係る合わせガラスでは、上記中間膜において、上記第1の層と上記第2の層とが、異なる樹脂を含み、上記第1の層のガラス転移温度が、上記第2の層のガラス転移温度よりも低く、上記第1の層の酸価が3mgKOH/g以上500mgKOH/g以下である。本発明に係る合わせガラスでは、ヘイズが0.5%以下である。本発明に係る合わせガラスでは、上記の構成が備えられているので、異なる樹脂を含む層同士が積層されているにもかかわらず中間膜の層間剥離を抑えることができ、かつ、合わせガラスの透明性を高めることができる。 The laminated glass according to the present invention includes a first laminated glass member, a second laminated glass member, and an interlayer film for laminated glass having a structure of two or more layers. In the laminated glass according to the present invention, the interlayer film for laminated glass is arranged between the first laminated glass member and the second laminated glass member. In the laminated glass according to the present invention, the interlayer film includes a first layer containing a resin and a second layer laminated on the first surface of the first layer and containing a resin. In the laminated glass according to the present invention, in the interlayer film, the first layer and the second layer contain different resins, and the glass transition temperature of the first layer is the glass of the second layer. It is lower than the transition temperature, and the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH / g or less. The laminated glass according to the present invention has a haze of 0.5% or less. Since the laminated glass according to the present invention has the above-mentioned structure, delamination of the interlayer film can be suppressed even though layers containing different resins are laminated, and the laminated glass is transparent. You can improve your sex.
図1は、本発明の第1の実施形態に係る合わせガラス用中間膜を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the first embodiment of the present invention. 図2は、図1に示す合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing an example of a laminated glass using the interlayer film for laminated glass shown in FIG.
 以下、本発明の詳細を説明する。 The details of the present invention will be described below.
 (合わせガラス用中間膜)
 本発明に係る合わせガラス用中間膜(以下、「中間膜」と略記することがある)は、2層以上の構造を有する。
(Interlayer film for laminated glass)
The laminated glass interlayer film according to the present invention (hereinafter, may be abbreviated as "intermediate film") has a structure of two or more layers.
 本発明に係る中間膜は、樹脂を含む第1の層と、上記第1の層の第1の表面に積層されており、かつ樹脂を含む第2の層とを備える。 The interlayer film according to the present invention includes a first layer containing a resin and a second layer laminated on the first surface of the first layer and containing a resin.
 本発明に係る中間膜では、上記第1の層と、上記第2の層とが、異なる樹脂を含む。「異なる樹脂」とは、2つの樹脂を比較したときに、種類の異なる構造単位の含有率が50モル%以上である樹脂を意味する。したがって、例えば、ポリ酢酸ビニル樹脂とポリビニルブチラール樹脂とは異なる樹脂である。また、例えば、アクリル樹脂とポリビニルブチラール樹脂とは異なる樹脂である。一方で、例えば、ポリビニルブチラール樹脂A(水酸基の含有率30.5モル%、アセチル化度1モル%、アセタール化度(ブチラール化度)68.5モル%)とポリビニルブチラール樹脂B(水酸基の含有率24モル%、アセチル化度12モル%、アセタール化度(ブチラール化度)64モル%)とは、異なる樹脂ではない。上記ポリビニルブチラール樹脂Aと上記ポリビニルブチラール樹脂Bとは、種類が同じである構造単位の含有率が50%以上であるため、本明細書においては、同じ樹脂であるとみなす。 In the interlayer film according to the present invention, the first layer and the second layer contain different resins. The “different resin” means a resin in which the content of different types of structural units is 50 mol% or more when the two resins are compared. Therefore, for example, the polyvinyl acetate resin and the polyvinyl butyral resin are different resins. Further, for example, the acrylic resin and the polyvinyl butyral resin are different resins. On the other hand, for example, polyvinyl butyral resin A (hydroxyl content 30.5 mol%, acetylation degree 1 mol%, acetalization degree (butyralization degree) 68.5 mol%) and polyvinyl butyral resin B (containing hydroxyl groups). The resin is not different from the rate of 24 mol%, the degree of acetylation of 12 mol%, and the degree of acetalization (butyralization degree) of 64 mol%). Since the polyvinyl butyral resin A and the polyvinyl butyral resin B have a content of 50% or more of structural units of the same type, they are regarded as the same resin in the present specification.
 本発明に係る中間膜では、上記第1の層のガラス転移温度が、上記第2の層のガラス転移温度よりも低く、上記第1の層の酸価が3mgKOH/g以上500mgKOH/g以下である。 In the interlayer film according to the present invention, the glass transition temperature of the first layer is lower than the glass transition temperature of the second layer, and the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH / g or less. is there.
 本発明に係る中間膜では、該中間膜をクリアガラス2枚の間に挟み込んで合わせガラスXを得たときに、上記合わせガラスXのヘイズが0.5%以下である。 In the interlayer film according to the present invention, when the interlayer film is sandwiched between two clear glasses to obtain a laminated glass X, the haze of the laminated glass X is 0.5% or less.
 本発明に係る合わせガラス用中間膜では、上記の構成が備えられているので、異なる樹脂を含む層同士が積層されているにもかかわらず中間膜の層間剥離を抑えることができ、かつ、合わせガラスの透明性を高めることができる。本発明に係る合わせガラス用中間膜では、第1の層と第2の層とが異なる樹脂を含むにもかかわらず、第1の層と第2の層との界面における剥離を抑えることができ、かつ、合わせガラスの透明性を高めることができる。 Since the interlayer film for laminated glass according to the present invention has the above-mentioned structure, delamination of the interlayer film can be suppressed even though layers containing different resins are laminated, and the interlayer film can be laminated. The transparency of the glass can be increased. In the laminated glass interlayer film according to the present invention, even though the first layer and the second layer contain different resins, peeling at the interface between the first layer and the second layer can be suppressed. Moreover, the transparency of the laminated glass can be improved.
 また、本発明に係る合わせガラス用中間膜では、上記の構成が備えられているので、合わせガラスの遮音性を高めることができる。 Further, since the interlayer film for laminated glass according to the present invention has the above-mentioned structure, the sound insulation of the laminated glass can be improved.
 上記中間膜は、2層以上の構造を有する。上記中間膜は、2層の構造を有していてもよく、3層の構造を有していてもよく、3層以上の構造を有していてもよい。 The interlayer film has a structure of two or more layers. The interlayer film may have a two-layer structure, a three-layer structure, or a three-layer or more structure.
 上記中間膜は、樹脂を含む第1の層と、樹脂を含む第2の層とを備える。第1の層の第1の表面に第2の層が積層されている。上記中間膜は、上記第1の層の上記第1の表面とは反対側の第2の表面に積層された第3の層を備えていてもよい。上記第3の層は、樹脂を含むことが好ましい。中間膜が第3の層を備えない場合に、上記第1,第2の層は、中間膜の表面層であってもよく、表面層でなくてもよい。中間膜が第3の層を備える場合に、上記第2,第3の層は、中間膜の表面層であってもよく、表面層でなくてもよい。上記第2の層の上記第1の層とは反対側の表面には、他の層が備えられていてもよい。上記第3の層の上記第1の層とは反対側の表面には、他の層が備えられていてもよい。上記第2の層及び上記第3の層は、中間膜の表面層であることが好ましい。 The interlayer film includes a first layer containing a resin and a second layer containing a resin. A second layer is laminated on the first surface of the first layer. The interlayer film may include a third layer laminated on a second surface of the first layer opposite to the first surface. The third layer preferably contains a resin. When the interlayer film does not include the third layer, the first and second layers may be the surface layer of the interlayer film and may not be the surface layer. When the interlayer film includes a third layer, the second and third layers may be the surface layer of the interlayer film and may not be the surface layer. Another layer may be provided on the surface of the second layer opposite to the first layer. Another layer may be provided on the surface of the third layer opposite to the first layer. The second layer and the third layer are preferably surface layers of an interlayer film.
 本発明の効果を発揮させる観点及び合わせガラスの遮音性を高める観点から、上記第1の層のガラス転移温度は、上記第2の層のガラス転移温度よりも低い。 The glass transition temperature of the first layer is lower than the glass transition temperature of the second layer from the viewpoint of exerting the effect of the present invention and enhancing the sound insulation of the laminated glass.
 本発明の効果を効果的に発揮させる観点及び合わせガラスの遮音性をより一層高める観点からは、上記第1の層のガラス転移温度と上記第2の層のガラス転移温度との差の絶対値は、好ましくは10℃以上、より好ましくは20℃以上、更に好ましくは35℃以上、好ましくは60℃以下、より好ましくは50℃以下である。 From the viewpoint of effectively exerting the effect of the present invention and further enhancing the sound insulation of the laminated glass, the absolute value of the difference between the glass transition temperature of the first layer and the glass transition temperature of the second layer. Is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 35 ° C. or higher, preferably 60 ° C. or lower, and more preferably 50 ° C. or lower.
 本発明の効果を効果的に発揮させる観点及び合わせガラスの遮音性をより一層高める観点からは、上記第1の層のガラス転移温度は、上記第3の層のガラス転移温度よりも低いことが好ましい。特に、上記第1の層と上記第3の層とが異なる樹脂を含み、上記第1の層のガラス転移温度が上記第3の層のガラス転移温度よりも低い場合には、第1の層と第3の層とが異なる樹脂を含むにもかかわらず、第1の層と第3の層との界面における剥離を抑えることができる。 From the viewpoint of effectively exerting the effect of the present invention and further enhancing the sound insulation of the laminated glass, the glass transition temperature of the first layer is lower than the glass transition temperature of the third layer. preferable. In particular, when the first layer and the third layer contain different resins and the glass transition temperature of the first layer is lower than the glass transition temperature of the third layer, the first layer Although the third layer and the third layer contain different resins, peeling at the interface between the first layer and the third layer can be suppressed.
 本発明の効果を効果的に発揮させる観点及び合わせガラスの遮音性をより一層高める観点からは、上記第1の層のガラス転移温度と上記第3の層のガラス転移温度との差の絶対値は、好ましくは10℃以上、より好ましくは20℃以上、更に好ましくは35℃以上、好ましくは60℃以下、より好ましくは50℃以下である。 From the viewpoint of effectively exerting the effect of the present invention and further enhancing the sound insulation of the laminated glass, the absolute value of the difference between the glass transition temperature of the first layer and the glass transition temperature of the third layer. Is preferably 10 ° C. or higher, more preferably 20 ° C. or higher, still more preferably 35 ° C. or higher, preferably 60 ° C. or lower, and more preferably 50 ° C. or lower.
 合わせガラスの遮音性をより一層高める観点からは、第1の層のガラス転移温度は、好ましくは-20℃以上、より好ましくは-15℃以上、更に好ましくは-10℃以上、特に好ましく-7℃以上、好ましくは20℃以下、より好ましくは10℃以下、更に好ましくは5℃以下、特に好ましく0℃以下である。 From the viewpoint of further enhancing the sound insulation of the laminated glass, the glass transition temperature of the first layer is preferably -20 ° C or higher, more preferably -15 ° C or higher, further preferably -10 ° C or higher, and particularly preferably -7. ° C. or higher, preferably 20 ° C. or lower, more preferably 10 ° C. or lower, still more preferably 5 ° C. or lower, particularly preferably 0 ° C. or lower.
 合わせガラスの遮音性をより一層高める観点からは、第2の層のガラス転移温度は、好ましくは20℃以上、より好ましくは25℃以上、更に好ましくは30℃以上、特に好ましく34℃以上、好ましくは60℃以下、より好ましくは50℃以下、更に好ましくは45℃以下、特に好ましく40℃以下である。 From the viewpoint of further enhancing the sound insulation of the laminated glass, the glass transition temperature of the second layer is preferably 20 ° C. or higher, more preferably 25 ° C. or higher, further preferably 30 ° C. or higher, particularly preferably 34 ° C. or higher. Is 60 ° C. or lower, more preferably 50 ° C. or lower, still more preferably 45 ° C. or lower, and particularly preferably 40 ° C. or lower.
 合わせガラスの遮音性をより一層高める観点からは、第3の層のガラス転移温度は、好ましくは20℃以上、より好ましくは25℃以上、更に好ましくは30℃以上、特に好ましく34℃以上、好ましくは60℃以下、より好ましくは50℃以下、更に好ましくは45℃以下、特に好ましく40℃以下である。 From the viewpoint of further enhancing the sound insulation of the laminated glass, the glass transition temperature of the third layer is preferably 20 ° C. or higher, more preferably 25 ° C. or higher, further preferably 30 ° C. or higher, particularly preferably 34 ° C. or higher. Is 60 ° C. or lower, more preferably 50 ° C. or lower, still more preferably 45 ° C. or lower, and particularly preferably 40 ° C. or lower.
 上記ガラス転移温度は、粘弾性測定により求められる。上記粘弾性測定は、具体的には、以下のようにして行われる。 The glass transition temperature is determined by viscoelasticity measurement. Specifically, the viscoelasticity measurement is performed as follows.
 試験片を、室温23±2℃、湿度25±5%の環境下に12時間保管する。次いで、粘弾性測定装置(例えばTAインスツルメント社製「ARES-G2」)を用いて、粘弾性を測定する。治具として直径8mmのパラレルプレートを用い、せん断モード、3℃/分の降温速度で100℃から-20℃まで温度を低下させる条件、並びに周波数1Hz及び歪1%の条件で測定する。 Store the test piece in an environment with a room temperature of 23 ± 2 ° C and a humidity of 25 ± 5% for 12 hours. Next, the viscoelasticity is measured using a viscoelasticity measuring device (for example, "ARES-G2" manufactured by TA Instruments). A parallel plate having a diameter of 8 mm is used as a jig, and the measurement is performed under the conditions of a shear mode, a temperature lowering rate of 3 ° C./min from 100 ° C. to −20 ° C., a frequency of 1 Hz, and a strain of 1%.
 上記第1の層のtanδのピーク温度でのtanδは、好ましくは2.0以上、より好ましくは2.2以上、更に好ましくは2.4以上、特に好ましくは2.5以上、好ましくは10以下、より好ましくは8以下である。この場合には、合わせガラスの遮音性をより一層高めることができる。 The tan δ at the peak temperature of tan δ of the first layer is preferably 2.0 or more, more preferably 2.2 or more, further preferably 2.4 or more, particularly preferably 2.5 or more, and preferably 10 or less. , More preferably 8 or less. In this case, the sound insulation of the laminated glass can be further improved.
 上記第1の層のtanδのピーク温度でのtanδは粘弾性測定により、以下のようにして測定することができる。 The tan δ at the peak temperature of the tan δ of the first layer can be measured by viscoelasticity measurement as follows.
 試験片を、室温23±2℃、湿度25±5%の環境下に12時間保管した直後に、動的粘弾性測定装置(例えば、アイティー計測制御社製「DVA-200」)を用いて、粘弾性を測定する。せん断モードで、3℃/分の昇温速度で-50℃から200℃まで温度を上昇させる条件、並びに周波数1Hz及び歪1%の条件で測定する。 Immediately after storing the test piece in an environment of room temperature 23 ± 2 ° C. and humidity 25 ± 5% for 12 hours, a dynamic viscoelasticity measuring device (for example, “DVA-200” manufactured by IT Measurement Control Co., Ltd.) was used. , Measure viscoelasticity. In the shear mode, the temperature is raised from −50 ° C. to 200 ° C. at a heating rate of 3 ° C./min, and the measurement is performed under the conditions of frequency 1 Hz and strain 1%.
 上記ガラス転移温度及び上記第1の層のtanδのピーク温度でのtanδを測定する際には、中間膜自体を用いて、粘弾性測定を行ってもよい。この場合に、測定結果から、上記第1の層、第2の層、第3の層に由来するtanδのピーク等を読み取ってもよい。また、中間膜の各層間を剥離して、測定対象の層のガラス転移温度を測定してもよい。また、合わせガラスの場合は、液体窒素等で合わせガラスを冷却後に合わせガラス部材と中間膜とを剥離し、剥離した中間膜を用いて粘弾性測定を行ってもよい。 When measuring the glass transition temperature and the tan δ at the peak temperature of the tan δ of the first layer, the viscoelasticity measurement may be performed using the interlayer film itself. In this case, the peak of tan δ derived from the first layer, the second layer, the third layer and the like may be read from the measurement result. Alternatively, the glass transition temperature of the layer to be measured may be measured by peeling off each layer of the interlayer film. Further, in the case of laminated glass, the laminated glass member and the interlayer film may be peeled off after cooling the laminated glass with liquid nitrogen or the like, and viscoelasticity measurement may be performed using the peeled interlayer film.
 中間膜の層間剥離を抑える観点から、上記第1の層の酸価は3mgKOH/g以上500mgKOH/g以下である。上記第1の層の酸価が3mgKOH/g未満又は500mgKOH/gを超えると、中間膜の層間剥離が生じやすい。また、上記第1の層の酸価が500mgKOH/gを超えると、合わせガラスが白濁したり、押出機等の設備が腐食したりすることがある。 From the viewpoint of suppressing delamination of the interlayer film, the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH / g or less. If the acid value of the first layer is less than 3 mgKOH / g or more than 500 mgKOH / g, delamination of the interlayer film is likely to occur. Further, if the acid value of the first layer exceeds 500 mgKOH / g, the laminated glass may become cloudy or equipment such as an extruder may be corroded.
 中間膜の層間剥離をより一層効果的に抑える観点からは、上記第1の層の酸価は、好ましくは15mgKOH/g以上、より好ましくは20mgKOH/g以上、好ましくは200mgKOH/g以下、より好ましくは150mgKOH/g以下である。 From the viewpoint of more effectively suppressing delamination of the interlayer film, the acid value of the first layer is preferably 15 mgKOH / g or more, more preferably 20 mgKOH / g or more, preferably 200 mgKOH / g or less, more preferably. Is 150 mgKOH / g or less.
 上記第1の層の酸価は、JIS K0070に記載の電位差滴定法に準拠して測定される。具体的には、以下のようにして測定することができる。 The acid value of the first layer is measured according to the potentiometric titration method described in JIS K0070. Specifically, it can be measured as follows.
 試料(第1の層)を溶媒(例えば、メチルエチルケトン:トルエン:メタノール=1:1:1(体積比))に溶解する。得られた溶液を、電位差滴定装置(例えば、京都電子工業社製「AT-710」、電極:京都電子工業社製「H-171、R-173」)及び0.1mol/L水酸化カリウムエタノール溶液を用いて滴定し、得られた変曲点を滴定の終点とし、下記式より酸価を算出する。 The sample (first layer) is dissolved in a solvent (for example, methyl ethyl ketone: toluene: methanol = 1: 1: 1 (volume ratio)). The obtained solution was subjected to a potentiometric titrator (for example, "AT-710" manufactured by Kyoto Electronics Co., Ltd., electrode: "H-171, R-173" manufactured by Kyoto Electronics Co., Ltd.) and 0.1 mol / L potassium hydroxide ethanol. Titration is performed using a solution, and the obtained inflection point is used as the end point of the titration, and the acid value is calculated from the following formula.
 酸価(mgKOH/g)=(V1-V0)×N×56.11×f/S
 S:試料(第1の層)の質量(g)
 V0:空試験での滴定量(ml)
 V1:試料(第1の層)を用いたときの試験での滴定量(ml)
 N:滴定液の濃度(0.1mol/L)
 f:滴定液のファクター(f=1.002)
Acid value (mgKOH / g) = (V1-V0) x N x 56.11 x f / S
S: Mass (g) of sample (first layer)
V0: Titration in blank test (ml)
V1: Titration (ml) in the test when using the sample (first layer)
N: Concentration of titrant (0.1 mol / L)
f: Factor of titrant (f = 1.002)
 酸価測定用の試料(第1の層)は、第1の層を形成するための組成物を用いて作製してもよく、合わせガラス又は中間膜から第1の層を分離することにより得てもよい。合わせガラスから、酸価測定用の試料(第1の層)を得る方法としては、液体窒素等を用いて冷却して合わせガラス部材と中間膜とを剥離した後、中間膜における第1の層と第2の層(及び第3の層)とを剥離する方法等が挙げられる。中間膜から、酸価測定用の第1の層を得る方法としては、第1の層と第2の層(及び第3の層)とを剥離する方法等が挙げられる。 The sample for acid value measurement (first layer) may be prepared using a composition for forming the first layer, and may be obtained by separating the first layer from a laminated glass or an interlayer film. You may. As a method of obtaining a sample (first layer) for acid value measurement from the laminated glass, after cooling with liquid nitrogen or the like to peel off the laminated glass member and the interlayer film, the first layer in the interlayer film A method of peeling the second layer (and the third layer) and the like can be mentioned. Examples of the method of obtaining the first layer for acid value measurement from the interlayer film include a method of peeling the first layer and the second layer (and the third layer).
 本発明に係る中間膜を、クリアガラス2枚の間に挟み込んで合わせガラスXが作製される。 Laminated glass X is produced by sandwiching the interlayer film according to the present invention between two clear glasses.
 上記合わせガラスXは、該合わせガラスXのヘイズを測定するために作製される。 The laminated glass X is manufactured to measure the haze of the laminated glass X.
 合わせガラスXを作製するために用いられるクリアガラスの厚みは2mmであることが好ましい。 The thickness of the clear glass used for producing the laminated glass X is preferably 2 mm.
 上記合わせガラスXは、以下のようにして作製されることが好ましい。 The laminated glass X is preferably produced as follows.
 厚み2mmのクリアガラス2枚の間に中間膜を挟み、積層体を得る。得られた積層体をゴムバック内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスし、積層体を予備圧着する。オートクレーブ中で135℃及び圧力1.2MPaの条件で、予備圧着された積層体を20分間圧着し、縦25mm及び横300mmのサイズを有する合わせガラスXを得る。 An interlayer film is sandwiched between two pieces of clear glass having a thickness of 2 mm to obtain a laminated body. The obtained laminate was placed in a rubber bag, degassed at a vacuum degree of 2.6 kPa for 20 minutes, then transferred into an oven with the degassed, held at 90 ° C. for 30 minutes, and vacuum pressed. Is pre-crimped. The pre-crimped laminate is crimped in an autoclave at 135 ° C. and a pressure of 1.2 MPa for 20 minutes to obtain a laminated glass X having a size of 25 mm in length and 300 mm in width.
 なお、合わせガラスにおける中間膜を合わせガラス部材から剥離して、上記合わせガラスXを作製してもよい。 The laminated glass X may be produced by peeling the interlayer film of the laminated glass from the laminated glass member.
 合わせガラスの透明性を高める観点から、上記合わせガラスXのヘイズは0.5%以下である。 From the viewpoint of increasing the transparency of the laminated glass, the haze of the laminated glass X is 0.5% or less.
 合わせガラスの透明性をより一層高める観点からは、上記合わせガラスXのヘイズは、好ましくは0.4%以下、より好ましくは0.3%以下である。 From the viewpoint of further enhancing the transparency of the laminated glass, the haze of the laminated glass X is preferably 0.4% or less, more preferably 0.3% or less.
 上記合わせガラスXのヘイズは、JIS K6714に準拠して測定される。 The haze of the laminated glass X is measured in accordance with JIS K6714.
 本発明に係る中間膜を、厚さ2mmのクリアフロートガラス2枚の間に配置して、縦300mm及び横300mmのサイズを有する合わせガラスYを得る。得られた合わせガラスYについて下記の-20℃での耐衝撃性試験をしたときに、上記第1の層と上記第2の層との界面における剥離面積は、好ましくは50%以下、より好ましくは40%以下、更に好ましくは30%以下である。上記剥離面積が上記上限以下であると、異なる樹脂を含む層同士が積層されているにもかかわらず中間膜の層間剥離を抑えることができる。なお、-20℃での耐衝撃性試験は、例えば、20℃での耐衝撃性試験や40℃での耐衝撃性試験よりも層間剥離がより一層生じやすい温度条件である。 The interlayer film according to the present invention is arranged between two clear float glasses having a thickness of 2 mm to obtain a laminated glass Y having a size of 300 mm in length and 300 mm in width. When the obtained laminated glass Y was subjected to the following impact resistance test at −20 ° C., the peeling area at the interface between the first layer and the second layer was preferably 50% or less, more preferably 50% or less. Is 40% or less, more preferably 30% or less. When the peeling area is not more than the above upper limit, delamination of the interlayer film can be suppressed even though the layers containing different resins are laminated. The impact resistance test at −20 ° C. is a temperature condition in which delamination is more likely to occur than, for example, an impact resistance test at 20 ° C. or an impact resistance test at 40 ° C.
 -20℃での耐衝撃性試験:-20±2℃にて合わせガラスYを4時間以上保管する。保管後の合わせガラスYについて、JIS R3211又はJIS R3212に準拠して-20±2℃にて合わせガラスYの縦方向の中央の位置かつ横方向の中央の位置に、質量227±2g及び直径38mmの鋼球を高さ9.5mから落下させる。上記中間膜の上記第1の層と上記第2の層との界面における剥離面積を求める。 Impact resistance test at -20 ° C: Laminated glass Y is stored at -20 ± 2 ° C for 4 hours or more. Regarding the laminated glass Y after storage, the mass is 227 ± 2 g and the diameter is 38 mm at the vertical center position and the horizontal center position of the laminated glass Y at −20 ± 2 ° C. in accordance with JIS R3211 or JIS R3212. Drop the steel ball from the height of 9.5m. The peeled area at the interface between the first layer and the second layer of the interlayer film is determined.
 上記剥離面積は、例えば、以下の式により求めることができる。 The peeled area can be calculated by, for example, the following formula.
 剥離面積(%)=100-[(-20℃での耐衝撃性試験の実施後に第1の層と第2の層とが接着している面積)/(-20℃での耐衝撃性試験の実施前に第1の層と第2の層とが接着している面積)×100] Peeling area (%) = 100-[(Area where the first layer and the second layer are adhered after the impact resistance test at -20 ° C) / (Impact resistance test at -20 ° C) Area where the first layer and the second layer are adhered before the implementation of) × 100]
 第1の層と第2の層とが接着している面積は、例えば、合わせガラスYを上部からデジタルカメラ等で撮影し、接着している部分と剥離している部分とを画像解析して面積を算出することにより求めることができる。 For the area where the first layer and the second layer are adhered, for example, the laminated glass Y is photographed from above with a digital camera or the like, and the bonded portion and the peeled portion are image-analyzed. It can be obtained by calculating the area.
 上記合わせガラスYは、-20℃での耐衝撃性試験を実施するために作製される。 The laminated glass Y is manufactured to carry out an impact resistance test at -20 ° C.
 上記合わせガラスYは、以下のようにして作製されることが好ましい。 The laminated glass Y is preferably produced as follows.
 厚さ2mmのクリアフロートガラス2枚の間に中間膜を挟み、積層体を得る。得られた積層体をゴムバック内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスし、積層体を予備圧着する。オートクレーブ中で135℃及び圧力1.2MPaの条件で、予備圧着された積層体を20分間圧着し、縦300mm及び横300mmのサイズを有する合わせガラスYを得る。 An interlayer film is sandwiched between two 2 mm thick clear float glasses to obtain a laminate. The obtained laminate was placed in a rubber bag, degassed at a vacuum degree of 2.6 kPa for 20 minutes, then transferred into an oven with the degassed, held at 90 ° C. for 30 minutes, and vacuum pressed. Is pre-crimped. The pre-bonded laminate is crimped in an autoclave at 135 ° C. and a pressure of 1.2 MPa for 20 minutes to obtain a laminated glass Y having a size of 300 mm in length and 300 mm in width.
 なお、合わせガラスにおける中間膜を合わせガラス部材から剥離して、上記合わせガラスYを作製してもよい。 The laminated glass Y may be produced by peeling the interlayer film of the laminated glass from the laminated glass member.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明する。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る合わせガラス用中間膜を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing an interlayer film for laminated glass according to the first embodiment of the present invention.
 図1に示す中間膜11は、2層以上の構造を有する多層の中間膜である。中間膜11は、合わせガラスを得るために用いられる。中間膜11は、合わせガラス用中間膜である。中間膜11は、第1の層1と、第2の層2と、第3の層3とを備える。中間膜11は、3層の構造を有する。第1の層1の第1の表面1aに、第2の層2が配置されており、積層されている。第1の層1の第1の表面1aとは反対の第2の表面1bに、第3の層3が配置されており、積層されている。第1の層1は中間層である。第2の層2及び第3の層3はそれぞれ、保護層であり、本実施形態では表面層である。第1の層1は、第2の層2と第3の層3との間に配置されており、挟み込まれている。従って、中間膜11は、第2の層2と第1の層1と第3の層3とがこの順で積層された多層構造(第2の層2/第1の層1/第3の層3)を有する。 The interlayer film 11 shown in FIG. 1 is a multilayer interlayer film having a structure of two or more layers. The interlayer film 11 is used to obtain a laminated glass. The interlayer film 11 is an interlayer film for laminated glass. The interlayer film 11 includes a first layer 1, a second layer 2, and a third layer 3. The interlayer film 11 has a three-layer structure. A second layer 2 is arranged and laminated on the first surface 1a of the first layer 1. The third layer 3 is arranged and laminated on the second surface 1b opposite to the first surface 1a of the first layer 1. The first layer 1 is an intermediate layer. The second layer 2 and the third layer 3 are protective layers, respectively, and are surface layers in the present embodiment. The first layer 1 is arranged between the second layer 2 and the third layer 3 and is sandwiched between the first layer 1. Therefore, the interlayer film 11 has a multilayer structure in which the second layer 2, the first layer 1, and the third layer 3 are laminated in this order (second layer 2 / first layer 1 / third). It has a layer 3).
 なお、第2の層2の第1の層1とは反対側の表面、及び、第3の層3の第1の層1とは反対側の表面にはそれぞれ、他の層が配置されていてもよい。 Other layers are arranged on the surface of the second layer 2 opposite to the first layer 1 and on the surface of the third layer 3 opposite to the first layer 1. You may.
 以下、本発明に係る中間膜、上記第1の層、上記第2の層及び上記第3の層、並びに中間膜に用いられる各成分の詳細を説明する。 Hereinafter, the details of the interlayer film according to the present invention, the first layer, the second layer and the third layer, and each component used for the interlayer film will be described.
 (樹脂)
 上記中間膜は、樹脂(以下、樹脂(0)と記載することがある)を含む。上記第1の層は、樹脂(以下、樹脂(1)と記載することがある)を含む。上記第2の層は、樹脂(以下、樹脂(2)と記載することがある)を含む。上記第3の層は、樹脂(以下、樹脂(3)と記載することがある)を含むことが好ましい。上記樹脂(1)と、上記樹脂(2)とは、異なる樹脂を含む。上記樹脂(1)と、上記樹脂(2)とは、異なる樹脂であってもよい。上記樹脂(1)と、上記樹脂(3)とは、同一の樹脂であってもよく、異なる樹脂を含んでいてもよく、異なる樹脂であってもよい。上記樹脂(2)と、上記樹脂(3)とは、同一の樹脂であってもよく、異なる樹脂を含んでいてもよく、異なる樹脂であってもよい。遮音性がより一層高くなることから、上記樹脂(1)と、上記樹脂(2)とは異なる樹脂であることが好ましく、上記樹脂(1)と、上記樹脂(3)とは、異なる樹脂であることが好ましい。上記樹脂(0)、上記樹脂(1)、上記樹脂(2)及び上記樹脂(3)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
(resin)
The interlayer film contains a resin (hereinafter, may be referred to as resin (0)). The first layer contains a resin (hereinafter, may be referred to as a resin (1)). The second layer contains a resin (hereinafter, may be referred to as a resin (2)). The third layer preferably contains a resin (hereinafter, may be referred to as resin (3)). The resin (1) and the resin (2) contain different resins. The resin (1) and the resin (2) may be different resins. The resin (1) and the resin (3) may be the same resin, may contain different resins, or may be different resins. The resin (2) and the resin (3) may be the same resin, may contain different resins, or may be different resins. Since the sound insulation is further improved, it is preferable that the resin (1) and the resin (2) are different from each other, and the resin (1) and the resin (3) are different resins. It is preferable to have. As the resin (0), the resin (1), the resin (2), and the resin (3), only one type may be used, or two or more types may be used in combination.
 上記樹脂(0)、上記樹脂(1)、上記樹脂(2)、上記樹脂(3)としては、硬化樹脂(硬化物)、及び熱可塑性樹脂、並びにこれらの樹脂が変性された変性樹脂等が挙げられる。 Examples of the resin (0), the resin (1), the resin (2), and the resin (3) include a cured resin (cured product), a thermoplastic resin, and a modified resin obtained by modifying these resins. Can be mentioned.
 上記硬化樹脂としては、光硬化性化合物及び湿気硬化性化合物等を硬化させた樹脂等が挙げられる。上記樹脂は、光硬化性化合物又は湿気硬化性化合物を硬化させた硬化物であってもよい。なお、上記光硬化性化合物又は湿気硬化性化合物を硬化させた硬化物が、熱可塑性樹脂となることもある。 Examples of the cured resin include resins obtained by curing a photocurable compound, a moisture-curable compound, and the like. The resin may be a cured product obtained by curing a photocurable compound or a moisture-curable compound. The cured product obtained by curing the photocurable compound or the moisture-curable compound may be a thermoplastic resin.
 上記光硬化性化合物又は上記湿気硬化性化合物は、(メタ)アクリロイル基を有する硬化性化合物であることが好ましく、(メタ)アクリル重合体であることがより好ましい。上記樹脂は、(メタ)アクリロイル基を有する硬化性化合物であることが好ましく、(メタ)アクリル重合体であることがより好ましい。 The photocurable compound or the moisture-curable compound is preferably a curable compound having a (meth) acryloyl group, and more preferably a (meth) acrylic polymer. The resin is preferably a curable compound having a (meth) acryloyl group, and more preferably a (meth) acrylic polymer.
 上記熱可塑性樹脂としては、ポリ酢酸ビニル、ポリエステル樹脂、ポリビニルアセタール樹脂、酢酸ビニル樹脂、ポリスチレン、エチレン-酢酸ビニル共重合体樹脂、エチレン-アクリル酸共重合体樹脂、ポリウレタン樹脂、アイオノマー樹脂、ポリビニルアルコール樹脂、脂肪族ポリオレフィン等のポリオレフィン樹脂、及び(メタ)アクリル樹脂(メタ)アクリロイル基を有する重合体)等が挙げられる。なお、ポリオキシメチレン(又はポリアセタール)樹脂は、ポリビニルアセタール樹脂に含まれる。上記樹脂として、これら以外の熱可塑性樹脂を用いてもよい。上記熱可塑性樹脂は、熱可塑性エラストマーであってもよい。 Examples of the thermoplastic resin include polyvinyl acetate, polyester resin, polyvinyl acetal resin, vinyl acetate resin, polystyrene, ethylene-vinyl acetate copolymer resin, ethylene-acrylic acid copolymer resin, polyurethane resin, ionomer resin, and polyvinyl alcohol. Examples thereof include resins, polyolefin resins such as aliphatic polyolefins, and (meth) acrylic resins (polymers having a (meth) acryloyl group). The polyoxymethylene (or polyacetal) resin is included in the polyvinyl acetal resin. As the resin, a thermoplastic resin other than these may be used. The thermoplastic resin may be a thermoplastic elastomer.
 なお、熱可塑性樹脂とは加熱すると軟化して可塑性を示し、例えば、室温(25℃)まで冷却すると固化する樹脂である。熱可塑性エラストマーとは、熱可塑性樹脂の中でも特に、加熱すると軟化して可塑性を示し、例えば、室温(25℃)まで冷却すると固化してゴム弾性を示す樹脂を意味する。 The thermoplastic resin is a resin that softens when heated and exhibits plasticity, and solidifies when cooled to room temperature (25 ° C.), for example. The thermoplastic elastomer means a resin that softens and exhibits plasticity when heated, and solidifies when cooled to room temperature (25 ° C.) and exhibits rubber elasticity, among other thermoplastic resins.
 上記に例示した熱可塑性樹脂は、樹脂の分子構造や重合度等の調整によって熱可塑性エラストマーとなりうる。 The thermoplastic resin exemplified above can be a thermoplastic elastomer by adjusting the molecular structure, degree of polymerization, etc. of the resin.
 遮音性をより一層高める観点からは、上記熱可塑性樹脂は、(メタ)アクリロイル基を有する重合体であることが好ましく、(メタ)アクリル重合体であることがより好ましい。 From the viewpoint of further enhancing the sound insulation property, the thermoplastic resin is preferably a polymer having a (meth) acryloyl group, and more preferably a (meth) acrylic polymer.
 耐貫通性をより一層高める観点からは、上記熱可塑性樹脂は、ポリビニルアセタール樹脂、アイオノマー樹脂又はエチレン-酢酸ビニル共重合体樹脂であることが好ましく、ポリビニルアセタール樹脂であることがより好ましい。 From the viewpoint of further enhancing the penetration resistance, the thermoplastic resin is preferably a polyvinyl acetal resin, an ionomer resin or an ethylene-vinyl acetate copolymer resin, and more preferably a polyvinyl acetal resin.
 <(メタ)アクリル重合体>
 上記(メタ)アクリル重合体は、(メタ)アクリロイル基を有する化合物を含む重合性組成物の重合体であることが好ましい。上記重合性組成物は、重合成分を含む。上記(メタ)アクリル重合体を効果的に作製するために、上記重合性組成物は、光反応開始剤を含んでいてもよい。上記重合性組成物は、光反応開始剤とともに、反応を促進するための助剤を含んでいてもよい。上記(メタ)アクリロイル基を有する化合物の代表例としては、(メタ)アクリル酸エステル及びアミド基を有するN置換アクリルアミド等が挙げられる。上記(メタ)アクリル重合体は、ポリ(メタ)アクリル酸エステルであることが好ましい。
<(Meta) acrylic polymer>
The (meth) acrylic polymer is preferably a polymer of a polymerizable composition containing a compound having a (meth) acryloyl group. The above-mentioned polymerizable composition contains a polymerization component. In order to effectively prepare the (meth) acrylic polymer, the polymerizable composition may contain a photoreaction initiator. The polymerizable composition may contain an auxiliary agent for accelerating the reaction together with the photoreaction initiator. Representative examples of the compound having a (meth) acryloyl group include (meth) acrylic acid ester and N-substituted acrylamide having an amide group. The (meth) acrylic polymer is preferably a poly (meth) acrylic acid ester.
 上記重合成分は、環状エーテル構造を有する(メタ)アクリル酸エステル、脂環構造を有する(メタ)アクリル酸エステル、芳香環を有する(メタ)アクリル酸エステル、極性基を有する(メタ)アクリル酸エステル、側鎖の炭素数が6以下の非環式(メタ)アクリル酸エステル、又はアミド基を有するN置換アクリルアミドを含むことが好ましい。これらの好ましい(メタ)アクリル酸エステル又はアミド基を有するN置換アクリルアミドの使用により、本発明の効果を効果的に得ることができ、また、遮音性と発泡抑制性能との双方をバランスよく高めることができる。 The polymerization component is a (meth) acrylic acid ester having a cyclic ether structure, a (meth) acrylic acid ester having an alicyclic structure, a (meth) acrylic acid ester having an aromatic ring, and a (meth) acrylic acid ester having a polar group. , The side chain preferably contains an acyclic (meth) acrylic acid ester having 6 or less carbon atoms, or an N-substituted acrylamide having an amide group. By using these preferable (meth) acrylic acid esters or N-substituted acrylamides having an amide group, the effects of the present invention can be effectively obtained, and both sound insulation and foam suppression performance can be enhanced in a well-balanced manner. Can be done.
 上記環状エーテル構造を有する(メタ)アクリル酸エステルとしては、グリシジル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレートグリシジルエーテル、3-ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、4-ヒドロキシブチルアクリレートグリシジルエーテル、5-ヒドロキシペンチル(メタ)アクリレートグリシジル、6-ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテル;(3-メチルオキセタン-3-イル)メチル(メタ)アクリレート、(3-プロピルオキセタン-3-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート、(3-ブチルオキセタン-3-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)エチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)プロピル(メタ)アクリレート、(3-エチルオキセタン-3-イル)ブチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)ペンチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)ヘキシル(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート、(2,2-ジメチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(2-メチル-2-イソブチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(2-シクロヘキシル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、テトラヒドロフルフリルアルコールアクリル酸多量体エステル;テトラヒドロ-2H-ピラン-2-イル-(メタ)アクリレート、2-{1-[(テトラヒドロ-2H-ピラン-2-イル)オキシ]-2-メチルプロピル}(メタ)アクリレート、環状トリメチロールプロパンホルマールアクリレート、(メタ)アクリロイルモルホリン等が挙げられる。本発明の効果を効果的に得る観点から、上記環状エーテル構造を有する(メタ)アクリル酸エステルは、テトラヒドロフルフリル(メタ)アクリレート、又は環状トリメチロールプロパンホルマールアクリレートであることが好ましい。 Examples of the (meth) acrylic acid ester having a cyclic ether structure include glycidyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate glycidyl ether, 3-hydroxypropyl (meth) acrylate glycidyl ether, and 4-hydroxybutyl acrylate glycidyl ether. , 5-Hydroxypentyl (meth) acrylate glycidyl, 6-hydroxyhexyl (meth) acrylate glycidyl ether; (3-methyloxetane-3-yl) methyl (meth) acrylate, (3-propyloxetane-3-yl) methyl ( Meta) acrylate, (3-ethyloxetane-3-yl) methyl (meth) acrylate, (3-butyloxetane-3-yl) methyl (meth) acrylate, (3-ethyloxetane-3-yl) ethyl (meth) Acrylate, (3-ethyloxetane-3-yl) propyl (meth) acrylate, (3-ethyloxetane-3-yl) butyl (meth) acrylate, (3-ethyloxetane-3-yl) pentyl (meth) acrylate, (3-Ethyloxetane-3-yl) hexyl (meth) acrylate; tetrahydrofurfuryl (meth) acrylate, (2,2-dimethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, (2- Methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, (2-methyl-2-isobutyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, (2- Cyclohexyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, tetrahydrofurfuryl alcohol acrylic acid multimer ester; tetrahydro-2H-pyran-2-yl- (meth) acrylate, 2- {1-[( Tetrahydro-2H-pyran-2-yl) oxy] -2-methylpropyl} (meth) acrylate, cyclic trimethylolpropanformal acrylate, (meth) acryloylmorpholine and the like can be mentioned. From the viewpoint of effectively obtaining the effects of the present invention, the (meth) acrylic acid ester having the cyclic ether structure is preferably tetrahydrofurfuryl (meth) acrylate or cyclic trimethylolpropane formal acrylate.
 上記脂環構造を有する(メタ)アクリル酸エステルとしては、イソボロニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid ester having the alicyclic structure include isobolonyl (meth) acrylate and cyclohexyl (meth) acrylate.
 上記芳香環を有する(メタ)アクリル酸エステルとしては、ベンジルアクリレート、フェノキシポリエチレングリコールアクリレート等が挙げられる。 Examples of the (meth) acrylic acid ester having the aromatic ring include benzyl acrylate and phenoxypolyethylene glycol acrylate.
 上記極性基を有する(メタ)アクリル酸エステルとしては、極性基として、水酸基、アミド基、アミノ基、イソシアネート基、カルボキシル基等を有する(メタ)アクリル酸エステルが挙げられる。 Examples of the (meth) acrylic acid ester having the above polar group include (meth) acrylic acid ester having a hydroxyl group, an amide group, an amino group, an isocyanate group, a carboxyl group and the like as the polar group.
 水酸基を有する(メタ)アクリル酸エステルとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等が挙げられる。 Examples of the (meth) acrylic acid ester having a hydroxyl group include 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxybutyl (meth) acrylate. Be done.
 イソシアネート基を有する(メタ)アクリル酸エステルとしては、トリアリルイソシアヌレート及びその誘導体等が挙げられる。 Examples of the (meth) acrylic acid ester having an isocyanate group include triallyl isocyanurate and its derivatives.
 カルボキシル基を有する(メタ)アクリル酸エステルとしては、アクリル酸、ω-カルボキシ-ポリカプロラクトンモノアクリレート、2-アクリロイロキシエチルコハク酸等が挙げられる。 Examples of the (meth) acrylic acid ester having a carboxyl group include acrylic acid, ω-carboxy-polycaprolactone monoacrylate, and 2-acryloyloxyethyl succinic acid.
 上記(メタ)アクリル酸エステルは、(メタ)アクリロイル基を有する多価カルボン酸エステルであってもよい。該(メタ)アクリロイル基を有する多価カルボン酸エステルとしては、2-アクリロイルオキシエチルサクシネート等が挙げられる。 The (meth) acrylic acid ester may be a polyvalent carboxylic acid ester having a (meth) acryloyl group. Examples of the polyvalent carboxylic acid ester having the (meth) acryloyl group include 2-acryloyloxyethyl succinate and the like.
 上記側鎖の炭素数が6以下の非環式(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレートが挙げられる。 Examples of the acyclic (meth) acrylic acid ester having 6 or less carbon atoms in the side chain include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and butyl (meth) acrylate. ..
 本発明の効果を効果的に得るために、上記重合成分100重量%中、側鎖の炭素数が8以上の非環式(メタ)アクリル酸エステルの含有量は、20重量%未満であることが好ましい。 In order to effectively obtain the effects of the present invention, the content of the acyclic (meth) acrylic acid ester having 8 or more carbon atoms in the side chain in 100% by weight of the above-mentioned polymerization component shall be less than 20% by weight. Is preferable.
 上記アミド基を有するN置換アクリルアミドとしては、例えば、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、N-イソプロピル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド等が挙げられる。 Examples of the N-substituted acrylamide having an amide group include N, N-dimethylaminopropyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, (meth) acryloyl morpholine, N-isopropyl (meth) acrylamide, and N. -Hydroxyethyl (meth) acrylamide and the like can be mentioned.
 上記(メタ)アクリル酸エステルとしては、上記した化合物以外に、例えばジエチレングリコールモノエチルエーテル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、2-アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-アクリロイルオキシエチル-2-ヒドロキシルプロピルフタレート、シクロヘキシル(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)クリレート、1,9-ノナンジオールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、2,2-ビス[4-(アクリロキシエトキシ)フェニル]プロパンジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)クリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリ(2-アクリロイルオキシエチル)フォスフェート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールプロパンテトラ(メタ)アクリレート及びその誘導体等が挙げられる。 Examples of the (meth) acrylic acid ester include diethylene glycol monoethyl ether (meth) acrylate, 3-methoxybutyl (meth) acrylate, 2-acryloyloxyethyl-2-hydroxypropylphthalate, and 2-acryloyl, in addition to the above compounds. Oxyethyl-2-hydroxylpropylphthalate, cyclohexyl (meth) acrylate; ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) crylate , 1,9-Nonandiol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 2,2-bis [ 4- (Acryloxyethoxy) phenyl] propandi (meth) acrylate; trimethylolpropanthry (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) crylate, dipentaerythritol penta (meth) acrylate, di. Examples thereof include pentaerythritol hexa (meth) acrylate, tri (2-acryloyloxyethyl) phosphate, tetramethylol methanetri (meth) acrylate, tetramethylol propanetetra (meth) acrylate and derivatives thereof.
 上記(メタ)アクリル酸エステル及びアミド基を有するN置換アクリルアミドはそれぞれ1種のみが用いられてもよく、2種以上が併用されてもよい。上記(メタ)アクリル重合体は、上記の(メタ)アクリル酸エステルの単独重合体であってもよく、上記の(メタ)アクリル酸エステルを含む重合成分の共重合体であってもよい。 Only one type of each of the above (meth) acrylic acid ester and N-substituted acrylamide having an amide group may be used, or two or more types may be used in combination. The (meth) acrylic polymer may be a homopolymer of the above-mentioned (meth) acrylic acid ester, or may be a copolymer of a polymerization component containing the above-mentioned (meth) acrylic acid ester.
 上記光反応開始剤としては、具体的には、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタノン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド、2,4,6-トリメチルベンゾイル-ジフェニルフォスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、トリフェニルメチリウムテトラキス(ペンタフルオロフェニル)ボラート等が挙げられる。上記光反応開始剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Specific examples of the photoreaction initiator include 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1- (4-). Morphorinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, 2,4,6 -Trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (η5-2,4-cyclopentadiene-1-yl) -bis (2,6-difluoro) -3- (1H-Pyrol-1-yl) -phenyl) Titanium, 2-Methyl-1- (4-Methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1 -(4-Morphorinophenyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone, di Ethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyl dimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexylphenyl Ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone, 2-hydroxy-2-methyl-1 -[4- (1-Methylvinyl) phenyl] propanone oligomer, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzophenone, methyl o-benzoyl benzoate, 4-phenylbenzophenone, 4- Benzoyl-4'-methyl-diphenylsulfide, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4-benzoyl-N, N-dimethyl- N- [2- (1-oxo-2-propenyloxy) ethyl] benzenemethanamineium bromide, (4-benzoylbenzyl) trimethylammonium chloride, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4- Dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4-dimethyl-9H-thioxanthone-9-one mesochloride, 2,4,6-trimethylbenzoyl- Diphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphinoxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, triphenylmethylium tetrakis (Pentafluorophenyl) borate and the like can be mentioned. Only one kind of the photoreaction initiator may be used, or two or more kinds thereof may be used in combination.
 上記光反応開始剤は、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシルフェニルケトン、又はビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシドであることが好ましい。 The photoreaction initiator is preferably benzyldimethylketal, 1-hydroxycyclohexylphenylketone, or bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide.
 上記重合性組成物100重量%中、上記光反応開始剤の含有量は、好ましくは0.01重量%以上、より好ましくは0.1重量%以上、好ましくは10重量%以下、より好ましくは5重量%以下である。上記光反応開始剤の含有量が上記下限以上及び上記上限以下であると、光反応性及び保存安定性がより一層高くなる。 The content of the photoreaction initiator in 100% by weight of the polymerizable composition is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, preferably 10% by weight or less, and more preferably 5. It is less than% by weight. When the content of the photoreaction initiator is at least the above lower limit and at least the above upper limit, the photoreactivity and storage stability are further enhanced.
 上記重合性組成物が光硬化性化合物を含む場合に、該光硬化性化合物を重合させるために、紫外線照射装置等の光硬化性装置を用いることが好ましい。上記紫外線照射装置としては、ボックスタイプの装置、及びベルトコンベヤタイプの装置等が挙げられる。また、上記紫外線照射装置に設置される紫外線ランプとしては、超高圧水銀ランプ、高圧水銀ランプ、低圧水銀ランプ、ケミカルランプ、メタルハライドランプ、エキシマランプ、UV-LED等が挙げられる。上記紫外線ランプは、ケミカルランプ、又はUV-LEDが好ましい。 When the above-mentioned polymerizable composition contains a photocurable compound, it is preferable to use a photocurable device such as an ultraviolet irradiation device in order to polymerize the photocurable compound. Examples of the ultraviolet irradiation device include a box type device and a belt conveyor type device. Examples of the ultraviolet lamp installed in the ultraviolet irradiation device include an ultra-high pressure mercury lamp, a high pressure mercury lamp, a low pressure mercury lamp, a chemical lamp, a metal halide lamp, an excima lamp, and a UV-LED. The ultraviolet lamp is preferably a chemical lamp or a UV-LED.
 上記光硬化性化合物に紫外線を照射する場合には、紫外線照射量(積算照射量)は、好ましくは500mJ以上、より好ましくは1000mJ以上、更に好ましくは1500mJ以上、特に好ましくは2000mJ以上である。上記紫外線照射量(積算照射量)は、好ましくは20000mJ以下、より好ましくは10000mJ以下、更に好ましくは8000mJ以下である。上記紫外線照射量(積算照射量)が上記下限以上であると未反応モノマーを減らすことができる。上記紫外線照射量(積算照射量)が上記上限以下であると樹脂の保存安定性が高くなる。また、上記紫外線照射の照射強度は、好ましくは0.1mW以上、より好ましくは0.5mW以上、更に好ましくは1mW以上、特に好ましくは2mW以上である。 When the photocurable compound is irradiated with ultraviolet rays, the ultraviolet irradiation amount (integrated irradiation amount) is preferably 500 mJ or more, more preferably 1000 mJ or more, still more preferably 1500 mJ or more, and particularly preferably 2000 mJ or more. The ultraviolet irradiation amount (integrated irradiation amount) is preferably 20000 mJ or less, more preferably 10000 mJ or less, and further preferably 8000 mJ or less. When the ultraviolet irradiation amount (integrated irradiation amount) is at least the above lower limit, unreacted monomers can be reduced. When the ultraviolet irradiation amount (integrated irradiation amount) is not more than the above upper limit, the storage stability of the resin becomes high. The irradiation intensity of the ultraviolet irradiation is preferably 0.1 mW or more, more preferably 0.5 mW or more, still more preferably 1 mW or more, and particularly preferably 2 mW or more.
 <ポリ酢酸ビニル>
 本発明の効果に優れることから、上記ポリ酢酸ビニルは、酢酸ビニルと、上記官能基を有するモノマーとを含む重合性組成物の重合体であることが好ましい。
<Polyvinyl acetate>
Since the effect of the present invention is excellent, the polyvinyl acetate is preferably a polymer of a polymerizable composition containing vinyl acetate and the monomer having a functional group.
 上記官能基を有するモノマーとしては、3-メチル-3-ブテン-1-オール、エチレングリコールモノビニルエーテル、及びイソプロピルアクリルアミド等が挙げられる。上記官能基としてカルボキシル基を有するモノマーとしては、アクリル酸、及びイタコン酸等が挙げられる。 Examples of the monomer having the above functional group include 3-methyl-3-butene-1-ol, ethylene glycol monovinyl ether, isopropylacrylamide and the like. Examples of the monomer having a carboxyl group as the functional group include acrylic acid and itaconic acid.
 遮音性を効果的に高める観点からは、ポリ酢酸ビニルの重量平均分子量は、好ましくは25万以上、より好ましくは30万以上、更に好ましくは40万以上、特に好ましくは50万以上である。層間接着力を良好にする観点からは、ポリ酢酸ビニルの重量平均分子量は、好ましくは120万以下、より好ましくは90万以下である。 From the viewpoint of effectively enhancing the sound insulation, the weight average molecular weight of polyvinyl acetate is preferably 250,000 or more, more preferably 300,000 or more, still more preferably 400,000 or more, and particularly preferably 500,000 or more. From the viewpoint of improving the interlayer adhesive strength, the weight average molecular weight of polyvinyl acetate is preferably 1.2 million or less, more preferably 900,000 or less.
 上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定されたポリスチレン換算での重量平均分子量を示す。 The above weight average molecular weight indicates the polystyrene-equivalent weight average molecular weight measured by gel permeation chromatography (GPC).
 上記重合性組成物を重合させて上記ポリ酢酸ビニルを合成する方法は特に限定されない。この合成方法としては、溶液重合法、懸濁重合法、及びUV重合法等が挙げられる。 The method for synthesizing the above-mentioned polyvinyl acetate by polymerizing the above-mentioned polymerizable composition is not particularly limited. Examples of this synthesis method include a solution polymerization method, a suspension polymerization method, and a UV polymerization method.
 中間膜の透明性を高め、かつ、透明性が高められた中間膜において、遮音性及び層間接着力を効果的に高める観点からは、上記ポリ酢酸ビニルの合成方法は、溶液重合法であることが好ましい。 The method for synthesizing polyvinyl acetate is a solution polymerization method from the viewpoint of effectively enhancing the sound insulation and interlayer adhesion in the interlayer film having enhanced transparency and transparency. Is preferable.
 <ポリエステル樹脂>
 上記ポリエステル樹脂としては、ポリエチレンテレフタレート及びポリエチレンナフタレート等が挙げられる。
<Polyester resin>
Examples of the polyester resin include polyethylene terephthalate and polyethylene naphthalate.
 <ポリビニルアセタール樹脂>
 上記ポリビニルアセタール樹脂は、例えば、ポリビニルアルコール(PVA)をアルデヒドによりアセタール化することにより製造できる。上記ポリビニルアセタール樹脂は、ポリビニルアルコールのアセタール化物であることが好ましい。上記ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより得られる。上記ポリビニルアルコールのけん化度は、一般に70モル%~99.9モル%の範囲内である。
<Polyvinyl acetal resin>
The polyvinyl acetal resin can be produced, for example, by acetalizing polyvinyl alcohol (PVA) with an aldehyde. The polyvinyl acetal resin is preferably an acetal product of polyvinyl alcohol. The polyvinyl alcohol can be obtained, for example, by saponifying polyvinyl acetate. The saponification degree of the polyvinyl alcohol is generally in the range of 70 mol% to 99.9 mol%.
 上記ポリビニルアルコール(PVA)の平均重合度は、好ましくは200以上、より好ましくは500以上、より一層好ましくは1500以上、更に好ましくは1600以上、好ましくは5000以下、より好ましくは4000以下、更に好ましくは3500以下、特に好ましくは3000以下である。上記平均重合度が上記下限以上であると、合わせガラスの耐貫通性がより一層高くなる。上記平均重合度が上記上限以下であると、中間膜の成形が容易になる。 The average degree of polymerization of the polyvinyl alcohol (PVA) is preferably 200 or more, more preferably 500 or more, still more preferably 1500 or more, still more preferably 1600 or more, preferably 5000 or less, more preferably 4000 or less, still more preferably. It is 3500 or less, particularly preferably 3000 or less. When the average degree of polymerization is at least the above lower limit, the penetration resistance of the laminated glass is further increased. When the average degree of polymerization is not more than the above upper limit, molding of the interlayer film becomes easy.
 上記ポリビニルアルコールの平均重合度は、JIS K6726「ポリビニルアルコール試験方法」に準拠した方法により求められる。 The average degree of polymerization of the above polyvinyl alcohol is determined by a method based on JIS K6726 "polyvinyl alcohol test method".
 上記ポリビニルアセタール樹脂に含まれるアセタール基の炭素数は特に限定されない。上記ポリビニルアセタール樹脂を製造する際に用いるアルデヒドは特に限定されない。上記ポリビニルアセタール樹脂におけるアセタール基の炭素数は3~5であることが好ましく、3又は4であることがより好ましい。上記ポリビニルアセタール樹脂におけるアセタール基の炭素数が3以上であると、中間膜のガラス転移温度が充分に低くなる。 The carbon number of the acetal group contained in the above polyvinyl acetal resin is not particularly limited. The aldehyde used in producing the polyvinyl acetal resin is not particularly limited. The acetal group in the polyvinyl acetal resin preferably has 3 to 5 carbon atoms, and more preferably 3 or 4 carbon atoms. When the acetal group in the polyvinyl acetal resin has 3 or more carbon atoms, the glass transition temperature of the interlayer film becomes sufficiently low.
 上記アルデヒドは特に限定されない。一般には、炭素数が1~10のアルデヒドが好適に用いられる。上記炭素数が1~10のアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド及びベンズアルデヒド等が挙げられる。プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-ヘキシルアルデヒド又はn-バレルアルデヒドが好ましく、プロピオンアルデヒド、n-ブチルアルデヒド又はイソブチルアルデヒドがより好ましく、n-ブチルアルデヒドが更に好ましい。上記アルデヒドは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The above aldehyde is not particularly limited. Generally, an aldehyde having 1 to 10 carbon atoms is preferably used. Examples of the aldehyde having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutylaldehyde, n-barrelaldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, and n-octylaldehyde. Examples thereof include n-nonylaldehyde, n-decylaldehyde and benzaldehyde. Propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-hexylaldehyde or n-valeraldehyde are preferred, propionaldehyde, n-butyraldehyde or isobutyraldehyde is more preferred, and n-butyraldehyde is even more preferred. Only one kind of the above aldehyde may be used, or two or more kinds may be used in combination.
 上記ポリビニルアセタール樹脂の水酸基の含有率(水酸基量)は、好ましくは15モル%以上、より好ましくは18モル%以上、好ましくは40モル%以下、より好ましくは35モル%以下である。上記水酸基の含有率が上記下限以上であると、中間膜の接着力がより一層高くなる。また、上記水酸基の含有率が上記上限以下であると、中間膜の柔軟性が高くなり、中間膜の取扱いが容易になる。 The hydroxyl group content (hydroxyl group amount) of the polyvinyl acetal resin is preferably 15 mol% or more, more preferably 18 mol% or more, preferably 40 mol% or less, and more preferably 35 mol% or less. When the content of the hydroxyl groups is at least the above lower limit, the adhesive strength of the interlayer film becomes even higher. Further, when the content of the hydroxyl group is not more than the above upper limit, the flexibility of the interlayer film is increased and the handling of the interlayer film becomes easy.
 上記ポリビニルアセタール樹脂の水酸基の含有率は、水酸基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記水酸基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。 The hydroxyl group content of the polyvinyl acetal resin is a value obtained by dividing the amount of ethylene groups to which the hydroxyl groups are bonded by the total amount of ethylene groups in the main chain and indicating the mole fraction as a percentage. The amount of ethylene groups to which the hydroxyl groups are bonded can be measured according to, for example, JIS K6728 “Polyvinyl butyral test method”.
 上記ポリビニルアセタール樹脂のアセチル化度は、好ましくは0.01モル%以上、より好ましくは0.5モル%以上、好ましくは10モル%以下、より好ましくは2モル%以下である。上記アセチル化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセチル化度が上記上限以下であると、中間膜及び合わせガラスの耐湿性が高くなる。 The degree of acetylation of the polyvinyl acetal resin is preferably 0.01 mol% or more, more preferably 0.5 mol% or more, preferably 10 mol% or less, and more preferably 2 mol% or less. When the degree of acetylation is at least the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer becomes high. When the degree of acetylation is not more than the above upper limit, the moisture resistance of the interlayer film and the laminated glass becomes high.
 上記アセチル化度は、アセチル基が結合しているエチレン基量を、主鎖の全エチレン基量で除算して求めたモル分率を百分率で示した値である。上記アセチル基が結合しているエチレン基量は、例えば、JIS K6728「ポリビニルブチラール試験方法」に準拠して測定できる。 The degree of acetylation is a value obtained by dividing the amount of ethylene groups to which acetyl groups are bonded by the total amount of ethylene groups in the main chain, and indicating the mole fraction as a percentage. The amount of ethylene group to which the acetyl group is bonded can be measured according to, for example, JIS K6728 “Polyvinyl Butyral Test Method”.
 上記ポリビニルアセタール樹脂のアセタール化度(ポリビニルブチラール樹脂の場合にはブチラール化度)は、好ましくは55モル%以上、より好ましくは60モル%以上、好ましくは75モル%以下、より好ましくは71モル%以下である。上記アセタール化度が上記下限以上であると、ポリビニルアセタール樹脂と可塑剤との相溶性が高くなる。上記アセタール化度が上記上限以下であると、ポリビニルアセタール樹脂を製造するために必要な反応時間が短くなる。 The degree of acetalization of the polyvinyl acetal resin (degree of butyralization in the case of polyvinyl butyral resin) is preferably 55 mol% or more, more preferably 60 mol% or more, preferably 75 mol% or less, more preferably 71 mol%. It is as follows. When the degree of acetalization is at least the above lower limit, the compatibility between the polyvinyl acetal resin and the plasticizer becomes high. When the degree of acetalization is not more than the above upper limit, the reaction time required for producing the polyvinyl acetal resin is shortened.
 上記アセタール化度は、以下のようにして求める。先ず、主鎖の全エチレン基量から、水酸基が結合しているエチレン基量と、アセチル基が結合しているエチレン基量とを差し引いた値を求める。得られた値を、主鎖の全エチレン基量で除算してモル分率を求める。このモル分率を百分率で示した値がアセタール化度である。 The above acetalization degree is obtained as follows. First, the value obtained by subtracting the amount of ethylene groups to which the hydroxyl groups are bonded and the amount of ethylene groups to which the acetyl groups are bonded is obtained from the total amount of ethylene groups in the main chain. The obtained value is divided by the total amount of ethylene groups in the main chain to obtain the mole fraction. The value obtained by expressing this mole fraction as a percentage is the degree of acetalization.
 なお、上記水酸基の含有率(水酸基量)、アセタール化度(ブチラール化度)及びアセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出することが好ましい。但し、ASTM D1396-92による測定を用いてもよい。ポリビニルアセタール樹脂がポリビニルブチラール樹脂である場合は、上記水酸基の含有率(水酸基量)、上記アセタール化度(ブチラール化度)及び上記アセチル化度は、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定された結果から算出され得る。 The hydroxyl group content (hydroxyl group amount), acetalization degree (butyralization degree), and acetylation degree are preferably calculated from the results measured by a method based on JIS K6728 "polyvinyl butyral test method". However, the measurement by ASTM D1396-92 may be used. When the polyvinyl acetal resin is a polyvinyl butyral resin, the hydroxyl group content (hydroxyl group amount), acetalization degree (butyralization degree), and acetylation degree are based on JIS K6728 "Polyvinyl butyral test method". Can be calculated from the results measured by.
 以下、第1の層、第2の層及び第3の層に含まれる好適な樹脂の詳細について、更に具体的に説明する。 Hereinafter, the details of the suitable resins contained in the first layer, the second layer and the third layer will be described in more detail.
 第1の層に含まれる樹脂(樹脂(1)):
 上記樹脂(1)として、上述した樹脂を用いることができる。
Resin contained in the first layer (resin (1)):
As the resin (1), the resin described above can be used.
 上記第1の層は、酸価が5mgKOH/g以上500mgKOH/g以下である樹脂(以下、樹脂(1A)と記載することがある)を含むことが好ましい。上記樹脂(1)は、上記樹脂(1A)を含むことが好ましい。上記樹脂(1)は、上記樹脂(1A)であってもよい。この場合には、第1の層の酸価を上述した範囲に容易に制御することができ、その結果、中間膜の層間剥離を効果的に抑えることができる。なお、上記樹脂(1)は、上記樹脂(1A)以外の樹脂を含んでいてもよい。 The first layer preferably contains a resin having an acid value of 5 mgKOH / g or more and 500 mgKOH / g or less (hereinafter, may be referred to as resin (1A)). The resin (1) preferably contains the resin (1A). The resin (1) may be the resin (1A). In this case, the acid value of the first layer can be easily controlled within the above-mentioned range, and as a result, delamination of the interlayer film can be effectively suppressed. The resin (1) may contain a resin other than the resin (1A).
 中間膜の層間剥離をより一層効果的に抑える観点からは、上記樹脂(1A)の酸価は、好ましくは200mgKOH/g以下、より好ましくは150mgKOH/g以下である。 From the viewpoint of more effectively suppressing delamination of the interlayer film, the acid value of the resin (1A) is preferably 200 mgKOH / g or less, more preferably 150 mgKOH / g or less.
 上記樹脂(1)の酸価は、JIS K0070に記載の電位差滴定法に準拠して測定される。具体的には、以下のようにして測定することができる。 The acid value of the resin (1) is measured according to the potentiometric titration method described in JIS K0070. Specifically, it can be measured as follows.
 試料(樹脂(1))を溶媒(例えば、メチルエチルケトン:トルエン:メタノール=1:1:1(体積比))に溶解する。得られた溶液を、電位差滴定装置(例えば、京都電子工業社製「AT-710」、電極:京都電子工業社製「H-171、R-173」)及び0.1mol/L水酸化カリウムエタノール溶液を用いて滴定し、得られた変曲点を滴定の終点とし、下記式より酸価を算出する。 Dissolve the sample (resin (1)) in a solvent (for example, methyl ethyl ketone: toluene: methanol = 1: 1: 1 (volume ratio)). The obtained solution was subjected to a potentiometric titrator (for example, "AT-710" manufactured by Kyoto Electronics Co., Ltd., electrode: "H-171, R-173" manufactured by Kyoto Electronics Co., Ltd.) and 0.1 mol / L potassium hydroxide ethanol. Titration is performed using a solution, and the obtained inflection point is used as the end point of the titration, and the acid value is calculated from the following formula.
 酸価(mgKOH/g)=(V1-V0)×N×56.11×f/S
 S:試料(樹脂(1))の質量(g)
 V0:空試験での滴定量(ml)
 V1:試料(樹脂(1))を用いたときの試験での滴定量(ml)
 N:滴定液の濃度(0.1mol/L)
 f:滴定液のファクター(f=1.002)
Acid value (mgKOH / g) = (V1-V0) x N x 56.11 x f / S
S: Mass (g) of the sample (resin (1))
V0: Titration in blank test (ml)
V1: Titration (ml) in a test using a sample (resin (1))
N: Concentration of titrant (0.1 mol / L)
f: Factor of titrant (f = 1.002)
 酸価測定用の試料(樹脂(1))は、樹脂(1)自体を用いてもよく、第1の層から樹脂(1)を分離して得てもよい。第1の層から樹脂(1)を分離する方法としては、以下の方法が挙げられる。第1の層を良溶媒(例えば、メチルエチルケトンやテトラヒドロフラン等)に溶解する。得られた溶液について貧溶媒(例えば、エタノールやメタノール等)で再沈殿を行った後、得られた高分量成分をさらに液体クロマトグラフィ等により第1の層の高分子量成分(樹脂)と低分子量成分(可塑剤等)とを分離して、試料(樹脂(1))である高分子量成分を得る。 As the sample for acid value measurement (resin (1)), the resin (1) itself may be used, or the resin (1) may be separated from the first layer. Examples of the method for separating the resin (1) from the first layer include the following methods. The first layer is dissolved in a good solvent (eg, methyl ethyl ketone, tetrahydrofuran, etc.). After reprecipitation of the obtained solution with a poor solvent (for example, ethanol, methanol, etc.), the obtained high-volume component is further subjected to liquid chromatography or the like to obtain a high-molecular-weight component (resin) and a low-molecular-weight component of the first layer. (Plasticizer, etc.) is separated to obtain a high molecular weight component which is a sample (resin (1)).
 上記第1の層100重量%中、上記樹脂(1A)の含有量は、好ましくは30重量%以上、より好ましくは50重量%以上、好ましくは90重量%以下、より好ましくは80重量%以下、更に好ましくは75重量%以下である。上記樹脂(1A)の含有量が上記下限以上及び上記上限以下であると、第1の層の酸価を上述した範囲に容易に制御することができ、その結果、中間膜の層間剥離をより一層効果的に抑えることができる。 The content of the resin (1A) in 100% by weight of the first layer is preferably 30% by weight or more, more preferably 50% by weight or more, preferably 90% by weight or less, more preferably 80% by weight or less. More preferably, it is 75% by weight or less. When the content of the resin (1A) is at least the above lower limit and at least the above upper limit, the acid value of the first layer can be easily controlled within the above range, and as a result, delamination of the interlayer film is further improved. It can be suppressed more effectively.
 上記第1の層に含まれる樹脂100重量%中(樹脂(1)100重量%中)、上記樹脂(1A)の含有量は、好ましくは50重量%以上、より好ましくは70重量%以上である。上記樹脂(1A)の含有量が上記下限以上であると、第1の層の酸価を上述した範囲に容易に制御することができ、その結果、中間膜の層間剥離をより一層効果的に抑えることができる。 The content of the resin (1A) in 100% by weight of the resin contained in the first layer (in 100% by weight of the resin (1)) is preferably 50% by weight or more, more preferably 70% by weight or more. .. When the content of the resin (1A) is at least the above lower limit, the acid value of the first layer can be easily controlled within the above range, and as a result, delamination of the interlayer film is more effectively performed. It can be suppressed.
 上記第1の層は、カルボキシル基を有する樹脂を含むことが好ましい。上記樹脂(1)、上記樹脂(1A)は、カルボキシル基を有する樹脂を含むことが好ましい。この場合には、第1の層の酸価を上述した範囲に容易に制御することができ、その結果、中間膜の層間剥離を効果的に抑えることができる。なお、上記樹脂(1)及び上記樹脂(1A)は、上記カルボキシル基を有する樹脂であってもよい。また、上記カルボキシル基を有する樹脂は、上記樹脂(1A)とは異なっていてもよい。 The first layer preferably contains a resin having a carboxyl group. The resin (1) and the resin (1A) preferably contain a resin having a carboxyl group. In this case, the acid value of the first layer can be easily controlled within the above-mentioned range, and as a result, delamination of the interlayer film can be effectively suppressed. The resin (1) and the resin (1A) may be resins having a carboxyl group. Further, the resin having a carboxyl group may be different from the resin (1A).
 上記カルボキシル基を有する樹脂100重量%中、カルボキシル基の含有率は、好ましくは4重量%以上、より好ましくは5重量%以上、好ましくは15重量%以下、より好ましくは13重量%以下である。上記カルボキシル基の含有率が上記下限以上及び上記上限以下であると、第1の層の酸価を上述した範囲に容易に制御することができ、その結果、中間膜の層間剥離をより一層効果的に抑えることができる。 The content of the carboxyl group in 100% by weight of the resin having a carboxyl group is preferably 4% by weight or more, more preferably 5% by weight or more, preferably 15% by weight or less, and more preferably 13% by weight or less. When the content of the carboxyl group is not less than the above lower limit and not more than the above upper limit, the acid value of the first layer can be easily controlled within the above range, and as a result, delamination of the interlayer film is further effective. Can be suppressed.
 上記カルボキシル基の含有率は、H-NMR等により測定することができる。 The content of the above carboxyl group can be measured by 1 H-NMR or the like.
 中間膜の層間剥離をより一層効果的に抑える観点、合わせガラスの透明性及び遮音性をより一層高める観点からは、上記カルボキシル基を有する樹脂は、カルボキシル基を有する(メタ)アクリル重合体、又はカルボキシル基を有するポリ酢酸ビニルであることが好ましく、カルボキシル基を有する(メタ)アクリル重合体であることがより好ましい。上記カルボキシル基を有する(メタ)アクリル重合体は、例えば、上記カルボキシル基を有する(メタ)アクリル酸エステルを含む重合性組成物を硬化させることにより得ることができる。上記カルボキシル基を有するポリ酢酸ビニルは、例えば、酢酸ビニルと上記カルボキシル基を有するモノマーとを含む重合性組成物を用いて得ることができる。 From the viewpoint of more effectively suppressing delamination of the interlayer film and further enhancing the transparency and sound insulation of the laminated glass, the resin having a carboxyl group is a (meth) acrylic polymer having a carboxyl group, or It is preferably polyvinyl acetate having a carboxyl group, and more preferably a (meth) acrylic polymer having a carboxyl group. The (meth) acrylic polymer having a carboxyl group can be obtained, for example, by curing a polymerizable composition containing the (meth) acrylic acid ester having a carboxyl group. The polyvinyl acetate having a carboxyl group can be obtained, for example, by using a polymerizable composition containing vinyl acetate and the monomer having a carboxyl group.
 上記第1の層100重量%中、上記カルボキシル基を有する樹脂の含有量は、好ましくは4重量%以上、より好ましくは5重量%以上、好ましくは15重量%以下、より好ましくは13重量%以下である。上記カルボキシル基を有する樹脂の含有量が上記下限以上及び上記上限以下であると、第1の層の酸価を上述した範囲に容易に制御することができ、その結果、中間膜の層間剥離をより一層効果的に抑えることができる。 The content of the resin having a carboxyl group in 100% by weight of the first layer is preferably 4% by weight or more, more preferably 5% by weight or more, preferably 15% by weight or less, and more preferably 13% by weight or less. Is. When the content of the resin having a carboxyl group is not less than the above lower limit and not more than the above upper limit, the acid value of the first layer can be easily controlled within the above range, and as a result, delamination of the interlayer film is caused. It can be suppressed even more effectively.
 上記第1の層に含まれる樹脂100重量%中(樹脂(1)100重量%中)、上記カルボキシル基を有する樹脂の含有量は、好ましくは4重量%以上、より好ましくは5重量%以上、好ましくは15重量%以下、より好ましくは13重量%以下である。上記カルボキシル基を有する樹脂の含有量が上記下限以上及び上記上限以下であると、第1の層の酸価を上述した範囲に容易に制御することができ、その結果、中間膜の層間剥離をより一層効果的に抑えることができる。 The content of the resin having a carboxyl group in 100% by weight of the resin contained in the first layer (in 100% by weight of the resin (1)) is preferably 4% by weight or more, more preferably 5% by weight or more. It is preferably 15% by weight or less, more preferably 13% by weight or less. When the content of the resin having a carboxyl group is not less than the above lower limit and not more than the above upper limit, the acid value of the first layer can be easily controlled within the above range, and as a result, delamination of the interlayer film is caused. It can be suppressed even more effectively.
 上記第1の層が2種類以上の樹脂を含む場合に、第1の層は、共連続構造及び海島構造等の相分離構造を有さないことが好ましい。 When the first layer contains two or more kinds of resins, it is preferable that the first layer does not have a phase-separated structure such as a co-continuous structure and a sea-island structure.
 上記第1の層100重量%中、上記樹脂(1)の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、より一層好ましくは50重量%以上、更に好ましくは60重量%以上、特に好ましくは65重量%以上である。 The content of the resin (1) in 100% by weight of the first layer is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, still more preferably 60% by weight. As mentioned above, it is particularly preferably 65% by weight or more.
 第2,第3の層に含まれる樹脂(樹脂(2),樹脂(3)):
 上記樹脂(2)及び上記樹脂(3)として、上述した樹脂を用いることができる。
Resin contained in the second and third layers (resin (2), resin (3)):
As the resin (2) and the resin (3), the above-mentioned resin can be used.
 中間膜の層間剥離を効果的に抑える観点、並びに合わせガラスの透明性及び遮音性を高める観点からは、上記樹脂(2)及び上記樹脂(3)はそれぞれ、上記熱可塑性樹脂を含むことが好ましく、上記熱可塑性樹脂であることがより好ましい。 From the viewpoint of effectively suppressing delamination of the interlayer film and improving the transparency and sound insulation of the laminated glass, it is preferable that the resin (2) and the resin (3) each contain the thermoplastic resin. , The above thermoplastic resin is more preferable.
 中間膜の層間剥離をより一層効果的に抑える観点、並びに合わせガラスの透明性及び遮音性をより一層高める観点からは、上記樹脂(2)は、上記ポリビニルアセタール樹脂であることが好ましく、上記樹脂(3)は、上記ポリビニルアセタール樹脂であることが好ましい。 From the viewpoint of more effectively suppressing delamination of the interlayer film and further enhancing the transparency and sound insulation of the laminated glass, the resin (2) is preferably the polyvinyl acetal resin, and the resin. (3) is preferably the above-mentioned polyvinyl acetal resin.
 中間膜の製造効率をより一層高める観点からは、上記樹脂(2)と上記樹脂(3)とは、同一の樹脂であることが好ましい。 From the viewpoint of further increasing the production efficiency of the interlayer film, it is preferable that the resin (2) and the resin (3) are the same resin.
 上記第2の層に含まれる樹脂100重量%中(樹脂(2)100重量%中)、上記熱可塑性樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、より一層好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。上記樹脂(2)の主成分(50重量%以上)は、上記熱可塑性樹脂であることが好ましい。 The content of the thermoplastic resin in 100% by weight of the resin contained in the second layer (in 100% by weight of the resin (2)) is preferably 10% by weight or more, more preferably 30% by weight or more, and even more. It is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more. The main component (50% by weight or more) of the resin (2) is preferably the thermoplastic resin.
 上記第2の層に含まれる熱可塑性樹脂100重量%中、上記ポリビニルアセタール樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、より一層好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。上記第2の層の熱可塑性樹脂の主成分(50重量%以上)は、ポリビニルアセタール樹脂であることが好ましい。 The content of the polyvinyl acetal resin in 100% by weight of the thermoplastic resin contained in the second layer is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and further. It is preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more. The main component (50% by weight or more) of the thermoplastic resin in the second layer is preferably a polyvinyl acetal resin.
 上記第3の層に含まれる樹脂100重量%中(樹脂(3)100重量%中)、上記熱可塑性樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、より一層好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。上記樹脂(3)の主成分(50重量%以上)は、上記熱可塑性樹脂であることが好ましい。 The content of the thermoplastic resin in 100% by weight of the resin contained in the third layer (in 100% by weight of the resin (3)) is preferably 10% by weight or more, more preferably 30% by weight or more, and even more. It is preferably 50% by weight or more, more preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more. The main component (50% by weight or more) of the resin (3) is preferably the thermoplastic resin.
 上記第3の層に含まれる熱可塑性樹脂100重量%中、上記ポリビニルアセタール樹脂の含有量は、好ましくは10重量%以上、より好ましくは30重量%以上、より一層好ましくは50重量%以上、更に好ましくは70重量%以上、特に好ましくは80重量%以上、最も好ましくは90重量%以上である。上記第3の層の熱可塑性樹脂の主成分(50重量%以上)は、ポリビニルアセタール樹脂であることが好ましい。 The content of the polyvinyl acetal resin in 100% by weight of the thermoplastic resin contained in the third layer is preferably 10% by weight or more, more preferably 30% by weight or more, still more preferably 50% by weight or more, and further. It is preferably 70% by weight or more, particularly preferably 80% by weight or more, and most preferably 90% by weight or more. The main component (50% by weight or more) of the thermoplastic resin in the third layer is preferably a polyvinyl acetal resin.
 (可塑剤)
 上記中間膜は、可塑剤を含むことが好ましい。上記第1の層は、可塑剤(以下、可塑剤(1)と記載することがある)を含むことが好ましい。上記第2の層は、可塑剤(以下、可塑剤(2)と記載することがある)を含むことが好ましい。上記第3の層は、可塑剤(以下、可塑剤(3)と記載することがある)を含むことが好ましい。可塑剤の使用により、各層間の接着力がより一層高くなる傾向がある。またポリビニルアセタール樹脂と可塑剤との併用により、耐衝撃性及び耐貫通性により一層優れ、ポリビニルアセタール樹脂と可塑剤とを含む層の合わせガラス部材又は他の層に対する接着力が適度に高くなる。上記可塑剤は特に限定されない。上記可塑剤(1)と上記可塑剤(2)と上記可塑剤(3)とは同一であってもよく、異なっていてもよい。上記可塑剤(1)、上記可塑剤(2)及び上記可塑剤(3)はそれぞれ、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Plasticizer)
The interlayer film preferably contains a plasticizer. The first layer preferably contains a plasticizer (hereinafter, may be referred to as a plasticizer (1)). The second layer preferably contains a plasticizer (hereinafter, may be referred to as a plasticizer (2)). The third layer preferably contains a plasticizer (hereinafter, may be referred to as a plasticizer (3)). The use of plasticizers tends to further increase the adhesive strength between the layers. Further, when the polyvinyl acetal resin and the plasticizer are used in combination, the impact resistance and the penetration resistance are further improved, and the adhesive force of the layer containing the polyvinyl acetal resin and the plasticizer to the laminated glass member or another layer is appropriately increased. The plasticizer is not particularly limited. The plasticizer (1), the plasticizer (2), and the plasticizer (3) may be the same or different. As the plasticizer (1), the plasticizer (2), and the plasticizer (3), only one type may be used, or two or more types may be used in combination.
 上記可塑剤としては、一塩基性有機酸エステル及び多塩基性有機酸エステル等の有機エステル可塑剤、並びに有機リン酸可塑剤及び有機亜リン酸可塑剤などの有機リン酸可塑剤等が挙げられる。有機エステル可塑剤が好ましい。上記可塑剤は液状可塑剤であることが好ましい。 Examples of the plasticizer include organic ester plasticizers such as monobasic organic acid esters and polybasic organic acid esters, and organic phosphoric acid plasticizers such as organic phosphoric acid plasticizers and organic subphosphate plasticizers. .. Organic ester plasticizers are preferred. The plasticizer is preferably a liquid plasticizer.
 上記一塩基性有機酸エステルとしては、グリコールと一塩基性有機酸との反応によって得られたグリコールエステル等が挙げられる。上記グリコールとしては、トリエチレングリコール、テトラエチレングリコール及びトリプロピレングリコール等が挙げられる。上記一塩基性有機酸としては、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプチル酸、n-オクチル酸、2-エチルヘキシル酸、n-ノニル酸及びデシル酸等が挙げられる。 Examples of the monobasic organic acid ester include glycol esters obtained by reacting glycol with a monobasic organic acid. Examples of the glycol include triethylene glycol, tetraethylene glycol, tripropylene glycol and the like. Examples of the monobasic organic acid include butyric acid, isobutyric acid, caproic acid, 2-ethylbutyric acid, heptyl acid, n-octyl acid, 2-ethylhexic acid, n-nonyl acid and decyl acid.
 上記多塩基性有機酸エステルとしては、多塩基性有機酸と、炭素数4~8の直鎖又は分岐構造を有するアルコールとのエステル化合物等が挙げられる。上記多塩基性有機酸としては、アジピン酸、セバシン酸及びアゼライン酸等が挙げられる。 Examples of the polybasic organic acid ester include an ester compound of a multibasic organic acid and an alcohol having a linear or branched structure having 4 to 8 carbon atoms. Examples of the polybasic organic acid include adipic acid, sebacic acid, azelaic acid and the like.
 上記有機エステル可塑剤としては、トリエチレングリコールジ-2-エチルプロパノエート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリレート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド、及びリン酸エステルとアジピン酸エステルとの混合物等が挙げられる。これら以外の有機エステル可塑剤を用いてもよい。上述のアジピン酸エステル以外の他のアジピン酸エステルを用いてもよい。 Examples of the organic ester plasticizer include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, and triethylene glycol dicaprelate. Triethylene Glycol Di-n-Octanoate, Triethylene Glycol Di-n-Heptanoate, Tetraethylene Glycol Di-n-Heptanoate, Dibutyl Sevacate, Dioctyl Azelate, Dibutyl Carbitol Adipate, Ethylene Glycol Di-2-Ethyl Butyrate, 1,3-propylene glycol di-2-ethylbutyrate, 1,4-butylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, dipropylene glycol Di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, diethylene glycol dicaprylate, dihexyl adipate, dioctyl adipate, hexylcyclohexyl adipate, adipine Examples thereof include a mixture of heptyl acid and nonyl adipate, diisononyl adipate, diisodecyl adipate, heptyl nonyl adipate, dibutyl sebacate, oil-modified sebacic acid alkyd, and a mixture of phosphoric acid ester and adipate ester. Organic ester plasticizers other than these may be used. Adipates other than the above-mentioned adipates may be used.
 上記有機リン酸可塑剤としては、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェート等が挙げられる。 Examples of the organophosphate plasticizer include tributoxyethyl phosphate, isodecylphenyl phosphate, triisopropyl phosphate and the like.
 上記可塑剤は、下記式(1)で表されるジエステル可塑剤であることが好ましい。 The plasticizer is preferably a diester plasticizer represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記式(1)中、R1及びR2はそれぞれ、炭素数2~10の有機基を表し、R3は、エチレン基、イソプロピレン基又はn-プロピレン基を表し、pは3~10の整数を表す。上記式(1)中のR1及びR2はそれぞれ、炭素数5~10の有機基であることが好ましく、炭素数6~10の有機基であることがより好ましい。 In the above formula (1), R1 and R2 each represent an organic group having 2 to 10 carbon atoms, R3 represents an ethylene group, an isopropylene group or an n-propylene group, and p represents an integer of 3 to 10. .. Each of R1 and R2 in the above formula (1) is preferably an organic group having 5 to 10 carbon atoms, and more preferably an organic group having 6 to 10 carbon atoms.
 上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート(3GO)、トリエチレングリコールジ-2-エチルブチレート(3GH)又はトリエチレングリコールジ-2-エチルプロパノエートを含むことが好ましい。上記可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート又はトリエチレングリコールジ-2-エチルブチレートを含むことがより好ましく、トリエチレングリコールジ-2-エチルヘキサノエートを含むことが更に好ましい。 The plasticizer preferably contains triethylene glycol di-2-ethylhexanoate (3GO), triethylene glycol di-2-ethylbutyrate (3GH) or triethylene glycol di-2-ethylpropanoate. .. The plasticizer more preferably contains triethylene glycol di-2-ethylhexanoate or triethylene glycol di-2-ethylbutyrate, and further preferably contains triethylene glycol di-2-ethylhexanoate. preferable.
 上記第1の層において、上記樹脂(1)100重量部に対する上記可塑剤(1)の含有量を、含有量(1)とする。上記含有量(1)は、好ましくは10重量部以上、より好ましくは20重量部以上、更に好ましくは30重量部以上、特に好ましくは35重量部以上、好ましくは100重量部以下、より好ましくは80重量部以下、更に好ましくは70重量部以下、特に好ましくは65重量部以下である。上記含有量(1)が上記下限以上であると、中間膜の層間剥離をより一層効果的に抑えることができ、また、合わせガラスの遮音性をより一層高めることができる。上記含有量(1)が上記上限以下であると、合わせガラスの耐貫通性がより一層高くなる。 In the first layer, the content of the plasticizer (1) with respect to 100 parts by weight of the resin (1) is defined as the content (1). The content (1) is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, further preferably 30 parts by weight or more, particularly preferably 35 parts by weight or more, preferably 100 parts by weight or less, and more preferably 80 parts by weight or more. It is less than or equal to parts by weight, more preferably 70 parts by weight or less, and particularly preferably 65 parts by weight or less. When the content (1) is at least the above lower limit, delamination of the interlayer film can be suppressed more effectively, and the sound insulation of the laminated glass can be further improved. When the content (1) is not more than the above upper limit, the penetration resistance of the laminated glass is further increased.
 上記第2の層において、上記樹脂(2)100重量部に対する上記可塑剤(2)の含有量を、含有量(2)とする。上記含有量(2)は、好ましくは20重量部以上、より好ましくは25重量部以上、更に好ましくは30重量部以上、好ましくは45重量部以下、より好ましくは40重量部以下、更に好ましくは37重量部以下である。上記含有量(2)が上記下限以上であると、中間膜の層間剥離をより一層効果的に抑えることができ、また、合わせガラスの遮音性をより一層高めることができる。上記含有量(2)が上記上限以下であると、合わせガラスの耐貫通性がより一層高くなる。上記含有量(2)が上記上限以下であると、曲げ剛性がより一層高くなる。 In the second layer, the content of the plasticizer (2) with respect to 100 parts by weight of the resin (2) is defined as the content (2). The content (2) is preferably 20 parts by weight or more, more preferably 25 parts by weight or more, further preferably 30 parts by weight or more, preferably 45 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 37. It is less than a part by weight. When the content (2) is at least the above lower limit, delamination of the interlayer film can be suppressed more effectively, and the sound insulation of the laminated glass can be further improved. When the content (2) is not more than the above upper limit, the penetration resistance of the laminated glass is further increased. When the content (2) is not more than the upper limit, the bending rigidity becomes even higher.
 上記第3の層において、上記樹脂(3)100重量部に対する上記可塑剤(3)の含有量を、含有量(3)とする。上記含有量(3)は、好ましくは20重量部以上、より好ましくは25重量部以上、更に好ましくは30重量部以上、好ましくは45重量部以下、より好ましくは40重量部以下、更に好ましくは37重量部以下である。上記含有量(3)が上記下限以上であると、中間膜の層間剥離をより一層効果的に抑えることができ、また、合わせガラスの遮音性をより一層高めることができる。上記含有量(3)が上記上限以下であると、合わせガラスの耐貫通性がより一層高くなる。上記含有量(3)が上記上限以下であると、曲げ剛性がより一層高くなる。 In the third layer, the content of the plasticizer (3) with respect to 100 parts by weight of the resin (3) is defined as the content (3). The content (3) is preferably 20 parts by weight or more, more preferably 25 parts by weight or more, still more preferably 30 parts by weight or more, preferably 45 parts by weight or less, more preferably 40 parts by weight or less, still more preferably 37. It is less than a part by weight. When the content (3) is at least the above lower limit, delamination of the interlayer film can be suppressed more effectively, and the sound insulation of the laminated glass can be further improved. When the content (3) is not more than the above upper limit, the penetration resistance of the laminated glass is further increased. When the content (3) is not more than the upper limit, the bending rigidity becomes even higher.
 上記含有量(1)と上記含有量(2)とは、同一であってもよく、異なっていてもよい。上記含有量(1)と上記含有量(3)とは、同一であってもよく、異なっていてもよい。合わせガラスの遮音性を高める観点からは、上記含有量(1)と上記含有量(2)とは同一であるか、又は、上記含有量(1)は上記含有量(2)よりも多いことが好ましく、上記含有量(1)は上記含有量(2)よりも多いことがより好ましい。合わせガラスの遮音性を高める観点からは、上記含有量(1)と上記含有量(3)とは同一であるか、又は、上記含有量(1)は上記含有量(3)よりも多いことが好ましく、上記含有量(1)は上記含有量(3)よりも多いことがより好ましい。 The above-mentioned content (1) and the above-mentioned content (2) may be the same or different. The content (1) and the content (3) may be the same or different. From the viewpoint of enhancing the sound insulation of the laminated glass, the content (1) and the content (2) are the same, or the content (1) is larger than the content (2). Is preferable, and the content (1) is more preferably higher than the content (2). From the viewpoint of enhancing the sound insulation of the laminated glass, the content (1) and the content (3) are the same, or the content (1) is larger than the content (3). Is preferable, and the content (1) is more preferably higher than the content (3).
 合わせガラスの遮音性をより一層高める観点からは、上記含有量(2)と上記含有量(1)との差の絶対値、並びに上記含有量(3)と上記含有量(1)との差の絶対値はそれぞれ、好ましくは5重量部以上、より好ましくは10重量部以上、更に好ましくは15重量部以上である。上記含有量(2)と上記含有量(1)との差の絶対値、並びに上記含有量(3)と上記含有量(1)との差の絶対値はそれぞれ、好ましくは80重量部以下、より好ましくは75重量部以下、更に好ましくは70重量部以下である。 From the viewpoint of further improving the sound insulation of the laminated glass, the absolute value of the difference between the content (2) and the content (1), and the difference between the content (3) and the content (1). The absolute value of each is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, and further preferably 15 parts by weight or more. The absolute value of the difference between the content (2) and the content (1) and the absolute value of the difference between the content (3) and the content (1) are preferably 80 parts by weight or less, respectively. It is more preferably 75 parts by weight or less, still more preferably 70 parts by weight or less.
 (遮熱性物質)
 上記中間膜は、遮熱性物質を含んでいてもよい。上記第1の層は、遮熱性物質を含んでいてもよい。上記第2の層は、遮熱性物質を含んでいてもよい。上記第3の層は、遮熱性物質を含んでいてもよい。上記遮熱性物質は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Heat-shielding substance)
The interlayer film may contain a heat-shielding substance. The first layer may contain a heat-shielding substance. The second layer may contain a heat-shielding substance. The third layer may contain a heat-shielding substance. Only one kind of the heat-shielding substance may be used, or two or more kinds thereof may be used in combination.
 上記遮熱性物質は、フタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物の内の少なくとも1種の成分Xを含むか、又は、遮熱粒子を含んでいてもよい。この場合に、上記遮熱性物質は、上記成分Xと上記遮熱粒子との双方を含んでいてもよい。 The heat-shielding substance may contain at least one component X of the phthalocyanine compound, the naphthalocyanine compound and the anthracyanine compound, or may contain heat-shielding particles. In this case, the heat-shielding substance may contain both the component X and the heat-shielding particles.
 上記成分Xは特に限定されない。成分Xとして、従来公知のフタロシアニン化合物、ナフタロシアニン化合物及びアントラシアニン化合物を用いることができる。 The above component X is not particularly limited. As the component X, conventionally known phthalocyanine compounds, naphthalocyanine compounds and anthracyanine compounds can be used.
 上記成分Xとしては、フタロシアニン、フタロシアニンの誘導体、ナフタロシアニン、ナフタロシアニンの誘導体、アントラシアニン及びアントラシアニンの誘導体等が挙げられる。上記フタロシアニン化合物及び上記フタロシアニンの誘導体はそれぞれ、フタロシアニン骨格を有することが好ましい。上記ナフタロシアニン化合物及び上記ナフタロシアニンの誘導体はそれぞれ、ナフタロシアニン骨格を有することが好ましい。上記アントラシアニン化合物及び上記アントラシアニンの誘導体はそれぞれ、アントラシアニン骨格を有することが好ましい。 Examples of the component X include phthalocyanine, phthalocyanine derivatives, naphthalocyanine, naphthalocyanine derivatives, anthracyanine and anthracyanine derivatives, and the like. The phthalocyanine compound and the phthalocyanine derivative each preferably have a phthalocyanine skeleton. It is preferable that the naphthalocyanine compound and the derivative of the naphthalocyanine each have a naphthalocyanine skeleton. It is preferable that the anthracyanine compound and the derivative of the anthracynin each have an anthracyanine skeleton.
 上記成分Xは、バナジウム原子又は銅原子を含有していてもよい。上記成分Xは、バナジウム原子を含有していてもよく、銅原子を含有していてもよい。上記成分Xは、バナジウム原子又は銅原子を含有するフタロシアニン及びバナジウム原子又は銅原子を含有するフタロシアニンの誘導体の内の少なくとも1種であってもよい。 The above component X may contain a vanadium atom or a copper atom. The component X may contain a vanadium atom or may contain a copper atom. The component X may be at least one of a vanadium atom or a copper atom-containing phthalocyanine and a vanadium atom or a copper atom-containing phthalocyanine derivative.
 上記中間膜は、遮熱粒子を含んでいてもよい。上記第1の層は、遮熱粒子を含んでいてもよい。上記第2の層は、遮熱粒子を含んでいてもよい。上記第3の層は、上記遮熱粒子を含んでいてもよい。上記遮熱粒子は遮熱性物質である。遮熱粒子の使用により、赤外線(熱線)を効果的に遮断できる。上記遮熱粒子は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The interlayer film may contain heat-shielding particles. The first layer may contain heat shield particles. The second layer may contain heat shield particles. The third layer may contain the heat shield particles. The heat-shielding particles are heat-shielding substances. Infrared rays (heat rays) can be effectively blocked by using heat shield particles. Only one type of the heat shield particles may be used, or two or more types may be used in combination.
 上記遮熱粒子として、金属酸化物粒子を用いることができる。上記遮熱粒子として、金属の酸化物により形成された粒子(金属酸化物粒子)を用いることができる。 Metal oxide particles can be used as the heat shield particles. As the heat shield particles, particles formed of metal oxides (metal oxide particles) can be used.
 可視光よりも長い波長780nm以上の赤外線は、紫外線と比較して、エネルギー量が小さい。しかしながら、赤外線は熱的作用が大きく、赤外線が物質に吸収されると熱として放出される。このため、赤外線は一般に熱線と呼ばれている。上記遮熱粒子の使用により、赤外線(熱線)を効果的に遮断できる。なお、遮熱粒子とは、赤外線を吸収可能な粒子を意味する。 Infrared rays with a wavelength of 780 nm or more, which is longer than visible light, have a smaller amount of energy than ultraviolet rays. However, infrared rays have a large thermal effect, and when infrared rays are absorbed by a substance, they are emitted as heat. For this reason, infrared rays are generally called heat rays. By using the heat shield particles, infrared rays (heat rays) can be effectively blocked. The heat-shielding particles mean particles that can absorb infrared rays.
 上記遮熱粒子の具体例としては、アルミニウムドープ酸化錫粒子、インジウムドープ酸化錫粒子、アンチモンドープ酸化錫粒子(ATO粒子)、ガリウムドープ酸化亜鉛粒子(GZO粒子)、インジウムドープ酸化亜鉛粒子(IZO粒子)、アルミニウムドープ酸化亜鉛粒子(AZO粒子)、ニオブドープ酸化チタン粒子、ナトリウムドープ酸化タングステン粒子、セシウムドープ酸化タングステン粒子、タリウムドープ酸化タングステン粒子、ルビジウムドープ酸化タングステン粒子、錫ドープ酸化インジウム粒子(ITO粒子)、錫ドープ酸化亜鉛粒子、珪素ドープ酸化亜鉛粒子等の金属酸化物粒子や、六ホウ化ランタン(LaB)粒子等が挙げられる。これら以外の遮熱粒子を用いてもよい。 Specific examples of the heat shield particles include aluminum-doped tin oxide particles, indium-doped tin oxide particles, antimony-doped tin oxide particles (ATO particles), gallium-doped zinc oxide particles (GZO particles), and indium-doped zinc oxide particles (IZO particles). ), Aluminum-doped zinc oxide particles (AZO particles), niob-doped titanium oxide particles, sodium-doped tungsten oxide particles, cesium-doped tungsten oxide particles, tallium-doped tungsten oxide particles, rubidium-doped tungsten oxide particles, tin-doped indium oxide particles (ITO particles) , Tin-doped zinc oxide particles, silicon-doped zinc oxide particles and other metal oxide particles, hexaborated lanthanum (LaB 6 ) particles and the like. Heat-shielding particles other than these may be used.
 (金属塩)
 上記中間膜は、アルカリ金属塩及びアルカリ土類金属塩の内の少なくとも1種の金属塩(以下、金属塩Mと記載することがある)を含んでいてもよい。なお、アルカリ土類金属とは、Be、Mg、Ca、Sr、Ba、及びRaの6種の金属を意味する。上記第1の層は、上記金属塩Mを含んでいてもよい。上記第2の層は、上記金属塩Mを含んでいてもよい。上記第3の層は、上記金属塩Mを含んでいてもよい。上記金属塩Mの使用により、中間膜とガラス板などの合わせガラス部材との接着性又は中間膜における各層間の接着性を制御することが容易になる。上記金属塩Mは、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Metal salt)
The interlayer film may contain at least one metal salt (hereinafter, may be referred to as metal salt M) among the alkali metal salt and the alkaline earth metal salt. The alkaline earth metal means six kinds of metals, Be, Mg, Ca, Sr, Ba, and Ra. The first layer may contain the metal salt M. The second layer may contain the metal salt M. The third layer may contain the metal salt M. By using the metal salt M, it becomes easy to control the adhesiveness between the interlayer film and the laminated glass member such as a glass plate or the adhesiveness between each layer in the interlayer film. As the metal salt M, only one kind may be used, or two or more kinds may be used in combination.
 上記金属塩Mは、Li、Na、K、Rb、Cs、Mg、Ca、Sr及びBaからなる群から選択された少なくとも1種の金属を含んでいてもよい。 The metal salt M may contain at least one metal selected from the group consisting of Li, Na, K, Rb, Cs, Mg, Ca, Sr and Ba.
 また、上記金属塩Mとして、炭素数2~16の有機酸のアルカリ金属塩、及び炭素数2~16の有機酸のアルカリ土類金属塩を用いることができる。上記金属塩Mは、炭素数2~16のカルボン酸マグネシウム塩、又は、炭素数2~16のカルボン酸カリウム塩を含んでいてもよい。 Further, as the metal salt M, an alkali metal salt of an organic acid having 2 to 16 carbon atoms and an alkaline earth metal salt of an organic acid having 2 to 16 carbon atoms can be used. The metal salt M may contain a magnesium carboxylic acid salt having 2 to 16 carbon atoms or a potassium carboxylic acid salt having 2 to 16 carbon atoms.
 上記炭素数2~16のカルボン酸マグネシウム塩及び上記炭素数2~16のカルボン酸カリウム塩としては、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピオン酸カリウム、2-エチル酪酸マグネシウム、2-エチルブタン酸カリウム、2-エチルヘキサン酸マグネシウム及び2-エチルヘキサン酸カリウム等が挙げられる。 Examples of the magnesium carboxylic acid salt having 2 to 16 carbon atoms and the potassium carboxylic acid salt having 2 to 16 carbon atoms include magnesium acetate, potassium acetate, magnesium propionate, potassium propionate, magnesium 2-ethylbutyrate, and 2-ethylbutanoic acid. Examples thereof include potassium, magnesium 2-ethylhexanoate and potassium 2-ethylhexanoate.
 (紫外線遮蔽剤)
 上記中間膜は、紫外線遮蔽剤を含んでいてもよい。上記第1の層は、紫外線遮蔽剤を含んでいてもよい。上記第2の層は、紫外線遮蔽剤を含んでいてもよい。上記第3の層は、紫外線遮蔽剤を含んでいてもよい。紫外線遮蔽剤の使用により、中間膜及び合わせガラスが長期間使用されても、可視光線透過率がより一層低下し難くなる。上記紫外線遮蔽剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(UV shield)
The interlayer film may contain an ultraviolet shielding agent. The first layer may contain an ultraviolet shielding agent. The second layer may contain an ultraviolet shielding agent. The third layer may contain an ultraviolet shielding agent. Due to the use of the ultraviolet shielding agent, the visible light transmittance is less likely to decrease even if the interlayer film and the laminated glass are used for a long period of time. Only one kind of the above-mentioned ultraviolet shielding agent may be used, or two or more kinds may be used in combination.
 上記紫外線遮蔽剤には、紫外線吸収剤が含まれる。上記紫外線遮蔽剤は、紫外線吸収剤であることが好ましい。 The above UV shielding agent includes a UV absorbing agent. The ultraviolet shielding agent is preferably an ultraviolet absorber.
 上記(メタ)アクリロイル基を有する化合物を含む重合性組成物が光硬化性化合物を含む場合に、該光硬化性化合物を重合させるときに紫外線吸収剤を光開始剤よりも少ない量(重合を阻害しない量)で含有させて重合させてもよく、該光硬化性化合物を光開始剤で重合させた後に別工程にて紫外線吸収剤を含有させてもよい。 When the polymerizable composition containing the compound having a (meth) acryloyl group contains a photocurable compound, the amount of the ultraviolet absorber is smaller than that of the photoinitiator (inhibits polymerization) when the photocurable compound is polymerized. The photocurable compound may be polymerized with a photoinitiator and then an ultraviolet absorber may be contained in a separate step.
 上記紫外線遮蔽剤としては、例えば、金属原子を含む紫外線遮蔽剤、金属酸化物を含む紫外線遮蔽剤、ベンゾトリアゾール構造を有する紫外線遮蔽剤(ベンゾトリアゾール化合物)、ベンゾフェノン構造を有する紫外線遮蔽剤(ベンゾフェノン化合物)、トリアジン構造を有する紫外線遮蔽剤(トリアジン化合物)、マロン酸エステル構造を有する紫外線遮蔽剤(マロン酸エステル化合物)、シュウ酸アニリド構造を有する紫外線遮蔽剤(シュウ酸アニリド化合物)及びベンゾエート構造を有する紫外線遮蔽剤(ベンゾエート化合物)等が挙げられる。 Examples of the ultraviolet shielding agent include an ultraviolet shielding agent containing a metal atom, an ultraviolet shielding agent containing a metal oxide, an ultraviolet shielding agent having a benzotriazole structure (benzotriazole compound), and an ultraviolet shielding agent having a benzophenone structure (benzophenone compound). ), An ultraviolet shielding agent having a triazine structure (triazine compound), an ultraviolet shielding agent having a malonic acid ester structure (malonic acid ester compound), an ultraviolet shielding agent having a oxalic acid anilide structure (a oxalate anilide compound), and a benzoate structure. Examples thereof include an ultraviolet shielding agent (benzoate compound).
 上記金属原子を含む紫外線遮蔽剤としては、例えば、白金粒子、白金粒子の表面をシリカで被覆した粒子、パラジウム粒子及びパラジウム粒子の表面をシリカで被覆した粒子等が挙げられる。紫外線遮蔽剤は、遮熱粒子ではないことが好ましい。 Examples of the ultraviolet shielding agent containing the metal atom include platinum particles, particles in which the surface of platinum particles is coated with silica, palladium particles, and particles in which the surface of palladium particles is coated with silica. The UV shielding agent is preferably not heat shielding particles.
 上記金属酸化物を含む紫外線遮蔽剤としては、例えば、酸化亜鉛、酸化チタン及び酸化セリウム等が挙げられる。さらに、上記金属酸化物を含む紫外線遮蔽剤に関して、表面が被覆されていてもよい。上記金属酸化物を含む紫外線遮蔽剤の表面の被覆材料としては、絶縁性金属酸化物、加水分解性有機ケイ素化合物及びシリコーン化合物等が挙げられる。 Examples of the ultraviolet shielding agent containing the metal oxide include zinc oxide, titanium oxide, cerium oxide and the like. Further, the surface of the ultraviolet shielding agent containing the metal oxide may be coated. Examples of the coating material on the surface of the ultraviolet shielding agent containing the metal oxide include an insulating metal oxide, a hydrolyzable organosilicon compound, and a silicone compound.
 上記絶縁性金属酸化物としては、シリカ、アルミナ及びジルコニア等が挙げられる。上記絶縁性金属酸化物は、例えば5.0eV以上のバンドギャップエネルギーを有する。 Examples of the insulating metal oxide include silica, alumina and zirconia. The insulating metal oxide has, for example, a bandgap energy of 5.0 eV or more.
 上記ベンゾトリアゾール構造を有する紫外線遮蔽剤としては、例えば、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール(BASF社製「TinuvinP」)、2-(2’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin320」)、2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール(BASF社製「Tinuvin326」)、及び2-(2’-ヒドロキシ-3’,5’-ジ-アミルフェニル)ベンゾトリアゾール(BASF社製「Tinuvin328」)等が挙げられる。 Examples of the ultraviolet shielding agent having a benzotriazole structure include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole ("TinuvinP" manufactured by BASF), 2- (2'-hydroxy-3', 5'-di-t-butylphenyl) benzotriazole (BASF "Tinuvin320"), 2- (2'-hydroxy-3'-t-butyl-5-methylphenyl) -5-chlorobenzotriazole (BASF) "Tinuvin 326" manufactured by BASF) and 2- (2'-hydroxy-3', 5'-di-amylphenyl) benzotriazole ("Tinuvin 328" manufactured by BASF) and the like.
 上記ベンゾフェノン構造を有する紫外線遮蔽剤としては、例えば、オクタベンゾン(BASF社製「Chimassorb81」)等が挙げられる。 Examples of the ultraviolet shielding agent having a benzophenone structure include octabenzone (“Chimassorb81” manufactured by BASF) and the like.
 上記トリアジン構造を有する紫外線遮蔽剤としては、例えば、ADEKA社製「LA-F70」及び2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール(BASF社製「Tinuvin1577FF」)等が挙げられる。 Examples of the ultraviolet shielding agent having the above triazine structure include "LA-F70" manufactured by ADEKA and 2- (4,6-diphenyl-1,3,5-triazine-2-yl) -5-[(hexyl). Oxy] -phenol (“Tinuvin1577FF” manufactured by BASF) and the like can be mentioned.
 上記マロン酸エステル構造を有する紫外線遮蔽剤としては、2-(p-メトキシベンジリデン)マロン酸ジメチル、テトラエチル-2,2-(1,4-フェニレンジメチリデン)ビスマロネート、2-(p-メトキシベンジリデン)-ビス(1,2,2,6,6-ペンタメチル4-ピペリジニル)マロネート等が挙げられる。 Examples of the ultraviolet shielding agent having a malonic acid ester structure include dimethyl 2- (p-methoxybenzylidene) malonate, tetraethyl-2,2- (1,4-phenylenedimethylidene) bismalonate, and 2- (p-methoxybenzylidene). -Bis (1,2,2,6,6-pentamethyl4-piperidinyl) malonate and the like can be mentioned.
 上記マロン酸エステル構造を有する紫外線遮蔽剤の市販品としては、Hostavin B-CAP、Hostavin PR-25、Hostavin PR-31(いずれもクラリアント社製)が挙げられる。 Examples of commercially available products of the ultraviolet shielding agent having the above-mentioned malonic acid ester structure include Hostavin B-CAP, Hostavin PR-25, and Hostavin PR-31 (all manufactured by Clariant).
 上記シュウ酸アニリド構造を有する紫外線遮蔽剤としては、N-(2-エチルフェニル)-N’-(2-エトキシ-5-t-ブチルフェニル)シュウ酸ジアミド、N-(2-エチルフェニル)-N’-(2-エトキシ-フェニル)シュウ酸ジアミド、2-エチル-2’-エトキシ-オキサルアニリド(クラリアント社製「SanduvorVSU」)などの窒素原子上に置換されたアリール基などを有するシュウ酸ジアミド類が挙げられる。 Examples of the ultraviolet shielding agent having the oxalic acid anilide structure include N- (2-ethylphenyl) -N'-(2-ethoxy-5-t-butylphenyl) oxalic acid diamide and N- (2-ethylphenyl)-. A oxalic acid having an aryl group substituted on a nitrogen atom such as N'-(2-ethoxy-phenyl) oxalic acid diamide and 2-ethyl-2'-ethoxy-oxalanilide ("Sanduvor VSU" manufactured by Clariant). Examples include diamides.
 上記ベンゾエート構造を有する紫外線遮蔽剤としては、例えば、2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート(BASF社製「Tinuvin120」)等が挙げられる。 Examples of the ultraviolet shielding agent having the benzoate structure include 2,4-di-tert-butylphenyl-3,5-di-tert-butyl-4-hydroxybenzoate (“Tinuvin 120” manufactured by BASF) and the like. ..
 (酸化防止剤)
 上記中間膜は、酸化防止剤を含んでいてもよい。上記第1の層は、酸化防止剤を含んでいてもよい。上記第2の層は、酸化防止剤を含んでいてもよい。上記第3の層は、酸化防止剤を含んでいてもよい。上記酸化防止剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Antioxidant)
The interlayer film may contain an antioxidant. The first layer may contain an antioxidant. The second layer may contain an antioxidant. The third layer may contain an antioxidant. Only one kind of the above-mentioned antioxidant may be used, or two or more kinds may be used in combination.
 上記酸化防止剤としては、フェノール系酸化防止剤、硫黄系酸化防止剤及びリン系酸化防止剤等が挙げられる。上記フェノール系酸化防止剤はフェノール骨格を有する酸化防止剤である。上記硫黄系酸化防止剤は硫黄原子を含有する酸化防止剤である。上記リン系酸化防止剤はリン原子を含有する酸化防止剤である。 Examples of the antioxidant include phenolic antioxidants, sulfur-based antioxidants, phosphorus-based antioxidants and the like. The above-mentioned phenolic antioxidant is an antioxidant having a phenol skeleton. The sulfur-based antioxidant is an antioxidant containing a sulfur atom. The phosphorus-based antioxidant is an antioxidant containing a phosphorus atom.
 上記フェノール系酸化防止剤としては、2,6-ジ-t-ブチル-p-クレゾール(BHT)、ブチルヒドロキシアニソール(BHA)、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-ブチルフェノール)、2,2’-メチレンビス-(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス-(2-メチル-ヒドロキシ-5-t-ブチルフェニル)ブタン、テトラキス[メチレン-3-(3’,5’-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,3,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェノール)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,3’-t-ブチルフェノール)ブチリックアッシドグリコールエステル及びビス(3-t-ブチル-4-ヒドロキシ-5-メチルベンゼンプロパン酸)エチレンビス(オキシエチレン)等が挙げられる。これらの酸化防止剤の内の1種又は2種以上が好適に用いられる。 Examples of the phenolic antioxidant include 2,6-di-t-butyl-p-cresol (BHT), butylhydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, and stearyl-. β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis- (4-methyl-6-butylphenol), 2,2'-methylenebis- (4-ethyl-6) -T-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-t-butylphenol), 1,1,3-tris- (2-methyl-hydroxy-5-t-butylphenyl) butane , Tetrakiss [methylene-3- (3', 5'-butyl-4-hydroxyphenyl) propionate] methane, 1,3,3-tris- (2-methyl-4-hydroxy-5-t-butylphenol) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, bis (3,3'-t-butylphenol) butyric acid glycol ester And bis (3-t-butyl-4-hydroxy-5-methylbenzenepropanoic acid) ethylene bis (oxyethylene) and the like. One or more of these antioxidants are preferably used.
 上記リン系酸化防止剤としては、トリデシルホスファイト、トリス(トリデシル)ホスファイト、トリフェニルホスファイト、トリノニルフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル)エチルエステル亜リン酸、及び2,2’-メチレンビス(4,6-ジ-t-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラス等が挙げられる。これらの酸化防止剤の内の1種又は2種以上が好適に用いられる。 Examples of the phosphorus-based antioxidant include tridecylphosphite, tris (tridecyl) phosphite, triphenylphosphite, trinonylphenylphosphite, bis (tridecyl) pentaerythritol diphosphite, and bis (decyl) pentaerythritol diphos. Fight, tris (2,4-di-t-butylphenyl) phosphite, bis (2,4-di-t-butyl-6-methylphenyl) ethyl ester phosphorous acid, and 2,2'-methylenebis (4) , 6-di-t-butyl-1-phenyloxy) (2-ethylhexyloxy) phosphorous and the like. One or more of these antioxidants are preferably used.
 上記酸化防止剤の市販品としては、例えばBASF社製「IRGANOX 245」、BASF社製「IRGAFOS 168」、BASF社製「IRGAFOS 38」、住友化学工業社製「スミライザーBHT」、堺化学工業社製「H-BHT」、並びにBASF社製「IRGANOX 1010」等が挙げられる。 Examples of commercially available products of the above-mentioned antioxidants include BASF's "IRGANOX 245", BASF's "IRGAFOS 168", BASF's "IRGAFOS 38", Sumitomo Chemical's "Smilizer BHT", and Sakai Chemical's. Examples thereof include "H-BHT" and "IRGANOX 1010" manufactured by BASF.
 (他の成分)
 上記中間膜、上記第1の層、上記第2の層及び上記第3の層はそれぞれ、必要に応じて、カップリング剤、分散剤、界面活性剤、難燃剤、帯電防止剤、金属塩以外の接着力調整剤、耐湿剤、蛍光増白剤及び赤外線吸収剤等の添加剤を含んでいてもよい。これらの添加剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。
(Other ingredients)
The interlayer film, the first layer, the second layer, and the third layer are each other than a coupling agent, a dispersant, a surfactant, a flame retardant, an antistatic agent, and a metal salt, if necessary. It may contain additives such as an adhesive strength modifier, a moisture resistant agent, a fluorescent whitening agent, and an infrared absorber. Only one of these additives may be used, or two or more of these additives may be used in combination.
 (合わせガラス用中間膜の他の詳細)
 上記中間膜の厚みは特に限定されない。実用面の観点、並びに合わせガラスの耐貫通性及び曲げ剛性を充分に高める観点からは、中間膜の厚みは、好ましくは0.1mm以上、より好ましくは0.25mm以上、好ましくは3mm以下、より好ましくは1.5mm以下である。中間膜の厚みが上記下限以上であると、合わせガラスの耐貫通性及び曲げ剛性がより一層高くなる。中間膜の厚みが上記上限以下であると、中間膜の透明性がより一層良好になる。
(Other details of interlayer film for laminated glass)
The thickness of the interlayer film is not particularly limited. From the viewpoint of practical use and from the viewpoint of sufficiently increasing the penetration resistance and flexural rigidity of the laminated glass, the thickness of the interlayer film is preferably 0.1 mm or more, more preferably 0.25 mm or more, preferably 3 mm or less, and more. It is preferably 1.5 mm or less. When the thickness of the interlayer film is at least the above lower limit, the penetration resistance and flexural rigidity of the laminated glass are further increased. When the thickness of the interlayer film is not more than the above upper limit, the transparency of the interlayer film becomes even better.
 中間膜の厚みをTとする。上記第1の層の厚みは、好ましくは0.005T以上、より好ましくは0.01T以上、更に好ましくは0.02T以上、好ましくは0.17T以下、より好ましくは0.15T以下、より好ましくは0.13T以下、より好ましくは0.1T以下、更に好ましくは0.08T以下である。上記厚みが上記下限以上及び上記上限以下であると、広い温度範囲に渡り遮音性がより一層高くなる。 Let T be the thickness of the interlayer film. The thickness of the first layer is preferably 0.005 T or more, more preferably 0.01 T or more, still more preferably 0.02 T or more, preferably 0.17 T or less, more preferably 0.15 T or less, and more preferably. It is 0.13T or less, more preferably 0.1T or less, still more preferably 0.08T or less. When the thickness is at least the above lower limit and at least the above upper limit, the sound insulation property is further improved over a wide temperature range.
 上記第2の層及び上記第3の層の各厚みは、0.01T以上、更に好ましくは0.02T以上、好ましくは0.17T以下、より好ましくは0.15T以下、より好ましくは0.13T以下、より好ましくは0.1T以下、更に好ましくは0.08T以下である。上記厚みが上記下限以上及び上記上限以下であると、広い温度範囲に渡り遮音性がより一層高くなる。 The thickness of each of the second layer and the third layer is 0.01 T or more, more preferably 0.02 T or more, preferably 0.17 T or less, more preferably 0.15 T or less, and more preferably 0.13 T. Below, it is more preferably 0.1 T or less, still more preferably 0.08 T or less. When the thickness is at least the above lower limit and at least the above upper limit, the sound insulation property is further improved over a wide temperature range.
 上記中間膜は、厚みが均一な中間膜であってもよく、厚みが変化している中間膜であってもよい。上記中間膜の断面形状は矩形であってもよく、楔形であってもよい。 The interlayer film may be an interlayer film having a uniform thickness or an interlayer film having a variable thickness. The cross-sectional shape of the interlayer film may be rectangular or wedge-shaped.
 中間膜は、巻かれて、中間膜のロール体とされてもよい。ロール体は、巻き芯と、該巻き芯の外周に巻かれた中間膜とを備えていてもよい。 The interlayer film may be rolled into a roll of the interlayer film. The roll body may include a winding core and an interlayer film wound around the outer circumference of the winding core.
 上記中間膜の一端と他端との距離は、好ましくは3m以下、より好ましくは2m以下、特に好ましくは1.5m以下であり、好ましくは0.5m以上、より好ましくは0.8m以上、特に好ましくは1m以上である。 The distance between one end and the other end of the interlayer film is preferably 3 m or less, more preferably 2 m or less, particularly preferably 1.5 m or less, preferably 0.5 m or more, more preferably 0.8 m or more, particularly. It is preferably 1 m or more.
 本発明に係る中間膜の製造方法は特に限定されない。本発明に係る中間膜の製造方法としては、例えば、各層を形成するための各樹脂組成物を用いて各層をそれぞれ形成した後に、得られた各層を積層する方法、並びに各層を形成するための各樹脂組成物を押出機を用いて共押出することにより、各層を積層する方法等が挙げられる。連続的な生産に適しているため、押出成形する製造方法が好ましい。 The method for producing the interlayer film according to the present invention is not particularly limited. Examples of the method for producing an interlayer film according to the present invention include a method of forming each layer using each resin composition for forming each layer and then laminating the obtained layers, and a method for forming each layer. Examples thereof include a method of laminating each layer by coextruding each resin composition using an extruder. Since it is suitable for continuous production, a manufacturing method of extrusion molding is preferable.
 中間膜の製造効率が優れることから、上記第2の層と上記第3の層とに、同一のポリビニルアセタール樹脂が含まれていることが好ましい。中間膜の製造効率が優れることから、上記第2の層と上記第3の層とに、同一のポリビニルアセタール樹脂及び同一の可塑剤が含まれていることがより好ましい。中間膜の製造効率が優れることから、上記第2の層と上記第3の層とが同一の樹脂組成物により形成されていることが更に好ましい。 It is preferable that the same polyvinyl acetal resin is contained in the second layer and the third layer because the production efficiency of the interlayer film is excellent. It is more preferable that the same polyvinyl acetal resin and the same plasticizer are contained in the second layer and the third layer because the production efficiency of the interlayer film is excellent. It is more preferable that the second layer and the third layer are formed of the same resin composition because the production efficiency of the interlayer film is excellent.
 上記中間膜は、両側の表面の内の少なくとも一方の表面に凹凸形状を有することが好ましい。上記中間膜は、両側の表面に凹凸形状を有することがより好ましい。上記の凹凸形状を形成する方法としては特に限定されず、例えば、リップエンボス法、エンボスロール法、カレンダーロール法、及び異形押出法等が挙げられる。定量的に一定の凹凸模様である多数の凹凸形状のエンボスを形成することができることから、エンボスロール法が好ましい。 It is preferable that the interlayer film has an uneven shape on at least one of the surfaces on both sides. It is more preferable that the interlayer film has an uneven shape on both surfaces. The method for forming the uneven shape is not particularly limited, and examples thereof include a lip embossing method, an embossing roll method, a calender roll method, and a deformed extrusion method. The embossing roll method is preferable because it is possible to form an emboss having a large number of uneven shapes that are quantitatively constant.
 (合わせガラス)
 本発明に係る合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、上述した合わせガラス用中間膜とを備える。本発明に係る合わせガラスでは、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、上述した合わせガラス用中間膜が配置されている。
(Laminated glass)
The laminated glass according to the present invention includes a first laminated glass member, a second laminated glass member, and the above-mentioned interlayer film for laminated glass. In the laminated glass according to the present invention, the above-mentioned interlayer film for laminated glass is arranged between the first laminated glass member and the second laminated glass member.
 本発明に係る合わせガラスは、第1の合わせガラス部材と、第2の合わせガラス部材と、2層以上の構造を有する合わせガラス用中間膜とを備える。本発明に係る合わせガラスでは、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、上記合わせガラス用中間膜が配置されている。本発明に係る合わせガラスでは、上記中間膜は、樹脂を含む第1の層と、上記第1の層の第1の表面に積層されており、かつ樹脂を含む第2の層とを備える。本発明に係る合わせガラスでは、上記中間膜において、上記第1の層と上記第2の層とが、異なる樹脂を含み、上記第1の層のガラス転移温度が、上記第2の層のガラス転移温度よりも低く、上記第1の層の酸価が3mgKOH/g以上500mgKOH/g以下であることが好ましい。本発明に係る合わせガラスでは、ヘイズが0.5%以下であることが好ましい。 The laminated glass according to the present invention includes a first laminated glass member, a second laminated glass member, and an interlayer film for laminated glass having a structure of two or more layers. In the laminated glass according to the present invention, the interlayer film for laminated glass is arranged between the first laminated glass member and the second laminated glass member. In the laminated glass according to the present invention, the interlayer film includes a first layer containing a resin and a second layer laminated on the first surface of the first layer and containing a resin. In the laminated glass according to the present invention, in the interlayer film, the first layer and the second layer contain different resins, and the glass transition temperature of the first layer is the glass of the second layer. It is preferably lower than the transition temperature and the acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH / g or less. In the laminated glass according to the present invention, the haze is preferably 0.5% or less.
 本発明に係る合わせガラスでは、上記の構成が備えられているので、異なる層に異なる樹脂を含むにもかかわらず中間膜の層間剥離を抑えることができ、かつ、合わせガラスの透明性を高めることができる。 Since the laminated glass according to the present invention has the above-mentioned structure, it is possible to suppress delamination of the interlayer film even though different layers contain different resins, and to improve the transparency of the laminated glass. Can be done.
 合わせガラスの透明性をより一層高める観点からは、上記合わせガラスのヘイズは、好ましくは0.4%以下、より好ましくは0.3%以下である。 From the viewpoint of further enhancing the transparency of the laminated glass, the haze of the laminated glass is preferably 0.4% or less, more preferably 0.3% or less.
 上記合わせガラスのヘイズは、JIS K6714に準拠して測定される。 The haze of the laminated glass is measured in accordance with JIS K6714.
 上記合わせガラスについて下記の-20℃での耐衝撃性試験をしたときに、上記第1の層と上記第2の層との界面における剥離面積は、好ましくは50%以下、より好ましくは40%以下、更に好ましくは30%以下である。なお、-20℃での耐衝撃性試験は、例えば、20℃での耐衝撃性試験や40℃での耐衝撃性試験よりも層間剥離がより一層生じやすい温度条件である。 When the following impact resistance test was performed on the laminated glass at −20 ° C., the peeled area at the interface between the first layer and the second layer was preferably 50% or less, more preferably 40%. Below, it is more preferably 30% or less. The impact resistance test at −20 ° C. is a temperature condition in which delamination is more likely to occur than, for example, an impact resistance test at 20 ° C. or an impact resistance test at 40 ° C.
 -20℃での耐衝撃性試験:-20±2℃にて合わせガラスを4時間以上保管する。保管後の合わせガラスについて、JIS R3211又はJIS R3212に準拠して-20±2℃にて合わせガラスの縦方向の中央の位置かつ横方向の中央の位置に、質量227±2g及び直径38mmの鋼球を高さ9.5mから落下させる。上記中間膜の上記第1の層と上記第2の層との界面における剥離面積を求める。 Impact resistance test at -20 ° C: Store the laminated glass at -20 ± 2 ° C for 4 hours or more. Regarding the laminated glass after storage, steel with a mass of 227 ± 2 g and a diameter of 38 mm at the vertical center position and the horizontal center position of the laminated glass at -20 ± 2 ° C in accordance with JIS R3211 or JIS R3212. Drop the ball from a height of 9.5m. The peeled area at the interface between the first layer and the second layer of the interlayer film is determined.
 上記-20℃での耐衝撃性試験で用いられる合わせガラスは、縦300mm、横300mmのサイズを有する合わせガラスであることが好ましい。 The laminated glass used in the impact resistance test at −20 ° C. is preferably a laminated glass having a size of 300 mm in length and 300 mm in width.
 上記剥離面積は、例えば、上述の式により求めることができる。 The peeled area can be obtained by, for example, the above formula.
 図2は、図1に示す合わせガラス用中間膜を用いた合わせガラスの一例を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing an example of a laminated glass using the interlayer film for laminated glass shown in FIG.
 図2に示す合わせガラス31は、第1の合わせガラス部材21と、第2の合わせガラス部材22と、中間膜11とを備える。中間膜11は、第1の合わせガラス部材21と第2の合わせガラス部材22との間に配置されており、挟み込まれている。 The laminated glass 31 shown in FIG. 2 includes a first laminated glass member 21, a second laminated glass member 22, and an interlayer film 11. The interlayer film 11 is arranged between the first laminated glass member 21 and the second laminated glass member 22 and is sandwiched therein.
 中間膜11の第1の表面11aに、第1の合わせガラス部材21が積層されている。中間膜11の第1の表面11aとは反対の第2の表面11bに、第2の合わせガラス部材22が積層されている。第2の層2の外側の表面2aに第1の合わせガラス部材21が積層されている。第3の層3の外側の表面3aに第2の合わせガラス部材22が積層されている。 The first laminated glass member 21 is laminated on the first surface 11a of the interlayer film 11. The second laminated glass member 22 is laminated on the second surface 11b opposite to the first surface 11a of the interlayer film 11. The first laminated glass member 21 is laminated on the outer surface 2a of the second layer 2. The second laminated glass member 22 is laminated on the outer surface 3a of the third layer 3.
 上記第1の合わせガラス部材は、第1のガラス板であることが好ましい。上記第2の合わせガラス部材は、第2のガラス板であることが好ましい。 The first laminated glass member is preferably a first glass plate. The second laminated glass member is preferably a second glass plate.
 上記第1,第2の合わせガラス部材としては、ガラス板及びPET(ポリエチレンテレフタレート)フィルム等が挙げられる。上記合わせガラスには、2枚のガラス板の間に中間膜が挟み込まれている合わせガラスだけでなく、ガラス板とPETフィルム等との間に中間膜が挟み込まれている合わせガラスも含まれる。上記合わせガラスは、ガラス板を備えた積層体であり、少なくとも1枚のガラス板が用いられていることが好ましい。上記第1の合わせガラス部材及び上記第2の合わせガラス部材がそれぞれ、ガラス板又はPETフィルムであり、かつ上記合わせガラスは、上記第1の合わせガラス部材及び上記第2の合わせガラス部材の内の少なくとも一方として、ガラス板を備えることが好ましい。上記第1,第2の合わせガラス部材の双方がガラス板であることが特に好ましい。 Examples of the first and second laminated glass members include a glass plate and a PET (polyethylene terephthalate) film. The laminated glass includes not only a laminated glass in which an interlayer film is sandwiched between two glass plates, but also a laminated glass in which an interlayer film is sandwiched between a glass plate and a PET film or the like. The laminated glass is a laminated body provided with a glass plate, and it is preferable that at least one glass plate is used. The first laminated glass member and the second laminated glass member are glass plates or PET films, respectively, and the laminated glass is one of the first laminated glass member and the second laminated glass member. It is preferable to provide a glass plate as at least one. It is particularly preferable that both the first and second laminated glass members are glass plates.
 上記ガラス板としては、無機ガラス及び有機ガラスが挙げられる。上記無機ガラスとしては、フロート板ガラス、熱線吸収板ガラス、熱線反射板ガラス、磨き板ガラス、型板ガラス、線入り板ガラス及びグリーンガラス等が挙げられる。上記有機ガラスは、無機ガラスに代わる合成樹脂ガラスである。上記有機ガラスとしては、ポリカーボネート板及びポリ(メタ)アクリル樹脂板等が挙げられる。上記ポリ(メタ)アクリル樹脂板としては、ポリメチル(メタ)アクリレート板等が挙げられる。 Examples of the glass plate include inorganic glass and organic glass. Examples of the inorganic glass include float plate glass, heat ray absorbing plate glass, heat ray reflecting plate glass, polished plate glass, template glass, wire-reinforced plate glass, and green glass. The organic glass is a synthetic resin glass that replaces the inorganic glass. Examples of the organic glass include a polycarbonate plate and a poly (meth) acrylic resin plate. Examples of the poly (meth) acrylic resin plate include a polymethyl (meth) acrylate plate.
 上記第1の合わせガラス部材及び上記第2の合わせガラス部材の各厚みは、好ましくは1mm以上、好ましくは5mm以下、より好ましくは3mm以下である。また、上記合わせガラス部材がガラス板である場合に、該ガラス板の厚みは、好ましくは0.5mm以上、より好ましくは0.7mm以上、好ましくは5mm以下、より好ましくは3mm以下である。上記合わせガラス部材がPETフィルムである場合に、該PETフィルムの厚みは、好ましくは0.03mm以上、好ましくは0.5mm以下である。 The thickness of each of the first laminated glass member and the second laminated glass member is preferably 1 mm or more, preferably 5 mm or less, and more preferably 3 mm or less. When the laminated glass member is a glass plate, the thickness of the glass plate is preferably 0.5 mm or more, more preferably 0.7 mm or more, preferably 5 mm or less, and more preferably 3 mm or less. When the laminated glass member is a PET film, the thickness of the PET film is preferably 0.03 mm or more, preferably 0.5 mm or less.
 上記合わせガラスの製造方法は特に限定されない。例えば、上記第1の合わせガラス部材と上記第2の合わせガラス部材との間に、中間膜を挟んで、押圧ロールに通したり、又はゴムバッグに入れて減圧吸引したりして、上記第1の合わせガラス部材と上記第2の合わせガラス部材と中間膜との間に残留する空気を脱気する。その後、約70℃~110℃で予備接着して積層体を得る。次に、積層体をオートクレーブに入れたり、又はプレスしたりして、約120℃~150℃及び1MPa~1.5MPaの圧力で圧着する。このようにして、合わせガラスを得ることができる。上記合わせガラスの製造時に、中間膜における各層を積層してもよい。 The manufacturing method of the above laminated glass is not particularly limited. For example, an interlayer film is sandwiched between the first laminated glass member and the second laminated glass member and passed through a pressing roll, or placed in a rubber bag and sucked under reduced pressure. The air remaining between the laminated glass member, the second laminated glass member, and the interlayer film is degassed. Then, pre-adhesion is performed at about 70 ° C. to 110 ° C. to obtain a laminate. Next, the laminate is placed in an autoclave or pressed, and pressure-bonded at a pressure of about 120 ° C. to 150 ° C. and 1 MPa to 1.5 MPa. In this way, laminated glass can be obtained. At the time of manufacturing the laminated glass, each layer in the interlayer film may be laminated.
 上記中間膜及び上記合わせガラスは、自動車、鉄道車両、航空機、船舶及び建築物等に使用できる。上記中間膜及び上記合わせガラスは、これらの用途以外にも使用できる。上記中間膜及び上記合わせガラスは、車両用又は建築物用の中間膜及び合わせガラスであることが好ましく、車両用の中間膜及び合わせガラスであることがより好ましい。上記中間膜及び上記合わせガラスは、自動車のフロントガラス、サイドガラス、リアガラス又はルーフガラス等に使用できる。上記中間膜及び上記合わせガラスは、自動車に好適に用いられる。上記中間膜は、自動車の合わせガラスを得るために好適に用いられる。 The interlayer film and the laminated glass can be used for automobiles, railroad vehicles, aircraft, ships, buildings, etc. The interlayer film and the laminated glass can be used for purposes other than these. The interlayer film and the laminated glass are preferably an interlayer film and a laminated glass for vehicles or buildings, and more preferably an interlayer film and a laminated glass for vehicles. The interlayer film and the laminated glass can be used for windshields, side glasses, rear glasses, roof glasses and the like of automobiles. The interlayer film and the laminated glass are preferably used for automobiles. The interlayer film is suitably used for obtaining laminated glass for automobiles.
 以下に実施例及び比較例を掲げて本発明を更に詳しく説明する。本発明はこれら実施例のみに限定されない。 The present invention will be described in more detail below with reference to Examples and Comparative Examples. The present invention is not limited to these examples.
 用いたポリビニルアセタール樹脂では、アセタール化に、炭素数4のn-ブチルアルデヒドが用いられている。ポリビニルアセタール樹脂に関しては、アセタール化度(ブチラール化度)、アセチル化度及び水酸基の含有率はJIS K6728「ポリビニルブチラール試験方法」に準拠した方法により測定した。なお、ASTM D1396-92により測定した場合も、JIS K6728「ポリビニルブチラール試験方法」に準拠した方法と同様の数値を示した。 In the polyvinyl acetal resin used, n-butyraldehyde having 4 carbon atoms is used for acetalization. Regarding the polyvinyl acetal resin, the degree of acetalization (degree of butyralization), the degree of acetylation and the content of hydroxyl groups were measured by a method based on JIS K6728 “Polyvinyl butyral test method”. In addition, when measured by ASTM D1396-92, the same numerical value as the method based on JIS K6728 "Polyvinyl butyral test method" was shown.
 以下の材料を用意した。 The following materials were prepared.
 (樹脂)
 ポリビニルアセタール樹脂(ポリビニルブチラール樹脂(PVB)、平均重合度1700、水酸基の含有率30.5モル%、アセチル化度1モル%、アセタール化度(ブチラール化度)68.5モル%)
(resin)
Polyvinyl acetal resin (polyvinyl butyral resin (PVB), average degree of polymerization 1700, hydroxyl group content 30.5 mol%, acetylation degree 1 mol%, acetalization degree (butyralization degree) 68.5 mol%)
 (メタ)アクリル重合体(1)~(4)、(X1):
 下記の表1に示す配合組成を有する重合性組成物を、2枚の片面離型処理されたPETシート(ニッパ社製、厚み50μm)に挟み込んで、厚み1mmとなるように重合性組成物層を形成した。なお、2枚のPETシートの周囲にスペーサを配置した。ケミカルランプを用いて、3mWで照射量3000mJ/cmで紫外線を重合性組成物層に照射することにより、重合性組成物を反応により硬化させて、(メタ)アクリル重合体(1)~(4)、(X1)を得た。
(Meta) Acrylic Polymers (1)-(4), (X1):
The polymerizable composition having the compounding composition shown in Table 1 below is sandwiched between two single-sided release-treated PET sheets (manufactured by Nippers, thickness 50 μm) so that the thickness is 1 mm. Was formed. Spacers were arranged around the two PET sheets. By irradiating the polymerizable composition layer with ultraviolet rays at an irradiation amount of 3000 mJ / cm 2 at 3 mW using a chemical lamp, the polymerizable composition was cured by a reaction, and the (meth) acrylic polymers (1) to ( 4) and (X1) were obtained.
 ポリ酢酸ビニル(1):
 還流冷却器、滴下漏斗、温度計及び窒素導入口を備えるガラス製重合容器を用意した。この重合容器内に、酢酸ビニルモノマー100重量部を入れ、60℃に加熱及び攪拌して重合容器内を窒素置換した。次に、下記の表2に示す配合組成を、4時間かけて滴下し、滴下終了後1時間重合させて、ポリ酢酸ビニル(1)を含む溶液を得た。この溶液を110℃のオーブンで3時間乾燥させることにより、ポリ酢酸ビニル(1)を得た。ポリ酢酸ビニル(1)では、カルボン酸に由来する構造単位の割合は、4重量%であった。
Polyvinyl acetate (1):
A glass polymerization container equipped with a reflux condenser, a dropping funnel, a thermometer and a nitrogen inlet was prepared. 100 parts by weight of vinyl acetate monomer was placed in this polymerization vessel, and the inside of the polymerization vessel was replaced with nitrogen by heating and stirring at 60 ° C. Next, the compounding composition shown in Table 2 below was added dropwise over 4 hours, and after completion of the addition, the mixture was polymerized for 1 hour to obtain a solution containing polyvinyl acetate (1). The solution was dried in an oven at 110 ° C. for 3 hours to give polyvinyl acetate (1). In polyvinyl acetate (1), the proportion of structural units derived from carboxylic acid was 4% by weight.
 ポリ酢酸ビニル(X1)、(X2):
 還流冷却器、滴下ロート、温度計及び窒素導入口を備えるガラス製重合容器を用意した。この重合容器内に、イオン交換水270重量部と、ポリビニルアルコール(ケン化度88%、重合度300)0.1重量部とを入れ、加熱及び撹拌して、ポリビニルアルコールを溶解させた。次に、上記重合容器内の温度を58℃にして、下記の表2に示す配合組成を添加し、6時間重合させ、ポリ酢酸ビニル(X1)、(X2)の粒子を得た。
Polyvinyl acetate (X1), (X2):
A glass polymerization container equipped with a reflux condenser, a dropping funnel, a thermometer and a nitrogen inlet was prepared. In this polymerization vessel, 270 parts by weight of ion-exchanged water and 0.1 part by weight of polyvinyl alcohol (ketenization degree 88%, polymerization degree 300) were placed, and the mixture was heated and stirred to dissolve the polyvinyl alcohol. Next, the temperature in the polymerization vessel was set to 58 ° C., the compounding composition shown in Table 2 below was added, and the mixture was polymerized for 6 hours to obtain particles of polyvinyl acetate (X1) and (X2).
 また、得られた(メタ)アクリル重合体及びポリ酢酸ビニルについて、(メタ)アクリル重合体100重量%中のカルボキシル基の含有率、ポリ酢酸ビニル100重量%中のカルボキシル基の含有率をH-NMRにより求めた。 Regarding the obtained (meth) acrylic polymer and polyvinyl acetate, the content of carboxyl groups in 100% by weight of the (meth) acrylic polymer and the content of carboxyl groups in 100% by weight of polyvinyl acetate were set to H-. Obtained by NMR.
 (可塑剤)
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)
 ジブチルアジペート(DBA)
 (金属塩M)
 Mg混合物(2-エチル酪酸マグネシウムと酢酸マグネシウムとの50:50(重量比)混合物)
 (紫外線遮蔽剤)
 Tinuvin326(2-(2’-ヒドロキシ-3’-t-ブチル-5-メチルフェニル)-5-クロロベンゾトリアゾール、BASF社製「Tinuvin326」)
 (酸化防止剤)
 BHT(2,6-ジ-t-ブチル-p-クレゾール)
(Plasticizer)
Triethylene glycol di-2-ethylhexanoate (3GO)
Dibutyl phthalate (DBA)
(Metal salt M)
Mg mixture (50:50 (weight ratio) mixture of 2-ethylbutyrate magnesium and magnesium acetate)
(UV shield)
Tinuvin326 (2- (2'-hydroxy-3'-t-butyl-5-methylphenyl) -5-chlorobenzotriazole, BASF's "Tinuvin 326")
(Antioxidant)
BHT (2,6-di-t-butyl-p-cresol)
 (実施例1)
 第1の層を形成するための組成物の作製:
 以下の成分を配合し、ミキシングロールで充分に混練し、第1の層を形成するための組成物を得た。
(Example 1)
Preparation of composition for forming the first layer:
The following ingredients were mixed and thoroughly kneaded with a mixing roll to obtain a composition for forming the first layer.
 (メタ)アクリル重合体(1)100重量部
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)55重量部
(Meta) Acrylic Polymer (1) 100 parts by weight Triethylene glycol di-2-ethylhexanoate (3GO) 55 parts by weight
 第2の層及び第3の層を形成するための組成物の作製:
 以下の成分を配合し、ミキシングロールで充分に混練し、第2の層及び第3の層を形成するための組成物を得た。
Preparation of compositions for forming the second and third layers:
The following ingredients were mixed and thoroughly kneaded with a mixing roll to obtain a composition for forming the second layer and the third layer.
 ポリビニルアセタール樹脂(PVB)100重量部
 トリエチレングリコールジ-2-エチルヘキサノエート(3GO)31重量部
 得られる第2,第3の層中で70ppmとなる量の金属塩M(Mg混合物)
 得られる第2,第3の層中で0.2重量%となる量の紫外線遮蔽剤(Tinuvin326)
 得られる第2,第3の層中で0.2重量%となる量の酸化防止剤(BHT)
100 parts by weight of polyvinyl acetal resin (PVB) 31 parts by weight of triethylene glycol di-2-ethylhexanoate (3GO) Metal salt M (Mg mixture) in an amount of 70 ppm in the obtained second and third layers.
An amount of UV shielding agent (Tinuvin 326) of 0.2% by weight in the obtained second and third layers.
0.2% by weight of the resulting second and third layers of antioxidant (BHT)
 中間膜の作製:
 第1の層を形成するための組成物と、第2の層及び第3の層を形成するための組成物とを、共押出機を用いて共押出しすることにより、第2の層(厚み350μm)/第1の層(厚み100μm)/第3の層(厚み350μm)の積層構造を有する中間膜(厚み800μm)を作製した。
Preparation of interlayer film:
The composition for forming the first layer and the composition for forming the second layer and the third layer are co-extruded using a co-extruder to obtain a second layer (thickness). An interlayer film (thickness 800 μm) having a laminated structure of 350 μm) / first layer (thickness 100 μm) / third layer (thickness 350 μm) was produced.
 合わせガラスの作製:
 JIS R3202に準拠した幅25mm、長さ300mm及び厚さ2mmのクリアフロートガラス2枚の間に中間膜を挟み、積層体を得た。得られた積層体をゴムバック内に入れ、2.6kPaの真空度で20分間脱気した後、脱気したままオーブン内に移し、更に90℃で30分間保持して真空プレスし、積層体を予備圧着した。オートクレーブ中で135℃及び圧力1.2MPaの条件で、予備圧着された積層体を20分間圧着し、合わせガラス(1)を得た。また、縦300mm及び横300mm及び厚さ2mmのクリアフロートガラスを用いたこと以外は合わせガラス(1)と同様にして、合わせガラス(2)を得た。
Laminated glass production:
An interlayer film was sandwiched between two clear float glasses having a width of 25 mm, a length of 300 mm and a thickness of 2 mm according to JIS R3202 to obtain a laminate. The obtained laminate was placed in a rubber bag, degassed at a vacuum degree of 2.6 kPa for 20 minutes, then transferred into an oven with the degassed, held at 90 ° C. for 30 minutes, and vacuum pressed. Was pre-crimped. The pre-bonded laminate was pressure-bonded in an autoclave at 135 ° C. and a pressure of 1.2 MPa for 20 minutes to obtain a laminated glass (1). Further, a laminated glass (2) was obtained in the same manner as the laminated glass (1) except that clear float glass having a length of 300 mm, a width of 300 mm and a thickness of 2 mm was used.
 得られた合わせガラス(1)は、上記合わせガラスXに相当し、得られた合わせガラス(2)は、上記合わせガラスYに相当する。 The obtained laminated glass (1) corresponds to the above-mentioned laminated glass X, and the obtained laminated glass (2) corresponds to the above-mentioned laminated glass Y.
 (実施例2~5及び比較例1~3)
 樹脂の種類、可塑剤の種類及び含有量を表3,4に示すように変更したこと以外は、実施例1と同様にして、中間膜、合わせガラス(1)、合わせガラス(2)を得た。
(Examples 2 to 5 and Comparative Examples 1 to 3)
An interlayer film, a laminated glass (1), and a laminated glass (2) were obtained in the same manner as in Example 1 except that the type of resin, the type and content of the plasticizer were changed as shown in Tables 3 and 4. It was.
 (評価)
 (1)第1の層の酸価
 得られた中間膜の第1の層と、第2の層及び第3の層とを剥離して、試料(第1の層)を得た。試料(第1の層)を溶媒(メチルエチルケトン:トルエン:メタノール=1:1:1(体積比))に溶解した。JIS K0070に記載の電位差滴定法に準拠して、得られた溶液を、電位差滴定装置(京都電子工業社製「AT-710」、電極:京都電子工業社製「H-171、R-173」)及び0.1mol/L水酸化カリウムエタノール溶液を用いて滴定し、得られた変曲点を滴定の終点とした。上述の式を用いて第1の層の酸価を算出した。
(Evaluation)
(1) Acid Value of First Layer The first layer of the obtained interlayer film and the second layer and the third layer were peeled off to obtain a sample (first layer). The sample (first layer) was dissolved in a solvent (methyl ethyl ketone: toluene: methanol = 1: 1: 1 (volume ratio)). According to the potentiometric titration method described in JIS K0070, the obtained solution is subjected to a potentiometric titration device (“AT-710” manufactured by Kyoto Electronics Industry Co., Ltd., electrode: “H-171, R-173” manufactured by Kyoto Electronics Industry Co., Ltd.” ) And 0.1 mol / L potassium hydroxide ethanol solution were used for titration, and the obtained inflection point was used as the end point of the titration. The acid value of the first layer was calculated using the above formula.
 (2)第1の層に含まれる樹脂の酸価
 得られた(メタ)アクリル重合体(1)~(4)、(X1)、ポリ酢酸ビニル(1)、(X1),(X2)をそれぞれ溶媒(メチルエチルケトン:トルエン:メタノール=1:1:1(体積比))に溶解した。JIS K0070に記載の電位差滴定法に準拠して、得られた溶液を、電位差滴定装置(京都電子工業社製「AT-710」、電極:京都電子工業社製「H-171、R-173」)及び0.1mol/L水酸化カリウムエタノール溶液を用いて滴定し、得られた変曲点を滴定の終点とした。上述の式を用いて各樹脂の酸価を算出した。
(2) Acidity of Resin Contained in First Layer Obtained (meth) acrylic polymers (1) to (4), (X1), polyvinyl acetate (1), (X1), (X2) Each was dissolved in a solvent (methyl ethyl ketone: toluene: methanol = 1: 1: 1 (volume ratio)). According to the potentiometric titration method described in JIS K0070, the obtained solution is subjected to a potentiometric titration device (“AT-710” manufactured by Kyoto Electronics Industry Co., Ltd., electrode: “H-171, R-173” manufactured by Kyoto Electronics Industry Co., Ltd.” ) And 0.1 mol / L potassium hydroxide ethanol solution were used for titration, and the obtained inflection point was used as the end point of the titration. The acid value of each resin was calculated using the above formula.
 (3)第1の層、第2の層及び第3の層のガラス転移温度(Tg)
 上記中間膜を作製した方法と同様にして第1の層及び第2の層をそれぞれ作製した。この第1の層を任意に切断し、重ね合わせることによって、厚みが0.5mmの試験片(1)を用意し、また、この第2の層を任意に切断し、重ね合わせることによって、厚みが0.5mmの試験片(2)を用意した。試験片(1)及び試験片(2)を、室温23±2℃、湿度25±5%の環境下に12時間保管した。次いで、粘弾性測定装置(TAインスツルメント社製「ARES-G2」)を用いて、粘弾性を測定した。治具として直径8mmのパラレルプレートを用い、せん断モード、3℃/分の降温速度で100℃から-20℃まで温度を低下させる条件、並びに周波数1Hz及び歪1%の条件で測定した。なお、第2の層と第3の層とは同一組成であるため、第2の層のガラス転移温度と第3の層のガラス転移温度は、同一である。
(3) Glass transition temperature (Tg) of the first layer, the second layer and the third layer
The first layer and the second layer were prepared in the same manner as in the method for producing the interlayer film. A test piece (1) having a thickness of 0.5 mm is prepared by arbitrarily cutting and superimposing the first layer, and the thickness is obtained by arbitrarily cutting and superimposing the second layer. A test piece (2) having a size of 0.5 mm was prepared. The test piece (1) and the test piece (2) were stored for 12 hours in an environment of room temperature 23 ± 2 ° C. and humidity 25 ± 5%. Next, the viscoelasticity was measured using a viscoelasticity measuring device (“ARES-G2” manufactured by TA Instruments). A parallel plate having a diameter of 8 mm was used as a jig, and the measurement was carried out under the conditions of shearing mode, the temperature was lowered from 100 ° C. to −20 ° C. at a temperature lowering rate of 3 ° C./min, and the frequency was 1 Hz and the strain was 1%. Since the second layer and the third layer have the same composition, the glass transition temperature of the second layer and the glass transition temperature of the third layer are the same.
 (4)第1の層のtanδのピーク温度でのtanδ
 上記中間膜を作製した方法と同様にして第1の層を作製した。この第1の層を任意に切断し、重ね合わせることによって、厚みが0.5mmの試験片(1)を用意した。試験片(1)を、室温23±2℃、湿度25±5%の環境下に12時間保管した直後に、動的粘弾性測定装置(アイティー計測制御社製「DVA-200」)を用いて、粘弾性を測定した。せん断モードで、3℃/分の昇温速度で-50℃から200℃まで温度を上昇させる条件、並びに周波数1Hz及び歪1%の条件で測定した。
(4) tan δ at the peak temperature of tan δ in the first layer
The first layer was prepared in the same manner as in the method for producing the interlayer film. A test piece (1) having a thickness of 0.5 mm was prepared by arbitrarily cutting the first layer and superimposing the first layer. Immediately after storing the test piece (1) in an environment of room temperature 23 ± 2 ° C. and humidity 25 ± 5% for 12 hours, a dynamic viscoelasticity measuring device (“DVA-200” manufactured by IT Measurement Control Co., Ltd.) was used. The viscoelasticity was measured. In the shear mode, the measurement was carried out under the condition of raising the temperature from −50 ° C. to 200 ° C. at a heating rate of 3 ° C./min, and the condition of frequency 1 Hz and strain 1%.
 (5)-20℃での耐衝撃性試験
 -20±2℃にて合わせガラス(2)を4時間以上保管した。保管後の合わせガラス(2)について、JIS R3211又はJIS R3212に準拠して-20±2℃にて合わせガラス(2)の縦方向の中央の位置かつ横方向の中央の位置に、質量227±2g及び直径38mmの鋼球を高さ9.5mから落下させた。上記中間膜の上記第1の層と上記第2の層との界面における剥離面積を上述の式を用いて求めた。
(5) Impact resistance test at -20 ° C The laminated glass (2) was stored at -20 ± 2 ° C for 4 hours or more. Regarding the laminated glass (2) after storage, the mass is 227 ± at the vertical center position and the horizontal center position of the laminated glass (2) at −20 ± 2 ° C. in accordance with JIS R3211 or JIS R3212. A 2 g steel ball having a diameter of 38 mm was dropped from a height of 9.5 m. The peeled area at the interface between the first layer and the second layer of the interlayer film was determined using the above formula.
 [-20℃での耐衝撃性試験の判定基準]
 ○○:剥離面積が0%以上10%以下
 ○:剥離面積が10%を超え50%以下
 ×:剥離面積が50%を超える
[Criteria for impact resistance test at -20 ° C]
○○: Peeling area is 0% or more and 10% or less ○: Peeling area is more than 10% and 50% or less ×: Peeling area is more than 50%
 (6)合わせガラスのヘイズ(透明性)
 得られた合わせガラス(1)のヘイズを、JIS K6714に準拠して測定した。
(6) Laminated glass haze (transparency)
The haze of the obtained laminated glass (1) was measured according to JIS K6714.
 (7)一次損失係数(20℃での遮音性)
 得られた合わせガラス(1)をダンピング試験用の振動発生機(振研社製「加振機G21-005D」)により加振した。そこから得られた振動特性を機械インピーダンス測定装置(リオン社製「XG-81」)にて増幅し、振動スペクトルをFFTスペクトラムアナライザー(リオン社製「FFTアナライザー SA-01A2」)により解析した。
(7) Primary loss factor (sound insulation at 20 ° C)
The obtained laminated glass (1) was vibrated by a vibration generator for a damping test (“Shinken G21-005D” manufactured by Shinken Co., Ltd.). The vibration characteristics obtained from this were amplified by a mechanical impedance measuring device (“XG-81” manufactured by Rion Co., Ltd.), and the vibration spectrum was analyzed by an FFT spectrum analyzer (“FFT analyzer SA-01A2” manufactured by Rion Co., Ltd.).
 上記一次損失係数から、遮音性を以下の基準で判定した。 From the above primary loss coefficient, the sound insulation was judged according to the following criteria.
 [遮音性の判定基準]
 ○○:一次損失係数が0.45以上
 ○:一次損失係数が0.4以上0.45未満
 ×:一次損失係数が0.4未満
[Criteria for sound insulation]
○ ○: Primary loss coefficient is 0.45 or more ○: Primary loss coefficient is 0.4 or more and less than 0.45 ×: Primary loss coefficient is less than 0.4
 詳細及び結果を下記の表1~4に示す。なお、表中、金属塩M、紫外線遮蔽剤及び酸化防止剤の記載は省略した。 Details and results are shown in Tables 1 to 4 below. In the table, the description of the metal salt M, the ultraviolet shielding agent and the antioxidant is omitted.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示す成分の詳細は以下の通りである。 The details of the components shown in Table 1 are as follows.
 IBOA:イソボルニルアクリレート(日本触媒社製)
 CTFA(♯200):環状トリメチロールプロパンホルマールアクリレート(大阪有機化学工業社製、ビスコート#200)
 Aac:アクリル酸(日本触媒社製)
 BA:アクリル酸n-ブチル(日本触媒社製)
 4HBA:4-ヒドロキシブチルアクリレート(大阪有機化学工業社製)
 M5300:ω-カルボキシ-ポリカプロラクトンモノアクリレート(東亜合成株式会社製)
 CHA:シクロヘキシルアクリレート(大阪有機化学工業社製、ビスコート#155)
 HPA:ヒドロキシプロピルアクリレート(大阪有機化学工業社製)
 IRGACURE 184:2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(BASF社製)
IBOA: Isobornyl acrylate (manufactured by Nippon Shokubai Co., Ltd.)
CTFA (# 200): Cyclic trimethylolpropane formal acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd., Viscoat # 200)
Aac: Acrylic acid (manufactured by Nippon Shokubai)
BA: n-Butyl acrylate (manufactured by Nippon Shokubai)
4HBA: 4-Hydroxybutyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
M5300: ω-carboxy-polycaprolactone monoacrylate (manufactured by Toagosei Co., Ltd.)
CHA: Cyclohexyl acrylate (Osaka Organic Chemical Industry Co., Ltd., Viscoat # 155)
HPA: Hydroxypropyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
IRGACURE 184: 2,2-dimethoxy-1,2-diphenylethane-1-one (manufactured by BASF)
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 1…第1の層
 1a…第1の表面
 1b…第2の表面
 2…第2の層
 2a…外側の表面
 3…第3の層
 3a…外側の表面
 11…中間膜
 11a…第1の表面
 11b…第2の表面
 21…第1の合わせガラス部材
 22…第2の合わせガラス部材
 31…合わせガラス
1 ... 1st layer 1a ... 1st surface 1b ... 2nd surface 2 ... 2nd layer 2a ... outer surface 3 ... 3rd layer 3a ... outer surface 11 ... interlayer film 11a ... 1st surface 11b ... Second surface 21 ... First laminated glass member 22 ... Second laminated glass member 31 ... Laminated glass

Claims (15)

  1.  2層以上の構造を有する合わせガラス用中間膜であり、
     樹脂を含む第1の層と、
     前記第1の層の第1の表面に積層されており、かつ樹脂を含む第2の層とを備え、
     前記第1の層と前記第2の層とが、異なる樹脂を含み、
     前記第1の層のガラス転移温度が、前記第2の層のガラス転移温度よりも低く、
     前記第1の層の酸価が3mgKOH/g以上500mgKOH/g以下であり、
     中間膜をクリアガラス2枚の間に挟み込んで合わせガラスXを得たときに、前記合わせガラスXのヘイズが0.5%以下である、合わせガラス用中間膜。
    An interlayer film for laminated glass having a structure of two or more layers.
    The first layer containing the resin and
    It is laminated on the first surface of the first layer and includes a second layer containing a resin.
    The first layer and the second layer contain different resins and contain different resins.
    The glass transition temperature of the first layer is lower than the glass transition temperature of the second layer.
    The acid value of the first layer is 3 mgKOH / g or more and 500 mgKOH / g or less.
    An interlayer film for laminated glass in which the haze of the laminated glass X is 0.5% or less when the interlayer film is sandwiched between two clear glasses to obtain a laminated glass X.
  2.  前記第1の層が、酸価が5mgKOH/g以上500mgKOH/g以下である樹脂を含む、請求項1に記載の合わせガラス用中間膜。 The interlayer film for laminated glass according to claim 1, wherein the first layer contains a resin having an acid value of 5 mgKOH / g or more and 500 mgKOH / g or less.
  3.  前記第1の層が、カルボキシル基を有する樹脂を含む、請求項1又は2に記載の合わせガラス用中間膜。 The interlayer film for laminated glass according to claim 1 or 2, wherein the first layer contains a resin having a carboxyl group.
  4.  前記カルボキシル基を有する樹脂100重量%中、カルボキシル基の含有率が4重量%以上15重量%以下である、請求項3に記載の合わせガラス用中間膜。 The interlayer film for laminated glass according to claim 3, wherein the content of the carboxyl group is 4% by weight or more and 15% by weight or less in 100% by weight of the resin having a carboxyl group.
  5.  前記カルボキシル基を有する樹脂が、カルボキシル基を有する(メタ)アクリル重合体である、請求項3又は4に記載の合わせガラス用中間膜。 The interlayer film for laminated glass according to claim 3 or 4, wherein the resin having a carboxyl group is a (meth) acrylic polymer having a carboxyl group.
  6.  前記第1の層が、可塑剤を含む、請求項1~5のいずれか1項に記載の合わせガラス用中間膜。 The interlayer film for laminated glass according to any one of claims 1 to 5, wherein the first layer contains a plasticizer.
  7.  3層以上の構造を有し、
     前記第1の層の前記第1の表面とは反対側の第2の表面に積層された第3の層を備える、請求項1~6のいずれか1項に記載の合わせガラス用中間膜。
    Has a structure of 3 or more layers
    The interlayer film for laminated glass according to any one of claims 1 to 6, further comprising a third layer laminated on a second surface of the first layer opposite to the first surface.
  8.  第1の合わせガラス部材と、
     第2の合わせガラス部材と、
     請求項1~7のいずれか1項に記載の合わせガラス用中間膜とを備え、
     前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されている、合わせガラス。
    With the first laminated glass member,
    With the second laminated glass member,
    The laminated glass interlayer film according to any one of claims 1 to 7 is provided.
    A laminated glass in which the laminated glass interlayer film is arranged between the first laminated glass member and the second laminated glass member.
  9.  第1の合わせガラス部材と、
     第2の合わせガラス部材と、
     2層以上の構造を有する合わせガラス用中間膜とを備え、
     前記第1の合わせガラス部材と前記第2の合わせガラス部材との間に、前記合わせガラス用中間膜が配置されており、
     前記中間膜は、樹脂を含む第1の層と、前記第1の層の第1の表面に積層されており、かつ樹脂を含む第2の層とを備え、
     前記中間膜において、前記第1の層と前記第2の層とが、異なる樹脂を含み、前記第1の層のガラス転移温度が、前記第2の層のガラス転移温度よりも低く、前記第1の層の酸価が3mgKOH/g以上500mgKOH/g以下であり、
     ヘイズが0.5%以下である、合わせガラス。
    With the first laminated glass member,
    With the second laminated glass member,
    With an interlayer film for laminated glass having a structure of two or more layers,
    The laminated glass interlayer film is arranged between the first laminated glass member and the second laminated glass member.
    The interlayer film comprises a first layer containing a resin and a second layer laminated on the first surface of the first layer and containing a resin.
    In the interlayer film, the first layer and the second layer contain different resins, and the glass transition temperature of the first layer is lower than the glass transition temperature of the second layer. The acid value of layer 1 is 3 mgKOH / g or more and 500 mgKOH / g or less.
    Laminated glass with a haze of 0.5% or less.
  10.  前記第1の層が、酸価が5mgKOH/g以上500mgKOH/g以下である樹脂を含む、請求項9に記載の合わせガラス。 The laminated glass according to claim 9, wherein the first layer contains a resin having an acid value of 5 mgKOH / g or more and 500 mgKOH / g or less.
  11.  前記第1の層が、カルボキシル基を有する樹脂を含む、請求項9又は10に記載の合わせガラス。 The laminated glass according to claim 9 or 10, wherein the first layer contains a resin having a carboxyl group.
  12.  前記カルボキシル基を有する樹脂100重量%中、カルボキシル基の含有率が4重量%以上15重量%以下である、請求項11に記載の合わせガラス。 The laminated glass according to claim 11, wherein the content of the carboxyl group is 4% by weight or more and 15% by weight or less in 100% by weight of the resin having a carboxyl group.
  13.  前記カルボキシル基を有する樹脂が、カルボキシル基を有する(メタ)アクリル重合体である、請求項11又は12に記載の合わせガラス。 The laminated glass according to claim 11 or 12, wherein the resin having a carboxyl group is a (meth) acrylic polymer having a carboxyl group.
  14.  前記第1の層が、可塑剤を含む、請求項9~13のいずれか1項に記載の合わせガラス。 The laminated glass according to any one of claims 9 to 13, wherein the first layer contains a plasticizer.
  15.  前記中間膜は、3層以上の構造を有し、
     前記中間膜は、前記第1の層の前記第1の表面とは反対側の第2の表面に積層された第3の層を備える、請求項9~14のいずれか1項に記載の合わせガラス。
    The interlayer film has a structure of three or more layers and has a structure of three or more layers.
    The laminated glass according to any one of claims 9 to 14, wherein the interlayer film comprises a third layer laminated on a second surface of the first layer opposite to the first surface. Glass.
PCT/JP2019/045500 2019-07-02 2019-11-20 Interlayer film for laminated glass, and laminated glass WO2021002032A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019567387A JP7372840B2 (en) 2019-07-02 2019-11-20 Interlayer film for laminated glass and laminated glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019123787 2019-07-02
JP2019-123787 2019-07-02

Publications (1)

Publication Number Publication Date
WO2021002032A1 true WO2021002032A1 (en) 2021-01-07

Family

ID=74101205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045500 WO2021002032A1 (en) 2019-07-02 2019-11-20 Interlayer film for laminated glass, and laminated glass

Country Status (3)

Country Link
JP (1) JP7372840B2 (en)
TW (1) TW202102364A (en)
WO (1) WO2021002032A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111563A (en) * 2008-10-08 2010-05-20 Fujifilm Corp Laminating material for laminated glass and laminated glass
JP2016069279A (en) * 2014-09-30 2016-05-09 積水化学工業株式会社 Interlayer film for laminated glass, and laminated glass
WO2016158694A1 (en) * 2015-03-31 2016-10-06 積水化学工業株式会社 Interlayer for laminated glass and laminated glass
WO2017171043A1 (en) * 2016-03-31 2017-10-05 積水化学工業株式会社 Interlayer film for laminated glass, and laminated glass
WO2018212332A1 (en) * 2017-05-19 2018-11-22 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111563A (en) * 2008-10-08 2010-05-20 Fujifilm Corp Laminating material for laminated glass and laminated glass
JP2016069279A (en) * 2014-09-30 2016-05-09 積水化学工業株式会社 Interlayer film for laminated glass, and laminated glass
WO2016158694A1 (en) * 2015-03-31 2016-10-06 積水化学工業株式会社 Interlayer for laminated glass and laminated glass
WO2017171043A1 (en) * 2016-03-31 2017-10-05 積水化学工業株式会社 Interlayer film for laminated glass, and laminated glass
WO2018212332A1 (en) * 2017-05-19 2018-11-22 積水化学工業株式会社 Intermediate film for laminated glass, and laminated glass

Also Published As

Publication number Publication date
JPWO2021002032A1 (en) 2021-01-07
JP7372840B2 (en) 2023-11-01
TW202102364A (en) 2021-01-16

Similar Documents

Publication Publication Date Title
JP6763955B2 (en) Laminated glass interlayer film and laminated glass
JP7060515B2 (en) Laminated body containing resin film and glass plate
TWI798350B (en) Interlayer film for laminated glass and laminated glass
WO2019151327A1 (en) Intermediate film for laminated glass, and laminated glass
WO2021002035A1 (en) Intermediate film for laminated glass, and laminated glass
JP7316226B2 (en) Interlayer film for laminated glass and laminated glass
JP7316213B2 (en) Interlayer film for laminated glass and laminated glass
US11590737B2 (en) Intermediate film for laminated glass, rolled body, and laminated glass
WO2021002032A1 (en) Interlayer film for laminated glass, and laminated glass
WO2020031558A1 (en) Laminated glass interlayer, and laminated glass
WO2021002034A1 (en) Interlayer film for laminated glass, and laminated glass

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019567387

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935790

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935790

Country of ref document: EP

Kind code of ref document: A1