WO2021001671A1 - Method for pressurisation by combination of thermal expansion and sudden changes of state - Google Patents

Method for pressurisation by combination of thermal expansion and sudden changes of state Download PDF

Info

Publication number
WO2021001671A1
WO2021001671A1 PCT/IB2019/000668 IB2019000668W WO2021001671A1 WO 2021001671 A1 WO2021001671 A1 WO 2021001671A1 IB 2019000668 W IB2019000668 W IB 2019000668W WO 2021001671 A1 WO2021001671 A1 WO 2021001671A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
pressure
heat
volume
temperature
Prior art date
Application number
PCT/IB2019/000668
Other languages
Spanish (es)
French (fr)
Inventor
Santiago M FERREIRO
Original Assignee
La Espectativa Sa
DELLA CELLA, Adelio Luis
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by La Espectativa Sa, DELLA CELLA, Adelio Luis filed Critical La Espectativa Sa
Priority to PCT/IB2019/000668 priority Critical patent/WO2021001671A1/en
Publication of WO2021001671A1 publication Critical patent/WO2021001671A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B3/00Other methods of steam generation; Steam boilers not provided for in other groups of this subclass
    • F22B3/04Other methods of steam generation; Steam boilers not provided for in other groups of this subclass by drop in pressure of high-pressure hot water within pressure- reducing chambers, e.g. in accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/36Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating the engines being of positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps

Definitions

  • the object of the invention is to provide a process that allows raising the energy density of a volume of a fluid by increasing its pressure from heat and changes of state, even in very low temperature differentials, in order to exert useful mechanical work.
  • the stages of the process are a combination of changes between the liquid and vapor states. Depending on the desired implementation, these changes can exceed the critical pressure and / or temperature values resulting in supercritical fluid, compressible liquid or gas.
  • the process is demonstrated in a prototype cell. These stages can take place in a single volume that adapts to them or in a sequence of volumes specialized in each of them. The stages may occur sequentially or, where they enhance each other, it may be preferred that they occur concurrently.
  • the closest antecedent of the present invention is the process on which the Stirling Engine is based, as the "hot air” engine patented by Robert Stirling in 1816 has been called since 1945, together with the "regenerator”, which differentiated it from other contemporary hot air engines.
  • CN201858043 U- Working Fluid Phase Change Cycle Single Acting Vane Heat Engine Standard span motor and therefore based on a pressure difference in the working fluid.
  • This pressure differential is achieved based on the difference in specific volumes of the different states of the working fluid.
  • a high pressure is generated and its condensation at the outlet reduces the specific volume, determining a lower pressure.
  • Heat is both supplied and extracted from external sources, at cryogenic temperatures, in the case of condensation.
  • the fluid in the expansion process is injected between the chamber openings that are increasing in volume and is withdrawn when the chambers begin to reduce their volume by means of the aspiration of the reduced pressure that generates their condensation.
  • EP2087210 (Al) - Method For Converting Heat Energy And Rotary Vane Piston Motor - Motor based on a saturated fluid that changes linearly state externally to apply the work in oscillating rotary piston motor.
  • GB2528522 (A) - Thermodynamic Engine Motor that works by changing the state of a working fluid by means of a second heat carrier fluid. The heat exchange is done by combining the working fluid with the second fluid.
  • the present invention has in common with these last three antecedents in that in all of them a change of state is applied in the working fluid. However, the difference with all of them is that while in them the change of state is achieved by applying or extracting heat in the whole mass in general, in the invention pressure and temperature conditions are forced that cause a spontaneous change of state, sometimes selectively in a part of the dough.
  • thermodynamic properties that apply in the present invention are based on the inherent properties of fluids and their changes of state. These properties were studied by James Thomson, Thomas Andrews and Johannes Van der Waals, whose works are antecedents of the invention.
  • Van der Waals was able to estimate these metastable states by discovering their limits. It established at what maximum / minimum pressures can be kept liquid or gaseous, respectively, depending on the temperature. In a graph of pressure versus volume, the subcritical isotherms have a valley (minimum pressure) and a peak (maximum pressure) within the liquid / vapor coexistence hood, which together describe the line after which nucleation or condensation is spontaneous . This line was called "spinodal".
  • Van der Waals proved that at their reduced values all fluids deviate from ideal gas behavior by roughly the same degree. This is the "Theorem of Corresponding States”("Theorem of Corresponding States", 1873). This theorem states that all fluids, when compared with the same temperature and reduced pressures, deviate from the ideal gas behavior by roughly the same degree. The most important example is the Van der Waals equation, the reduced form of which can be applied to all fluids.
  • K is the critical point. Passing through “K”, there is the “bell”, called the “binodal curve” or “Andrews curve” that encloses the area of liquid-vapor coexistence. This curve is intersected by the subcritical isotherms, in blue, which have the minimum and maximum predicted, the combination of which forms the "spinodal” line.
  • This graph details the metastable states: stretched liquid, superheated liquid, and subcooled vapor.
  • the invention is based on the use of these properties in a suitably determined process capable of being developed in a mechanical device also specifically designed on a working fluid that fulfills them and chosen according to its thermodynamic properties with respect to the intended application.
  • the object of the invention is to provide a process that allows raising the energy density of a volume of a fluid by increasing its pressure from heat and changes of state, even in very low temperature differentials, in order to exert useful mechanical work.
  • the stages of process are a combination of changes between the liquid and vapor states. Depending on the desired implementation, these changes can exceed the critical pressure and / or temperature values resulting in supercritical fluid, compressible liquid or gas.
  • the process is demonstrated in a prototype cell. These stages can take place in a single volume that adapts to them or in a sequence of volumes specialized in each of them. The stages may occur sequentially or, where they enhance each other, it may be preferred that they occur concurrently.
  • thermodynamic terms it is an increase in the internal energy of the fluid.
  • the novelty of the invention lies in the fact that the heat contribution to the fluid is made by absorption of latent heat by deliberately and controlled causing a sudden spontaneous boiling where it is not expected to happen, in a confined system, with its corresponding change of state by evaporation .
  • the temperature remains unchanged in the evaporating fluid.
  • This principle of operation causes a thermodynamic imbalance whose consequent equalization process, adiabatic in ideal terms, it has as consequences the other stages claimed and, the sum of all is the invention.
  • the implementation of the invention is based on a heat pump circuit specifically designed for this purpose, where the implementation is one more station destined to boost a percentage of the condensed fluid at high pressure with all the heat that has been captured in the evaporation stage. Accordingly, the present invention provides, in an embodiment to be described later, the process and steps thereof through which the entropy maximization of the fluid is achieved.
  • thermodynamic cycle The reduction to the starting point, closing the thermodynamic cycle, is carried out by converting the potential energy acquired into work by means of any of the methods already known, or to be known in the art, mounted in series after the process in this same circuit. As stated before, the result is a reversible thermodynamic cycle without chemical exchange with its environment.
  • the harvest In the field of generation, it allows generation from the harvest of atmospheric heat or a volume of water.
  • the harvest In the case of atmospheric heat, the harvest includes that of latent heat from condensed moisture concurrently.
  • the heat In the case of transport, it allows generating mechanical energy from a heat battery in the form of volumes of hot liquids or solids, saving other physical-chemical energy storage methods. Where conditions allow it, the heat can also be that of atmospheric origin or, in the case of navigation, that of the water.
  • the invention admits the use of multiple sources of heat simultaneously, or in series. In the case of the automotive industry, it allows a liquid source on board and an atmospheric source, even if it is minimal. This secondary source or sources are useful to save the heat of the main source or to transfer heat to it in times of non-use.
  • FIG. 2a Scheme of the basic Prototype Cell of the invention.
  • the essential elements of the device are shown: copper tube (sometimes also called “loading chamber” or “processing chamber”), with pressure gauge, thermocouple and spherical access valve.
  • COMPLETE of the potential energy charging process presented in graphical form Sequential sampling-40 Hz (40 samples correspond to ls) vs Multiple Reference Value.
  • the data represented arises from a sampling with R744 of working fluid and subcritical objective.
  • This graph is a detail of the first half of the graph in figure 3b, shown on a more expanded scale. The different stages that will be described with the examples of realization are shown.
  • FIG 3d Detail of the Evolution of relevant Variables during loading by Sudden Evaporation and Expansion Thermal, with milestone references.
  • vertical reference lines have been added, which follow the order in the references.
  • the long blue lines are changes in the device and the short brown lines are physical references of the process.
  • the red lines indicate the entrance to the state of compressible fluid, the first, and to the state of supercritical fluid, the second.
  • Figure 4a Example Refrigeration Circuit integrating the cell of the invention, as will be used in examples 3A and 3B.
  • the labels refer to the systems described in the detail of the examples (1-4, base refrigeration circuit; A-D, motor; a-d, enthalpic cycle of the invention).
  • FIG. 5a Graphic diagram of the Invention in a possible embodiment of a pulsed generation device.
  • a working piston cylinder assembly is shown as the cells of the invention, related to Example 3.
  • Figure 5b Shows the profile of the Cam Crown. An arrangement of 6 cylinders on a 4-instance crown is also shown, related to Example 3.
  • Figure 6 Graphic diagram of the Invention in a possible embodiment of a device for continuous or axial generation with a turbine.
  • This term refers to a set of mechanical elements that, appropriately linked to each other, allow the method of the invention to be developed.
  • This set of linked elements called a cell can partially or totally include elements such as: chambers or containers, valves, heaters, thermostats, thermocouples, thermometers, pressure gauges, pipes, electronic components, control components, depending on the purpose of your application.
  • CoP Coefficient of Performance
  • Nuclear Boiling A type of boiling that occurs when vapor bubbles or evaporation "nuclei" appear. These nuclei can be around an impurity or the intersection of hypobaric waves, which generate points of very low pressure, in the event of a sudden depressurization. There are two types according to the distribution of the bubbles: homogeneous or heterogeneous.
  • - Saturation State State of a fluid whose temperature and pressure are in direct correspondence and dynamic equilibrium is achieved.
  • the vapor pressure is the maximum possible for its temperature and its temperature is the maximum for its vapor pressure, without boiling.
  • Azeotropic Fluid Liquid mixture of defined composition between two or more chemical compounds that boils at a constant temperature, at constant pressure, and behaves as if it were made up of a single component. Its vaporous phase has the same composition as its liquid phase.
  • a zeotropic mixture (ISO 817) or "non-azeotropic" is a fluid mixture of two or more components that have different boiling points. Its composition per phase varies with evaporation, since its components behave independently and have different evaporation rates.
  • FSC Supercritical Fluid
  • - Working Fluid It is the fluid (liquid or gas) used in the device of the invention and on which the actions of the method of the invention are applied.
  • Binodal line, of coexistence or "Andrews” It is the line that details the limit of coexistence of more than one phase or state of aggregation of matter.
  • the Andrews line is usually divided into two: the limit of the area of coexistence with the liquid state, called the "bubble line”, and the limit of the biphasic fluid with the vapor, called the "drip line".
  • Elongated Liquid It is the metastable state of a liquid in which the pressure exerted on the exposed surface of the liquid is less than zero (negative pressure), increasing its intermolecular space. When the equilibrium is broken there is a partial evaporation of the liquid that fills the space left by the molecules that return to their distance corresponding to the temperature.
  • Superheated Liquid It is the metastable state of a liquid that, without being boiling, its temperature exceeds its saturation temperature at the pressure to which it is subjected or, conversely, when its pressure is below the saturation pressure in function at the temperature found. When the equilibrium is broken, the liquid spontaneously boils.
  • Thermal Mass, Heat Battery or Thermal Flywheel Mass of material in the most suitable state for its function, the purpose of which is to contain -in practical exchange-related terms- an infinite amount of heat. It can yield or receive heat without significantly changing its temperature.
  • Metastability It is the property of the system with several possible states of equilibrium, which can reach pseudo-intermediate stability, or precarious stability, which is maintained over time as long as they are not affected by an external disturbance.
  • Subcritical values State value of the fluid less than the critical value, or module of the critical point, in its corresponding scale.
  • - Supercritical or transcritical values Fluid state value greater than the critical value, or module of the critical point, in its corresponding scale.
  • - Check or Non-return Valve Flow control valve arranged in the pipeline that only allows flow in one direction, preventing flow in the opposite direction.
  • Valve similar to the Check which, in addition to allowing flow in one direction, limits its maximum flow. Allow flow only the determined direction. It prevents passage if the flow changes direction, or if it exceeds a maximum, even in the intended direction.
  • the object of the present invention is to increase the internal energy of a fluid in order to exert useful mechanical work and, furthermore, to do so from heat sources of low temperature, or minimum differential with the invention, and without chemical exchange with the environment.
  • the process object of the invention is a method of optimization in effectiveness and efficiency, in a closed thermodynamic system, of the property of liquids to absorb heat when evaporating.
  • the invention must push and overcome the limitations imposed, without violating laws of science.
  • the first approach is to cause the fluid to evaporate by spontaneous boiling. In this way, the evaporation rate does not depend on the heat supplied, but on the heat that can be absorbed.
  • Spontaneous pressure reduction boiling is adiabatic, therefore internal energy does not increase.
  • the objective is to increase the internal energy, spontaneous evaporation occurs due to an increase in temperature.
  • the liquid is confined to a closed system, so that if the heat input were gradual whether it evaporates or expands the fluid, these increase the pressure to the same extent that the heat increases and does not boil.
  • the liquid has to be subjected to an intensive heat input.
  • the heat When the heat is intense enough, its incidence on the molecules of the fluid causes their evaporation without raising the temperature of the system, which remains constant.
  • the heat source must be able to ensure that the fluid being impinged can exceed the maximum superheat temperature and must be able to maintain the necessary heat flow corresponding to the evaporation rate. Otherwise the hot surface cools down and the process is interrupted. This heat flow is proportional to the temperature difference between the source and the temperature of the working fluid.
  • the first optimization step can then be to improve the temperature differential between the source and the working fluid. This is achieved by causing a spontaneous boiling by pressure reduction before the supply of intense heat. This boiling is adiabatic, but the pressure reduction leaves it in a state of excessive superheating and results in spontaneous boiling. Part of the fluid evaporates in the form of bubbles - called “nuclei" - within the liquid and the heat necessary for this evaporation is absorbed from the liquid in its environment. This a "homogeneous nuclear boil” and is a self-cooling process. The fluid ends up “nucleated” and at a lower temperature and even much lower than the initial one, without having rejected heat.
  • the fluid thus cooled can be much colder even than the surroundings - so it could not have been cooled by Newton's law - and this increases the temperature differential that can ensure the success of the intense heat input stage.
  • This optimization can be used not only to widen the spread, but also to create it.
  • Evaporation is an isothermal process, but not isobaric.
  • the boiling of the heat harvesting stages generates steam that accumulates in a finite volume. This implies an increase in the internal pressure of the system. This steam is at the same temperature as the rest of the system.
  • the pressure increase over the vapor is a form of subcooling. Eventually the pressure increase causes the steam to exceed its maximum subcooling and it condenses spontaneously.
  • the heat of rejection of this condensation increases the temperature of the steam and this, being warmer than the underlying liquid, heats it.
  • This stage involves the dual condition of excessively superheated liquid evaporating while generating excessively subcooled vapor condensing. This is a stage of dynamic equilibrium.
  • the next stage combines the liquid in direct contact with the heat source that no longer manages to evaporate it and steam still in excess of subcooling. Both sources result in the increase in temperature of the liquid that results in its expansion, which compresses the vapor, feeding back its excessive subcooling, which results in spontaneous condensation, which heats the liquid, and so on until equilibrium.
  • the equilibrium depending on the absorbed heat, volume, and mass, can be a saturated fluid, supercritical fluid, or their intermediates, gas or compressible liquid.
  • the quality of the supercritical fluid depends a lot on the volume variation in the spontaneous boiling due to pressure drop, which contributed volume since density is an important value and this is the amount of mass per unit volume.
  • This last stage can end up with the working fluid hotter than its original heat source and begin to reject heat in favor of the source.
  • the ejection of the fluid from the chamber or "load cell" begins, ending the claimed process.
  • the navy blue line corresponds to the saturation line, or vapor pressure for each temperature.
  • the lighter blue line to its right represents the superheat threshold required to produce spontaneous evaporation.
  • the turquoise line, to the left and above, represents the subcooling threshold to produce spontaneous condensation.
  • the critical value lines intersect at the Critical Point and define four quadrants.
  • the upper right quadrant is the quadrant of supercritical values, and the fluid can be in only one possible "supercritical fluid” state.
  • the quadrant below this, below the critical pressure, but to the right of the critical temperature is the quadrant of "superheated steam", which in this state we call "gas.”
  • the quadrant above the critical pressure, but to the left, below the critical temperature is the compressible liquid quadrant.
  • the lower left quadrant of subcritical values in both pressure and temperature is the biphasic quadrant because in it the fluid is found both in liquid and vapor phase.
  • the boundary between these phases is the above saturation curve.
  • On its sides are the maximum superheating and subcooling lines. Therefore between the two limits is the "area of coexistence" where the fluid can be in the vapor phase or liquid phase. Above the maximum subcooling line it can only be in the liquid phase and to the right of the maximum superheat it can only be in the vapor phase. If any volume of fluid is liquid beyond the maximum superheat or in the vapor phase beyond the subcooling limit, a spontaneous change of state occurs, which is the one used by the invention.
  • spontaneous state changes can be caused by varying pressure or temperature - or both - so as to leave the fluid in the desired graph area.
  • an isobar (horizontal) to the right corresponds to evaporation due to heat input and to the left, condensation due to heat extraction.
  • an isotherm (vertical) downwards corresponds to an evaporation by pressure reduction "volume supply” and upwards to a condensation by pressure increase, or "volume extraction”.
  • the graphs include reference lines that mark the critical pressure and temperature values, which intersect at the critical point, which is also the end of the saturation line.
  • the figure 'a' corresponds to the study for R410A.
  • the figure 'Ib' represents the values for the R744-C0 2 ⁇
  • the present invention makes use of one or more of these mechanisms, repeated or not, sequenced or combined between yes, to manage or multiply its effect depending on the final object of the implementation and the available resources.
  • the working fluid can be a pure fluid, an azeotropic mixture, a "zeotropic" mixture (modernism for non-azeotropic, ISO 817), or a solution.
  • Zeotropic mixtures can result from mixing fluids of distant properties for optimization of phase change combinations. If fluids with a significant temperature glide ("temperature glide”) are selected, it allows to benefit from the action of each fluid in the different parts of the circuit where the invention is implemented.
  • the slip can exceed the temperature difference of the embodiment, so that one of the components serves as a pressurizing agent through its evaporation and the other as an energy transport agent, for example, in kinetic energy or heat mode, remaining liquid , in the stage of expressing itself as motor work.
  • the solutions allow to improve the thermodynamic properties of the working fluid. If the solution can be varied, the properties can be adjusted on demand thermodynamic to the current operating conditions, optimizing its performance.
  • the working fluid can also be mixed or combined in some way with other fluids with a function other than the invention, but useful or necessary for the entire circuit considered, such as lubricants, sealants, leak detectors, etc. insofar as it does not affect the properties used by the invention.
  • the working fluid is a one-component fluid or azeotropic mixture that is capable of completing the entire circuit: from a saturated liquid, then passing through the stages of sudden change of state with incorporation of heat to finally generate the mechanical impulse.
  • R744 and R410A are two types of working fluids.
  • R744 is carbon dioxide, a pure fluid, and R410a is a quasi-azeotropic mixture of two HFC (hydrofluorocarbon) gases.
  • the claimed process is a process of converting heat into potential energy. This process takes place in a device that is part of a heat / work capture circuit. In general, the claimed process consists of the following stages:
  • steps (a) to (g) described above represent different moments of the claimed process. These can be carried out in a device with a single volume that adapts to the different stages in progress (“batch process", or “batch”), or it can be implemented in a device that implements several specialized volumes in each one. stages arranged in series and the working fluid flows from one to the next to complete the process (“continuous process”).
  • continuous process describes the process stages in a volume regardless of whether the stage container is the same, or whether it is each of the volumes in a series.
  • the claimed process starts from the working fluid in a liquid state.
  • the efficiency of the process is greater the closer the fluid is to saturation conditions.
  • This stage consists of conditioning the working fluid to saturation conditions in terms of pressure and temperature. It can be implemented with heat exchangers for heating / cooling and pressure reducing valves or compressors to regulate the pressure, or leaving it at rest in a storage tank of sufficient size - so that the entrance and exit of mass is not a relevant percentage to affect the concept "at rest" -.
  • the implementation will condition the working fluid to the design saturation point and relieve the result to adapt the subsequent stages.
  • This stage involves the transit of the working fluid from the storage tank to the processing chamber and does not involve either of the two volumes.
  • the stage results in the working fluid put into the chamber for processing.
  • This fluid is taken from the lower part of the storage tank and is by no means sucked from the chamber, but is injected.
  • This method ensures that fluid is provided in a liquid state, and not vapor, and does not evaporate upon injection. The fluid always maintains at least the saturation pressure.
  • the processing chamber either has a surface that yields to fluid pressure from the reservoir or is the first volume of a continuous processing device.
  • the pressure differential that ensures this transit is given between the pressure of the reservoir against the outside of the yielding surface, in a batch process, or in a lower pressure of the first volume in continuous processing, than if the fluid evaporates, but already within the framework of the next stage.
  • Fluid injected, in a batch process, or being injected, in a continuous process is suddenly exposed to a drop in pressure.
  • This phenomenon due to its speed, is an adiabatic process.
  • the bubbles take the heat of evaporation from the sensible heat of the liquid fluid that surrounds them. It can be enhanced with heat from the contact surfaces, but it is essentially adiabatic, because the rate of heat conduction of the fluid itself is less than that of nucleation.
  • the liquid, now nucleated, is colder because it has given up sensible heat to evaporation. This process is known in science as "self-cooling.”
  • the liquid returns to the dynamic equilibrium of saturation, now at a lower temperature.
  • the temperature resulting from this process can even be much lower than the coldest available, so it could not have been achieved with heat transfer according to Isaac Newton's Law of Cooling. This characteristic allows to increase, and even create, a temperature differential where he does not speak it. To operate where the temperature differential does not speak or was reduced is one of the objectives of the invention.
  • This stage of the claimed process is of great importance in the efficiency of the process.
  • the dual condition of colder and nucleated generates various potentiation factors for the following stages.
  • a cooler temperature accelerates the rate of heat transfer in the next stage, since the transit through the contact surface depends on the temperature difference, without increasing the temperature of the source.
  • Cooler liquid has a lower superheat temperature limit and steam has a lower subcool pressure limit.
  • the pressure drop is equivalent to an increase in specific volume, or a decrease in density.
  • This density is the total density of the system and, therefore, that of the supercritical fluid, if it is the objective of the implementation.
  • a finite mass is processed in a finite volume.
  • the pressure drop is achieved by adding volume and this defines the density. Therefore this contribution of volume determines the quality by density of the supercritical fluid.
  • the nucleated fluid characteristic is important in the next stage because when the pressure increases, the condensation of the bubbles is caused and makes them act as heat nuclei, enhancing the expansion effect of the following stages. Care must be taken at this stage that the working fluid does not enter a metastable state of negative pressure, or "elongated / stretched liquid".
  • the fluid is subjected to an intense heat flow through all the contact surfaces.
  • the temperature difference must be at least such that the source temperature exceeds the maximum superheat of the working fluid liquid. It will be preferred that the temperature difference ensures a heat flow at least as important as that of the heat of evaporation because, otherwise, the stage will end up cooling the contact surface and, with it, the stage itself.
  • heating of the vertical side walls is preferred. This will establish a laminar boiling system, with stable operation, until the culmination of the stage conditions.
  • the vapor of the fluid produced will accumulate in the upper portion of the volume with the rest of the vapor, which gradually increases the pressure. It is preferred that this portion of the volume is thermally insulated from the environment. In this implementation this stage ends when the maximum subcooling pressure of the steam is reached.
  • Boiling is an isothermal process, but not isobaric.
  • the pressure of the system has been increasing due to the effect of evaporation by boiling. This pressure increase is subcooling of the steam, by pressure higher than saturation. This stage begins when the pressure exceeds the vapor subcooling limit pressure.
  • the volume After the evaporation stage, the volume still has an excess of vapor, which began to condense when it exceeded the maximum subcooling and will continue to condense until the pressure is reduced until it reaches saturation pressure.
  • This condensation rejects heat that, in the absence of another possible destination, heats the liquid.
  • the liquid when heated reduces its density, increasing its volume. This increase in volume, in a finite volume, reduces the volume available for the vapor, which is compressed, increases its pressure and continues to condense.
  • the supercritical phase of the working fluid will be entered.
  • the density will be determined by the amount of mass per unit volume, which arises directly in a batch implementation, and the mass flow rate in a continuous system, and the final pressure arises from the amount of heat absorbed by evaporation in the stages of laminar boiling.
  • the working fluid is at the working pressure sought by design. Ideally it is the same pressure as the target, which is an isobaric accumulator.
  • the surface that gave way to the fluid in the injection now ejects it by providing whatever pressure difference might be available.
  • the incoming fluid prints a pressure differential that allows the ejection in the same quantity as the incoming one.
  • Example 1 is a simple camera, called “Loading Chamber” or “Processing Chamber” and its objective is to experimentally demonstrate stages (d), (e) and (f).
  • Example 2 is a camera identical to that of example 1 complemented with the necessary accessories to experimentally demonstrate all the steps from (a) to (g).
  • the chamber is equipped with an electric heater to condition the working fluid, a solenoid valve to induce nucleation, and a ball valve to isolate the conditioned and nucleated fluid for evaluation in the following stages.
  • the R410A fluid is a quasi azeotropic mixture of two hydrofluorocarbon gases: difloromethane (R-32) and pentafluoroethane (R-125), widely known in the art for its use as a refrigerant in air conditioning and refrigeration equipment. It is sold under the trade names Forane 410a®, Puron®, EcoFluor R410®, Genetron R410A® and AZ-20®.
  • the R744 fluid is carbon dioxide (CCy), a pure fluid, whose essential characteristic, in addition to the high efficiency for the process of the invention, is that it has an ozone depletion potential (PAO) equal to zero and a potential of Minimum atmospheric warming (GWP), in line with current environmental requirements.
  • CCy carbon dioxide
  • PAO ozone depletion potential
  • GWP Minimum atmospheric warming
  • Example 1 Prototype Loading Chamber, or Processing A prototype Loading Chamber, or Processing Chamber is built to verify stages (d), (e) and (f), of the claimed process.
  • a copper cylinder is constructed, with an insert for a thermocouple, a capillary for reading with a pressure gauge and a closed access with a ball valve.
  • R744 is used and, due to the high working pressures of this fluid, it is decided to keep the experience at subcritical values.
  • the Prototype is charged to 70% liquid volume at -5 ° C (268.15k), and is allowed to reach saturation equilibrium. It is immersed in a 25 ° C water bath for
  • An example cell is constructed that allows to test experimentally all the stages from (a) to (g) described in the section "Process of the Invention", in the chapter "DETAILED DESCRIPTION OF THE INVENTION".
  • Figure 3a shows the diagram of a prototype cell of the invention and the elements that comprise the design of the invention are listed. The experimental tests of the claimed process have been developed on said cell.
  • Said prototype cell is a rigid device built around a rigid cylindrical copper loading chamber (200), where the entire claimed process takes place.
  • the loading chamber (200) is jacketed along the longitudinal axis of the second container (100), also made of copper, whose respective lids hug the chamber (200) just where they are annealed in the weld, to reinforce it.
  • This second container is where the hot water injection takes place (100). It has a lower drain valve, an upper air pressure relief tube during charging.
  • the hot water which is admitted through a ball valve (104), comes from a large capacity tank (102), with an electrical resistance (103) for heating the water contained in (102), whose temperature is controlled with the thermocouple (106).
  • an electric heater (201) was inserted.
  • a tube for a thermocouple (202) was installed, and a capillary for the pressure tap connected to the manometer (203).
  • the ball valve (204) At the top of the chamber (200) is the ball valve (204) defining two constant volumes for the chamber (200), limiting it to a lower half when closed.
  • a tube Above the valve (204) a tube extends up to a 90 ° elbow that positions the tube horizontally and allows better operation of the solenoid-operated valve (205), which opens an exhaust to a hermetic volume external to the cell and of sufficient relative size to represent an "infinite" volume with respect to the volume of the cell.
  • an access valve (206) for charging the working fluid.
  • All valves are operated by magnetic or pneumatic actuators that are managed by a board of programmable timers.
  • the stages of the test procedure are executed by means of automation of sequential steps programmed in a PLC.
  • a) The chamber (200) of the invention is charged with 91g of R410a.
  • the liquid phase represents 60% by volume, 96% by mass, at 25 ° C, at 225 PSIg.
  • a volume of water is loaded into the pressurizable reservoir (102), equivalent to the capacity of the enveloping container (100) that completely surrounds the chamber (200).
  • the working fluid contained in the chamber (200) is heated with the resistance (201) to reach the initial working temperature (To) of the R410a fluid and it is conveniently set that said initial temperature of the working fluid is 45 ° C; temperature that produces the best end result in the fluid.
  • the R410a liquid now represents 66% of the volume and 94% of the mass, at 384 PSIg.
  • valve (204) is closed, leaving the fluid at 42 ° C trapped in the chamber (200) with 3% vapor in the form of vapor nuclei homogeneously distributed in fluid. The carryover of fluid between valve (204) and valve (205) is ignored.
  • the valve (104) is opened allowing all the heated water in the container (102) to be suddenly driven into the container (100), into which it enters through the tangential orifice (105) generating a vortex around the walls of the chamber ( 200) until complete. This stage results in a drop in the temperature of the water entered (100) up to 80 ° C, by heating the outer walls of the chamber (200).
  • the temperature difference between the outside and inside of the chamber wall (200) is what causes sudden evaporation, the main characteristic of the result of the process of the invention.
  • the relevant variables of the claimed process are shown in figure 3b.
  • the graph is a comparison between Temperature (° C x10), Pressure (PSIg), Percentage of Total Mass of Fluid in Vapor (% M x2000 +500), Percentage of Total Volume in Vapor (% V x800 +500), all in function of "sample points” determined sequentially at the rate of 40 per second (40Hz). They are compared on a relative scale because what is intended to show is their trend rather than their absolute value.
  • the pink line corresponds to the temperature, the blue to the pressure, the green to the percentage of Mass and the orange line to the percentage of volume. These last two disappear when reaching zero (500, in the graph) when the working fluid enters the state of "compressible fluid” and then in the state of "supercritical fluid”.
  • the graph in figure 3c shows a detail of the first half of graph 3b, on a more expanded scale.
  • Two isotherms and three references are added.
  • the isotherms correspond to the initial equilibrium temperature, and the new isotherm after nucleation due to the sudden drop in pressure (horizontal solid lines in yellow).
  • the reference lines are the critical pressure and temperature values (blue and magenta horizontal dotted lines) and, in the green dotted line, the zero (0%) of the musical and volumetric percentages.
  • step 'j' solid blue line, series 3 figures
  • a 100psi drop is seen in a tenth of a second and the pressure recovery in two tenths, but balancing 2.4K colder (continuous magenta line, series 3 figures), which shows that there was an adiabatic evaporation characteristic of this type of sudden evaporation.
  • the extraction of steam is evidenced in the pressure drop and in the Vapor Mass Percentage and the subsequent recovery of both with a new, lower equilibrium temperature.
  • the volume cut-off arrives (step '1') and an abrupt decrease in the percentages of Mass and Volume of the steam is distinguished, which corresponds to the division of the volume of the working fluid chamber.
  • the vapor percentages drastically decrease green and orange continuous lines, figures from series 3), as expected when leaving out the neck of the chamber with the volume of vapor where, taking into account that we conserve the lower 55% of the volume, its value greater than zero show that the vapor is found in bubbles within the fluid and not above it, otherwise the vapor would have remained all in the part of the volume excluded from the working fluid chamber.
  • step 'm' Three seconds later the hot water is injected (step 'm') which arrives 6 tenths later.
  • the percentage of vapor decreases as the fluid reaches the state of compressible fluid.
  • the pressure line crosses the critical value
  • the amount of steam becomes zero. This is represented in the 3d graphic with the first red vertical reference.
  • the new red vertical reference As the temperature increases, when it crosses its critical value, the new red vertical reference, it enters the third part of interest of the 3d graph: supercritical phase fluid.
  • the vapor percentages are in equilibrium. They fall abruptly during extraction, recover their volume, but not their mass after repressurization, and reach equilibrium again. With the volume cut they drop steeply, but not to zero. This drop is to be expected because the neck of the chamber with all the steam that was in dynamic equilibrium is outside the volume under consideration. The fact that the vapors have not fallen to zero indicates that bubbles are present within the working fluid. Steam acts in favor of pressurization. For such a pressure increase, the little vapor evaporated is a key factor in considering the efficiency of the claimed process. As the pressure continues to increase, the volume and mass of vapor disappears until the liquid fluid occupies the entire volume as "compressible fluid", the percentages reaching zero (Fig. 3d, solid green and orange lines).
  • the graph of Figure 3e has been divided into four quadrants corresponding to the state of fluid matter.
  • the lower left quadrant is the quadrant that shows the evolution of the biphasic fluid up to its critical point, in which the origin of coordinates (T, P) critical of the axes of the quadrant has been set.
  • the solid dark blue line corresponds to the saturation curve where the fluid coexists in two states of aggregation, where it is usually in equilibrium.
  • the other three quadrants are single phase quadrants.
  • the upper right quadrant corresponds to the "supercritical fluid” quadrant.
  • the upper left is corresponds to "compressible fluid”, which behaves like a liquid, but is compressible and remains in a liquid state, regardless of its temperature.
  • the lower right is the quadrant that corresponds to "superheated steam” or "gas”, because it no longer condenses, regardless of the applied pressure.
  • the celestial solid line is the route of the points of the states of the working fluid captured by the thermocouple (202) and the manometer (203) with a sampling frequency of 40 points per second transmitted by the appropriate interface to the computer, during the heat load cycle of the working fluid from injection of hot water in the container (100).
  • Said path begins with a pressure drop and temperature drop (301) when the solenoid valve (205) is opened, followed by a recovery of the values of T and P to the state of two-phase equilibrium in the saturation line (302). After a few seconds, a quasi-isothermal pressurization occurs (303) that corresponds to a sudden change of state.
  • the chamber (200) was allowed to depressurize; This is shown in the vertical quasi-instantaneous isothermal fall (308), to reach biphasic equilibrium again and start a new load cycle, repetitive and subsequent to the previous one.
  • Example 3 a device is described in operation in accordance with the previously described procedure.
  • Both implementations have similar characteristics, such as the source being an inexhaustible source of heat, in practical terms, at a stable temperature.
  • Variable sources in their temperature, or availability of heat, or progressive, such as heat storage that cools down, do not prevent the use of the invention, but require provisions that exceed the claims of this specification.
  • a regular and inexhaustible source is preferred.
  • Both examples implement the invention in a specific refrigeration circuit for the invention where the evaporator harvests the heat at the source and the condenser is equivalent to the chamber 100 of figure 3a.
  • a diagram of this circuit is included as figure 4a.
  • the invention could be in a parallel path between two between the storage tank and the evaporator, the other being a route from the storage tank to the evaporator passing through an expansion valve (as an exclusive heat harvesting route, not drawn) but , in the examples it is the single track, so it is in series after the storage tank and before the engine.
  • the condenser is chamber 100, so it is after the compressor and before the storage tank.
  • Both examples use the "possible implementation" of the load cell detailed in the series of figures 5 to use the claimed process.
  • the variation between the examples is the working fluid.
  • R410a is used in the first and R744-C0 2 in the second.
  • a Residual Heat Recovery unit in a Refrigeration System essentially comprises three parts: (1) compressors, (2) heat radiators, and (3) an adiabatic container containing an appropriate volume of water.
  • Components (1) and (2) are widely known in refrigeration art, but the addition of component (3) interposed between (1) and (2) is what makes these Refrigerating Units novel, surprising and unknown in prior art: endows them with the ability to recover residual heat, normally released to the environment (Diagram 1, which is the scheme of a classic refrigeration system known in the art), to transform it through the process of the invention into useful work (Diagram 2, which is the diagram of a refrigeration system that includes the process of the invention) and thus be recycled in other mechanical processes.
  • the volume of water in the container (3) in diagram 2 is used as a heat exchange / transfer medium from the main circuit of the Central Refrigeration System (1) towards the base refrigeration circuit where the invention is implemented.
  • the hot steam from the discharge of the compressors (1) is circulated, through an appropriate circuit, for example, but not limited to, a coil, a pipe, a container of various shapes, etc. , towards the container (3) that contains the volume of water that is now used as a heat carrier.
  • an appropriate circuit for example, but not limited to, a coil, a pipe, a container of various shapes, etc.
  • the temperature condition that the water in the container (3) must meet is that it must be in the range where it is cold enough to condense the vapor from the compressor discharge and Hot enough to evaporate the working fluid of the refrigeration cycle that implements the invention (4).
  • the temperature of the heat exchange water in this example is in the range between 32 ° C and 38 ° C. Below In this range, the water would lose the ability to evaporate the working fluid in (4) -which would stop- and, above that range, it would lose the ability to condense the discharge of the compressors (1).
  • the system of the example of diagram 2 is configured as two independent circuits (1) and (4), watertight, but thermally interconnected through a volume of heat transfer water (3).
  • the cooling circuit (1) condenses its working fluid releasing heat into the water (3) by means, for example but not limited to, of a submerged coil, and the circuit of the invention (4) that acts as an energy recuperator harvests it of (3) thus evaporating the working fluid it contains and then increasing its pressure in chamber 200 as described above under the heading "Figure 3e".
  • Start-up Stage This stage only takes place when the recovery system is put into operation.
  • the fluid is assumed to be in dynamic equilibrium at room temperature.
  • This stage implies the evaporation of all the fluid that could be liquid because the beginning of the first stage of the stages of the cycle supposes the entire mass in a vapor state.
  • the heat transferred here is "in sufficient quantity" and is not the object of this balance.
  • Stage 1 It is the first stage of the cycle.
  • the fluid enters completely evaporated, corresponding to point 1 of the Mollier graph ( Figure 4b).
  • the steam is compressed at the behest of external work provided in the form of electricity ("external work") reaching point 2 on the Mollier graph, which is the point in the working fluid at which it reaches its highest Internal Energy value.
  • the fluid enters the condensate stage, but without being subcooled, yielding its energy in the form of heat of condensation to the following Stage 2 as heat (“internal heat”) and as work (“internal work”), pushing the piston of the invention , in the next stage.
  • This end point corresponds to point 3 'of the Mollier plot of Figure 4b.
  • Stage 2 (Invention): This stage corresponds to the invention as claimed, it is the invention itself. The fluid enters the chamber (which would be chamber 200 in figure 3a, but implemented as detailed in figure 5a) pushing the piston (with the work done detailed at the end of the previous stage).
  • This piston pushing work rotates the camshaft, stretches the depressurization springs, and is transmitted to the pistons in the final stage to expel fluid from the pistons. Therefore the work does not change the internal energy of the fluid, but is transmitted through the invention to expel the fluid at the end without modifying it at any time.
  • the fluid in the invention is then subjected to a sudden depressurization by "volume supply” by suddenly lowering the piston and exposes the fluid to the walls that have been heated by the heat of condensation given to the bath (chamber 100, of figure 3a) of the invention by the condensation in the previous step.
  • This sudden evaporation, and its consequent simultaneous condensation ends up giving heat to the fluid that did not evaporate, and it expands, compressing all the fluid.
  • the fluid reaches its maximum expression of temperature and pressure, moving to the next stage.
  • This pressurization stage from the heat of the bath also collaborates with the rotation of the crown of cams and stretching of the springs, so these two loads can be neglected in the balance studied.
  • Stage 3 (Isobaric accumulator): The fluid is in the cylinder of the invention at the same pressure and temperature as the isobaric accumulator. It is expelled from it by the working fluid that enters the other cylinders (which are in the previous stage) at the same time. East The accumulator is intended to absorb flow fluctuations and does not change in any way the state of the working fluid following the engine. Maintains constant pressure. It absorbs the printed work at the end of stage 1 compressing the bladder and returns it when the load is enabled on the engine, decompressing the bladder to load the piston, of the next stage.
  • Stage 4 (Engine): The fluid absorbs the printed job at the end of stage 1 and pushes the piston while loading. Upon reaching the charge, the intake closes and an isothermal expansion begins. Then open the dump valve. The fluid sees its internal energy reduced and loss of pressure and temperature and condensation are reflected. This stage performs external work.
  • Graph P f (V) of the motor for example A is figure 4c and for example B is figure 4e.
  • Stage 5 This stage is the heat recovery or recharge stage.
  • the fluid goes back through the evaporator (chamber 3, of diagram 2, of the Central Refrigeration System) and recharges the heat lost in the cycle.
  • the final result of the stage is identical to the end of the Start-up Stage, being compatible. Once at this point, the cycle restarts in Stage 1 or it continues to the output stage that corresponds to the stopping of the heat recovery unit.
  • R744 is used which, as stated earlier in this description, is carbon dioxide (CO2) ⁇ Depending on the objectives , different working fluids can be used. In the example R744 is chosen because it gives better results in temperatures between 0-10 ° C. In the example an ambient temperature of 25 ° C was assumed.
  • Example 4 Commercial implementation. Pulsed Generation Device, the batch or "batch”.
  • Chamber 200 where the claimed process takes place, has at least two possible implementations capable of producing continuous useful work with a view to its commercial exploitation.
  • This pulsing flow implementation is the one used in the previous examples because it is an immediate implementation of Example 2, implemented in a loop that repeats over and over again.
  • the first figure 'a' shows a cylinder with piston assembly.
  • the second figure, 'b' shows the example layout and an instance of the "cam track” that, repeated x times and curved to form a cylinder with irregular bases, takes the name of "cam ring" and manages the movement of the pistons.
  • camshaft The function of the "camshaft” is identical to that of a “camshaft” only by changing its topology. While a camshaft is an axis with eccentric ovoid or circular elements and it varies the radial distance to the axis of what rests on them, in a camshaft the position varies axially.
  • a ring gear is preferred over a camshaft to keep the cylinders in a circular arrangement so as to keep the hot water bath.
  • a camshaft would put the cylinders in line and double the exposed surface of the bath.
  • the piston is made up of several parts and its piston has limited travel to the copper sector of the cylinder. Keeps the chamber tight with two O-ring type seals. Above it has a displacer whose objective is to minimize the volume inside the cylinder head when the piston is at TDC (Top Dead Center), with a minimum separation from the walls, but without touching them.
  • the connecting rod is divided into three segments. The first part, rigid, has no movement with respect to the plunger and moves jointly with it. It has a bearing at its lower end that follows the upper profile of the "cam ring". Inside this connecting rod a telescopic connecting rod slides, that is, it uses this displacement to vary the total length of the connecting rod and the distance of its own bearing from the piston plunger, but always maintaining the same direction. These two connecting rod segments are held together with the third element which is a traction spring that keeps the connecting rod as short as possible.
  • the bearing of the telescopic rod follows the lower edge of the camshaft.
  • the cylinder is essentially made up of three parts: the head, the copper body and the foot.
  • the head is made of a material that is poor in terms of thermal conduction, but resistant to high pressures.
  • the INTAKE port includes a non-return flow limiting valve -standard, not shown- (Flow-Check Valve) that prevents both reverse flow and excessive correct flow.
  • the DISCHARGE access connects a standard non-return valve (Check Valve), not schematized either.
  • the foot of the cylinder built in the same material as the head, has a back pressure relief orifice that, not being drawn, connects with the low pressure circuit of the system (evaporators) to collect any percentage that could be made in spite of the O-rings.
  • the foot has a shock absorbing plunger spring to reduce the consequences of sudden stop during the nucleation process.
  • the body of the cylinder is made of copper, and it is held in place by the pressure between the head and the foot that, while holding the cylinder together, holds together the lids of the marra bath, or hot water bath, which soaks the outer side of the copper.
  • the piston process cycle is a two-stroke, four-stage cycle. It goes from Top Dead Center to Bottom Dead Center (PMI) and back to TDC. In the decline there are two stages, one in the PMI and, the remaining, in the rise of the PMI to the PMS.
  • the piston At the start of the cycle the piston is at TDC and the spring is stretched (full length, 100% green).
  • the "cam track” moves to the left under the influence of the downward force of the piston while admitting the working fluid.
  • the fluid does not enter through a vacuum created, as in a conventional piston engine, but through the pressure difference across the piston (high pressure from the HP stock, above, low pressure, from the evaporators, below) ("Injection") . It is this potential energy that generates the work to lower the piston, move the cam path to the left, and, as will be described, raise the piston unloading. This losing energy in work in this stage, the system recovers it in the discharge phase, so its value is canceled.
  • the bearing of the spring accompanies the descent, so it maintains the stretch.
  • the discharge does not need additional work because it is not the piston that pressurizes the fluid and it is already at the pressure beyond the discharge port, so the difference in pressure applied by the work in the rise of the piston only causes the rise of the plunger and displacement of the fluid, not its compression ("Ejection or Ejection").
  • This variable is self-regulating since if the fluid, plus the work exerted, does not have the pressure from the outside, the cam ring stops and leaves the fluid exposed to heat, which increases the necessary pressure. The pressure contributed by the admitted fluid is constant. If the cold bath does not have the necessary temperature to heat the fluid to the required pressure, the cam ring remains without moving and the fluid going through the high-flow channel harvests heat, which is compressed and heats the cold bath. Variables are always adjusted at some point so that the generator keeps moving, generating the high pressure fluid.
  • the number of instances of "cam tracks" with respect to the number of cylinders is discretionary, but here 6 cylinders are used on 4 tracks because that determines that the 6 cylinders are, two by two, in different stages of the cycle. If there were as many paths as there were cylinders, all the cylinders would be admitting, then all nucleating and finally all discharging and it would be necessary to adopt an engine to keep the "camshaft” turning, and it would do so at uneven speed because it would have to brake the crown when all They are admitting and pushing it hard when everyone is downloading. In this arrangement of 6 cylinders on 4 paths, only the two positions described in the detail of figure 'b' are possible, which follow one another in sequence.
  • Example 5 Commercial implementation. Continuous Generation Device.
  • Another possible embodiment of the invention is a continuous generation device. It is an implementation of the claimed process in a continuous flow topology. You can increase or decrease your flow, but it will not be delivered in batches or pulses, as the previous possible realization, but it is constant.
  • This stage partially evaporates the discharge and the two-phase fluid is sucked in by the rotors of an axial decompressor with one or more stages, which improve the vapor content, at the expense of heat inputs from hot stators (Sectors' Ci 'and' C 2 '), and reduce the pressure ("Evaporation” of stage “Evaporation / Condensation”). Then it enters the liquid injection sector.
  • the liquid from the same storage tank is at a higher pressure and lower temperature, and is denser (which is to say, it has a lower specific volume). It enters, because it is at a lower pressure (Sector ⁇ ') and passes to the next volume where it is heated by the steam itself, expands, increases the pressure, and condenses the steam, which again rejects heat that heats and expands the liquid

Abstract

The invention aims to provide a method that allows the energy density of a volume of a fluid to be raised by increasing its pressure through heat and changes of state, even at very low temperature differentials, in order to exert useful mechanical work. The steps of the method are a combination of changes between the liquid and vapour states. Depending on the desired implementation, these changes can exceed the critical pressure and/or temperature values, ​​resulting in supercritical fluid, compressible liquid or gas. The method is demonstrated in a prototype cell. These steps can take place in a single volume that adapts to them or in a sequence of specialised volumes for each of them. The steps can take place sequentially or, where they enhance each other, it may be preferable for them to occur concurrently.

Description

PROCESO DE PRESURIZACIÓN POR COMBINACIÓN DE EXPANSIÓN TÉRMICA PRESSURIZATION PROCESS BY COMBINATION OF THERMAL EXPANSION
Y CAMBIOS DE ESTADO SÚBITOS AND SUDDEN STATUS CHANGES
OBJETO DE LA INVENCIÓN OBJECT OF THE INVENTION
El objeto de la invención es proporcionar un proceso que permite elevar la densidad energética de un volumen de un fluido aumentando su presión a partir de calor y cambios de estado, aún en bajísimos diferenciales de temperatura, con la finalidad de ejercer trabajo mecánico útil. Las etapas del proceso son una combinación de cambios entre los estados liquido y vapor. Según la implementación deseada estos cambios pueden lograr superar los valores críticos de presión y/o temperatura resultando en fluido supercritico, liquido compresible o gas. El proceso se demuestra en una celda prototipo. Estas etapas pueden tener lugar en un único volumen que se adapta a éstas o en una secuencia de volúmenes especializados en cada una de ellas. Las etapas pueden suceder secuencialmente o, donde se potencien mutuamente, puede preferirse que tengan lugar concurrentemente. The object of the invention is to provide a process that allows raising the energy density of a volume of a fluid by increasing its pressure from heat and changes of state, even in very low temperature differentials, in order to exert useful mechanical work. The stages of the process are a combination of changes between the liquid and vapor states. Depending on the desired implementation, these changes can exceed the critical pressure and / or temperature values resulting in supercritical fluid, compressible liquid or gas. The process is demonstrated in a prototype cell. These stages can take place in a single volume that adapts to them or in a sequence of volumes specialized in each of them. The stages may occur sequentially or, where they enhance each other, it may be preferred that they occur concurrently.
ANTECEDENTES Y ARTE PREVIO BACKGROUND AND PRIOR ART
El antecedente más cercano de la presente invención es el proceso en el cual se basa el Motor Stirling, como se llama desde 1945 al motor "de aire caliente" patentado por Robert Stirling, en 1816, junto al "regenerador", que lo diferenciaba de otros motores de aire caliente contemporáneos . The closest antecedent of the present invention is the process on which the Stirling Engine is based, as the "hot air" engine patented by Robert Stirling in 1816 has been called since 1945, together with the "regenerator", which differentiated it from other contemporary hot air engines.
Sin embargo, a pesar de que la característica del Motor Stirling es ejercer trabajo a partir de convertir calor en energía potencial neumática expresada en una diferencia de presiones, como en el invento, en el motor Stirling ello se logra mediante la diferencia de volúmenes específicos del mismo gas a distintas temperaturas y en la presente invención se orienta por otro mecanismo termodinámico : alcanzar dicha diferencia de volúmenes cambiando de estado el fluido de trabaj o . However, even though the characteristic of the Stirling Engine is to exert work by converting heat into pneumatic potential energy expressed in a difference of pressures, as in the invention, in the Stirling engine this is achieved by the difference in specific volumes of the same gas at different temperatures and in the present invention it is guided by another thermodynamic mechanism: reaching said difference in volumes by changing the state of the working fluid. or.
También se encuentra en el arte más cercano tres documentos patentes, que indican cambios de estado: Also found in the closest art are three patent documents, which indicate changes of state:
CN201858043 (U) - Working Fluid Phase Change Cycle Single Acting Vane Heat Engine Motor de vanos estándar y, por tanto, basado en una diferencia de presión en el fluido de trabajo. Este diferencial de presión se logra en base a la diferencia de volúmenes específicos de los distintos estados del fluido de trabajo. Mediante su evaporación a la entrada se genera una presión alta y su condensación a la salida reduce el volumen específico determinando una presión menor. El calor es tanto aportado como extraído desde fuentes externas, a temperaturas criogénicas, en el caso de la condensación. El fluido en proceso de expansión es inyectado entre los vanos de cámaras que están aumentando su volumen y es retirado cuando las cámaras empiezan a reducir su volumen por medio de la aspiración de la presión reducida que genera su condensación. CN201858043 (U) - Working Fluid Phase Change Cycle Single Acting Vane Heat Engine Standard span motor and therefore based on a pressure difference in the working fluid. This pressure differential is achieved based on the difference in specific volumes of the different states of the working fluid. Through its evaporation at the inlet, a high pressure is generated and its condensation at the outlet reduces the specific volume, determining a lower pressure. Heat is both supplied and extracted from external sources, at cryogenic temperatures, in the case of condensation. The fluid in the expansion process is injected between the chamber openings that are increasing in volume and is withdrawn when the chambers begin to reduce their volume by means of the aspiration of the reduced pressure that generates their condensation.
EP2087210 (Al) - Method For Converting Heat Energy And Rotary Vane Pistón Motor - Motor basado en un fluido saturado que cambia linealmente de estado en forma externa para aplicar el trabajo en motor de pistones rotativos oscilantes. EP2087210 (Al) - Method For Converting Heat Energy And Rotary Vane Piston Motor - Motor based on a saturated fluid that changes linearly state externally to apply the work in oscillating rotary piston motor.
GB2528522 (A) - Thermodynamic Engine Motor que trabaja cambiando de estado un fluido de trabajo por medio de un segundo fluido portante de calor. El intercambio de calor se hace combinando el fluido de trabajo con el segundo fluido. GB2528522 (A) - Thermodynamic Engine Motor that works by changing the state of a working fluid by means of a second heat carrier fluid. The heat exchange is done by combining the working fluid with the second fluid.
La presente invención tiene en común con estos tres últimos antecedentes en que en todos ellos se aplica un cambio de estado en el fluido de trabajo. Sin embargo la diferencia con todos ellos es que mientras en ellos se logra el cambio de estado aplicando o extrayendo calor en toda la masa en general, en la invención se fuerzan las condiciones de presión y temperatura que provocan un cambio de estado espontáneo, a veces en forma selectiva en una parte de la masa . The present invention has in common with these last three antecedents in that in all of them a change of state is applied in the working fluid. However, the difference with all of them is that while in them the change of state is achieved by applying or extracting heat in the whole mass in general, in the invention pressure and temperature conditions are forced that cause a spontaneous change of state, sometimes selectively in a part of the dough.
Esta diferencia es muy significativa ya que en los casos antecedentes se necesita de un diferencial de temperatura para lograr una transferencia de calor (Ley de Enfriamiento de Newton) y el éxito del cambio de estado depende de la amplitud de este diferencial. En el invento al generar las condiciones de cambio de estado espontáneo se logra que el fluido se evapore aún estando a la misma temperatura que su entorno pero absorbiendo calor provocando su enfriamiento o que se condense rechazando calor que resulta en el aumento de temperatura de su entorno. This difference is very significant since in the antecedent cases a temperature differential is needed to achieve heat transfer (Newton's Law of Cooling) and the success of the change of state depends on the amplitude of this differential. In the invention, by generating the conditions of spontaneous change of state, it is achieved that the fluid evaporates even being at the same temperature as its surroundings but absorbing heat causing it to cool or that it condenses, rejecting heat that results in an increase in the temperature of its surroundings. .
Los fundamentos teóricos de las propiedades termodinámicas que se aplican en la presente invención están basados en las propiedades inherentes de los fluidos y sus cambios de estado. Estas propiedades fueron estudiadas James Thomson, Thomas Andrews y Johannes Van der Waals, cuyos trabajos son antecedentes de la invención. The theoretical foundations of thermodynamic properties that apply in the present invention are based on the inherent properties of fluids and their changes of state. These properties were studied by James Thomson, Thomas Andrews and Johannes Van der Waals, whose works are antecedents of the invention.
El Dr . Thomas Andrews, en su articulo "Sobre la Continuidad de los Estados de la Materia Gaseosos y Líquidos"The doctor . Thomas Andrews, in his article "On the Continuity of Gaseous and Liquid States of Matter"
("On the Continuity of the Gaseous and Liquid States of Matter", 1869) había anticipado la licuefacción de los gases hasta entonces considerados "permanentes". Al determinar que el dióxido de carbono no era condensable por encima de los 304K, con independencia de la presión, estimó que existía un valor de temperatura por encima del cual los gases ya no podrían licuarse. Estimó entonces que los gases permanentes podrían ser licuados si se enfriaban lo suficiente, es decir, por debajo de esta temperatura, que luego se conocería como "crítica". Esta temperatura es uno de los valores de lo que hoy se llama el "punto crítico". El último "gas permanente", el helio, fue licuado en 1908 en Holanda por Kamerlingh Onnes, verificando la teoría de Thomas Andrews. ("On the Continuity of the Gaseous and Liquid States of Matter ", 1869) had anticipated the liquefaction of gases until then considered" permanent. "When determining that carbon dioxide was not condensable above 304K, regardless of pressure, he estimated that there was a temperature value above from which the gases could no longer be liquefied. He then estimated that the permanent gases could be liquefied if they cooled sufficiently, that is, below this temperature, which would later be known as "critical." This temperature is one of the values of what today is called the "critical point." The last "permanent gas", helium, was liquefied in 1908 in Holland by Kamerlingh Onnes, verifying the theory of Thomas Andrews.
James Thomson, hermano de William, luego Lord Kelvin, y colega del Dr . Thomas Andrews, en Belfast, en tanto también estudiaba la licuefacción de los gases. En esto notó y estudió lo que llamó "la dificultad de lograr el comienzo del cambio de estado" ("difficulty of making a beginning of their change of State") . Esta dificultad es lo que actualmente se denomina "subenfriamiento" y "sobrecalentamiento", considerados hoy "estados metaestables" o "metaestados" . James Thomson, brother of William, later Lord Kelvin, and colleague of Dr. Thomas Andrews, in Belfast, while also studying the liquefaction of gases. In this he noted and studied what he called "the difficulty of making a beginning of their change of State". This difficulty is what is currently called "subcooling" and "overheating", considered today "metastable states" or "metastates".
Johannes van der Waals ganó premio Nobel de Física en 1910 por su trabajo en la ecuación del estado de los gases y los líquidos. Su trabajo es importante respecto del invento en dos aspectos. En el primero, Van der Waals logró estimar estos estados metaestables al descubrir sus límites. Estableció a qué presiones máximas/mínimas puede mantenerse líquido o gaseoso, respectivamente, en función de la temperatura. En una gráfica de presión en función del volumen, las isotermas subcríticas tienen un valle (mínima presión) y un pico (máxima presión) dentro de la campana de coexistencia líquido/vapor cuyo conjunto describen la línea tras la cual la nucleación o condensación es espontánea. Esta línea fue llamada "espinodal". En el segundo aspecto Van der Waals probó que en sus valores reducidos todos los fluidos se desvían del comportamiento de gas ideal en más o menos el mismo grado. Esto es el " Teorema de los Estados Correspondientes" ("Theorem of Corresponding States", 1873) . Este teorema establece que todos los fluidos, cuando se comparan con la misma temperatura y presiones reducidas se desvían del comportamiento de gas ideal en más o menos el mismo grado. El ejemplo más importante es la Ecuación de Van der Waals, cuya forma reducida se puede aplicar a todos los fluidos . Johannes van der Waals won the Nobel Prize in Physics in 1910 for his work on the equation of state of gases and liquids. Your work is important to the invention in two respects. In the first, Van der Waals was able to estimate these metastable states by discovering their limits. It established at what maximum / minimum pressures can be kept liquid or gaseous, respectively, depending on the temperature. In a graph of pressure versus volume, the subcritical isotherms have a valley (minimum pressure) and a peak (maximum pressure) within the liquid / vapor coexistence hood, which together describe the line after which nucleation or condensation is spontaneous . This line was called "spinodal". In the second aspect Van der Waals proved that at their reduced values all fluids deviate from ideal gas behavior by roughly the same degree. This is the "Theorem of Corresponding States"("Theorem of Corresponding States", 1873). This theorem states that all fluids, when compared with the same temperature and reduced pressures, deviate from the ideal gas behavior by roughly the same degree. The most important example is the Van der Waals equation, the reduced form of which can be applied to all fluids.
Como corolario del trabajo de estos científicos se logra dibujar el Gráfico 1 que permite anticipar el comportamiento físico de todos los fluidos que ante el calor no sufran cambios químicos, es decir que su fórmula no cambie y no se transforme en otro compuesto. As a corollary to the work of these scientists, it is possible to draw Graph 1, which allows anticipating the physical behavior of all fluids that do not undergo chemical changes in the face of heat, that is, their formula does not change and does not transform into another compound.
Este Gráfico 1 detalla las isotermas llamadas "de Van der Waals" en una gráfica de P=/(V) . "K" es el punto crítico. Pasando por "K", está la "campana", llamada "curva binodal" o "curva de Andrews" que encierra el área de coexistencia líquido-vapor. Esta curva es cortada por las isotermas subcríticas, en azul, que tienen el mínimo y el máximo previstos cuyo conjunto forman la línea "espinodal". Este gráfico detalla los estados metaestables : líquido estirado, líquido sobrecalentado y vapor subenfriado. This Graph 1 details the so-called "Van der Waals" isotherms on a graph of P = / (V). "K" is the critical point. Passing through "K", there is the "bell", called the "binodal curve" or "Andrews curve" that encloses the area of liquid-vapor coexistence. This curve is intersected by the subcritical isotherms, in blue, which have the minimum and maximum predicted, the combination of which forms the "spinodal" line. This graph details the metastable states: stretched liquid, superheated liquid, and subcooled vapor.
Figure imgf000008_0001
Figure imgf000008_0001
Es conocido en el arte, entonces, que aquellos fluidos que frente al calor no cambian químicamente, esto es, que no se convierten en otro compuesto, pueden cambiar de estado de agregación, y estar en uno u otro estado según su temperatura y presión. Pueden cambiar directamente o entrar en un estado metaestable hasta que se rompa el equilibrio, o llegue a su máximo . It is known in the art, then, that those fluids that do not change chemically in the face of heat, that is, that do not become another compound, can change their state of aggregation, and be in one or another state according to their temperature and pressure. They can change directly or enter a metastable state until the balance is broken, or reaches its maximum.
El invento se basa en el aprovechamiento de estas propiedades en un proceso convenientemente determinado capaz de ser desarrollado en un dispositivo mecánico también específicamente diseñado sobre un fluido de trabajo que las cumpla y elegido en función de sus propiedades termodinámicas respecto de la aplicación pretendida. The invention is based on the use of these properties in a suitably determined process capable of being developed in a mechanical device also specifically designed on a working fluid that fulfills them and chosen according to its thermodynamic properties with respect to the intended application.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
El objeto de la invención es proporcionar un proceso que permite elevar la densidad energética de un volumen de un fluido aumentando su presión a partir de calor y cambios de estado, aún en bajisimos diferenciales de temperatura, con la finalidad de ejercer trabajo mecánico útil. Las etapas del proceso son una combinación de cambios entre los estados liquido y vapor. Según la implementación deseada estos cambios pueden lograr superar los valores críticos de presión y/o temperatura resultando en fluido supercritico, liquido compresible o gas. El proceso se demuestra en una celda prototipo. Estas etapas pueden tener lugar en un único volumen que se adapta a éstas o en una secuencia de volúmenes especializados en cada una de ellas. Las etapas pueden suceder secuencialmente o, donde se potencien mutuamente, puede preferirse que tengan lugar concurrentemente. The object of the invention is to provide a process that allows raising the energy density of a volume of a fluid by increasing its pressure from heat and changes of state, even in very low temperature differentials, in order to exert useful mechanical work. The stages of process are a combination of changes between the liquid and vapor states. Depending on the desired implementation, these changes can exceed the critical pressure and / or temperature values resulting in supercritical fluid, compressible liquid or gas. The process is demonstrated in a prototype cell. These stages can take place in a single volume that adapts to them or in a sequence of volumes specialized in each of them. The stages may occur sequentially or, where they enhance each other, it may be preferred that they occur concurrently.
En términos termodinámicos , se trata de un aumento de energía interna del fluido. La energía interna, por el primer principio de la Termodinámica (AU=Q+W) , se puede aumentar aportando trabajo (W) , por ejemplo, reduciendo el volumen sobre la misma masa con un pistón; o aumentando la masa en mismo volumen, como en un compresor axial; o aportando calor (Q) , con una caldera; todas formas conocidas en el arte. In thermodynamic terms, it is an increase in the internal energy of the fluid. The internal energy, by the first principle of Thermodynamics (AU = Q + W), can be increased by providing work (W), for example, by reducing the volume on the same mass with a piston; or by increasing the mass in the same volume, as in an axial compressor; or providing heat (Q), with a boiler; all known forms in the art.
La novedad de la invención radica en que el aporte de calor al fluido se hace por absorción de calor latente al provocar deliberada y controladamente una ebullición espontánea súbita donde no se esperarla que suceda, en un sistema confinado, con su correspondiente cambio de estado por evaporación. Esto determina que la transferencia de calor no es producida por la fuente de calor en proporción a la diferencia de temperatura, como prescribe la Ley de Enfriamiento de Newton, sino absorbida por el fluido que cambia de estado y, en consecuencia, su magnitud no depende de esta diferencia. La temperatura se mantiene incambiada en el fluido que se evapora. Este principio de funcionamiento provoca un desequilibrio termodinámico cuyo proceso de equiparación consiguiente, adiabático en términos ideales, tiene como consecuencias las otras etapas reivindicadas y, la suma de todas es el invento. The novelty of the invention lies in the fact that the heat contribution to the fluid is made by absorption of latent heat by deliberately and controlled causing a sudden spontaneous boiling where it is not expected to happen, in a confined system, with its corresponding change of state by evaporation . This determines that the heat transfer is not produced by the heat source in proportion to the difference in temperature, as prescribed by Newton's Law of Cooling, but rather absorbed by the fluid that changes state and, consequently, its magnitude does not depend of this difference. The temperature remains unchanged in the evaporating fluid. This principle of operation causes a thermodynamic imbalance whose consequent equalization process, adiabatic in ideal terms, it has as consequences the other stages claimed and, the sum of all is the invention.
El invento reivindicado es_un_proceso_de potencialización, o aumento en energía potencial, de un fluido para su conversión en trabajo en un ciclo termodinámico reversible (AS=0) sin intercambio químico con su entorno. La implementación del invento tiene como base un circuito de bomba de calor diseñado específicamente con este objetivo donde la implementación es una estación más destinada a potenciar un porcentaje del fluido condensado a alta presión con todo el calor que haya sido capturado en la etapa de evaporación. En consecuencia, la presente invención proporciona, en un modo de realización que se describirá más adelante, el proceso y las etapas de éste a través del cual se alcanza la maximización de la entropía del fluido. La reducción al punto de partida, cerrando el ciclo termodinámico, se lleva a cabo convirtiendo la energía potencial adquirida en trabajo mediante alguno de los métodos ya conocidos, o por conocer en el arte, montado en serie a continuación del proceso en este mismo circuito. Como se dijo antes, el resultado es un ciclo termodinámico reversible sin intercambio químico con su entorno. The claimed invention is_a_process_of potentiation, or increase in potential energy, of a fluid for its conversion into work in a reversible thermodynamic cycle (AS = 0) without chemical exchange with its environment. The implementation of the invention is based on a heat pump circuit specifically designed for this purpose, where the implementation is one more station destined to boost a percentage of the condensed fluid at high pressure with all the heat that has been captured in the evaporation stage. Accordingly, the present invention provides, in an embodiment to be described later, the process and steps thereof through which the entropy maximization of the fluid is achieved. The reduction to the starting point, closing the thermodynamic cycle, is carried out by converting the potential energy acquired into work by means of any of the methods already known, or to be known in the art, mounted in series after the process in this same circuit. As stated before, the result is a reversible thermodynamic cycle without chemical exchange with its environment.
Su campo de aplicación es el sector de producción de trabajo mecánico, particularmente, pero no restringido, donde la fuente de energía esté disponible en forma de calor, aún a baja temperatura. Sus ámbitos de aplicación más notables, sin limitarse a éstos, son el de la eficiencia energética, el de la generación de energía y, con particular énfasis, el del transporte . Its field of application is the mechanical work production sector, particularly, but not restricted, where the energy source is available in the form of heat, even at low temperatures. Its most notable areas of application, without being limited to these, are energy efficiency, energy generation and, with particular emphasis, transport.
En el área de eficiencia energética permite aprovechar en forma de regeneración o de cogeneración el calor de deshecho de los procesos industriales, el no deseado contenido en los efluentes, o fluidos en general que se necesiten transportar, y/o el calor de rechazo de los condensadores en los equipamientos frigoríficos. In the area of energy efficiency, it allows to take advantage of the heat from waste from industrial processes, the unwanted content in effluents, or fluids in general that need to be transported, and / or the rejection heat of the condensers in the refrigeration equipment.
En el campo de la generación permite la generación a partir de la cosecha del calor atmosférico o de un volumen de agua. En el caso del calor atmosférico la cosecha incluye el del calor latente de la humedad condensada concurrentemente. In the field of generation, it allows generation from the harvest of atmospheric heat or a volume of water. In the case of atmospheric heat, the harvest includes that of latent heat from condensed moisture concurrently.
En el caso del transporte permite generar la energía mecánica a partir de una batería de calor en forma de volúmenes de líquidos o sólidos calientes, ahorrando otros métodos de almacenamiento fisicoquimicos de energía. Donde las condiciones lo permitan el calor puede ser también el de origen atmosférico o, en el caso de navegación, el del agua. In the case of transport, it allows generating mechanical energy from a heat battery in the form of volumes of hot liquids or solids, saving other physical-chemical energy storage methods. Where conditions allow it, the heat can also be that of atmospheric origin or, in the case of navigation, that of the water.
La invención admite el uso de fuentes múltiples de calor simultáneas, o en serie. En el caso de la automoción permite tener una fuente liquida abordo y una de origen atmosférica, aunque sea mínima. Esta fuente o fuentes secundarias son útiles para economizar el calor de la fuente principal o para cederle calor en los momentos de no-utilización. The invention admits the use of multiple sources of heat simultaneously, or in series. In the case of the automotive industry, it allows a liquid source on board and an atmospheric source, even if it is minimal. This secondary source or sources are useful to save the heat of the main source or to transfer heat to it in times of non-use.
BREVE DESCRIPCIÓN DE CADA FIGURA BRIEF DESCRIPTION OF EACH FIGURE
Figura la - Gráfico de P=f(T ) para el Estudio de la Linea de Saturación y los Limites de Sobrecalentamiento yFigure la - Graph of P = f (T) for the Study of the Saturation Line and the Limits of Superheating and
Subenfriamiento para el fluido térmico R410a. Subcooling for R410a thermal fluid.
Figura Ib - Gráfico de P=f(T ) para el Estudio de la Linea de Saturación y los Limites de Sobrecalentamiento y Figure Ib - Graph of P = f (T) for the Study of the Saturation Line and the Limits of Superheat and
Subenfriamiento para el fluido térmico R744 - CO2. Figura 2a - Esquema de la Celda básica Prototipo de la invención. Se muestran los elementos esenciales del dispositivo: tubo en cobre (a veces llamado también "cámara de carga" o "cámara de procesamiento") , con manómetro, Termocupla y válvula esférica de acceso. Subcooling for R744 - CO2 thermal fluid. Figure 2a - Scheme of the basic Prototype Cell of the invention. The essential elements of the device are shown: copper tube (sometimes also called "loading chamber" or "processing chamber"), with pressure gauge, thermocouple and spherical access valve.
Figura 2b - Evolución de Variables relevantes en el CICLO Figure 2b - Evolution of relevant variables in the CYCLE
COMPLETO del proceso de carga de energía potencial, presentadas en forma gráfica Secuencial de muestreo-40 Hz (40 muéstreos corresponden a ls) vs Valor de Referencia Múltiple. Los datos representados surgen de un muestreo con R744 de fluido de trabajo y objetivo subcritico. COMPLETE of the potential energy charging process, presented in graphical form Sequential sampling-40 Hz (40 samples correspond to ls) vs Multiple Reference Value. The data represented arises from a sampling with R744 of working fluid and subcritical objective.
Figura 2c - Gráfico de evolución de los puntos P-T relevados (presión-temperatura) , durante el ciclo de carga, proceso de despresurización por descarga, con curva de saturación, como referencia. Figure 2c - Evolution graph of the surveyed P-T points (pressure-temperature), during the load cycle, depressurization process by discharge, with saturation curve, as a reference.
Figura 3a - Esquema gráfico de la arquitectura de la Unidad prototipo 'Cå' · Figure 3a - Graphic diagram of the architecture of the prototype Unit 'C å '
Figura 3b - Evolución de Variables relevantes en el CICLO Figure 3b - Evolution of relevant variables in the CYCLE
COMPLETO del proceso de carga de energía potencial . Se presentan las variables relevantes al proceso, Temperatura (°C xlO), Presión (PSIg) , Porcentaje de la Masa Total de Fluido en Vapor (%M x2000 +500) , Porcentaje del VolumenCOMPLETE of the potential energy charging process. The variables relevant to the process are presented: Temperature (° C x10), Pressure (PSIg), Percentage of Total Mass of Fluid in Steam (% M x2000 +500), Percentage of Volume
Total en Vapor (%V x800 +500) . Cada punto de los gráficos corresponde a "puntos de muestreo" tomados secuencialmente a razón de 40 por segundo (40Hz) . Total in Steam (% V x800 +500). Each point in the graphs corresponds to "sample points" taken sequentially at the rate of 40 per second (40Hz).
Figura 3c - Detalle de la Evolución de Variables relevantes durante la carga por Evaporación Súbita y Expansión Térmica . Figure 3c - Detail of the Evolution of Relevant Variables during charging by Sudden Evaporation and Thermal Expansion.
Este gráfico es un detalle de la primera mitad del gráfico de la figura 3b, mostrándose en escala más expandida. Se muestran las distintas etapas que serán descriptas con los ejemplos de realización. This graph is a detail of the first half of the graph in figure 3b, shown on a more expanded scale. The different stages that will be described with the examples of realization are shown.
Figura 3d - Detalle de la Evolución de Variables relevantes durante la carga por Evaporación Súbita y Expansión Térmica, con referencias de hitos. En este detalle, que es el mismo presentado en la Figura 3c, se le han agregado lineas verticales de referencia, que siguen el orden en las referencias. Las lineas azules largas son cambios en el aparato y las café cortas son referencias físicas del proceso. Las lineas rojas indican la entrada al estado de fluido compresible, la primera, y al estado de fluido supercritico, la segunda. Figure 3d - Detail of the Evolution of relevant Variables during loading by Sudden Evaporation and Expansion Thermal, with milestone references. In this detail, which is the same presented in Figure 3c, vertical reference lines have been added, which follow the order in the references. The long blue lines are changes in the device and the short brown lines are physical references of the process. The red lines indicate the entrance to the state of compressible fluid, the first, and to the state of supercritical fluid, the second.
Figura 3e - Gráfico de evolución de los puntos P-T relevados (presión-temperatura) , durante el ciclo de carga, proceso de despresurización por descarga, con curva de saturación, como referencia. Figure 3e - Evolution graph of the surveyed P-T points (pressure-temperature), during the load cycle, depressurization process by discharge, with saturation curve, as a reference.
Figura 4a - Circuito Frigorífico de ejemplo integrando la celda de la invención, como serán utilizados en los ejemplos 3A y 3B. La etiquetas refieren a los sistemas descritos en el detalle de los ejemplos (1-4, circuito frigorífico base; A-D, motor; a-d, ciclo entálpico del invento) . Figure 4a - Example Refrigeration Circuit integrating the cell of the invention, as will be used in examples 3A and 3B. The labels refer to the systems described in the detail of the examples (1-4, base refrigeration circuit; A-D, motor; a-d, enthalpic cycle of the invention).
Figura 4b - Gráfico de Mollier. Ciclo termodinámico usando R410a como fluido de trabajo en un circuito de trabajo que incluyen las celdas de la invención, relacionado con el Figure 4b - Mollier plot. Thermodynamic cycle using R410a as a working fluid in a working circuit that includes the cells of the invention, related to the
Ejemplo 3A. Example 3A.
Figura 4c - Gráfico P=/(V) . Ciclo de trabajo usando R410a del motor monocilindrico del Ejemplo 3A. Figure 4c - Graph P = / (V). Duty cycle using R410a from the single cylinder engine of Example 3A.
Figura 4d - Gráfico de Mollier. Ciclo termodinámico usando R744 como fluido de trabajo en un circuito de trabajo que incluyen las celdas de la invención, relacionado con el Figure 4d - Mollier plot. Thermodynamic cycle using R744 as working fluid in a working circuit that includes the cells of the invention, related to the
Ejemplo 3B. Example 3B.
Figura 4e - Gráfico P=/(V) . Ciclo de trabajo usando R744 del motor monocilindrico del Ejemplo 3B. Figure 4e - Graph P = / (V). Duty cycle using R744 from the single cylinder engine of Example 3B.
Figura 5a - Esquema gráfico del Invento en un posible modo de realización de un dispositivo de generación pulsante. Se muestra un conjunto de cilindro con pistón funcionando como las celdas de la invención, relacionado con el Ejemplo 3. Figure 5a - Graphic diagram of the Invention in a possible embodiment of a pulsed generation device. A working piston cylinder assembly is shown as the cells of the invention, related to Example 3.
Figura 5b - Muestra el perfil de la Corona de Levas. Se muestra también una disposición de 6 cilindros sobre una corona de 4 instancias, relacionado con el Ejemplo 3. Figure 5b - Shows the profile of the Cam Crown. An arrangement of 6 cylinders on a 4-instance crown is also shown, related to Example 3.
Figura 6 - Esquema gráfico del Invento en un posible modo de realización de un dispositivo de generación continua o axial con turbina. Figure 6 - Graphic diagram of the Invention in a possible embodiment of a device for continuous or axial generation with a turbine.
Terminología Terminology
Los siguientes términos, tal como se usan en la presente invención, quedan definidos de la siguiente manera: The following terms, as used in the present invention, are defined as follows:
- Autoenfriamiento: Nombre del proceso en un fluido saturado que resulta con una temperatura final menor a la temperatura inicial sin rechazar calor al ambiente. Es el resultado de una caída de presión muy rápida, o en un envase adiabático, que determina la evaporación de al menos una parte de la masa liquida en cantidad necesaria para alcanzar un nuevo equilibrio de saturación. El calor de evaporación surge del calor sensible lo que determina una menor temperatura final del sistema. - Self-cooling: Name of the process in a saturated fluid that results in a final temperature lower than the initial temperature without rejecting heat to the environment. It is the result of a very rapid pressure drop, or in an adiabatic container, which determines the evaporation of at least a part of the liquid mass in the quantity necessary to reach a new equilibrium of saturation. The heat of evaporation arises from sensible heat, which determines a lower final temperature of the system.
- Cambio de Estado: evolución de la materia entre varios estados de agregación sin que ocurra un cambio en su composición - State Change: evolution of matter between various states of aggregation without a change in its composition occurring
- Celda de la invención: Este término se refiere a un conjunto de elementos mecánicos que, vinculados apropiadamente entre sí, permiten desarrollar el método de la invención. Este conjunto de elementos vinculados denominado celda puede incluir parcial o totalmente elementos tales como: cámaras o recipientes, válvulas, calentadores, termostatos, termocuplas, termómetros, manómetros, cañerías, componentes electrónicos, componentes de control, según sea el objetivo de su aplicación. - Cell of the invention: This term refers to a set of mechanical elements that, appropriately linked to each other, allow the method of the invention to be developed. This set of linked elements called a cell can partially or totally include elements such as: chambers or containers, valves, heaters, thermostats, thermocouples, thermometers, pressure gauges, pipes, electronic components, control components, depending on the purpose of your application.
- Coeficiente de Rendimiento (CoP, Coefficient of Performance) : Es la relación numérica entre la energía desplazada y el trabajo requerido para hacerlo. Una relación de 1 significa la misma cantidad de trabajo que de energía desplazada. Mayor a 1 indica que se desplaza más que el trabajo requerido y menos de 1, que la energía desplazada es menor al trabajo requerido. - Coefficient of Performance (CoP, Coefficient of Performance): It is the numerical relationship between the displaced energy and the work required to do it. A ratio of 1 means the same amount of work as displaced energy. Greater than 1 indicates that more than the required work is displaced and less than 1, that the displaced energy is less than the required work.
- Deslizamiento (Glide) : Propiedad de las mezclas zeotrópicas. Es el rango de temperaturas en las que ocurre el cambio de estado, al tener sus componentes distintos puntos de ebullición. En los refrigerantes este deslizamiento tiene usualmente unos 4 a 7 Kelvin, pero puede ser mayor o menor sólo dependiendo de la mezcla de fluidos térmicos. - Glide: Property of zeotropic mixtures. It is the range of temperatures in which the change of state occurs, as its components have different boiling points. In refrigerants this slip is usually about 4 to 7 Kelvin, but it can be higher or lower only depending on the mixture of thermal fluids.
- Ebullición : Es la vaporización rápida en toda la masa de un líquido que ocurre cuando se alcanza la temperatura para la cual cada valor de presión por debajo de la presión crítica en la que el fluido pueda estar en estado líquido. - Boiling: It is the rapid vaporization throughout the mass of a liquid that occurs when the temperature is reached for which each pressure value is below the critical pressure at which the fluid can be in a liquid state.
- Ebullición Súbita: Es la ebullición que tiene lugar cuando un líquido se encuentra repentinamente en estado de excesivo sobrecalentamiento o que estando sobrecalentado es perturbado perdiendo la estabilidad. Esta ebullición puede ser total o parcial -o localizada-. Una ebullición súbita total afecta toda la masa y ocurre cuando queda en estado de sobrecalentamiento por una reducción drástica de presión. Esta reducción de presión produce una nucleación homogénea instantánea. Una ebullición súbita localizada ocurre cuando una fuente intensa de calor incide tan rápidamente en algún punto de la masa, que la evapora, sin cambiar el fluido circundante . - Sudden Boiling: It is the boiling that takes place when a liquid is suddenly in a state of excessive overheating or that being overheated is disturbed, losing stability. This boiling can be total or partial -or localized-. A total flash boil affects the entire mass and occurs when it is left in a state of overheating due to a drastic reduction in pressure. This pressure reduction produces an instantaneous homogeneous nucleation. A localized flash boil occurs when an intense source of heat strikes some point in the mass so rapidly that it evaporates, without changing the surrounding fluid.
- Ebullición Laminar: Es un tipo de ebullición que ocurre por aporte de calor cuando la superficie de aporte de calor está significativamente más caliente que el punto de ebullición del líquido. Esto determina un flujo de calor superior al que el fluido puede transmitir, evaporando las moléculas afectadas. Estas moléculas generan una capa muy fina de vapor entre la superficie caliente y el líquido, la cual le da el nombre, que tiene menos conductividad que el líquido, lo que mantiene el sistema. - Laminar Boiling: It is a type of boiling that occurs due to heat input when the heat input surface is significantly hotter than the boiling point of the liquid. This determines a heat flow greater than that which the fluid can transmit, evaporating the affected molecules. These molecules generate a very thin layer of vapor between the hot surface and the liquid, which gives it its name, which has less conductivity than the liquid, which maintains the system.
Ebullición Nuclear: Tipo de ebullición que se produce cuando aparecen burbujas de vapor o "núcleos" de evaporación. Estos núcleos pueden ser en torno a una impureza o la intersección de ondas hipobáricas, que generan puntos de muy baja presión, en caso de una despresurización repentina. Existen dos tipos según la distribución de las burbujas: homogénea o heterogénea. Nuclear Boiling: A type of boiling that occurs when vapor bubbles or evaporation "nuclei" appear. These nuclei can be around an impurity or the intersection of hypobaric waves, which generate points of very low pressure, in the event of a sudden depressurization. There are two types according to the distribution of the bubbles: homogeneous or heterogeneous.
- Ebullición Nuclear Homogénea: Es una ebullición nuclear en la que los núcleos de evaporación se reparten en igual proporción en toda la masa del líquido. Se generan típicamente por despresurización. - Homogeneous Nuclear Boiling: It is a nuclear boiling in which the evaporation nuclei are distributed in equal proportion throughout the mass of the liquid. They are typically generated by depressurization.
- Ebullición Nuclear Heterogénea: Es una ebullición nuclear en la que los núcleos se generan en la superficie de contacto con el líquido. Estos núcleos se forman en torno a impurezas o rugosidad en la superficie. Si esta superficie es muy lisa el líquido puede sobrecalentarse sin entrar en ebullición. - Heterogeneous Nuclear Boiling: It is a nuclear boiling in which the nuclei are generated on the contact surface with the liquid. These nuclei are formed around impurities or roughness on the surface. If this surface is very smooth, the liquid can overheat without boiling.
- Equilibrio Dinámico: En un sistema cerrado cuando la masa de líquido que se evapora iguala a la de vapor que se condensa se dice que el sistema está en "equilibrio dinámico", o "equilibrio evaporatorio". Se corresponde con el estado de saturación. - Dynamic Equilibrium: In a closed system when the mass of evaporating liquid equals that of condensing vapor, it is said that the system is in "dynamic equilibrium", or "evaporative equilibrium". It corresponds to the state of saturation.
- Equilibrio Evaporatorio: es equivalente a Equilibrio Dinámico . - Evaporative Equilibrium: it is equivalent to Dynamic Equilibrium.
- Estado de Saturación: Estado de un fluido cuya temperatura y presión están en directa correspondencia y se logra el equilibrio dinámico. La presión de vapor es la máxima posible para su temperatura y su temperatura es la máxima para su presión de vapor, sin entrar en ebullición. - Evaporación (o condensación) lineal: se refiere a la evaporación o condensación habitual, por ser lineal su tasa de cambio de estado por unidad de tiempo, en sistemas abiertos . - Saturation State: State of a fluid whose temperature and pressure are in direct correspondence and dynamic equilibrium is achieved. The vapor pressure is the maximum possible for its temperature and its temperature is the maximum for its vapor pressure, without boiling. - Linear evaporation (or condensation): refers to the usual evaporation or condensation, since its rate of change of state per unit of time is linear, in open systems.
- Fluido Azeotrópico (mezcla) : Mezcla liquida de composición definida entre dos o más compuestos químicos que hierve a una temperatura constante, a presión constante, y se comporta como si estuviera formada por un solo componente. Su fase vaporosa tiene la misma composición que su fase liquida. - Azeotropic Fluid (mixture): Liquid mixture of defined composition between two or more chemical compounds that boils at a constant temperature, at constant pressure, and behaves as if it were made up of a single component. Its vaporous phase has the same composition as its liquid phase.
- Fluido Zeotrópico (mezcla) : Una mezcla zeotrópica (ISO 817) o "no azeotrópica", es un fluido mezcla de dos o más componentes que tienen distinto punto de ebullición. Su composición por fase va variando con la evaporación, ya que sus componentes se comportan con independencia y tienen distintos indices de evaporación. - Zeotropic fluid (mixture): A zeotropic mixture (ISO 817) or "non-azeotropic", is a fluid mixture of two or more components that have different boiling points. Its composition per phase varies with evaporation, since its components behave independently and have different evaporation rates.
- Fluido Supercrítico (FSC) : Estado del fluido que se encuentra a mayor temperatura y presión que su temperatura y presión critica. Se caracteriza por combinar las propiedades de los líquidos y de los gases. No hay transición de fase entre liquido y vapor. - Supercritical Fluid (FSC): State of the fluid that is at a higher temperature and pressure than its critical temperature and pressure. It is characterized by combining the properties of liquids and gases. There is no phase transition between liquid and vapor.
- Fluido Compresible: Fluido por encima de su Presión Critica, pero debajo de la Temperatura Critica. Se comporta como un liquido, pero admite ser comprimido. - Compressible Fluid: Fluid above its Critical Pressure, but below the Critical Temperature. It behaves like a liquid, but it can be compressed.
- Fluido de Trabajo: Es el fluido (liquido o gas) que se utiliza en el dispositivo de la invención y sobre el cual se aplican las acciones del método de la invención. - Working Fluid: It is the fluid (liquid or gas) used in the device of the invention and on which the actions of the method of the invention are applied.
- Gráfica de Mollier: Gráfico termodinámico que tenga como uno de sus ejes a la Entalpia (h) llamado asi desde 1923 en honor al profesor alemán Richard Mollier, pionero en investigación experimental en termodinámica. - Mollier's Graph: Thermodynamic graph that has as one of its axes the Enthalpy (h), so named since 1923 in honor of the German professor Richard Mollier, a pioneer in experimental research in thermodynamics.
- Línea Espinodal : Es la linea que detalla el limite de estabilidad local. En el ámbito del invento, y en la gráfica de valores reducidos P=/(V) , es la linea definida por el conjunto de las raíces de la primera derivada de las isotermas subcríticas de Van der Waals y el punto crítico. - Spinodal Line: It is the line that details the local stability limit. In the scope of the invention, and in the graph of reduced values P = / (V), is the line defined by the set of roots of the first derivative of the subcritical van der Waals isotherms and the critical point.
Línea binodal , de coexistencia o "de Andrews": Es la línea que detalla el límite de coexistencia de más de una fase o estado de agregación de la materia. La línea de Andrews es una binodal en especial, en forma de campana, que surge en la gráfica P=/(V) y que describe el límite del fluido bifásico - contenidos en la campana-. La línea de Andrews se suele dividir en dos: el límite del área de coexistencia con el estado líquido, llamada "línea de burbujeo", y el límite del fluido bifásico con el vapor, llamada "línea de goteo". Binodal line, of coexistence or "Andrews": It is the line that details the limit of coexistence of more than one phase or state of aggregation of matter. The Andrews line is a binodal especially, bell-shaped, which appears on the graph P = / (V) and which describes the limit of the biphasic fluid - contained in the bell. The Andrews line is usually divided into two: the limit of the area of coexistence with the liquid state, called the "bubble line", and the limit of the biphasic fluid with the vapor, called the "drip line".
Líquido Elongado : Es el estado metaestable de un líquido en el que la presión ejercida sobre la superficie expuesta del líquido es menor a cero (presión negativa) , aumentando su espacio intermolecular. Cuando se rompe el equilibrio hay una evaporación parcial del líquido que llena el espacio dejado por las moléculas que vuelven a su distancia correspondiente a la temperatura. Elongated Liquid: It is the metastable state of a liquid in which the pressure exerted on the exposed surface of the liquid is less than zero (negative pressure), increasing its intermolecular space. When the equilibrium is broken there is a partial evaporation of the liquid that fills the space left by the molecules that return to their distance corresponding to the temperature.
Líquido Sobrecalentado: Es el estado metaestable de un líquido que, sin estar en ebullición, su temperatura excede su temperatura de saturación a la presión a la que está sometido o, a la inversa, cuando su presión está por debajo de la presión de saturación en función a la temperatura que se encuentra. Cuando se rompe el equilibrio el líquido se entra en ebullición espontáneamente. Superheated Liquid: It is the metastable state of a liquid that, without being boiling, its temperature exceeds its saturation temperature at the pressure to which it is subjected or, conversely, when its pressure is below the saturation pressure in function at the temperature found. When the equilibrium is broken, the liquid spontaneously boils.
Masa Térmica, Batería de Calor o Volante Térmico: Masa de material en el estado más adecuado a su función que tiene por objeto contener -en términos prácticos relativos al intercambio- una cantidad infinita de calor. Puede ceder o recibir calor sin cambiar significativamente su temperatura. Thermal Mass, Heat Battery or Thermal Flywheel: Mass of material in the most suitable state for its function, the purpose of which is to contain -in practical exchange-related terms- an infinite amount of heat. It can yield or receive heat without significantly changing its temperature.
Metaestabilidad: Es la propiedad del sistema con varios estados de equilibrio posibles, que puede alcanzar pseudo- estabilidad intermedia, o estabilidad precaria, que se mantiene en el tiempo en tanto no sean afectados por una perturbación externa. Metastability: It is the property of the system with several possible states of equilibrium, which can reach pseudo-intermediate stability, or precarious stability, which is maintained over time as long as they are not affected by an external disturbance.
- Presión Crítica : Presión a partir de la cual el liquido es comprimible y no puede ser convertido en gas con independencia de su temperatura. - Critical Pressure: Pressure from which the liquid is compressible and cannot be converted into a gas regardless of its temperature.
- Propiedades Críticas: Son aquellas que describen y determinan el punto critico y el comportamiento de los fluidos en el entorno de éste. - Critical Properties: They are those that describe and determine the critical point and the behavior of the fluids in its surroundings.
- Punto Crítico : Punto en que el fluido se encuentra en su presión critica a su temperatura critica. Es la culminación de mayor temperatura y presión de la curva de saturación. - Critical Point: Point at which the fluid is at its critical pressure at its critical temperature. It is the highest temperature and pressure culmination of the saturation curve.
- Punto de Ebullición : Es el punto en la escala de temperatura en la que la presión de vapor de un liquido se iguala con la presión externa a la que está sometido. Es una propiedad de cada fluido. - Boiling Point: It is the point on the temperature scale at which the vapor pressure of a liquid equals the external pressure to which it is subjected. It is a property of each fluid.
- Temperatura Crítica : Temperatura a partir de la cual un fluido en estado gaseoso no puede ser condensado con independencia de la presión, en la que un "vapor" pasa a llamarse "gas". - Critical Temperature: Temperature from which a fluid in a gaseous state cannot be condensed regardless of the pressure, in which a "vapor" is called "gas".
- Valores Críticos: Módulo de valor del punto critico, en términos de presión, temperatura y volumen especifico (o densidad) - Critical Values: Value module of the critical point, in terms of pressure, temperature and specific volume (or density)
- Valores Reducidos: Son valores escalares resultantes del cociente de la presión, temperatura o volumen entre sus respectivos valores críticos. Un valor igual a 1 denota el valor critico, menor a 1 son valores "subcriticos" y mayores a 1 son supercriticos , o transcriticos . - Reduced Values: They are scalar values resulting from the quotient of pressure, temperature or volume between their respective critical values. A value equal to 1 denotes the critical value, less than 1 are "subcritical" values and greater than 1 are supercritical, or transcritical.
- Valores subcríticos: Valor de estado del fluido menores al valor critico, o módulo del punto critico, en su escala correspondiente . - Subcritical values: State value of the fluid less than the critical value, or module of the critical point, in its corresponding scale.
- Valores supercriticos, o transcríticos: Valor de estado del fluidos mayores al valor critico, o módulo del punto critico, en su escala correspondiente. - Válvula Check o Antirretorno : Válvula de control de flujo dispuesta en cañería que sólo permite flujo en un sentido, impidiendo el flujo en sentido contrario. - Supercritical or transcritical values: Fluid state value greater than the critical value, or module of the critical point, in its corresponding scale. - Check or Non-return Valve: Flow control valve arranged in the pipeline that only allows flow in one direction, preventing flow in the opposite direction.
- Válvula Flow-Check: Válvula análoga a la Check, que además de permitir flujo en un solo sentido, limita su máximo caudal. Permite el flujo solo el sentido determinado. Impide el paso si el flujo cambia de sentido, o si excede un máximo, aún en el sentido previsto. - Flow-Check Valve: Valve similar to the Check, which, in addition to allowing flow in one direction, limits its maximum flow. Allow flow only the determined direction. It prevents passage if the flow changes direction, or if it exceeds a maximum, even in the intended direction.
- Vapor Subenfriado: Es el estado metaestable de un vapor en el cual su temperatura está por debajo de su temperatura de saturación a la presión que se encuentra, o por el contrario, se encuentra a una presión mayor a la presión de saturación correspondiente a su temperatura. Cuando se rompe el equilibrio el vapor se condensa espontáneamente. - Subcooled Steam: It is the metastable state of a steam in which its temperature is below its saturation temperature at the pressure it is, or on the contrary, it is at a pressure higher than the saturation pressure corresponding to its temperature. When the equilibrium is broken, the vapor spontaneously condenses.
- Vecindad de Punto Crítico (Near-critical point) : Región de Presión/Temperatura cercana al punto crítico donde las propiedades físicas de los fluidos presentan variaciones muy rápidas de propiedades. - Neighborhood of Critical Point (Near-critical point): Region of Pressure / Temperature close to the critical point where the physical properties of the fluids present very fast variations of properties.
- Zonas de metaestabilidad: En la gráfica de P=/(V) , donde se trazan las isotermas de Van der Waals y las líneas epinodal y de Andrews, se denotan tres áreas llamadas de "metaestabilidad", por el estado de equilibrio precario del fluido. Estas son el área de presiones negativas ("liquido elongado") , y las áreas resultantes entre las líneas de Andrews y espinodal. El área entre la línea de Andrews menor al punto crítico o "línea de burbujeo" y la espinodal de mínimas es el área de "sobrecalentamiento" . El área entre la curva de Andrews mayor al punto crítico o "línea de goteo" y la espinodal de máximas, es el área de "subenfriamiento" . El fluido puede estar en esas áreas sin cambiar de estado en la medida que no sea perturbado. - Zones of metastability: In the graph of P = / (V), where the Van der Waals isotherms and the epinodal and Andrews lines are plotted, three areas called "metastability" are denoted, due to the precarious state of equilibrium of the fluid. These are the area of negative pressures ("elongated liquid"), and the resulting areas between the Andrews and spinodal lines. The area between the Andrews line less than the critical point or "bubble line" and the spinodal of minima is the "superheat" area. The area between the Andrews curve greater than the critical point or "drip line" and the spinodal of maxima, is the "subcooling" area. The fluid can be in these areas without changing state as long as it is not disturbed.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN El objeto de la presente invención es aumentar la energía interna de un fluido con el objetivo de ejercer trabajo mecánico útil y, además, hacerlo a partir de fuentes de calor de baja temperatura, o mínimo diferencial con el invento, y sin intercambio químico con el entorno. DETAILED DESCRIPTION OF THE INVENTION The object of the present invention is to increase the internal energy of a fluid in order to exert useful mechanical work and, furthermore, to do so from heat sources of low temperature, or minimum differential with the invention, and without chemical exchange with the environment.
El proceso utiliza principios profusamente estudiados y conocidos en el arte. A modo de repaso, ellos son: The process uses principles extensively studied and known in the art. By way of review, they are:
- Que los estados de agregación gaseosos tienen mayor entalpia que los líquidos. Por tanto un proceso de evaporación requiere calor de su entorno y un proceso de condensación rechaza calor a su entorno. - That gaseous states of aggregation have higher enthalpy than liquids. Therefore an evaporation process requires heat from its surroundings and a condensation process rejects heat from its surroundings.
- Que la tasa de transferencia de calor es en función del diferencial de temperatura (Ley de Enfriamiento de Newton) - That the heat transfer rate is a function of the temperature differential (Newton's Law of Cooling)
- Qué los fluidos se expanden y contraen en función de la temperatura, con la notable excepción del agua, por debajo de 3.8°C. - That fluids expand and contract as a function of temperature, with the notable exception of water, below 3.8 ° C.
- Qué existe una correspondencia entre temperatura- presión-volumen específico y estado de agregación de la materia. ( Teorema de los Estados Correspondientes, Van del Waals) - What is a correspondence between temperature-pressure-specific volume and the state of aggregation of matter. (Corresponding State Theorem, Van del Waals)
- Que los procesos de cambio de estado son isotérmicos. - That state change processes are isothermal.
De estos principios surge que el proceso no puede ser un aumento del calor sensible (calentamiento) porque el aumento de la energía interna quedaría limitado al producto del calor específico del fluido por la masa por la diferencia de temperatura y ésta, por definición, es acotada, haciendo inviable o poco útil la implementación . El proceso tiene que ser un aumento de energía interna por calor latente (evaporación) pero la evaporación requiere calor, entonces la tasa de evaporación depende de la tasa de aporte de calor y la tasa de aporte de calor depende del diferencial de temperatura. Por tanto, entonces, surge que la tasa de evaporación depende de la diferencia de temperatura que, de nuevo, es acotado. De todo esto se desprende que una aplicación directa de estos principios hace inviable cualquier implementación en términos prácticos. La novedad del invento es resolver esta inviabilidad sin vulnerar los principios conocidos y verificados en el arte previo y regido por las leyes de la termodinámica. From these principles it arises that the process cannot be an increase in sensible heat (heating) because the increase in internal energy would be limited to the product of the specific heat of the fluid and the mass times the temperature difference and this, by definition, is limited , making the implementation unfeasible or unhelpful. The process has to be an increase in internal energy by latent heat (evaporation) but evaporation requires heat, so the evaporation rate depends on the rate of heat input and the rate of heat input depends on the differential of temperature. Therefore, then, it appears that the evaporation rate depends on the temperature difference, which, again, is limited. From all this it follows that a direct application of these principles makes any implementation unfeasible in practical terms. The novelty of the invention is to resolve this infeasibility without violating the principles known and verified in the prior art and governed by the laws of thermodynamics.
El proceso objeto de la invención, entonces, es un método de optimización en eficacia y eficiencia, en un sistema termodinámico cerrado, de la propiedad de los líquidos de absorber calor al evaporarse. El invento deberá empujar y sobreponerse a las limitaciones impuestas, sin vulnerar leyes de la ciencia. The process object of the invention, then, is a method of optimization in effectiveness and efficiency, in a closed thermodynamic system, of the property of liquids to absorb heat when evaporating. The invention must push and overcome the limitations imposed, without violating laws of science.
El primer enfoque es, entonces, provocar la evaporación por ebullición espontánea del fluido. De esta manera la tasa de evaporación no depende del calor aportado, sino del calor que pueda ser absorbido. The first approach, then, is to cause the fluid to evaporate by spontaneous boiling. In this way, the evaporation rate does not depend on the heat supplied, but on the heat that can be absorbed.
Por el Teorema de Estados Correspondientes, y los estudios asociados a éste de Van de Waals, sabemos que el estado de saturación de los fluidos tiene una directa correspondencia con su presión y su temperatura. Si aumentamos la temperatura, o reducimos la presión, de un líquido, éste tiene que evaporarse al no poder permanecer en estado líquido. Esto es lo que se llama ebullición espontánea. Aún así, por el trabajo de James Thomson, sabemos que el líquido puede entrar en un metaestado de sobrecalentamiento pero superado el límite espinodal que predijo Van der Waals sucede la ebullición y es repentina y, entonces, se llama "súbita". By the Corresponding States Theorem, and the studies associated with it by Van de Waals, we know that the saturation state of fluids has a direct correspondence with their pressure and temperature. If we increase the temperature, or reduce the pressure, of a liquid, it has to evaporate as it cannot remain in a liquid state. This is what is called spontaneous boiling. Even so, from the work of James Thomson, we know that the liquid can enter a metastate of overheating but after the spinodal limit that Van der Waals predicted, boiling happens and it is sudden and, therefore, it is called "sudden".
La ebullición espontánea por reducción de presión es adiabática, por tanto no aumenta la energía interna. Como el objetivo es aumentar la energía interna se desarrolla una evaporación espontánea por aumento de temperatura. Spontaneous pressure reduction boiling is adiabatic, therefore internal energy does not increase. As the The objective is to increase the internal energy, spontaneous evaporation occurs due to an increase in temperature.
El líquido está confinado a un sistema cerrado, de modo que si el aporte de calor fuera gradual tanto si evapora, como si expande el fluido, estos aumentan la presión en la misma medida que aumenta el calor y no entra en ebullición. The liquid is confined to a closed system, so that if the heat input were gradual whether it evaporates or expands the fluid, these increase the pressure to the same extent that the heat increases and does not boil.
Por tanto el líquido tiene que ser sometido a un aporte intensivo de calor. Cuando el calor es lo suficientemente intenso su incidencia en las moléculas del fluido provoca su evaporación sin elevar la temperatura del sistema, que se mantiene constante. La fuente de calor deberá poder asegurar que el fluido siendo incidido pueda superar la temperatura de máximo sobrecalentamiento y deberá poder mantener el flujo de calor necesario correspondiente a la tasa de evaporación. De lo contrario la superficie caliente se enfría y el proceso se interrumpe. Este flujo de calor es proporcional a la diferencia de temperatura entre la fuente y la temperatura del fluido de trabajo. Therefore the liquid has to be subjected to an intensive heat input. When the heat is intense enough, its incidence on the molecules of the fluid causes their evaporation without raising the temperature of the system, which remains constant. The heat source must be able to ensure that the fluid being impinged can exceed the maximum superheat temperature and must be able to maintain the necessary heat flow corresponding to the evaporation rate. Otherwise the hot surface cools down and the process is interrupted. This heat flow is proportional to the temperature difference between the source and the temperature of the working fluid.
El primer paso de optimización puede ser, entonces, mejorar el diferencial de temperatura entre la fuente y el fluido de trabajo. Esto se logra al provocar una ebullición espontánea por reducción de presión antes de la del aporte de calor intenso. Esta ebullición es adiabática, pero la reducción de presión lo deja en un estado de sobrecalentamiento excesivo y resulta en una ebullición espontánea. Parte del fluido se evapora en forma de burbujas -llamadas "núcleos"- en el seno del líquido y el calor necesario para esta evaporación es absorbido del líquido en su entorno. Esto una "ebullición nuclear homogénea" y es un proceso de autorrefrigeración . El fluido termina "nucleado" y a una temperatura menor y hasta muy menor a la inicial, sin haber rechazado calor. El fluido así enfriado puede resultar mucho más frío aún que el entorno -por lo que no podría haberse enfriado por ley de Newton- y esto aumenta el diferencial de temperatura que puede asegurar el éxito de la etapa de aporte de calor intenso. Esta optimización puede utilizarse no sólo para ampliar el diferencial, sino también para crearlo. The first optimization step can then be to improve the temperature differential between the source and the working fluid. This is achieved by causing a spontaneous boiling by pressure reduction before the supply of intense heat. This boiling is adiabatic, but the pressure reduction leaves it in a state of excessive superheating and results in spontaneous boiling. Part of the fluid evaporates in the form of bubbles - called "nuclei" - within the liquid and the heat necessary for this evaporation is absorbed from the liquid in its environment. This a "homogeneous nuclear boil" and is a self-cooling process. The fluid ends up "nucleated" and at a lower temperature and even much lower than the initial one, without having rejected heat. The fluid thus cooled can be much colder even than the surroundings - so it could not have been cooled by Newton's law - and this increases the temperature differential that can ensure the success of the intense heat input stage. This optimization can be used not only to widen the spread, but also to create it.
Con la ebullición espontánea por aporte de calor intenso termina la captura o cosecha de calor del proceso, aunque se extiende en la primera etapa de las de equilibrio. Estas etapas de equilibrio son parte del proceso reivindicado. With spontaneous boiling due to the contribution of intense heat, the capture or harvesting of heat from the process ends, although it extends into the first stage of the equilibrium stages. These equilibrium stages are part of the claimed process.
La evaporación es un proceso isotérmico, pero no isobárico. La ebullición de las etapas de cosecha de calor genera vapor que se acumula en un volumen finito. Esto implica un aumento de la presión interna del sistema. Este vapor está a la misma temperatura que el resto del sistema. El aumento de presión sobre el vapor es una forma de subenfriamiento. Eventualmente el aumento de presión hace exceder al vapor su máximo subenfriamiento y se condensa espontáneamente. El calor de rechazo de esta condensación aumenta la temperatura del vapor y éste, al quedar más caliente que el liquido subyacente lo calienta. Esta etapa supone la doble condición de liquido excesivamente sobrecalentado evaporándose al tiempo que genera vapor excesivamente subenfriado condensándose. Esto es una etapa de equilibrio dinámico. La condensación es espontánea y cede calor aún estando a la misma temperatura que su entorno en un proceso contrario a la autorrefrigeración que, por analogía, puede llamarse "autocalentamiento" . El vapor que estaba en núcleos (burbujas) también está excesivamente subenfriado y se condensa rechazando calor directamente en el liquido. Eventualmente el fluido liquido queda demasiado caliente para mantener la diferencia de temperatura con la fuente de calor y se termina la etapa de evaporación, y por tanto la cosecha intensiva de calor del proceso reivindicado. Evaporation is an isothermal process, but not isobaric. The boiling of the heat harvesting stages generates steam that accumulates in a finite volume. This implies an increase in the internal pressure of the system. This steam is at the same temperature as the rest of the system. The pressure increase over the vapor is a form of subcooling. Eventually the pressure increase causes the steam to exceed its maximum subcooling and it condenses spontaneously. The heat of rejection of this condensation increases the temperature of the steam and this, being warmer than the underlying liquid, heats it. This stage involves the dual condition of excessively superheated liquid evaporating while generating excessively subcooled vapor condensing. This is a stage of dynamic equilibrium. Condensation is spontaneous and gives off heat even when it is at the same temperature as its surroundings in a process contrary to self-cooling which, by analogy, can be called "self-heating". The steam that was in cores (bubbles) is also excessively subcooled and condenses, rejecting heat directly in the liquid. Eventually the liquid fluid becomes too hot to maintain the temperature difference with the heat source and the evaporation stage is completed, and therefore the intensive heat harvesting of the claimed process.
La siguiente etapa combina el liquido en contacto directo con la fuente de calor que ya no logra evaporarlo y vapor aún en exceso de subenfriamiento. Ambas fuentes resultan en el aumento de temperatura del liquido que resulta en su expansión lo que comprime el vapor retroalimentando su excesivo subenfriamiento, que resulta en condensación espontánea, que calienta el liquido, y asi hasta el equilibrio. El equilibrio, dependiendo del calor absorbido, volumen, y masa, puede ser un fluido saturado, fluido supercritico, o sus intermedios, gas o liquido comprimible. La calidad del fluido supercritico depende mucho de la variación de volumen en la ebullición espontáneo por descenso de presión, que aportó volumen ya que la densidad es un valor importante y ésta es la cantidad de masa por unidad de volumen . The next stage combines the liquid in direct contact with the heat source that no longer manages to evaporate it and steam still in excess of subcooling. Both sources result in the increase in temperature of the liquid that results in its expansion, which compresses the vapor, feeding back its excessive subcooling, which results in spontaneous condensation, which heats the liquid, and so on until equilibrium. The equilibrium, depending on the absorbed heat, volume, and mass, can be a saturated fluid, supercritical fluid, or their intermediates, gas or compressible liquid. The quality of the supercritical fluid depends a lot on the volume variation in the spontaneous boiling due to pressure drop, which contributed volume since density is an important value and this is the amount of mass per unit volume.
Esta última etapa puede terminar con el fluido de trabajo más caliente que su fuente original de calor y comenzarla a rechazar calor a favor de la fuente. En esta etapa comienza la eyección del fluido de la cámara o "celda de carga", terminando el proceso reivindicado. This last stage can end up with the working fluid hotter than its original heat source and begin to reject heat in favor of the source. At this stage, the ejection of the fluid from the chamber or "load cell" begins, ending the claimed process.
Este proceso se ve potenciado si el fluido está en su condición de saturado y su carga se hace con cuidado de no afectarlo. Si no estuviera saturado, hay un tránsito de calor que sólo va a lograr su saturación y esto resulta en una ineficiencia, aunque no impide el funcionamiento. Si se va a aceptar que no esté saturado, habrá que relevar sus condiciones para adecuar las demás variables. This process is enhanced if the fluid is in its saturated condition and its loading is done with care not to affect it. If it were not saturated, there is a transit of heat that will only achieve its saturation and this results in inefficiency, although it does not prevent operation. If it is to be accepted that it is not saturated, its conditions will have to be relieved to adapt the other variables.
Las etapas, por tanto, son: The stages, therefore, are:
- Acondicionamiento / Relevamiento (a saturación) - Conditioning / Survey (at saturation)
- Inyección (entrada en cámara de carga, sin afectar) - Injection (entry into loading chamber, unaffected)
- Nucleación y Autoenfriado (Con ca das de presión que pueden igualar a cero, si no se entiende necesaria la etapa) - Nucleation and Self-cooling (With pressure drops that can equal zero, if the stage is not deemed necessary)
- Evaporación Súbita por ebullición espontánea. - Sudden Evaporation by spontaneous boiling.
- Evaporación / Condensación (equilibrio dinámico) - Expansión / Condensación - Evaporation / Condensation (dynamic balance) - Expansion / Condensation
- Eyección o Expulsión - Ejection or Expulsion
El control de estos procesos puede expresarse gráficamente como se muestra en las figuras la y Ib con gráficos P = f(T) , en los que se muestran las curvas de saturación y los límites de sobrecalentamiento y subenfriamiento para los fluidos de trabajo R410A y R744-C02, que serán descripto más adelante. The control of these processes can be expressed graphically as shown in Figures la and Ib with graphs P = f (T), in which the saturation curves and the superheating and subcooling limits for the working fluids R410A and R744 are shown. -C0 2 , which will be described later.
En dichas figuras la y Ib, la línea de color azul marino corresponde a la línea de saturación, o presión de vapor para cada temperatura. La línea azul más clara, a su derecha, representa el umbral de sobrecalentamiento necesario para producir la evaporación espontánea. La línea turquesa, a la izquierda y arriba, representa el umbral de subenfriamiento para producir la condensación espontánea. Este gráfico junto a las líneas límite de los valores críticos muestra las áreas de interés a este invento. In these figures a and Ib, the navy blue line corresponds to the saturation line, or vapor pressure for each temperature. The lighter blue line to its right represents the superheat threshold required to produce spontaneous evaporation. The turquoise line, to the left and above, represents the subcooling threshold to produce spontaneous condensation. This graph together with the limit lines of the critical values shows the areas of interest to this invention.
Las líneas de valores críticos (presión y temperatura) se cruzan en el Punto Crítico y definen cuatro cuadrantes. El cuadrante superior derecho es el cuadrante de los valores supercríticos , y el fluido puede estar en un único estado posible de "fluido supercrítico" . El cuadrante por debajo de este, por debajo de la presión crítica, pero a la derecha de la temperatura crítica está el cuadrante del "vapor sobrecalentado", que en este estado llamamos "gas". El cuadrante por encima de la presión crítica, pero a la izquierda, debajo de la temperatura crítica es el cuadrante del líquido compresible. The critical value lines (pressure and temperature) intersect at the Critical Point and define four quadrants. The upper right quadrant is the quadrant of supercritical values, and the fluid can be in only one possible "supercritical fluid" state. The quadrant below this, below the critical pressure, but to the right of the critical temperature is the quadrant of "superheated steam", which in this state we call "gas." The quadrant above the critical pressure, but to the left, below the critical temperature is the compressible liquid quadrant.
El cuadrante inferior izquierdo de valores subcríticos tanto en presión como temperatura es el cuadrante bifásico porque en él se encuentra el fluido tanto en fase líquida como vapor. El límite entre estas fases es la curva de saturación antedicha. A sus lados están las líneas de máximo sobrecalentamiento y subenfriamiento. Por tanto entre los dos límites está el "área de coexistencia" donde el fluido puede estar en fase vapor o fase líquida. Por encima de la línea de máximo subenfriamiento sólo puede estar en fase líquida y a la derecha del máximo sobrecalentamiento sólo puede estar en fase vapor. Si algún volumen de fluido se encuentra líquido más allá del máximo sobrecalentamiento o en fase vapor más allá del límite de subenfriamiento se produce un cambio de estado espontáneo, que es el aprovechado por el invento . The lower left quadrant of subcritical values in both pressure and temperature is the biphasic quadrant because in it the fluid is found both in liquid and vapor phase. The boundary between these phases is the above saturation curve. On its sides are the maximum superheating and subcooling lines. Therefore between the two limits is the "area of coexistence" where the fluid can be in the vapor phase or liquid phase. Above the maximum subcooling line it can only be in the liquid phase and to the right of the maximum superheat it can only be in the vapor phase. If any volume of fluid is liquid beyond the maximum superheat or in the vapor phase beyond the subcooling limit, a spontaneous change of state occurs, which is the one used by the invention.
Estos cambios de estado espontáneos pueden provocarse variando la presión o la temperatura -o las dos- de modo de dejar el fluido en el área del gráfico deseado. Desde la línea de azul, una isóbara (horizontal) hacia la derecha corresponde a una evaporación por aporte de calor y hacia la izquierda una condensación por extracción de calor. Desde la línea de saturación una isoterma (vertical) hacia abajo corresponde a una evaporación por reducción de presión "aporte de volumen" y hacia arriba a una condensación por aumento de presión, o "extracción de volumen". These spontaneous state changes can be caused by varying pressure or temperature - or both - so as to leave the fluid in the desired graph area. From the blue line, an isobar (horizontal) to the right corresponds to evaporation due to heat input and to the left, condensation due to heat extraction. From the saturation line an isotherm (vertical) downwards corresponds to an evaporation by pressure reduction "volume supply" and upwards to a condensation by pressure increase, or "volume extraction".
Los gráficos incluyen líneas de referencia que marcan los valores de la presión y temperatura críticas, que se cruzan en el punto crítico, que es también es el extremo de la línea de saturación. The graphs include reference lines that mark the critical pressure and temperature values, which intersect at the critical point, which is also the end of the saturation line.
La figura 'la' corresponde al estudio para el R410A. La figura 'Ib' representa los valores para el R744-C02· The figure 'a' corresponds to the study for R410A. The figure 'Ib' represents the values for the R744-C0 2 ·
La presente invención hace uso de uno o más de estos mecanismos, repetidos o no, secuenciadas o combinadas entre sí, para administrar o multiplicar su efecto según sea el objeto final de la implementación y los recursos disponibles. The present invention makes use of one or more of these mechanisms, repeated or not, sequenced or combined between yes, to manage or multiply its effect depending on the final object of the implementation and the available resources.
Fluido de trabaj o . Working fluid.
La selección de fluido de trabajo es una variable crítica para la eficacia del diseño de las diferentes realizaciones de la invención. Dependiendo de la complejidad y requerimientos de la solución a proporcionar, el fluido de trabajo puede ser un fluido puro, una mezcla azeotrópica, una mezcla "zeotrópica" (modernismo para no-azeotrópico, ISO 817), o una disolución. The selection of working fluid is a critical variable for the efficiency of the design of the different embodiments of the invention. Depending on the complexity and requirements of the solution to be provided, the working fluid can be a pure fluid, an azeotropic mixture, a "zeotropic" mixture (modernism for non-azeotropic, ISO 817), or a solution.
Los fluidos puros y los azeotrópicos son constantes, invariables y permanentes. Las mezclas zeotrópicas y las disoluciones permiten posibilidades que resultan muy interesantes a los efectos de la implementación del invento ya que permiten optimizar su desempeño y su capacidad de adaptarse a las condiciones imperantes. Pure fluids and azeotropics are constant, unchanging, and permanent. Zeotropic mixtures and solutions allow possibilities that are very interesting for the purposes of implementing the invention since they allow optimizing its performance and its ability to adapt to prevailing conditions.
Las mezclas zeotrópicas pueden resultar de la mezcla de fluidos de propiedades distantes para la optimización de las combinaciones de cambio de fase. Si se seleccionan fluidos con un deslizamiento importante de temperatura (" temperature glide") permite beneficiarse de la acción de cada fluido en las diferentes partes del circuito donde se implementa el invento. El deslizamiento puede superar la diferencia de temperatura de la realización, de modo que uno de los componentes sirva como agente de presurización mediante su evaporación y el otro como agente de transporte de energía, por ejemplo, en modo de energía cinética o calor, manteniéndose líquido, en la etapa de expresarse como trabajo motor . Zeotropic mixtures can result from mixing fluids of distant properties for optimization of phase change combinations. If fluids with a significant temperature glide ("temperature glide") are selected, it allows to benefit from the action of each fluid in the different parts of the circuit where the invention is implemented. The slip can exceed the temperature difference of the embodiment, so that one of the components serves as a pressurizing agent through its evaporation and the other as an energy transport agent, for example, in kinetic energy or heat mode, remaining liquid , in the stage of expressing itself as motor work.
Las disoluciones permiten mejorar las propiedades termodinámicas del fluido de trabajo. Si la disolución se puede variar, se pueden ajustar a demanda las propiedades termodinámicas a las condiciones de funcionamiento del momento, optimizando su rendimiento. The solutions allow to improve the thermodynamic properties of the working fluid. If the solution can be varied, the properties can be adjusted on demand thermodynamic to the current operating conditions, optimizing its performance.
El fluido de trabajo también puede estar mezclado o combinado de alguna manera con otros fluidos con una función ajena al invento, pero útiles o necesarios para el circuito considerado en su totalidad, como pueden ser lubricantes, sellantes, detectores de fuga, etc. en la medida que no afecte las propiedades aprovechadas por el invento. The working fluid can also be mixed or combined in some way with other fluids with a function other than the invention, but useful or necessary for the entire circuit considered, such as lubricants, sealants, leak detectors, etc. insofar as it does not affect the properties used by the invention.
Cualquier fluido con la capacidad de cambiar de estado de agregación y llegar a un equilibrio dinámico liquido- vapor, estable o metaestable en un envase, existente y conocido en el arte, o por descubrirse o sintetizarse es una sustitución obvia. Any fluid with the ability to change state of aggregation and reach a stable or metastable liquid-vapor dynamic equilibrium in a container, existing and known in the art, or to be discovered or synthesized, is an obvious substitution.
En el modo de realización más simple de la invención el fluido de trabajo es un fluido monocomponente o mezcla azeotrópica que es capaz de completar todo el circuito: desde un liquido saturado, luego pasar por las etapas de cambio de estado súbito con incorporación de calor para finalmente generar el impulso mecánico. In the simplest embodiment of the invention, the working fluid is a one-component fluid or azeotropic mixture that is capable of completing the entire circuit: from a saturated liquid, then passing through the stages of sudden change of state with incorporation of heat to finally generate the mechanical impulse.
En la realización de los ejemplos de la presente invención se han elegido dos tipos de fluidos de trabajo: R744 y R410A. El R744 es el dióxido de carbono, un fluido puro, y el R410a es una mezcla cuasi azeotrópica de dos gases HFC (hidrofluorocarbonados ) . In carrying out the examples of the present invention, two types of working fluids have been chosen: R744 and R410A. R744 is carbon dioxide, a pure fluid, and R410a is a quasi-azeotropic mixture of two HFC (hydrofluorocarbon) gases.
Proceso de la Invención Process of the Invention
El proceso reivindicado es un proceso de conversión de calor en energía potencial. Este proceso tiene lugar en un dispositivo que forma parte de un circuito de captura de calor/trabaj o . De manera general, el proceso reivindicado consta de las siguientes etapas: The claimed process is a process of converting heat into potential energy. This process takes place in a device that is part of a heat / work capture circuit. In general, the claimed process consists of the following stages:
(a) Acondicionamiento/Relevamiento (a) Conditioning / Survey
(b) Inyección (b) Injection
(c) Nucleación y Autoenfriado (c) Nucleation and Self-cooling
(d) Evaporación Súbita (d) Sudden Evaporation
(e) Evaporación/Condensación (e) Evaporation / Condensation
(f) Expansión/Condensación (f) Expansion / Condensation
(g) Eyección o Expulsión (g) Ejection or Expulsion
Las etapas de (a) a (g) descriptas antes representan distintos momentos del proceso reivindicado. Éstas se pueden llevar a cabo en un dispositivo con un único volumen que se adapta a las distintas etapas en curso ("proceso en lotes", o "batch") , o se puede implementar en un dispositivo que implementa varios volúmenes especializados en cada una de las etapas dispuestos en serie y el fluido de trabajo fluye de uno al siguiente para completar el proceso ("proceso continuo") . La descripción a continuación describe las etapas del proceso en un volumen con independencia de si el contenedor de la etapa es el mismo, o si es cada uno de los volúmenes de una serie. The steps (a) to (g) described above represent different moments of the claimed process. These can be carried out in a device with a single volume that adapts to the different stages in progress ("batch process", or "batch"), or it can be implemented in a device that implements several specialized volumes in each one. stages arranged in series and the working fluid flows from one to the next to complete the process ("continuous process"). The description below describes the process stages in a volume regardless of whether the stage container is the same, or whether it is each of the volumes in a series.
Con más detalle, las etapas se describen de la siguiente manera : In more detail, the stages are described as follows:
(a) Acondicionamiento/Relevamiento (a) Conditioning / Survey
El proceso reivindicado parte del fluido de trabajo en estado líquido. La eficiencia del proceso es mayor cuanto más próximo esté el fluido a las condiciones de saturación. The claimed process starts from the working fluid in a liquid state. The efficiency of the process is greater the closer the fluid is to saturation conditions.
Esta etapa, entonces, consiste en acondicionar el fluido de trabajo a las condiciones de saturación en términos de presión y temperatura. Puede ser implementado con intercambiadores de calor para calentar/enfriar y válvulas reductoras de presión o compresores para regular la presión, o dejándolo en reposo en un tanque de acopio en tamaño suficiente -de modo que el ingreso y salida de masa no sea un porcentaje relevante como para afectar el concepto "en reposo"- . This stage, then, consists of conditioning the working fluid to saturation conditions in terms of pressure and temperature. It can be implemented with heat exchangers for heating / cooling and pressure reducing valves or compressors to regulate the pressure, or leaving it at rest in a storage tank of sufficient size - so that the entrance and exit of mass is not a relevant percentage to affect the concept "at rest" -.
En su defecto, a falta de acondicionamiento y a la inversa, puede relevarse las condiciones a las que se encuentra el fluido de trabajo para adecuar las siguientes etapas . Failing that, in the absence of conditioning and vice versa, the conditions of the working fluid can be relieved to adapt the following stages.
Esta etapa podría no implementarse y aplicar las siguientes etapas con variables en exceso, pero siendo una opción, derrotarían el propósito de eficiencia de la invención . This stage could not be implemented and the following stages could be applied with excess variables, but being an option, they would defeat the efficiency purpose of the invention.
En una realización más optimizada la implementación acondicionará el fluido de trabajo al punto de saturación de diseño y relevará el resultado para adecuar las etapas posteriores . In a more optimized embodiment, the implementation will condition the working fluid to the design saturation point and relieve the result to adapt the subsequent stages.
(b) Inyección (b) Injection
Esta etapa implica el tránsito del fluido de trabajo desde el tanque de acopio a la cámara de procesamiento y no involucra ninguno de los dos volúmenes. La etapa resulta en el fluido de trabajo puesto en la cámara para su procesamiento. Este fluido se toma desde la parte inferior del tanque acopio y no es bajo ningún concepto aspirado desde la cámara, sino que es inyectado. Este método asegura que se provee fluido en estado líquido, y no vapor, y no se evapora a instancias de la inyección. El fluido mantiene siempre al menos la presión de saturación. This stage involves the transit of the working fluid from the storage tank to the processing chamber and does not involve either of the two volumes. The stage results in the working fluid put into the chamber for processing. This fluid is taken from the lower part of the storage tank and is by no means sucked from the chamber, but is injected. This method ensures that fluid is provided in a liquid state, and not vapor, and does not evaporate upon injection. The fluid always maintains at least the saturation pressure.
La cámara de procesamiento o tiene una superficie que cede a la presión del fluido desde el reservorio o es el primer volumen de un dispositivo de procesamiento continuo. El diferencial de presión que asegura este tránsito, sin perjuicio de que pudiera haber algún tipo de impulsor, se da entre la presión del reservorio contra la parte exterior de la superficie que cede, en un proceso por lotes, o en una presión más baja del primer volumen en un procesamiento continuo, que si evapora el fluido, pero ya en el marco de la siguiente etapa. The processing chamber either has a surface that yields to fluid pressure from the reservoir or is the first volume of a continuous processing device. The pressure differential that ensures this transit, without prejudice to the fact that there may be some type of impeller, is given between the pressure of the reservoir against the outside of the yielding surface, in a batch process, or in a lower pressure of the first volume in continuous processing, than if the fluid evaporates, but already within the framework of the next stage.
(c) Nucleación y Autoenfriado (c) Nucleation and Self-cooling
El fluido inyectado, en un proceso por lotes, o que está siendo inyectado, en un proceso continuo, se expone en forma súbita a un descenso de presión. Fluid injected, in a batch process, or being injected, in a continuous process, is suddenly exposed to a drop in pressure.
En el proceso por lotes, una vez aislado mecánicamente el volumen de fluido de trabajo a ser procesado del resto del circuito, es sometido a una rápida expansión mecánica del contenedor. In the batch process, once the volume of working fluid to be processed is mechanically isolated from the rest of the circuit, it is subjected to a rapid mechanical expansion of the container.
Esta pérdida de presión supone la expansión mecánica del liquido saturado y resulta en evaporaciones en puntos homogéneamente distribuidas en el seno de la masa. Estos puntos se llaman núcleos (de evaporación) . La ciencia conoce este fenómeno como "ebullición nuclear homogénea" y el fluido resulta en lo que se llama "fluido nucleado". This pressure loss supposes the mechanical expansion of the saturated liquid and results in evaporations at points homogeneously distributed within the mass. These points are called (evaporation) nuclei. Science knows this phenomenon as "homogeneous nuclear boiling" and the fluid results in what is called "nucleated fluid".
Este fenómeno, por su velocidad, resulta un proceso adiabático. Las burbujas toman el calor de evaporación desde el calor sensible del fluido liquido que las rodea. Puede ser potenciado con calor desde las superficies de contacto, pero es en esencia adiabático, porque la velocidad de conducción de calor del propio fluido es menor que la de formación de núcleos . This phenomenon, due to its speed, is an adiabatic process. The bubbles take the heat of evaporation from the sensible heat of the liquid fluid that surrounds them. It can be enhanced with heat from the contact surfaces, but it is essentially adiabatic, because the rate of heat conduction of the fluid itself is less than that of nucleation.
El liquido, ahora nucleado, resulta más frió por haber cedido calor sensible a la evaporación. Este proceso se conoce en la ciencia como "autorrefrigeración" . El liquido vuelve al equilibrio dinámico de saturación, ahora a menor temperatura . The liquid, now nucleated, is colder because it has given up sensible heat to evaporation. This process is known in science as "self-cooling." The liquid returns to the dynamic equilibrium of saturation, now at a lower temperature.
La temperatura resultante de este proceso puede incluso ser muy inferior a la más fria disponible, por lo que no podría haberse logrado con cesión de calor según la Ley de Enfriamiento, de Isaac Newton. Esta característica permite aumentar, e incluso crear, un diferencial de temperatura donde no lo habla. Funcionar donde no habla o era reducido el diferencial de temperatura es uno de los objetivos del invento . The temperature resulting from this process can even be much lower than the coldest available, so it could not have been achieved with heat transfer according to Isaac Newton's Law of Cooling. This characteristic allows to increase, and even create, a temperature differential where he does not speak it. To operate where the temperature differential does not speak or was reduced is one of the objectives of the invention.
Esta etapa del proceso reivindicado reviste gran importancia en la eficiencia del proceso. La doble condición de más frío y nucleado genera diversos factores de potenciación para las siguientes etapas. Una temperatura más fría acelera la tasa de transferencia de calor en la siguiente etapa, ya que el tránsito a través de la superficie de contacto depende de la diferencia de temperatura, sin aumentar la temperatura de la fuente. Una temperatura de saturación más fría resulta en una diferencia de entalpia mayor entre la fase líquida y vapor (entalpia o calor de evaporación) que se ve gráficamente al estar más hacia la base de la campana del diagrama de Mollier ( P=f(R) ) . El líquido más frío tiene un límite de temperatura de sobrecalentamiento más bajo y el vapor tiene un límite de presión de subenfriamiento también más bajo. This stage of the claimed process is of great importance in the efficiency of the process. The dual condition of colder and nucleated generates various potentiation factors for the following stages. A cooler temperature accelerates the rate of heat transfer in the next stage, since the transit through the contact surface depends on the temperature difference, without increasing the temperature of the source. A colder saturation temperature results in a greater enthalpy difference between the liquid and vapor phase (enthalpy or heat of evaporation) which is seen graphically as it is further towards the base of the bell of the Mollier diagram (P = f (R) ). Cooler liquid has a lower superheat temperature limit and steam has a lower subcool pressure limit.
El descenso de presión es equivalente a un aumento del volumen específico, o una reducción de la densidad. Esta densidad es la total del sistema y, entonces, la del fluido supercrítico, si es el objetivo de la implementación . The pressure drop is equivalent to an increase in specific volume, or a decrease in density. This density is the total density of the system and, therefore, that of the supercritical fluid, if it is the objective of the implementation.
Específicamente, en una implementación por lotes se procesa una masa finita en un volumen finito. El descenso de presión se logra por aporte de volumen y esto define la densidad. Por tanto este aporte de volumen determina la calidad por densidad del fluido supercrítico. Specifically, in a batch implementation a finite mass is processed in a finite volume. The pressure drop is achieved by adding volume and this defines the density. Therefore this contribution of volume determines the quality by density of the supercritical fluid.
La característica de fluido nucleado es importante en la siguiente etapa porque al momento de aumentar la presión se provoca la condensación de las burbujas y hace que oficien como núcleos de calor, potenciando en efecto de expansión de las siguientes etapas. Es menester cuidar en esta etapa que el fluido de trabajo no entre en un estado metaestable de presión negativa, o "liquido elongado/estirado" . The nucleated fluid characteristic is important in the next stage because when the pressure increases, the condensation of the bubbles is caused and makes them act as heat nuclei, enhancing the expansion effect of the following stages. Care must be taken at this stage that the working fluid does not enter a metastable state of negative pressure, or "elongated / stretched liquid".
Aún con los evidentes beneficios que supone esta ca da de presión o aporte de volumen, ésta puede ser CERO, que se equivale a saltear la etapa, porque aún con su ausencia sigue siendo el mismo proceso. Even with the obvious benefits of this pressure drop or volume contribution, it can be ZERO, which is equivalent to skipping the stage, because even with its absence it is still the same process.
(d) Evaporación Súbita (d) Sudden Evaporation
En esta etapa el fluido es sometido a un flujo de calor intenso por todas las superficies de contacto. La diferencia de temperatura debe ser al menos tal que la temperatura de la fuente supere la del máximo sobrecalentamiento del liquido del fluido de trabajo. Se preferirá que la diferencia de temperatura asegure un flujo de calor al menos tan importante como el del calor de evaporación porque, de lo contrario, la etapa terminará enfriando la superficie de contacto y, con ella la etapa en si . In this stage the fluid is subjected to an intense heat flow through all the contact surfaces. The temperature difference must be at least such that the source temperature exceeds the maximum superheat of the working fluid liquid. It will be preferred that the temperature difference ensures a heat flow at least as important as that of the heat of evaporation because, otherwise, the stage will end up cooling the contact surface and, with it, the stage itself.
En una implementación de procesamiento por lotes o pulsante se prefiere el calentamiento de las paredes laterales verticales. Esto establecerá un sistema de ebullición laminar, de funcionamiento estable, hasta la culminación de las condiciones de la etapa. El vapor del fluido producido se acumulará en la porción superior del volumen con el resto del vapor, lo que va aumentando la presión paulatinamente. Se prefiere que esta porción del volumen esté aislada térmicamente del entorno. En esta implementación esta etapa termina cuando se alcanza la presión de máximo subenfriamiento del vapor. In a pulsed or batch processing implementation, heating of the vertical side walls is preferred. This will establish a laminar boiling system, with stable operation, until the culmination of the stage conditions. The vapor of the fluid produced will accumulate in the upper portion of the volume with the rest of the vapor, which gradually increases the pressure. It is preferred that this portion of the volume is thermally insulated from the environment. In this implementation this stage ends when the maximum subcooling pressure of the steam is reached.
En una implementación continua esta aplicación de calor aumentará el titulo de vapor, pero el fluido bifásico continuará mezclado hacia el siguiente volumen. In a continuous implementation this application of heat will increase the vapor titre, but the two-phase fluid will continue to mix into the next volume.
(e) Evaporación/Condensación Esta etapa es la continuación lineal de la anterior. Esta etapa es el equilibrio dinámico entre la evaporación que surge de la ebullición laminar establecida en la etapa anterior con la condensación por exceso de subenfriamiento del vapor. (e) Evaporation / Condensation This stage is the linear continuation of the previous one. This stage is the dynamic equilibrium between the evaporation that arises from the laminar boiling established in the previous stage with the condensation due to excess subcooling of the vapor.
La ebullición es un proceso isotérmico, pero no isobárico. En la etapa anterior (d) , estando todo el fluido a la misma temperatura, la presión del sistema ha ido aumentando por efecto de la evaporación por ebullición. Este aumento de presión es subenfriamiento del vapor, por presión superior a la de saturación. Esta etapa comienza cuando la presión excede la presión límite de subenfriamiento del vapor . Boiling is an isothermal process, but not isobaric. In the previous stage (d), with all the fluid at the same temperature, the pressure of the system has been increasing due to the effect of evaporation by boiling. This pressure increase is subcooling of the steam, by pressure higher than saturation. This stage begins when the pressure exceeds the vapor subcooling limit pressure.
Se establece el doble fenómeno concurrente: la evaporación por exceso de sobrecalentamiento del líquido en contacto con la superficie caliente y la condensación del vapor por exceso de subenfriamiento. Estos fenómenos quedan en equilibrio dinámico. The double concurrent phenomenon is established: evaporation due to excess superheating of the liquid in contact with the hot surface and condensation of vapor due to excess subcooling. These phenomena are in dynamic equilibrium.
Esta etapa es en principio isotérmica, pero el calor de rechazo que surge de esta condensación, que se evita de disipe al entorno, eleva la temperatura del vapor, primero, y se vuelca en forma de calor sensible al líquido, que empieza a expandirse. This stage is in principle isothermal, but the rejection heat that arises from this condensation, which is prevented from dissipating to the environment, raises the temperature of the steam, first, and is turned over in the form of heat sensitive to the liquid, which begins to expand.
El líquido al calentarse va reduciendo su diferencia de temperatura con la fuente de calor y llega a un punto en que termina con la diferencia mínima necesaria para asegurar la evaporación súbita. Esto termina con el sistema de ebullición laminar y, con ésta, termina esta etapa. As the liquid heats up, it reduces its temperature difference with the heat source and reaches a point where it ends up with the minimum difference necessary to ensure sudden evaporation. This ends with the laminar boiling system and, with this, this stage ends.
( f) Expansión/Condensación (f) Expansion / Condensation
Terminada la etapa de evaporación, el volumen aún tiene un exceso de vapor, que empezó a condensarse al superar el máximo subenfriamiento y seguirá condensándose hasta lograr reducir la presión hasta alcanzar la presión de saturación . Esta condensación rechaza calor que, a falta de otro destino posible calienta el liquido. El liquido al calentarse reduce su densidad, aumentando su volumen. Este aumento de volumen, en un volumen finito, reduce el volumen disponible para el vapor, que se comprime, aumenta su presión y sigue condensándose . After the evaporation stage, the volume still has an excess of vapor, which began to condense when it exceeded the maximum subcooling and will continue to condense until the pressure is reduced until it reaches saturation pressure. This condensation rejects heat that, in the absence of another possible destination, heats the liquid. The liquid when heated reduces its density, increasing its volume. This increase in volume, in a finite volume, reduces the volume available for the vapor, which is compressed, increases its pressure and continues to condense.
Eventualmente, y si es deseado por diseño, se ingresará en la fase supercritica del fluido de trabajo. La densidad estará determinada por la cantidad de masa por unidad de volumen, que surge directamente en una implementación por lotes, y del caudal másico en un sistema continuo, y la presión final surge de la cantidad de calor absorbida por la evaporación en las etapas de ebullición laminar . Eventually, and if desired by design, the supercritical phase of the working fluid will be entered. The density will be determined by the amount of mass per unit volume, which arises directly in a batch implementation, and the mass flow rate in a continuous system, and the final pressure arises from the amount of heat absorbed by evaporation in the stages of laminar boiling.
Aquí queda determinada la presión y fase o fases finales del proceso. Here the pressure and the final phase or phases of the process are determined.
(g) Eyección o Expulsión (g) Ejection or Expulsion
En esta última etapa del proceso el fluido de trabajo se encuentra a la presión de trabajo buscada por diseño. Idealmente es la misma presión que el destino, que es un acumulador isobárico. In this last stage of the process, the working fluid is at the working pressure sought by design. Ideally it is the same pressure as the target, which is an isobaric accumulator.
Esto permite que cualquier diferencial de presión provoque el tránsito hacia afuera del fluido de trabajo, en expulsión, o eyección. This allows any pressure differential to cause the working fluid to flow out, in expulsion, or ejection.
En una implementación por lotes, la superficie que cedió lugar al fluido en la inyección ahora lo expulsa al aportársele la diferencia de presión que pudiera estar disponible. En el caso de la implementación continua, el fluido entrante imprime un diferencial de presión que permite la eyección en idéntica cantidad a la entrante. In a batch implementation, the surface that gave way to the fluid in the injection now ejects it by providing whatever pressure difference might be available. In the case of continuous implementation, the incoming fluid prints a pressure differential that allows the ejection in the same quantity as the incoming one.
EJEMPLOS EXAMPLES
Se construyen 2 prototipos como ejemplo, que permiten demostrar las etapas del proceso reivindicado y descripto en la sección "Proceso de la Invención", en el capítulo de "DESCRIPCIÓN DETALLADA DE LA INVENCIÓN". 2 prototypes are built as an example, which allow to demonstrate the stages of the process claimed and described in the section "Process of the Invention", in the chapter "DETAILED DESCRIPTION OF THE INVENTION".
El ejemplo 1 es una cámara simple, llamada "Cámara de Carga" o "Cámara de Procesamiento" y su objetivo es demostrar experimentalmente las etapas (d) , (e) y (f) . Example 1 is a simple camera, called "Loading Chamber" or "Processing Chamber" and its objective is to experimentally demonstrate stages (d), (e) and (f).
El ejemplo 2 es una cámara idéntica a la del ejemplo 1 complementado con los accesorios necesarios para demostrar experimentalmente todas las etapas desde la (a) a la (g) . La cámara está dotada de un calentador eléctrico para acondicionar el fluido de trabajo, una válvula solenoide para provocar la nucleación y una válvula esférica que permite aislar el fluido acondicionado y nucleado para evaluar en las siguientes etapas. Example 2 is a camera identical to that of example 1 complemented with the necessary accessories to experimentally demonstrate all the steps from (a) to (g). The chamber is equipped with an electric heater to condition the working fluid, a solenoid valve to induce nucleation, and a ball valve to isolate the conditioned and nucleated fluid for evaluation in the following stages.
Los ejemplos de realización que se describen en el capítulo de ejemplos se llevan a cabo usando como fluidos de trabajo el fluido denominado R744 y el R410A. The exemplary embodiments described in the chapter on examples are carried out using the fluid called R744 and R410A as working fluids.
El fluido R410A es una mezcla cuasi azeotrópica de dos gases hidrofluorocarbonados : diflorometano (R-32) y pentafluoroetano (R-125) , ampliamente conocido en el arte por su uso como refrigerante en equipos de aire acondicionado y refrigeración. Se vende bajo las denominaciones comerciales como Forane 410a®, Puron®, EcoFluor R410®, Genetron R410A® y AZ-20®. The R410A fluid is a quasi azeotropic mixture of two hydrofluorocarbon gases: difloromethane (R-32) and pentafluoroethane (R-125), widely known in the art for its use as a refrigerant in air conditioning and refrigeration equipment. It is sold under the trade names Forane 410a®, Puron®, EcoFluor R410®, Genetron R410A® and AZ-20®.
El fluido R744 es el dióxido de carbono (CCy) , un fluido puro, cuya característica esencial además de la alta eficiencia para el proceso de la invención, es que tiene un potencial de agotamiento del ozono (PAO) igual a cero y un potencial de calentamiento atmosférico (PCA) mínimo, en línea con las actuales exigencias ambientales. The R744 fluid is carbon dioxide (CCy), a pure fluid, whose essential characteristic, in addition to the high efficiency for the process of the invention, is that it has an ozone depletion potential (PAO) equal to zero and a potential of Minimum atmospheric warming (GWP), in line with current environmental requirements.
Ejemplo 1. Prototipo de Cámara de Carga, o Procesamiento Se construye un prototipo de Cámara de Carga, o Cámara de Procesamiento para verificar las etapas (d) , (e) y (f) , del proceso reivindicado. Example 1. Prototype Loading Chamber, or Processing A prototype Loading Chamber, or Processing Chamber is built to verify stages (d), (e) and (f), of the claimed process.
En la Figura 2a se presenta el esquema de este prototipo. Se construye un cilindro de cobre, con un inserto para termocupla, un capilar para lectura con manómetro y un acceso cerrado con válvula esférica. The diagram of this prototype is presented in Figure 2a. A copper cylinder is constructed, with an insert for a thermocouple, a capillary for reading with a pressure gauge and a closed access with a ball valve.
Se utiliza R744 y, debido a las altas presiones de trabajo de este fluido, se decide mantener la experiencia en valores subcriticos. R744 is used and, due to the high working pressures of this fluid, it is decided to keep the experience at subcritical values.
El Prototipo se carga a 70% en volumen liquido a -5°C (268.15k), y se le permite llegar al equilibrio de saturación. Se lo sumerge en un baño de agua a 25°C durante The Prototype is charged to 70% liquid volume at -5 ° C (268.15k), and is allowed to reach saturation equilibrium. It is immersed in a 25 ° C water bath for
10 segundos. 10 seconds.
En la figura 2b se detallan los resultados obtenidos, donde se pueden ver las etapas previstas, (d, e y f) The results obtained are detailed in figure 2b, where you can see the planned stages, (d, e and f)
Ejemplo 2. Prototipo de las celdas de la invención Example 2. Prototype of the cells of the invention
Se construye una celda de ejemplo que permite probar experimentalmente todas las etapas de la (a) a la (g) descriptos en la sección "Proceso de la Invención", en el capitulo de "DESCRIPCIÓN DETALLADA DE LA INVENCIÓN". An example cell is constructed that allows to test experimentally all the stages from (a) to (g) described in the section "Process of the Invention", in the chapter "DETAILED DESCRIPTION OF THE INVENTION".
En la Figura 3a se presenta el esquema de una celda prototipo de la invención y se enumeran los elementos que comprende el diseño de la invención. Sobre dicha celda se han desarrollado las pruebas experimentales del proceso reivindicado . Figure 3a shows the diagram of a prototype cell of the invention and the elements that comprise the design of the invention are listed. The experimental tests of the claimed process have been developed on said cell.
Dicha celda prototipo es un dispositivo rígido constituido en torno una cámara de carga (200) cilindrica rígida, de cobre, donde tiene lugar todo el proceso reivindicado . La cámara de carga (200) está encamisada en el eje longitudinal del segundo recipiente (100), también de cobre, cuyas respectivas tapas que abrazan a la cámara (200) justo donde se recocinan en la soldadura, para reforzarlo. Este segundo recipiente es donde se produce la inyección de agua caliente (100). Tiene una válvula inferior de desagote, un tubo superior de alivio de la presión del aire durante la carga. El agua caliente, que es admitida a través de una válvula esférica (104), proviene de un depósito (102) de gran capacidad, con una resistencia eléctrica (103) para calentamiento del agua contenida en (102), cuya temperatura es controlada con la termocupla (106). Said prototype cell is a rigid device built around a rigid cylindrical copper loading chamber (200), where the entire claimed process takes place. The loading chamber (200) is jacketed along the longitudinal axis of the second container (100), also made of copper, whose respective lids hug the chamber (200) just where they are annealed in the weld, to reinforce it. This second container is where the hot water injection takes place (100). It has a lower drain valve, an upper air pressure relief tube during charging. The hot water, which is admitted through a ball valve (104), comes from a large capacity tank (102), with an electrical resistance (103) for heating the water contained in (102), whose temperature is controlled with the thermocouple (106).
A través de la tapa inferior de la cámara (200) se insertó un calentador eléctrico (201). En un inserto lateral se instaló un tubo para una termocupla (202) , y un capilar para la toma de presión conectado al manómetro (203) . En la parte superior de la cámara (200) se encuentra la válvula esférica (204) define dos volúmenes constantes para la cámara (200), limitándolo a una mitad inferior cuando se cierra. Por encima de la válvula (204) se extiende un tubo hasta un codo de 90° que posiciona al tubo horizontalmente y permite una mejor operación de la válvula (205) operada por solenoide, que abre un escape hacia un volumen hermético externo a la celda y de tamaño relativo suficiente para que represente un volumen "infinito" respecto del volumen de la celda. En el acodamiento del tubo hay una válvula de acceso (206) para la carga del fluido de trabajo. Through the lower lid of the chamber (200) an electric heater (201) was inserted. In a lateral insert a tube for a thermocouple (202) was installed, and a capillary for the pressure tap connected to the manometer (203). At the top of the chamber (200) is the ball valve (204) defining two constant volumes for the chamber (200), limiting it to a lower half when closed. Above the valve (204) a tube extends up to a 90 ° elbow that positions the tube horizontally and allows better operation of the solenoid-operated valve (205), which opens an exhaust to a hermetic volume external to the cell and of sufficient relative size to represent an "infinite" volume with respect to the volume of the cell. In the elbow of the tube there is an access valve (206) for charging the working fluid.
Todas las válvulas son operadas por actuadores magnéticos o neumáticos que son administrados por un tablero de temporizadores programables . All valves are operated by magnetic or pneumatic actuators that are managed by a board of programmable timers.
Ensayo Test
Las etapas del procedimiento del ensayo se ejecutan mediante automatismo de pasos secuenciales programados en un PLC . a) Se carga la cámara (200) de la invención con 91g de R410a. La fase líquida representa 60% en volumen, 96% en masa, a 25°C, a 225 PSIg. The stages of the test procedure are executed by means of automation of sequential steps programmed in a PLC. a) The chamber (200) of the invention is charged with 91g of R410a. The liquid phase represents 60% by volume, 96% by mass, at 25 ° C, at 225 PSIg.
b) Se cierra la válvula (104). b) The valve (104) is closed.
c) Se carga un volumen de agua en el reservorio presurizable (102), equivalente a la capacidad del recipiente envolvente (100) que rodea completamente a la cámara (200) . c) A volume of water is loaded into the pressurizable reservoir (102), equivalent to the capacity of the enveloping container (100) that completely surrounds the chamber (200).
d) Se ingresa en el reservorio (102) la cantidad necesaria de nitrógeno gas para presurizar el volumen de agua contenido en (102) y se ajusta el tapón de acceso (101) . d) The necessary amount of nitrogen gas is entered into the reservoir (102) to pressurize the volume of water contained in (102) and the access plug (101) is adjusted.
e) Se calienta el volumen de agua encerrado en (102) con la resistencia (103) hasta alcanzar la temperatura de trabajo de 90°C. Se apaga la resistencia (103) f) Se mantiene cerrada la válvula (205) , y permanece abierta la válvula (204). e) The volume of water enclosed in (102) is heated with the resistance (103) until reaching the working temperature of 90 ° C. Resistor (103) is turned off f) Valve (205) is kept closed, and valve (204) remains open.
g) Se calienta con la resistencia (201) el fluido de trabajo contenido en la cámara (200) para alcanzar la temperatura inicial de trabajo (To) del fluido R410a y se fija convenientemente que dicha temperatura inicial del fluido de trabajo sea de 45°C; temperatura que produce el mejor resultado final en el fluido. A 45°C en los 91 g de carga inicial el líquido de R410a representa ahora el 66% del volumen y el 94% de la masa, a 384 PSIg. g) The working fluid contained in the chamber (200) is heated with the resistance (201) to reach the initial working temperature (To) of the R410a fluid and it is conveniently set that said initial temperature of the working fluid is 45 ° C; temperature that produces the best end result in the fluid. At 45 ° C in the initial 91 g charge the R410a liquid now represents 66% of the volume and 94% of the mass, at 384 PSIg.
h) Se apaga la resistencia (201). h) Resistor (201) is turned off.
Alcanzado este momento del procedimiento se continuó con los pasos siguientes con preciso control temporal secuencial a través del dispositivo PLC . Having reached this point in the procedure, the following steps were continued with precise sequential time control through the PLC device.
i) Se activa la adquisición y el registro de datos en un computador j) Se despresuriza la cámara (200) mediante la apertura de la válvula (205) durante 1/10 de segundo, para permitir la salida de los vapores acumulados en la parte superior de (200) . i) Data acquisition and recording on a computer is activated j) The chamber (200) is depressurized by opening the valve (205) for 1/10 of a second, to allow the vapors accumulated in the upper part of (200) to escape.
k) Durante 1 segundo posterior se espera para permitir que el fluido alcance su equilibrio a su nueva temperatura del fluido ahora nucleado, de 42°C. l) En el siguiente segundo, se cierra la válvula (204) dejando atrapado en la cámara (200) el fluido a 42°C con un 3% de vapor en forma de núcleos de vapor homogéneamente distribuidos en fluido. El remanente del fluido entre la válvula (204) y la válvula (205) se ignora. k) During 1 second later it is expected to allow the fluid to reach its equilibrium at its new temperature of the now nucleated fluid, of 42 ° C. l) In the next second, the valve (204) is closed, leaving the fluid at 42 ° C trapped in the chamber (200) with 3% vapor in the form of vapor nuclei homogeneously distributed in fluid. The carryover of fluid between valve (204) and valve (205) is ignored.
m) Se abre la válvula (104) permitiendo que toda el agua calentada del recipiente (102) pase súbitamente impulsada al recipiente (100) a la que entra por el orificio tangencial (105) generando un torbellino alrededor de las paredes de la cámara (200) hasta completarlo. De esta etapa resulta una calda de temperatura del agua ingresada en (100) hasta 80°C, al calentar las paredes exteriores de la cámara (200) . m) The valve (104) is opened allowing all the heated water in the container (102) to be suddenly driven into the container (100), into which it enters through the tangential orifice (105) generating a vortex around the walls of the chamber ( 200) until complete. This stage results in a drop in the temperature of the water entered (100) up to 80 ° C, by heating the outer walls of the chamber (200).
La diferencia de temperatura entre el exterior y el interior de la pared de la cámara (200) es lo que provoca la evaporación súbita, característica principal del resultado del proceso de la invención. The temperature difference between the outside and inside of the chamber wall (200) is what causes sudden evaporation, the main characteristic of the result of the process of the invention.
El trabajo útil a partir de este proceso es extraible cuando se expanda el fluido luego de haber alcanzado el estado supercritico ; esto es, por ejemplo, pero sin ser limitativo, una expansión que actúe sobre un pistón o cualquier otro dispositivo capaz de capturar la energía potencial desarrollada en la expansión producida por la presión, a energía cinética. Los gráficos presentados en las figuras 3b, 3c, 3d y 3e explican también el proceso del ensayo anterior. Useful work from this process is extractable when the fluid expands after it has reached the supercritical state; this is, for example, but without being limiting, an expansion acting on a piston or any other device capable of capturing the potential energy developed in the expansion produced by pressure, to kinetic energy. The graphs presented in Figures 3b, 3c, 3d and 3e also explain the above test process.
Figuras 3b y 3d Figures 3b and 3d
En la figura 3b se presentan las variables relevantes del proceso reivindicado. El gráfico es comparativo entre Temperatura (°C xlO), Presión (PSIg) , Porcentaje de la Masa Total de Fluido en Vapor (%M x2000 +500) , Porcentaje del Volumen Total en Vapor (%V x800 +500) , todo en función de "puntos de muestreo" determinados secuencialmente a razón de 40 por segundo (40Hz) . Se comparan en escala relativa porque lo que se pretende mostrar es su tendencia más que su valor absoluto. La linea rosa corresponde a la temperatura, la azul a la presión, la verde al porcentaje de Masa y la linea naranja al porcentaje de volumen. Éstas dos últimas desaparecen al llegar a cero (500, en el gráfico) cuando el fluido de trabajo entra en estado de "fluido compresible" y luego en estado de "fluido supercritico" . The relevant variables of the claimed process are shown in figure 3b. The graph is a comparison between Temperature (° C x10), Pressure (PSIg), Percentage of Total Mass of Fluid in Vapor (% M x2000 +500), Percentage of Total Volume in Vapor (% V x800 +500), all in function of "sample points" determined sequentially at the rate of 40 per second (40Hz). They are compared on a relative scale because what is intended to show is their trend rather than their absolute value. The pink line corresponds to the temperature, the blue to the pressure, the green to the percentage of Mass and the orange line to the percentage of volume. These last two disappear when reaching zero (500, in the graph) when the working fluid enters the state of "compressible fluid" and then in the state of "supercritical fluid".
En el gráfico de la figura 3c se muestra un detalle de la primera mitad del gráfico 3b, en escala más expandida .—Se agregan dos isotermas y tres referencias. Las isotermas se corresponden a la temperatura inicial de equilibrio, y la nueva isoterma luego de la nucleación debido al descenso súbito de presión ( líneas continuas horizontales en color amarillo) . Las lineas de referencia son los valores críticos de presión y temperatura ( líneas punteadas horizontales color azul y magenta) y, en línea punteada color verde el cero (0%) de los porcentajes músicos y volumétricos. The graph in figure 3c shows a detail of the first half of graph 3b, on a more expanded scale. — Two isotherms and three references are added. The isotherms correspond to the initial equilibrium temperature, and the new isotherm after nucleation due to the sudden drop in pressure (horizontal solid lines in yellow). The reference lines are the critical pressure and temperature values (blue and magenta horizontal dotted lines) and, in the green dotted line, the zero (0%) of the musical and volumetric percentages.
En el gráfico 3d, idéntico a 3c, se le agregan referencias verticales que permite distinguir las distintas etapas del proceso descriptas anteriormente. In graph 3d, identical to 3c, vertical references are added to allow distinguishing the different stages of the process described above.
Con la despresurización (paso 'j') ( linea continua azul , figuras de la serie 3) , se ve una calda de lOOpsi en una décima de segundo y la recuperación de presión en dos décimas, pero equilibrándose 2,4K más frió ( linea continua magenta , figuras de la serie 3) , lo que evidencia que hubo una evaporación adiabática característica de este tipo de evaporación súbita. La extracción de vapor está evidenciada en la ca da de Presión y en el Porcentaje de Masa de Vapor y la posterior recuperación de ambos con una nueva temperatura de equilibrio, más baja. With depressurization (step 'j') (solid blue line, series 3 figures), a 100psi drop is seen in a tenth of a second and the pressure recovery in two tenths, but balancing 2.4K colder (continuous magenta line, series 3 figures), which shows that there was an adiabatic evaporation characteristic of this type of sudden evaporation. The extraction of steam is evidenced in the pressure drop and in the Vapor Mass Percentage and the subsequent recovery of both with a new, lower equilibrium temperature.
Dos segundos después de recuperado el equilibrio llega el corte de volumen (paso '1' ) y se distingue un abrupto descenso en los porcentajes de Masa y Volumen del vapor que se corresponde a la división del volumen de la cámara del fluido de trabajo. Los porcentajes de vapor descienden drásticamente líneas continua verde y naranja , figuras de la serie 3) como era previsible al dejar fuera el cuello de la cámara con el volumen de vapor donde, teniendo en cuenta que conservamos el 55% inferior del volumen, su valor mayor a cero evidencian que el vapor se encuentra en burbujas en el seno del fluido y no encima del mismo de lo contrario el vapor hubiera quedado todo en la parte del volumen excluida de la cámara del fluido de trabajo. Two seconds after the equilibrium is recovered, the volume cut-off arrives (step '1') and an abrupt decrease in the percentages of Mass and Volume of the steam is distinguished, which corresponds to the division of the volume of the working fluid chamber. The vapor percentages drastically decrease green and orange continuous lines, figures from series 3), as expected when leaving out the neck of the chamber with the volume of vapor where, taking into account that we conserve the lower 55% of the volume, its value greater than zero show that the vapor is found in bubbles within the fluid and not above it, otherwise the vapor would have remained all in the part of the volume excluded from the working fluid chamber.
Tres segundos después se inyecta el agua caliente (paso 'm' ) que llega 6 décimas más tarde. Al ir aumentando la presión el porcentaje de vapor se va reduciendo conforme el fluido va llegando al estado de fluido compresible. Al llegar a este estado, representado cuando la linea de presión cruza el valor critico, la cantidad de vapor se vuelve cero. Esto está representado en el gráfico 3d con la primera referencia vertical roja. Al ir aumentando la temperatura, cuando cruza su valor critico, nueva referencia vertical roja, entra en la tercera parte de interés del gráfico 3d: fluido de fase supercritica . Three seconds later the hot water is injected (step 'm') which arrives 6 tenths later. As the pressure increases, the percentage of vapor decreases as the fluid reaches the state of compressible fluid. Upon reaching this state, represented when the pressure line crosses the critical value, the amount of steam becomes zero. This is represented in the 3d graphic with the first red vertical reference. As the temperature increases, when it crosses its critical value, the new red vertical reference, it enters the third part of interest of the 3d graph: supercritical phase fluid.
En resumen luego de un prolongado equilibrio, se produce una calda de presión con recuperación, más frió, un aporte de calor que eleva rápidamente la presión y temperatura y una tercera etapa de estabilización, ya dentro de un fluido supercrítico . In summary, after a prolonged equilibrium, a pressure drop is produced with recovery, colder, a contribution of heat that rapidly raises pressure and temperature and a third stabilization stage, already within a supercritical fluid.
Resumiendo el ciclo descripto hasta ahora. Summarizing the cycle described so far.
Se observa en las figuras 3b, 3c y 3d que la presión está en equilibrio, cae abruptamente con la despresurización, se recupera a un nuevo equilibrio de P y T más bajo, se dispara con la evaporación súbita y la ebullición laminar, crece más moderadamente con la evaporación/condensación y aún más moderadamente durante la expansión térmica hasta que convierte el fluido de trabajo en compresible donde absorbe todo el calor como calor sensible y vuelve a aumentar su ritmo, hasta alcanzar el estado de supercritico . It is observed in figures 3b, 3c and 3d that the pressure is in equilibrium, it drops abruptly with depressurization, it recovers to a new lower P and T equilibrium, it shoots up with flash evaporation and laminar boiling, it grows more moderately with evaporation / condensation and even more moderately during thermal expansion until it converts the working fluid into compressible where it absorbs all the heat as sensible heat and increases its rate again, until it reaches the supercritical state.
Se alcanza un equilibrio térmico en 87°C, por encima de los 80°C del agua. Esto indica que el fluido absorbió más calor del que necesita para estar en esa densidad, que es constante al ser tanto el volumen como la masa fija, a la temperatura del agua de la cámara (100) . A thermal equilibrium is reached at 87 ° C, above the 80 ° C of water. This indicates that the fluid absorbed more heat than it needs to be at that density, which is constant as both the volume and the mass are fixed, at the temperature of the water in the chamber (100).
Los porcentajes de vapor están en equilibrio. Caen abruptamente durante su extracción, recupera su volumen, más no su masa luego de la represurización y vuelven a alcanzar el equilibrio. Con el corte de volumen caen abruptamente, pero no a cero. Esta ca da es esperable porque queda fuera del volumen en consideración el cuello de la cámara con todo el vapor que estaba en equilibrio dinámico. El hecho de que los vapores no hayan ca do a cero indica que están presentes burbujas en el seno del fluido de trabajo. El vapor actúa en favor de la presurización . Para dicho aumento de presión, el poco vapor evaporado es un factor clave para la consideración de la eficiencia del procedimiento reivindicado. Conforme sigue aumentando la presión el volumen y masa de vapor va desapareciendo hasta que el fluido liquido ocupa todo el volumen como "fluido comprimible", que los porcentajes llegan a cero (Fig. 3d, líneas continuas verde y naranja) . The vapor percentages are in equilibrium. They fall abruptly during extraction, recover their volume, but not their mass after repressurization, and reach equilibrium again. With the volume cut they drop steeply, but not to zero. This drop is to be expected because the neck of the chamber with all the steam that was in dynamic equilibrium is outside the volume under consideration. The fact that the vapors have not fallen to zero indicates that bubbles are present within the working fluid. Steam acts in favor of pressurization. For such a pressure increase, the little vapor evaporated is a key factor in considering the efficiency of the claimed process. As the pressure continues to increase, the volume and mass of vapor disappears until the liquid fluid occupies the entire volume as "compressible fluid", the percentages reaching zero (Fig. 3d, solid green and orange lines).
Figura 3e Figure 3e
La figura 3e concurre a explicar el ciclo descripto anterior pero ahora expresado en forma cronológica en un gráfico P = f (T) de un ciclo de carga de calor en el fluido de trabajo a partir de la fuente de calor, que en nuestro Ejemplo 1 es el agua caliente del recipiente (100), y de la descompresión que ocurre dentro de la cámara (200) . En efecto, el gráfico de la Figura 3e se ha dividido en cuatro cuadrantes correspondientes al estado de la materia fluida. El cuadrante inferior izquierdo es el cuadrante que muestra la evolución del fluido bifásico hasta su punto crítico, en el cual se ha fijado el origen de coordenadas (T, P) crít de los ejes del cuadrante. La línea continua azul oscuro corresponde a la curva de saturación donde el fluido coexiste en dos estados de agregación, donde usualmente se encuentra en equilibrio . Figure 3e helps to explain the cycle described above but now expressed chronologically in a graph P = f (T) of a heat load cycle in the working fluid from the heat source, which in our Example 1 It is the hot water from the container (100), and from the decompression that occurs inside the chamber (200). Indeed, the graph of Figure 3e has been divided into four quadrants corresponding to the state of fluid matter. The lower left quadrant is the quadrant that shows the evolution of the biphasic fluid up to its critical point, in which the origin of coordinates (T, P) critical of the axes of the quadrant has been set. The solid dark blue line corresponds to the saturation curve where the fluid coexists in two states of aggregation, where it is usually in equilibrium.
Los otros tres cuadrantes son cuadrantes de fases únicas. El cuadrante superior derecho corresponde al cuadrante del "fluido supercrítico" . El superior izquierdo es corresponde al "fluido compresible", que se comporta como un líquido, pero es compresible y se mantiene en estado líquido, con independencia de su temperatura. El inferior derecho es el cuadrante que corresponde al "vapor sobrecalentado" o "gas", porque ya no se condensa, con independencia de la presión aplicada. The other three quadrants are single phase quadrants. The upper right quadrant corresponds to the "supercritical fluid" quadrant. The upper left is corresponds to "compressible fluid", which behaves like a liquid, but is compressible and remains in a liquid state, regardless of its temperature. The lower right is the quadrant that corresponds to "superheated steam" or "gas", because it no longer condenses, regardless of the applied pressure.
La linea continua celeste es el recorrido de los puntos de los estados del fluido de trabajo capturados por la termocupla (202) y el manómetro (203) con una frecuencia de muestreo de 40 puntos por segundo transmitidos por la interfase apropiada a la computadora, durante el ciclo de carga de calor del fluido de trabajo a partir de la inyección de agua caliente en el recipiente (100). Dicho recorrido se inicia con una caída de presión y descenso de temperatura (301) al abrir la válvula solenoide (205), seguido de una recuperación de los valores de T y P al estado de equilibrio bifásico en la línea de saturación (302) . Luego de unos pocos segundos ocurre una presuri zación cuasi-isotérmica (303) que corresponde a un cambio de estado súbito. Luego el recorrido sigue una trayectoria cuasi-parabólica (304) que lleva al sistema del fluido hasta el cuadrante de supercriticidad pasando por el estado de "fluido comprimible" (305) . Ya en el cuadrante de supercriticidad se alcanza un valor máximo de temperatura (306) y luego un tramo de trayectoria en equilibrio de presión con caída de temperatura (307) . Hasta aquí el gráfico corresponde al proceso reivindicado en la presente invención. A los efectos de la misma queda demostrado que a través del proceso de la invención se genera y acumula energía potencial en la forma de presión acumulada o contenida en la cámara (200) . La diferencia de presión entre los puntos (307a) y (307b) corresponde al valor de trabajo útil que es sistema es capaz de realizar sobre el ambiente, y que es el resultado buscado en el proceso reivindicado. The celestial solid line is the route of the points of the states of the working fluid captured by the thermocouple (202) and the manometer (203) with a sampling frequency of 40 points per second transmitted by the appropriate interface to the computer, during the heat load cycle of the working fluid from injection of hot water in the container (100). Said path begins with a pressure drop and temperature drop (301) when the solenoid valve (205) is opened, followed by a recovery of the values of T and P to the state of two-phase equilibrium in the saturation line (302). After a few seconds, a quasi-isothermal pressurization occurs (303) that corresponds to a sudden change of state. Then the path follows a quasi-parabolic path (304) that takes the fluid system to the supercritical quadrant passing through the state of "compressible fluid" (305). Already in the supercriticality quadrant a maximum temperature value (306) is reached and then a trajectory section in pressure equilibrium with temperature drop (307). So far the graph corresponds to the process claimed in the present invention. For the purposes of the same, it is demonstrated that through the process of the invention potential energy is generated and accumulated in the form of pressure accumulated or contained in the chamber (200). The pressure difference between points (307a) and (307b) corresponds to the value of useful work that the system is capable of carrying out on the environment, and that is the result sought in the claimed process.
También a los efectos del presente ensayo, luego de alcanzar el valor de presión (307a) se permitió la despresurización de la cámara (200) ; esto se muestra en la caída isotérmica cuasi-instantánea vertical (308) , para llegar nuevamente al equilibrio bifásico y comenzar un nuevo ciclo de carga, repetitivo y subsecuente del anterior. Also for the purposes of this test, after reaching the pressure value (307a), the chamber (200) was allowed to depressurize; This is shown in the vertical quasi-instantaneous isothermal fall (308), to reach biphasic equilibrium again and start a new load cycle, repetitive and subsequent to the previous one.
Más adelante, en el Ejemplo 3 se describe un dispositivo en funcionamiento en concordancia con el procedimiento previamente descripto. Ejemplo 3. Balance de Energía Below, in Example 3 a device is described in operation in accordance with the previously described procedure. Example 3. Energy Balance
Teniendo en cuenta que la celda de la invención desarrolla transformaciones de energía, el ciclo donde ella funcione debe cumplir con las leyes de conservación de un sistema no conservativo. El ejemplo 3, en dos versiones A y B, se agrega para demostrar que dicho requisito se cumple. Subsidiariamente es posible calcular un valor de eficiencia. Taking into account that the cell of the invention develops energy transformations, the cycle where it works must comply with the conservation laws of a non-conservative system. Example 3, in two versions A and B, is added to show that this requirement is met. Alternatively, it is possible to calculate an efficiency value.
Para considerar la conservación de las transformaciones de energía en todo un ciclo es necesario considerar los aportes de energía que se originan desde afuera hacia dentro de la celda de la invención y el trabajo mecánico que se genera hacia afuera de dicha celda. Se asumió que la fuente de calor que proporciona la energía fluye y está disponible en forma constante a una temperatura constante o más o menos contante en un rango estrecho. Una fuente de calor constante a temperatura constante permite realizaciones estables de absorción de calor o "cosecha" de calor. Con la expresión "cosecha de calor", tal como se usa en la presente invención, debe entenderse el calor extraido desde el medio, considerado como un sistema cerrado o abierto, que es absorbido por el circuito frigorífico donde se encuentra el fluido de trabajo que utilizará el invento. To consider the conservation of energy transformations throughout a cycle, it is necessary to consider the energy contributions that originate from the outside to the inside of the cell of the invention and the mechanical work that is generated outside said cell. It was assumed that the heat source that provides the energy flows and is constantly available at a constant or more or less constant temperature in a narrow range. A constant heat source at constant temperature allows for stable heat absorption or heat "harvesting" performances. With the expression "heat harvesting", as used in the present invention, the heat extracted from the environment must be understood, considered as a closed or open system, which is absorbed by the refrigeration circuit where the working fluid is located. will use the invention.
Para los cálculos energéticos se tuvo en cuenta los valores específicos, es decir, referidas a la unidad de masa. Todos los valores se refieren a lKg de fluido de trabajo con independencia de si ello supone distintas velocidades en cada componente para procesar una unidad de masa por unidad de tiempo . For the energy calculations, the specific values were taken into account, that is, referred to the unit of mass. All values refer to lKg of working fluid regardless of whether this implies different speeds in each component to process a unit of mass per unit of time.
A los efectos de la presente invención, hemos denominado a estas aplicaciones por sus nombres característicos y con ellas se estudia el Balance de energía y el cumplimiento de las leyes generales de conservación de energía. A. Unidad de Recuperación del calor residual en un sistema frigorífico central, como el que se equiparía un supermercado, y For the purposes of the present invention, we have named these applications by their characteristic names and with them the Energy Balance and compliance with the general laws of energy conservation are studied. A. Residual Heat Recovery Unit in a central refrigeration system, such as a supermarket would be equipped, and
B. Sistema de generación eléctrica a partir del calor atmosférico. Ambos son implementaciones válidas y posibles que caen en el alcance de la invención. Se complementa la explicación con un detalle gráfico en la serie de figuras 4. B. Electrical generation system from atmospheric heat. Both are valid and possible implementations that fall within the scope of the invention. The explanation is complemented with a graphic detail in the series of figures 4.
Ambas implementaciones tienen características similares, como ser la fuente una fuente inagotable de calor, en términos prácticos, a temperatura estable. Fuentes variables en su temperatura, o disponibilidad de calor, o progresivo, como un almacenamiento de calor que se va enfriando no impiden el aprovechamiento del invento pero requiere de previsiones que exceden las pretensiones de esta memoria. Se prefiere una fuente regular e inagotable. Both implementations have similar characteristics, such as the source being an inexhaustible source of heat, in practical terms, at a stable temperature. Variable sources in their temperature, or availability of heat, or progressive, such as heat storage that cools down, do not prevent the use of the invention, but require provisions that exceed the claims of this specification. A regular and inexhaustible source is preferred.
Ambos ejemplos implementan el invento en un circuito frigorífico específico para el invento donde el evaporador cosecha el calor en la fuente y el condensador se equivale a la cámara 100 de la figura 3a. Se incluye un diagrama de este circuito como la figura 4a. El invento podría estar en una vía paralela entre dos entre el tanque de acopio y el evaporador, siendo la otra una vía desde el tanque de acopio al evaporador pasando por una válvula de expansión (como vía exclusiva de cosecha de calor, no dibujada) pero, en los ejemplos es la vía única, por lo que está en serie a continuación del tanque de acopio y antes del motor. El condensador es la cámara 100, por lo que está a continuación del compresor y antes del tanque de acopio. Ambos ejemplos utilizan la "implementación posible" de la celda de carga detallada en la serie de figuras 5 para utilizar el proceso reivindicado . La variación entre los ejemplos es el fluido de trabajo. En el primero se utiliza R410a y en el segundo R744-C02. Both examples implement the invention in a specific refrigeration circuit for the invention where the evaporator harvests the heat at the source and the condenser is equivalent to the chamber 100 of figure 3a. A diagram of this circuit is included as figure 4a. The invention could be in a parallel path between two between the storage tank and the evaporator, the other being a route from the storage tank to the evaporator passing through an expansion valve (as an exclusive heat harvesting route, not drawn) but , in the examples it is the single track, so it is in series after the storage tank and before the engine. The condenser is chamber 100, so it is after the compressor and before the storage tank. Both examples use the "possible implementation" of the load cell detailed in the series of figures 5 to use the claimed process. The variation between the examples is the working fluid. R410a is used in the first and R744-C0 2 in the second.
En estos ejemplos se utilizan tres series de etiquetas para distinguir las etapas. Estas son numérica de 1 a 4, como se acostumbra para un ciclo frigorífico estándar en el que se basa el invento, dibujado en un gráfico de Mollier, una serie alfabética mayúscula A-D, para la el ciclo P=/(V) del motor y un ciclo alfabético minúscula (a) - (d) para el ciclo entálpico del fluido de trabajo afectado al proceso objeto de la invención, también detallado en el mismo gráfico de Mollier. In these examples, three sets of labels are used to distinguish the stages. These are numerical from 1 to 4, as is customary for a standard refrigeration cycle on which the invention is based, drawn on a Mollier graph, a capital alphabetical series AD, for the cycle P = / (V) of the engine and a lower case alphabetical cycle (a) - (d) for the enthalpic cycle of the working fluid affected by the process object of the invention, also detailed in the same Mollier graph.
A. Unidad de Recuperación de Calor Residual en un Sistema Frigorífico Central A. Residual Heat Recovery Unit in a Central Refrigeration System
Una unidad de Recuperación de Calor Residual en un Sistema Frigorífico comprende esencialmente tres partes: (1) compresores, (2) radiadores de calor, y (3) un contendor adiabático que contiene un volumen de agua apropiado. Los componentes (1) y (2) son los ampliamente conocidos en arte frigorífico, pero la adición del componente (3) interpuesto entre (1) y (2) es el que convierte a estas Unidades Frigoríficas en novedosas, sorprendentes y no conocidas en el arte previo: las dota de la capacidad de recuperar el calor residual, normalmente liberado al ambiente (Diagrama 1, que es el esquema de un clásico sistema de refriqeración conocido en el arte) , para transformarlo mediante el proceso de la invención en trabajo útil (Diaqrama 2, que es el esquema de un sistema de refriqeración que incluye el proceso de la invención) y asi reciclarse en otros procesos mecánicos. A Residual Heat Recovery unit in a Refrigeration System essentially comprises three parts: (1) compressors, (2) heat radiators, and (3) an adiabatic container containing an appropriate volume of water. Components (1) and (2) are widely known in refrigeration art, but the addition of component (3) interposed between (1) and (2) is what makes these Refrigerating Units novel, surprising and unknown in prior art: endows them with the ability to recover residual heat, normally released to the environment (Diagram 1, which is the scheme of a classic refrigeration system known in the art), to transform it through the process of the invention into useful work (Diagram 2, which is the diagram of a refrigeration system that includes the process of the invention) and thus be recycled in other mechanical processes.
Figure imgf000050_0001
Figure imgf000050_0001
En efecto, el volumen de agua del contenedor (3) en el diagrama 2 se usa como medio de intercambio/cesión de calor desde el circuito principal del Sistema Frigorífico Central (1) hacia el circuito frigorífico base donde se implementa el invento . Indeed, the volume of water in the container (3) in diagram 2 is used as a heat exchange / transfer medium from the main circuit of the Central Refrigeration System (1) towards the base refrigeration circuit where the invention is implemented.
En la realización del diagrama 2, el vapor caliente de la descarga de los compresores (1) se circula, a través de un circuito apropiado, por ejemplo, pero no limitado a, un serpentín, una cañería, un recipiente de forma variada, etc, hacia el recipiente (3) que contiene el volumen de agua que se usa ahora como transportador de calor. In the embodiment of diagram 2, the hot steam from the discharge of the compressors (1) is circulated, through an appropriate circuit, for example, but not limited to, a coil, a pipe, a container of various shapes, etc. , towards the container (3) that contains the volume of water that is now used as a heat carrier.
Para asegurar el funcionamiento de este tipo de circuitos recuperadores, la condición de temperatura que debe cumplir el agua del contenedor (3) es que debe encontrarse en el rango donde ella es lo suficientemente fría para condensar el vapor de la descarga de los compresores y lo suficientemente caliente como para evaporar el fluido de trabajo del ciclo frigorífico que implementa el invento (4). La temperatura del agua de intercambio de calor en este ejemplo está en el rango entre 32°C y 38°C. Por debajo de este rango el agua perdería la capacidad de evaporar el fluido de trabajo en (4) -que se detendría- y, por encima de esa franja, perdería la capacidad de condensar la descarga de los compresores (1) . To ensure the operation of this type of recovery circuits, the temperature condition that the water in the container (3) must meet is that it must be in the range where it is cold enough to condense the vapor from the compressor discharge and Hot enough to evaporate the working fluid of the refrigeration cycle that implements the invention (4). The temperature of the heat exchange water in this example is in the range between 32 ° C and 38 ° C. Below In this range, the water would lose the ability to evaporate the working fluid in (4) -which would stop- and, above that range, it would lose the ability to condense the discharge of the compressors (1).
El sistema del ejemplo del diagrama 2 está configurado como dos circuitos independientes (1) y (4) , estancos, pero térmicamente interconectados a través de un volumen de agua de transferencia de calor (3) . El circuito de refrigeración (1) condensa su fluido de trabajo liberando calor en el agua (3) por medio, por ejemplo pero no limitativo, de un serpentín sumergido, y el circuito del invento (4) que actúa como recuperador de energía lo cosecha de (3) evaporando así el fluido de trabajo que contiene para luego aumentar su presión en la cámara 200 como se describió antes bajo el título "Figura 3e" . The system of the example of diagram 2 is configured as two independent circuits (1) and (4), watertight, but thermally interconnected through a volume of heat transfer water (3). The cooling circuit (1) condenses its working fluid releasing heat into the water (3) by means, for example but not limited to, of a submerged coil, and the circuit of the invention (4) that acts as an energy recuperator harvests it of (3) thus evaporating the working fluid it contains and then increasing its pressure in chamber 200 as described above under the heading "Figure 3e".
Con el circuito frigorífico descripto anteriormente que incluye la cámara de recuperación de energía (4) , que es en esencia el método de la invención, se realizó el balance energético cuyos valores experimentales se muestran en detalle más adelante en la Tabla 1. With the refrigeration circuit described above that includes the energy recovery chamber (4), which is essentially the method of the invention, the energy balance was carried out, the experimental values of which are shown in detail later in Table 1.
Dicho análisis energético, empero, divide el sistema único del circuito en varios subsistemas, que se esquematizan en el Diagrama 3. This energy analysis, however, divides the single circuit system into several subsystems, which are outlined in Diagram 3.
Figure imgf000051_0001
Figure imgf000051_0001
Los intercambios de calor y masa entre subsistemas que componen el circuito frigorífico base de la invención se agrupan como "intercambios internos" y los intercambio de calor o trabajo con el ambiente se consideran "intercambios externos" . The exchanges of heat and mass between subsystems that make up the base refrigeration circuit of the invention are grouped as "internal exchanges" and the exchanges of heat or work with the environment are considered "external exchanges".
Figure imgf000053_0001
Descripción de las etapas del cálculo de balance energético representado en la Tabla 1.
Figure imgf000053_0001
Description of the stages of the energy balance calculation represented in Table 1.
• Etapa de Arranque : Esta etapa sólo tiene lugar al momento de poner en funcionamiento el sistema de recuperación. El fluido se supone en equilibrio dinámico a la temperatura ambiente. Esta etapa implica la evaporación de todo el fluido que pudiera estar líquido porque el inicio de la primera etapa de las etapas del ciclo supone toda la masa en estado de vapor. El calor aquí transferido lo es "en cantidad suficiente" y no es objeto de este balance. • Start-up Stage: This stage only takes place when the recovery system is put into operation. The fluid is assumed to be in dynamic equilibrium at room temperature. This stage implies the evaporation of all the fluid that could be liquid because the beginning of the first stage of the stages of the cycle supposes the entire mass in a vapor state. The heat transferred here is "in sufficient quantity" and is not the object of this balance.
• Etapa 1 : Es la primera etapa del ciclo. El fluido ingresa completamente evaporado, correspondiéndose al punto 1 del gráfico de Mollier (Figura 4b) . El vapor es comprimido a instancias del trabajo externo provisto en forma de electricidad ("trabajo externo") alcanzándose el punto 2 de la gráfica de Mollier, que es el punto del fluido de trabajo en el cual alcanza su mayor valor de Energía Interna. El fluido entra en la etapa de condensado, pero sin subenfriarse, cediendo su energía en forma de calor de condensación a la Etapa 2 siguiente como calor ("calor interno") y como trabajo ("trabajo interno"), empujando el pistón del invento, en la siguiente etapa. Este punto final se corresponde al punto 3' de la gráfica de Mollier de la Figura 4b. Este trabajo interno que resulta del calor de condensación se transmite a través de la corona de levas del invento actuando como palanca y el acumulador neumático como medio hidráulico directamente al motor. La pérdida de energía en la rotación de la corona de levas es sólo la de la fricción y la extensión de los resortes ya que el líquido expulsado se encuentra a la misma presión que el líquido exterior que, a su vez, mantiene presión constante por el acumulador hidráulico. Etapa 2 (Invención) : Esta etapa corresponde al invento tal como se reivindica, es la invención propiamente dicha. El fluido entra en la cámara (que sería la cámara 200 de la figura 3a, pero implementada como se detalla en figura 5a) empujando el pistón (con el trabajo ejercido detallado al final de la etapa anterior) . Este trabajo que empuja el pistón hace girar la corona de levas, estira los resortes de despresurización y se transmite a los pistones en la etapa final para expulsar el fluido de éstos. Por tanto el trabajo no cambia la energía interna del fluido, sino que se transmite a través del invento para expulsar el fluido al final sin modificarlo en ningún momento.• Stage 1: It is the first stage of the cycle. The fluid enters completely evaporated, corresponding to point 1 of the Mollier graph (Figure 4b). The steam is compressed at the behest of external work provided in the form of electricity ("external work") reaching point 2 on the Mollier graph, which is the point in the working fluid at which it reaches its highest Internal Energy value. The fluid enters the condensate stage, but without being subcooled, yielding its energy in the form of heat of condensation to the following Stage 2 as heat ("internal heat") and as work ("internal work"), pushing the piston of the invention , in the next stage. This end point corresponds to point 3 'of the Mollier plot of Figure 4b. This internal work resulting from the heat of condensation is transmitted through the cam ring of the invention acting as a lever and the pneumatic accumulator as a hydraulic means directly to the engine. The loss of energy in the rotation of the camshaft is only that of friction and the extension of the springs since the expelled liquid is at the same pressure as the external liquid which, in turn, maintains constant pressure through the hydraulic accumulator. Stage 2 (Invention): This stage corresponds to the invention as claimed, it is the invention itself. The fluid enters the chamber (which would be chamber 200 in figure 3a, but implemented as detailed in figure 5a) pushing the piston (with the work done detailed at the end of the previous stage). This piston pushing work rotates the camshaft, stretches the depressurization springs, and is transmitted to the pistons in the final stage to expel fluid from the pistons. Therefore the work does not change the internal energy of the fluid, but is transmitted through the invention to expel the fluid at the end without modifying it at any time.
El fluido en el invento es entonces sometido a una súbita despresurización por "aporte de volumen" al bajar súbitamente el pistón y expone el fluido a las paredes que han sido calentadas por el calor de condensación cedido al baño marra (cámara 100, de la figura 3a) del invento por la condensación en la etapa anterior. Estas son las subetapas de "Nucleación" y "Evaporación Súbita". Esta evaporación súbita, y su consiguiente condensación simultánea termina donando calor al fluido que no se evaporó, y se expande, comprimiendo todo el fluido. El fluido llega a su máxima expresión de temperatura y presión, pasando a la siguiente etapa. Esta etapa de presurización a partir del calor del baño marra también colabora con el giro de la corona de levas y estiramiento de los resortes por lo que estas dos cargas pueden despreciarse en el balance estudiado. The fluid in the invention is then subjected to a sudden depressurization by "volume supply" by suddenly lowering the piston and exposes the fluid to the walls that have been heated by the heat of condensation given to the bath (chamber 100, of figure 3a) of the invention by the condensation in the previous step. These are the "Nucleation" and "Flash Evaporation" substages. This sudden evaporation, and its consequent simultaneous condensation, ends up giving heat to the fluid that did not evaporate, and it expands, compressing all the fluid. The fluid reaches its maximum expression of temperature and pressure, moving to the next stage. This pressurization stage from the heat of the bath also collaborates with the rotation of the crown of cams and stretching of the springs, so these two loads can be neglected in the balance studied.
• Etapa 3 (Acumulador Isobárico) : El fluido se encuentra en el cilindro del invento a la misma presión y temperatura que el acumulador isobárico. Es expulsado de éste por el fluido de trabajo que entra al mismo tiempo en los otros cilindros (que se encuentren en la etapa anterior) . Este acumulador tiene por objeto absorber fluctuaciones de flujo y no cambia de modo alguno el estado del fluido de trabajo que sigue al motor. Mantiene la presión constante. Absorbe el trabajo impreso al final de la etapa 1 comprimiendo la vejiga y lo devuelve al habilitarse la carga en el motor descomprimiendo la vejiga para cargar el pistón, de la siguiente etapa. • Stage 3 (Isobaric accumulator): The fluid is in the cylinder of the invention at the same pressure and temperature as the isobaric accumulator. It is expelled from it by the working fluid that enters the other cylinders (which are in the previous stage) at the same time. East The accumulator is intended to absorb flow fluctuations and does not change in any way the state of the working fluid following the engine. Maintains constant pressure. It absorbs the printed work at the end of stage 1 compressing the bladder and returns it when the load is enabled on the engine, decompressing the bladder to load the piston, of the next stage.
• Etapa 4 (Motor) : El fluido absorbe el trabajo impreso al final de la etapa 1 y empuja el pistón mientras carga. Al llegar a la carga cierra la admisión y comienza una expansión isotérmica. Luego abre la válvula de descarga. El fluido ve reducida su energía interna y se refleja pérdida de presión y temperatura y condensación. Esta etapa realiza el trabajo externo. Gráfica P=f(V) del motor para ejemplo A es la figura 4c y para el ejemplo B es la figura 4e. • Stage 4 (Engine): The fluid absorbs the printed job at the end of stage 1 and pushes the piston while loading. Upon reaching the charge, the intake closes and an isothermal expansion begins. Then open the dump valve. The fluid sees its internal energy reduced and loss of pressure and temperature and condensation are reflected. This stage performs external work. Graph P = f (V) of the motor for example A is figure 4c and for example B is figure 4e.
• Etapa 5 (Recuperación) : Esta etapa es la etapa de recuperación o recarga de calor. El fluido vuelve a pasar por el evaporador ( cámara 3, del diagrama 2, del Sistema Frigorífico Central) y recarga el calor perdido en el ciclo. El resultado final de la etapa es idéntico al final de la Etapa de Arranque, siendo compatible. Una vez en este punto el ciclo recomienza en la Etapa 1 o se sigue a la etapa de salida que se corresponde a la detención del recuperador de calor . • Stage 5 (Recovery): This stage is the heat recovery or recharge stage. The fluid goes back through the evaporator (chamber 3, of diagram 2, of the Central Refrigeration System) and recharges the heat lost in the cycle. The final result of the stage is identical to the end of the Start-up Stage, being compatible. Once at this point, the cycle restarts in Stage 1 or it continues to the output stage that corresponds to the stopping of the heat recovery unit.
• Etapa de salida (detención) : El recuperar entra en esta etapa para detener su marcha. El fluido de trabajo aquí vuelve a su estado de saturación a la temperatura ambiente, como estaba al principio de la Etapa de Arranque. • Exit stage (stop): The recovery enters this stage to stop its march. The working fluid here returns to its saturated state at room temperature, as it was at the beginning of the Start-Up Stage.
B. Sistema de generación eléctrica a partir del calor atmosférico . Este ejemplo es análogo al anterior. Muestra cómo se puede cosechar calor sensible del aire de la atmósfera, y el latente de la humedad disuelta en él. Mantiene la característica de tener un origen de calor infinito y estable en términos prácticos. El ejemplo supone un país tropical, para hacer más sencillo el ejemplo, pero puede instalarse donde se pueda asegurar el proceso. La cosecha de calor se hace con un evaporador expuesto a los elementos, en una azotea. Se prefiere, pero no se limita a, una azotea o lugar expuesto al viento y el Sol. Como fluido de trabajo se utiliza el R744 que, como se consignó antes en esta descripción, es dióxido de carbono ( CO2) · Dependiendo de los objetivos, se pueden utilizar distintos fluidos de trabajo. En el ejemplo se elige el R744 porque da mejores resultados en temperaturas entre 0-10°C. En el ejemplo se supuso una temperatura ambiente de 25°C. B. Electrical generation system from atmospheric heat. This example is analogous to the previous one. It shows how sensible heat can be harvested from the air of the atmosphere, and latent heat from the moisture dissolved in it. It maintains the characteristic of having an infinite and stable heat source in practical terms. The example assumes a tropical country, to make the example easier, but can be installed where the process can be ensured. The heat harvest is done with an evaporator exposed to the elements, on a rooftop. It is preferred, but not limited to, a rooftop or place exposed to the wind and the Sun. As working fluid, R744 is used which, as stated earlier in this description, is carbon dioxide (CO2) · Depending on the objectives , different working fluids can be used. In the example R744 is chosen because it gives better results in temperatures between 0-10 ° C. In the example an ambient temperature of 25 ° C was assumed.
El análisis de datos es idéntico al anterior con la sola variación de los valores. The data analysis is identical to the previous one with the only variation of the values.
Se pone a continuación la Tabla 2, con los datos específicos a este ejemplo, y la gráfica de Mollier es la figura 4d y el gráfico P=/(V) del motor está en la figura 4e. Table 2 is given below, with the data specific to this example, and the Mollier graph is figure 4d and the graph P = / (V) of the motor is in figure 4e.
Ejemplo 4. Implementaclón de tipo comercial. Dispositivo de Generación Pulsante, el lotes o "batch" . Example 4. Commercial implementation. Pulsed Generation Device, the batch or "batch".
La cámara 200, donde tiene lugar el proceso reivindicado, tiene al menos, dos posibles implementaciones capaces de producir trabajo útil continuo con miras a su explotación comercial. Chamber 200, where the claimed process takes place, has at least two possible implementations capable of producing continuous useful work with a view to its commercial exploitation.
Una es la que se detalla en esta sección, de generación de fluido de alta energía potencial en lotes, o en pulsos, y otra de flujo constante. One is the one detailed in this section, for the generation of high potential energy fluid in batches, or in pulses, and the other for constant flow.
Esta implementación de flujo pulsante es la que se utiliza en los ejemplos anteriores por ser una implementación inmediata del ejemplo 2, implementado en un ciclo que se repite una y otra vez. This pulsing flow implementation is the one used in the previous examples because it is an immediate implementation of Example 2, implemented in a loop that repeats over and over again.
Este implantación pulsante se detalla en las figura 5a y This pulsating implantation is detailed in Figures 5a and
5b. 5b.
Este desarrollo es una implementación "pulsante", o "en pulsos", por ser generado en lotes, por cilindros con un émbolo/pistón . This development is a "pulsed", or "pulsed" implementation, as it is generated in batches, by cylinders with a plunger / piston.
La primera figura 'a' muestra un conjunto de cilindro con pistón. La segunda figura, 'b' , muestra la disposición de ejemplo y una instancia del "camino de levas" que, repetida x veces y curvadas formando un cilindro de bases irregulares toma el nombre de "corona de levas" y administra el movimiento de los pistones. The first figure 'a' shows a cylinder with piston assembly. The second figure, 'b', shows the example layout and an instance of the "cam track" that, repeated x times and curved to form a cylinder with irregular bases, takes the name of "cam ring" and manages the movement of the pistons.
La función de la "corona de levas" es idéntica a la de un "árbol de levas" sólo cambiando su topología. Mientras un árbol de levas es un eje con elementos ovoides o circulares excéntricos y hace variar la distancia radial al eje de lo que en ellos se apoye, en una corona de levas la posición varia en forma axial. The function of the "camshaft" is identical to that of a "camshaft" only by changing its topology. While a camshaft is an axis with eccentric ovoid or circular elements and it varies the radial distance to the axis of what rests on them, in a camshaft the position varies axially.
En esta implementación se prefiere una corona a un árbol de levas para mantener los cilindros en una disposición circular de modo de mantener el baño de agua caliente ("cámara 100") que los abriga lo más compacto posible. Un árbol de levas pondría los cilindros en línea y se duplicaría la superficie expuesta del baño. In this implementation, a ring gear is preferred over a camshaft to keep the cylinders in a circular arrangement so as to keep the hot water bath. ("chamber 100") that shelters them as compactly as possible. A camshaft would put the cylinders in line and double the exposed surface of the bath.
El pistón se compone de varias partes y su émbolo tiene el recorrido limitado al sector de cobre del cilindro. Mantiene la cámara estanca con dos sellos tipo O-ring. Por encima tiene un desplazador cuyo objetivo es reducir al mínimo el volumen dentro del cabezal de cilindro cuando el pistón está en el PMS (Punto Muerto Superior) , con una mínima separación con las paredes, pero sin tocarlas. La biela está dividida en tres segmentos. La primera parte, rígida, no tiene movimiento respecto del émbolo y se mueve solidaria con éste. Tiene en su extremo inferior un rodamiento que sigue el perfil superior de la "corona de levas". Por dentro de esta biela se desliza una biela telescópica, es decir, utiliza este desplazamiento para variar la longitud total de la biela y la distancia de su propio rodamiento del émbolo del pistón, pero siempre manteniendo la misma dirección. Estos dos segmentos de biela se mantienen juntos con el tercer elemento que es un resorte de tracción que mantiene la biela en la mínima longitud posible. El rodamiento de la biela telescópica sigue el canto inferior de la corona de levas. The piston is made up of several parts and its piston has limited travel to the copper sector of the cylinder. Keeps the chamber tight with two O-ring type seals. Above it has a displacer whose objective is to minimize the volume inside the cylinder head when the piston is at TDC (Top Dead Center), with a minimum separation from the walls, but without touching them. The connecting rod is divided into three segments. The first part, rigid, has no movement with respect to the plunger and moves jointly with it. It has a bearing at its lower end that follows the upper profile of the "cam ring". Inside this connecting rod a telescopic connecting rod slides, that is, it uses this displacement to vary the total length of the connecting rod and the distance of its own bearing from the piston plunger, but always maintaining the same direction. These two connecting rod segments are held together with the third element which is a traction spring that keeps the connecting rod as short as possible. The bearing of the telescopic rod follows the lower edge of the camshaft.
El cilindro se compone esencialmente de tres partes: el cabezal, el cuerpo de cobre y el pie. El cabezal está hecho de un material pobre en términos de conducción térmica, pero resistente a las altas presiones. En su parte superior, verticalmente arriba, o tangencialmente al costado, tiene los accesos de admisión y descarga del fluido de trabajo. El acceso de ADMISIÓN adjunta una válvula -estándar, no representada - de limitación de caudal, antirretorno (Válvula Flow-Check) que evita tanto el flujo inverso, como el flujo correcto excesivo. El acceso de DESCARGA, conecta una válvula antirretorno (Válvula Check) , estándar, tampoco esquematizada . El pie del cilindro, construido en el mismo material que el cabezal tiene un orificio de alivio de contrapresión que, no estando dibujado, conecta con el circuito de baja presión del sistema (evaporadores ) para recoger cualquier porcentaje que pudiera hacerse una vía a pesar de los O-ring. El pie tiene un resorte amortiguador del émbolo para reducir las consecuencias de la detención brusca durante el proceso de nucleación . The cylinder is essentially made up of three parts: the head, the copper body and the foot. The head is made of a material that is poor in terms of thermal conduction, but resistant to high pressures. In its upper part, vertically above, or tangentially to the side, it has the intake and discharge ports of the working fluid. The INTAKE port includes a non-return flow limiting valve -standard, not shown- (Flow-Check Valve) that prevents both reverse flow and excessive correct flow. The DISCHARGE access connects a standard non-return valve (Check Valve), not schematized either. The foot of the cylinder, built in the same material as the head, has a back pressure relief orifice that, not being drawn, connects with the low pressure circuit of the system (evaporators) to collect any percentage that could be made in spite of the O-rings. The foot has a shock absorbing plunger spring to reduce the consequences of sudden stop during the nucleation process.
El cuerpo del cilindro está hecho de cobre, y es mantenido en su sitio por la presión entre el cabezal y el pie que, al tiempo que mantienen el cilindro unido, mantienen juntas las tapas del baño marra, o baño de agua caliente, que empapan el lado exterior del cobre. The body of the cylinder is made of copper, and it is held in place by the pressure between the head and the foot that, while holding the cylinder together, holds together the lids of the marra bath, or hot water bath, which soaks the outer side of the copper.
El ciclo del proceso del pistón, es un ciclo de dos tiempos, cuatro etapas. Va del Punto Muerto Superior al Punto Muerto Inferior (PMI) y de nuevo al PMS . En el descenso se cumple dos etapas, una en el PMI y, la restante, en la subida del PMI al PMS. The piston process cycle is a two-stroke, four-stage cycle. It goes from Top Dead Center to Bottom Dead Center (PMI) and back to TDC. In the decline there are two stages, one in the PMI and, the remaining, in the rise of the PMI to the PMS.
La descripción del ciclo la podemos seguir en la figura 'b' , teniendo en cuenta que el rodamiento de la biela fija recorre la cima (sector verde) y el rodamiento de la biela telescópica, el borde inferior (sector azul) . The description of the cycle can be followed in figure 'b', taking into account that the bearing of the fixed connecting rod runs along the top (green sector) and the bearing of the telescopic connecting rod, the lower edge (blue sector).
Al inicio del ciclo el pistón se encuentra en el PMS y el resorte se encuentra estirado (un largo total, 100% del verde) . El "camino de levas" se va moviendo hacia la izquierda al influjo de la fuerza que imprime el pistón hacia abajo mientras admite el fluido de trabajo. El fluido no entra por un vacío creado, como en un motor de pistones convencional, sino por la diferencia de presión en el émbolo (alta presión del acopio de AP, arriba, baja presión, de los evaporadores, abajo) ( " Inyección" ) . Es esta energía potencial la que genera el trabajo para bajar el pistón, desplazar el camino de levas hacia la izquierda y, como se describirá, subir el pistón en fase de descarga. Esta energía que pierde en trabajo en esta etapa, el sistema lo recupera en la fase de descarga, así que su valor se cancela. El rodamiento del resorte va acompañando el descenso, por lo que mantiene el estiramiento . At the start of the cycle the piston is at TDC and the spring is stretched (full length, 100% green). The "cam track" moves to the left under the influence of the downward force of the piston while admitting the working fluid. The fluid does not enter through a vacuum created, as in a conventional piston engine, but through the pressure difference across the piston (high pressure from the HP stock, above, low pressure, from the evaporators, below) ("Injection") . It is this potential energy that generates the work to lower the piston, move the cam path to the left, and, as will be described, raise the piston unloading. This losing energy in work in this stage, the system recovers it in the discharge phase, so its value is canceled. The bearing of the spring accompanies the descent, so it maintains the stretch.
Al llegar al final del tercer sector el pistón se encuentra a mitad de su recorrido, con el resorte estirado, y a plena carga. El perfil de leva superior determina una caída abrupta, que se realiza con fuerza a oficios del resorte. Esto duplica el volumen, desciende a la mitad la presión, lo que bloquea la válvula de admisión por "Flow (control) " y nuclea el fluido de trabajo ("Nucleación y Autoenfriado") , al tiempo que lo pone en contacto con la superficie caliente del cobre ("Evaporación Súbita") . Mientras el seno del líquido se nuclea en forma adiabática, la superficie de contacto establece un sistema de evaporación súbita, y laminar luego, en un volumen lleno al 75%, aproximadamente (por la admisión de fluido antes del cierre efectivo por Stop) y todo el vapor se acumula en el cabezal del cilindro que tiene poca transferencia térmica ("Evaporación/Condensación") . El sistema se mantiene un sector del camino de levas, y comienza la descarga, con el pistón en movimiento ascendente. Esto comprime los vapores, corta la ebullición laminar, si aún estaba ocurriendo, y empieza la presurización por expansión térmica y compresión de los vapores, por la subida del pistón pero, sobre todo por la expansión térmica del fluido líquido ("Expansión/Condensación") . El pistón aquí recibe el trabajo que está ejerciendo el líquido que está siendo admitido en los otros cilindros, por lo que se verifica la compensación antes mencionada. When reaching the end of the third sector, the piston is in the middle of its travel, with the spring stretched, and at full load. The upper cam profile determines a steep drop, which is done with force at the trades of the spring. This doubles the volume, halves the pressure, which locks the intake valve by "Flow (control)" and nucleate the working fluid ("Nucleation and Autocool"), while bringing it into contact with the surface. hot copper ("Flash Evaporation"). While the sine of the liquid is nucleated in adiabatic form, the contact surface establishes a system of sudden evaporation, and then laminar, in a volume filled to 75%, approximately (by the admission of fluid before the effective closure by Stop) and all Vapor accumulates in the cylinder head which has poor heat transfer ("Evaporation / Condensation"). The system stays one sector of the cam path, and begins unloading, with the piston moving upward. This compresses the vapors, cuts the laminar boiling, if it was still occurring, and begins the pressurization by thermal expansion and compression of the vapors, by the rise of the piston but, above all, by the thermal expansion of the liquid fluid ("Expansion / Condensation" ). The piston here receives the work that is being exerted by the liquid that is being admitted in the other cylinders, for which the aforementioned compensation is verified.
La descarga no necesita trabajo adicional porque no es el pistón quién presuriza el fluido y ya se encuentra a la presión más allá del acceso de descarga, por lo que la diferencia de presión que aplica el trabajo en la subida del pistón solo provoca la subida del émbolo y el desplazamiento del fluido, no su compresión ("Eyección o Expulsión") . Esta variable es autorregulable ya que si el fluido, más el trabajo ejercido, no tienen la presión del exterior la corona de levas se detiene y deja al fluido expuesto al calor, que aumenta la presión necesaria. La presión aportada por el fluido admitido es constante. Si el baño marra no tiene la temperatura necesaria para calentar el fluido a la presión necesaria, la corona de levas permanece sin moverse y el fluido que va por el canal de alto caudal cosecha calor, que se comprime y calienta el baño marra. Siempre en algún momento se ajustan las variables para que el generador se mantenga en movimiento generando el fluido de alta presión. The discharge does not need additional work because it is not the piston that pressurizes the fluid and it is already at the pressure beyond the discharge port, so the difference in pressure applied by the work in the rise of the piston only causes the rise of the plunger and displacement of the fluid, not its compression ("Ejection or Ejection"). This variable is self-regulating since if the fluid, plus the work exerted, does not have the pressure from the outside, the cam ring stops and leaves the fluid exposed to heat, which increases the necessary pressure. The pressure contributed by the admitted fluid is constant. If the cold bath does not have the necessary temperature to heat the fluid to the required pressure, the cam ring remains without moving and the fluid going through the high-flow channel harvests heat, which is compressed and heats the cold bath. Variables are always adjusted at some point so that the generator keeps moving, generating the high pressure fluid.
En este ejemplo que se muestra se utilizan seis de éstos cilindros sobre una corona de cuatro instancias del "camino de levas", de la figura 'b' . Esta corona de levas gira sobre un eje vertical. En un plano superior perpendicular al eje de la corona y fijo, distribuidas sobre la circunferencia, a la misma distancia angular entre sí de esta corona se disponen los seis cilindros. In this example shown, six of these cylinders are used on a four-instance ring of the "camshaft" of figure 'b'. This camshaft rotates on a vertical axis. In an upper plane perpendicular to the axis of the crown and fixed, distributed on the circumference, at the same angular distance from each other of this crown, the six cylinders are arranged.
El número de instancias de "caminos de levas" respecto al número de cilindros es discrecional, pero aquí se utilizan 6 cilindros en 4 caminos porque eso determina que los 6 cilindros estén, de a dos, en distintas etapas del ciclo. Si hubiera tantos caminos como cilindros estarían todos los cilindros admitiendo, luego todos nucleando y por último todos descargando y sería necesaria adoptar un motor para mantener la "corona de levas" girando, y lo haría a régimen dispar porque tendría que frenar la corona cuando todos están admitiendo e impulsarla con fuerza cuando todos están descargando. En esta disposición de 6 cilindros en 4 caminos se hacen posibles únicamente las dos posiciones descriptas en el detalle de la figura 'b' que se suceden en secuencia. Cuatro cilindros admitiendo y dos descargando, o dos cargando, dos nucleando y dos descargando. Siempre hay dos cilindros descargando y, al menos dos, cargando. Esta disposición permite que la presión del fluido siendo admitido en unos cilindros empuje el fluido a alta presión en los cilindros siendo descargados. Este es el "trabajo externo" detallado con la flecha azul en la figura 4a y hace innecesario una motorización de esta "corona de levas The number of instances of "cam tracks" with respect to the number of cylinders is discretionary, but here 6 cylinders are used on 4 tracks because that determines that the 6 cylinders are, two by two, in different stages of the cycle. If there were as many paths as there were cylinders, all the cylinders would be admitting, then all nucleating and finally all discharging and it would be necessary to adopt an engine to keep the "camshaft" turning, and it would do so at uneven speed because it would have to brake the crown when all They are admitting and pushing it hard when everyone is downloading. In this arrangement of 6 cylinders on 4 paths, only the two positions described in the detail of figure 'b' are possible, which follow one another in sequence. Four cylinders admitting and two discharging, or two loading, two nucleating and two discharging. There are always two cylinders unloading and at least two loading. This arrangement allows the pressure of the fluid being admitted into cylinders to push the high pressure fluid into the cylinders being discharged. This is the "external work" detailed with the blue arrow in figure 4a and makes a motorization of this "camshaft gear unnecessary.
Ejemplo 5. Implementaclón de tipo comercial. Dispositivo de Generación Continua. Example 5. Commercial implementation. Continuous Generation Device.
Otro modo de realización posible del invento es un dispositivo de generación continua. Es una implementación del proceso reivindicado en una topología de flujo continuo. Puede aumentar o disminuir su caudal, pero este no se entregará en lotes o pulsos, como la realización posible anterior, sino que es constante. Another possible embodiment of the invention is a continuous generation device. It is an implementation of the claimed process in a continuous flow topology. You can increase or decrease your flow, but it will not be delivered in batches or pulses, as the previous possible realization, but it is constant.
Esta "implementación posible" está detallada en la figura This "possible implementation" is detailed in the figure
6. 6.
El fluido parte del tanque de acopio de alta presión, es acondicionado ("Acondicionamiento/Relevamiento") , y entra por la proa de la realización que tiene forma de compresor axial/turbina. Ahí el flujo es regulado por una válvula de aguja ("Inyección") y entra en un rotor centrífugo con fugas restringidas, para que no actúe de impulsor. Este fluido que sale por las toberas del rotor se encuentra a baja presión. Por efecto Joule-Thomson se nuclea y enfría ("Nucleación y Autoenfriamiento") (sector 'A' ) para incidir directamente sobre la carcasa de cobre que es calentado por la descarga del compresor ("Ebullición súbita") (sector 'B' ) . Esta etapa evapora parcialmente la descarga y el fluido bifásico es aspirado por los rotores de un descompresor axial de una o más etapas, que mejoran el título de vapor, a expensas de aportes de calor de estatores calientes (Sectores 'Ci' y 'C2' ) , y reducen la presión ("Evaporación" de etapa "Evaporación/Condensación"). Luego entra en el sector de inyección de líquido. El líquido, del mismo tanque de acopio está a mayor presión y menor temperatura, y es más denso (lo que es decir tiene menor volumen específico) . Entra, por estar a menor presión (Sector Έ' ) y pasa al siguiente volumen donde se calienta por el propio vapor, se expande, aumenta la presión, y condensa el vapor, que vuelve a rechazar calor que calienta y expande el líquidoThe fluid leaves from the high pressure storage tank, is conditioned ("Conditioning / Survey"), and enters through the bow of the embodiment that is in the form of an axial compressor / turbine. There the flow is regulated by a needle valve ("Injection") and enters a centrifugal rotor with restricted leaks, so that it does not act as an impeller. This fluid that comes out of the rotor nozzles is at low pressure. Due to the Joule-Thomson effect, it is nucleated and cooled ("Nucleation and Self-cooling") (sector 'A') to impact directly on the copper casing that is heated by the discharge of the compressor ("Sudden boiling") (sector 'B') . This stage partially evaporates the discharge and the two-phase fluid is sucked in by the rotors of an axial decompressor with one or more stages, which improve the vapor content, at the expense of heat inputs from hot stators (Sectors' Ci 'and' C 2 '), and reduce the pressure ("Evaporation" of stage "Evaporation / Condensation"). Then it enters the liquid injection sector. The liquid from the same storage tank is at a higher pressure and lower temperature, and is denser (which is to say, it has a lower specific volume). It enters, because it is at a lower pressure (Sector Έ ') and passes to the next volume where it is heated by the steam itself, expands, increases the pressure, and condenses the steam, which again rejects heat that heats and expands the liquid
("Condensación" de etapa "Evaporación/Condensación") (Sector Έ' ) . Luego entra al siguiente volumen donde solamente se expande el liquido por calor (Sector 'G' ) provocando la condensación ("Expansión / Condensación") . En este punto el fluido está en su máximo punto de temperatura y volumen específico (máximo de Energía Interna) y cede parte de su energía a una turbina, que pone en movimiento todo el sistema, desde el sector Ά' , y es expulsado ("Eyección o Expulsión") donde sale en alta presión y temperatura a mover un motor. ("Condensation" of stage "Evaporation / Condensation") (Sector Έ '). Then it enters the next volume where only the liquid is expanded by heat (Sector 'G') causing condensation ("Expansion / Condensation"). At this point the fluid is at its maximum point of temperature and specific volume (maximum Internal Energy) and gives part of its energy to a turbine, which sets the entire system in motion, from sector Ά ', and is expelled (" Ejection or Ejection ") where it exits at high pressure and temperature to move a motor.
El fluido luego de ejercer trabajo en el motor, más otra cantidad que pudiera ser necesario directamente desde el tanque de acopio, entran en el evaporador para la "cosecha de calor". Desde el evaporador el fluido de trabajo sale en fase gaseosa y entra en el compresor axial, o de pistones, en el corazón del Sector 'B' , para estar a su abrigo, no perder calor y tener una descarga lo más caliente posible, que es del fluido del que toma calor la "ebullición súbita" de la primera etapa. The fluid after exerting work on the motor, plus any other quantity that may be needed directly from the storage tank, enters the evaporator for the "heat harvest". From the evaporator, the working fluid leaves in the gaseous phase and enters the axial or piston compressor in the heart of Sector 'B', to be sheltered, not lose heat and have the hottest possible discharge, which it is from the fluid from which the "sudden boiling" of the first stage takes heat.
Es importante notar que por la dinámica propia de esta topología lo fluidos de mayor densidad, los líquidos, tienden a ubicarse contra la carcasa mientras abrigan al centro el vapor, ofreciendo un aislamiento térmico natural. It is important to note that due to the dynamics of this topology, fluids with a higher density, liquids, tend to be located against the casing while sheltering the steam in the center, offering natural thermal insulation.
Esta descripción tiene por objeto demostrar la correspondencia del proceso reivindicado con la topología. Una implementación obvia es poner más turbinas al final del camino y tomar la energía mecánica de este mismo eje sin necesidad de un motor externo. La cantidad de etapas de cada sector depende del diseño especifico a la necesidad o problema que se quiere resolver. The purpose of this description is to demonstrate the correspondence of the claimed process with the topology. An obvious implementation is to put more turbines at the end of the path and take mechanical energy from this same axis without the need for an external motor. The number of stages in each sector depends on the specific design for the need or problem to be solved.

Claims

REIVINDICACIONES
1. Un proceso de conversión de calor en trabajo caracterizado porque comprende las siguientes etapas: 1. A process of converting heat into work characterized in that it comprises the following stages:
(a) Acondicionamiento/Relevamiento , que consiste en acondicionar el fluido de trabajo a las condiciones de saturación en términos de presión y temperatura mediante intercambiadores de calor y válvulas reductoras de presión o compresores para regular la presión, o manteniéndolo en reposo en un recipiente de acopio de tamaño suficiente, de modo que el ingreso/salida de masa sea despreciable, (a) Conditioning / Survey, which consists of conditioning the working fluid to saturation conditions in terms of pressure and temperature through heat exchangers and pressure reducing valves or compressors to regulate pressure, or keeping it at rest in a container of stockpile of sufficient size, so that the entrance / exit of mass is negligible,
Y AND
relevar las condiciones a las que se encuentra el fluido de trabajo para adecuar las siguientes etapas del proceso; to relieve the conditions of the working fluid to adapt the following stages of the process;
(b) Inyección, que consiste en el tránsito por inyección del fluido de trabajo en estado liquido desde el tanque de acopio a la cámara de carga (200), donde el fluido mantiene siempre al menos la presión de saturación, y donde el diferencial de presión que asegura dicho tránsito, se da entre la presión del reservorio contra la parte exterior de la superficie que cede, en un proceso por lotes, o en una presión más baja del primer volumen en un procesamiento continuo; (b) Injection, which consists of the transit by injection of the working fluid in liquid state from the storage tank to the loading chamber (200), where the fluid always maintains at least the saturation pressure, and where the differential of pressure that ensures said transit, occurs between the pressure of the reservoir against the outside of the yielding surface, in a batch process, or at a lower pressure of the first volume in a continuous process;
(c) Nucleación y Autoenfriado , donde el fluido inyectado, en un proceso por lotes, o que está siendo inyectado, en un proceso continuo, se expone en forma súbita a un descenso de presión, concurrente con una expansión mecánica adiabática del liquido saturado resultando en evaporaciones en puntos homogéneamente distribuidos en el seno de la masa, tal que el fluido vuelve al equilibrio dinámico de saturación, a menor temperatura. (c) Nucleation and Self-cooling, where the fluid injected, in a batch process, or that is being injected, in a continuous process, is suddenly exposed to a drop in pressure, concurrent with an adiabatic mechanical expansion of the saturated liquid, resulting in in evaporations at homogeneously distributed points within the mass, such that the fluid returns to the dynamic equilibrium of saturation, at a lower temperature.
(d) Evaporación Súbita, donde el fluido se somete a un flujo de calor intenso aportado por una fuente de calor externa a la cámara (200), por todas las superficies de contacto de dicha cámara, tal que la diferencia de temperatura entre el exterior y la cámara (200) supere la del máximo sobrecalentamiento del fluido de trabajo, donde dicha diferencia de temperatura asegure un flujo de calor al menos equivalente al calor de evaporación para establecer un sistema de ebullición laminar, de desarrollo estable, hasta alcanzar la presión de máximo subenfriamiento del vapor, donde en una implementación continua esta aplicación de calor aumentará el título de vapor, pero el fluido bifásico continuará mezclado hacia el siguiente volumen . (d) Sudden Evaporation, where the fluid is subjected to an intense heat flow provided by an external heat source to the chamber (200), by all the contact surfaces of said chamber, such that the difference in temperature between the exterior and the chamber (200) exceeds that of the maximum superheating of the working fluid, where said temperature difference ensures a heat flow at least equivalent to the heat of evaporation to establish a laminar boiling system, with stable development, until reaching the pressure of maximum subcooling of the steam, where in a continuous implementation this application of heat will increase the steam titre, but the two-phase fluid will continue to mix towards the next volume.
(e) Evaporación/Condensación, donde el fluido de trabajo alcanza un equilibrio dinámico entre la evaporación surgida de la ebullición laminar establecida en la etapa (d) con la condensación por exceso de subenfriamiento del vapor. (e) Evaporation / Condensation, where the working fluid reaches a dynamic equilibrium between the evaporation arising from the laminar boiling established in step (d) with the condensation due to excess subcooling of the vapor.
(f) Expansión/Condensación, donde el fluido de trabajo continúa condensándose desde la etapa (e) rechazando calor hacia el líquido reduciendo su densidad y aumentando de su volumen, donde este aumento de volumen, en un volumen finito, reduce el volumen disponible para el vapor, que se comprime, aumenta su presión y continúa condensándose, hasta alcanzar el equilibrio a la presión y temperatura final . (f) Expansion / Condensation, where the working fluid continues to condense from stage (e) rejecting heat into the liquid, reducing its density and increasing its volume, where this increase in volume, in a finite volume, reduces the volume available for the vapor, which is compressed, increases its pressure and continues to condense, until reaching equilibrium at the final pressure and temperature.
(g) Eyección o Expulsión, donde el fluido de trabajo se encuentra a la presión del circuito para ejercer trabajo, que es aproximadamente la misma que en el acumulador isobárico instalado a continuación del invento como amortiguador de fluctuaciones permitiendo que cualquier diferencial de presión provoque el tránsito hacia afuera del fluido de trabajo, en expulsión, o eyección, donde en una implementación por lotes, la superficie que cedió lugar al fluido en la inyección lo expulsa ahora aportándole la diferencia de presión que pudiera estar disponible, y en el caso de la implementación continua, el fluido entrante imprime un diferencial de presión que permite la eyección en idéntica cantidad a la presión entrante. (g) Ejection or Expulsion, where the working fluid is at the pressure of the circuit to exert which is approximately the same as in the isobaric accumulator installed after the invention as a shock absorber allowing any pressure differential to cause the outward transit of the working fluid, in expulsion, or ejection, where in a batch implementation, the surface that gave way to the fluid in the injection now expels it, providing it with the pressure difference that may be available, and in the case of continuous implementation, the incoming fluid prints a pressure differential that allows the ejection in the same amount at the pressure incoming.
2. El proceso en concordancia con la reivindicación 1 caracterizado porque el fluido de trabajo es cualquier fluido con capacidad de cambiar de estado de agregación, llegar a un equilibrio dinámico liquido-vapor, estable o metaestable en un recipiente y que ante el calor no sufran transformaciones químicas. 2. The process in accordance with claim 1, characterized in that the working fluid is any fluid with the ability to change the state of aggregation, reach a stable or metastable liquid-vapor dynamic equilibrium in a container and that do not suffer from heat chemical transformations.
3. El proceso en concordancia con la reivindicación 2 caracterizado por el fluido de trabajo puede ser un fluido puro, una mezcla de fluidos, un fluido azeotrópico, un fluido zeotrópico, una disolución en cualquier proporción, una disolución variable, o una mezcla con adyuvantes, entre ellos, lubricantes, sellantes, detectores de fugas, etc... que faciliten el funcionamiento del circuito. 3. The process according to claim 2 characterized by the working fluid can be a pure fluid, a mixture of fluids, an azeotropic fluid, a zeotropic fluid, a solution in any proportion, a variable solution, or a mixture with adjuvants , among them, lubricants, sealants, leak detectors, etc ... that facilitate the operation of the circuit.
4. El proceso en concordancia con cualquiera de las reivindicaciones anteriores caracterizado porque la cámara de carga (200) del paso (b) puede ser una cámara que presenta una superficie que cede a la presión del fluido desde el reservorio en un dispositivo de procesamiento por lotes, o el primer volumen de un dispositivo de procesamiento continuo. 4. The process according to any of the preceding claims, characterized in that the loading chamber (200) of step (b) may be a chamber that presents a surface that yields to the pressure of the fluid from the reservoir in a processing device by batches, or the first volume of a continuous processing device.
5. El proceso en concordancia con las reivindicaciones 1 y 2 caracterizado porque la variación de volumen o presión en la etapa (c) de nucleación puede ser cero. 5. The process according to claims 1 and 2 characterized in that the variation in volume or pressure in nucleation step (c) can be zero.
6. El proceso en concordancia con cualquiera de las reivindicaciones anteriores caracterizado porque en el paso (d) la evaporación del fluido producida se acumula en la porción del volumen de la cámara (200) con el resto del vapor, aumentando la presión, estando dicha porción del volumen aislada térmicamente del entorno. 6. The process in accordance with any of the preceding claims, characterized in that in step (d) the evaporation of the fluid produced accumulates in the portion of the volume of the chamber (200) with the rest of the steam, increasing the pressure, said portion of the volume thermally isolated from the environment.
PCT/IB2019/000668 2019-07-01 2019-07-01 Method for pressurisation by combination of thermal expansion and sudden changes of state WO2021001671A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000668 WO2021001671A1 (en) 2019-07-01 2019-07-01 Method for pressurisation by combination of thermal expansion and sudden changes of state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000668 WO2021001671A1 (en) 2019-07-01 2019-07-01 Method for pressurisation by combination of thermal expansion and sudden changes of state

Publications (1)

Publication Number Publication Date
WO2021001671A1 true WO2021001671A1 (en) 2021-01-07

Family

ID=67989018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000668 WO2021001671A1 (en) 2019-07-01 2019-07-01 Method for pressurisation by combination of thermal expansion and sudden changes of state

Country Status (1)

Country Link
WO (1) WO2021001671A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029197A (en) * 1956-09-11 1962-04-10 Untermyer Samuel Boiling reactors
WO1991002885A1 (en) * 1989-08-18 1991-03-07 Glen John S Heat engine, refrigeration and heat pump cycles approximating the carnot cycle and apparatus therefor
GB2334076A (en) * 1997-09-11 1999-08-11 William Joseph Dannatt Condensate return pump
EP2087210A1 (en) 2006-11-23 2009-08-12 Mahle König Kommanditgesellschaft GmbH & Co Method for converting heat energy and rotary vane piston motor
CN201858043U (en) 2010-11-19 2011-06-08 绍兴文理学院 Working medium phase-change circulation singe-acting vane type thermal engine
GB2528522A (en) 2014-03-10 2016-01-27 Gas Expansion Motors Ltd Thermodynamic engine
US20170058701A1 (en) * 2014-04-30 2017-03-02 Yuanjun GUO Parallel motion heat energy power machine and working method thereof
US20170335724A1 (en) * 2013-02-05 2017-11-23 Heat Source Energy Corp. Organic rankine cycle decompression heat engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3029197A (en) * 1956-09-11 1962-04-10 Untermyer Samuel Boiling reactors
WO1991002885A1 (en) * 1989-08-18 1991-03-07 Glen John S Heat engine, refrigeration and heat pump cycles approximating the carnot cycle and apparatus therefor
GB2334076A (en) * 1997-09-11 1999-08-11 William Joseph Dannatt Condensate return pump
EP2087210A1 (en) 2006-11-23 2009-08-12 Mahle König Kommanditgesellschaft GmbH & Co Method for converting heat energy and rotary vane piston motor
CN201858043U (en) 2010-11-19 2011-06-08 绍兴文理学院 Working medium phase-change circulation singe-acting vane type thermal engine
US20170335724A1 (en) * 2013-02-05 2017-11-23 Heat Source Energy Corp. Organic rankine cycle decompression heat engine
GB2528522A (en) 2014-03-10 2016-01-27 Gas Expansion Motors Ltd Thermodynamic engine
US20170058701A1 (en) * 2014-04-30 2017-03-02 Yuanjun GUO Parallel motion heat energy power machine and working method thereof

Similar Documents

Publication Publication Date Title
ES2424137T3 (en) Thermoelectric energy storage system and procedure for storing thermoelectric energy
JP2515774B2 (en) Heat engine
ES2363455T3 (en) SYSTEM OF STORAGE OF THERMOELECTRIC NERGY AND METHOD OF STORAGE OF THERMOELECTRIC ENERGY.
ES2758376T3 (en) Installation for the production of cold, heat and / or work
ES2237717T3 (en) HYBRID CYCLE FOR LIQUID NATURAL GAS PRODUCTION.
US10294826B2 (en) Ultra efficient turbo-compression cooling
CN101865589B (en) Environment-friendly and freon-free ultralow cold storage
CA2997573C (en) Orc for transforming waste heat from a heat source into mechanical energy and compressor installation making use of such an orc
KR20210126100A (en) Energy conversion methods and systems
WO2019126899A1 (en) Method for transferring heat between two or more media and system for carrying out said method
US20160032785A1 (en) Method and Apparatus for Combining a Heat Pump Cycle With A Power Cycle
WO2021001671A1 (en) Method for pressurisation by combination of thermal expansion and sudden changes of state
US4553397A (en) Method and apparatus for a thermodynamic cycle by use of compression
US4207748A (en) Heat exchange device and method
Almohammed et al. Heat pump application for water distillation
US20230243599A1 (en) Thermoelectric device for storage or conversion of energy
ES2627956T3 (en) Installation and procedure for the production of cold and / or heat
US4537036A (en) Thermally powered heating system
CN106662370A (en) Multi-stage heat engine
Rawat et al. Thermodynamic analysis and optimization CO2 based trasncritical Cycle
ES2585879B1 (en) Thermal machine with thermodynamic cycle and its operating procedure
WO2019053705A1 (en) System and process for transforming thermal energy into kinetic energy
Parikh et al. Design and fabrication of cascade refrigerator: a review
Raut Study of refrigeration system for achieving cryogenic temperature
ES2929649T3 (en) Method of detecting and extracting the gaseous fluid contained in a closed loop operating according to a Rankine cycle and device using such a method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19769850

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19769850

Country of ref document: EP

Kind code of ref document: A1