WO2021001670A1 - Control method and control device for internal combustion engine - Google Patents

Control method and control device for internal combustion engine Download PDF

Info

Publication number
WO2021001670A1
WO2021001670A1 PCT/IB2019/000646 IB2019000646W WO2021001670A1 WO 2021001670 A1 WO2021001670 A1 WO 2021001670A1 IB 2019000646 W IB2019000646 W IB 2019000646W WO 2021001670 A1 WO2021001670 A1 WO 2021001670A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
egr
intake
fuel cut
Prior art date
Application number
PCT/IB2019/000646
Other languages
French (fr)
Japanese (ja)
Inventor
越後亮
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to JP2021529536A priority Critical patent/JP7287465B2/en
Priority to PCT/IB2019/000646 priority patent/WO2021001670A1/en
Publication of WO2021001670A1 publication Critical patent/WO2021001670A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a control method and a control device for an internal combustion engine provided with an EGR system and replacing the gas occupying the intake passage with EGR gas when fuel is cut.
  • the air (oxygen) in the intake passage is sent from the cylinder to the exhaust passage unreacted and becomes a catalyst provided in the exhaust passage. It is to flow in.
  • oxygen flows into the catalyst the oxygen adsorbed on the catalyst is sufficiently processed when restarting after the fuel is cut, and the purification rate of NOx (nitrogen oxide) by the catalyst is until the oxygen storage state is cleared. Is reduced.
  • An object of the present invention is to provide a control method and a control device for an internal combustion engine in consideration of the above problems.
  • an EGR system is provided, and a control method for an internal combustion engine is provided in which exhaust gas after combustion is returned as EGR gas into a cylinder.
  • the method according to this embodiment determines whether or not the fuel cut condition for performing the fuel cut for temporarily stopping the supply of fuel to the internal combustion engine is satisfied, and when the fuel cut condition is satisfied, among the intake passages, Close the intake shutter valve installed on the upstream side of the connection point of the EGR passage.
  • the effective cross-sectional area of the intake passage is reduced compared to before the fuel cut condition is satisfied, and after the intake shutter valve is closed, the EGR gas from the connection point of the EGR passage to the intake port of the internal combustion engine Continue combustion in the cylinder during transport delays.
  • a control device for an internal combustion engine is provided.
  • FIG. 1 is a schematic view showing an overall configuration of an internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing the operation of the internal combustion engine according to the same embodiment at the time of fuel cut (during constant speed running before the start of deceleration).
  • FIG. 3 is an explanatory diagram showing the operation of the internal combustion engine according to the same embodiment at the time of fuel cut (after the start of deceleration and before the establishment of the fuel cut condition).
  • FIG. 4 is an explanatory diagram showing the operation of the internal combustion engine according to the same embodiment at the time of fuel cut (after the fuel cut condition is satisfied).
  • FIG. 5 is an explanatory diagram showing the operation of the internal combustion engine according to the same embodiment at the time of fuel cut (after execution of fuel cut).
  • FIG. 6 is a flowchart showing the content of control of the internal combustion engine according to the same embodiment at the time of fuel cut.
  • FIG. 7 is a flowchart showing the content of control of the internal combustion engine according to the same embodiment at the time of fuel cut recovery.
  • FIG. 8 is an explanatory diagram showing the contents of the transportation delay time lapse determination process of the control at the time of fuel cut.
  • FIG. 9 is an explanatory diagram of the operation at the time of fuel cut by a time chart.
  • FIG. 1 shows the overall configuration of an internal combustion engine 1 according to an embodiment of the present invention.
  • the internal combustion engine 1 (hereinafter referred to as “internal combustion engine”, sometimes simply referred to as “engine”) 1 constitutes a drive source that is mounted on a vehicle and forms a driving force of the vehicle.
  • the internal combustion engine 1 can be configured as a single drive source for a vehicle, or can be configured in cooperation with an electric motor or a motor generator.
  • the drive source in the latter case may be of either a series type or a parallel type.
  • the internal combustion engine 1 includes a turbocharger 2.
  • the supercharger 2 includes an intake compressor 21 and an exhaust turbine 22, and the intake compressor 21 is interposed in the intake passage 11 of the internal combustion engine 1, and the exhaust turbine 22 is interposed in the exhaust passage 15.
  • the intake compressor 21 and the exhaust turbine 22 are coupled by a shaft 23, and the rotation of the exhaust turbine 22 is transmitted to the intake compressor 21 via the shaft 23 to rotate the intake compressor 21.
  • an air cleaner 12 is installed on the upstream side of the intake compressor 21 with respect to the flow of intake air, a throttle valve 13 is installed on the downstream side, and a fuel injection valve 14 is installed on the downstream side thereof. ..
  • the air cleaner 12 removes foreign matter contained in the air sucked into the intake passage 11 from the atmosphere, and the throttle valve 13 expands the substantial cross-sectional area of the intake passage 11 (hereinafter, may be referred to as "effective cross-sectional area"). Or reduce it to adjust the amount of air sucked into the cylinder.
  • the fuel injection valve 14 is arranged in the cylinder so as to be able to supply fuel. In the present embodiment, the fuel injection valve 14 is embedded in the cylinder head and injects fuel toward the intake port.
  • the catalytic converters 16 and 17 are installed on the downstream side of the exhaust turbine 22 with respect to the flow of exhaust gas, and the muffler 18 is installed further on the downstream side thereof.
  • the catalysts contained in the catalytic converters 16 and 17 may be of different types or have the same capacity. It may be.
  • a three-way catalyst can be exemplified as the type of catalyst, but other catalysts having oxygen storage capacity can also be adopted.
  • the number of catalytic converters may be only one (for example, the catalytic converter 16), or may be three or more.
  • the internal combustion engine 1 further includes an EGR system 3 that recirculates the exhaust gas after combustion as EGR gas into the cylinder.
  • the EGR system 3 includes an EGR passage 31 connected between the intake passage 11 and the exhaust passage 15, and the intake passage 11 and the exhaust passage 15 are connected to each other by the EGR passage 31 so that fluid can communicate with each other.
  • the EGR passage 31 is the portion of the exhaust passage 15 downstream of the exhaust turbine 22, specifically, the portion between the two catalytic converters 16 and 17, (branch point Pd), and the intake passage 11. Of these, it is connected between the portion on the upstream side (connection point Pm) of the intake compressor 21.
  • an EGR cooler 32 and an EGR valve 33 are installed as elements other than the EGR passage 31 constituting the EGR system.
  • the EGR cooler 32 cools the exhaust gas branched from the exhaust passage 15, and the EGR valve 33 expands or contracts the substantial cross-sectional area (effective cross-sectional area) of the EGR passage 31 and returns the exhaust gas (effective cross-sectional area) to the inside of the cylinder. Adjust the amount of EGR gas).
  • the internal combustion engine 1 includes an intake shutter valve 41 installed in the intake passage 11 on the upstream side of the connection point Pm of the EGR passage 31 with respect to the intake flow.
  • the intake shutter valve 41 is configured so that the effective cross-sectional area of the intake passage 11 can be adjusted.
  • the pressure on the downstream side of the intake passage 11 is reduced by reducing the effective cross-sectional area of the intake passage 11, and the EGR passage is reduced.
  • It is configured as an admission valve (hereinafter unified by the name of "admission valve") that increases the differential pressure between the inlet side (branch point Pd) and the outlet side (connection point Pm) of 31.
  • the "intake shutter valve” is configured as an admission valve 41 so that the opening degree can be adjusted stepwise or continuously, but it is adjusted only to two positions, the maximum opening degree and the minimum opening degree. It may be possible. As such a case, a case where the expansion of the differential pressure is not required for the operation of the EGR system can be exemplified. Then, for example, the maximum opening degree is the opening degree when fully opened (fully opened opening degree), and the minimum opening degree is the opening degree when fully closed (fully closed opening degree).
  • the EGR valve 33 is not only configured so that the opening degree can be adjusted stepwise or continuously, but is also configured so that the opening degree can be switched only between the maximum opening degree and the minimum opening degree. Is possible.
  • the engine controller 101 is configured as an electronic control unit, and includes a central processing unit (CPU), various storage devices such as RAM and ROM, and a microcomputer provided with an input / output interface and the like.
  • CPU central processing unit
  • RAM random access memory
  • ROM read-only memory
  • microcomputer provided with an input / output interface and the like.
  • the engine controller 101 inputs detection signals of various operating state sensors that detect the operating state of the internal combustion engine 1, executes a predetermined calculation based on the detected operating state, and determines the fuel injection amount of the internal combustion engine 1. Set the fuel injection timing, ignition timing, etc.
  • the accelerator sensor 111 that detects the amount of operation of the accelerator pedal by the driver (hereinafter referred to as “accelerator opening”) APO, the rotation speed sensor 112 that detects the rotation speed NE of the internal combustion engine 1,
  • a cooling water temperature sensor 113 or the like for detecting the temperature TW of the engine cooling water is provided, and an air flow meter, a throttle sensor, an air fuel ratio sensor and the like (not shown) are provided.
  • the air (oxygen) in the intake passage 11 is transferred from the cylinder to the exhaust passage until the gas occupying the intake passage 11 downstream of the admission valve 41 is replaced with the EGR gas. It is sent to 15 unreacted (that is, scavenged) and flows into the catalytic converter 16.
  • the internal combustion engine 1 is in the accelerator-off state in which the accelerator pedal is completely returned or close to it, and the EGR is stopped. Therefore, the gas existing in the intake passage 11 is air.
  • the elimination of the oxygen storage state is generally performed by, for example, operating the fuel injection valve 14 (rich spike operation) that temporarily increases the air-fuel ratio of the exhaust gas from the theoretical value.
  • the fuel cut condition when the fuel cut condition is satisfied, not only the admission valve 41 is closed, but also the EGR from the connection point Pm of the EGR passage 31 to the intake port after the admission valve 41 is closed.
  • fuel is continuously supplied by the fuel injection valve 14 to continue combustion in the cylinder.
  • the exhaust gas in the EGR passage 31 when the fuel cut condition is satisfied reaches the intake port via the connection point Pm, and burns until the air in the intake passage 11 is replaced with the EGR gas.
  • oxygen in the intake air is consumed.
  • the replacement of air with EGR gas is completed, the fuel cut is executed and the supply of fuel to the internal combustion engine 1 is stopped.
  • FIGS. 2 to 5 show the operations of the internal combustion engine 1 according to the present embodiment from before the fuel cut to after the fuel cut in chronological order.
  • the thick dotted line conceptually shows the behavior of the exhaust gas or the EGR gas
  • the direction of the arrow indicates the direction of the flow.
  • FIG. 9 shows the operation of the internal combustion engine 1 before and after the fuel cut by a time chart.
  • the time Toff indicates the time when the accelerator is off
  • the time Treq indicates the time when the fuel cut condition is satisfied
  • the time Tcut indicates the time when the fuel cut is executed.
  • the operation of the internal combustion engine 1 will be described with reference to FIGS. 2 to 5 with reference to FIG. 9 as appropriate.
  • the case of so-called deceleration fuel cut in which the fuel is cut when the vehicle is decelerated, is described on the premise that the drive source of the vehicle is configured by the internal combustion engine 1 alone, but the application of the fuel cut is applied to this.
  • the vehicle is not limited, and the vehicle may be temporarily stopped, for example, while waiting for a traffic light.
  • the "fuel cut" according to the present embodiment means a general operation of temporarily stopping the supply of fuel to the internal combustion engine 1 (in other words, during the operation of the engine controller 101), and the vehicle is stopped. It shall also include the case of so-called idle stop.
  • the internal combustion engine 1 forms a drive source in cooperation with an electric motor, it may include a case of switching to a mode in which the internal combustion engine 1 travels only by the electric motor.
  • FIG. 2 shows a state during constant speed running at a relatively low speed before the start of deceleration (time Tstd in FIG. 9).
  • the operating state of the internal combustion engine 1 is in the region where EGR is performed (that is, the EGR region), and both the throttle valve 13 and the EGR valve 33 are in the fully open position. Since the rotation speed of the internal combustion engine 1 is low and there is not a sufficient differential pressure between the branch point Pd and the connection point Pm, the admission valve 41 is slightly closed with respect to the fully open position in order to expand the pressure. Let me.
  • FIG. 3 shows the state after the start of deceleration due to the accelerator off and before the fuel cut condition is satisfied (time Tdec).
  • the rotation speed of the internal combustion engine 1 decreases at the start of deceleration, and the operating state of the internal combustion engine 1 deviates from the EGR range, so that the EGR valve 33 is controlled to the fully closed position, and the admission valve 41 is also fully opened accordingly. Controlled by position.
  • the throttle valve 13 is adjusted to a slight opening degree that allows the passage of a very small amount of air by completely returning the accelerator pedal.
  • FIG. 4 shows the state after the fuel cut condition is satisfied (time Trip).
  • the admission valve 41 is closed and the EGR valve 33 is opened.
  • the admission valve 41 is fully closed, while the EGR valve 33 is fully opened.
  • the exhaust gas that was in the EGR passage 31 when the fuel cut condition is satisfied is guided to the intake passage 11 and introduced into the cylinder.
  • the EGR gas reaches the intake port, it can be considered that the replacement with the EGR gas is completed.
  • FIG. 5 shows the state after the execution of the fuel cut (time Tpst).
  • the fuel for the internal combustion engine 1 is filled with exhaust gas or EGR gas in the cylinder, the exhaust passage 15, the EGR passage 31, and the intake passage 11 (specifically, the portion downstream of the admission valve 41).
  • the supply is stopped and the internal combustion engine 1 is stopped.
  • FIG. 6 and 7 show the operation of the engine controller 101 by a flowchart
  • FIG. 6 shows the operation related to the fuel cut control
  • FIG. 7 shows the operation related to the fuel cut recovery control, respectively.
  • the engine controller 101 is programmed to execute the fuel cut control when the predetermined fuel cut condition is satisfied, and to execute the fuel cut recovery control when the predetermined fuel cut recovery condition is satisfied after the execution of the fuel cut. ing.
  • S102 it is determined whether or not the fuel cut condition is satisfied.
  • the fuel cut condition In the deceleration fuel cut, it can be determined that the fuel cut condition is satisfied when the rotation speed of the internal combustion engine 1 at the time when the accelerator off state continues for a predetermined time or longer is equal to or higher than the predetermined rotation speed. It is possible. If the fuel cut condition is satisfied, the process proceeds to S103, and if not, the processes of S101 and 102 are repeated.
  • the accelerator is turned on when the battery charge state SOC is sufficient. Even in this state, the fuel may be cut and the internal combustion engine 1 may be automatically stopped.
  • the success or failure of the automatic stop condition of the internal combustion engine 1 is determined as the fuel cut condition based on the battery charge state and the accelerator opening. It is possible.
  • the admission valve 41 is closed (specifically, fully closed).
  • the EGR valve 33 is opened (specifically, fully opened).
  • the transportation delay time ⁇ Tdry refers to the time corresponding to the transportation delay of the EGR gas from the connection point Pm of the EGR passage 31 to the intake port after the admission valve 41 is closed, and whether or not this has elapsed is determined. It is possible to estimate based on the operating state of the internal combustion engine 1. If the transport delay time ⁇ Tdry has elapsed, the process proceeds to S107, and if not, the process proceeds to S106.
  • FIG. 8 shows the principle of determining the progress in the case of estimation.
  • the flow rate of air passing through the intake valve (flow rate passing through the intake valve) is given for each opening of the throttle valve 13 (hereinafter referred to as “throttle opening”) THO, and each throttle is opened. It is possible to predetermine the degree THO as a function with respect to the engine speed NE, for example, a monotonically increasing function. Then, the intake valve passing volume of air is calculated by integrating the intake valve passing flow rate, and when the intake valve passing volume reaches a predetermined volume Vthr corresponding to the volume of the intake passage 11 after the start of integration (time T0). It is determined that the transportation delay time ⁇ Tdry has elapsed at (time T1).
  • Whether or not the transportation delay time ⁇ Tdry has elapsed can be determined not only by such an estimation but also by actual measurement using a sensor.
  • a gas state sensor for example, an oxygen concentration sensor
  • the admission valve 41 is closed, and then the gas detected by the gas state sensor is used.
  • the transport delay time ⁇ Tdry has elapsed.
  • the oxygen concentration is lowered to a predetermined concentration or less when the oxygen concentration sensor is used.
  • the transport delay of EGR gas is "the delay required to replace the gas in the intake passage downstream of the intake shutter valve with EGR gas” or “the delay of EGR gas occupied in the cylinder after closing the intake shutter valve”. It can be rephrased as “the delay until the ratio rises and reaches a predetermined value”.
  • S106 it is determined whether or not the fuel cut cancellation condition is satisfied.
  • the fuel cut cancellation condition is satisfied, for example, when the accelerator pedal is depressed while waiting for the elapse of the transportation delay time ⁇ Tdry to continue the fuel supply. If the fuel cut cancellation condition is satisfied, the process proceeds to S108, and if the fuel cut cancellation condition is not satisfied, the process returns to S105 and continues to wait for the elapse of the transportation delay time ⁇ Tdry.
  • fuel cut is executed. Specifically, the operation of the fuel injection valve 14 is stopped, and the supply of fuel to the internal combustion engine 1 is stopped. Along with this, the operation of the spark plug (not shown) is also stopped.
  • S201 it is determined whether or not the fuel cut recovery condition is satisfied. In the present embodiment, it is determined that the fuel cut recovery condition is satisfied when the accelerator pedal is depressed by the driver from the accelerator off state, the accelerator opening APO reaches a predetermined value, and the accelerator is turned on. Will be done. If the fuel cut recovery condition is satisfied, the process proceeds to S202, and if not, the process of S201 is repeated.
  • the fuel cut recovery cover It is possible to determine that the condition (that is, the restart condition of the internal combustion engine 1) is satisfied.
  • the admission valve 41 is closed (specifically, fully closed). In the present embodiment, since the admission valve 41 is already closed at the time of fuel cut, the closed state is continued.
  • the EGR valve 33 is opened (specifically, fully opened). Similar to the admission valve 41, the state at the time of fuel cut (valve open state) is continued.
  • cranking of the internal combustion engine 1 is started. Cranking (sometimes called “motoring") is done by an electric motor such as an ISG (Integrated Starter Generator).
  • ISG Integrated Starter Generator
  • the internal combustion engine 1 cooperates with an electric motor or a motor generator to form a drive source, it is possible to perform cranking by these rotating electric machines.
  • the admission valve 41 is in the closed state and the EGR valve 33 is in the open state, the exhaust gas in the exhaust passage 15 during cranking is directed toward the branch point Pd downstream of the exhaust passage 15. Is guided to the intake passage 11 via the EGR passage 31 without passing through.
  • the admission valve 41 is opened (for example, fully opened). As a result, air is allowed to pass through the admission valve 41 and the connection point Pm and be introduced into the cylinder.
  • the EGR valve 33 is closed (for example, fully closed). As a result, the introduction of the EGR gas into the intake passage 11 is prevented, and as the introduction of air through the admission valve 41 progresses, the gas occupying the intake passage 11 is replaced with air from the EGR gas.
  • the intake delay time refers to the time corresponding to the air transport delay from the connection point Pm of the EGR passage 31 to the intake port after the admission valve 41 is opened, and it is determined whether or not this has elapsed. Similar to the determination regarding the EGR gas transport delay time ⁇ Tdry, it can be estimated or actually measured. For example, the flow rate of air passing through the admission valve 41 per unit time is obtained, and this is sequentially integrated, and whether or not the passing volume, which is the integrated value, reaches a predetermined volume corresponding to the volume of the intake passage 11. Is determined. If the intake delay time has elapsed, the process proceeds to S209, and if not, the determination of S208 is repeated and the elapse is awaited.
  • the engine controller 1 constitutes an "internal combustion engine control device". Then, in the flowchart shown in FIG. 6, the processes of S101 and 102 realize the function of the "condition determination unit", and the processes of S103 and S105 to 107 realize the function of the "fuel cut control unit".
  • the internal combustion engine 1 and its control device (engine controller 101) according to the present embodiment have the above configurations, and the effects obtained by the present embodiment will be described below.
  • the admission valve 41 is continued to burn in the cylinder during the delay in transporting the EGR gas to the intake port even after the admission valve 41 is closed.
  • the air (oxygen) that was on the downstream side at the time of closing is sent out to the exhaust passage 15 without reacting through the cylinder, and it becomes possible to suppress the inflow to the catalyst, particularly the catalytic converter 16. ..
  • the catalyst As a result, an oxidizing atmosphere is formed in the catalyst, and it is possible to suppress a decrease in the purification rate of NOx (nitrogen oxide) at the time of restarting after the fuel is cut, and to improve the exhaust properties. Furthermore, it is possible to reduce the amount of reducing agent input required to eliminate the oxygen storage state, thereby improving fuel efficiency.
  • the engine torque generated during the transportation delay of EGR gas that is, during the continuation of fuel, is converted into electric power by a power generation motor such as ISG, and is used for supplying electric power to an electric machine or for filling a battery. It is possible to allocate it.
  • the time corresponding to the transport delay of the EGR gas (transport delay time ⁇ Tdry) is measured or estimated, and after that time has elapsed, the fuel supply is stopped and the combustion is stopped, so that the combustion is excessive. It can be continued without any shortage, and the fuel consumption can be suppressed as much as possible to prevent the air from being sent from the cylinder to the exhaust passage 15 without reacting.
  • FIG. 9 shows the transportation delay time ⁇ Tdry, which corresponds to the time from the time Treq where the fuel cut condition is satisfied to the time Tcut when the replacement with EGR gas is completed and the fuel cut is executed.
  • ⁇ Tdry the transportation delay time
  • FIG. 9 shows the change in engine torque in this case by a chain double-dashed line.
  • the engine torque is gradually reduced to give a gradient to the decrease in the engine speed.
  • a hybrid drive source that cooperates with an electric motor or the like.
  • the engine torque may be instantaneously reduced and the rotation of the internal combustion engine 1 may be stopped immediately.
  • FIG. 9 the changes in the engine torque and the engine speed in this case are shown by dotted lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

The present invention discloses a control method for an internal combustion engine in which exhaust gas after combustion is circulated inside a cylinder as EGR gas. The control method involves determining whether a fuel cut condition has been established for performing a fuel cut to temporarily stop the supply of fuel to the internal combustion engine, and when the fuel cut condition is established, closing an intake shutter valve installed on an upstream side in an intake passage from a connection point of an EGR passage, reducing the effective cross-sectional area of the intake passage compared to that before the establishment of the fuel cut condition, and furthermore, after the intake shutter valve is closed, continuing the combustion inside the cylinder during a delay in the transport of the EGR gas from the connection point of the EGR passage to an intake port of the internal combustion engine.

Description

内燃エンジンの制御方法および制御装置Internal combustion engine control method and control device
 本発明は、EGRシステムを備え、燃料カット時に吸気通路に占めるガスをEGRガスで置き換える内燃エンジンの制御方法および制御装置に関する。 The present invention relates to a control method and a control device for an internal combustion engine provided with an EGR system and replacing the gas occupying the intake passage with EGR gas when fuel is cut.
 JP2015−068274Aには、EGRシステムを備える内燃エンジンにおいて、内燃エンジンへの燃料の供給を一時的に停止させる燃料カットに際し、吸気シャッタ弁および排気シャッタ弁を閉じ、排気通路、EGR通路および吸気通路に占めるガスをEGRガスで置き換えることが開示されている(段落0047)。 In the JP2015-068274A, in an internal combustion engine equipped with an EGR system, the intake shutter valve and the exhaust shutter valve are closed when the fuel is cut to temporarily stop the supply of fuel to the internal combustion engine, and the exhaust passage, the EGR passage and the intake passage are changed. It is disclosed to replace the occupying gas with EGR gas (paragraph 0047).
 JP2015−068274Aの技術において、燃料カット条件の成立後、吸気シャッタを閉じるのと同時に燃料の供給をも停止させた場合、つまり、吸気シャッタ弁を閉じるのと内燃エンジンに対する燃料の供給を停止させるのとを同時に行った場合は、次のことが問題となる。 In the technology of JP2015-068274A, when the intake shutter is closed and the fuel supply is stopped at the same time after the fuel cut condition is satisfied, that is, the intake shutter valve is closed and the fuel supply to the internal combustion engine is stopped. If you do and at the same time, the following problems will occur.
 吸気シャッタ弁下流の吸気通路に占めるガスが空気からEGRガスに置き換わるまでの間、吸気通路にあった空気(酸素)が、シリンダから排気通路に未反応のまま送出され、排気通路に備わる触媒に流入することである。触媒に酸素が流入すると、燃料カット後の再始動に際し、触媒に吸着されている酸素が充分に処理され、酸素ストレージ状態が解消されるまでの間、触媒によるNOx(窒素酸化物)の浄化率が低下するからである。 Until the gas occupying the intake passage downstream of the intake shutter valve is replaced by EGR gas, the air (oxygen) in the intake passage is sent from the cylinder to the exhaust passage unreacted and becomes a catalyst provided in the exhaust passage. It is to flow in. When oxygen flows into the catalyst, the oxygen adsorbed on the catalyst is sufficiently processed when restarting after the fuel is cut, and the purification rate of NOx (nitrogen oxide) by the catalyst is until the oxygen storage state is cleared. Is reduced.
 さらに、酸素ストレージ状態の解消に要する還元剤の投入量の増大に帰結することから、排気を悪化させる原因となり得ることも懸念される。 Furthermore, since it results in an increase in the amount of reducing agent input required to eliminate the oxygen storage state, there is concern that it may cause deterioration of exhaust gas.
 本発明は、以上の問題を考慮した内燃エンジンの制御方法および制御装置を提供することを目的とする。 An object of the present invention is to provide a control method and a control device for an internal combustion engine in consideration of the above problems.
 一態様では、EGRシステムを備え、燃焼後の排気をEGRガスとして筒内に還流させる内燃エンジンの制御方法が提供される。本形態に係る方法は、内燃エンジンに対する燃料の供給を一時的に停止させる燃料カットを行う燃料カット条件が成立したか否かを判定し、燃料カット条件が成立した場合に、吸気通路のうち、EGR通路の接続点よりも上流側に設置された吸気シャッタ弁を閉じる。これにより、吸気通路の有効断面積を、燃料カット条件の成立前よりも縮小させ、さらに、吸気シャッタ弁を閉じた後、EGR通路の接続点から内燃エンジンの吸気ポートに至るまでのEGRガスの輸送遅れの間、筒内における燃焼を継続させる。 In one aspect, an EGR system is provided, and a control method for an internal combustion engine is provided in which exhaust gas after combustion is returned as EGR gas into a cylinder. The method according to this embodiment determines whether or not the fuel cut condition for performing the fuel cut for temporarily stopping the supply of fuel to the internal combustion engine is satisfied, and when the fuel cut condition is satisfied, among the intake passages, Close the intake shutter valve installed on the upstream side of the connection point of the EGR passage. As a result, the effective cross-sectional area of the intake passage is reduced compared to before the fuel cut condition is satisfied, and after the intake shutter valve is closed, the EGR gas from the connection point of the EGR passage to the intake port of the internal combustion engine Continue combustion in the cylinder during transport delays.
 他の態様では、内燃エンジンの制御装置が提供される。 In another aspect, a control device for an internal combustion engine is provided.
図1は、本発明の一実施形態に係る内燃エンジンの全体的な構成を示す概略図である。FIG. 1 is a schematic view showing an overall configuration of an internal combustion engine according to an embodiment of the present invention. 図2は、同上実施形態に係る内燃エンジンの、燃料カット時(減速開始前の定速走行時)における動作を示す説明図である。FIG. 2 is an explanatory diagram showing the operation of the internal combustion engine according to the same embodiment at the time of fuel cut (during constant speed running before the start of deceleration). 図3は、同上実施形態に係る内燃エンジンの、燃料カット時(減速開始後、燃料カット条件の成立前)における動作を示す説明図である。FIG. 3 is an explanatory diagram showing the operation of the internal combustion engine according to the same embodiment at the time of fuel cut (after the start of deceleration and before the establishment of the fuel cut condition). 図4は、同上実施形態に係る内燃エンジンの、燃料カット時(燃料カット条件の成立後)における動作を示す説明図である。FIG. 4 is an explanatory diagram showing the operation of the internal combustion engine according to the same embodiment at the time of fuel cut (after the fuel cut condition is satisfied). 図5は、同上実施形態に係る内燃エンジンの、燃料カット時(燃料カットの実行後)における動作を示す説明図である。FIG. 5 is an explanatory diagram showing the operation of the internal combustion engine according to the same embodiment at the time of fuel cut (after execution of fuel cut). 図6は、同上実施形態に係る内燃エンジンの、燃料カット時における制御の内容を示すフローチャートである。FIG. 6 is a flowchart showing the content of control of the internal combustion engine according to the same embodiment at the time of fuel cut. 図7は、同上実施形態に係る内燃エンジンの、燃料カットリカバ時における制御の内容を示すフローチャートである。FIG. 7 is a flowchart showing the content of control of the internal combustion engine according to the same embodiment at the time of fuel cut recovery. 図8は、燃料カット時における制御の、輸送遅れ時間経過判定処理の内容を示す説明図である。FIG. 8 is an explanatory diagram showing the contents of the transportation delay time lapse determination process of the control at the time of fuel cut. 図9は、燃料カット時における動作の、タイムチャートによる説明図である。FIG. 9 is an explanatory diagram of the operation at the time of fuel cut by a time chart.
 以下、図面を参照して、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (内燃エンジンの全体構成)
 図1は、本発明の一実施形態に係る内燃エンジン1の全体的な構成を示している。
(Overall configuration of internal combustion engine)
FIG. 1 shows the overall configuration of an internal combustion engine 1 according to an embodiment of the present invention.
 本実施形態に係る内燃エンジン(以下「内燃エンジン」といい、単に「エンジン」という場合がある)1は、車両に搭載され、車両の駆動力を形成する駆動源を構成する。内燃エンジン1は、車両の駆動源を単体で構成することが可能であるし、電気モータまたはモータジェネレータと協働して構成することも可能である。後者の場合の駆動源は、シリーズ式またはパラレル式のいずれの形式であってもよい。 The internal combustion engine (hereinafter referred to as "internal combustion engine", sometimes simply referred to as "engine") 1 according to the present embodiment constitutes a drive source that is mounted on a vehicle and forms a driving force of the vehicle. The internal combustion engine 1 can be configured as a single drive source for a vehicle, or can be configured in cooperation with an electric motor or a motor generator. The drive source in the latter case may be of either a series type or a parallel type.
 内燃エンジン1は、ターボ式の過給器2を備える。過給機2は、吸気コンプレッサ21および排気タービン22を備え、吸気コンプレッサ21は、内燃エンジン1の吸気通路11に、排気タービン22は、排気通路15に、夫々介装される。吸気コンプレッサ21と排気タービン22とは、軸23により結合され、排気タービン22の回転がこの軸23を介して吸気コンプレッサ21に伝達され、吸気コンプレッサ21を回転させる。 The internal combustion engine 1 includes a turbocharger 2. The supercharger 2 includes an intake compressor 21 and an exhaust turbine 22, and the intake compressor 21 is interposed in the intake passage 11 of the internal combustion engine 1, and the exhaust turbine 22 is interposed in the exhaust passage 15. The intake compressor 21 and the exhaust turbine 22 are coupled by a shaft 23, and the rotation of the exhaust turbine 22 is transmitted to the intake compressor 21 via the shaft 23 to rotate the intake compressor 21.
 吸気通路11には、吸気の流れに関して吸気コンプレッサ21よりも上流側にエアクリーナ12が設置されるとともに、下流側にスロットル弁13が設置され、そのさらに下流側に燃料噴射弁14が設置されている。エアクリーナ12は、大気から吸気通路11に吸入される空気に含まれる異物を除去し、スロットル弁13は、吸気通路11の実質的な断面積(以下「有効断面積」という場合がある)を拡大または縮小させて、筒内に吸入される空気の量を調整する。燃料噴射弁14は、筒内に燃料を供給可能に配設されており、本実施形態では、シリンダヘッドに埋設され、吸気ポートに向けて燃料を噴射する。 In the intake passage 11, an air cleaner 12 is installed on the upstream side of the intake compressor 21 with respect to the flow of intake air, a throttle valve 13 is installed on the downstream side, and a fuel injection valve 14 is installed on the downstream side thereof. .. The air cleaner 12 removes foreign matter contained in the air sucked into the intake passage 11 from the atmosphere, and the throttle valve 13 expands the substantial cross-sectional area of the intake passage 11 (hereinafter, may be referred to as "effective cross-sectional area"). Or reduce it to adjust the amount of air sucked into the cylinder. The fuel injection valve 14 is arranged in the cylinder so as to be able to supply fuel. In the present embodiment, the fuel injection valve 14 is embedded in the cylinder head and injects fuel toward the intake port.
 他方で、排気通路15には、排気の流れに関して排気タービン22よりも下流側に触媒コンバータ16、17が設置されるとともに、そのさらに下流側にマフラ18が設置されている。本実施形態では、容量の異なる同種の触媒を有する2つの触媒コンバータ16、17を備える例を示すが、触媒コンバータ16、17が有する触媒は、異なる種類のものであってもよいし、等しい容量であってもよい。触媒の種類として、三元触媒を例示することができるが、酸素ストレージ能力を有する他の触媒を採用することも可能である。さらに、触媒コンバータは、1つ(例えば、触媒コンバータ16)のみであってもよいし、3つ以上であってもよい。 On the other hand, in the exhaust passage 15, the catalytic converters 16 and 17 are installed on the downstream side of the exhaust turbine 22 with respect to the flow of exhaust gas, and the muffler 18 is installed further on the downstream side thereof. In the present embodiment, an example including two catalytic converters 16 and 17 having the same type of catalyst having different capacities is shown, but the catalysts contained in the catalytic converters 16 and 17 may be of different types or have the same capacity. It may be. A three-way catalyst can be exemplified as the type of catalyst, but other catalysts having oxygen storage capacity can also be adopted. Further, the number of catalytic converters may be only one (for example, the catalytic converter 16), or may be three or more.
 内燃エンジン1は、さらに、燃焼後の排気をEGRガスとして筒内に還流させるEGRシステム3を備える。 The internal combustion engine 1 further includes an EGR system 3 that recirculates the exhaust gas after combustion as EGR gas into the cylinder.
 EGRシステム3は、吸気通路11と排気通路15との間に接続されたEGR通路31を備え、吸気通路11と排気通路15とは、EGR通路31により互いに流体連通可能に接続されている。本実施形態において、EGR通路31は、排気通路15のうち、排気タービン22よりも下流側、具体的には、2つの触媒コンバータ16、17の間の部分(分岐点Pd)と、吸気通路11のうち、吸気コンプレッサ21よりも上流側の部分(接続点Pm)と、の間に接続される。EGR通路31には、EGRシステムを構成するEGR通路31以外の要素として、EGRクーラ32およびEGR弁33が設置されている。EGRクーラ32は、排気通路15から分岐した排気を冷却し、EGR弁33は、EGR通路31の実質的な断面積(有効断面積)を拡大または縮小させて、筒内に還流される排気(EGRガス)の量を調整する。 The EGR system 3 includes an EGR passage 31 connected between the intake passage 11 and the exhaust passage 15, and the intake passage 11 and the exhaust passage 15 are connected to each other by the EGR passage 31 so that fluid can communicate with each other. In the present embodiment, the EGR passage 31 is the portion of the exhaust passage 15 downstream of the exhaust turbine 22, specifically, the portion between the two catalytic converters 16 and 17, (branch point Pd), and the intake passage 11. Of these, it is connected between the portion on the upstream side (connection point Pm) of the intake compressor 21. In the EGR passage 31, an EGR cooler 32 and an EGR valve 33 are installed as elements other than the EGR passage 31 constituting the EGR system. The EGR cooler 32 cools the exhaust gas branched from the exhaust passage 15, and the EGR valve 33 expands or contracts the substantial cross-sectional area (effective cross-sectional area) of the EGR passage 31 and returns the exhaust gas (effective cross-sectional area) to the inside of the cylinder. Adjust the amount of EGR gas).
 以上に加え、内燃エンジン1は、吸気通路11のうち、吸気の流れに関してEGR通路31の接続点Pmよりも上流側に設置された吸気シャッタ弁41を備える。吸気シャッタ弁41は、吸気通路11の有効断面積を調整可能に構成されており、本実施形態では、吸気通路11の有効断面積を縮小させることによりその下流側の圧力を低下させ、EGR通路31の入口側(分岐点Pd)と出口側(接続点Pm)との間の差圧を拡大させるアドミッション弁(以下「アドミッション弁」との呼称で統一する)として構成される。本実施形態に係る「吸気シャッタ弁」は、アドミッション弁41として、開度を段階的または連続的に調整可能に構成されるが、最大開度と最小開度との2つの位置のみに調整可能なものであってもよい。そのような場合として、EGRシステムの動作上、差圧の拡大を必要としない場合を例示することができる。そして、例えば、最大開度は、全開時における開度(全開開度)であり、最小開度は、全閉時における開度(全閉開度)である。アドミッション弁41と同様に、EGR弁33もまた、開度を段階的または連続的に調整可能に構成するばかりでなく、最大開度と最小開度との間でのみ切換可能に構成することが可能である。 In addition to the above, the internal combustion engine 1 includes an intake shutter valve 41 installed in the intake passage 11 on the upstream side of the connection point Pm of the EGR passage 31 with respect to the intake flow. The intake shutter valve 41 is configured so that the effective cross-sectional area of the intake passage 11 can be adjusted. In the present embodiment, the pressure on the downstream side of the intake passage 11 is reduced by reducing the effective cross-sectional area of the intake passage 11, and the EGR passage is reduced. It is configured as an admission valve (hereinafter unified by the name of "admission valve") that increases the differential pressure between the inlet side (branch point Pd) and the outlet side (connection point Pm) of 31. The "intake shutter valve" according to the present embodiment is configured as an admission valve 41 so that the opening degree can be adjusted stepwise or continuously, but it is adjusted only to two positions, the maximum opening degree and the minimum opening degree. It may be possible. As such a case, a case where the expansion of the differential pressure is not required for the operation of the EGR system can be exemplified. Then, for example, the maximum opening degree is the opening degree when fully opened (fully opened opening degree), and the minimum opening degree is the opening degree when fully closed (fully closed opening degree). Like the admission valve 41, the EGR valve 33 is not only configured so that the opening degree can be adjusted stepwise or continuously, but is also configured so that the opening degree can be switched only between the maximum opening degree and the minimum opening degree. Is possible.
 (制御システムの基本構成)
 EGRシステム3を含む内燃エンジン1全体の動作は、エンジンコントローラ101により制御される。
(Basic configuration of control system)
The operation of the entire internal combustion engine 1 including the EGR system 3 is controlled by the engine controller 101.
 エンジンコントローラ101は、電子制御ユニットとして構成され、中央演算装置(CPU)、RAMおよびROM等の各種記憶装置、入出力インターフェース等を備えたマイクロコンピュータからなる。 The engine controller 101 is configured as an electronic control unit, and includes a central processing unit (CPU), various storage devices such as RAM and ROM, and a microcomputer provided with an input / output interface and the like.
 エンジンコントローラ101は、内燃エンジン1の運転状態を検出する各種運転状態センサの検出信号を入力し、検出された運転状態をもとに所定の演算を実行して、内燃エンジン1の燃料噴射量、燃料噴射時期および点火時期等を設定する。 The engine controller 101 inputs detection signals of various operating state sensors that detect the operating state of the internal combustion engine 1, executes a predetermined calculation based on the detected operating state, and determines the fuel injection amount of the internal combustion engine 1. Set the fuel injection timing, ignition timing, etc.
 本実施形態では、運転状態センサとして、運転者によるアクセルペダルの操作量(以下「アクセル開度」という)APOを検出するアクセルセンサ111、内燃エンジン1の回転速度NEを検出する回転速度センサ112、エンジン冷却水の温度TWを検出する冷却水温度センサ113等が設けられるほか、図示しないエアフローメータ、スロットルセンサおよび空燃比センサ等が設けられる。 In the present embodiment, as the operation state sensor, the accelerator sensor 111 that detects the amount of operation of the accelerator pedal by the driver (hereinafter referred to as “accelerator opening”) APO, the rotation speed sensor 112 that detects the rotation speed NE of the internal combustion engine 1, A cooling water temperature sensor 113 or the like for detecting the temperature TW of the engine cooling water is provided, and an air flow meter, a throttle sensor, an air fuel ratio sensor and the like (not shown) are provided.
 (燃料カット制御の概要)
 本実施形態では、エンジンコントローラ101の動作中、換言すれば、図示しない起動スイッチがオンされている間、所定の燃料カット条件が成立した場合に、内燃エンジン1に対する燃料の供給を一時的に停止させる燃料カットを行う。そして、燃料カットに際し、アドミッション弁41を閉じて、吸気通路11の有効断面積を燃料カット条件の成立前よりも縮小させるとともに、EGR弁33を開けることで、内燃エンジン1のシリンダとEGR通路31との間でEGRガスを循環させ、アドミッション弁41よりも下流側の吸気通路11および筒内に占めるガスをEGRガスで置き換える制御を実施する。
(Overview of fuel cut control)
In the present embodiment, during the operation of the engine controller 101, in other words, while the start switch (not shown) is on, when a predetermined fuel cut condition is satisfied, the supply of fuel to the internal combustion engine 1 is temporarily stopped. Make a fuel cut. Then, when the fuel is cut, the admission valve 41 is closed to reduce the effective cross-sectional area of the intake passage 11 as compared with that before the fuel cut condition is satisfied, and the EGR valve 33 is opened to open the cylinder and the EGR passage of the internal combustion engine 1. The EGR gas is circulated between the EGR gas and the intake passage 11 on the downstream side of the admission valve 41, and the gas occupied in the cylinder is replaced with the EGR gas.
 ここで、燃料カット条件の成立後、アドミッション弁41を閉じるのと同時に燃料噴射弁14の動作をも停止させた場合、つまり、アドミッション弁41を閉じるのと内燃エンジン1に対する燃料の供給を停止させるのとを同時に行った場合は、アドミッション弁41下流の吸気通路11に占めるガスが空気からEGRガスに置き換わるまでの間、吸気通路11にあった空気(酸素)が、シリンダから排気通路15に未反応のまま送出(つまり、掃気)され、触媒コンバータ16に流入することとなる。燃料カット条件が成立する時点において、内燃エンジン1は、アクセルペダルが完全に戻されるかまたはそれに近いアクセルオフの状態にあり、EGRを停止させることから、吸気通路11に存在するガスは、空気であるか、そうでなければ、EGRガスの占める割合が極めて低いガスであるからである。そして、触媒に酸素が流入すると、燃料カット後の再始動に際し、触媒に吸着されている酸素が充分に処理され、酸素ストレージ状態が解消されるまでの間、触媒によるNOx(窒素酸化物)の浄化率が低下するのである。さらに、酸素ストレージ状態の解消に要する還元剤の投入量の増大に帰結することから、排気を悪化させる原因ともなり得る。酸素ストレージ状態の解消は、例えば、排気の空燃比を一時的に理論値よりも増大させる燃料噴射弁14の操作(リッチスパイク操作)によるのが一般的である。 Here, when the operation of the fuel injection valve 14 is stopped at the same time as closing the admission valve 41 after the fuel cut condition is satisfied, that is, when the admission valve 41 is closed and the fuel is supplied to the internal combustion engine 1. When stopped at the same time, the air (oxygen) in the intake passage 11 is transferred from the cylinder to the exhaust passage until the gas occupying the intake passage 11 downstream of the admission valve 41 is replaced with the EGR gas. It is sent to 15 unreacted (that is, scavenged) and flows into the catalytic converter 16. At the time when the fuel cut condition is satisfied, the internal combustion engine 1 is in the accelerator-off state in which the accelerator pedal is completely returned or close to it, and the EGR is stopped. Therefore, the gas existing in the intake passage 11 is air. This is because, if there is, or not, the proportion of EGR gas is extremely low. Then, when oxygen flows into the catalyst, when restarting after the fuel is cut, the oxygen adsorbed on the catalyst is sufficiently processed, and NOx (nitrogen oxide) produced by the catalyst is used until the oxygen storage state is eliminated. The purification rate is reduced. Further, since it results in an increase in the amount of reducing agent input required to eliminate the oxygen storage state, it may cause deterioration of exhaust gas. The elimination of the oxygen storage state is generally performed by, for example, operating the fuel injection valve 14 (rich spike operation) that temporarily increases the air-fuel ratio of the exhaust gas from the theoretical value.
 そこで、本実施形態では、燃料カット条件が成立した場合に、アドミッション弁41を閉じるだけでなく、アドミッション弁41を閉じた後、EGR通路31の接続点Pmから吸気ポートに至るまでのEGRガスの輸送遅れの間、燃料噴射弁14により引き続き燃料を供給し、筒内における燃焼を継続させる。換言すれば、燃料カット条件が成立した時点でEGR通路31にあった排気が、接続点Pmを介して吸気ポートに到達し、吸気通路11にあった空気がEGRガスに置き換わるまでの間、燃焼を継続させることにより、吸入空気中の酸素を消費させるのである。そして、空気からEGRガスへの置換が完了した後、燃料カットを実行し、内燃エンジン1に対する燃料の供給を停止させる。 Therefore, in the present embodiment, when the fuel cut condition is satisfied, not only the admission valve 41 is closed, but also the EGR from the connection point Pm of the EGR passage 31 to the intake port after the admission valve 41 is closed. During the gas transportation delay, fuel is continuously supplied by the fuel injection valve 14 to continue combustion in the cylinder. In other words, the exhaust gas in the EGR passage 31 when the fuel cut condition is satisfied reaches the intake port via the connection point Pm, and burns until the air in the intake passage 11 is replaced with the EGR gas. By continuing the above, oxygen in the intake air is consumed. Then, after the replacement of air with EGR gas is completed, the fuel cut is executed and the supply of fuel to the internal combustion engine 1 is stopped.
 (燃料カットの基本動作)
 図2~5は、本実施形態に係る内燃エンジン1の燃料カット前から燃料カット後に亘る動作を、時系列に示している。図2~5のそれぞれにおいて、太い点線は、排気またはEGRガスの挙動を概念的に示し、矢印の向きにより流れの方向を示している。さらに、図9は、燃料カット前後に亘る内燃エンジン1の動作を、タイムチャートにより示している。図9中、時刻Toffは、アクセルオフ時を示し、時刻Treqは、燃料カット条件の成立時を示し、時刻Tcutは、燃料カットの実行時を示す。図9を適宜に参照しながら、内燃エンジン1の動作を、図2~5により説明する。
(Basic operation of fuel cut)
FIGS. 2 to 5 show the operations of the internal combustion engine 1 according to the present embodiment from before the fuel cut to after the fuel cut in chronological order. In each of FIGS. 2 to 5, the thick dotted line conceptually shows the behavior of the exhaust gas or the EGR gas, and the direction of the arrow indicates the direction of the flow. Further, FIG. 9 shows the operation of the internal combustion engine 1 before and after the fuel cut by a time chart. In FIG. 9, the time Toff indicates the time when the accelerator is off, the time Treq indicates the time when the fuel cut condition is satisfied, and the time Tcut indicates the time when the fuel cut is executed. The operation of the internal combustion engine 1 will be described with reference to FIGS. 2 to 5 with reference to FIG. 9 as appropriate.
 本実施形態では、内燃エンジン1単体で車両の駆動源を構成することを前提に、車両の減速時に燃料カットを行う、いわゆる減速燃料カットの場合について説明するが、燃料カットの適用は、これに限定されるものではなく、例えば、信号待ちの間等、車両の一時的な停車中であってもよい。この意味で、本実施形態に係る「燃料カット」とは、内燃エンジン1への燃料の供給を一時的に(換言すれば、エンジンコントローラ101の動作中に)停止させる操作全般をいい、停車中に行う、いわゆるアイドルストップによる場合をも含むものとする。さらに、内燃エンジン1が電気モータと協働して駆動源を構成する場合は、電気モータのみにより走行するモードへの切換えによる場合を含み得る。 In the present embodiment, the case of so-called deceleration fuel cut, in which the fuel is cut when the vehicle is decelerated, is described on the premise that the drive source of the vehicle is configured by the internal combustion engine 1 alone, but the application of the fuel cut is applied to this. The vehicle is not limited, and the vehicle may be temporarily stopped, for example, while waiting for a traffic light. In this sense, the "fuel cut" according to the present embodiment means a general operation of temporarily stopping the supply of fuel to the internal combustion engine 1 (in other words, during the operation of the engine controller 101), and the vehicle is stopped. It shall also include the case of so-called idle stop. Further, when the internal combustion engine 1 forms a drive source in cooperation with an electric motor, it may include a case of switching to a mode in which the internal combustion engine 1 travels only by the electric motor.
 図2は、減速開始前の比較的低速での定速走行時における状態を示す(図9の時刻Tstd)。内燃エンジン1の運転状態がEGRを行う領域(つまり、EGR域)にあり、スロットル弁13およびEGR弁33がいずれも全開位置にある。内燃エンジン1の回転速度が低く、分岐点Pdと接続点Pmとの間に充分な差圧が存在しないことから、その拡大を図るべく、アドミッション弁41を全開位置に対して僅かに閉弁させる。 FIG. 2 shows a state during constant speed running at a relatively low speed before the start of deceleration (time Tstd in FIG. 9). The operating state of the internal combustion engine 1 is in the region where EGR is performed (that is, the EGR region), and both the throttle valve 13 and the EGR valve 33 are in the fully open position. Since the rotation speed of the internal combustion engine 1 is low and there is not a sufficient differential pressure between the branch point Pd and the connection point Pm, the admission valve 41 is slightly closed with respect to the fully open position in order to expand the pressure. Let me.
 図3は、アクセルオフによる減速開始後、燃料カット条件の成立前における状態を示す(時刻Tdec)。内燃エンジン1の回転速度が減速の開始により低下し、内燃エンジン1の運転状態がEGR域を逸脱することで、EGR弁33が全閉位置に制御され、これに伴い、アドミッション弁41も全開位置に制御される。スロットル弁13は、アクセルペダルが完全に戻されていることにより、ごく少量の空気の通過を許容する程度の僅かな開度に調整される。 FIG. 3 shows the state after the start of deceleration due to the accelerator off and before the fuel cut condition is satisfied (time Tdec). The rotation speed of the internal combustion engine 1 decreases at the start of deceleration, and the operating state of the internal combustion engine 1 deviates from the EGR range, so that the EGR valve 33 is controlled to the fully closed position, and the admission valve 41 is also fully opened accordingly. Controlled by position. The throttle valve 13 is adjusted to a slight opening degree that allows the passage of a very small amount of air by completely returning the accelerator pedal.
 図4は、燃料カット条件の成立後における状態を示す(時刻Trep)。燃料カットの実行に備えるべく、吸気通路11および筒内にEGRガスを充填させるため、アドミッション弁41を閉弁させるとともに、EGR弁33を開弁させる。本実施形態では、アドミッション弁41を全閉させる一方、EGR弁33を全開させる。これにより、燃料カット条件が成立した時点でEGR通路31にあった排気が吸気通路11に誘導され、筒内に導入される。EGRガスが吸気ポートに到達した時点で、EGRガスへの置換が完了したものとみなすことが可能である。 FIG. 4 shows the state after the fuel cut condition is satisfied (time Trip). In order to fill the intake passage 11 and the cylinder with EGR gas in preparation for the execution of the fuel cut, the admission valve 41 is closed and the EGR valve 33 is opened. In the present embodiment, the admission valve 41 is fully closed, while the EGR valve 33 is fully opened. As a result, the exhaust gas that was in the EGR passage 31 when the fuel cut condition is satisfied is guided to the intake passage 11 and introduced into the cylinder. When the EGR gas reaches the intake port, it can be considered that the replacement with the EGR gas is completed.
 図5は、燃料カットの実行後における状態を示す(時刻Tpst)。筒内、排気通路15、EGR通路31および吸気通路11(具体的には、アドミッション弁41よりも下流側の部分)に排気またはEGRガスを充填させた状態で、内燃エンジン1への燃料の供給を停止させ、内燃エンジン1を停止させる。 FIG. 5 shows the state after the execution of the fuel cut (time Tpst). The fuel for the internal combustion engine 1 is filled with exhaust gas or EGR gas in the cylinder, the exhaust passage 15, the EGR passage 31, and the intake passage 11 (specifically, the portion downstream of the admission valve 41). The supply is stopped and the internal combustion engine 1 is stopped.
 (フローチャートによる説明)
 図6および7は、エンジンコントローラ101の動作をフローチャートにより示しており、図6は、燃料カット制御に係る動作を、図7は、燃料カットリカバ制御に係る動作を、夫々示す。エンジンコントローラ101は、所定の燃料カット条件が成立した場合に、燃料カット制御を実行し、燃料カットの実行後、所定の燃料カットリカバ条件が成立した場合に、燃料カットリカバ制御を実行するようにプログラムされている。
(Explanation by flowchart)
6 and 7 show the operation of the engine controller 101 by a flowchart, FIG. 6 shows the operation related to the fuel cut control, and FIG. 7 shows the operation related to the fuel cut recovery control, respectively. The engine controller 101 is programmed to execute the fuel cut control when the predetermined fuel cut condition is satisfied, and to execute the fuel cut recovery control when the predetermined fuel cut recovery condition is satisfied after the execution of the fuel cut. ing.
 図6に示すフローチャートにおいて、S101では、アクセルオフの状態にあるか否かを判定する。アクセルペダルが完全に戻されるかまたはそれに近い位置にあり、アクセルオフの状態にある場合は、S102へ進み、アクセルオフの状態にない場合は、S108へ進む。 In the flowchart shown in FIG. 6, in S101, it is determined whether or not the accelerator is off. If the accelerator pedal is fully released or close to it and the accelerator is off, the process proceeds to S102, and if the accelerator pedal is not in the accelerator off state, the process proceeds to S108.
 S102では、燃料カット条件が成立したか否かを判定する。減速燃料カットにおいて、燃料カット条件は、アクセルオフの状態が所定時間以上に亘って継続した時点での内燃エンジン1の回転速度が所定回転速度以上である場合に、成立したものと判断することが可能である。燃料カット条件が成立した場合は、S103へ進み、成立していない場合は、S101および102の処理を繰り返す。 In S102, it is determined whether or not the fuel cut condition is satisfied. In the deceleration fuel cut, it can be determined that the fuel cut condition is satisfied when the rotation speed of the internal combustion engine 1 at the time when the accelerator off state continues for a predetermined time or longer is equal to or higher than the predetermined rotation speed. It is possible. If the fuel cut condition is satisfied, the process proceeds to S103, and if not, the processes of S101 and 102 are repeated.
 ここで、バッテリが搭載され、内燃エンジン1のほか、このバッテリにより給電される電気モータで駆動力を生じさせることが可能なハイブリッド車両では、バッテリの充電状態SOCに余裕がある場合に、アクセルオンの状態にあっても燃料カットを行わせ、内燃エンジン1を自動的に停止させることがある。この場合は、S101および102の処理として、バッテリの充電状態とアクセル開度とをもとに、燃料カット条件として、内燃エンジン1の自動停止条件(つまり、EV走行モード条件)の成否を判定することが可能である。 Here, in a hybrid vehicle equipped with a battery and capable of generating driving force by an internal combustion engine 1 or an electric motor supplied by the battery, the accelerator is turned on when the battery charge state SOC is sufficient. Even in this state, the fuel may be cut and the internal combustion engine 1 may be automatically stopped. In this case, as the processing of S101 and 102, the success or failure of the automatic stop condition of the internal combustion engine 1 (that is, the EV driving mode condition) is determined as the fuel cut condition based on the battery charge state and the accelerator opening. It is possible.
 S103では、アドミッション弁41を閉弁(具体的には、全閉)させる。 In S103, the admission valve 41 is closed (specifically, fully closed).
 S104では、EGR弁33を開弁(具体的には、全開)させる。 In S104, the EGR valve 33 is opened (specifically, fully opened).
 S105では、輸送遅れ時間ΔTdlyが経過したか否かを判定する。輸送遅れ時間ΔTdlyとは、アドミッション弁41を閉じた後、EGR通路31の接続点Pmから吸気ポートに至るまでのEGRガスの輸送遅れに相当する時間をいい、これが経過したか否かは、内燃エンジン1の運転状態をもとに推定することが可能である。輸送遅れ時間ΔTdlyが経過した場合は、S107へ進み、経過していない場合は、S106へ進む。 In S105, it is determined whether or not the transportation delay time ΔTdry has elapsed. The transportation delay time ΔTdry refers to the time corresponding to the transportation delay of the EGR gas from the connection point Pm of the EGR passage 31 to the intake port after the admission valve 41 is closed, and whether or not this has elapsed is determined. It is possible to estimate based on the operating state of the internal combustion engine 1. If the transport delay time ΔTdry has elapsed, the process proceeds to S107, and if not, the process proceeds to S106.
 図8は、推定による場合の経過の判定原理を示している。 FIG. 8 shows the principle of determining the progress in the case of estimation.
 図8(a)に示すように、吸気弁を通過する空気の流量(吸気弁通過流量)は、スロットル弁13の開度(以下「スロットル開度」という)THO毎に与えられ、各スロットル開度THOについて、エンジン回転数NEに対する関数、例えば、単調増加関数として予め見積もりを定めることが可能である。そして、吸気弁通過流量を積算することにより空気の吸気弁通過体積を算出し、積算の開始後(時刻T0)、吸気弁通過体積が吸気通路11の体積に相当する所定体積Vthrに達したとき(時刻T1)に、輸送遅れ時間ΔTdlyが経過したものと判定する。 As shown in FIG. 8A, the flow rate of air passing through the intake valve (flow rate passing through the intake valve) is given for each opening of the throttle valve 13 (hereinafter referred to as “throttle opening”) THO, and each throttle is opened. It is possible to predetermine the degree THO as a function with respect to the engine speed NE, for example, a monotonically increasing function. Then, the intake valve passing volume of air is calculated by integrating the intake valve passing flow rate, and when the intake valve passing volume reaches a predetermined volume Vthr corresponding to the volume of the intake passage 11 after the start of integration (time T0). It is determined that the transportation delay time ΔTdry has elapsed at (time T1).
 輸送遅れ時間ΔTdlyが経過したか否かは、このような推定によるほか、センサを用いた実測により判定することも可能である。例えば、吸気通路11のうち、燃焼室または吸気ポートに近い位置にガス状態センサ(例えば、酸素濃度センサ)を設置し、アドミッション弁41を閉じた後、このガス状態センサにより検出されるガスの状態に、EGRガスの通過を示す挙動が生じた場合に、輸送遅れ時間ΔTdlyが経過したものと判定する。そのような挙動として、酸素濃度センサによる場合に、酸素濃度が所定濃度以下に低下することを例示することができる。この意味で、EGRガスの輸送遅れは、「吸気シャッタ弁下流の吸気通路に占めるガスの、EGRガスへの置換に要する遅れ」または「吸気シャッタ弁を閉じた後、筒内に占めるEGRガスの割合が上昇して、所定値に達するまでの遅れ」といい換えることができる。 Whether or not the transportation delay time ΔTdry has elapsed can be determined not only by such an estimation but also by actual measurement using a sensor. For example, in the intake passage 11, a gas state sensor (for example, an oxygen concentration sensor) is installed near the combustion chamber or the intake port, the admission valve 41 is closed, and then the gas detected by the gas state sensor is used. When the behavior indicating the passage of EGR gas occurs in the state, it is determined that the transport delay time ΔTdry has elapsed. As such a behavior, it can be exemplified that the oxygen concentration is lowered to a predetermined concentration or less when the oxygen concentration sensor is used. In this sense, the transport delay of EGR gas is "the delay required to replace the gas in the intake passage downstream of the intake shutter valve with EGR gas" or "the delay of EGR gas occupied in the cylinder after closing the intake shutter valve". It can be rephrased as "the delay until the ratio rises and reaches a predetermined value".
 S106では、燃料カットキャンセル条件が成立したか否かを判定する。燃料カットキャンセル条件は、例えば、輸送遅れ時間ΔTdlyの経過を待っている間に、アクセルペダルが踏み込まれ、燃料の供給を継続させる場合に、成立する。燃料カットキャンセル条件が成立した場合は、S108へ進み、成立していない場合は、S105へ戻り、引き続き輸送遅れ時間ΔTdlyの経過を待つ。 In S106, it is determined whether or not the fuel cut cancellation condition is satisfied. The fuel cut cancellation condition is satisfied, for example, when the accelerator pedal is depressed while waiting for the elapse of the transportation delay time ΔTdry to continue the fuel supply. If the fuel cut cancellation condition is satisfied, the process proceeds to S108, and if the fuel cut cancellation condition is not satisfied, the process returns to S105 and continues to wait for the elapse of the transportation delay time ΔTdry.
 S107では、燃料カットを実行する。具体的には、燃料噴射弁14の動作を停止させ、内燃エンジン1に対する燃料の供給を停止させる。これに伴い、図示しない点火プラグの動作をも停止させる。 In S107, fuel cut is executed. Specifically, the operation of the fuel injection valve 14 is stopped, and the supply of fuel to the internal combustion engine 1 is stopped. Along with this, the operation of the spark plug (not shown) is also stopped.
 S108では、通常の燃料噴射制御を実行し、内燃エンジン1に対する燃料の供給を継続させる。 In S108, normal fuel injection control is executed to continue supplying fuel to the internal combustion engine 1.
 図7に示すフローチャートに移り、S201では、燃料カットリカバ条件が成立したか否かを判定する。本実施形態において、燃料カットリカバ条件は、アクセルオフの状態から運転者によりアクセルペダルが踏み込まれ、アクセル開度APOが所定値に達して、アクセルオンの状態に移行した場合に、成立したものと判断される。燃料カットリカバ条件が成立した場合は、S202へ進み、成立していない場合は、S201の処理を繰り返す。 Moving on to the flowchart shown in FIG. 7, in S201, it is determined whether or not the fuel cut recovery condition is satisfied. In the present embodiment, it is determined that the fuel cut recovery condition is satisfied when the accelerator pedal is depressed by the driver from the accelerator off state, the accelerator opening APO reaches a predetermined value, and the accelerator is turned on. Will be done. If the fuel cut recovery condition is satisfied, the process proceeds to S202, and if not, the process of S201 is repeated.
 先に述べたハイブリッド車両では、上記に代え、バッテリの充電状態SOCが低下し、その指標値が所定値にまで、例えば、アクセル開度APOに応じた所定値にまで減少したときに、燃料カットリカバ条件(つまり、内燃エンジン1の再始動条件)が成立したと判定することが可能である。 In the hybrid vehicle described above, instead of the above, when the charge state SOC of the battery decreases and the index value decreases to a predetermined value, for example, to a predetermined value according to the accelerator opening APO, the fuel cut recovery cover It is possible to determine that the condition (that is, the restart condition of the internal combustion engine 1) is satisfied.
 S202では、アドミッション弁41を閉弁(具体的には、全閉)させる。本実施形態では、燃料カット時にアドミッション弁41を既に閉じた状態にあるので、その閉弁状態を継続させる。 In S202, the admission valve 41 is closed (specifically, fully closed). In the present embodiment, since the admission valve 41 is already closed at the time of fuel cut, the closed state is continued.
 S203では、EGR弁33を開弁(具体的には、全開)させる。アドミッション弁41と同様に、燃料カット時の状態(開弁状態)を継続させる。 In S203, the EGR valve 33 is opened (specifically, fully opened). Similar to the admission valve 41, the state at the time of fuel cut (valve open state) is continued.
 S204では、内燃エンジン1のクランキングを開始する。クランキング(「モータリング」と呼ばれる場合もある)は、ISG(インテグレート・スタータ・ジェネレータ)等の電気モータによる。内燃エンジン1が電気モータまたはモータジェネレータと協働して駆動源を構成する場合は、これらの回転電機によりクランキングを行わせることが可能である。ここで、アドミッション弁41が閉弁状態にあり、EGR弁33が開弁状態にあることから、クランキングの間、排気通路15にある排気は、分岐点Pdを排気通路15の下流の方向へは通過せず、EGR通路31を介して吸気通路11に誘導される。 In S204, cranking of the internal combustion engine 1 is started. Cranking (sometimes called "motoring") is done by an electric motor such as an ISG (Integrated Starter Generator). When the internal combustion engine 1 cooperates with an electric motor or a motor generator to form a drive source, it is possible to perform cranking by these rotating electric machines. Here, since the admission valve 41 is in the closed state and the EGR valve 33 is in the open state, the exhaust gas in the exhaust passage 15 during cranking is directed toward the branch point Pd downstream of the exhaust passage 15. Is guided to the intake passage 11 via the EGR passage 31 without passing through.
 S205では、内燃エンジン1の回転速度が所定回転速度に達したか否かを判定する。所定回転速度に達した場合は、S206へ進み、達していない場合は、クランキングを継続させ、所定回転速度に達するのを待つ。 In S205, it is determined whether or not the rotation speed of the internal combustion engine 1 has reached a predetermined rotation speed. When the predetermined rotation speed is reached, the process proceeds to S206, and when the predetermined rotation speed is not reached, cranking is continued and the predetermined rotation speed is waited for.
 S206では、アドミッション弁41を開弁(例えば、全開)させる。これにより、空気がアドミッション弁41および接続点Pmを通過して、筒内へ導入されるのが許容される。 In S206, the admission valve 41 is opened (for example, fully opened). As a result, air is allowed to pass through the admission valve 41 and the connection point Pm and be introduced into the cylinder.
 S207では、EGR弁33を閉弁(例えば、全閉)させる。これにより、吸気通路11へのEGRガスの導入が阻止されることから、アドミッション弁41を介する空気の導入が進むのに従い、吸気通路11に占めるガスがEGRガスから空気に置き換えられる。 In S207, the EGR valve 33 is closed (for example, fully closed). As a result, the introduction of the EGR gas into the intake passage 11 is prevented, and as the introduction of air through the admission valve 41 progresses, the gas occupying the intake passage 11 is replaced with air from the EGR gas.
 S208では、吸気遅れ時間が経過したか否かを判定する。吸気遅れ時間とは、アドミッション弁41を開けた後、EGR通路31の接続点Pmから吸気ポートに至るまでの空気の輸送遅れに相当する時間をいい、これが経過したか否かの判定は、EGRガスの輸送遅れ時間ΔTdlyに係る判定と同様に、推定によることも、実測によることも可能である。例えば、単位時間当たりにアドミッション弁41を通過する空気の流量を求め、これを逐次積算するとともに、その積算値である通過体積が吸気通路11の体積に相当する所定体積に達したか否かを判定するのである。吸気遅れ時間が経過した場合は、S209へ進み、経過していない場合は、S208の判定を繰り返してその経過を待つ。 In S208, it is determined whether or not the intake delay time has elapsed. The intake delay time refers to the time corresponding to the air transport delay from the connection point Pm of the EGR passage 31 to the intake port after the admission valve 41 is opened, and it is determined whether or not this has elapsed. Similar to the determination regarding the EGR gas transport delay time ΔTdry, it can be estimated or actually measured. For example, the flow rate of air passing through the admission valve 41 per unit time is obtained, and this is sequentially integrated, and whether or not the passing volume, which is the integrated value, reaches a predetermined volume corresponding to the volume of the intake passage 11. Is determined. If the intake delay time has elapsed, the process proceeds to S209, and if not, the determination of S208 is repeated and the elapse is awaited.
 S209では、燃料カットリカバを実行し、燃料噴射弁14による燃料の供給を再開させて、内燃エンジン1を始動させる。 In S209, the fuel cut recovery is executed, the fuel supply by the fuel injection valve 14 is restarted, and the internal combustion engine 1 is started.
 本実施形態では、エンジンコントローラ1が「内燃エンジンの制御装置」を構成する。そして、図6に示すフローチャートのうち、S101および102の処理が「条件判定部」の機能を実現し、S103およびS105~107の処理が「燃料カット制御部」の機能を実現する。 In the present embodiment, the engine controller 1 constitutes an "internal combustion engine control device". Then, in the flowchart shown in FIG. 6, the processes of S101 and 102 realize the function of the "condition determination unit", and the processes of S103 and S105 to 107 realize the function of the "fuel cut control unit".
 (作用効果の説明)
 本実施形態に係る内燃エンジン1およびその制御装置(エンジンコントローラ101)は、以上の構成を有し、本実施形態により得られる効果について、以下に説明する。
(Explanation of action and effect)
The internal combustion engine 1 and its control device (engine controller 101) according to the present embodiment have the above configurations, and the effects obtained by the present embodiment will be described below.
 第1に、燃料カット条件が成立した場合に、アドミッション弁41を閉じた後も吸気ポートに至るまでのEGRガスの輸送遅れの間、筒内における燃焼を継続させることで、アドミッション弁41を閉じた時点でその下流側にあった空気(酸素)が、シリンダを介して未反応のまま排気通路15に送出され、触媒、特に触媒コンバータ16に流入するのを抑制することが可能となる。 First, when the fuel cut condition is satisfied, the admission valve 41 is continued to burn in the cylinder during the delay in transporting the EGR gas to the intake port even after the admission valve 41 is closed. The air (oxygen) that was on the downstream side at the time of closing is sent out to the exhaust passage 15 without reacting through the cylinder, and it becomes possible to suppress the inflow to the catalyst, particularly the catalytic converter 16. ..
 これにより、触媒に酸化雰囲気が形成され、燃料カット後の再始動に際してNOx(窒素酸化物)の浄化率が低下するのを抑制し、排気性状を改善することができる。さらに、酸素ストレージ状態の解消に要する還元剤の投入量を削減させ、これを通じて燃費の向上を図ることができる。ここで、EGRガスの輸送遅れの間、つまり、燃料を継続させる間に生じたエンジントルクは、ISG等の発電モータにより電力に変換し、電気機械に対する電力の供給に充てたり、バッテリの充填に充てたりすることが可能である。 As a result, an oxidizing atmosphere is formed in the catalyst, and it is possible to suppress a decrease in the purification rate of NOx (nitrogen oxide) at the time of restarting after the fuel is cut, and to improve the exhaust properties. Furthermore, it is possible to reduce the amount of reducing agent input required to eliminate the oxygen storage state, thereby improving fuel efficiency. Here, the engine torque generated during the transportation delay of EGR gas, that is, during the continuation of fuel, is converted into electric power by a power generation motor such as ISG, and is used for supplying electric power to an electric machine or for filling a battery. It is possible to allocate it.
 第2に、EGRガスの輸送遅れに相当する時間(輸送遅れ時間ΔTdly)を測定するかまたは推定し、その時間が経過した後に燃料の供給を停止させ、燃焼を停止させることで、燃焼を過不足なく継続させ、シリンダから空気が未反応のまま排気通路15に送出されるのを、燃料の消費を極力抑えて抑制することができる。 Secondly, the time corresponding to the transport delay of the EGR gas (transport delay time ΔTdry) is measured or estimated, and after that time has elapsed, the fuel supply is stopped and the combustion is stopped, so that the combustion is excessive. It can be continued without any shortage, and the fuel consumption can be suppressed as much as possible to prevent the air from being sent from the cylinder to the exhaust passage 15 without reacting.
 図9は、輸送遅れ時間ΔTdlyを示しており、燃料カット条件が成立する時刻TreqからEGRガスへの置換が完了して、燃料カットを実行する時刻Tcutまでの時間がこれに相当する。本実施形態では、この間、筒内における燃焼を継続させ、エンジントルクを維持しているが、エンジントルクは、この輸送遅れの間も減少させてもよい。図9は、この場合のエンジントルクの変化を、二点鎖線で示している。 FIG. 9 shows the transportation delay time ΔTdry, which corresponds to the time from the time Treq where the fuel cut condition is satisfied to the time Tcut when the replacement with EGR gas is completed and the fuel cut is executed. In the present embodiment, during this period, combustion in the cylinder is continued to maintain the engine torque, but the engine torque may be reduced during this transportation delay. FIG. 9 shows the change in engine torque in this case by a chain double-dashed line.
 第3に、アドミッション弁41を閉じるのに連動させて、EGR弁33の開度を増大させ、EGR通路31の有効断面積を拡大させることで、EGRガスの還流を積極的に促し、輸送遅れ時間ΔTdlyを短縮させ、燃料の供給をより早い時期に停止させることが可能となる。これにより、燃費の更なる向上を図ることができる。 Third, by increasing the opening degree of the EGR valve 33 and expanding the effective cross-sectional area of the EGR passage 31 in conjunction with closing the admission valve 41, the recirculation of the EGR gas is positively promoted and transported. It is possible to shorten the delay time ΔTdry and stop the fuel supply at an earlier stage. As a result, fuel efficiency can be further improved.
 第4に、触媒コンバータ16よりも下流側に分岐点Pdを設定し、触媒コンバータ16を通過した後の排気を、EGRガスとして還流させることで、燃料カットの実行に際し、輸送遅れの間に燃焼を継続させなかった場合の、触媒に対する空気の流入を抑制することが可能となる。これにより、酸化雰囲気の形成によるNOxの浄化率の低下を、より効果的に抑制することができる。 Fourth, by setting a branch point Pd on the downstream side of the catalyst converter 16 and recirculating the exhaust gas after passing through the catalyst converter 16 as EGR gas, combustion is performed during the transportation delay when the fuel is cut. It is possible to suppress the inflow of air into the catalyst when the above is not continued. Thereby, the decrease in the purification rate of NOx due to the formation of the oxidizing atmosphere can be suppressed more effectively.
 さらに、本実施形態では、燃料カットの実行後、エンジントルクを徐々に減少させ、エンジン回転数の減少に勾配を持たせているが、電気モータ等と協働するハイブリッド式の駆動源による場合、特にシリーズハイブリッド式の駆動源による場合は、内燃エンジン1を停止させる際に、エンジントルクを瞬時に減少させ、内燃エンジン1の回転を直ちに停止させるようにしてもよい。図9は、この場合のエンジントルクおよびエンジン回転数の変化を、点線で示している。 Further, in the present embodiment, after the fuel cut is executed, the engine torque is gradually reduced to give a gradient to the decrease in the engine speed. However, in the case of using a hybrid drive source that cooperates with an electric motor or the like. In particular, in the case of a series hybrid type drive source, when the internal combustion engine 1 is stopped, the engine torque may be instantaneously reduced and the rotation of the internal combustion engine 1 may be stopped immediately. In FIG. 9, the changes in the engine torque and the engine speed in this case are shown by dotted lines.
 以上、本発明の実施形態について説明したが、上記実施形態は、本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を、上記実施形態の具体的構成に限定する趣旨ではない。上記実施形態に対し、請求の範囲に記載した事項の範囲内で様々な変更および修正が可能である。 Although the embodiment of the present invention has been described above, the above-described embodiment shows only a part of the application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above-described embodiment. Not the purpose. Various changes and modifications can be made to the above embodiments within the scope of the matters described in the claims.

Claims (7)

  1.  EGRシステムを備え、燃焼後の排気をEGRガスとして筒内に還流させる内燃エンジンの制御方法であって、
     前記内燃エンジンに対する燃料の供給を一時的に停止させる燃料カットを行う燃料カット条件が成立したか否かを判定し、
     前記燃料カット条件が成立した場合に、
     吸気通路のうち、EGR通路の接続点よりも上流側に設置された吸気シャッタ弁を閉じて、前記吸気通路の有効断面積を、前記燃料カット条件の成立前よりも縮小させ、
     前記吸気シャッタ弁を閉じた後、前記接続点から前記内燃エンジンの吸気ポートに至るまでの前記EGRガスの輸送遅れの間、前記筒内における燃焼を継続させる、
    内燃エンジンの制御方法。
    It is a control method for an internal combustion engine equipped with an EGR system and recirculating the exhaust gas after combustion as EGR gas into the cylinder.
    It is determined whether or not the fuel cut condition for performing the fuel cut for temporarily stopping the supply of fuel to the internal combustion engine is satisfied.
    When the above fuel cut condition is satisfied,
    Of the intake passages, the intake shutter valve installed on the upstream side of the connection point of the EGR passage is closed, and the effective cross-sectional area of the intake passage is reduced as compared with that before the fuel cut condition was satisfied.
    After closing the intake shutter valve, combustion in the cylinder is continued during the transportation delay of the EGR gas from the connection point to the intake port of the internal combustion engine.
    Internal combustion engine control method.
  2.  請求項1に記載の内燃エンジンの制御方法であって、
     前記輸送遅れに相当する時間を測定するかまたは推定し、
     測定されまたは推定された時間に亘り、前記筒内における燃焼を継続させ、
     前記測定または推定された時間の経過後、前記燃料の供給を停止させる、
    内燃エンジンの制御方法。
    The method for controlling an internal combustion engine according to claim 1.
    Measure or estimate the time corresponding to the transport delay and
    Continue burning in the cylinder for the measured or estimated time.
    After the lapse of the measured or estimated time, the fuel supply is stopped.
    Internal combustion engine control method.
  3.  請求項1または2に記載の内燃エンジンの制御方法であって、
     前記吸気シャッタ弁は、開度を段階的または連続的に調整可能である、
    内燃エンジンの制御方法。
    The method for controlling an internal combustion engine according to claim 1 or 2.
    The intake shutter valve can adjust the opening degree stepwise or continuously.
    Internal combustion engine control method.
  4.  前記EGRシステムが、前記EGR通路に、前記EGR通路の有効断面積を調整可能に介装されたEGR弁を備える、請求項1~3のいずれか一項に記載の内燃エンジンの制御方法であって、
     前記燃料カット条件が成立した場合に、前記吸気シャッタ弁を閉じるのに連動させて、前記EGR弁の開度を増大させる、
    内燃エンジンの制御方法。
    The method for controlling an internal combustion engine according to any one of claims 1 to 3, wherein the EGR system includes an EGR valve in which the effective cross-sectional area of the EGR passage is adjustablely interposed in the EGR passage. hand,
    When the fuel cut condition is satisfied, the opening degree of the EGR valve is increased in conjunction with closing the intake shutter valve.
    Internal combustion engine control method.
  5.  請求項4に記載の内燃エンジンの制御方法であって、
     前記EGR弁は、開度を段階的または連続的に調整可能である、
    内燃エンジンの制御方法。
    The method for controlling an internal combustion engine according to claim 4.
    The EGR valve can adjust the opening degree stepwise or continuously.
    Internal combustion engine control method.
  6.  請求項1~5のいずれか一項に記載の内燃エンジンの制御方法であって、
     前記内燃エンジンが、排気通路のうち、前記EGR通路の前記排気通路からの分岐点よりも上流側に設置された排気浄化触媒を備える、
    内燃エンジンの制御方法。
    The method for controlling an internal combustion engine according to any one of claims 1 to 5.
    The internal combustion engine includes an exhaust purification catalyst installed in the exhaust passage on the upstream side of the branch point of the EGR passage from the exhaust passage.
    Internal combustion engine control method.
  7.  吸気通路と排気通路とを互いに流体連通可能に接続するEGR通路を有し、前記EGR通路を介し、燃焼後の排気をEGRガスとして筒内に還流可能に構成されたEGRシステムと、
     前記吸気通路のうち、前記EGR通路の接続点よりも上流側に、前記吸気通路の有効断面積を調整可能に設置された吸気シャッタ弁と、
     筒内に燃料を供給可能に配設された燃料噴射弁と、
    を備える内燃エンジンを制御する、内燃エンジンの制御装置であって、
     前記内燃エンジンに対する燃料の供給を一時的に停止させる燃料カットを行う燃料カット条件が成立したか否かを判定する条件判定部と、
     前記燃料カット条件が成立した場合に、前記吸気シャッタ弁および前記燃料噴射弁を制御する燃料カット制御部であって、
     前記吸気シャッタ弁を閉じて、前記吸気通路の有効断面積を、前記燃料カット条件の成立前よりも縮小させ、
     前記吸気シャッタ弁を閉じた後、前記接続点から前記内燃エンジンの吸気ポートに至るまでの前記EGRガスの輸送遅れの間、前記燃料噴射弁を引き続き作動させ、前記筒内における燃焼を継続させる、燃料カット制御部と、
    を備える、内燃エンジンの制御装置。
    An EGR system having an EGR passage that connects an intake passage and an exhaust passage so that fluids can communicate with each other, and an EGR system configured so that exhaust after combustion can be returned to the cylinder as EGR gas through the EGR passage.
    An intake shutter valve, which is installed upstream of the connection point of the EGR passage in the intake passage so that the effective cross-sectional area of the intake passage can be adjusted,
    A fuel injection valve arranged so that fuel can be supplied in the cylinder,
    An internal combustion engine control device that controls an internal combustion engine.
    A condition determination unit for determining whether or not a fuel cut condition for performing a fuel cut for temporarily stopping the supply of fuel to the internal combustion engine is satisfied.
    A fuel cut control unit that controls the intake shutter valve and the fuel injection valve when the fuel cut condition is satisfied.
    By closing the intake shutter valve, the effective cross-sectional area of the intake passage is reduced as compared with that before the fuel cut condition was satisfied.
    After closing the intake shutter valve, the fuel injection valve is continuously operated during the delay in transporting the EGR gas from the connection point to the intake port of the internal combustion engine to continue combustion in the cylinder. Fuel cut control unit and
    A control device for an internal combustion engine.
PCT/IB2019/000646 2019-07-04 2019-07-04 Control method and control device for internal combustion engine WO2021001670A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021529536A JP7287465B2 (en) 2019-07-04 2019-07-04 Control method and control device for internal combustion engine
PCT/IB2019/000646 WO2021001670A1 (en) 2019-07-04 2019-07-04 Control method and control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/000646 WO2021001670A1 (en) 2019-07-04 2019-07-04 Control method and control device for internal combustion engine

Publications (1)

Publication Number Publication Date
WO2021001670A1 true WO2021001670A1 (en) 2021-01-07

Family

ID=74101160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/000646 WO2021001670A1 (en) 2019-07-04 2019-07-04 Control method and control device for internal combustion engine

Country Status (2)

Country Link
JP (1) JP7287465B2 (en)
WO (1) WO2021001670A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209724A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Control device of engine
JP2013177839A (en) * 2012-02-28 2013-09-09 Daihatsu Motor Co Ltd Control device
JP2018141380A (en) * 2017-02-27 2018-09-13 トヨタ自動車株式会社 Control device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209724A (en) * 2008-03-03 2009-09-17 Nissan Motor Co Ltd Control device of engine
JP2013177839A (en) * 2012-02-28 2013-09-09 Daihatsu Motor Co Ltd Control device
JP2018141380A (en) * 2017-02-27 2018-09-13 トヨタ自動車株式会社 Control device for internal combustion engine

Also Published As

Publication number Publication date
JP7287465B2 (en) 2023-06-06
JPWO2021001670A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
JP4325704B2 (en) Exhaust gas purification system for internal combustion engine
US8424295B2 (en) Particulate filter regeneration during engine shutdown
US8438841B2 (en) Particulate filter regeneration in an engine
US8407988B2 (en) Particulate filter regeneration in an engine coupled to an energy conversion device
US8402751B2 (en) Particulate filter regeneration in an engine
US8438840B2 (en) Particulate filter regeneration in an engine
US20130118154A1 (en) Controlling operation of exhaust of an engine including a particulate filter
US20090043437A1 (en) Control method and device for hybrid motor
JP4453602B2 (en) Exhaust gas purification system for internal combustion engine
US20110072796A1 (en) Control of exhaust flow in an engine including a particulate filter
JP2010038147A (en) Engine exhaust emission control system
JP5775509B2 (en) Control device for internal combustion engine
JP2008151064A (en) Control device for internal combustion engine
JP2008106725A (en) Exhaust system of internal combustion engine
US8843259B2 (en) Control apparatus for hybrid vehicle
WO2021001669A1 (en) Method and device for controlling internal combustion engine
JP3558019B2 (en) Abnormality detection device for reducing agent supply device
JP5304609B2 (en) Internal combustion engine
WO2021001670A1 (en) Control method and control device for internal combustion engine
JP2004285947A (en) Exhaust emission control device for internal combustion engine
JP5018974B2 (en) Control device for internal combustion engine
JP2009292246A (en) Stop control device for hybrid vehicle
JP2013160156A (en) Failure determining device of internal combustion engine and vehicle
JP2008280013A (en) Exhaust purification system for internal combustion engine
JP6171941B2 (en) Hybrid car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934372

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529536

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19934372

Country of ref document: EP

Kind code of ref document: A1