WO2021001171A1 - Procédé pour faire fonctionner un dispositif de détection de distance 3d - Google Patents

Procédé pour faire fonctionner un dispositif de détection de distance 3d Download PDF

Info

Publication number
WO2021001171A1
WO2021001171A1 PCT/EP2020/067110 EP2020067110W WO2021001171A1 WO 2021001171 A1 WO2021001171 A1 WO 2021001171A1 EP 2020067110 W EP2020067110 W EP 2020067110W WO 2021001171 A1 WO2021001171 A1 WO 2021001171A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor device
distance sensor
threshold value
measurement points
distance
Prior art date
Application number
PCT/EP2020/067110
Other languages
German (de)
English (en)
Inventor
Simon Bell
Karl Christoph Goedel
Johannes Richter
Holger Maris Gilbergs
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2021001171A1 publication Critical patent/WO2021001171A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4039Means for monitoring or calibrating of parts of a radar system of sensor or antenna obstruction, e.g. dirt- or ice-coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S2007/4975Means for monitoring or calibrating of sensor obstruction by, e.g. dirt- or ice-coating, e.g. by reflection measurement on front-screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4091Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder during normal radar operation

Definitions

  • the invention relates to a method for operating a 3D distance sensor device.
  • the invention also relates to a 3D distance sensor device.
  • the invention also relates to a computer program.
  • the invention also relates to a machine-readable storage medium.
  • DE 199 31 825 A1 discloses a device for measuring visibility, especially for motor vehicles, which has at least one optical transmitting element, at least one optical receiving element and a measurement signal evaluation unit which determines a current visibility from the light reflected at one or more different spatial zones.
  • DE 10 2016 014 549 A1 discloses an autonomous vehicle that contains both a LiDAR sensor and a camera.
  • the LiDAR sensor can work in the range of visible light, in the IR range or another wavelength range. If signs have an IR-reflective print, the IR range can be used.
  • DE 10 2016 014 549 A1 discloses a method for determining the visual range from a vehicle by means of a LiDAR sensor.
  • EP 2 101 193 A1 discloses a safety sensor and a method for the contactless measurement of positions, distances and / or speeds.
  • US Pat. No. 6,362,773 B1 discloses a combination of several sensors or an adapted, complex evaluation of raw sensor data. However, these raw data are not available in many sensor architectures of the central sensor fusion and evaluation unit.
  • the invention creates a method for operating a 3D distance sensor device, comprising the steps:
  • the proposed method advantageously represents a method at the system level, i.e. that an already evaluated 3D point cloud of measuring points is used and raw sensor data is therefore not required.
  • the object is achieved with a 3D distance sensor device which is designed to carry out the proposed method.
  • the object is achieved with a computer program.
  • the object is achieved with a machine-readable storage medium.
  • An advantageous further development of the method is characterized in that measurement points of a geometrically lowest level of the 3D distance sensor device are analyzed, the number of detected measurement points being compared with a defined first threshold value. It is expected that all scan or measurement points of the geometrically lowest level are always available, because a road is arranged in this level, on which the vehicle with the 3D distance sensor device is located, whereby the road is usually only approx. 10m far from the 3D distance sensor device. If this is not the case, appropriate conclusions can be drawn from it.
  • a further advantageous development of the method is characterized in that in the event that the proportion of the detected measurement points is defined below the first threshold value, a cover glass of the 3D distance sensor device is covered. In this case, a cleaning process of the 3D distance sensor device can be triggered, for example, in order to establish the full range of vision.
  • Another advantageous development of the method provides that in the event that the proportion of detected measuring points is defined above the first threshold value, an evaluation of a defined, calibrated distance histogram of the measuring points is carried out, a decay rate of the frequency of the measuring points being determined over the distance .
  • the distance histogram is evaluated in this way in order to be able to make more precise statements about the visual range. For example, reduced visibility due to fog or rain can be determined in the distance histogram.
  • Another advantageous development of the method provides that in the event that the proportion of the detected measuring points is defined below a second threshold value of the decay rate, a defined high visual range of the 3D distance sensor device is detected. This is determined by the fact that the distance histogram slowly declines at a high visibility range.
  • Another advantageous development of the method is characterized in that in the event that the proportion of the detected measuring points is defined below a second threshold value of the decay rate, an evaluation of a total number of the measuring points is carried out.
  • the influence of fog on the visibility is determined, which is particularly irrelevant for short distances, in which case the total number of measurement points is evaluated.
  • Another advantageous embodiment of the method is characterized in that when the total number of measurement points falls below a third threshold value, a defined low visual range of the 3D distance sensor device is determined and, when the third threshold value of the total number of measurement points is exceeded, the 3D distance sensor device is blocked from sight is detected.
  • a third threshold value of the total number of measurement points is exceeded, the 3D distance sensor device is blocked from sight is detected.
  • the distance histogram declines quickly, but there are a large number of measurement points in the 3D point cloud, which can be an indication of a blockage in the view of the 3D sensor device.
  • a further advantageous embodiment of the method is characterized in that a driving function of a vehicle is adapted from the estimated visual range and / or cleaning of the 3D distance sensor device is initiated. As a result, suitable measures can be taken to adapt to the reduced visibility of the 3D distance sensor device.
  • Another advantageous embodiment of the method is characterized in that the method is carried out in normal operation of the 3D distance sensor device. In this way, it is advantageously possible to determine the visual range of the 3D distance sensor device in quasi real time.
  • Another advantageous embodiment of the method is characterized in that the method is carried out within the 3D distance sensor device or on an external computer device. That way one can "Intelligent 3D distance sensor" can be implemented or the computing power required for this can be suitably outsourced.
  • Fig. 1 is a basic flowchart of a proposed method for operating a 3D distance sensor device
  • a core idea of the present invention is in particular to provide an improved method for operating or analyzing a 3D distance sensor device.
  • One advantage of the proposed method is that, for example, a central evaluation unit of a 3D distance sensor can determine or estimate the visual range, with additional sensors advantageously not being required for this.
  • the speed must be adjusted to the current field of vision of the sensors.
  • the range of vision of a sensor can be severely impaired by various atmospheric weather influences such as rain, fog, snowfall, etc.
  • a distinction must be made as to whether the performance of the sensor is based on such atmospheric influences or due to statistically distributed blockages on the sensor cover, such as raindrops, dirt, etc. is impaired.
  • the proposed method also makes it possible to identify situations in which the view of the 3D distance sensor is blocked by one or more objects (e.g. a vehicle parked in a garage) and therefore no statement is made about the current visibility of the 3D distance sensor can be.
  • a 3D point cloud is understood to be a three-dimensional cluster of measurement points that are recorded using a three-dimensional distance sensor (e.g. LiDAR, radar sensor, etc.).
  • a three-dimensional distance sensor e.g. LiDAR, radar sensor, etc.
  • the number of points in the environment detected by the 3D distance sensor is primarily used.
  • the method is described below by way of example for a 3D LiDAR distance sensor arranged on a vehicle, but is advantageously also suitable for improved operation of a radar sensor.
  • the 3D distance sensor device provides a 3D point cloud with a defined number of measurement points in the environment.
  • a step 101 an analysis of the number of points of the measurement points of a geometrically lowest level of the 3D distance sensor device is carried out.
  • the geometrically lowest level of a 3D distance sensor device typically covers a road at a short distance from the vehicle, measurement data provided in this way therefore often also being used to identify open spaces.
  • the short distance means that all measuring points of this plane should be present in the 3D point cloud even if the visibility is limited.
  • This parameter therefore does not represent a measure of the visual range of the 3D distance sensor device, but it does allow, for example, a blockage of vision on the cover of the 3D distance sensor device to be recognized.
  • a step 102 a total number of measuring points of the geometrically lowest level is checked, with the case that the total number of measuring points defines one falls below the first threshold value SW1 defined, it is determined that a blockage of a cover of the 3D distance sensor device is present. For example, this can be caused by a deposit (eg dirt, snow, ice, etc.) on the sensor cover, which is why a cleaning process of the 3D distance sensor device is initiated in this case.
  • a deposit eg dirt, snow, ice, etc.
  • the distance histogram represents a graph that shows the frequency of the measurement points of the 3D point cloud as a function of distance.
  • a suitable mathematical function can be provided for this data, an exponentially decreasing function being selected in the present case, which is characterized by the two parameters amplitude and decay rate.
  • the amplitude is influenced by blockages on the sensor cover of the 3D distance sensor device.
  • the rate of decay is influenced by the atmospheric visibility, since a small visibility only affects the detection of objects that are far away, but not the detection of objects arranged close to the 3D distance sensor device.
  • the decay rate is influenced by the structure of the landscape or by a blockage of the 3D distance sensor device's view by other objects (e.g. a garage, location behind a truck, etc.).
  • the distance histogram allows a value for the visual range of the 3D distance sensor device to be specified based on the decay rate.
  • a step 111 it is checked whether the decay rate of the measuring points of the distance histogram has a certain second threshold value SW2, in which case in the case that this is less than the defined second threshold value SW2 in In a step 112, a defined high visibility range for the 3D distance sensor device is determined.
  • the decay rate of the distance histogram is greater than the second threshold value SW2
  • An analysis of the total number of points of the measuring points of the 3D point cloud is carried out in step 121.
  • a step 122 it is determined that the total number of points mentioned for the measurement points of the 3D point cloud is less than a defined third threshold value SW3, whereby a low visibility range (e.g. due to fog, rain, snowfall, etc.) is determined for the 3D distance sensor device .
  • a low visibility range e.g. due to fog, rain, snowfall, etc.
  • This can be the case, for example, in fog, in which case there is hardly any restriction in the field of view of the 3D sensor device for short distances, but a total number of measuring points can be considerably reduced for greater distances.
  • a step 123 it is established that the named total number of points of the measurement points of the 3D point cloud is greater than the defined third threshold value SW3, in which case a visual blockage of the 3D distance sensor device is established.
  • This situation can exist, for example, when the vehicle equipped with the 3D distance sensor device is parked in front of a wall.
  • the distance histograms are each suitably pre-calibrated for a specific type of 3D distance sensor device, whereby a specific decay rate is assigned to a visual range of the 3D distance sensor device. Due to the large number of different types of 3D sensor devices, it is not possible to specify generally valid numerical values for visibility, distances, numbers of measuring points of the 3D point cloud and threshold values SW1, SW2, SW3.
  • the second threshold value SW2 corresponds to the decay rate or the slope of the curves A, B.
  • the proposed 3D distance sensor device can advantageously be used to detect the environment in highly and fully automated vehicles (level 3-5).
  • the proposed method can preferably be carried out in a defined time pattern of the 3D distance sensor device, quasi in real time (eg with a cycle time of approx. 10 frames / s, ie with approx. 10 Hz) in a background operation. It can be provided that the proposed method is implemented as software running in the 3D distance sensor device. Alternatively, it can also be provided that the software for executing the proposed method runs on an external computer device, which can be arranged in the cloud, for example.
  • Suitable measures can be derived from the determined visibility, e.g. an adaptation of one or more driver assistance functions of the
  • the proposed method is preferably carried out in normal operation of the 3D distance sensor device, in which the 3D distance sensor device is arranged in or on a highly or fully automated vehicle and is used to detect the surroundings when the vehicle is in operation.
  • the 3D distance sensor device is arranged in or on a highly or fully automated vehicle and is used to detect the surroundings when the vehicle is in operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner un dispositif de détection de distance 3D, comprenant les étapes consistant : - à prendre un nombre défini de points de mesure détectés ; - à évaluer les points de mesure détectés à l'aide d'au moins un critère défini et - à estimer une portée visuelle du dispositif de détection de distance 3D à partir des points de mesure évalués.
PCT/EP2020/067110 2019-07-04 2020-06-19 Procédé pour faire fonctionner un dispositif de détection de distance 3d WO2021001171A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019209846.0A DE102019209846A1 (de) 2019-07-04 2019-07-04 Verfahren zum Betreiben einer 3D-Distanzsensorvorrichtung
DE102019209846.0 2019-07-04

Publications (1)

Publication Number Publication Date
WO2021001171A1 true WO2021001171A1 (fr) 2021-01-07

Family

ID=71111440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/067110 WO2021001171A1 (fr) 2019-07-04 2020-06-19 Procédé pour faire fonctionner un dispositif de détection de distance 3d

Country Status (2)

Country Link
DE (1) DE102019209846A1 (fr)
WO (1) WO2021001171A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022005358A1 (fr) * 2020-06-29 2022-01-06 Epiroc Rock Drills Aktiebolag Procédé d'auto-test pour un agencement de capteur de mesure de distance d'une machine de travail
WO2022005357A1 (fr) * 2020-06-29 2022-01-06 Epiroc Rock Drills Aktiebolag Procédé d'auto-test pour un agencement de capteur de mesure de distance d'une machine de travail

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021202878A1 (de) 2021-03-24 2022-09-29 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Reichweitenbestimmung für einen LiDAR-Sensor
DE102021204904A1 (de) 2021-05-14 2022-12-01 Robert Bosch Gesellschaft mit beschränkter Haftung LiDAR-System und Verfahren zum Erkennen einer Verschmutzung eines Strahlengangs eines LiDAR-Systems

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19931825A1 (de) 1999-07-08 2001-01-25 Bosch Gmbh Robert Vorrichtung zur Sichtweitenmessung
DE10055457A1 (de) * 1999-11-10 2001-07-05 Denso Corp Verfahren zur Erkennung einer Radarcharakteristik, eine Vorrichtung zur Erkennung einer Radarcharakteristik, und ein Aufzeichnungsmedium, das Daten zur Erkennung einer Radarcharakteristik aufzeichnet
US6362773B1 (en) 1999-06-24 2002-03-26 Robert Bosch Gmbh Method for determining range of vision
DE102005059902A1 (de) * 2005-12-15 2007-06-28 Robert Bosch Gmbh Verfahren zur Sensorzustandserfassung sowie Abstandsmessvorrichtung und Einparkassistenzsystem
EP2000826A1 (fr) * 2007-06-04 2008-12-10 Audi Ag Procédé de détection de givre d'un capteur radar servant à la détection d'objets d'un système d'assistance du conducteur prévu dans un véhicule automobile
EP2101193A1 (fr) 2008-03-10 2009-09-16 Sick Ag Système de sécurité destiné à la mesure sans contact de positions, de voies et de vitesses
DE102016014549A1 (de) 2016-12-07 2017-07-06 Daimler Ag Verfahren zur Bestimmung der Sichtweite aus einem Fahrzeug
EP3299839A1 (fr) * 2016-09-26 2018-03-28 Continental Automotive GmbH Procédé, unité de surveillance et détecteur radar

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4005919C2 (de) * 1990-02-24 1996-12-19 Eltro Gmbh Verfahren und Anordnung zum Ermitteln der Sichtweite für Autofahrer beim Auftreten von Nebel
DE10149768A1 (de) * 2001-10-09 2003-04-17 Ibeo Automobile Sensor Gmbh Sichtweitenbestimmung
EP2306217B1 (fr) * 2009-09-30 2017-04-19 Sick Ag Détermination d'un environnement
DE102017117162A1 (de) * 2017-07-28 2019-01-31 Sick Ag Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6362773B1 (en) 1999-06-24 2002-03-26 Robert Bosch Gmbh Method for determining range of vision
DE19931825A1 (de) 1999-07-08 2001-01-25 Bosch Gmbh Robert Vorrichtung zur Sichtweitenmessung
DE10055457A1 (de) * 1999-11-10 2001-07-05 Denso Corp Verfahren zur Erkennung einer Radarcharakteristik, eine Vorrichtung zur Erkennung einer Radarcharakteristik, und ein Aufzeichnungsmedium, das Daten zur Erkennung einer Radarcharakteristik aufzeichnet
DE102005059902A1 (de) * 2005-12-15 2007-06-28 Robert Bosch Gmbh Verfahren zur Sensorzustandserfassung sowie Abstandsmessvorrichtung und Einparkassistenzsystem
EP2000826A1 (fr) * 2007-06-04 2008-12-10 Audi Ag Procédé de détection de givre d'un capteur radar servant à la détection d'objets d'un système d'assistance du conducteur prévu dans un véhicule automobile
EP2101193A1 (fr) 2008-03-10 2009-09-16 Sick Ag Système de sécurité destiné à la mesure sans contact de positions, de voies et de vitesses
EP3299839A1 (fr) * 2016-09-26 2018-03-28 Continental Automotive GmbH Procédé, unité de surveillance et détecteur radar
DE102016014549A1 (de) 2016-12-07 2017-07-06 Daimler Ag Verfahren zur Bestimmung der Sichtweite aus einem Fahrzeug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022005358A1 (fr) * 2020-06-29 2022-01-06 Epiroc Rock Drills Aktiebolag Procédé d'auto-test pour un agencement de capteur de mesure de distance d'une machine de travail
WO2022005357A1 (fr) * 2020-06-29 2022-01-06 Epiroc Rock Drills Aktiebolag Procédé d'auto-test pour un agencement de capteur de mesure de distance d'une machine de travail

Also Published As

Publication number Publication date
DE102019209846A1 (de) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2021001171A1 (fr) Procédé pour faire fonctionner un dispositif de détection de distance 3d
EP3121620B1 (fr) Procede de segmentation de donnees d'un capteur 3d, fabrique en presence de nuages d'alcool, destine a l'augmentation de la reconnaissance de situations et la reconnaissance de positions d'obstacles
DE102009009815B4 (de) Verfahren und Vorrichtung zur Erkennung von Parklücken
EP0897545B1 (fr) Procede de determination de l'etat de la route a l'avance pour vehicules a moteur
DE102018104243B3 (de) Verfahren und System zur Erkennung von für ein Fahrzeug geeigneten Parklücken
DE102013202915A1 (de) Verfahren und Vorrichtung zum Vermessen einer Parklücke für ein Einparkassistenzsystem eines Kraftfahrzeugs
WO2019038174A1 (fr) Évitement d'avertissements d'angle mort dûs à des éclaboussures
DE102019205565A1 (de) Verfahren und Vorrichtung zum Bewerten einer Objekthöhe mittels von einem an einem Fahrzeug angebrachten Ultraschallsensor empfangenen Ultraschallsignalen
DE102017217072B4 (de) Verfahren zum Erkennen eines Witterungsverhältnisses in einer Umgebung eines Kraftfahrzeugs sowie Steuervorrichtung und Kraftfahrzeug
WO2008074314A1 (fr) Procédé d'évaluation de la fonctionnalité d'un système détecteur
DE10328814B3 (de) Verfahren und Vorrichtung zur Verbesserung der Erkennung und/oder Wiedererkennung von Objekten in der Bildverarbeitung
EP3663881B1 (fr) Procédé de commande d'un véhicule autonome en fonction des vecteurs de mouvement estimés
DE102014208272A1 (de) Verfahren und Vorrichtung zur Tracking-basierten Sichtweitenschätzung
DE102018119632B4 (de) Verfahren zur Bestimmung der Detektionsreichweite eines Umgebungssensors
DE102018121158A1 (de) Verfahren zum Erfassen von Bodenabtastpunkten und Fahrerunterstützungssystem, das dafür konfiguriert ist, ein derartiges Verfahren auszuführen
DE102018109645A1 (de) Parkplatzgrößenkorrektur
DE102009042476B4 (de) Bestimmung von Zuständen in der Umgebung eines Kraftfahrzeugs mittels einer Stereokamera
EP0710927A2 (fr) Méthode de reconnaissance orientée-objet d'objets mouvants
DE102019210128A1 (de) Verfahren zum Bewerten von erfassten Sensordaten eines Sensors
EP3871006A1 (fr) Système de détection de pluie comprenant un capteur d'environnement servant à détecter point par point un environnement d'un véhicule en particulier avec un capteur d'environnement lidar
EP3289520B1 (fr) Reconnaissance gestuelle améliorée pour un véhicule
DE102019108998A1 (de) Fahrunterstützungsverfahren
DE102021002910B3 (de) Verfahren und Vorrichtung zur Bewertung einer Leistungsfähigkeit mindestens eines Umgebungssensors eines Fahrzeugs sowie Fahrzeug mit einer solchen Vorrichtung
DE102021210738A1 (de) Verfahren zur radargestützten Überwachung eines rückwärtigen Raums
WO2023148053A1 (fr) Procédé et dispositif de détermination de dégradation de visibilité d'un système lidar, programme d'ordinateur et support de stockage lisible par machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20733984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20733984

Country of ref document: EP

Kind code of ref document: A1