WO2021000809A1 - 利用激光slam在长走廊建图的方法、装置、系统、存储介质 - Google Patents

利用激光slam在长走廊建图的方法、装置、系统、存储介质 Download PDF

Info

Publication number
WO2021000809A1
WO2021000809A1 PCT/CN2020/098684 CN2020098684W WO2021000809A1 WO 2021000809 A1 WO2021000809 A1 WO 2021000809A1 CN 2020098684 W CN2020098684 W CN 2020098684W WO 2021000809 A1 WO2021000809 A1 WO 2021000809A1
Authority
WO
WIPO (PCT)
Prior art keywords
long corridor
corridor environment
mobile robot
lidar
environment
Prior art date
Application number
PCT/CN2020/098684
Other languages
English (en)
French (fr)
Inventor
杨勇
吴泽晓
胡志远
Original Assignee
深圳市杉川机器人有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市杉川机器人有限公司 filed Critical 深圳市杉川机器人有限公司
Publication of WO2021000809A1 publication Critical patent/WO2021000809A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present disclosure relates to the field of navigation technology, and in particular to a method, device, system, and storage medium for building maps in long corridors by using laser SLAM.
  • SLAM Simultaneous Localization And Mapping
  • the traditional SLAM map construction process is mainly: the vehicle collects observation data of the surrounding environment (such as photographed images or point cloud data) through on-board sensors (such as cameras or lidar) to track and match the collected observation data ; According to the matching relationship between the observation data, the pose movement information corresponding to the on-board sensor is calculated, and then the vehicle itself can be positioned, and an incremental map can be constructed based on the vehicle positioning information.
  • the current SLAM technology for mobile robots based on 2D lidar does not solve the problem of positioning and mapping of mobile robots in long corridors or long passages.
  • the present disclosure proposes a method, device, system and storage medium for building maps in long corridors using laser SLAM, aiming to solve the above-mentioned problems, and aiming to apply to mobile robots to solve the current technology positioning errors or mapping confusion And other issues.
  • an object of the present disclosure is to provide a method for building maps in a long corridor environment by using laser SLAM technology. This method can flexibly and effectively solve the problems of positioning errors or confusion of maps in the current technology.
  • Another purpose of the present disclosure is to provide a device with the function of using the laser SLAM technology to create a map in a long corridor environment, which can realize the above-mentioned method of using the laser SLAM technology to create a map in a long corridor environment and achieve the same effect of the method.
  • the third purpose of the present disclosure is to provide a system with the function of using laser SLAM technology to create maps in a long corridor environment, which can realize the above-mentioned method of using laser SLAM technology to create maps in a long corridor environment and achieve the same effect of the method.
  • the fourth purpose of the present disclosure is to propose a non-transitory computer-readable storage medium on which a computer program is stored.
  • a method of using laser SLAM technology to build maps in a long corridor environment including the following steps:
  • Step S1 obtain the point cloud data of the lidar
  • Step S2 extract line segments from the point cloud data, determine whether it is a long corridor environment based on the extracted line segments, if it is determined to be a long corridor environment, perform step S3, if not, repeat steps S1-S2;
  • Step S3 fusing the predicted current robot position with the heading obtained after matching the lidar scan to obtain the fused robot pose
  • Step S4 using the fused robot pose as the pose for SLAM real-time positioning to realize positioning and map construction in a long corridor environment.
  • step S1 further includes that the lidar is installed on a mobile robot.
  • step S1 also includes using a line extraction algorithm to extract point cloud data obtained by lidar.
  • a further technical solution is that the mobile robot carrying the lidar executes step S2, and the mobile robot uses a split and merge algorithm and a clustering algorithm to extract line segments.
  • step S2 further includes determining whether the mobile robot is located in a long corridor environment according to the line segment;
  • step S3 If the line segments are all parallel to each other and not all collinear, it is determined that the mobile robot has entered the long corridor environment and step S3 is executed;
  • step S1 is executed.
  • step S3 further includes that the fusion pose is the pose of the mobile robot carrying lidar.
  • a further technical solution is that the mobile robot carrying the lidar executes the step S4 to realize the mobile robot working in a long corridor environment.
  • the present disclosure also discloses a device with the function of using laser SLAM technology to build maps in a long corridor environment, including a mobile robot, the mobile robot is installed with a lidar, the mobile robot includes a memory, a processor and stored in the memory A mapping program that can be run on the processor, wherein the mapping program is executed by the processor to implement the method for mapping in a long corridor environment using laser SLAM technology as described in any one of the above .
  • a system with the function of using laser SLAM technology to create maps in a long corridor environment including a server, a mobile device with a lidar data connection with the server; wherein, the server includes a memory, a processor and stored in the memory
  • a non-transitory computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method for building a map in a long corridor environment using laser SLAM technology as described above is realized.
  • the beneficial effect of the present disclosure is that the method of the present disclosure can enable mobile robots based on lidar to achieve high-precision positioning and mapping in a long corridor or long passage environment, without adding other sensors.
  • the method of the present disclosure can enable mobile robots based on lidar to achieve high-precision positioning and mapping in a long corridor or long passage environment, without adding other sensors.
  • only laser radar, odometer and IMU can realize high-precision laser SLAM technology for mobile robots in long corridors or long passage environments, which overcomes the traditional short-range 2D laser SLAM positioning errors in long corridors or long passage environments. Or the problem of messy mapping, which can improve the user experience.
  • FIG. 1 is a schematic block diagram of the process of a method for building a map in a long corridor environment by using laser SLAM technology according to the present disclosure
  • Fig. 2 is a schematic flow chart of the principle of the flowchart of Fig. 1.
  • first or second is only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, a feature defined with “first” or “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected” or “fixed” shall be interpreted broadly, for example, it may be connected or detachable. Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction relationship between two elements.
  • installed shall be interpreted broadly, for example, it may be connected or detachable. Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two elements or the interaction relationship between two elements.
  • the "above” or “below” of the first feature of the second feature may include the first and second features in direct contact, or may include the first and second features Not in direct contact but through other features between them.
  • “above”, “above” and “above” the second feature of the first feature include the first feature being directly above and obliquely above the second feature, or it simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” the first feature of the second feature include the first feature directly below and obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the method flow chart shown in FIG. 1 is a specific embodiment of a method for building a map in a long corridor environment by using laser SLAM technology in the present disclosure, including the following steps:
  • Step S1 Obtain the point cloud data of the lidar; specifically, this step can be applied to extract data from the working environment of the mobile robot;
  • Step S2 extract line segments from the point cloud data, determine whether it is a long corridor environment based on the extracted line segments, if it is determined to be a long corridor environment, perform step S3, if not, repeat steps S1-S2;
  • Step S3 fusing the predicted current robot position with the heading obtained after matching the lidar scan to obtain the fused robot pose
  • Step S4 using the fused robot pose as the pose for SLAM real-time positioning to realize positioning and map construction in a long corridor environment.
  • step S1 further includes that the lidar is installed on a mobile robot.
  • the step S1 further includes using a line extraction algorithm to extract the point cloud data obtained by the lidar.
  • the mobile robot carrying the lidar performs step S2, and the mobile robot uses the split and merge algorithm and the clustering algorithm to extract line segments.
  • the line segment may be a A collection of several lines.
  • the step S2 further includes determining whether the mobile robot is located in a long corridor environment according to the line segment;
  • step S3 If the line segments are all parallel to each other and not all collinear, it is determined that the mobile robot has entered the long corridor environment and step S3 is executed;
  • step S1 is executed.
  • the step S3 further includes that the fusion pose is the pose of the mobile robot carrying the lidar.
  • the mobile robot carrying the lidar executes the step S4, so that the mobile robot can work in a long corridor environment.
  • the present invention is the principle flow of the mapping method of the invention:
  • the machine When the machine just enters the long corridor or long passage environment, it uses the line-up algorithm to extract the lidar data as the condition for identifying the long corridor or long passage environment.
  • the predicted x, y position (mobile robot position) and the heading fusion after the lidar matching are used as the pose of SLAM real-time positioning, so as to realize the mobile robot in the long corridor or long passage environment
  • SLAM real-time positioning
  • the present disclosure also discloses a device with the function of using laser SLAM technology to build maps in a long corridor environment, including a mobile robot, the mobile robot is installed with a lidar, the mobile robot includes a memory, a processor and stored in the memory A mapping program that can be run on the processor, wherein the mapping program is executed by the processor to implement the method for mapping in a long corridor environment using laser SLAM technology as described in any one of the above .
  • the memory can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions.
  • the type of dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM), or other optical disk storage, optical disc Storage (including compact discs, laser discs, optical discs, digital versatile discs or Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by Any other medium accessed by the computer, but not limited to this.
  • the memory can exist independently and is connected to the processor through a communication bus.
  • the memory can also be integrated with the processor.
  • a system with the function of using laser SLAM technology to create maps in a long corridor environment including a server, a mobile device with a lidar data connection with the server; wherein, the server includes a memory, a processor and stored in the memory
  • the memory can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions.
  • the type of dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM), or other optical disk storage, optical disc Storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by Any other medium accessed by the computer, but not limited to this.
  • the memory can exist independently and is connected to the processor through a communication bus.
  • the memory can also be integrated with the processor.
  • a non-transitory computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method for building a map in a long corridor environment using laser SLAM technology as described above is realized.
  • the storage medium may be an internal storage unit of the aforementioned server, such as a hard disk or memory of the server.
  • the storage medium may also be an external storage device of the device, such as a plug-in hard disk equipped on the device, a Smart Media Card (SMC), a Secure Digital (SD) card, and a flash memory card. (Flash Card) etc.
  • the storage medium may also include both an internal storage unit of the device and an external storage device.
  • using the method of the present disclosure can enable mobile robots based on lidar to achieve high-precision positioning and mapping in long corridors or long passages. Without adding other sensors, only lidar and mileage can be used.
  • the high-precision laser SLAM technology of mobile robots in long corridors or long passages can be realized by measuring and IMU, which overcomes the traditional short-range 2D laser SLAM in long corridors or long passages. Improve the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种利用激光SLAM在长走廊建图的方法、装置、系统和存储介质,该方法包括:步骤S1,获取激光雷达的点云数据;步骤S2,从点云数据中提取出线段,根据提取出的线段判断是否为长走廊环境,若判断为长走廊环境则执行步骤S3,若否则重复执行步骤S1-S2;步骤S3,将预测的当前机器人位置与激光雷达扫描匹配后获取的航向相融合,获得融合后的机器人位姿;步骤S4,利用融合后的机器人位姿作为SLAM实时定位的位姿,实现在长走廊环境中定位与地图构建。

Description

利用激光SLAM在长走廊建图的方法、装置、系统、存储介质
相关申请的交叉引用
本公开要求于2019年07月03日提交中国专利局的申请号为CN201910595880.4、名称为“利用激光SLAM在长走廊建图的方法、装置、系统、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及导航技术领域,尤其涉及一种利用激光SLAM在长走廊建图的方法、装置、系统和存储介质。
背景技术
近年来,同步定位与建图(Simultaneous Localization And Mapping,SLAM)技术越来越多地应用于自动驾驶汽车领域,主要用于解决车辆在未知环境运动时的定位与地图构建问题。其中,传统的SLAM的地图构建过程主要为:车辆通过车载传感器(比如相机或激光雷达)采集周围环境的观测数据(比如拍摄图像或点云数据),以对采集到的观测数据进行跟踪与匹配;根据观测数据之间的匹配关系,计算出车载传感器对应的位姿运动信息,进而可以对车辆自身进行定位,并基于车辆定位信息构建增量式地图。
实践中发现,当车辆处于视觉特征贫乏(比如地下白墙道路)或者环境较为苛刻(比如雨天或雨刷遮挡)的条件时,在SLAM建图过程中经常出现SLAM跟踪丢失的情况,导致无法构建完整的SLAM地图。
基于上述原因,目前的基于2D激光雷达的移动机器人SLAM技术,并没有很好的解决移动机器人在长走廊或长通道环境中的定位和建图问题。
基于上述原因本公开提出了利用激光SLAM在长走廊建图的方法、装置、系统和存储介质,旨在解决上述存在的问题,目的应用于移动机器人解决目前技术中的定位出现错误或建图错乱等问题。
发明内容
为了满足上述要求,本公开的一个目的在于提供一种利用激光SLAM技术在长走廊环境建图的方法,本方法能灵活且有效地解决目前技术中的定位出现错误或建图错乱等问题。
本公开的另一个目的在于提出一种具备利用激光SLAM技术在长走廊环境建图功能的装置,能实现上述利用激光SLAM技术在长走廊环境建图的方法,达到该方法同样的效果。
本公开的第三个目的在于提出一种具备利用激光SLAM技术在长走廊环境建图功能的系统,能实现上述利用激光SLAM技术在长走廊环境建图的方法,达到该方法同样的效果。
本公开的第四个目的在于提出一种非临时性计算机可读存储介质,其上存储有计算机 程序。
为了实现上述目的,本公开采用以下技术方案:
一种利用激光SLAM技术在长走廊环境建图的方法,包括以下步骤:
步骤S1,获取激光雷达的点云数据;
步骤S2,从所述点云数据中提取出线段,根据提取出的线段判断是否为长走廊环境,若判断为长走廊环境则执行步骤S3,若否则重复执行步骤S1-S2;
步骤S3,将预测的当前机器人位置与激光雷达扫描匹配后获取的航向相融合,获得融合后的机器人位姿;
步骤S4,利用所述融合后的机器人位姿作为SLAM实时定位的位姿,实现在长走廊环境中定位与地图构建。
进一步技术方案为,其特征在于,所述步骤S1还包括,所述激光雷达安装于移动机器人。
进一步技术方案为,所述步骤S1还包括,运用提线算法提取激光雷达获得的点云数据。
进一步技术方案为,承载有所述激光雷达的移动机器人执行步骤S2,所述移动机器人运用分裂合并算法与聚类算法提取出线段。
进一步技术方案为,所述步骤S2还包括,根据所述线段判断移动机器人是否位于长走廊环境;
若所述线段均相互平行并不全共线,则判断移动机器人已进入长走廊环境并执行步骤S3;
若所述线段存在任意两条不平行的线段,则判断移动机器人未进入长走廊环境并执行步骤S1。
进一步技术方案为,所述步骤S3还包括,所述融合位姿为承载激光雷达的移动机器人位姿。
进一步技术方案为,承载有所述激光雷达的移动机器人执行所述步骤S4,实现移动机器人在长走廊环境中工作。
本公开还公开了一种具备利用激光SLAM技术在长走廊环境建图功能的装置,包括移动机器人,所述移动机器人安装有激光雷达,所述移动机器人包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的建图程序,其中,所述建图程序被所述处理器执行时实现如上述任一项所述的利用激光SLAM技术在长走廊环境建图的方法。
一种具备利用激光SLAM技术在长走廊环境建图功能的系统,包括服务器,与服务器数据连接并且具有激光雷达的可移动式设备;其中,所述服务器包括存储器、处理器及存 储在所述存储器上并可在所述处理器上运行的建图程序,所述建图程序被所述处理器执行时实现如上述所述的利用激光SLAM技术在长走廊环境建图方法。
一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述所述的利用激光SLAM技术在长走廊环境建图方法。
相比于现有技术,本公开的有益效果在于:采用本公开的方法能够使基于激光雷达的移动机器人在长走廊或长通道环境中,实现高精度定位与建图,在不增加其他传感器的条件下,仅用激光雷达、里程计和IMU就能实现移动机器人在长走廊或长通道环境中高精度的激光SLAM技术,克服了传统的短量程2D激光SLAM在长走廊或长通道环境中定位错或建图乱的难题,很好地提升用户体验。
下面结合附图和具体实施例对本公开作进一步描述。
附图说明
图1是本公开一种利用激光SLAM技术在长走廊环境建图的方法的流程方框示意图;
图2是图1流程图的原理流程示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”或“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”或“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”或“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”或“固定”等术语应做广义理解,例如,可以是连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具 体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不应理解为必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行接合和组合。
如图1所示的方法流程图,为本公开一种利用激光SLAM技术在长走廊环境建图的方法的一个具体实施例,包括以下步骤:
步骤S1,获取激光雷达的点云数据;具体地,该步骤可运用于从移动机器人工作的环境中提取数据;
步骤S2,从所述点云数据中提取出线段,根据提取出的线段判断是否为长走廊环境,若判断为长走廊环境则执行步骤S3,若否则重复执行步骤S1-S2;
步骤S3,将预测的当前机器人位置与激光雷达扫描匹配后获取的航向相融合,获得融合后的机器人位姿;
步骤S4,利用所述融合后的机器人位姿作为SLAM实时定位的位姿,实现在长走廊环境中定位与地图构建。
进一步技术方案为,其特征在于,所述步骤S1还包括,所述激光雷达安装于移动机器人。
如图1所示的实施例中,所述步骤S1还包括,运用提线算法提取激光雷达获得的点云数据。
在其他实施例中,还可以根据本公开方法的步骤S1,运用其他有效方法获得点云数据。
如图1所示的实施例中,承载有所述激光雷达的移动机器人执行步骤S2,所述移动机器人运用分裂合并算法与聚类算法提取出线段,具体地,所述线段可为一个包括有若干线条的集合。
如图1所示的实施例中,所述步骤S2还包括,根据所述线段判断移动机器人是否位于长走廊环境;
若所述线段均相互平行并不全共线,则判断移动机器人已进入长走廊环境并执行步骤S3;
若所述线段存在任意两条不平行的线段,则判断移动机器人未进入长走廊环境并执行步骤S1。
在其他实施例中,还可以使用其他具有数据处理功能的设备与激光雷达相匹配以实现步骤S1-S2。
如图1所示的实施例中,所述步骤S3还包括,所述融合位姿为承载激光雷达的移动机器人位姿。
如图1所示的实施例中,承载有所述激光雷达的移动机器人执行所述步骤S4,实现移动机器人在长走廊环境中工作。
如图2所示的实施例中,本为发明建图方法的原理流程:
当机器在刚刚进入长走廊或长通道环境时,运用提线算法,提取激光雷达数据作为识别长走廊或长通道环境的条件。
从激光雷达的点云数据中运用分裂合并算法和聚类算法提取出线段,从提取出来的线段中判断它们的空间位置关系,如果提取出来的线段都是平行或者共线的,那么认为机器人进入了长走廊环境。
当识别出长走廊或长通道环境后,用预测的x,y位置(移动机器人位置)和激光雷达匹配后的航向融合作为SLAM实时定位的位姿,从而实现移动机器人在长走廊或长通道环境中高精度的定位与地图构建,让移动机器人在长走廊或长通道环境中正常工作。
本公开还公开了一种具备利用激光SLAM技术在长走廊环境建图功能的装置,包括移动机器人,所述移动机器人安装有激光雷达,所述移动机器人包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的建图程序,其中,所述建图程序被所述处理器执行时实现如上述任一项所述的利用激光SLAM技术在长走廊环境建图的方法。
其中,存储器可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟或蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者能够用于携带或存储具有 指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器可以是独立存在,通过通信总线与处理器相连接。存储器也可以和处理器集成在一起。
一种具备利用激光SLAM技术在长走廊环境建图功能的系统,包括服务器,与服务器数据连接并且具有激光雷达的可移动式设备;其中,所述服务器包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的建图程序,所述建图程序被所述处理器执行时实现如上述所述的利用激光SLAM技术在长走廊环境建图方法。
其中,存储器可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储器可以是独立存在,通过通信总线与处理器相连接。存储器也可以和处理器集成在一起。
一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述所述的利用激光SLAM技术在长走廊环境建图方法。
其中,所述存储介质可以是前述服务器的内部存储单元,例如服务器的硬盘或内存。所述存储介质也可以是所述设备的外部存储设备,例如所述设备上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储介质还可以既包括所述设备的内部存储单元也包括外部存储设备。
综上所述,采用本公开的方法能够使基于激光雷达的移动机器人在长走廊或长通道环境中,实现高精度定位与建图,在不增加其他传感器的条件下,仅用激光雷达、里程计和IMU就能实现移动机器人在长走廊或长通道环境中高精度的激光SLAM技术,克服了传统的短量程2D激光SLAM在长走廊或长通道环境中定位错或建图乱的难题,很好地提升用户体验。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其他各种相应的改变以及形变,而所有的这些改变以及形变应该属于本公开权利要求的保护范围之内。

Claims (10)

  1. 一种利用激光SLAM技术在长走廊环境建图的方法,其特征在于,包括以下步骤:
    步骤S1,获取激光雷达的点云数据;
    步骤S2,从所述点云数据中提取出线段,根据提取出的线段判断是否为长走廊环境,若判断为长走廊环境则执行步骤S3,若否则重复执行步骤S1-S2;
    步骤S3,将预测的当前机器人位置与激光雷达扫描匹配后获取的航向相融合,获得融合后的机器人位姿;
    步骤S4,利用所述融合后的机器人位姿作为SLAM实时定位的位姿,实现在长走廊环境中定位与地图构建。
  2. 根据权利要求1所述的一种利用激光SLAM技术在长走廊环境建图的方法,其特征在于,所述步骤S1还包括,所述激光雷达安装于移动机器人。
  3. 根据权利要求1所述的一种利用激光SLAM技术在长走廊环境建图的方法,其特征在于,所述步骤S1还包括,运用提线算法提取激光雷达获得的点云数据。
  4. 根据权利要求1所述的一种利用激光SLAM技术在长走廊环境建图的方法,其特征在于,承载有所述激光雷达的移动机器人执行步骤S2,所述移动机器人运用分裂合并算法与聚类算法提取出线段。
  5. 根据权利要求4所述的一种利用激光SLAM技术在长走廊环境建图的方法,其特征在于,所述步骤S2还包括,根据所述线段判断移动机器人是否位于长走廊环境;
    若所述线段均相互平行并不全共线,则判断移动机器人已进入长走廊环境并执行步骤S3;
    若所述线段存在任意两条不平行的线段,则判断移动机器人未进入长走廊环境并执行步骤S1。
  6. 根据权利要求1所述的一种利用激光SLAM技术在长走廊环境建图的方法,其特征在于,所述步骤S3还包括,所述融合位姿为承载激光雷达的移动机器人位姿。
  7. 根据权利要求1所述的一种利用激光SLAM技术在长走廊环境建图的方法,其特征在于,承载有所述激光雷达的移动机器人执行所述步骤S4,实现移动机器人在长走廊环境中工作。
  8. 一种具备利用激光SLAM技术在长走廊环境建图功能的装置,其特征在于,包括移动机器人,所述移动机器人安装有激光雷达,所述移动机器人包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的建图程序,其中,所述建图程序被所述处理器执行时实现如权利要求1-7中任一项所述的利用激光SLAM技术在长走廊环境建图的方法。
  9. 一种具备利用激光SLAM技术在长走廊环境建图功能的系统,其特征在于,包括服务器,与服务器数据连接并且具有激光雷达的可移动式设备;其中,所述服务器包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的建图程序,所述建图程序被所述处理器执行时实现如权利要求1所述的利用激光SLAM技术在长走廊环境建图方法。
  10. 一种非临时性计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如权利要求1所述的利用激光SLAM技术在长走廊环境建图方法。
PCT/CN2020/098684 2019-07-03 2020-06-29 利用激光slam在长走廊建图的方法、装置、系统、存储介质 WO2021000809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910595880.4 2019-07-03
CN201910595880.4A CN110333495A (zh) 2019-07-03 2019-07-03 利用激光slam在长走廊建图的方法、装置、系统、存储介质

Publications (1)

Publication Number Publication Date
WO2021000809A1 true WO2021000809A1 (zh) 2021-01-07

Family

ID=68143917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098684 WO2021000809A1 (zh) 2019-07-03 2020-06-29 利用激光slam在长走廊建图的方法、装置、系统、存储介质

Country Status (2)

Country Link
CN (1) CN110333495A (zh)
WO (1) WO2021000809A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218384A (zh) * 2021-05-19 2021-08-06 中国计量大学 一种基于激光slam的室内agv自适应定位系统
CN113310484A (zh) * 2021-05-28 2021-08-27 杭州艾米机器人有限公司 一种移动机器人定位方法和系统

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110333495A (zh) * 2019-07-03 2019-10-15 深圳市杉川机器人有限公司 利用激光slam在长走廊建图的方法、装置、系统、存储介质
CN110716568A (zh) * 2019-10-30 2020-01-21 深圳市银星智能科技股份有限公司 一种摄像控制系统、方法及移动机器人
CN111240331A (zh) * 2020-01-17 2020-06-05 仲恺农业工程学院 基于激光雷达和里程计slam的智能小车定位导航方法及系统
CN111398971B (zh) * 2020-03-09 2022-08-16 惠州拓邦电气技术有限公司 机器人的定位方法、装置、机器人以及存储介质
CN111402332B (zh) * 2020-03-10 2023-08-18 兰剑智能科技股份有限公司 基于slam的agv复合建图与导航定位方法及系统
CN113475976B (zh) * 2020-03-16 2022-07-15 珠海格力电器股份有限公司 机器人可通行区域确定方法、装置、存储介质及机器人
CN112539756B (zh) * 2020-11-30 2023-06-20 深圳银星智能集团股份有限公司 一种长通道识别方法及机器人
CN113238557B (zh) * 2021-05-17 2024-05-07 珠海一微半导体股份有限公司 一种建图异常的识别及恢复方法、计算机可读存储介质和移动机器人
CN113298875B (zh) * 2021-07-28 2021-10-15 浙江华睿科技股份有限公司 激光定位数据的校验方法、装置、电子设备及存储介质
CN114419187B (zh) * 2021-12-23 2023-02-24 北京百度网讯科技有限公司 地图构建方法、装置、电子设备和可读存储介质
CN115561736B (zh) * 2022-10-25 2023-10-13 山东莱恩光电科技股份有限公司 一种激光雷达免维护护罩及雷达

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914068A (zh) * 2013-01-07 2014-07-09 中国人民解放军第二炮兵工程大学 一种基于栅格地图的服务机器人自主导航方法
CN107167148A (zh) * 2017-05-24 2017-09-15 安科机器人有限公司 同步定位与地图构建方法和设备
CN107991680A (zh) * 2017-11-21 2018-05-04 南京航空航天大学 动态环境下基于激光雷达的slam方法
CN108332758A (zh) * 2018-01-26 2018-07-27 上海思岚科技有限公司 一种移动机器人的走廊识别方法及装置
WO2018142395A1 (en) * 2017-01-31 2018-08-09 Arbe Robotics Ltd A radar-based system and method for real-time simultaneous localization and mapping
CN108732584A (zh) * 2017-04-17 2018-11-02 百度在线网络技术(北京)有限公司 用于更新地图的方法和装置
CN109358340A (zh) * 2018-08-27 2019-02-19 广州大学 一种基于激光雷达的agv室内地图构建方法及系统
CN110333495A (zh) * 2019-07-03 2019-10-15 深圳市杉川机器人有限公司 利用激光slam在长走廊建图的方法、装置、系统、存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016138567A1 (en) * 2015-03-05 2016-09-09 Commonwealth Scientific And Industrial Research Organisation Structure modelling
CN109345574B (zh) * 2018-08-31 2020-10-09 西安电子科技大学 基于语义点云配准的激光雷达三维建图方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103914068A (zh) * 2013-01-07 2014-07-09 中国人民解放军第二炮兵工程大学 一种基于栅格地图的服务机器人自主导航方法
WO2018142395A1 (en) * 2017-01-31 2018-08-09 Arbe Robotics Ltd A radar-based system and method for real-time simultaneous localization and mapping
CN108732584A (zh) * 2017-04-17 2018-11-02 百度在线网络技术(北京)有限公司 用于更新地图的方法和装置
CN107167148A (zh) * 2017-05-24 2017-09-15 安科机器人有限公司 同步定位与地图构建方法和设备
CN107991680A (zh) * 2017-11-21 2018-05-04 南京航空航天大学 动态环境下基于激光雷达的slam方法
CN108332758A (zh) * 2018-01-26 2018-07-27 上海思岚科技有限公司 一种移动机器人的走廊识别方法及装置
CN109358340A (zh) * 2018-08-27 2019-02-19 广州大学 一种基于激光雷达的agv室内地图构建方法及系统
CN110333495A (zh) * 2019-07-03 2019-10-15 深圳市杉川机器人有限公司 利用激光slam在长走廊建图的方法、装置、系统、存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113218384A (zh) * 2021-05-19 2021-08-06 中国计量大学 一种基于激光slam的室内agv自适应定位系统
CN113310484A (zh) * 2021-05-28 2021-08-27 杭州艾米机器人有限公司 一种移动机器人定位方法和系统

Also Published As

Publication number Publication date
CN110333495A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
WO2021000809A1 (zh) 利用激光slam在长走廊建图的方法、装置、系统、存储介质
EP3505869B1 (en) Method, apparatus, and computer readable storage medium for updating electronic map
CN108303103B (zh) 目标车道的确定方法和装置
CN112650255B (zh) 基于视觉与激光雷达信息融合的机器人定位导航方法
CN108303721B (zh) 一种车辆定位方法及系统
KR20210082204A (ko) 지도 생성 방법, 운전 제어 방법, 장치, 전자 기기 및 시스템
WO2020052530A1 (zh) 一种图像处理方法、装置以及相关设备
CN108230379A (zh) 用于融合点云数据的方法和装置
Brenner Extraction of features from mobile laser scanning data for future driver assistance systems
CN107430815B (zh) 用于显示停车区的方法和系统
CN109931945B (zh) Ar导航方法、装置、设备和存储介质
KR20190082061A (ko) 전자 지도 중의 교차로를 인식하기 위한 방법 및 장치
US20130010074A1 (en) Measurement apparatus, measurement method, and feature identification apparatus
CN110146910A (zh) 一种基于gps与激光雷达数据融合的定位方法及装置
JP7245084B2 (ja) 自動運転システム
JP4978615B2 (ja) 対象特定装置
JP2009053059A (ja) 対象特定装置、対象特定方法および対象特定プログラム
US11846520B2 (en) Method and device for determining a vehicle position
CN111768489B (zh) 一种室内导航地图构建方法和系统
CN105324729A (zh) 用于模型化车辆的周围环境的方法
CN105116886A (zh) 一种机器人自主行走的方法
CN116026315B (zh) 一种基于多传感器融合的通风管道场景建模与机器人定位方法
CN112700486A (zh) 对图像中路面车道线的深度进行估计的方法及装置
CN113483771A (zh) 实景地图的生成方法、装置及系统
EP2828620B1 (en) Generating navigation data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20835210

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20835210

Country of ref document: EP

Kind code of ref document: A1