WO2021000670A1 - 一种制备可以实现任意变化的双级标准电流互感器的方法 - Google Patents

一种制备可以实现任意变化的双级标准电流互感器的方法 Download PDF

Info

Publication number
WO2021000670A1
WO2021000670A1 PCT/CN2020/092798 CN2020092798W WO2021000670A1 WO 2021000670 A1 WO2021000670 A1 WO 2021000670A1 CN 2020092798 W CN2020092798 W CN 2020092798W WO 2021000670 A1 WO2021000670 A1 WO 2021000670A1
Authority
WO
WIPO (PCT)
Prior art keywords
turns
windings
winding
primary
current transformer
Prior art date
Application number
PCT/CN2020/092798
Other languages
English (en)
French (fr)
Inventor
顾红波
徐新生
姚志超
Original Assignee
南京丹迪克电力仪表有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京丹迪克电力仪表有限公司 filed Critical 南京丹迪克电力仪表有限公司
Publication of WO2021000670A1 publication Critical patent/WO2021000670A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/20Instruments transformers
    • H01F38/22Instruments transformers for single phase ac
    • H01F38/28Current transformers
    • H01F38/30Constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/10Connecting leads to windings

Definitions

  • the invention relates to the technical field of current transformers, in particular to a method for preparing a two-stage standard current transformer that can realize arbitrary changes.
  • Miniature measuring current transformers are installed in a large number of electrical measuring equipment such as electric energy meters, current transmitters, and relay protection devices.
  • the production volume is huge.
  • the production value of micro current transformers of a company in Hebei in 2017 was about 240 million yuan, and about 53 million micro current transformers were manufactured. This is only the capacity of a transformer manufacturer used in the electric energy meter industry.
  • the manufacturing volume of miniature current transformers nationwide is huge. Since there is no uniform industry standard for miniature current transformers, the specifications of precision current transformers set and manufactured by various manufacturers are complex, and the current ratios vary greatly, such as 1A/3.3mA, 1A/10mA, 1A/2.5mA, 1A/1mA and so on. Some of them are customized specifications, so how to detect these miniature current transformers or even current transformers with unconventional ratios is a technical problem for miniature current transformer manufacturers, electric energy meter manufacturers or other demanding units.
  • the primary current of conventional two-stage standard current transformers are: 0.6A, 1A, 1.5A, 2.5A, 5(4)A, 3A, 6A, 7.5A, 10(8)A, 15A, 20A, 30A, 60( 50) A.
  • the secondary currents of conventional two-level standard current transformers are: 1mA, 2mA, 1.5mA, 3mA, 2.5mA, 5mA, 10/3mA, 20/3mA, 4mA, 8mA, 7.5mA, 15mA, 10mA, 20mA, 30mA, 50/3mA, 100/3mA, 25mA, 50mA
  • the technical problem to be solved by the present invention is to provide a method for preparing a two-stage standard current transformer that can realize any change, and can verify the tested miniature current transformer with any current ratio.
  • the present invention provides a method for preparing a two-stage standard current transformer (RCT) that can realize any change, including the following steps:
  • the secondary power supply winding X1 is 1 turn, 4 turns, 7 turns, 9 turns;
  • X2 is 10 turns, 40 turns, 70 turns, 90 turns;
  • X3 is 100 turns, 400 turns, 700 Turns, 900 turns;
  • X4 is 1000 turns, 4000 turns, 7000 turns, 9000 turns;
  • X5 is 10000 turns.
  • the secondary compensation winding Z1 is 1 turn, 4 turns, 7 turns, 9 turns;
  • Z2 is 10 turns, 40 turns, 70 turns, 90 turns;
  • Z3 is 100 turns, 400 turns, 700 Turns, 900 turns;
  • Z4 is 1000 turns, 4000 turns, 7000 turns, 9000 turns;
  • Z5 is 10000 turns.
  • the primary windings L1 to L2 are 1 turn
  • L3 to L4 are 2 turns
  • L5 to L6 are 3 turns
  • L7 to L8 are 4 turns
  • L9 to L10 are 10 turns.
  • the primary compensation windings b1 to b2 are 1 turn, b3 to b4 are 2 turns, b5 to b6 are 3 turns, b7 to b8 are 4 turns, and b9 to b10 are 10 turns.
  • the primary windings L 1 , L 2 ,... L 10 of the RCT can withstand a current of 100 A.
  • the primary windings L1L2, L3L4, L5L6, L7L8, and L9L10 adopt a multi-strand flat winding manner.
  • the beneficial effects of the present invention are as follows: Compared with conventional precision current transformers, its primary and secondary outputs adopt separate windings wound in sections. These windings can be tapped or used in series as required, so that the minimum resolution can be 1 turn, a maximum of 19,999 turns of winding output, which can realize a precision current transformer with any turns ratio, so as to realize the verification of the measured current transformer with any variable ratio; in actual applications, the measured current transformer
  • the device will not be smaller than the minimum turns ratio of the present invention 1: 19999, nor will it appear that the maximum turns ratio of the present invention is 20: 1000 (the primary windings are all 20 turns in series, and the secondary windings need to be greater than or equal to 1000 turns. The accuracy of 0.002 level can be guaranteed) larger cases.
  • Figure 1 is a schematic diagram of the verification wiring of a conventional two-stage standard current transformer.
  • FIG. 2 is a schematic diagram of the RCT of the present invention.
  • Fig. 3 is a schematic diagram of the working principle of the RCT verification 1A/3.3mA current transformer error of the present invention.
  • a method for preparing a two-stage standard current transformer that can realize any change including the following steps:
  • L1, L2, L3 ⁇ L10 are primary input windings, of which L1L2 is 1 turn; L3L4 is 2 turns; L5L6 is 3 turns; L7L8 is 4 turns; L9L10 is 10 turns.
  • b1, b2, b3 ⁇ b10 are the compensation windings of the primary input winding, among which b1b2 is 1 turn; b3b4 is 2 turns; b5b6 is 3 turns; b7b8 is 4 turns; b9b10 is 10 turns.
  • X1, 1, 4, 7, 9 are single-digit secondary output windings; X2, 10, 40, 70, 90 are tens-digit secondary output windings; X3, 100, 400, 700, 900 are hundred-digit secondary output windings Secondary output winding; X4, 1000, 4000, 7000, 9000 are thousands of secondary output windings; X5, 10000, 10000 turns of secondary output windings.
  • Z1, B1, B4, B7, B9 are the compensation windings of the single-digit secondary output winding;
  • Z2, B10, B40, B70, B90 are the tens-digit secondary output windings;
  • Z3, B100, B400, B700, B900 are hundred Digit secondary output winding;
  • Z4, B1000, B4000, B7000, B9000 are thousands of digit secondary output windings;
  • Z5, B10000 are 10,000 turns of secondary output compensation winding.
  • the primary winding is 1 turn, 2 turns, 3 turns, 4 turns, and 10 turns. Any number of turns between 1 turn and 20 turns can be realized. For example, if 5 turns are required, use 1 turn + 4 turns to achieve; 6 turns use 2 turns + 4 turns to achieve; 7 turns use 3 turns + 4 turns to achieve; 8 turns are 1 turn + 3 turns + 4 turns to achieve; 9 turns Use 2 turns + 3 turns + 4 turns to achieve.
  • the two-stage standard current transformer can guarantee an accuracy of 0.002; then the value range can be any value from 1000 turns to 19999 turns (with a resolution of 1 turn).
  • the primary winding achieves any number of turns between 1 turn and 20 turns
  • the secondary winding achieves any number of turns between 1000 turns and 19999 turns.
  • Mutual matching can achieve a standard current transformer with any turns ratio within the value range ( The minimum turns ratio is 20 turns/1000 turns, and the maximum turns ratio is 1 turn/19999 turns).
  • the error measurement circuit when the current transformer error is tested, the two ends of the booster output are respectively connected to one of the non-polar terminals L2 ⁇ L10 of the double-stage precision current transformer CTo with any ratio (Select according to the transformation ratio of the current transformer under test and the transformation ratio of the two-stage standard current transformer). Connect the other terminal of the current transformer to the non-polar end (P2) of the current transformer under test.
  • the secondary winding of RCT selects the combination of the number of turns according to the needs, and chooses the polarity end, non-polarity end, the polarity end of the secondary compensation winding and the non-polarity end of the secondary winding output; the polarity of the secondary winding Short-circuit the polarity terminal of the secondary compensation winding and short-circuit the polarity terminal S1 of the secondary output winding of the current transformer under test to connect to the differential current input terminal k of the HE transformer calibrator; the secondary output winding of the RCT
  • the non-polar terminal is the standard current input to the To terminal of the HE; the non-polar terminal of the secondary compensation winding of the RCT is connected to the d terminal of the HE; the
  • the primary winding can have a resolution of 1 turn
  • the value range is 1t to 20t
  • the secondary winding can have a resolution of 1 turn and the value range It is any value from 1000t to 19999t, so a double-stage precision current transformer with any turns ratio can be obtained, so that the error of a micro current transformer with a non-standard ratio can be verified.
  • Even the theoretical turn error caused by the resolution of the primary or secondary winding turns is very small, and the theoretical turn error can be calculated. The theoretical turns error can be corrected to the error result of the tested current transformer, so as to obtain a more accurate error.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Transformers For Measuring Instruments (AREA)

Abstract

本发明公开了一种制备可以实现任意变化的双级标准电流互感器的方法,包括如下步骤:(1)在主铁芯A上绕制二次供电绕组,制作出主线包A;(2)在主线包A的基础上叠加一个辅助铁芯B,再次绕制二次补偿绕组,制作出线包B;(3)在线包B的基础上绕制一次绕组,完成RCT的一次绕组绕制;(4)在线包B的基础上绕制一次补偿绕组,完成RCT的一次补偿绕组的绕制;(5)将上述RCT绕制的线包放入机箱内,把所有二次供电绕组、二次补偿绕组、一次绕组、一次补偿绕组均连接到机箱的面板接线柱上。本发明能够检定任意电流比的被试微型电流互感器。

Description

一种制备可以实现任意变化的双级标准电流互感器的方法 技术领域
本发明涉及电流互感器技术领域,尤其是一种制备可以实现任意变化的双级标准电流互感器的方法。
背景技术
电能表、电流变送器、继电保护装置等等大量的电测量设备中均安装了微型测量用电流互感器。生产量巨大,例如河北某公司2017年微型电流互感器的生产产值约2.4亿元,制造了约0.53亿只微型电流互感器,而这仅仅是应用在电能表行业中一个互感器制造商的产能,全国的微型电流互感器制造量是巨大的。由于微型电流互感器没有行业的统一标准,因此各个制造厂所设置制造的精密电流互感器规格庞杂,其中电流比就差异很大,例如有1A/3.3mA、1A/10mA、1A/2.5mA、1A/1mA等等。其中有一些由于是定制规格,因此如何检测这些微型电流互感器甚至是非常规变比的电流互感器是微型电流互感器制造企业、电能表制造企业或者其他需求单位的一个技术难题。
由于电流互感器的检定或校准均需要采用测差法原理(采用JJG313-2010检定规程),试验过程中必须选择与被试电流互感器具有相同电流比的标准电流互感器,以上例子中1A/3.3mA是现有微型标准电流互感器所没有的变比,因此也就没有办法检定。
常规的双级标准电流互感器一次电流有:0.6A、1A、1.5A、2.5A、5(4)A、3A、6A、7.5A、10(8)A、15A、20A、30A、60(50)A。
常规的双级标准电流互感器二次电流有:1mA、2mA、1.5mA、3mA、2.5mA、5mA、10/3mA、20/3mA、4mA、8mA、7.5mA、15mA、10mA、20mA、30mA、50/3mA、100/3mA、25mA、50mA
当被试电流互感器的电流比在双级标准电流互感器上没有的情况下,是无法对被试电流互感器进行误差检定的。
发明内容
本发明所要解决的技术问题在于,提供一种制备可以实现任意变化的双级标准电流互感器的方法,能够检定任意电流比的被试微型电流互感器。
为解决上述技术问题,本发明提供一种制备可以实现任意变化的双级标准电流互感器(RCT)的方法,包括如下步骤:
(1)在主铁芯A上绕制二次供电绕组X1、X2、X3、X4、X5,制作出主线包A;
(2)在主线包A的基础上叠加一个辅助铁芯B,再次绕制二次补偿绕组Z1、Z2、Z3、Z4、Z5,制作出线包B;
(3)在线包B的基础上绕制一次绕组L1~L2、L3~L4、L5~L6、L7~L8、L9~L10,完成RCT的一次绕组绕制;
(4)在线包B的基础上绕制一次补偿绕组b1~b2、b3~b4、b5~b6、b7~b8、b9~b10,完成RCT的一次补偿绕组绕制;
(5)将上述RCT绕制的线包放入机箱内,把所有二次供电绕组、二次补偿绕组、一次 绕组、一次补偿绕组均连接到机箱的面板接线柱上。
优选的,步骤(1)中,二次供电绕组X1为1匝、4匝、7匝、9匝;X2为10匝、40匝、70匝、90匝;X3为100匝、400匝、700匝、900匝;X4为1000匝、4000匝、7000匝、9000匝;X5为10000匝。
优选的,步骤(2)中,二次补偿绕组Z1为1匝、4匝、7匝、9匝;Z2为10匝、40匝、70匝、90匝;Z3为100匝、400匝、700匝、900匝;Z4为1000匝、4000匝、7000匝、9000匝;Z5为10000匝。
优选的,步骤(3)中,一次绕组L1~L2为1匝、L3~L4为2匝、L5~L6为3匝、L7~L8为4匝、L9~L10为10匝。
优选的,步骤(4)中,一次补偿绕组b1~b2为1匝、b3~b4为2匝、b5~b6为3匝、b7~b8为4匝、b9~b10为10匝。
优选的,RCT的一次绕组L 1、L 2、……L 10可以承受100A电流。
优选的,一次绕组L1L2、L3L4、L5L6、L7L8、L9L10采用多股平绕方式。
本发明的有益效果为:与常规精密电流互感器相比,其一次和二次的输出采用分段绕制的独立绕组,这些绕组可以根据需要选择抽头或串联使用,使得能够组成最小分辨率为1匝,最大为19999匝的绕组输出,从而可以实现任意匝数比的精密电流互感器,从而可以实现任意变比的被测电流互感器的校验;在实际应用情况下,被测电流互感器不会出现比本发明最小匝数比1:19999更小的情况,也不会出现比本发明最大匝数比20:1000(一次绕组全部串联为20匝,二次绕组需要大于等于1000匝能保证0.002级的精度)更大的情况。
附图说明
图1为常规双级标准电流互感器检定接线示意图。
图2为本发明的RCT示意图。
图3为本发明的RCT检定1A/3.3mA电流互感器误差工作原理示意图。
具体实施方式
一种制备可以实现任意变化的双级标准电流互感器的方法,包括如下步骤:
(1)在主铁芯A上绕制二次供电绕组X1、X2、X3、X4、X5,制作出主线包A;
(2)在主线包A的基础上叠加一个辅助铁芯B,再次绕制二次补偿绕组Z1、Z2、Z3、Z4、Z5,制作出线包B;
(3)在线包B的基础上绕制一次绕组L1~L2、L3~L4、L5~L6、L7~L8、L9~L10,完成RCT的一次绕组绕制;
(4)在线包B的基础上绕制一次补偿绕组b1~b2、b3~b4、b5~b6、b7~b8、b9~b10,完成RCT的一次补偿绕组绕制;
(5)将上述RCT绕制的线包放入机箱内,把所有二次供电绕组、二次补偿绕组、一次绕组、一次补偿绕组均连接到机箱的面板接线柱上。
如图1和图2所示,具有任意变比双级标准电流互感器,L1、L2、L3~L10为一次输入绕组,其中L1L2为1匝;L3L4为2匝;L5L6为3匝;L7L8为4匝;L9L10为10匝。b1、b2、b3~b10为一次输入绕组的补偿绕组,其中b1b2为1匝;b3b4为2匝;b5b6为3匝;b7b8为4匝;b9b10为10匝。X1、1、4、7、9为个位数二次输出绕组;X2、10、40、70、90为十位数二次输出绕组;X3、100、400、700、900为百位数二次输出绕组;X4、1000、4000、7000、9000为千位数二次输出绕组; X5、10000位10000匝二次输出绕组。Z1、B1、B4、B7、B9为个位数二次输出绕组的补偿绕组;Z2、B10、B40、B70、B90为十位数二次输出绕组;Z3、B100、B400、B700、B900为百位数二次输出绕组;Z4、B1000、B4000、B7000、B9000为千位数二次输出绕组;Z5、B10000位是10000匝二次输出补偿绕组。
一次绕组为1匝、2匝、3匝、4匝、10匝可以实现1匝~20匝之间的任意匝数。例如需要5匝则采用1匝+4匝实现;6匝则采用2匝+4匝实现;7匝则采用3匝+4匝实现;8匝是1匝+3匝+4匝实现;9匝则采用2匝+3匝+4匝匝实现。
二次绕组匝数大于等于1000匝的情况下该双级标准电流互感器可以保证0.002级准确级;那么取值范围可以是1000匝~19999匝的任意值(分辨率为1匝)。
一次绕组实现1匝~20匝之间的任意匝数,二次绕组实现1000匝~19999匝之间的任意匝数,互相匹配可以实现取值范围内的任意匝数比的标准电流互感器(最小匝数变比为20匝/1000匝,最大匝数变比为1匝/19999匝)。
如图3所示,误差测量线路,当电流互感器误差检验的时候,将升流器输出两端分别于任意变比双级精密电流互感器CTo的非极性端L2~L10的某个端子(根据被测电流互感器的变比以及双级标准电流互感器的变比选择)相连接,升流器的另一个端子与被测电流互感器的非极性端(P2)连接,任意变比双级标准电流互感器的极性端L1与被试电流互感器一次绕组的极性端P1短接;将RCT使用的非极性端对应的一次补偿绕组b接地,例如使用L4则将b4接地;RCT的二次绕组根据需要选择匝数的组合,取其二次绕组输出的极性端、非极性端、二次补偿绕组极性端和非极性端;二次绕组的极性端与二次补偿绕组极性端短接后与被测电流互感器二次输出绕组极性端S1短接接入HE互感器校验仪的差值电流输入端子k;RCT的二次输出绕组非极性端最为标准电流输入至HE的To端;RCT的二次补偿绕组非极性端接HE的d端;被检电流互感器CTx的非极性端接负荷箱Z后接至HE的Tx端;HE为测差式互感器校验仪。
与常规双级精密电流互感器实施误差校验相比较,由于一次绕组可以为分辨率为1匝,取值范围为1t~20t任意值,二次绕组可以为分辨率为1匝,取值范围为1000t~19999t的任意值,因此可以得到任意匝数比的双级精密电流互感器,从而可以校验非标准变比的微型电流互感器的误差。即使由于一次绕组或二次绕组匝数的分辨率造成的理论匝数误差也是非常小的,并且可以计算其理论匝数误差。可以将理论匝数误差校正到被试电流互感器误差结果中,从而获取更准确的误差。

Claims (7)

  1. 一种制备可以实现任意变化的双级标准电流互感器的方法,其特征在于,包括如下步骤:
    (1)在主铁芯A上绕制二次供电绕组X1、X2、X3、X4、X5,制作出主线包A;
    (2)在主线包A的基础上叠加一个辅助铁芯B,再次绕制二次补偿绕组Z1、Z2、Z3、Z4、Z5,制作出线包B;
    (3)在线包B的基础上绕制一次绕组L1~L2、L3~L4、L5~L6、L7~L8、L9~L10,完成RCT的一次绕组绕制;
    (4)在线包B的基础上绕制一次补偿绕组b1~b2、b3~b4、b5~b6、b7~b8、b9~b10,完成RCT的一次补偿绕组绕制;
    (5)将上述RCT绕制的线包放入机箱内,把所有二次供电绕组、二次补偿绕组、一次绕组、一次补偿绕组均连接到机箱的面板接线柱上。
  2. 如权利要求1所述的制备可以实现任意变化的双级标准电流互感器的方法,其特征在于,步骤(1)中,二次供电绕组X1为1匝、4匝、7匝、9匝;X2为10匝、40匝、70匝、90匝;X3为100匝、400匝、700匝、900匝;X4为1000匝、4000匝、7000匝、9000匝;X5为10000匝。
  3. 如权利要求1所述的制备可以实现任意变化的双级标准电流互感器的方法,其特征在于,步骤(2)中,二次补偿绕组Z1为1匝、4匝、7匝、9匝;Z2为10匝、40匝、70匝、90匝;Z3为100匝、400匝、700匝、900匝;Z4为1000匝、4000匝、7000匝、9000匝;Z5为10000匝。
  4. 如权利要求1所述的制备可以实现任意变化的双级标准电流互感器的方法,其特征在于,步骤(3)中,一次绕组L1~L2为1匝、L3~L4为2匝、L5~L6为3匝、L7~L8为4匝、L9~L10为10匝。
  5. 如权利要求1所述的制备可以实现任意变化的双级标准电流互感器的方法,其特征在于,步骤(4)中,一次补偿绕组b1~b2为1匝、b3~b4为2匝、b5~b6为3匝、b7~b8为4匝、b9~b10为10匝。
  6. 如权利要求1所述的制备可以实现任意变化的双级标准电流互感器的方法,其特征在于,RCT的一次绕组L 1、L 2、……L 10可以承受100A电流。
  7. 如权利要求1所述的制备可以实现任意变化的双级标准电流互感器的方法,其特征在于,一次绕组L1L2、L3L4、L5L6、L7L8、L9L10采用多股平绕方式。
PCT/CN2020/092798 2019-07-04 2020-05-28 一种制备可以实现任意变化的双级标准电流互感器的方法 WO2021000670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910599236.4 2019-07-04
CN201910599236.4A CN110277239A (zh) 2019-07-04 2019-07-04 一种制备可以实现任意变化的双级标准电流互感器的方法

Publications (1)

Publication Number Publication Date
WO2021000670A1 true WO2021000670A1 (zh) 2021-01-07

Family

ID=67963978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092798 WO2021000670A1 (zh) 2019-07-04 2020-05-28 一种制备可以实现任意变化的双级标准电流互感器的方法

Country Status (2)

Country Link
CN (1) CN110277239A (zh)
WO (1) WO2021000670A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110277239A (zh) * 2019-07-04 2019-09-24 南京丹迪克电力仪表有限公司 一种制备可以实现任意变化的双级标准电流互感器的方法
CN111785510B (zh) * 2020-07-01 2022-03-15 南京丹迪克电力仪表有限公司 一种制备高准确级双级钳形电流互感器的方法
CN115966387A (zh) * 2022-04-15 2023-04-14 中国电力科学研究院有限公司 一种全中压双级电压互感器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001432A1 (en) * 1994-07-01 1996-01-18 Rmd Electronics Pty. Ltd. Improved clipon ct
CN201075336Y (zh) * 2007-08-22 2008-06-18 徐胜宽 双极性多变比电流互感器
CN106324539A (zh) * 2015-07-01 2017-01-11 中国电力科学研究院 一种高精度电流比较仪
CN109856586A (zh) * 2019-03-08 2019-06-07 国网江苏省电力有限公司电力科学研究院 一种升流器及其制备方法和检验方法
CN110277239A (zh) * 2019-07-04 2019-09-24 南京丹迪克电力仪表有限公司 一种制备可以实现任意变化的双级标准电流互感器的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569481B2 (ja) * 2006-01-26 2010-10-27 パナソニック電工株式会社 トロイダルコイル構造
CN201638670U (zh) * 2009-12-28 2010-11-17 上海卓高电气有限公司 Gis用小电流比电流互感器
CN103823100B (zh) * 2013-07-29 2016-12-28 中国计量科学研究院 一种高准确度电流比较仪及自校验方法
CN104505243B (zh) * 2014-09-22 2015-12-02 秦喜昌 0.001级高压高准确度双级电压互感器研制及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001432A1 (en) * 1994-07-01 1996-01-18 Rmd Electronics Pty. Ltd. Improved clipon ct
CN201075336Y (zh) * 2007-08-22 2008-06-18 徐胜宽 双极性多变比电流互感器
CN106324539A (zh) * 2015-07-01 2017-01-11 中国电力科学研究院 一种高精度电流比较仪
CN109856586A (zh) * 2019-03-08 2019-06-07 国网江苏省电力有限公司电力科学研究院 一种升流器及其制备方法和检验方法
CN110277239A (zh) * 2019-07-04 2019-09-24 南京丹迪克电力仪表有限公司 一种制备可以实现任意变化的双级标准电流互感器的方法

Also Published As

Publication number Publication date
CN110277239A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2021000670A1 (zh) 一种制备可以实现任意变化的双级标准电流互感器的方法
CN105044479B (zh) 大型油浸式变压器空、负载综合试验设备及方法
CN105572451A (zh) 自校正的电流互感器系统
CN105372613B (zh) 基于电流比较仪的电流互感器检定自动调零检零装置及方法
CN201298448Y (zh) 一种分体式电压互感器
CN103823100B (zh) 一种高准确度电流比较仪及自校验方法
CN106199118B (zh) 带电源输出的电容分压式零序电压互感器
CN104330760A (zh) 精密高压电流互感器和该互感器的误差测试系统及方法
CN109856586A (zh) 一种升流器及其制备方法和检验方法
CN110118885A (zh) 电能计量试验接线盒、目标表计更换方法及电能计量装置
CN114236271A (zh) 一种变压器综合检测装置现场校验方法及系统
CN104237835A (zh) 一种用于穿心电流互感器的检测接线装置
CN104076226B (zh) 基于电压差值和电流差值测量变压器能效的装置及方法
CN107912059A (zh) 开关装置、测试装置及变压器测量装置的开关装置操作方法
CN107170563A (zh) 一种具有自校准功能的电流互感器及其自校准方法
CN205263293U (zh) 基于电流比较仪的电流互感器检定自动调零检零装置
CN104808022A (zh) 一种三相三绕组变压器三侧联合运行温升试验接线方法
CN104880686B (zh) 一种便携电子式电流互感器校验装置和方法
RU2119676C1 (ru) Устройство для поверки измерительных трансформаторов тока
CN110261808B (zh) 一种车载gis式表源装置
CN115356676A (zh) 一种单相电流表相线零线同步校准方法
CN210465668U (zh) 一种车载gis式表源装置
Bertrand et al. A simulation model for transformer internal faults base for the study of protection and monitoring systems
CN210982711U (zh) 三相电流检测电路及电能计量芯片
CN106501750A (zh) 一种电压互感器现场误差检测二次接线装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20834688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20834688

Country of ref document: EP

Kind code of ref document: A1