WO2021000284A1 - Rate matching for spectrum sharing between different radio access technologies - Google Patents

Rate matching for spectrum sharing between different radio access technologies Download PDF

Info

Publication number
WO2021000284A1
WO2021000284A1 PCT/CN2019/094525 CN2019094525W WO2021000284A1 WO 2021000284 A1 WO2021000284 A1 WO 2021000284A1 CN 2019094525 W CN2019094525 W CN 2019094525W WO 2021000284 A1 WO2021000284 A1 WO 2021000284A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate matching
rat
matching patterns
resource allocation
configuration
Prior art date
Application number
PCT/CN2019/094525
Other languages
French (fr)
Inventor
Yiqing Cao
Peter Gaal
Wanshi Chen
Chao Wei
Weiye Zhang
Juan Montojo
Bin Han
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/094525 priority Critical patent/WO2021000284A1/en
Priority to PCT/CN2020/098323 priority patent/WO2021000788A1/en
Publication of WO2021000284A1 publication Critical patent/WO2021000284A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for rate matching for spectrum sharing between different radio access technologies.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication may include determining a first resource allocation for a first radio access technology (RAT) in a spectrum band; determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  • RAT radio access technology
  • a UE for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine a first resource allocation for a first RAT in a spectrum band; determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  • a method of wireless communication may include determining a first resource allocation for a first RAT in a spectrum band; determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  • a BS for wireless communication may include memory and one or more processors operatively coupled to the memory.
  • the memory and the one or more processors may be configured to determine a first resource allocation for a first RAT in a spectrum band; determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a BS, may cause the one or more processors to determine a first resource allocation for a first RAT in a spectrum band; determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  • a non-transitory computer-readable medium may store one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of a BS, may cause the one or more processors to: determine a first resource allocation for a first RAT in a spectrum band; determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  • an apparatus for wireless communication may include means for determining a first resource allocation for a first RAT in a spectrum band; means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  • an apparatus for wireless communication may include means for determining a first resource allocation for a first RAT in a spectrum band; means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
  • Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of a downlink frame structure in LTE, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example of an uplink frame structure in LTE, in accordance with various aspects of the present disclosure.
  • Fig. 5 is a block diagram conceptually illustrating an example of a frame structure in a wireless communication network, in accordance with various aspects of the present disclosure.
  • Fig. 6 is a block diagram conceptually illustrating an example slot format with a normal cyclic prefix, in accordance with various aspects of the present disclosure.
  • Figs. 7A-7F are diagrams illustrating an example of rate matching for spectrum sharing between different RATs, in accordance with various aspects of the present disclosure.
  • Fig. 8 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
  • Fig. 9 is a conceptual data flow diagram illustrating an example of a data flow between different modules/means/components in an example apparatus.
  • Fig. 10 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • Fig. 11 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
  • Fig. 12 is a conceptual data flow diagram illustrating an example of a data flow between different modules/means/components in an example apparatus.
  • Fig. 13 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
  • Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced.
  • the wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network.
  • the wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices.
  • Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • TX transmit
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream.
  • Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal.
  • T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • the synchronization signals can be generated with location encoding to convey additional information.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • modulators 254a through 254r e.g., for DFT-s-OFDM, CP-OFDM, and/or the like
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with rate matching for spectrum sharing between different RATs, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 1100 of Fig. 11, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication.
  • the one or more instructions when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 800 of Fig. 8, process 1100 of Fig. 11, and/or other processes as described herein.
  • a scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
  • UE 120 may include means for determining a first resource allocation for a first radio access technology (RAT) in a spectrum band, means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, and/or the like.
  • RAT radio access technology
  • such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
  • base station 110 may include means for determining a first resource allocation for a first RAT in a spectrum band, means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, and/or the like.
  • such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor 238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • Fig. 3 is a diagram illustrating an example 300 of a downlink (DL) frame structure in LTE, in accordance with various aspects of the present disclosure.
  • a frame e.g., of 10 milliseconds (ms)
  • ms milliseconds
  • Each sub-frame may include two consecutive time slots.
  • a resource grid may be used to represent two time slots, each time slot including a resource block (RB) .
  • the resource grid is divided into multiple resource elements (REs) .
  • a resource block includes 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements.
  • a resource block includes 6 consecutive OFDM symbols in the time domain and has 72 resource elements.
  • the DL-RS include cell-specific RS (CRS) (also sometimes called common RS) 310 and UE-specific RS (UE-RS) 320.
  • CRS cell-specific RS
  • UE-RS UE-specific RS
  • UE-RS 320 are transmitted on the resource blocks upon which the corresponding physical DL shared channel (PDSCH) is mapped.
  • the quantity of bits carried by each resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
  • a BS may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for each cell in the BS.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the primary and secondary synchronization signals may be sent in symbol periods 6 and 5, respectively, in each of subframes 0 and 5 of each radio frame with the normal cyclic prefix (CP) .
  • the synchronization signals may be used by UEs for cell detection and acquisition.
  • the BS may send a physical broadcast channel (PBCH) in symbol periods 0 to 3 in slot 1 of subframe 0.
  • PBCH may carry certain system information.
  • the BS may send a physical control format indicator channel (PCFICH) in the first symbol period of each subframe.
  • the PCFICH may convey the number of symbol periods (M) used for control channels, where M may be equal to 1, 2 or 3 and may change from subframe to subframe. M may also be equal to 4 for a small system bandwidth, e.g., with less than 10 resource blocks.
  • the BS may send a physical hybrid automatic repeat request (HARQ) indicator channel (PHICH) and a physical downlink control channel (PDCCH) in the first M symbol periods of each subframe.
  • HARQ physical hybrid automatic repeat request
  • PHICH physical downlink control channel
  • the PHICH may carry information to support HARQ.
  • the PDCCH may carry information on resource allocation for UEs and control information for downlink channels.
  • the BS may send a physical downlink shared channel (PDSCH) in the remaining symbol periods of each subframe.
  • the PDSCH may carry data for UEs scheduled for data transmission on the downlink.
  • the BS may send the PSS, SSS, and PBCH in the center 1.08 MHz of the system bandwidth used by the BS.
  • the BS may send the PCFICH and PHICH across the entire system bandwidth in each symbol period in which these channels are sent.
  • the BS may send the PDCCH to groups of UEs in certain portions of the system bandwidth.
  • the BS may send the PDSCH to specific UEs in specific portions of the system bandwidth.
  • the BS may send the PSS, SSS, PBCH, PCFICH, and PHICH in a broadcast manner to all UEs, may send the PDCCH in a unicast manner to specific UEs, and may also send the PDSCH in a unicast manner to specific UEs.
  • a plurality of resource elements may be available in each symbol period.
  • Each resource element (RE) may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value.
  • Resource elements not used for a reference signal in each symbol period may be arranged into resource element groups (REGs) .
  • Each REG may include four resource elements in one symbol period.
  • the PCFICH may occupy four REGs, which may be spaced approximately equally across frequency, in symbol period 0.
  • the PHICH may occupy three REGs, which may be spread across frequency, in one or more configurable symbol periods. For example, the three REGs for the PHICH may all belong in symbol period 0 or may be spread in symbol periods 0, 1, and 2.
  • the PDCCH may occupy 9, 18, 36, or 72 REGs, which may be selected from the available REGs, in the first M symbol periods, for example. Only certain combinations of REGs may be allowed for the PDCCH.
  • a UE may store information identifying the specific REGs used for the PHICH and the PCFICH.
  • the UE may search different combinations of REGs for the PDCCH.
  • the number of combinations to search is typically less than the number of allowed combinations for the PDCCH.
  • a BS may send the PDCCH to the UE in any of the combinations that the UE will search.
  • Fig. 3 is provided as an example. Other examples may differ from what was described above in connection with Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 of an uplink (UL) frame structure in LTE, in accordance with various aspects of the present disclosure.
  • the available resource blocks for the UL may be partitioned into a data section and a control section.
  • the control section may be formed at the two edges of the system bandwidth and may have a configurable size.
  • the resource blocks in the control section may be assigned to UEs for transmission of control information.
  • the data section may include all resource blocks not included in the control section.
  • the UL frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
  • a UE may be assigned resource blocks 410a, 410b in the control section to transmit control information to a BS.
  • the UE may also be assigned resource blocks 420a, 420b in the data section to transmit data to the BS.
  • the UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource blocks in the control section.
  • the UE may transmit only data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource blocks in the data section.
  • a UL transmission may span both slots of a subframe and may hop across frequencies.
  • a set of resource blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430.
  • the PRACH 430 carries a random sequence and cannot carry any UL data/signaling.
  • Each random access preamble occupies a bandwidth corresponding to six consecutive resource blocks.
  • the starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH.
  • the PRACH attempt is carried in a single subframe (e.g., of 1 ms) or in a sequence of a few contiguous subframes, and a UE can make only a single PRACH attempt per frame (e.g., of 10 ms) .
  • Fig. 4 is provided as an example. Other examples may differ from what was described above in connection with Fig. 4.
  • Fig. 5 shows an example frame structure 500 for frequency division duplexing (FDD) in another telecommunications system (e.g., NR) .
  • the transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames) .
  • Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into a set of Z (Z ⁇ 1) subframes (e.g., with indices of 0 through Z-1) .
  • Each subframe may have a predetermined duration (e.g., 1 ms) and may include a set of slots (e.g., 2 m slots per subframe are shown in Fig.
  • Each slot may include a set of L symbol periods.
  • each slot may include fourteen symbol periods (e.g., as shown in Fig. 5) , seven symbol periods, or another number of symbol periods.
  • the subframe may include 2L symbol periods, where the 2L symbol periods in each subframe may be assigned indices of 0 through 2L–1.
  • a scheduling unit for the FDD may be frame-based, subframe-based, slot-based, symbol-based, and/or the like.
  • a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol. Additionally, or alternatively, different configurations of wireless communication structures than those shown in Fig. 5 may be used.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 shows an example slot format 610 with a normal cyclic prefix.
  • the available time frequency resources may be partitioned into resource blocks.
  • Each resource block may cover a set of subcarriers (e.g., 12 subcarriers) in one slot and may include a number of resource elements.
  • Each resource element may cover one subcarrier in one symbol period (e.g., in time) and may be used to send one modulation symbol, which may be a real or complex value.
  • An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., NR) .
  • Q interlaces with indices of 0 through Q –1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value.
  • Each interlace may include slots that are spaced apart by Q frames.
  • interlace q may include slots q, q + Q, q + 2Q, etc., where q ⁇ ⁇ 0, ..., Q –1 ⁇ .
  • a UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and- interference ratio (SNIR) , or a reference signal received quality (RSRQ) , or some other metric.
  • SNIR signal-to-noise-and- interference ratio
  • RSRQ reference signal received quality
  • the UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
  • New Radio may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP) ) .
  • OFDM Orthogonal Frequency Divisional Multiple Access
  • IP Internet Protocol
  • NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using time division duplexing (TDD) .
  • TDD time division duplexing
  • NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD.
  • CP-OFDM OFDM with a CP
  • DFT-s-OFDM discrete Fourier transform spread orthogonal frequency-division multiplexing
  • NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low latency communications (URLLC) service.
  • eMBB Enhanced Mobile Broadband
  • mmW millimeter wave
  • mMTC massive MTC
  • URLLC ultra-reliable low latency communications
  • NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 ms duration.
  • Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms.
  • Each slot may indicate a link direction (e.g., DL or UL) for data transmission and the link direction for each slot may be dynamically switched.
  • Each slot may include DL/UL data as well as DL/UL control data.
  • NR may support a different air interface, other than an OFDM-based interface.
  • NR networks may include entities such as central units or distributed units.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
  • a plurality of RATs may be deployed in a common area.
  • one or more BSs may provide an LTE RAT, an NR RAT, and/or the like. It may be advantageous for one or more BSs to use dynamic spectrum sharing (DSS) techniques to enable a plurality of RATs to use a common spectrum band.
  • DSS dynamic spectrum sharing
  • a BS may provide an LTE RAT with a particular band (e.g., of 20 MHz) , and may also provide the NR RAT to share the LTE band.
  • the BS may multiplex the LTE RAT and the NR RAT into the particular band, such as using time division multiplexing, frequency division multiplexing, and/or the like.
  • LTE is a legacy technology
  • adapting LTE for use in a common spectrum band with NR may be cost-prohibitive, may result in compatibility issues with legacy UEs, and/or the like.
  • one or more rate matching patterns may be defined for NR to enable a UE to perform rate matching around a cell-specific reference signal (CRS) of an LTE RAT.
  • the UE may occupy, for NR RAT communications, a portion of a resource that is not used by the LTE RAT for CRS transmission.
  • the UE may transmit an NR channel state information reference signal (CSI-RS) , thereby enabling an LTE RAT CRS and an NR RAT CSI-RS to share a common spectrum band.
  • CSI-RS NR channel state information reference signal
  • the UE and the BS improve utilization of network resources by reducing a quantity of resources that go unused by a particular RAT, such as an LTE RAT.
  • Figs. 7A-7F are diagrams illustrating an example 700 of rate matching for spectrum sharing between different radio access technologies, in accordance with various aspects of the present disclosure. As shown in Fig. 7A, example 700 includes a BS 110 and a UE 120.
  • UE 120 and/or BS 110 may determine a first resource allocation for a first RAT and a second resource allocation for a second RAT in accordance with a rate matching pattern. For example, UE 120 and BS 110 may determine a first set of resources reserved for use with an LTE RAT, and may identify a rate matching pattern to occupy a second set of resources not reserved for use with the LTE RAT but in a common spectrum band with the LTE RAT. In some aspects, the first set of resources reserved for use with the LTE RAT may be reserved for CRS transmission.
  • UE 120 and BS 110 may determine the first set of resources based at least in part on one or more parameters for the LTE RAT, such as a quantity of CRS ports enabled for CRS transmission, whether multicast-broadcast single frequency network (MBSFN) operation is enabled, and/or the like. Additionally, or alternatively, UE 120 and BS 110 may determine the second set of resources based at least in part on one or more parameters for the NR RAT, such as a quantity of CSI-RSs that are to be transmitted, a periodicity, a numerology, and/or the like. In some aspects, UE 120 and BS 110 may select a particular frequency and/or band for rate matching. For example, UE 120 and BS 110 may rate match 30 kHz NR around 15 kHz LTE at band 41 (e.g., at 2500 MHz) .
  • MRSFN multicast-broadcast single frequency network
  • UE 120 and BS 110 may select a rate matching pattern. For example, UE 120 and BS 110 may select the rate matching pattern to provide the second set of resources without interfering with the first set of resources. In this way, UE 120 and BS 110 use the rate matching pattern to enable NR RAT CSI-RS transmission without interfering with LTE RAT CRS transmission.
  • the rate matching pattern is an NR zero-power CSI-RS (NR-ZP-CSI-RS) rate matching pattern.
  • UE 120 and BS 110 may select one or more of CSI-RS patterns #4, #2, #6, and/or the like, which are defined for NR-ZP-CSI-RS operation and are described below with regard to Figs. 7B-7C.
  • UE 120 and BS 110 may define a rate matching pattern for rate matching around an LTE CRS, as is described below with regard to Figs. 7D-7E.
  • UE 120 and BS 110 may select multiple rate matching patterns. For example, UE 120 and BS 110 may select a first rate matching pattern for a first quantity of CRS ports, a second rate matching pattern for a second quantity of CRS ports, and/or the like. In this case, UE 120 and BS 110 may periodically use a particular rate matching pattern based at least in part on a quantity of CRS ports in use.
  • UE 120 and BS 110 may switch between rate matching levels. For example, UE 120 and BS 110 may switch from a resource element level rate matching pattern to a resource block level rate matching pattern.
  • UE 120 and BS 110 may communicate to define a new rate matching pattern.
  • BS 110 may determine the rate matching pattern (e.g., a non-ZP-CSI-RS rate matching pattern) , and may transmit an RRC message to identify the rate matching pattern to UE 120.
  • BS 110 may configure the rate matching pattern using a cell-common type of configuration message or a UE-specific type of configuration message.
  • BS 110 may dynamically activate or deactivate rate matching using RRC signaling, downlink control information (DCI) signaling, and/or the like.
  • DCI downlink control information
  • UE 120 and BS 110 may communicate using the second set of resources for NR RAT communication.
  • UE 120 may transmit NR RAT CSI-RSs that do not interfere with LTE RAT CRSs in a common spectrum band in accordance with a selected rate matching pattern.
  • a single channel state information reference signal (CSI-RS) pattern #4 may be defined to multiplex LTE communications (e.g., an LTE RAT 1 port CRS) and NR communications (e.g., an NR RAT CSI-RS) .
  • LTE communications e.g., an LTE RAT 1 port CRS
  • NR communications e.g., an NR RAT CSI-RS
  • LTE symbol #0 and/or #7 e.g., when using CSI-RS pattern #4
  • a 30 kHz frequency shift is used for LTE symbol #5 and/or #11.
  • CSI-RS pattern #4 repeats every 30 kHz, which may be half of an LTE CRS cycle.
  • the CSI-RS pattern repeats every 180 kHz, which corresponds to an LTE CRS repetition every RB (e.g., every 180 kHz) .
  • CSI-RS pattern #4 and the 60 kHz and 30 kHz frequency shifts results in CSI-RS transmissions at subcarriers #2 and #9.
  • CSI-RS pattern #2 in a time domain, a 60 kHz frequency shift or 75 kHz frequency shift is used for LTE symbol #0 and/or #7 and a 30 kHz frequency shift is used for LTE symbol #5 and #11.
  • CSI-RS pattern #4 in a frequency domain, CSI-RS pattern #2 is repeated every 90 kHz, resulting in two LTE CRS repetitions for every RB.
  • another single CSI-RS pattern #6 may be defined to multiplex LTE communications and NR communications for a greater quantity of CRS ports (e.g., 4 CRS ports, as shown) relative to CSI-RS patterns #4 and #2.
  • CRS ports e.g., 4 CRS ports, as shown
  • a 60 kHz or 75 kHz frequency shift is used for LTE symbol #0 and/or #7.
  • a 30 kHz frequency shift is used for LTE symbol #5 and/or #11.
  • the CSI-RS pattern repeats every 30 kHz symbol, which may be half of an LTE CRS allocation.
  • CSI-RS pattern #6 is shown for 4 CRS ports, fewer CRS ports may be used.
  • CSI-RS offsets for CRS port 3 and CRS port 4, as shown are dropped.
  • a CSI-RS pattern repeats every 360 kHz.
  • an overlap in a time domain is not necessary as may be the case for CSI-RS patterns #2 and #4.
  • a new, 30 kHz rate matching pattern configuration (e.g., a rate matching pattern for a numerology other than 15 kHz NR) may be defined for a particular quantity of CRS ports (e.g., up to 4 CRS ports, as shown) .
  • the rate matching pattern configuration may define an NR numerology, an LTE carrier frequency, an LTE bandwidth, a multicast-broadcast single-frequency network (MBSFN) configuration (e.g., that supports normal cyclic prefix (NCP) and extended cyclic prefix (ECP) configurations) , a quantity of CRS ports, a quantity of symbols (e.g., which may be scaled to the NR numerology) , and/or the like.
  • MCSFN multicast-broadcast single-frequency network
  • NCP normal cyclic prefix
  • ECP extended cyclic prefix
  • symbols e.g., which may be scaled to the NR numerology
  • symbol numbers may be scaled in accordance with a selected
  • a new, 60 kHz rate matching pattern configuration may be defined (e.g., a rate matching pattern for a numerology other than 15 kHz NR) .
  • a single NR subcarrier may cover two CRS ports, as shown.
  • no REs are available and rate matching may be performed at an RB level.
  • UE 120 and BS 110 may switch to using RB level rate matching based at least in part on determining that no REs (or a threshold quantity of REs) are available for rate matching.
  • a frequency offset may not be applied for the CSI-RS relative to the CRS, as shown.
  • Rate matching patterns for other non-15 kHz NR numerologies are possible and may differ from what is described herein.
  • a shifted rate matching pattern may be defined above and below a direct current carrier.
  • the direct current carrier may cause interference from LTE CRS onto an NR communication rate matching around the LTE CRS.
  • the direct current carrier is used above and below the LTE carrier.
  • the CRS may be at even carriers, CRS REs may be muted at symbols #0 and #7, whole symbols #4 and #11 may be muted, and/or the like.
  • the rate matching pattern may be shifted at resource blocks below the direct current carrier with CRS REs #4 and #11 mutes and whole symbols #0 and #7 muted.
  • an odd carrier may become an even carrier, which could result interference from an LTE RAT CRS to an NR RAT CSI-RS when a threshold SCS is used.
  • relative half RBs may be muted.
  • the even carrier may become an odd carrier which may enable RE level rate matching at the half RBs below the direct current carrier.
  • Figs. 7A-7F are provided as examples. Other examples may differ from what is described with respect to Figs. 7A-7F.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with various aspects of the present disclosure.
  • Example process 800 is an example where a UE (e.g., UE 120 and/or the like) performs operations associated with rate matching for spectrum sharing between different radio access technologies.
  • a UE e.g., UE 120 and/or the like
  • process 800 may include determining a first resource allocation for a first radio access technology (RAT) in a spectrum band (block 810) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • RAT radio access technology
  • process 800 may include determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band (block 820) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the first RAT is Long Term Evolution and the second RAT is New Radio.
  • the first RAT and the second RAT share the one or more rate matching patterns.
  • the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
  • the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
  • the one or more rate matching patterns are associated with a frequency offset.
  • the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
  • a rate matching configuration which includes the one or more rate matching patterns, is associated with at least one of a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
  • the one or more rate matching patterns are identified by a radio resource control configuration.
  • the radio resource control configuration is a cell-specific configuration or a UE-specific configuration.
  • process 800 may include communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns (block 830) .
  • the UE e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like
  • the one or more rate matching patterns include a resource block level rate matching pattern.
  • the resource block level rate matching pattern is for a first set of symbols.
  • the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
  • process 800 includes receiving an activation message, and communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns includes communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the activation message.
  • process 800 includes receiving a deactivation message, and halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the deactivation message.
  • process 800 includes determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns, and switching to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a conceptual data flow diagram illustrating an example 900 of a data flow between different modules/means/components in an example apparatus 902.
  • the apparatus 902 may include, for example, a UE (e.g., UE 120) .
  • the apparatus 902 includes a reception module 904, a determining module 906, and/or a transmission module 908.
  • reception module 904 may receive data 950 from BS 920.
  • reception module 904 may receive information associated with configuring a rate matching pattern, activating rate matching, deactivating rate matching, and/or the like.
  • reception module 904 may provide the information to determining module 906 to enable determining module 906 to determine resource allocations for transmitting and/or receiving in accordance with a rate matching pattern.
  • determining module 906 may be associated with determining resource allocations for rate matching, as described above in connection with Figs. 7A-7F. For example, determining module 906 may determine a rate matching pattern to enable NR RAT CSI-RS transmission to occur without interfering with LTE RAT CRS transmission. In this case, determining module 906 controls reception module 904 and/or transmission module 908 to control CSI-RS and/or CRS transmission and/or reception.
  • transmission module 908 may be associated with transmitting data 952 to BS 920.
  • transmission module 910 may transmit a a CSI-RS or CRS to BS 920 in accordance with a rate matching pattern.
  • apparatus 902 may include additional modules that perform each of the blocks of the algorithm in the aforementioned flowchart of Fig. 8. Each block in the aforementioned flow charts of Fig. 8 may be performed by a module, and apparatus 902 may include one or more of those modules.
  • the modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • Fig. 9 The number and arrangement of modules shown in Fig. 9 are provided as an example. In practice, there may be additional modules, fewer modules, different modules, or differently arranged modules than those shown in Fig. 9. Furthermore, two or more modules shown in Fig. 9 may be implemented within a single module, or a single module shown in Fig. 9 may be implemented as multiple, distributed modules. Additionally, or alternatively, a set of modules (e.g., one or more modules) shown in Fig. 9 may perform one or more functions described as being performed by another set of modules shown in Fig. 9.
  • Fig. 10 is a diagram illustrating an example 1000 of a hardware implementation for an apparatus 902′ (e.g., apparatus 902 described above in connection with Fig. 9) employing a processing system 1002.
  • the apparatus 902′ may include, for example, a UE (e.g., UE 120) .
  • the processing system 1002 may be implemented with a bus architecture, represented generally by the bus 1004.
  • the bus 1004 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1002 and the overall design constraints.
  • the bus 1004 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1006, the modules 904, 906, and/or 908, and the computer-readable medium /memory 1008.
  • the bus 1004 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described any further.
  • the processing system 1002 may be coupled to a transceiver 1010.
  • the transceiver 1010 is coupled to one or more antennas 1012.
  • the transceiver 1010 provides a means for communicating with various other apparatuses over a transmission medium.
  • the transceiver 1010 receives a signal from the one or more antennas 1012, extracts information from the received signal, and provides the extracted information to the processing system 1002.
  • the transceiver 1010 receives information from the processing system 1002 and, based at least in part on the received information, generates a signal to be applied to the one or more antennas 1012.
  • the processing system 1002 includes a processor 1006 coupled to a computer-readable medium /memory 1008.
  • the processor 1006 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1008.
  • the software when executed by the processor 1006, causes the processing system 1002 to perform the various functions described above for any particular apparatus.
  • the computer-readable medium /memory 1008 may also be used for storing data that is manipulated by the processor 1006 when executing software.
  • the processing system further includes at least one of the modules 904, 906, and/or 908.
  • the modules may be software modules running in the processor 1006, resident/stored in the computer readable medium /memory 1008, one or more hardware modules coupled to the processor 1006, or some combination thereof.
  • the apparatus 902′ for wireless communication includes means for determining a first resource allocation for a first radio access technology (RAT) in a spectrum band, means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, means for receiving an activation message, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the activation message, means for receiving a deactivation message, means for halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the deactivation message, means for determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns, and/or means for switching to using the resource block level rate matching pattern based at least
  • Fig. 10 is provided as an example. Other examples may differ from what is described with regard to Fig. 10.
  • Fig. 11 is a diagram illustrating an example process 1100 performed, for example, by a BS, in accordance with various aspects of the present disclosure.
  • Example process 1100 is an example where a BS (e.g., BS 110 and/or the like) performs operations associated with rate matching for spectrum sharing between different radio access technologies.
  • a BS e.g., BS 110 and/or the like
  • process 1100 may include determining a first resource allocation for a first radio access technology (RAT) in a spectrum band (block 1110) .
  • the BS e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • RAT radio access technology
  • process 1100 may include determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band (block 1120) .
  • the BS e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • the first RAT is an LTE RAT and the second RAT is an NR RAT.
  • the first RAT and the second RAT share the one or more rate matching patterns.
  • the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
  • the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
  • the one or more rate matching patterns are associated with a frequency offset.
  • the one or more rate matching patterns include a resource block level rate matching pattern.
  • the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
  • a rate matching configuration which includes the one or more rate matching patterns, is associated with at least one of a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
  • the one or more rate matching patterns are identified by a radio resource control configuration.
  • the radio resource control configuration is a cell-specific configuration or a user equipment-specific configuration.
  • process 1100 includes transmitting an activation message, and communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns includes communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the activation message.
  • process 1100 includes transmitting a deactivation message, and halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the deactivation message.
  • process 1100 may include communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns (block 1130) .
  • the BS e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like
  • process 1100 includes determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns, and switching to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
  • the resource block level rate matching pattern is for a first set of symbols.
  • the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
  • Process 1100 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 1100 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 11. Additionally, or alternatively, two or more of the blocks of process 1100 may be performed in parallel.
  • Fig. 12 is a conceptual data flow diagram illustrating an example 1200 of a data flow between different modules/means/components in an example apparatus 1202.
  • the apparatus 1202 may include, for example, a BS (e.g., BS 110) .
  • the apparatus 1202 includes a reception module 1204, a determining module 1206, and/or a transmission module 1208.
  • reception module 1204 may be associated with receiving data 1250 from UE 1220.
  • reception module 1204 may receive a CSI-RS or CRS from UE 1220 in accordance with a rate matching pattern.
  • determining module 1206 may be associated with determining resource allocations for rate matching, as described above in connection with Figs. 7A-7F. For example, determining module 1206 may determine a rate matching pattern to enable NR RAT CSI-RS transmission to occur without interfering with LTE RAT CRS transmission. In this case, determining module 1206 controls reception module 1204 and/or transmission module 1208 to control CSI-RS and/or CRS transmission and/or reception. In some aspects, determining module 1206 may determine resource allocations for transmitting and/or receiving in accordance with a rate matching pattern.
  • transmission module 1208 may transmit data 1252 to UE 1220.
  • transmission module 1208 may transmit information associated with configuring a rate matching pattern, activating rate matching, deactivating rate matching, and/or the like.
  • apparatus 1202 may include additional modules that perform each of the blocks of the algorithm in the aforementioned flowchart of Fig. 11. Each block in the aforementioned flow charts of Fig. 11 may be performed by a module, and apparatus 1202 may include one or more of those modules.
  • the modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
  • Fig. 12 The number and arrangement of modules shown in Fig. 12 are provided as an example. In practice, there may be additional modules, fewer modules, different modules, or differently arranged modules than those shown in Fig. 12. Furthermore, two or more modules shown in Fig. 12 may be implemented within a single module, or a single module shown in Fig. 12 may be implemented as multiple, distributed modules. Additionally, or alternatively, a set of modules (e.g., one or more modules) shown in Fig. 12 may perform one or more functions described as being performed by another set of modules shown in Fig. 12.
  • Fig. 13 is a diagram illustrating an example 1300 of a hardware implementation for an apparatus 1202′ (e.g., apparatus 1202 described above in connection with Fig. 12) employing a processing system 1302.
  • the apparatus 1202′ may include, for example, a BS (e.g., BS 110) .
  • the processing system 1302 may be implemented with a bus architecture, represented generally by the bus 1304.
  • the bus 1304 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1302 and the overall design constraints.
  • the bus 1304 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1306, the modules 1204, 1206, and/or 1208, and the computer-readable medium /memory 1308.
  • the bus 1304 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described any further.
  • the processing system 1302 may be coupled to a transceiver 1310.
  • the transceiver 1310 is coupled to one or more antennas 1312.
  • the transceiver 1310 provides a means for communicating with various other apparatuses over a transmission medium.
  • the transceiver 1310 receives a signal from the one or more antennas 1312, extracts information from the received signal, and provides the extracted information to the processing system 1302.
  • the transceiver 1310 receives information from the processing system 1302 and, based at least in part on the received information, generates a signal to be applied to the one or more antennas 1312.
  • the processing system 1302 includes a processor 1306 coupled to a computer-readable medium /memory 1308.
  • the processor 1306 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1308.
  • the software when executed by the processor 1306, causes the processing system 1302 to perform the various functions described above for any particular apparatus.
  • the computer-readable medium /memory 1308 may also be used for storing data that is manipulated by the processor 1306 when executing software.
  • the processing system further includes at least one of the modules 1204, 1206, and/or 1208.
  • the modules may be software modules running in the processor 1306, resident/stored in the computer readable medium /memory 1308, one or more hardware modules coupled to the processor 1306, or some combination thereof.
  • the apparatus 1202′ for wireless communication includes means for determining a first resource allocation for a first radio access technology (RAT) in a spectrum band, means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, means for transmitting an activation message, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the activation message, means for transmitting a deactivation message, means for halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the deactivation message, means for determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns, and/or means for switching to using the resource block level rate matching pattern
  • Fig. 13 is provided as an example. Other examples may differ from what is described with regard to Fig. 13.
  • ком ⁇ онент is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine a first resource allocation for a first radio access technology (RAT) in a spectrum band. The UE may determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band. The UE may communicate the second RAT and the second resource allocation in accordance with the one or more rate matching patterns. Numerous other aspects are provided.

Description

RATE MATCHING FOR SPECTRUM SHARING BETWEEN DIFFERENT RADIO ACCESS TECHNOLOGIES
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for rate matching for spectrum sharing between different radio access technologies.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless communication network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the  LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE and NR technologies. Preferably, these improvements should be applicable to other multiple access technologies and the telecommunication standards that employ these technologies.
SUMMARY
In some aspects, a method of wireless communication, performed by a user equipment (UE) , may include determining a first resource allocation for a first radio access technology (RAT) in a spectrum band; determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
In some aspects, a UE for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine a first resource allocation for a first RAT in a spectrum band; determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
In some aspects, a method of wireless communication, performed by a base station (BS) , may include determining a first resource allocation for a first RAT in a spectrum band; determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
In some aspects, a BS for wireless communication may include memory and one or more processors operatively coupled to the memory. The memory and the one or more processors may be configured to determine a first resource allocation for a first RAT in a spectrum band; determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a BS, may cause the one or more processors to determine a first resource allocation for a first RAT in a spectrum band; determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
In some aspects, a non-transitory computer-readable medium may store one or more instructions for wireless communication. The one or more instructions, when executed by one or more processors of a BS, may cause the one or more processors to: determine a first resource allocation for a first RAT in a spectrum band; determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
In some aspects, an apparatus for wireless communication may include means for determining a first resource allocation for a first RAT in a spectrum band; means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
In some aspects, an apparatus for wireless communication may include means for determining a first resource allocation for a first RAT in a spectrum band; means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the  spectrum band; and means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the accompanying drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a block diagram conceptually illustrating an example of a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 2 is a block diagram conceptually illustrating an example of a base station in communication with a UE in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of a downlink frame structure in LTE, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example of an uplink frame structure in LTE, in accordance with various aspects of the present disclosure.
Fig. 5 is a block diagram conceptually illustrating an example of a frame structure in a wireless communication network, in accordance with various aspects of the present disclosure.
Fig. 6 is a block diagram conceptually illustrating an example slot format with a normal cyclic prefix, in accordance with various aspects of the present disclosure.
Figs. 7A-7F are diagrams illustrating an example of rate matching for spectrum sharing between different RATs, in accordance with various aspects of the present disclosure.
Fig. 8 is a diagram illustrating an example process performed, for example, by a user equipment, in accordance with various aspects of the present disclosure.
Fig. 9 is a conceptual data flow diagram illustrating an example of a data flow between different modules/means/components in an example apparatus.
Fig. 10 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
Fig. 11 is a diagram illustrating an example process performed, for example, by a base station, in accordance with various aspects of the present disclosure.
Fig. 12 is a conceptual data flow diagram illustrating an example of a data flow between different modules/means/components in an example apparatus.
Fig. 13 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of  the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with 3G and/or 4G wireless technologies, aspects of the present disclosure can be applied in other generation-based communication systems, such as 5G and later, including NR technologies.
Fig. 1 is a diagram illustrating a wireless network 100 in which aspects of the present disclosure may be practiced. The wireless network 100 may be an LTE network or some other wireless network, such as a 5G or NR network. The wireless network 100 may include a number of BSs 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A BS is an entity that communicates with user equipment (UEs) and may also be referred to as a base station, a NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area  and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay station 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay station may also be referred to as a relay BS, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example, macro BSs may have a high transmit power level (e.g., 5 to 40 Watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 Watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with  the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. MTC and eMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 shows a block diagram of a design 200 of base station 110 and UE 120, which may be one of the base stations and one of the UEs in Fig. 1. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., the cell-specific reference signal (CRS) ) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may  be transmitted via T antennas 234a through 234t, respectively. According to various aspects described in more detail below, the synchronization signals can be generated with location encoding to convey additional information.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports comprising RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with rate matching for spectrum sharing between different RATs, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 1100 of Fig. 11, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may comprise a non-transitory computer-readable medium storing one or more instructions for wireless communication. For example, the one or more instructions, when executed by one or more processors of the base station 110 and/or the UE 120, may perform or direct operations of, for example, process 800 of Fig. 8, process 1100 of Fig. 11, and/or other processes as described herein. A scheduler 246 may schedule UEs for data transmission on the downlink and/or uplink.
In some aspects, UE 120 may include means for determining a first resource allocation for a first radio access technology (RAT) in a spectrum band, means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, and/or the like. In some aspects, such means may include one or more components of UE 120 described in connection with Fig. 2, such as controller/processor 280, transmit processor 264, TX MIMO processor 266, MOD 254, antenna 252, DEMOD 254, MIMO detector 256, receive processor 258, and/or the like.
In some aspects, base station 110 may include means for determining a first resource allocation for a first RAT in a spectrum band, means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, and/or the like. In some aspects, such means may include one or more components of base station 110 described in connection with Fig. 2, such as antenna 234, DEMOD 232, MIMO detector 236, receive processor  238, controller/processor 240, transmit processor 220, TX MIMO processor 230, MOD 232, antenna 234, and/or the like.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
Fig. 3 is a diagram illustrating an example 300 of a downlink (DL) frame structure in LTE, in accordance with various aspects of the present disclosure. A frame (e.g., of 10 milliseconds (ms) ) may be divided into 10 equally sized sub-frames with indices of 0 through 9. Each sub-frame may include two consecutive time slots. A resource grid may be used to represent two time slots, each time slot including a resource block (RB) . The resource grid is divided into multiple resource elements (REs) . In LTE, a resource block includes 12 consecutive subcarriers in the frequency domain and, for a normal cyclic prefix in each OFDM symbol, 7 consecutive OFDM symbols in the time domain, or 84 resource elements. For an extended cyclic prefix, a resource block includes 6 consecutive OFDM symbols in the time domain and has 72 resource elements. Some of the resource elements, as indicated as R 310 and R 320, include downlink (DL) reference signals (DL-RS) . The DL-RS include cell-specific RS (CRS) (also sometimes called common RS) 310 and UE-specific RS (UE-RS) 320. UE-RS 320 are transmitted on the resource blocks upon which the corresponding physical DL shared channel (PDSCH) is mapped. The quantity of bits carried by each resource element depends on the modulation scheme. Thus, the more resource blocks that a UE receives and the higher the modulation scheme, the higher the data rate for the UE.
In LTE, a BS may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) for each cell in the BS. The primary and secondary synchronization signals may be sent in  symbol periods  6 and 5, respectively, in each of  subframes  0 and 5 of each radio frame with the normal cyclic prefix (CP) . The synchronization signals may be used by UEs for cell detection and acquisition. The BS may send a physical broadcast channel (PBCH) in symbol periods 0 to 3 in slot 1 of subframe 0. The PBCH may carry certain system information.
The BS may send a physical control format indicator channel (PCFICH) in the first symbol period of each subframe. The PCFICH may convey the number of symbol periods (M) used for control channels, where M may be equal to 1, 2 or 3 and may change from subframe to subframe. M may also be equal to 4 for a small system bandwidth, e.g., with less than 10 resource blocks. The BS may send a physical hybrid automatic repeat request (HARQ) indicator channel (PHICH) and a physical downlink  control channel (PDCCH) in the first M symbol periods of each subframe. The PHICH may carry information to support HARQ. The PDCCH may carry information on resource allocation for UEs and control information for downlink channels. The BS may send a physical downlink shared channel (PDSCH) in the remaining symbol periods of each subframe. The PDSCH may carry data for UEs scheduled for data transmission on the downlink.
The BS may send the PSS, SSS, and PBCH in the center 1.08 MHz of the system bandwidth used by the BS. The BS may send the PCFICH and PHICH across the entire system bandwidth in each symbol period in which these channels are sent. The BS may send the PDCCH to groups of UEs in certain portions of the system bandwidth. The BS may send the PDSCH to specific UEs in specific portions of the system bandwidth. The BS may send the PSS, SSS, PBCH, PCFICH, and PHICH in a broadcast manner to all UEs, may send the PDCCH in a unicast manner to specific UEs, and may also send the PDSCH in a unicast manner to specific UEs.
A plurality of resource elements may be available in each symbol period. Each resource element (RE) may cover one subcarrier in one symbol period and may be used to send one modulation symbol, which may be a real or complex value. Resource elements not used for a reference signal in each symbol period may be arranged into resource element groups (REGs) . Each REG may include four resource elements in one symbol period. The PCFICH may occupy four REGs, which may be spaced approximately equally across frequency, in symbol period 0. The PHICH may occupy three REGs, which may be spread across frequency, in one or more configurable symbol periods. For example, the three REGs for the PHICH may all belong in symbol period 0 or may be spread in  symbol periods  0, 1, and 2. The PDCCH may occupy 9, 18, 36, or 72 REGs, which may be selected from the available REGs, in the first M symbol periods, for example. Only certain combinations of REGs may be allowed for the PDCCH.
A UE may store information identifying the specific REGs used for the PHICH and the PCFICH. The UE may search different combinations of REGs for the PDCCH. The number of combinations to search is typically less than the number of allowed combinations for the PDCCH. A BS may send the PDCCH to the UE in any of the combinations that the UE will search.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what was described above in connection with Fig. 3.
Fig. 4 is a diagram illustrating an example 400 of an uplink (UL) frame structure in LTE, in accordance with various aspects of the present disclosure. The available resource blocks for the UL may be partitioned into a data section and a control section. The control section may be formed at the two edges of the system bandwidth and may have a configurable size. The resource blocks in the control section may be assigned to UEs for transmission of control information. The data section may include all resource blocks not included in the control section. The UL frame structure results in the data section including contiguous subcarriers, which may allow a single UE to be assigned all of the contiguous subcarriers in the data section.
A UE may be assigned  resource blocks  410a, 410b in the control section to transmit control information to a BS. The UE may also be assigned  resource blocks  420a, 420b in the data section to transmit data to the BS. The UE may transmit control information in a physical UL control channel (PUCCH) on the assigned resource blocks in the control section. The UE may transmit only data or both data and control information in a physical UL shared channel (PUSCH) on the assigned resource blocks in the data section. A UL transmission may span both slots of a subframe and may hop across frequencies.
A set of resource blocks may be used to perform initial system access and achieve UL synchronization in a physical random access channel (PRACH) 430. The PRACH 430 carries a random sequence and cannot carry any UL data/signaling. Each random access preamble occupies a bandwidth corresponding to six consecutive resource blocks. The starting frequency is specified by the network. That is, the transmission of the random access preamble is restricted to certain time and frequency resources. There is no frequency hopping for the PRACH. The PRACH attempt is carried in a single subframe (e.g., of 1 ms) or in a sequence of a few contiguous subframes, and a UE can make only a single PRACH attempt per frame (e.g., of 10 ms) .
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what was described above in connection with Fig. 4.
Fig. 5 shows an example frame structure 500 for frequency division duplexing (FDD) in another telecommunications system (e.g., NR) . The transmission timeline for each of the downlink and uplink may be partitioned into units of radio frames (sometimes referred to as frames) . Each radio frame may have a predetermined duration (e.g., 10 ms) and may be partitioned into a set of Z (Z ≥ 1) subframes (e.g., with indices of 0 through Z-1) . Each subframe may have a predetermined duration  (e.g., 1 ms) and may include a set of slots (e.g., 2 m slots per subframe are shown in Fig. 5, where m is a numerology used for a transmission, such as 0, 1, 2, 3, 4, and/or the like) . Each slot may include a set of L symbol periods. For example, each slot may include fourteen symbol periods (e.g., as shown in Fig. 5) , seven symbol periods, or another number of symbol periods. In a case where the subframe includes two slots (e.g., when m = 1) , the subframe may include 2L symbol periods, where the 2L symbol periods in each subframe may be assigned indices of 0 through 2L–1. In some aspects, a scheduling unit for the FDD may be frame-based, subframe-based, slot-based, symbol-based, and/or the like.
While some techniques are described herein in connection with frames, subframes, slots, and/or the like, these techniques may equally apply to other types of wireless communication structures, which may be referred to using terms other than “frame, ” “subframe, ” “slot, ” and/or the like in 5G NR. In some aspects, a wireless communication structure may refer to a periodic time-bounded communication unit defined by a wireless communication standard and/or protocol. Additionally, or alternatively, different configurations of wireless communication structures than those shown in Fig. 5 may be used.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 shows an example slot format 610 with a normal cyclic prefix. The available time frequency resources may be partitioned into resource blocks. Each resource block may cover a set of subcarriers (e.g., 12 subcarriers) in one slot and may include a number of resource elements. Each resource element may cover one subcarrier in one symbol period (e.g., in time) and may be used to send one modulation symbol, which may be a real or complex value.
An interlace structure may be used for each of the downlink and uplink for FDD in certain telecommunications systems (e.g., NR) . For example, Q interlaces with indices of 0 through Q –1 may be defined, where Q may be equal to 4, 6, 8, 10, or some other value. Each interlace may include slots that are spaced apart by Q frames. In particular, interlace q may include slots q, q + Q, q + 2Q, etc., where q ∈ {0, …, Q –1} .
A UE may be located within the coverage of multiple BSs. One of these BSs may be selected to serve the UE. The serving BS may be selected based at least in part on various criteria such as received signal strength, received signal quality, path loss, and/or the like. Received signal quality may be quantified by a signal-to-noise-and- interference ratio (SNIR) , or a reference signal received quality (RSRQ) , or some other metric. The UE may operate in a dominant interference scenario in which the UE may observe high interference from one or more interfering BSs.
While aspects of the examples described herein may be associated with NR or 5G technologies, aspects of the present disclosure may be applicable with other wireless communication systems. New Radio (NR) may refer to radios configured to operate according to a new air interface (e.g., other than Orthogonal Frequency Divisional Multiple Access (OFDMA) -based air interfaces) or fixed transport layer (e.g., other than Internet Protocol (IP) ) . In aspects, NR may utilize OFDM with a CP (herein referred to as cyclic prefix OFDM or CP-OFDM) and/or SC-FDM on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using time division duplexing (TDD) . In aspects, NR may, for example, utilize OFDM with a CP (herein referred to as CP-OFDM) and/or discrete Fourier transform spread orthogonal frequency-division multiplexing (DFT-s-OFDM) on the uplink, may utilize CP-OFDM on the downlink and include support for half-duplex operation using TDD. NR may include Enhanced Mobile Broadband (eMBB) service targeting wide bandwidth (e.g., 80 megahertz (MHz) and beyond) , millimeter wave (mmW) targeting high carrier frequency (e.g., 60 gigahertz (GHz) ) , massive MTC (mMTC) targeting non-backward compatible MTC techniques, and/or mission critical targeting ultra-reliable low latency communications (URLLC) service.
In some aspects, a single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 60 or 120 kilohertz (kHz) over a 0.1 ms duration. Each radio frame may include 40 slots and may have a length of 10 ms. Consequently, each slot may have a length of 0.25 ms. Each slot may indicate a link direction (e.g., DL or UL) for data transmission and the link direction for each slot may be dynamically switched. Each slot may include DL/UL data as well as DL/UL control data.
Beamforming may be supported and beam direction may be dynamically configured. MIMO transmissions with precoding may also be supported. MIMO configurations in the DL may support up to 8 transmit antennas with multi-layer DL transmissions up to 8 streams and up to 2 streams per UE. Multi-layer transmissions with up to 2 streams per UE may be supported. Aggregation of multiple cells may be supported with up to 8 serving cells. Alternatively, NR may support a different air  interface, other than an OFDM-based interface. NR networks may include entities such as central units or distributed units.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
In some communications systems, a plurality of RATs may be deployed in a common area. For example, in a particular area, one or more BSs may provide an LTE RAT, an NR RAT, and/or the like. It may be advantageous for one or more BSs to use dynamic spectrum sharing (DSS) techniques to enable a plurality of RATs to use a common spectrum band. For example, a BS may provide an LTE RAT with a particular band (e.g., of 20 MHz) , and may also provide the NR RAT to share the LTE band. In this case, the BS may multiplex the LTE RAT and the NR RAT into the particular band, such as using time division multiplexing, frequency division multiplexing, and/or the like. However, as LTE is a legacy technology, adapting LTE for use in a common spectrum band with NR may be cost-prohibitive, may result in compatibility issues with legacy UEs, and/or the like.
Some aspects described herein enable rate matching for spectrum sharing between different RATs. For example, one or more rate matching patterns may be defined for NR to enable a UE to perform rate matching around a cell-specific reference signal (CRS) of an LTE RAT. In this case, the UE may occupy, for NR RAT communications, a portion of a resource that is not used by the LTE RAT for CRS transmission. For example, the UE may transmit an NR channel state information reference signal (CSI-RS) , thereby enabling an LTE RAT CRS and an NR RAT CSI-RS to share a common spectrum band. In this way, the UE and the BS improve utilization of network resources by reducing a quantity of resources that go unused by a particular RAT, such as an LTE RAT.
Figs. 7A-7F are diagrams illustrating an example 700 of rate matching for spectrum sharing between different radio access technologies, in accordance with various aspects of the present disclosure. As shown in Fig. 7A, example 700 includes a BS 110 and a UE 120.
As further shown in Fig. 7A, and by reference numbers 710, UE 120 and/or BS 110 may determine a first resource allocation for a first RAT and a second resource allocation for a second RAT in accordance with a rate matching pattern. For example, UE 120 and BS 110 may determine a first set of resources reserved for use with an LTE RAT, and may identify a rate matching pattern to occupy a second set of resources not  reserved for use with the LTE RAT but in a common spectrum band with the LTE RAT. In some aspects, the first set of resources reserved for use with the LTE RAT may be reserved for CRS transmission. For example, UE 120 and BS 110 may determine the first set of resources based at least in part on one or more parameters for the LTE RAT, such as a quantity of CRS ports enabled for CRS transmission, whether multicast-broadcast single frequency network (MBSFN) operation is enabled, and/or the like. Additionally, or alternatively, UE 120 and BS 110 may determine the second set of resources based at least in part on one or more parameters for the NR RAT, such as a quantity of CSI-RSs that are to be transmitted, a periodicity, a numerology, and/or the like. In some aspects, UE 120 and BS 110 may select a particular frequency and/or band for rate matching. For example, UE 120 and BS 110 may rate match 30 kHz NR around 15 kHz LTE at band 41 (e.g., at 2500 MHz) .
In some aspects, UE 120 and BS 110 may select a rate matching pattern. For example, UE 120 and BS 110 may select the rate matching pattern to provide the second set of resources without interfering with the first set of resources. In this way, UE 120 and BS 110 use the rate matching pattern to enable NR RAT CSI-RS transmission without interfering with LTE RAT CRS transmission. In some aspects, the rate matching pattern is an NR zero-power CSI-RS (NR-ZP-CSI-RS) rate matching pattern. For example, UE 120 and BS 110 may select one or more of CSI-RS patterns #4, #2, #6, and/or the like, which are defined for NR-ZP-CSI-RS operation and are described below with regard to Figs. 7B-7C. Additionally, or alternatively, UE 120 and BS 110 may define a rate matching pattern for rate matching around an LTE CRS, as is described below with regard to Figs. 7D-7E. In some aspects, UE 120 and BS 110 may select multiple rate matching patterns. For example, UE 120 and BS 110 may select a first rate matching pattern for a first quantity of CRS ports, a second rate matching pattern for a second quantity of CRS ports, and/or the like. In this case, UE 120 and BS 110 may periodically use a particular rate matching pattern based at least in part on a quantity of CRS ports in use. In some aspects, UE 120 and BS 110 may switch between rate matching levels. For example, UE 120 and BS 110 may switch from a resource element level rate matching pattern to a resource block level rate matching pattern.
In some aspects, UE 120 and BS 110 may communicate to define a new rate matching pattern. For example, BS 110 may determine the rate matching pattern (e.g., a non-ZP-CSI-RS rate matching pattern) , and may transmit an RRC message to identify the rate matching pattern to UE 120. In some aspects, BS 110 may configure the rate  matching pattern using a cell-common type of configuration message or a UE-specific type of configuration message. In some aspects, BS 110 may dynamically activate or deactivate rate matching using RRC signaling, downlink control information (DCI) signaling, and/or the like.
As further shown in Fig. 7A, and by reference number 720, UE 120 and BS 110 may communicate using the second set of resources for NR RAT communication. For example, UE 120 may transmit NR RAT CSI-RSs that do not interfere with LTE RAT CRSs in a common spectrum band in accordance with a selected rate matching pattern.
As shown in Fig. 7B, a single channel state information reference signal (CSI-RS) pattern #4 may be defined to multiplex LTE communications (e.g., an LTE RAT 1 port CRS) and NR communications (e.g., an NR RAT CSI-RS) . In this case, with regard to a time domain, a 60 kHz frequency shift, as shown, (or a 75 kHz frequency shift in another example) is used for LTE symbol #0 and/or #7 (e.g., when using CSI-RS pattern #4) . Similarly, a 30 kHz frequency shift is used for LTE symbol #5 and/or #11. As shown, CSI-RS pattern #4 repeats every 30 kHz, which may be half of an LTE CRS cycle. With regard to a frequency domain, the CSI-RS pattern repeats every 180 kHz, which corresponds to an LTE CRS repetition every RB (e.g., every 180 kHz) . Using CSI-RS pattern #4 and the 60 kHz and 30 kHz frequency shifts, as shown, results in CSI-RS transmissions at subcarriers #2 and #9.
Similarly, in another example with CSI-RS pattern #2, in a time domain, a 60 kHz frequency shift or 75 kHz frequency shift is used for LTE symbol #0 and/or #7 and a 30 kHz frequency shift is used for LTE symbol #5 and #11. However, in contrast with CSI-RS pattern #4, in a frequency domain, CSI-RS pattern #2 is repeated every 90 kHz, resulting in two LTE CRS repetitions for every RB.
As shown in Fig. 7C, another single CSI-RS pattern #6 may be defined to multiplex LTE communications and NR communications for a greater quantity of CRS ports (e.g., 4 CRS ports, as shown) relative to CSI-RS patterns #4 and #2. For example, in a time domain, a 60 kHz or 75 kHz frequency shift is used for LTE symbol #0 and/or #7. Similarly, a 30 kHz frequency shift is used for LTE symbol #5 and/or #11. As shown, the CSI-RS pattern repeats every 30 kHz symbol, which may be half of an LTE CRS allocation. Although CSI-RS pattern #6 is shown for 4 CRS ports, fewer CRS ports may be used. For example, when 2 CRS ports are configured, CSI-RS offsets for CRS port 3 and CRS port 4, as shown, are dropped. In a frequency domain, a CSI-RS  pattern repeats every 360 kHz. As a result, an overlap in a time domain is not necessary as may be the case for CSI-RS patterns #2 and #4. Although some aspects are described in terms of a set of example CSI-RS patterns (e.g., NR-ZP-CSI-RS patterns) , other CSI-RS patterns may differ from what is described herein.
As shown in Fig. 7D, a new, 30 kHz rate matching pattern configuration (e.g., a rate matching pattern for a numerology other than 15 kHz NR) may be defined for a particular quantity of CRS ports (e.g., up to 4 CRS ports, as shown) . The rate matching pattern configuration may define an NR numerology, an LTE carrier frequency, an LTE bandwidth, a multicast-broadcast single-frequency network (MBSFN) configuration (e.g., that supports normal cyclic prefix (NCP) and extended cyclic prefix (ECP) configurations) , a quantity of CRS ports, a quantity of symbols (e.g., which may be scaled to the NR numerology) , and/or the like. For 30 kHz NR (e.g., with symbols #0 to 9) , symbol numbers may be scaled in accordance with a selected numerology.
As shown in Fig. 7E, a new, 60 kHz rate matching pattern configuration may be defined (e.g., a rate matching pattern for a numerology other than 15 kHz NR) . In this case, a single NR subcarrier may cover two CRS ports, as shown. In a case where 2 CRS ports or 4 CRS ports are configured, then no REs are available and rate matching may be performed at an RB level. In this case, UE 120 and BS 110 may switch to using RB level rate matching based at least in part on determining that no REs (or a threshold quantity of REs) are available for rate matching. Moreover, based at least in part on the rate matching pattern being for 60 kHz, a frequency offset may not be applied for the CSI-RS relative to the CRS, as shown. Rate matching patterns for other non-15 kHz NR numerologies are possible and may differ from what is described herein.
As shown in Fig. 7F a shifted rate matching pattern may be defined above and below a direct current carrier. For example, the direct current carrier may cause interference from LTE CRS onto an NR communication rate matching around the LTE CRS. Int his case, for single port CRS, the direct current carrier is used above and below the LTE carrier. In this case, the CRS may be at even carriers, CRS REs may be muted at symbols #0 and #7, whole symbols #4 and #11 may be muted, and/or the like. Additionally, or alternatively, the rate matching pattern may be shifted at resource blocks below the direct current carrier with CRS REs #4 and #11 mutes and whole symbols #0 and #7 muted. In this case, an odd carrier may become an even carrier, which could result interference from an LTE RAT CRS to an NR RAT CSI-RS when a  threshold SCS is used. As a result, relative half RBs may be muted. In contrast, the even carrier may become an odd carrier which may enable RE level rate matching at the half RBs below the direct current carrier.
As indicated above, Figs. 7A-7F are provided as examples. Other examples may differ from what is described with respect to Figs. 7A-7F.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with various aspects of the present disclosure. Example process 800 is an example where a UE (e.g., UE 120 and/or the like) performs operations associated with rate matching for spectrum sharing between different radio access technologies.
As shown in Fig. 8, in some aspects, process 800 may include determining a first resource allocation for a first radio access technology (RAT) in a spectrum band (block 810) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine a first resource allocation for a first radio access technology (RAT) in a spectrum band, as described above in connection with Figs. 7A-7F.
As further shown in Fig. 8, in some aspects, process 800 may include determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band (block 820) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band, as described above in connection with Figs. 7A-7F.
In some aspects, the first RAT is Long Term Evolution and the second RAT is New Radio.
In some aspects, the first RAT and the second RAT share the one or more rate matching patterns.
In some aspects, the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
In some aspects, the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
In some aspects, the one or more rate matching patterns are associated with a frequency offset.
In some aspects, the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
In some aspects, a rate matching configuration, which includes the one or more rate matching patterns, is associated with at least one of a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
In some aspects, the one or more rate matching patterns are identified by a radio resource control configuration.
In some aspects, the radio resource control configuration is a cell-specific configuration or a UE-specific configuration.
As further shown in Fig. 8, in some aspects, process 800 may include communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns (block 830) . For example, the UE (e.g., using receive processor 258, transmit processor 264, controller/processor 280, memory 282, and/or the like) may communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, as described above in connection with Figs. 7A-7F.
In some aspects, the one or more rate matching patterns include a resource block level rate matching pattern.
In some aspects, the resource block level rate matching pattern is for a first set of symbols. In some aspects, the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
In some aspects, process 800 includes receiving an activation message, and communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns includes communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the activation message.
In some aspects, process 800 includes receiving a deactivation message, and halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the deactivation message.
In some aspects, process 800 includes determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns, and switching to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a conceptual data flow diagram illustrating an example 900 of a data flow between different modules/means/components in an example apparatus 902. The apparatus 902 may include, for example, a UE (e.g., UE 120) . In some aspects, the apparatus 902 includes a reception module 904, a determining module 906, and/or a transmission module 908.
In some aspects, reception module 904 may receive data 950 from BS 920. For example, reception module 904 may receive information associated with configuring a rate matching pattern, activating rate matching, deactivating rate matching, and/or the like. In this case, reception module 904 may provide the information to determining module 906 to enable determining module 906 to determine resource allocations for transmitting and/or receiving in accordance with a rate matching pattern.
In some aspects, determining module 906 may be associated with determining resource allocations for rate matching, as described above in connection with Figs. 7A-7F. For example, determining module 906 may determine a rate matching pattern to enable NR RAT CSI-RS transmission to occur without interfering with LTE RAT CRS transmission. In this case, determining module 906 controls reception module 904 and/or transmission module 908 to control CSI-RS and/or CRS transmission and/or reception.
In some aspects, transmission module 908 may be associated with transmitting data 952 to BS 920. For example, transmission module 910 may transmit a a CSI-RS or CRS to BS 920 in accordance with a rate matching pattern.
In some aspects, apparatus 902 may include additional modules that perform each of the blocks of the algorithm in the aforementioned flowchart of Fig. 8. Each block in the aforementioned flow charts of Fig. 8 may be performed by a module, and apparatus 902 may include one or more of those modules. The modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
The number and arrangement of modules shown in Fig. 9 are provided as an example. In practice, there may be additional modules, fewer modules, different modules, or differently arranged modules than those shown in Fig. 9. Furthermore, two or more modules shown in Fig. 9 may be implemented within a single module, or a single module shown in Fig. 9 may be implemented as multiple, distributed modules. Additionally, or alternatively, a set of modules (e.g., one or more modules) shown in Fig. 9 may perform one or more functions described as being performed by another set of modules shown in Fig. 9.
Fig. 10 is a diagram illustrating an example 1000 of a hardware implementation for an apparatus 902′ (e.g., apparatus 902 described above in connection with Fig. 9) employing a processing system 1002. The apparatus 902′ may include, for example, a UE (e.g., UE 120) .
The processing system 1002 may be implemented with a bus architecture, represented generally by the bus 1004. The bus 1004 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1002 and the overall design constraints. The bus 1004 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1006, the  modules  904, 906, and/or 908, and the computer-readable medium /memory 1008. The bus 1004 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described any further.
The processing system 1002 may be coupled to a transceiver 1010. The transceiver 1010 is coupled to one or more antennas 1012. The transceiver 1010 provides a means for communicating with various other apparatuses over a transmission medium. The transceiver 1010 receives a signal from the one or more antennas 1012, extracts information from the received signal, and provides the extracted information to  the processing system 1002. In addition, the transceiver 1010 receives information from the processing system 1002 and, based at least in part on the received information, generates a signal to be applied to the one or more antennas 1012.
The processing system 1002 includes a processor 1006 coupled to a computer-readable medium /memory 1008. The processor 1006 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1008. The software, when executed by the processor 1006, causes the processing system 1002 to perform the various functions described above for any particular apparatus. The computer-readable medium /memory 1008 may also be used for storing data that is manipulated by the processor 1006 when executing software. The processing system further includes at least one of the  modules  904, 906, and/or 908. The modules may be software modules running in the processor 1006, resident/stored in the computer readable medium /memory 1008, one or more hardware modules coupled to the processor 1006, or some combination thereof.
In some aspects, the apparatus 902′ for wireless communication includes means for determining a first resource allocation for a first radio access technology (RAT) in a spectrum band, means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, means for receiving an activation message, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the activation message, means for receiving a deactivation message, means for halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the deactivation message, means for determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns, and/or means for switching to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available. The aforementioned means may be one or more of the aforementioned modules of the apparatus 902′ and/or the processing system 1002 of the apparatus 902′ configured to perform the functions recited by the aforementioned means.
As indicated above, Fig. 10 is provided as an example. Other examples may differ from what is described with regard to Fig. 10.
Fig. 11 is a diagram illustrating an example process 1100 performed, for example, by a BS, in accordance with various aspects of the present disclosure. Example process 1100 is an example where a BS (e.g., BS 110 and/or the like) performs operations associated with rate matching for spectrum sharing between different radio access technologies.
As shown in Fig. 11, in some aspects, process 1100 may include determining a first resource allocation for a first radio access technology (RAT) in a spectrum band (block 1110) . For example, the BS (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may determine a first resource allocation for a first radio access technology (RAT) in a spectrum band, as described above in connection with Figs. 7A-7F.
As further shown in Fig. 11, in some aspects, process 1100 may include determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band (block 1120) . For example, the BS (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band, as described above in connection with Figs. 7A-7F.
In some aspects, the first RAT is an LTE RAT and the second RAT is an NR RAT.
In some aspects, the first RAT and the second RAT share the one or more rate matching patterns.
In some aspects, the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
In some aspects, the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
In some aspects, the one or more rate matching patterns are associated with a frequency offset.
In some aspects, the one or more rate matching patterns include a resource block level rate matching pattern.
In some aspects, the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
In some aspects, a rate matching configuration, which includes the one or more rate matching patterns, is associated with at least one of a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
In some aspects, the one or more rate matching patterns are identified by a radio resource control configuration.
In some aspects, the radio resource control configuration is a cell-specific configuration or a user equipment-specific configuration.
In some aspects, process 1100 includes transmitting an activation message, and communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns includes communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the activation message.
In some aspects, process 1100 includes transmitting a deactivation message, and halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the deactivation message.
As further shown in Fig. 11, in some aspects, process 1100 may include communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns (block 1130) . For example, the BS (e.g., using transmit processor 220, receive processor 238, controller/processor 240, memory 242, and/or the like) may communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, as described above in connection with Figs. 7A-7F.
In some aspects, process 1100 includes determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns, and switching to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
In some aspects, the resource block level rate matching pattern is for a first set of symbols. In some aspects, the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
Process 1100 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
Although Fig. 11 shows example blocks of process 1100, in some aspects, process 1100 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 11. Additionally, or alternatively, two or more of the blocks of process 1100 may be performed in parallel.
Fig. 12 is a conceptual data flow diagram illustrating an example 1200 of a data flow between different modules/means/components in an example apparatus 1202. The apparatus 1202 may include, for example, a BS (e.g., BS 110) . In some aspects, the apparatus 1202 includes a reception module 1204, a determining module 1206, and/or a transmission module 1208.
In some aspects, reception module 1204 may be associated with receiving data 1250 from UE 1220. For example, reception module 1204 may receive a CSI-RS or CRS from UE 1220 in accordance with a rate matching pattern.
In some aspects, determining module 1206 may be associated with determining resource allocations for rate matching, as described above in connection with Figs. 7A-7F. For example, determining module 1206 may determine a rate matching pattern to enable NR RAT CSI-RS transmission to occur without interfering with LTE RAT CRS transmission. In this case, determining module 1206 controls reception module 1204 and/or transmission module 1208 to control CSI-RS and/or CRS transmission and/or reception. In some aspects, determining module 1206 may determine resource allocations for transmitting and/or receiving in accordance with a rate matching pattern.
In some aspects, transmission module 1208 may transmit data 1252 to UE 1220. For example, transmission module 1208 may transmit information associated with configuring a rate matching pattern, activating rate matching, deactivating rate matching, and/or the like.
In some aspects, apparatus 1202 may include additional modules that perform each of the blocks of the algorithm in the aforementioned flowchart of Fig. 11. Each block in the aforementioned flow charts of Fig. 11 may be performed by a module,  and apparatus 1202 may include one or more of those modules. The modules may be one or more hardware components specifically configured to carry out the stated processes/algorithm, implemented by a processor configured to perform the stated processes/algorithm, stored within a computer-readable medium for implementation by a processor, or some combination thereof.
The number and arrangement of modules shown in Fig. 12 are provided as an example. In practice, there may be additional modules, fewer modules, different modules, or differently arranged modules than those shown in Fig. 12. Furthermore, two or more modules shown in Fig. 12 may be implemented within a single module, or a single module shown in Fig. 12 may be implemented as multiple, distributed modules. Additionally, or alternatively, a set of modules (e.g., one or more modules) shown in Fig. 12 may perform one or more functions described as being performed by another set of modules shown in Fig. 12.
Fig. 13 is a diagram illustrating an example 1300 of a hardware implementation for an apparatus 1202′ (e.g., apparatus 1202 described above in connection with Fig. 12) employing a processing system 1302. The apparatus 1202′ may include, for example, a BS (e.g., BS 110) .
The processing system 1302 may be implemented with a bus architecture, represented generally by the bus 1304. The bus 1304 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 1302 and the overall design constraints. The bus 1304 links together various circuits including one or more processors and/or hardware modules, represented by the processor 1306, the  modules  1204, 1206, and/or 1208, and the computer-readable medium /memory 1308. The bus 1304 may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be described any further.
The processing system 1302 may be coupled to a transceiver 1310. The transceiver 1310 is coupled to one or more antennas 1312. The transceiver 1310 provides a means for communicating with various other apparatuses over a transmission medium. The transceiver 1310 receives a signal from the one or more antennas 1312, extracts information from the received signal, and provides the extracted information to the processing system 1302. In addition, the transceiver 1310 receives information from the processing system 1302 and, based at least in part on the received information, generates a signal to be applied to the one or more antennas 1312.
The processing system 1302 includes a processor 1306 coupled to a computer-readable medium /memory 1308. The processor 1306 is responsible for general processing, including the execution of software stored on the computer-readable medium /memory 1308. The software, when executed by the processor 1306, causes the processing system 1302 to perform the various functions described above for any particular apparatus. The computer-readable medium /memory 1308 may also be used for storing data that is manipulated by the processor 1306 when executing software. The processing system further includes at least one of the  modules  1204, 1206, and/or 1208. The modules may be software modules running in the processor 1306, resident/stored in the computer readable medium /memory 1308, one or more hardware modules coupled to the processor 1306, or some combination thereof.
In some aspects, the apparatus 1202′ for wireless communication includes means for determining a first resource allocation for a first radio access technology (RAT) in a spectrum band, means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, means for transmitting an activation message, means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the activation message, means for transmitting a deactivation message, means for halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the deactivation message, means for determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns, and/or means for switching to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available. The aforementioned means may be one or more of the aforementioned modules of the apparatus 1202′ and/or the processing system 1302 of the apparatus 1202′ configured to perform the functions recited by the aforementioned means.
As indicated above, Fig. 13 is provided as an example. Other examples may differ from what is described with regard to Fig. 13.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a processor is implemented in hardware, firmware, and/or a combination of hardware and software.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items, and may be used interchangeably with  “one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.

Claims (122)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    determining a first resource allocation for a first radio access technology (RAT) in a spectrum band;
    determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and
    communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  2. The method of claim 1, wherein the first RAT is Long Term Evolution and the second RAT is New Radio.
  3. The method of claim 1, wherein the first RAT and the second RAT share the one or more rate matching patterns.
  4. The method of claim 1, wherein the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
  5. The method of claim 1, wherein the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
  6. The method of claim 1, wherein the one or more rate matching patterns are associated with a frequency offset.
  7. The method of claim 1, wherein the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
  8. The method of claim 1, wherein a rate matching configuration, which includes the one or more rate matching patterns, is associated with at least one of: a numerology  of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
  9. The method of claim 1, wherein the one or more rate matching patterns are identified by a radio resource control configuration.
  10. The method of claim 9, wherein the radio resource control configuration is a cell-specific configuration or a UE-specific configuration.
  11. The method of claim 1, further comprising:
    receiving an activation message; and
    wherein communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns comprises:
    communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the activation message.
  12. The method of claim 1, further comprising:
    receiving a deactivation message; and
    halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the deactivation message.
  13. The method of claim 1, wherein the one or more rate matching patterns include a resource block level rate matching pattern.
  14. The method of claim 13, wherein the resource block level rate matching pattern is for a first set of symbols, and
    wherein the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
  15. The method of claim 13, further comprising:
    determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns; and
    switching to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
  16. The method of claim 1, wherein the one or more rate matching patterns includes a rate matching pattern shifted based at least in part on a direct current carrier.
  17. A method of wireless communication performed by a base station (BS) , comprising:
    determining a first resource allocation for a first radio access technology (RAT) in a spectrum band;
    determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and
    communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  18. The method of claim 17, wherein the first RAT is Long Term Evolution and the second RAT is New Radio.
  19. The method of claim 17, wherein the first RAT and the second RAT share the one or more rate matching patterns.
  20. The method of claim 17, wherein the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
  21. The method of claim 17, wherein the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
  22. The method of claim 17, wherein the one or more rate matching patterns are associated with a frequency offset.
  23. The method of claim 17, wherein the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
  24. The method of claim 17, wherein a rate matching configuration, which includes the one or more rate matching patterns, is associated with at least one of: a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
  25. The method of claim 17, wherein the one or more rate matching patterns are identified by a radio resource control configuration.
  26. The method of claim 25, wherein the radio resource control configuration is a cell-specific configuration or a user equipment-specific configuration.
  27. The method of claim 17, further comprising:
    transmitting an activation message; and
    wherein communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns comprises:
    communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the activation message.
  28. The method of claim 17, further comprising:
    transmitting a deactivation message; and
    halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the deactivation message.
  29. The method of claim 17, wherein the one or more rate matching patterns include a resource block level rate matching pattern.
  30. The method of claim 29, wherein the resource block level rate matching pattern is for a first set of symbols, and
    wherein the one or more rate matching pattern includes a resource element level rate matching pattern for a second set of symbols.
  31. The method of claim 29, further comprising:
    determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns; and
    switching to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
  32. The method of claim 17, wherein the one or more rate matching patterns includes a rate matching pattern shifted based at least in part on a direct current carrier.
  33. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine a first resource allocation for a first radio access technology (RAT) in a spectrum band;
    determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and
    communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  34. The UE of claim 33, wherein the first RAT is Long Term Evolution and the second RAT is New Radio.
  35. The UE of claim 33, wherein the first RAT and the second RAT share the one or more rate matching patterns.
  36. The UE of claim 33, wherein the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
  37. The UE of claim 33, wherein the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
  38. The UE of claim 33, wherein the one or more rate matching patterns are associated with a frequency offset.
  39. The UE of claim 33, wherein the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
  40. The UE of claim 33, wherein a rate matching configuration, which includes the one or more rate matching patterns, is associated with at least one of: a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
  41. The UE of claim 33, wherein the one or more rate matching patterns are identified by a radio resource control configuration.
  42. The UE of claim 41, wherein the radio resource control configuration is a cell-specific configuration or a UE-specific configuration.
  43. The UE of claim 33, wherein the one or more processors are further configured to:
    receive an activation message; and
    wherein the one or more processors, when communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, are to:
    communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the activation message.
  44. The UE of claim 33, wherein the one or more processors are further configured to:
    receive a deactivation message; and
    halt communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the deactivation message.
  45. The UE of claim 33, wherein the one or more rate matching patterns include a resource block level rate matching pattern.
  46. The UE of claim 45, wherein the resource block level rate matching pattern is for a first set of symbols, and
    wherein the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
  47. The UE of claim 45, wherein the one or more processors are further configured to:
    determine that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns; and
    switch to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
  48. A base station (BS) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    determine a first resource allocation for a first radio access technology (RAT) in a spectrum band;
    determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and
    communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  49. The BS of claim 48, wherein the first RAT is Long Term Evolution and the second RAT is New Radio.
  50. The BS of claim 48, wherein the first RAT and the second RAT share the one or more rate matching patterns.
  51. The BS of claim 48, wherein the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
  52. The BS of claim 48, wherein the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
  53. The BS of claim 48, wherein the one or more rate matching patterns are associated with a frequency offset.
  54. The BS of claim 48, wherein the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
  55. The BS of claim 48, wherein a rate matching configuration, which includes the one or more rate matching patterns, is associated with at least one of: a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
  56. The BS of claim 48, wherein the one or more rate matching patterns are identified by a radio resource control configuration.
  57. The BS of claim 56, wherein the radio resource control configuration is a cell-specific configuration or a user equipment-specific configuration.
  58. The BS of claim 48, wherein the one or more processors are further configured to:
    transmit an activation message; and
    wherein the one or more processors, when communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, are to:
    communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the activation message.
  59. The BS of claim 48, wherein the one or more processors are further configured to:
    transmit a deactivation message; and
    halt communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the deactivation message.
  60. The BS of claim 48, wherein the one or more rate matching patterns include a resource block level rate matching pattern.
  61. The BS of claim 60, wherein the resource block level rate matching pattern is for a first set of symbols, and
    wherein the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
  62. The BS of claim 60, wherein the one or more processors are further configured to:
    determine that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns; and
    switch to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
  63. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the one or more processors to:
    determine a first resource allocation for a first radio access technology (RAT) in a spectrum band;
    determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and
    communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  64. The non-transitory computer-readable medium of claim 63, wherein the first RAT is Long Term Evolution and the second RAT is New Radio.
  65. The non-transitory computer-readable medium of claim 63, wherein the first RAT and the second RAT share the one or more rate matching patterns.
  66. The non-transitory computer-readable medium of claim 63, wherein the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
  67. The non-transitory computer-readable medium of claim 63, wherein the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
  68. The non-transitory computer-readable medium of claim 63, wherein the one or more rate matching patterns are associated with a frequency offset.
  69. The non-transitory computer-readable medium of claim 63, wherein the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
  70. The non-transitory computer-readable medium of claim 63, wherein a rate matching configuration, which includes the one or more rate matching patterns, is associated with at least one of: a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
  71. The non-transitory computer-readable medium of claim 63, wherein the one or more rate matching patterns are identified by a radio resource control configuration.
  72. The non-transitory computer-readable medium of claim 71, wherein the radio resource control configuration is a cell-specific configuration or a UE-specific configuration.
  73. The non-transitory computer-readable medium of claim 63, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to:
    receive an activation message; and
    wherein the one or more instructions, that cause the one or more processors to communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, cause the one or more processors to:
    communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the activation message.
  74. The non-transitory computer-readable medium of claim 63, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to:
    receive a deactivation message; and
    halt communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the deactivation message.
  75. The non-transitory computer-readable medium of claim 63, wherein the one or more rate matching patterns include a resource block level rate matching pattern.
  76. The non-transitory computer-readable medium of claim 75, wherein the resource block level rate matching pattern is for a first set of symbols, and
    wherein the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
  77. The non-transitory computer-readable medium of claim 75, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to:
    determine that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns; and
    switch to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
  78. A non-transitory computer-readable medium storing one or more instructions for wireless communication, the one or more instructions comprising:
    one or more instructions that, when executed by one or more processors of a base station (BS) , cause the one or more processors to:
    determine a first resource allocation for a first radio access technology (RAT) in a spectrum band;
    determine one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and
    communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  79. The non-transitory computer-readable medium of claim 78, wherein the first RAT is Long Term Evolution and the second RAT is New Radio.
  80. The non-transitory computer-readable medium of claim 78, wherein the first RAT and the second RAT share the one or more rate matching patterns.
  81. The non-transitory computer-readable medium of claim 78, wherein the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
  82. The non-transitory computer-readable medium of claim 78, wherein the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
  83. The non-transitory computer-readable medium of claim 78, wherein the one or more rate matching patterns are associated with a frequency offset.
  84. The non-transitory computer-readable medium of claim 78, wherein the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
  85. The non-transitory computer-readable medium of claim 78, wherein a rate matching configuration, which includes the one or more rate matching patterns, is associated with at least one of: a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
  86. The non-transitory computer-readable medium of claim 78, wherein the one or more rate matching patterns are identified by a radio resource control configuration.
  87. The non-transitory computer-readable medium of claim 86, wherein the radio resource control configuration is a cell-specific configuration or a user equipment-specific configuration.
  88. The non-transitory computer-readable medium of claim 78, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to:
    transmit an activation message; and
    wherein the one or more instructions, that cause the one or more processors to communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns, cause the one or more processors to:
    communicate using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the activation message.
  89. The non-transitory computer-readable medium of claim 78, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to:
    transmit a deactivation message; and
    halt communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the deactivation message.
  90. The non-transitory computer-readable medium of claim 78, wherein the one or more rate matching patterns include a resource block level rate matching pattern.
  91. The non-transitory computer-readable medium of claim 90, wherein the resource block level rate matching pattern is for a first set of symbols, and
    wherein the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
  92. The non-transitory computer-readable medium of claim 90, wherein the one or more instructions, when executed by the one or more processors, further cause the one or more processors to:
    determine that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns; and
    switch to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
  93. An apparatus for wireless communication, comprising:
    means for determining a first resource allocation for a first radio access technology (RAT) in a spectrum band;
    means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and
    means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  94. The apparatus of claim 93, wherein the first RAT is Long Term Evolution and the second RAT is New Radio.
  95. The apparatus of claim 93, wherein the first RAT and the second RAT share the one or more rate matching patterns.
  96. The apparatus of claim 93, wherein the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
  97. The apparatus of claim 93, wherein the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
  98. The apparatus of claim 93, wherein the one or more rate matching patterns are associated with a frequency offset.
  99. The apparatus of claim 93, wherein the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
  100. The apparatus of claim 93, wherein a rate matching configuration, which includes the one or more rate matching patterns, is associated with at least one of: a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
  101. The apparatus of claim 93, wherein the one or more rate matching patterns are identified by a radio resource control configuration.
  102. The apparatus of claim 101, wherein the radio resource control configuration is a cell-specific configuration or a apparatus-specific configuration.
  103. The apparatus of claim 93, further comprising:
    means for receiving an activation message; and
    wherein the means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns comprises:
    means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the activation message.
  104. The apparatus of claim 93, further comprising:
    means for receiving a deactivation message; and
    means for halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on receiving the deactivation message.
  105. The apparatus of claim 93, wherein the one or more rate matching patterns include a resource block level rate matching pattern.
  106. The apparatus of claim 105, wherein the resource block level rate matching pattern is for a first set of symbols, and
    wherein the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
  107. The apparatus of claim 105, further comprising:
    means for determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns; and
    means for switching to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
  108. An apparatus for wireless communication, comprising:
    means for determining a first resource allocation for a first radio access technology (RAT) in a spectrum band;
    means for determining one or more rate matching patterns to occupy a second resource allocation that is different from the first resource allocation for a second RAT in the spectrum band; and
    means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns.
  109. The apparatus of claim 108, wherein the first RAT is Long Term Evolution and the second RAT is New Radio.
  110. The apparatus of claim 108, wherein the first RAT and the second RAT share the one or more rate matching patterns.
  111. The apparatus of claim 108, wherein the one or more rate matching patterns include a zero-power channel state information reference signal set including one or more time domain or frequency domain overlap patterns.
  112. The apparatus of claim 108, wherein the one or more rate matching patterns include a rate matching pattern defined for the second RAT with a particular subcarrier position.
  113. The apparatus of claim 108, wherein the one or more rate matching patterns are associated with a frequency offset.
  114. The apparatus of claim 108, wherein the one or more rate matching patterns include a channel state information reference signal pattern with a non-overlapping frequency domain.
  115. The apparatus of claim 108, wherein a rate matching configuration, which includes the one or more rate matching patterns, is associated with at least one of: a numerology of the second RAT, a carrier information configuration for the first RAT, a bandwidth parameter, a cell specific reference signal port configuration for the first RAT, a symbol configuration, or a multicast-broadcast single-frequency network configuration.
  116. The apparatus of claim 108, wherein the one or more rate matching patterns are identified by a radio resource control configuration.
  117. The apparatus of claim 116, wherein the radio resource control configuration is a cell-specific configuration or a user equipment-specific configuration.
  118. The apparatus of claim 108, further comprising:
    means for transmitting an activation message; and
    wherein the means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns comprises:
    means for communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the activation message.
  119. The apparatus of claim 108, further comprising:
    means for transmitting a deactivation message; and
    means for halting communicating using the second RAT and the second resource allocation in accordance with the one or more rate matching patterns based at least in part on transmitting the deactivation message.
  120. The apparatus of claim 108, wherein the one or more rate matching patterns include a resource block level rate matching pattern.
  121. The apparatus of claim 120, wherein the resource block level rate matching pattern is for a first set of symbols, and
    wherein the one or more rate matching patterns include a resource element level rate matching pattern for a second set of symbols.
  122. The apparatus of claim 120, further comprising:
    means for determining that a threshold quantity of resource elements is not available for a 2-port or 4-port cell-specific reference signal rate matching pattern of the one or more rate matching patterns; and
    means for switching to using the resource block level rate matching pattern based at least in part on determining that the threshold quantity of resource elements is not available.
PCT/CN2019/094525 2019-07-03 2019-07-03 Rate matching for spectrum sharing between different radio access technologies WO2021000284A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/094525 WO2021000284A1 (en) 2019-07-03 2019-07-03 Rate matching for spectrum sharing between different radio access technologies
PCT/CN2020/098323 WO2021000788A1 (en) 2019-07-03 2020-06-26 Rate matching for spectrum sharing between different radio access technologies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/094525 WO2021000284A1 (en) 2019-07-03 2019-07-03 Rate matching for spectrum sharing between different radio access technologies

Publications (1)

Publication Number Publication Date
WO2021000284A1 true WO2021000284A1 (en) 2021-01-07

Family

ID=74100439

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/094525 WO2021000284A1 (en) 2019-07-03 2019-07-03 Rate matching for spectrum sharing between different radio access technologies
PCT/CN2020/098323 WO2021000788A1 (en) 2019-07-03 2020-06-26 Rate matching for spectrum sharing between different radio access technologies

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098323 WO2021000788A1 (en) 2019-07-03 2020-06-26 Rate matching for spectrum sharing between different radio access technologies

Country Status (1)

Country Link
WO (2) WO2021000284A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023193876A1 (en) * 2022-04-04 2023-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method in a wireless communications network
US11997504B2 (en) 2021-12-21 2024-05-28 Nokia Solutions And Networks Oy Dynamic spectrum sharing reduced overhead operation

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115473606A (en) * 2021-06-11 2022-12-13 中兴通讯股份有限公司 Communication control method and device, base station and computer readable medium
CN114362906A (en) * 2021-12-31 2022-04-15 中国电信股份有限公司 Rate matching method, device, electronic equipment and readable medium
WO2023200290A1 (en) * 2022-04-14 2023-10-19 주식회사 케이티 Method and device for supporting full-duplex communication in wireless network
CN115460701B (en) * 2022-08-16 2024-04-30 中国电信股份有限公司 Rate matching method, device, equipment and storage medium based on interference avoidance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076550A (en) * 2016-04-21 2018-12-21 索尼公司 Terminal device, base station equipment and communication means
WO2019003156A1 (en) * 2017-06-27 2019-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Shared channel remapping in a multiple radio access technology co-existence scenario
CN109314966A (en) * 2017-05-26 2019-02-05 联发科技股份有限公司 For the user device type and ability instruction of the device of long term evolution and new radio to coexist

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076550A (en) * 2016-04-21 2018-12-21 索尼公司 Terminal device, base station equipment and communication means
CN109314966A (en) * 2017-05-26 2019-02-05 联发科技股份有限公司 For the user device type and ability instruction of the device of long term evolution and new radio to coexist
WO2019003156A1 (en) * 2017-06-27 2019-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Shared channel remapping in a multiple radio access technology co-existence scenario

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Enhancements for dynamic spectrum sharing in Rel-16,RP-191490,", 3GPP TSG-RAN MEETING #84,, 6 June 2019 (2019-06-06), XP051748418, DOI: 20200322145423A *
MEDIATEK INC.: "Coexistence of NB-IoT with NR,R1-1810605,", 3GPP TSG RAN WG1 MEETING #94BIS,, 12 October 2018 (2018-10-12), XP051518011, DOI: 20200322150810A *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11997504B2 (en) 2021-12-21 2024-05-28 Nokia Solutions And Networks Oy Dynamic spectrum sharing reduced overhead operation
WO2023193876A1 (en) * 2022-04-04 2023-10-12 Telefonaktiebolaget Lm Ericsson (Publ) Network node and method in a wireless communications network

Also Published As

Publication number Publication date
WO2021000788A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
US10720981B2 (en) Spatial multiplexing of a sounding reference signal (SRS) and a physical uplink shared channel (PUSCH) communication
US11683709B2 (en) Indicating a user equipment capability for crosslink interference measurement
US11368956B2 (en) Radio link management under bandwidth part switching
WO2021000788A1 (en) Rate matching for spectrum sharing between different radio access technologies
US11290174B2 (en) Beam selection for communication in a multi-transmit-receive point deployment
US11457462B2 (en) Multi-transmit receive point mode mixing
US11050598B2 (en) Carrier information signaling in a 5G network
US10785656B2 (en) Bandwidth part switch management
US11363520B2 (en) Relay discovery in a wireless network
US11576164B2 (en) Dynamic slot format indicator configuration
US11050536B2 (en) Default channel state information reference signal (CSI-RS) quasi-colocation (QCL)
US20200413405A1 (en) Techniques for subband based resource allocation for nr-u
US11265130B2 (en) Techniques for shared radio frequency spectrum channel configuration
WO2021051253A1 (en) Uplink transmission interruption for uplink carrier switching based at least in part on channel priority
US11758478B2 (en) Power saving based on a combined timing indication and search space set group indication
US20220278813A1 (en) Configuring guard intervals for multiple uplink carriers
WO2020207289A1 (en) Sounding reference signal resource determination for physical uplink shared channel with configured grant
US20200274682A1 (en) Techniques for control resource set (coreset) configuration for shared radio frequency spectrum

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935795

Country of ref document: EP

Kind code of ref document: A1