WO2021000057A1 - Formulation that allows the protection of polyphenols, particularly those obtained from bee pollen extract - Google Patents

Formulation that allows the protection of polyphenols, particularly those obtained from bee pollen extract Download PDF

Info

Publication number
WO2021000057A1
WO2021000057A1 PCT/CL2019/050055 CL2019050055W WO2021000057A1 WO 2021000057 A1 WO2021000057 A1 WO 2021000057A1 CL 2019050055 W CL2019050055 W CL 2019050055W WO 2021000057 A1 WO2021000057 A1 WO 2021000057A1
Authority
WO
WIPO (PCT)
Prior art keywords
formulation
solution
formulation according
pollen
polyphenols
Prior art date
Application number
PCT/CL2019/050055
Other languages
Spanish (es)
French (fr)
Inventor
José Vicente GONZÁLEZ ARAMUNDIZ
María Javiera ÁLVAREZ FIGUEROA
Rayen Yanara VALDIVIA OLIVARES
Raquel BRIDI
Gloria Del Carmen MONTENEGRO RIZZARDINI
Original Assignee
Pontificia Universidad Católica De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontificia Universidad Católica De Chile filed Critical Pontificia Universidad Católica De Chile
Priority to PCT/CL2019/050055 priority Critical patent/WO2021000057A1/en
Publication of WO2021000057A1 publication Critical patent/WO2021000057A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/045Hydroxy compounds, e.g. alcohols; Salts thereof, e.g. alcoholates
    • A61K31/05Phenols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/113Multiple emulsions, e.g. oil-in-water-in-oil

Definitions

  • the invention consists of a triple nanoemulsion (water-oil-water, W / O / W, for its acronym in English) that allows to protect polyphenols, in particular those obtained from pollen extraction, in order to maintain and enhance their antioxidant activities , antibacterial and be able to use them as food additives.
  • the nanoemulsion comprises chitosan, polyphenols, and other components that allow to maintain the W / O / W phases correctly.
  • Oral administration is usually the most common route for the delivery of bioactive agents that have preventive or therapeutic effects, due to the good acceptance and adherence of patients.
  • many of the bioactive compounds cannot be delivered by this route, due to the intrinsic physiological conditions of the gastrointestinal tract (Gl) that can decrease its solubility, stability and absorption; therefore, its bioavailability will be reduced.
  • Gl gastrointestinal tract
  • Different nanosystems have been developed in the art, which present a series of advantages compared to a larger-scale delivery system (micrometers).
  • the main nanosystems that have been developed include: liposomes, polymeric micelles, polymeric nanoparticles, nanoemulsions and multiple nanomulsions.
  • nanoemulsions have their origin in multiple emulsions, which can be classified into two types: oil-in-water-in-oil (or in English: oil-in-water-in-oil, 01 / W / 02) or water in oil in water (in English: water-in-oil-in-water, W1 / 0 / W2) being the latter one of the most used. It is then a 3-phase system; in the latter case, 2 of them are aqueous (internal and external) and one oily; being the interfaces stabilized by various surfactants.
  • multiple emulsions reach a size on the nanometer scale, they are called multiple nanoemulsions.
  • nanoemulsions have attracted the interest of researchers in the cosmetic, pharmaceutical and food industries.
  • its main advantages is its ability to encapsulate hydrophilic components and allow their absorption orally, unlike conventional O / W nanoemulsions that only have the ability to encapsulate lipophilic compounds.
  • they give the possibility of jointly administering hydrophilic and lipophilic components in a single vehicle, since it is possible to dissolve active ingredients in both the aqueous phases and the oily phase together.
  • These nanosystems also provide other advantages for bioactive compounds, including: masking the unpleasant taste or odor of the compounds, protecting labile components during digestion, improving the absorption profile or controlling the release of assets, among others.
  • Products derived from bee hives represent a rich source of potentially bioactive compounds that have been used for various purposes over time, including the manufacture of nutraceuticals. It is because of this, that the existence of a beekeeping product that stands out for its beneficial properties for health and that has been rarely used is striking, this is the case of bee pollen.
  • Bee pollen is produced by bees from thousands of pollen grains that it collects in various flowers, mixing them with nectar and salivary substances to form a compact granule called bee or corbicular pollen.
  • the chemical composition of bee pollen depends on its botanical and geographical origin.
  • phenolic compounds like flavonoids, are largely responsible for the biological activities of bee pollen, including its antioxidant and antibacterial potential.
  • the antioxidant capacity of bee pollen is due to the ability of polyphenols to inactivate reactive oxygen species, such as free radicals. In various pathologies and conditions such as aging, there is an increase in the production of these reactive species that can lead to various oxidative damages. These oxidative processes are counteracted through the consumption of antioxidant compounds such as polyphenols.
  • US2015182472A1 describes nanoparticles formed by an active compound (nutraceutical) that can be a polyphenol and where the core (shell core) is formed by chitosan.
  • active compound such as a polyphenol
  • shell core the core
  • chitosan the core
  • US2013309313A1 describes a composition as a food product additive.
  • the composition is based on polyphenols (green tea extract), protected by 2 layers (shell) that can be both or just one of chitosan. Layers are described as primary shell and outer shell. The primary layer forms microcapsules, and the secondary layer allows agglomeration of microcapsules.
  • US2012064136A1 describes an anti-wrinkle cosmetic composition comprising, among other components, polyphenols as antioxidants, and chitosan as humectant.
  • WO2010134206A1 describes a cosmetic composition that can be in the form of a nanoemulsion, and that comprises polyphenols as antioxidants, among others, and chitosan as a moisturizer, among others.
  • WO20071 12366A2 describes a method to improve the absorption or bioavailability of resveratrol in animal products, where polyphenols and chitosan, among several other components, are used as additives to improve the bioavailability of resveratrol.
  • US2007085058A1 describes a nanoemulsion comprising, among others, polyphenols and chitosan. The stability of polyphenols is indicated to be improved.
  • WO2006131234A1 describes cosmetic compositions consisting of nanoemulsions comprising polyphenols and chitosan, among other components.
  • US20061 10415A1 describes a cosmetic composition for topical application comprising, among various other components, polyphenols and chitosan.
  • the composition can be a nanoemulsion.
  • WO2005084452A1 describes micro- or nanoemulsions comprising polyphenols and chitosan, in addition to other excipients.
  • the problem to be solved by the present invention can be considered in general, as providing W / O / W nanoemulsions that protect within their interior active nutraceutical compounds, the nanoemulsions being stabilized at their interface by surfactants.
  • the invention consists of a formulation that makes it possible to protect polyphenols, in particular those obtained from bee pollen extraction, in order to maintain their antioxidant activities and to be able to use them as food additives.
  • This formulation corresponds to a triple nanoemulsion (water-oil-water, W / O / W), which comprises chitosan, polyphenols, and other components that allow maintaining the W / O / W phases correctly.
  • the present invention consists of a formulation, which corresponds to three phases: a first internal phase which comprises a hydrophilic solution composed mainly of water; a second intermediate layer which comprises a hydrophobic solution composed mainly of lipids; and a third outer layer which comprises a solution hydrophilic in contact with the external environment, whose function is to protect the active compounds that are inserted in this formulation, delivering a controlled release of said active compounds.
  • the inner phase can mainly comprise different amounts of ethanolic pollen extract.
  • the ethanolic extract is from bee pollen.
  • composition of the present invention comprises between 0.1 ml_ and 2.0 ml_ of ethanolic extract of bee pollen.
  • the amount of bee pollen ethanolic extract is between 0.6 ml_ and 1.5 ml_.
  • the hydrophobic solution comprises at least type II propylene glycol monolaurate in combination with other hydrophobic excipients.
  • the amount of type II propylene glycol monolaurate is between 100 mg and 1500 mg, preferably between 600 and 1200 mg.
  • the hydrophobic solution comprises at least polysorbate 80 surfactant, in combination with other excipients.
  • the amount of polysorbate 80 is between 100 and 500 mg, preferably 360 mg.
  • the hydrophobic solution comprises at least Lecithin, in combination with other hydrophobic excipients.
  • the amount of soy phospholipids with 70% phosphatidylcholine is between 10 and 100 mg, preferably 60 mg.
  • the hydrophobic solution comprises at least the poloxamer nonionic surfactant, in combination with other excipients.
  • the amount of poloxamer is between 100 and 800 mg, preferably between 620 and 670 mg.
  • the hydrophobic solution corresponding to the intermediate phase of the formulation comprises propylene glycol monolaurate type II, polysorbate 80, soy phospholipids with 70% phosphatidylcholine, and poloxamer.
  • the hydrophobic solution corresponding to the intermediate phase of the formulation comprises between 100 and 1500 mg propylene glycol monolaurate type II, between 100 and 500 mg polysorbate 80, between 10 and 100 mg soy phospholipids with 70% phosphatidylcholine, and between 100 and 800 mg poloxamer.
  • the hydrophobic solution corresponding to the intermediate phase of the formulation comprises 1.129 mg propylene glycol monolaurate type II, 360 mg polysorbate 80, 60 mg soy phospholipids with 70% phosphatidylcholine, and 699.7 mg poloxamer.
  • the hydrophilic solution of the outer layer comprises chitosan HCI.
  • the amount of chitosan HCI is between 6 and 30 mg, preferably 16.7 mg.
  • the formulation is a nanoemulsion comprising: (1) an internal solution comprising between 0.6 and 1.5 ml_ of a solution of ethanol extract of bee pollen, (2) an intermediate solution comprising between 100 and 1500 mg of propylene glycol monolaurate type II, between 100 and 500 mg polysorbate 80, between 10 and 100 mg Lipoid P75 ® , and between 100 and 800 mg poloxamer, and (3) an external solution comprising chitosan HCI between 6 and 30 mg.
  • the formulation is a nanoemulsion that comprises: (1) an internal solution comprising 1.2 ml_ of a solution of ethanolic extract of bee pollen, (2) an intermediate solution comprising 1.129 mg Propylene glycol monolaurate type II, 360 mg polysorbate 80, 60 mg soybean phospholipids with 70% phosphatidylcholine, and between 699.7 mg poloxamer, and (3) an external solution comprising 16.7 mg of chitosan HCI.
  • the invention also considers the method for obtaining the formulation of the present invention.
  • This method comprises: (1) mixing the components of the intermediate solution by magnetic stirring for 15 min at room temperature, (2) mixing the intermediate solution with the internal solution by magnetic stirring between 5 min to 30 min at room temperature, (3 ) Prepare the external solution with different amounts of chitosan HCI (6, 18 or 30 mg) and poloxamer (700, 600, 360 or 180 mg) dissolved in 3.5 ml_ of ultra pure water, and (4)
  • the multiple nanoemulsion is It is carried out on a nanoscale homogenizing at a speed of between 21,500 and 25,000 RPM using a basic homogenizer for 10 min in an ice bath to keep the temperature below 37 ° C.
  • the formulation of the present invention is used to protect active compounds found in the inner solution.
  • the composition of the present invention is used to protect active compounds from aggressive environments for their activity.
  • composition of the present invention is used to protect active compounds, where the aggressive environment is the gastrointestinal tract.
  • the active compound to be protected can be compounds having phenyl radicals in their structure, preferably phenolic compounds.
  • the phenolic compound refers to polyphenols.
  • polyphenolic compounds are derived from pollen.
  • the phenolic compounds derived from pollen correspond to flavonoids.
  • the phenolic compounds and pollen flavonoids are selected from: chlorogenic acid, syringic acid, coumaric acid, synapic acid, ferulic acid, cinnamic acid, epicatechin, myricetin, quercetin, apigenin, kaempferol, chrysin, narigenin, rhamnetin, pinocembrine, galangine, pinobanksin, hesperetin, CAPE (caffeic phenyl ester acid), luteolin, 3-methylquercetin, isorramnetin, tectocrisin, ellagic acid, and rutin.
  • the flavonoids present in pollen correspond to myricetin and quercetin.
  • Figure 1 Graphic representation of the multiple nanoemulsion designed and the location of the components in each phase.
  • Figure 6 Stability of multiple nanoemulsions under storage conditions. Trial carried out for 4 months.
  • (B): NEMB: multiple white nanoemulsions. (Average ⁇ S.D., n 3).
  • the internal aqueous phase was added, consisting of different amounts of ethanolic extract of bee pollen (1, 5, 1, 0 or 0.6 mL), stirring for an additional 15 min.
  • the second emulsification phase was prepared by adding the external aqueous phase, consisting of different amounts of chitosan HCI (6, 18 or 30 mg) and Pluronic F-68 ® (700, 600, 360 or 180 mg) dissolved in 3, 5 mL of ultra pure water.
  • the multiple nanoemulsion was carried out on a nanoscale homogenizing at 21,500 RPM using the basic UltraTurrax homogenizer, IKA ® T25 (IKA, Brazil) for 10 min in an ice bath to keep the temperature below 37 ° C.
  • Lipoid P-75 ® is a naturally occurring amphoteric surfactant that comprises a high percentage of phosphatidylcholine. This surfactant has proven to be safe and has been widely used by industry, primarily because it is a GRAS excipient.
  • Span ® 80 is a non-ionic surfactant with FDA approval for use in food, so it can be used to stabilize nanocarriers for oral administration of bioactives.
  • the oil phase was optimized by testing various continuous phases or oils of low hydrophilic-lipophilic index (HBL).
  • Lauroglycol ® 90 is an oil made up of propylene glycol mono- and diesters of lauric acid (C12) [1 16]. This excipient has been shown to increase the bioavailability of low-absorption bioactive compounds and is also suitable for oral administration.
  • an anionic surfactant Lipocol HCO-40 ®
  • Pluronic F-68 ® as surfactant, initially in concentrations of 1 and 3% but it was not possible to stabilize the nanosystem, for this reason it was increased to 20% with respect to the volume of the external aqueous phase (3.5 ml_).
  • Pluronic F68 ® corresponds to a set of polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) block polymers, widely used as wetting, solubilizing or binding agents; having an adequate profile regarding its safety and compatibility with the oral route. Additionally, Pluronic F68 ® is known to be an inhibitor of P-glycoprotein, a protein that participates in the transport of active ingredients with substrate specificity, which is widely distributed in the gastrointestinal epithelium and is the main cause of drug efflux.
  • PEO-PPO-PEO polyoxyethylene-polyoxypropylene-polyoxyethylene
  • Table 1 shows the composition of the prototype formulation, which has a particle size of 184 nm, with an IPD of 0.084, which is indicative of a homogeneous population of particles, and a Z potential of +21 mV, highlighting the positive character by the presence of chitosan on the surface of the emulsion.
  • Table 1 Composition of prototype W / O / W multiple nanoemulsion.
  • the desired characteristics for the multiple nanoemulsion were the smallest possible size (hopefully less than 100 nm), and a positive Z potential, ideally close to +30. Based on these desired effects, different formulations were produced varying the concentrations of the excipients according to what is indicated in Table 2.
  • Figure 2 shows the graphs obtained for the size function T (F) setting in A, the amount of bee pollen extract at 1.5 ml and of Lauroglycol ® 90 at 1200 mg and in B, the amount of chitosan HCI in 18 and Pluronic F-68 ® in 700 mg.
  • the particle size decreases as the amount of this excipient is increased.
  • the amount of chitosan HCI increases, the particle size also increases, this situation could be due to a greater steric hindrance granted by the hydrophobic tails of the biopolymer.
  • the variation in Z potential depends on the way in which this biopolymer is incorporated into the formulation. In this case, it is found in solution in the external aqueous phase, so as its concentration increases, the Z potential increases. However, at a given point, as the concentration of this polymer continues to increase, the hydrophobic sites of the biopolymer probably they begin to block the load, reflecting this in a decrease in the surface load.
  • NEMP multiple nanoemulsions of bee pollen.
  • NEMB multiple white nanoemulsions.
  • Example 3 Physicochemical characterization of the developed systems.
  • the characterization of multiple nanosystems was determined by measuring their physicochemical properties such as particle size and polydispersity index using dynamic light scattering (DLS) technique. Furthermore, its Z potential was studied using the Doppler laser electrophoresis technique (Malvern Instruments, UK). To measure size and polydispersity index, 1 pL of formulation (nanosystems) was diluted in 999 pL of Milli Q water. To measure potential Z, the same dilution was used, but this time dispersing the nanosystems in 999 pL of potassium chloride solution 1 mM. Additionally, the optimized nanosystem was characterized using the Nanosight equipment (Malvern Instruments, UK). For this, a dilution of the sample of 1: 45000 was carried out by dispersing the nanosystem in ultra-pure water. a) Study of Morphology.
  • the morphology of the formulations was observed through scanning transmission electron microscopy (STEM) (FEI Company, United States). Briefly, a drop of the formulation was placed on the surface of a carbon-coated copper grid, subsequently stained for two minutes with 2% w / v phosphotungstic acid and finally the grid was washed with ultra-pure water. The grids were left in a desiccator (Normax, Portugal) for 48 hours to be subsequently analyzed through STEM.
  • STEM scanning transmission electron microscopy
  • Table 4 shows the physicochemical properties of NEMP, the size and potential Z values predicted by the model being 94 nm and +33 mV respectively, very similar to what was obtained experimentally.
  • NEMB it is possible to observe that the characterization is very similar, a fact that has been previously explained in the optimization of the formulation, where it is known that the bee pollen extract does not intervene significantly in the particle size of the nanosystems or in their surface charge.
  • NEMP multiple nanoemulsions of bee pollen.
  • NEMB multiple white nanoemulsions.
  • HPLC high performance liquid chromatography
  • a diode array detector was used using a Hitachi Chromaster VWR equipment (Hitachi, Japan) with an endcapped Purospher STAR RP-18 column and pre-column (5um, 250 x 4.6 mm), using a stepped gradient method, with a flow of 0.8 mL / min, at a temperature of 37 ° C, injecting 10 mI_.
  • a multistandard polyphenol calibration curve was performed, the running time being 80 min.
  • two flavonoid markers corresponding to myricetin and quercetin
  • a phenolic acid marker corresponding to cinnamic acid
  • nanometric vehicles The stability of nanometric vehicles was studied under various conditions, this in order to obtain data that would allow to support that the nanosystems will maintain their nanometric size when facing the various pH conditions throughout the gastrointestinal tract in the absorption process, and in storage conditions. Furthermore, in this experimental phase it was not only wanted to evaluate the stability of the nanosystem as a vehicle, but the stability of the polyphenols encapsulated in said nanosystems was also evaluated.
  • Example 5 Stability of polyphenols from bee pollen encapsulated in NEMP
  • the first corresponded to the quantification of the marker compounds of said pollen (exposed in 3.2.2.3) after storing the nanosystems for 4 months at 4 ° C; using HPLC for this.
  • the second corresponded to the determination of total phenols carried out in order to quantify the total concentration in the nanosystems of this type of compounds, using the Folin Ciocalteu test.
  • Figure 7 shows the concentrations of the markers chosen for each of the samples.
  • Figure 7A it is possible to analyze that the concentration of all the polyphenols present in the sample of non-encapsulated bee pollen extract has decreased over time, with quercetin concentration being the most affected with almost 33% degradation, followed by the Myricetin with 23% and cinnamic acid with a 19.8 loss of the active compared to the initial concentration.
  • Figure 7B the stability of the bee extract that has been encapsulated in the nanosystems can be observed.
  • NEMP is not only capable of maintaining its physicochemical stability under physiological conditions, but also that in aqueous solution, encapsulated actives are preserved in better conditions than non-encapsulated polyphenols in storage.
  • Example 6 Antioxidant capacity of the developed nanoemulsions
  • the ORAC value of NEMP and NEMB was quantified on the day of their formulation and after one month of storage at 4 ° C (see Table 6). This in order to evaluate if there was a variation in the antioxidant potential of the formulation over time.
  • the test was also carried out using bee pollen extract diluted in the same proportion as multiple nanoemulsions (NEMP) as a control with the aim of observing if there was any improvement in its antioxidant potential or deterioration when encapsulated polyphenols were found.
  • NEMP multiple nanoemulsions of bee pollen.
  • NEMB multiple white nanoemulsions.
  • bee pollen encapsulated in NEMP shows to have an antioxidant potential greater than double that of the non-encapsulated sample at time zero.
  • the foregoing can be explained by analyzing what happened by the NEMB control that corresponds to the same formulation, but without the encapsulated pollen extract, where it is observed that the formulation provides antioxidant potential and that this effect would be synergistically enhanced, since initially its ORAC value is lower than the ORAC value shown by the bee pollen sample.
  • analyzing the difference in the antioxidant capacity of the destroyed and non-destroyed samples it is observed that by destroying NEMP the nanosystem increases the antioxidant potential. This phenomenon could be explained by the release of polyphenols that remain encapsulated, being more available to exert their antioxidant effect.
  • a screening of different samples and their effect against the microorganisms of interest was carried out using the agar diffusion technique.
  • samples used are multiple NEMP nanoemulsions, using white nanoemulsions (NEMB) as a control in order to evaluate if there is any antibacterial effect inherent to the nanosystem only as a vehicle.
  • NEMB white nanoemulsions
  • the impact on the antibacterial potential of the non-encapsulated bee pollen extract preserved at 4 ° C and -80 ° C was explored, with the aim of evaluating whether the storage conditions harm in any way the antibacterial potential of the ethanolic extract and pollen.
  • the antibacterial effect delivered by the excipient chitosan HCI in solution at the same concentration that was found in the formulations was evaluated.
  • Table 8 shows the results obtained for samples by diffusion on agar and serial microdilutions carried out in the sensitive microorganism S. pyogenes.
  • Table 8 Diffusion assays in agar and serial microdilutions in microorganism S. pyogenes.
  • Example 8 Multiple nanoemulsion permeability studies (NEMP) using PAMPA
  • Table 9 shows the permeability results for each of the samples, in order to contrast the performance of unencapsulated pollen versus that found incorporated in the NEMP.
  • bee pollen extract was used in the same dilution of NEMP.
  • verapamil hydrochloride was used as a positive control at a concentration of 100 mM, as this drug is a marker of high permeability.
  • the permeability of the markers cinnamic acid, quercetin and myricetin in the bee pollen extract is 0; in the case of nanosystems with encapsulated bee pollen, it is possible to observe that both quercetin and cinnamic acid had permeability values greater than 0.9 x10 6 cm / s.
  • the flavonoid myricetin had quantification problems due in part to its instability.
  • the verapamil hydrochloride control had a permeability value within the expected, which indicates that the methodology used in the trial was applied correctly.

Abstract

The invention consists of a formulation that allows the protection of polyphenols, particularly those obtained from bee pollen extract, such as to maintain their antioxidant activities and enable their use as food additives. This formulation corresponds to a triple nanoemulsion (water-oil-water, W/O/W) which comprises chitosan, polyphenols and other components that make it possible to properly maintain the W/O/W phases.

Description

FORMULACIÓN QUE PERMITE PROTEGER POLIFENOLES, EN PARTICULAR LOS OBTENIDOS DESDE UNA EXTRACCIÓN DE POLEN APÍCOLA FORMULATION THAT ALLOWS PROTECTING POLYPHENOLS, IN PARTICULAR THOSE OBTAINED FROM AN EXTRACTION OF APICULTURAL POLLEN
Campo de la invención. Field of the invention.
La invención consiste en una nanoemulsión triple (agua-aceite-agua, W/O/W, por sus siglas en inglés) que permite proteger polifenoles, en particular los obtenidos desde una extracción de polen, de manera de mantener y potenciar sus actividades antioxidantes, antibacterianas y poder usarlos como aditivos para alimentos. La nanoemulsión comprende quitosano, polifenoles, y otros componentes que permiten mantener las fases W/O/W correctamente. The invention consists of a triple nanoemulsion (water-oil-water, W / O / W, for its acronym in English) that allows to protect polyphenols, in particular those obtained from pollen extraction, in order to maintain and enhance their antioxidant activities , antibacterial and be able to use them as food additives. The nanoemulsion comprises chitosan, polyphenols, and other components that allow to maintain the W / O / W phases correctly.
Antecedentes. Background.
La administración por vía oral, suele ser la ruta más habitual para la entrega de agentes bioactivos que tienen efectos preventivos o terapéuticos, debido a la buena aceptación y adherencia de los pacientes. Sin embargo, muchos de los compuestos bioactivos no se pueden entregar por esta vía, debido a las condiciones fisiológicas intrínsecas del tracto gastrointestinal (Gl) que pueden disminuir su solubilidad, estabilidad y absorción; por ende, su biodisponibilidad se verá reducida. Se han desarrollado en la técnica distintos nanosistemas los cuales presentan una serie de ventajas en comparación a sistema de entrega de mayor escala (micrométricos). Entre los principales nanosistemas que se han desarrollado destacan: liposomas, micelas poliméricas, nanopartículas poliméricas, nanoemulsiones y nanomulsiones múltiples. Oral administration is usually the most common route for the delivery of bioactive agents that have preventive or therapeutic effects, due to the good acceptance and adherence of patients. However, many of the bioactive compounds cannot be delivered by this route, due to the intrinsic physiological conditions of the gastrointestinal tract (Gl) that can decrease its solubility, stability and absorption; therefore, its bioavailability will be reduced. Different nanosystems have been developed in the art, which present a series of advantages compared to a larger-scale delivery system (micrometers). The main nanosystems that have been developed include: liposomes, polymeric micelles, polymeric nanoparticles, nanoemulsions and multiple nanomulsions.
Las nanoemulsiones múltiples tiene su origen en las emulsiones múltiples, las cuales pueden clasificarse en dos tipos: las de aceite en agua en aceite (o en inglés: oil-in-water-in-oil, 01/W/02) o agua en aceite en agua (en inglés: water-in-oil-in-water, W1/0/W2) siendo esta última de las más utilizadas. Se trata entonces de un sistema constituido de 3 fases; en este último caso, 2 de ellas son acuosas (interna y externa) y una oleosa; encontrándose las interfases estabilizadas por diversos surfactantes. Así, cuando las emulsiones múltiples alcanzan un tamaño en la escala nanométrica, se denominan nanoemulsiones múltiples. En las últimas décadas, este tipo de nanoemulsiones han atraído el interés de los investigadores en las industrias cosmética, farmacéutica y alimentaria. Entre sus principales ventajas se encuentra su capacidad para encapsular componentes hidrofílicos y permitir su absorción por vía oral, a diferencia de las nanoemulsiones convencionales O/W que solo tienen la capacidad de encapsular compuestos lipofílicos. Además, dan la posibilidad de administrar en forma conjunta componentes hidrofílicos como lipofílicos en un solo vehículo, ya que es posible disolver activos tanto en las fases acuosas como en la fase oleosa de forma conjunta. Estos nanosistemas también otorgan otras ventajas para los compuestos bioactivos, entre ellas: enmascarar el sabor u olor desagradable de los compuestos, proteger los componentes lábiles durante la digestión, mejorar el perfil de absorción o controlar la liberación de activos, entre otras. En el proceso de formulación de vehículos de tamaño nanométrico y su futura administración in vivo es fundamental la elección de excipientes biocompatibles, siendo uno de los más utilizados el quitosano. Por otra parte, aunque la incorporación de excipientes de alta calidad y compatibles con el diseño de nanovehículos es muy relevante, el desarrollo de nanosistemas novedosos de entrega de compuestos bioactivos no solo se reduce a la elección de los componentes. Un gran desafío en la fase de formulación y diseño es la optimización de los procesos de elaboración de vehículos de tamaño nanométrico, así como también de las concentraciones de cada componente. Por lo tanto, es necesario desarrollar una gran cantidad de esfuerzos experimentales para lograr obtener una combinación de excipientes específico para un compuesto bioactivo en particular, y la elección de dichos excipientes no es para nada obvia. Multiple nanoemulsions have their origin in multiple emulsions, which can be classified into two types: oil-in-water-in-oil (or in English: oil-in-water-in-oil, 01 / W / 02) or water in oil in water (in English: water-in-oil-in-water, W1 / 0 / W2) being the latter one of the most used. It is then a 3-phase system; in the latter case, 2 of them are aqueous (internal and external) and one oily; being the interfaces stabilized by various surfactants. Thus, when multiple emulsions reach a size on the nanometer scale, they are called multiple nanoemulsions. In recent decades, these types of nanoemulsions have attracted the interest of researchers in the cosmetic, pharmaceutical and food industries. Among its main advantages is its ability to encapsulate hydrophilic components and allow their absorption orally, unlike conventional O / W nanoemulsions that only have the ability to encapsulate lipophilic compounds. In addition, they give the possibility of jointly administering hydrophilic and lipophilic components in a single vehicle, since it is possible to dissolve active ingredients in both the aqueous phases and the oily phase together. These nanosystems also provide other advantages for bioactive compounds, including: masking the unpleasant taste or odor of the compounds, protecting labile components during digestion, improving the absorption profile or controlling the release of assets, among others. In the process of formulating nano-sized vehicles and their future administration in vivo, the choice of biocompatible excipients is essential, one of the most used being chitosan. On the other hand, although the incorporation of high-quality excipients and compatible with the design of nanocarriers is very relevant, the development of novel nanosystems for the delivery of bioactive compounds is not only reduced to the choice of components. A great challenge in the formulation and design phase is the optimization of the manufacturing processes for nano-sized vehicles, as well as the concentrations of each component. Therefore, a great deal of experimental effort is required to achieve a specific combination of excipients for a particular bioactive compound, and the choice of such excipients is not at all obvious.
Los productos derivados de las colmenas de abeja (miel, polen y propóleo) representan una rica fuente de compuestos potencialmente bioactivos que han sido utilizados con diversos fines a lo largo del tiempo, entre ellos la elaboración de nutracéuticos. Es debido a esto, que llama la atención la existencia de un producto apícola que destaca por sus propiedades beneficiosas para la salud y que ha sido escasamente utilizado, este es el caso del polen apícola. El polen apícola es producido por las abejas a partir de miles de granos de polen que recoleta en diversas flores, los mezcla con néctar y sustancias salivales para formar un granulo compacto llamado de polen apícola o corbicular. La composición química del polen apícola depende de su origen botánico y geográfico. De manera general, incluye aminoácidos, lípidos, vitaminas, macro y micronutrientes, y polifenoles como quercetina, ácido cafeico, rutina, pinocembrina, apigenina, crisina, galangina, canferol, entre otros. Estudios señalan que estos compuestos fenólicos, como los flavonoides son en gran medida los responsables por las actividades biológicas del polen apícola, incluyendo su potencial antioxidante y antibacteriano. La capacidad antioxidante del polen apícola se debe a la capacidad que tienen los polifenoles para inactivar especies reactivas de oxígeno, como los radicales libres. En varias patologías y condiciones como el envejecimiento existe un aumento en la producción de estas especies reactivas que puede llevar a diversos daños oxidativos. Estos procesos oxidativos son contrarestados a través del consumo de compuestos antioxidantes como lo son los polifenoles. Products derived from bee hives (honey, pollen and propolis) represent a rich source of potentially bioactive compounds that have been used for various purposes over time, including the manufacture of nutraceuticals. It is because of this, that the existence of a beekeeping product that stands out for its beneficial properties for health and that has been rarely used is striking, this is the case of bee pollen. Bee pollen is produced by bees from thousands of pollen grains that it collects in various flowers, mixing them with nectar and salivary substances to form a compact granule called bee or corbicular pollen. The chemical composition of bee pollen depends on its botanical and geographical origin. In general, it includes amino acids, lipids, vitamins, macro and micronutrients, and polyphenols such as quercetin, caffeic acid, rutin, pinocembrin, apigenin, chrysin, galangin, campherol, among others. Studies indicate that these phenolic compounds, like flavonoids, are largely responsible for the biological activities of bee pollen, including its antioxidant and antibacterial potential. The antioxidant capacity of bee pollen is due to the ability of polyphenols to inactivate reactive oxygen species, such as free radicals. In various pathologies and conditions such as aging, there is an increase in the production of these reactive species that can lead to various oxidative damages. These oxidative processes are counteracted through the consumption of antioxidant compounds such as polyphenols.
Desafortunadamente, parte de los beneficios que podría aportar la incorporación de polifenoles y sustancias antioxidantes en nutracéuticos son limitados. Por la escasa estabilidad de los polifenoles, utilizar matrices complejas ricas en estos componentes es un reto en la actualidad, ya que estos compuestos son afectados por las condiciones de procesamiento y almacenamiento, además de poseer baja solubilidad en agua y deficientes propiedades organolépticas. A esto se suma que la biodisponibilidad de los polifenoles es reducida debido a su baja bioaccesibilidad, susceptibilidad a la degradación en el tracto gastrointestinal y perfil de absorción deficiente. Existe evidencia del uso de la nanotecnología para preservar la actividad antioxidante de moléculas con características similares a los compuestos fenólicos, sin embargo, existe en la técnica una necesidad no satisfecha en cuanto al desarrollo de nuevos sistemas de tamaño nanométrico que sean capaces de encapsular matrices complejas para mejorar su absorción y por ende su biodisponibilidad. Unfortunately, part of the benefits that the incorporation of polyphenols and antioxidant substances in nutraceuticals could bring are limited. Due to the poor stability of polyphenols, using complex matrices rich in these components is currently a challenge, since these compounds are affected by processing and storage conditions, in addition to having low solubility in water and poor organoleptic properties. To this is added that the bioavailability of polyphenols is reduced due to their low bioaccessibility, susceptibility to degradation in the gastrointestinal tract and poor absorption profile. There is evidence of the use of nanotechnology to preserve the antioxidant activity of molecules with characteristics similar to phenolic compounds, however, There is an unmet need in the art for the development of new nano-sized systems that are capable of encapsulating complex matrices to improve their absorption and hence their bioavailability.
Para evaluar los méritos de la invención descrita en este documento, se presenta un breve resumen de los documentos más relevantes presentes en la técnica, para la presente invención. La búsqueda se enfocó en documentos relacionados con composición que protegan los polifenoles extraídos desde diferentes matrices, los cuales permitan la liberación controlada de estos compuestos al ser administrados oralmente. De manera general, el análisis realizado sugiere que no existe ninguna nanoemulsión triple en el estado del arte previo, como la propuesta en la presente invención. To evaluate the merits of the invention described herein, a brief summary of the most relevant documents present in the art for the present invention is presented. The search was focused on documents related to composition that protect the polyphenols extracted from different matrices, which allow the controlled release of these compounds when administered orally. In general, the analysis carried out suggests that there is no triple nanoemulsion in the prior art, such as that proposed in the present invention.
A fin de evaluar los requisitos de patentabilidad, se realizó una búsqueda de arte previo, encontrándose algunos documentos relacionados, que se resumen a continuación. In order to assess the patentability requirements, a prior art search was conducted, finding some related documents, which are summarized below.
US2015182472A1 describe nanopartículas formadas por un compuesto activo (nutracéutico) que puede ser un polifenol y donde el núcleo (shell core) está formado por quitosano. Se mencionan los problemas de que los polifenoles son sensibles a oxidación y poco estables en soluciones acuosas. US2015182472A1 describes nanoparticles formed by an active compound (nutraceutical) that can be a polyphenol and where the core (shell core) is formed by chitosan. The problems that polyphenols are sensitive to oxidation and not very stable in aqueous solutions are mentioned.
US2013309313A1 describe una composición como aditivo de productos alimenticios. La composición se basa en polifenoles (extracto de té verde), protegidos por 2 capas (shell) que pueden ser ambas o solo una de quitosano. Las capas se describen como capa primaria (primary shell) y capa externa (outer shell). La capa primaria forma microcápsulas, y la capa secundaria permite la aglomeración de microcápsulas. US2013309313A1 describes a composition as a food product additive. The composition is based on polyphenols (green tea extract), protected by 2 layers (shell) that can be both or just one of chitosan. Layers are described as primary shell and outer shell. The primary layer forms microcapsules, and the secondary layer allows agglomeration of microcapsules.
US2012064136A1 describe una composición cosmética anti-arrugas que comprende, entre otros componentes, polifenoles como antioxidantes, y quitosano como humectante. US2012064136A1 describes an anti-wrinkle cosmetic composition comprising, among other components, polyphenols as antioxidants, and chitosan as humectant.
W02010134206A1 describe una composición cosmética que puede estar en forma de nanoemulsión, y que comprende como antioxidantes, entre otros, polifenoles, y como hidratante quitosano, entre otros. WO2010134206A1 describes a cosmetic composition that can be in the form of a nanoemulsion, and that comprises polyphenols as antioxidants, among others, and chitosan as a moisturizer, among others.
W020071 12366A2 describe un método para mejorar la absorción o biodisponibilidad de resveratrol en productos animales, donde se utilizan polifenoles y quitosano, entre varios otros componentes, como aditivos para mejorar la biodisponibilidad de resveratrol. WO20071 12366A2 describes a method to improve the absorption or bioavailability of resveratrol in animal products, where polyphenols and chitosan, among several other components, are used as additives to improve the bioavailability of resveratrol.
US2007085058A1 describe una nanoemulsión que comprende, entre otros, polifenoles y quitosano. Se indica que la estabilidad de los polifenoles se ve mejorada. WO2006131234A1 describe composiciones cosméticas consistentes en nanoemulsiones que comprenden polifenoles y quitosano, entre otros componentes. US2007085058A1 describes a nanoemulsion comprising, among others, polyphenols and chitosan. The stability of polyphenols is indicated to be improved. WO2006131234A1 describes cosmetic compositions consisting of nanoemulsions comprising polyphenols and chitosan, among other components.
US20061 10415A1 describe una composición cosmética para aplicación tópica que comprende, entre varios otros componentes, polifenoles y quitosano. En el párrafo 50 se indica que la composición puede ser una nanoemulsión. US20061 10415A1 describes a cosmetic composition for topical application comprising, among various other components, polyphenols and chitosan. In paragraph 50 it is indicated that the composition can be a nanoemulsion.
W02005084452A1 describe micro o nanoemulsiones que comprenden polifenoles y quitosano, además de otros excipientes. WO2005084452A1 describes micro- or nanoemulsions comprising polyphenols and chitosan, in addition to other excipients.
Los documentos considerados más cercanos del estado de la técnica corresponden a US2015182472A1 , US2013309313A1 , WO2010134206A1 , US2007085058A1 , los cuales se refieren en general a emulsiones, en donde en algunos casos estas pueden corresponder a nanoemulsiones simples, que comprenden quitosano y polifenoles. El problema a resolver por la presente invención se puede considerar en general, como proveer nanoemulsiones W/O/W que protejan en su interior compuestos activos nutracéuticos, siendo las nanoemulsiones estabilizadas en su interface por surfactantes. En ningún documento en la técnica se plantea el mismo problema técnico objetivo ya que la mayoría de las nanoemulsiones son del tipo simple, y no requieren de una rigurosa selección de los excipientes utilizados, como por ejemplo surfactantes que estabilicen las interacciones W/O en las dos interfases. No existen documentos en la técnica en donde se indique la utilización de los excipientes descritos en la solicitud que busquen solucionar el mismo problema técnico objetivo. The documents considered closest to the state of the art correspond to US2015182472A1, US2013309313A1, WO2010134206A1, US2007085058A1, which generally refer to emulsions, where in some cases these may correspond to simple nanoemulsions, comprising chitosan and polyphenols. The problem to be solved by the present invention can be considered in general, as providing W / O / W nanoemulsions that protect within their interior active nutraceutical compounds, the nanoemulsions being stabilized at their interface by surfactants. In no document in the art the same objective technical problem arises since most nanoemulsions are of the simple type, and do not require a rigorous selection of the excipients used, such as surfactants that stabilize the W / O interactions in the two interfaces. There are no documents in the art which indicate the use of the excipients described in the application that seek to solve the same objective technical problem.
En resumen, no existen patentes que describan una nanoemulsión triple que contenga polifenoles y quitosano que tenga la misma composición ni combinación de excipientes que la formulación descrita en la presente invención. In summary, there are no patents that describe a triple nanoemulsion containing polyphenols and chitosan that has the same composition or combination of excipients as the formulation described in the present invention.
Breve descripción de la invención Brief description of the invention
La invención consiste en una formulación que permite proteger polifenoles, en particular los obtenidos desde una extracción de polen apícola, de manera de mantener sus actividades antioxidantes, y poder usarlos como aditivos para alimentos. Esta formulación corresponde a una nanoemulsión triple (agua-aceite-agua, W/O/W), que comprende quitosano, polifenoles, y otros componentes que permiten mantener las fases W/O/W correctamente. The invention consists of a formulation that makes it possible to protect polyphenols, in particular those obtained from bee pollen extraction, in order to maintain their antioxidant activities and to be able to use them as food additives. This formulation corresponds to a triple nanoemulsion (water-oil-water, W / O / W), which comprises chitosan, polyphenols, and other components that allow maintaining the W / O / W phases correctly.
Descripción detallada del invento Detailed description of the invention
La presente invención consiste en una formulación, que corresponde tres fases: una primera fase interior la cual comprende una solución hidrofílica compuesta mayoritariamente de agua; una segunda capa intermedia la cual comprende una solución hidrofóbica compuesta mayoritariamente por lípidos; y una tercera capa externa la cual comprende una solución hidrofílica en contacto con el medio exterior, cuya función es proteger los compuestos activos que están insertos en esta formulación, entregando una liberación controlada de dichos compuestos activos. The present invention consists of a formulation, which corresponds to three phases: a first internal phase which comprises a hydrophilic solution composed mainly of water; a second intermediate layer which comprises a hydrophobic solution composed mainly of lipids; and a third outer layer which comprises a solution hydrophilic in contact with the external environment, whose function is to protect the active compounds that are inserted in this formulation, delivering a controlled release of said active compounds.
En una realización, la fase interior puede comprender, principalmente, diferentes cantidades de extracto etanólico de polen. In one embodiment, the inner phase can mainly comprise different amounts of ethanolic pollen extract.
En una realización preferida el extracto etanólico es de polen apícola. In a preferred embodiment, the ethanolic extract is from bee pollen.
En otra realización preferida, la composición de la presente invención, comprende entre 0,1 ml_ y 2,0 ml_ de extracto etanólico de polen apícola. In another preferred embodiment, the composition of the present invention comprises between 0.1 ml_ and 2.0 ml_ of ethanolic extract of bee pollen.
En una realización más específica, la cantidad de extracto etanólico de polen apícola es entre 0,6 ml_ y 1 ,5 ml_. In a more specific embodiment, the amount of bee pollen ethanolic extract is between 0.6 ml_ and 1.5 ml_.
En otra realización, la solución hidrofóbica comprende al menos propilenglicol monolaurato tipo II en combinación con otros excipientes hidrofóbicos. In another embodiment, the hydrophobic solution comprises at least type II propylene glycol monolaurate in combination with other hydrophobic excipients.
En una realización preferida más específica, la cantidad de propilenglicol monolaurato tipo II es entre 100 mg y 1500 mg, preferiblemente entre 600 y 1200 mg. In a more specific preferred embodiment, the amount of type II propylene glycol monolaurate is between 100 mg and 1500 mg, preferably between 600 and 1200 mg.
En otra realización, la solución hidrofóbica comprende al menos el surfactante polisorbato 80, en combinación con otros excipientes. In another embodiment, the hydrophobic solution comprises at least polysorbate 80 surfactant, in combination with other excipients.
En otra realización más específica, la cantidad de polisorbato 80 es entre 100 y 500 mg, preferiblemente 360 mg. In another more specific embodiment, the amount of polysorbate 80 is between 100 and 500 mg, preferably 360 mg.
En otra realización preferida, la solución hidrofóbica comprende al menos Lecitina, en combinación con otros excipientes hidrofóbicos. In another preferred embodiment, the hydrophobic solution comprises at least Lecithin, in combination with other hydrophobic excipients.
En otra realización preferida, la cantidad de fosfolípidos de soja con 70% de fosfatidilcolina es entre 10 y 100 mg, preferiblemente 60 mg. In another preferred embodiment, the amount of soy phospholipids with 70% phosphatidylcholine is between 10 and 100 mg, preferably 60 mg.
En otra realización preferida, la solución hidrofóbica comprende al menos el surfactante no iónico poloxámero, en combinación con otros excipientes. In another preferred embodiment, the hydrophobic solution comprises at least the poloxamer nonionic surfactant, in combination with other excipients.
En otra realización preferida, la cantidad de poloxámero es entre 100 y 800 mg, preferiblemente entre 620 y 670 mg. In another preferred embodiment, the amount of poloxamer is between 100 and 800 mg, preferably between 620 and 670 mg.
En una realización específica, la solución hidrofóbica correspondiente a la fase intermedia de la formulación comprende propilenglicol monolaurato tipo II, polisorbato 80, fosfolípidos de soja con 70% de fosfatidilcolina, y poloxámero. En otra realización más específica, la solución hidrófobica correspondiente a la fase intermedia de la formulación comprende entre 100 y 1500 mg propilenglicol monolaurato tipo II, entre 100 y 500 mg polisorbato 80, entre 10 y 100 mg fosfolípidos de soja con 70% de fosfatidilcolina, y entre 100 y 800 mg poloxámero. In a specific embodiment, the hydrophobic solution corresponding to the intermediate phase of the formulation comprises propylene glycol monolaurate type II, polysorbate 80, soy phospholipids with 70% phosphatidylcholine, and poloxamer. In another more specific embodiment, the hydrophobic solution corresponding to the intermediate phase of the formulation comprises between 100 and 1500 mg propylene glycol monolaurate type II, between 100 and 500 mg polysorbate 80, between 10 and 100 mg soy phospholipids with 70% phosphatidylcholine, and between 100 and 800 mg poloxamer.
En una realización más específica, la solución hidrofóbica correspondiente a la fase intermedia de la formulación comprende 1 .129 mg propilenglicol monolaurato tipo II, 360 mg polisorbato 80, 60 mg fosfolípidos de soja con 70% de fosfatidilcolina, y 699,7 mg poloxámero. In a more specific embodiment, the hydrophobic solution corresponding to the intermediate phase of the formulation comprises 1.129 mg propylene glycol monolaurate type II, 360 mg polysorbate 80, 60 mg soy phospholipids with 70% phosphatidylcholine, and 699.7 mg poloxamer.
En otra realización preferida, la solución hidrofílica de la capa externa comprende quitosano HCI. In another preferred embodiment, the hydrophilic solution of the outer layer comprises chitosan HCI.
En otra realización más específica, la cantidad de quitosano HCI es entre 6 y 30 mg, preferiblemente 16,7 mg. In another more specific embodiment, the amount of chitosan HCI is between 6 and 30 mg, preferably 16.7 mg.
En otra realización preferida la formulación es una nanoemulsión que comprende: (1 ) una solución interna que comprende entre 0,6 y 1 ,5 ml_ de una solución de extracto etanolico de polen apícola, (2) una solución intermedia que comprende entre 100 y 1500 mg de propilenglicol monolaurato tipo II, entre 100 y 500 mg polisorbato 80, entre 10 y 100 mg Lipoid P75®, y entre 100 y 800 mg poloxámero, y (3) una solución externa que comprende quitosano HCI entre 6 y 30 mg. In another preferred embodiment, the formulation is a nanoemulsion comprising: (1) an internal solution comprising between 0.6 and 1.5 ml_ of a solution of ethanol extract of bee pollen, (2) an intermediate solution comprising between 100 and 1500 mg of propylene glycol monolaurate type II, between 100 and 500 mg polysorbate 80, between 10 and 100 mg Lipoid P75 ® , and between 100 and 800 mg poloxamer, and (3) an external solution comprising chitosan HCI between 6 and 30 mg.
En una realización preferida aún más específica, la formulación es una nanoemulsión que comprende: (1 ) una solución interna que comprende 1 ,2 ml_ de una solución de extracto etanólico de polen apícola, (2) una solución intermedia que comprende 1 .129 mg propilenglicol monolaurato tipo II, 360 mg polisorbato 80, 60 mg fosfolípidos de soja con 70% de fosfatidilcolina, y entre 699,7 mg poloxámero, y (3) una solución externa que comprende 16,7 mg de quitosano HCI. In an even more specific preferred embodiment, the formulation is a nanoemulsion that comprises: (1) an internal solution comprising 1.2 ml_ of a solution of ethanolic extract of bee pollen, (2) an intermediate solution comprising 1.129 mg Propylene glycol monolaurate type II, 360 mg polysorbate 80, 60 mg soybean phospholipids with 70% phosphatidylcholine, and between 699.7 mg poloxamer, and (3) an external solution comprising 16.7 mg of chitosan HCI.
En un segundo aspecto, la invención también considera el método para obtener la formulación de la presente invención. Dicho método comprende: (1 ) mezclar los componentes de la solución intermedia mediante agitación magnética por 15 min a temperatura ambiente, (2) mezclar la solución intermedia con la solución interna mediante agitación magnética entre 5 min a 30 min a temperatura ambiente, (3) Preparar la solución externa con diferentes cantidades de quitosano HCI (6, 18 o 30 mg) y poloxámero (700, 600, 360 o 180 mg) disueltos en 3,5 ml_ de agua ultra pura, y (4) La nanoemulsión múltiple se lleva a escala nanométrica homogenizando a un velocidad de entre 21 .500 y 25.000 RPM utilizando un homogenizador básico durante 10 min en un baño de hielo para mantener la temperatura bajo los 37°C. In a second aspect, the invention also considers the method for obtaining the formulation of the present invention. This method comprises: (1) mixing the components of the intermediate solution by magnetic stirring for 15 min at room temperature, (2) mixing the intermediate solution with the internal solution by magnetic stirring between 5 min to 30 min at room temperature, (3 ) Prepare the external solution with different amounts of chitosan HCI (6, 18 or 30 mg) and poloxamer (700, 600, 360 or 180 mg) dissolved in 3.5 ml_ of ultra pure water, and (4) The multiple nanoemulsion is It is carried out on a nanoscale homogenizing at a speed of between 21,500 and 25,000 RPM using a basic homogenizer for 10 min in an ice bath to keep the temperature below 37 ° C.
En un tercer aspecto de la invención, la formulación de la presente invención es usada para proteger compuestos activos que se encuentran en la solución interior. En otra modalidad preferida la composición de la presente invención es usada para proteger compuestos activos de ambientes agresivos para su actividad. In a third aspect of the invention, the formulation of the present invention is used to protect active compounds found in the inner solution. In another preferred embodiment, the composition of the present invention is used to protect active compounds from aggressive environments for their activity.
En una modalidad preferida más específica, la composición de la presente invención es utilizada para proteger compuestos activos, en donde el ambiente agresivo es el tracto gastrointestinal. In a more specific preferred embodiment, the composition of the present invention is used to protect active compounds, where the aggressive environment is the gastrointestinal tract.
En una modalidad preferida específica el compuesto activo a proteger pueden ser compuestos que tengan radicales fenilo en su estructura, preferiblemente compuestos fenólicos. In a specific preferred embodiment, the active compound to be protected can be compounds having phenyl radicals in their structure, preferably phenolic compounds.
En una modalidad aún más específica, el compuesto fenólico se refiere a polifenoles. In an even more specific embodiment, the phenolic compound refers to polyphenols.
En una realización preferida de esta modalidad los compuestos polifenólicos son derivados de polen. In a preferred embodiment of this embodiment the polyphenolic compounds are derived from pollen.
En otra realización preferida, los compuestos fenólicos derivados del polen corresponden a flavonoides. In another preferred embodiment, the phenolic compounds derived from pollen correspond to flavonoids.
En una realización preferida más específica, los compuestos fenólicos y flavonoides del polen son seleccionados entre: ácido clorogénico, ácido siríngico, ácido cumárico, ácido sinápico, ácido ferúlico, ácido cinámico, epicatequina, miricetina, quercetina, apigenina, kaempferol, crisina, narigenina, ramnetina, pinocembrina, galangina, pinobanksina, hesperetina, CAPE (ácido fenil éster caféico), luteolina, 3 metilquercetina, isorramnetina, tectocrisina, ácido elágico, y rutina. En una realización preferida particular, los flavonoides presentes en el polen corresponden a miricetina y quercetina. In a more specific preferred embodiment, the phenolic compounds and pollen flavonoids are selected from: chlorogenic acid, syringic acid, coumaric acid, synapic acid, ferulic acid, cinnamic acid, epicatechin, myricetin, quercetin, apigenin, kaempferol, chrysin, narigenin, rhamnetin, pinocembrine, galangine, pinobanksin, hesperetin, CAPE (caffeic phenyl ester acid), luteolin, 3-methylquercetin, isorramnetin, tectocrisin, ellagic acid, and rutin. In a particular preferred embodiment, the flavonoids present in pollen correspond to myricetin and quercetin.
Breve descripción de Figuras Brief description of Figures
Figura 1. Representación gráfica de nanoemulsión múltiple diseñada y la ubicación de los de los componentes en cada fase. Figure 1. Graphic representation of the multiple nanoemulsion designed and the location of the components in each phase.
Figura 2. Evaluación de las cantidades de los diferentes componentes de las nanoemulsiones múltiples en la función de tamaño de partículas T(F). Evaluación de la variación de componentes de la fase acuosa externa (A). Evaluación de los componentes de la fase acuosa interna (polen apícola) y la fase oleosa (Lauroglicol®90) (B). Figure 2. Evaluation of the amounts of the different components of the multiple nanoemulsions in the particle size function T (F). Evaluation of the variation of components of the external aqueous phase (A). Evaluation of the components of the internal aqueous phase (bee pollen) and the oily phase (Lauroglycol®90) (B).
Figura 3. Evaluación de las cantidades de los diferentes componentes de las nanoemulsiones múltiples en la función de potencial Z P(F). Evaluación de la variación de componentes de la fase acuosa externa (A). Evaluación de los componentes de la fase acuosa interna (polen apícola) y la fase oleosa (Lauroglicol®90) (B). Figura 4. Estabilidad de nanoemulsiones múltiples de polen apícola (NEMP). En condiciones de tracto gastrointestinal simulado. (A): Fluido gástrico simulado sin enzima USP pH 1 ,2. (B): Fluido intestinal simulado sin enzima USP pH 6,8. Temperatura: 37 eC. (Promedio ± D.S, n= 3) Figure 3. Evaluation of the amounts of the different components of multiple nanoemulsions in the potential function ZP (F). Evaluation of the variation of components of the external aqueous phase (A). Evaluation of the components of the internal aqueous phase (bee pollen) and the oily phase (Lauroglycol®90) (B). Figure 4. Stability of multiple bee pollen nanoemulsions (NEMP). Under simulated gastrointestinal tract conditions. (A): Simulated gastric fluid without USP pH 1.2 enzyme. (B): Simulated intestinal fluid without USP enzyme pH 6.8. Temperature: 37 e C. (Average ± SD, n = 3)
Figura 5. Estabilidad de nanoemulsiones múltiples de polen apícola (NEMP) en buffer fosfato salino a pH 7.4. Ensayo realizado durante 48 h. (Promedio ± D.S, n= 3) Figure 5. Stability of multiple bee pollen nanoemulsions (NEMP) in phosphate buffered saline at pH 7.4. Assay carried out for 48 h. (Average ± S.D., n = 3)
Figura 6. Estabilidad de nanoemulsiones múltiples en condiciones de almacenamiento. Ensayo realizado durante 4 meses. (A): NEMP: nanoemulsiones múltiples de polen apícola. (B): NEMB: nanoemulsiones múltiples blancas. (Promedio ± D.S, n= 3). Figure 6. Stability of multiple nanoemulsions under storage conditions. Trial carried out for 4 months. (A): NEMP: multiple nanoemulsions of bee pollen. (B): NEMB: multiple white nanoemulsions. (Average ± S.D., n = 3).
Figura 7. Estabilidad de compuestos polifenólicos durante 4 meses de almacenamiento. Estabilidad de extracto de polen apícola no encapsulado (A). Estabilidad de nanoemulsiones múltiples optimizadas (Promedio ± D.S, n= 3) (B). Marcadores utilizados miricetina, quercetina y ácido cinámico. Figure 7. Stability of polyphenolic compounds during 4 months of storage. Stability of non-encapsulated bee pollen extract (A). Stability of multiple optimized nanoemulsions (Average ± SD, n = 3) (B). Markers used myricetin, quercetin, and cinnamic acid.
Ejemplos Examples
A continuación, se incluyen ejemplos de realización para la presente invención tal como fue antes descrita: The following are examples of embodiments for the present invention as described above:
Ejemplo 1 : Preparación de nanoemulsiones múltiples prototipo Example 1: Preparation of prototype multiple nanoemulsions
Se inició el diseño de las nanoemulsiones múltiples agua-aceite-agua (W-O-W) utilizando el método de emulsificación en 2 fases descrito por A. Silva-Cunha y colaboradores con algunas modificaciones. Se desarrolló un prototipo utilizando un diseño racional, se probaron distintos excipientes para la fase oleosa, tensoactivos de interfase y cubierta polimérica. En cuanto a la optimización de la formulación se desarrolló un set de experimentos. Brevemente, se formó una emulsión primaria W/O utilizando como fase orgánica Lauroglicol® 90 en diferentes cantidades (600; 900 o 1200 mg), y los tensioactivos Span 80® (360 mg), y Lipoid P75® (60 mg). Los 3 componentes de esta fase orgánica se mezclaron bajo agitación magnética durante 15 min a temperatura ambiente. Luego se agregó la fase acuosa interna, constituida por diferentes cantidades de extracto etanólico de polen apícola (1 ,5; 1 ,0 o 0,6 mL), agitándose durante 15 min adicionales. Posteriormente, se preparó la segunda fase de emulsificación agregando la fase acuosa externa, constituida por diferentes cantidades de quitosano HCI (6, 18 o 30 mg) y Pluronic F-68® (700, 600, 360 o 180 mg) disueltos en 3,5 mL de agua ultra pura. La nanoemulsión múltiple se llevó a escala nanométrica homogenizando a 21500 RPM utilizando el homogenizador básico UltraTurrax, IKA® T25 (IKA, Brasil) durante 10 min en un baño de hielo para mantener la temperatura bajo los 37°C. Se realizaron una serie de formulaciones con el objetivo de incorporar en las diversas fases del nanosistema múltiple los excipientes de interés y desarrollar una formulación prototipo. La fase acuosa interna en todo momento correspondió al extracto de polen apícola concentrado en solución 100% etanólica. El extracto etanólico de polen apícola se incorporó a la formulación en la mayor cantidad posible, esto debido que los nanosistemas permiten la incorporación de una gran cantidad de activo versus las nanoemulsiones convencionales o simples. The design of multiple water-oil-water (WOW) nanoemulsions was started using the 2-phase emulsification method described by A. Silva-Cunha et al with some modifications. A prototype was developed using a rational design, different excipients for the oil phase, interface surfactants and polymeric coating were tested. Regarding the optimization of the formulation, a set of experiments was developed. Briefly, a primary W / O emulsion was formed using as organic phase Lauroglycol ® 90 in different amounts (600; 900 or 1200 mg), and the surfactants Span 80 ® (360 mg), and Lipoid P75 ® (60 mg). The 3 components of this organic phase were mixed under magnetic stirring for 15 min at room temperature. Then the internal aqueous phase was added, consisting of different amounts of ethanolic extract of bee pollen (1, 5, 1, 0 or 0.6 mL), stirring for an additional 15 min. Subsequently, the second emulsification phase was prepared by adding the external aqueous phase, consisting of different amounts of chitosan HCI (6, 18 or 30 mg) and Pluronic F-68 ® (700, 600, 360 or 180 mg) dissolved in 3, 5 mL of ultra pure water. The multiple nanoemulsion was carried out on a nanoscale homogenizing at 21,500 RPM using the basic UltraTurrax homogenizer, IKA ® T25 (IKA, Brazil) for 10 min in an ice bath to keep the temperature below 37 ° C. A series of formulations were made with the objective of incorporating the excipients of interest in the various phases of the multiple nanosystem and developing a prototype formulation. The internal aqueous phase at all times corresponded to the concentrated bee pollen extract in 100% ethanolic solution. The ethanolic extract of bee pollen was incorporated into the formulation in as much quantity as possible, this is due to the fact that nanosystems allow the incorporation of a large quantity of active ingredient versus conventional or simple nanoemulsions.
Con el objetivo de estabilizar la interfase 1 (fase acuosa interna-aceite) se utilizaron los tensoactivos Lipoid P-75® (lecitina) y Span® 80 (monooleato de sorbitán). Lipoid P-75® es un surfactante anfótero de origen natural que comprende un alto porcentaje de fosfatidilcolina. Este tensioactivo ha demostrado ser seguro y ha sido ampliamente utilizado por la industria, fundamentalmente porque es un excipiente GRAS. Span® 80 es un surfactante no iónico con aprobación FDA para uso en alimentos, por lo que es susceptible de ser utilizado para estabilizar nanovehículos para administración oral de bioactivos. La fase oleosa fue optimizada probando diversas fases continuas o aceites de bajo índice hidrófilo-lipófilo (HBL). Se probó en un inicio utilizando como núcleo oleoso Maisine® CC debido a su bajo HBL (alrededor de 1 ), pero no fue posible estabilizar un nanosistema, estas formulaciones no formaron emulsiones, por ende, se descarta este excipiente para ser incorporado en el prototipo. Posteriormente, se utilizó Labrafac CC®, este aceite corresponde a un ácido graso saturado compuesto por una mezcla de triglicéridos (cáprico y caprílico), excipiente ampliamente usado en formulaciones farmacéuticas y nanomedicina. Se obtuvieron resultados favorables, sin embargo, este aceite no permitió obtener nanosistemas múltiples con tamaños de partícula inferiores a los 300 nm. Posteriormente, se intentó disminuir el tamaño de partícula a través de la incorporación de otro aceite, y que además aportara al vehículo características adicionales, es así como se utilizó Gelucire® 44/14 y Lauroglicol® 90 que cuentan con antecedentes de ser promotores de la biodisponibilidad por vía oral. Las pruebas realizadas con Gelucire® 44/14 no constituyeron emulsiones de menor tamaño, probablemente por el HBL intermedio que posee este aceite (alrededor de 1 1 ), por lo que no pudo constituir la fase oleosa del nanosistema. Es importante destacar estos resultados va que estos demuestran que no es evidente la elección de estabilizantes descritos en la técnica sino que los inventores demuestran que solo algunos pueden ser utilizados en la formulación de la invención. Las pruebas con Lauroglicol® 90 fueron exitosas permitiendo obtener nanosistemas con menor tamaño de partícula en comparación a los que contenían Labrafac CC®. Lauroglicol® 90 es un aceite formado por mono- y diésteres de propilenglicol de ácido láurico (C12) [1 16]. Este excipiente ha demostrado aumentar la biodisponibilidad de compuestos bioactivos de baja absorción y además es adecuado para ser administrado por vía oral. In order to stabilize interface 1 (internal aqueous phase-oil), the surfactants Lipoid P-75 ® (lecithin) and Span ® 80 (sorbitan monooleate) were used. Lipoid P-75 ® is a naturally occurring amphoteric surfactant that comprises a high percentage of phosphatidylcholine. This surfactant has proven to be safe and has been widely used by industry, primarily because it is a GRAS excipient. Span ® 80 is a non-ionic surfactant with FDA approval for use in food, so it can be used to stabilize nanocarriers for oral administration of bioactives. The oil phase was optimized by testing various continuous phases or oils of low hydrophilic-lipophilic index (HBL). It was initially tested using Maisine ® CC as the oil core due to its low HBL (around 1), but it was not possible to stabilize a nanosystem, these formulations did not form emulsions, therefore, this excipient is discarded to be incorporated into the prototype . Later, Labrafac CC ® was used, this oil corresponds to a saturated fatty acid composed of a mixture of triglycerides (capric and caprylic), an excipient widely used in pharmaceutical formulations and nanomedicine. Favorable results were obtained, however, this oil did not allow to obtain multiple nanosystems with particle sizes lower than 300 nm. Subsequently, an attempt was made to reduce the particle size through the incorporation of another oil, and that would also provide the vehicle with additional characteristics, this is how Gelucire ® 44/14 and Lauroglycol ® 90 were used, which have a history of being promoters of the oral bioavailability. The tests carried out with Gelucire ® 44/14 did not constitute smaller emulsions, probably due to the intermediate HBL that this oil possesses (around 1 1), so it could not constitute the oily phase of the nanosystem. It is important to highlight these results since they demonstrate that the choice of stabilizers described in the art is not obvious, but rather that the inventors demonstrate that only some can be used in the formulation of the invention. The tests with Lauroglycol ® 90 were successful allowing to obtain nanosystems with smaller particle size compared to those containing Labrafac CC ® . Lauroglycol ® 90 is an oil made up of propylene glycol mono- and diesters of lauric acid (C12) [1 16]. This excipient has been shown to increase the bioavailability of low-absorption bioactive compounds and is also suitable for oral administration.
Para la interfase 2 (aceite-fase acuosa externa) en un inicio se probó un tensoactivo aniónico (Lipocol HCO-40®), sin embargo, este no permitía obtener un pequeño tamaño de partícula y aportaba carga negativa al sistema, lo que contribuía a disminuir la carga positiva total buscada para el potencial Z. Se probó entonces, utilizando como tensoactivo Pluronic F-68®, inicialmente en concentraciones de 1 y 3% pero no fue posible estabilizar el nanosistema, por esto se aumentó a 20% respecto del volumen de la fase acuosa externa (3,5 ml_). Pluronic F68® corresponde a un conjunto de polímeros de bloque de polioxietileno-polioxipropileno-polioxietileno (PEO-PPO- PEO), ampliamente utilizados como agentes humectantes, solubilizantes o aglomerantes; teniendo un perfil adecuado respecto a su seguridad y compatibilidad con la vía oral. Adicionalmente, Pluronic F68® es conocido por ser inhibidor de la glicoproteína P, proteína que participa en el transporte de activos con especificidad de sustrato, que se encuentra ampliamente distribuida en el epitelio gastrointestinal y es que es la principal responsable de eflujo de fármacos. For interface 2 (oil-external aqueous phase) an anionic surfactant (Lipocol HCO-40 ® ) was initially tested, however, this did not allow to obtain a small particle size and It contributed a negative charge to the system, which contributed to reducing the total positive charge sought for the Z potential. It was then tested, using Pluronic F-68 ® as surfactant, initially in concentrations of 1 and 3% but it was not possible to stabilize the nanosystem, for this reason it was increased to 20% with respect to the volume of the external aqueous phase (3.5 ml_). Pluronic F68 ® corresponds to a set of polyoxyethylene-polyoxypropylene-polyoxyethylene (PEO-PPO-PEO) block polymers, widely used as wetting, solubilizing or binding agents; having an adequate profile regarding its safety and compatibility with the oral route. Additionally, Pluronic F68 ® is known to be an inhibitor of P-glycoprotein, a protein that participates in the transport of active ingredients with substrate specificity, which is widely distributed in the gastrointestinal epithelium and is the main cause of drug efflux.
Finalmente, se trabajó en la fase acuosa externa incorporando una cubierta polimérica de quitosano HCI. Entre las razones para incorporar quitosano a la formulación, se encuentran sus excelentes propiedades que puede entregarle a la nanoemulsión múltiple. Entre ellas que no es tóxico, que no induce inflamación ni provoca la respuesta del sistema inmunitario, además de ser biodegradable. Otra ventaja de este activo es su mucoadhesividad, debido a que su carga positiva permite la interacción con el ácido siálico del mucus, lo anterior se traduce en un aumento de los tiempos de residencia de los activos en el sitio de absorción, lo que conduce a un aumento. En la Figura 1 se muestra de forma gráfica el nanosistema múltiple diseñado y como se orientarían sus componentes en cada capa e interfase. Finalmente, se obtuvo una formulación prototipo que incorpora todos los excipientes de interés para el diseño racional de un nanosistema. En la Tabla 1 se muestra la composición de la formulación prototipo la que posee un tamaño de partícula de 184 nm, con un IPD de 0,084, lo que es indicativo de una población homogénea de partículas, y un potencial Z de +21 mV, destacando el carácter positivo por la presencia de quitosano en la superficie de la emulsión. Finally, we worked on the external aqueous phase incorporating a polymeric chitosan HCI coating. Among the reasons for incorporating chitosan into the formulation are its excellent properties that it can deliver to the multiple nanoemulsion. Among them that it is not toxic, that it does not induce inflammation or provoke the response of the immune system, in addition to being biodegradable. Another advantage of this active is its mucoadhesiveness, since its positive charge allows interaction with the sialic acid of the mucus, which translates into an increase in the residence times of the active ingredients in the absorption site, which leads to increase. Figure 1 graphically shows the multiple nanosystem designed and how its components would be oriented in each layer and interface. Finally, a prototype formulation was obtained that incorporates all the excipients of interest for the rational design of a nanosystem. Table 1 shows the composition of the prototype formulation, which has a particle size of 184 nm, with an IPD of 0.084, which is indicative of a homogeneous population of particles, and a Z potential of +21 mV, highlighting the positive character by the presence of chitosan on the surface of the emulsion.
Tabla 1. Composición de nanoemulsión múltiple W/O/W prototipo. Table 1. Composition of prototype W / O / W multiple nanoemulsion.
Figure imgf000011_0001
Ejemplo 2: Desarrollo de formulaciones mejoradas.
Figure imgf000011_0001
Example 2: Development of improved formulations.
Las características deseadas para la nanoemulsión múltiple fueron el menor tamaño posible (ojalá menor a 100 nm), y un potencial Z positivo, idealmente cercano a +30. En base a estos efectos que se querían lograr, se produjeron diferentes formulaciones variando las concentraciones de los excipientes de acuerdo a lo indicado en la Tabla 2. The desired characteristics for the multiple nanoemulsion were the smallest possible size (hopefully less than 100 nm), and a positive Z potential, ideally close to +30. Based on these desired effects, different formulations were produced varying the concentrations of the excipients according to what is indicated in Table 2.
Tabla 2. Composición y caracterización fisicoquímica de las 6 nanoemulsiones múltiples elaboradas por triplicado. Table 2. Composition and physicochemical characterization of the 6 multiple nanoemulsions made in triplicate.
Figure imgf000012_0001
Figure imgf000012_0001
(Promedio ± D.S, n= 3). (Average ± S.D., n = 3).
En la Figura 2 se muestran los gráficos obtenidos para la función de tamaño T(F) fijando en A, la cantidad de extracto de polen apícola en 1 ,5 mi y de Lauroglicol® 90 en 1200 mg y en B, la cantidad de quitosano HCI en 18 y Pluronic F-68® en 700 mg. En la Figura 2A se observa que al variar la cantidad de Pluronic F-68®, el tamaño de partícula disminuye a medida que se aumentó la cantidad de este excipiente. Por otra parte, se observa que al aumentar la cantidad de quitosano HCI el tamaño de partícula también aumenta, esta situación podría deberse a un mayor impedimento estérico otorgado por las colas hidrofóbicas del biopolímero. Existen estudios donde se aprecia el mismo fenómeno en otros tipos de nanovehículos. Por el contrario, en la Figura 2B, se puede observar que no se encontró diferencia al variar la cantidad de Lauroglicol® 90 o la cantidad de extracto de polen apícola. En el caso de la variación de Lauroglicol®90 los solicitantes son los primeros en reportar una nanoemulsión múltiple W/O/W con estas características que incorpora Lauroglicol®90 en su fase oleosa. Existen reportes en la literatura para nanoemulsiones primarias W/O donde se observa un fenómeno diferente a lo observado en el sistema múltiple, donde a medida que aumenta la concentración de Lauroglicol®90 el tamaño de gota también aumenta; lo que confirma el diferente comportamiento entre una nanoemulsión simple y una múltiple como la desarrollada en este estudio. Figure 2 shows the graphs obtained for the size function T (F) setting in A, the amount of bee pollen extract at 1.5 ml and of Lauroglycol ® 90 at 1200 mg and in B, the amount of chitosan HCI in 18 and Pluronic F-68 ® in 700 mg. In Figure 2A it is observed that by varying the amount of Pluronic F-68 ® , the particle size decreases as the amount of this excipient is increased. On the other hand, it is observed that as the amount of chitosan HCI increases, the particle size also increases, this situation could be due to a greater steric hindrance granted by the hydrophobic tails of the biopolymer. There are studies where the same phenomenon is seen in other types of nanocarriers. On the contrary, in Figure 2B, it can be seen that no difference was found when varying the amount of Lauroglycol ® 90 or the amount of bee pollen extract. In the case of the Lauroglycol ® 90 variation, the applicants are the first to report a multiple W / O / W nanoemulsion with these characteristics that incorporates Lauroglycol ® 90 in its oily phase. There are reports in the literature for primary W / O nanoemulsions where a different phenomenon is observed from that observed in the multiple system, where as the concentration of Lauroglycol ® 90 increases, the droplet size also increases. increases; which confirms the different behavior between a simple nanoemulsion and a multiple one like the one developed in this study.
Además, para ver si las propiedades fisicoquímicas de las nanoemulsiones variaban al variar el lote de extracto de polen apícola; se realizó un estudio replicando la misma formulación, pero con polen de distinto lote y nanoemulsiones múltiples blancas. Los resultados para el tamaño no cambiaron drásticamente, por lo que, a partir de lo obtenido experimentalmente podemos tener una formulación que encapsule cualquier lote de polen apícola, ya que no afectara sus propiedades fisicoquímicas (datos no mostrados). In addition, to see if the physicochemical properties of the nanoemulsions varied by varying the batch of bee pollen extract; A study was carried out replicating the same formulation, but with pollen from a different batch and multiple white nanoemulsions. The results for the size did not change drastically, therefore, from what was obtained experimentally, we can have a formulation that encapsulates any batch of bee pollen, since it will not affect its physicochemical properties (data not shown).
Para la función de potencial Z, los gráficos tridimensionales obtenidos se muestran en la Figura 3. En este caso se fijaron las mismas variables antes señaladas, pero esta vez se evaluó la variación del potencial Z. En la Figura 3A, se observa que la cantidad de Lauroglicol®90 es influyente y que existe una región acotada en la cual el potencial Z es mayor. Para el caso del extracto de polen apícola, no se aprecian diferencias importantes en la variación de potencial Z al aumentar o disminuir su concentración. En el caso del polen apícola se observó el mismo comportamiento que se vio en el caso del tamaño, no hubo variación en el potencial Z al cambiar concentración o lote de extracto. Esto reafirma que el extracto constituye la fase más interna del nanosistema múltiple y que es protegido por la fase oleosa continua. En la Figura 3B, se observa una situación semejante a la descrita anteriormente, es decir, existe una región muy acotada donde se obtienen potenciales Z de alrededor de +30 mV. Así, se observa que el tensioactivo Pluronic F68® no influye de forma significativa en el aumento de potencial Z, sin embargo, sí varía de forma importante a medida que se aumenta la concentración de quitosano HCI encontrándose los valores más elevados para potencial Z en el rango de 10 a 20 mg de este polisacárido. En el caso de Pluronic F68® no se tiene antecedentes de su influencia en el potencial, sin embargo, al ser un tensioactivo no iónico se sabe que no aporta carga electrostática al sistema. En el caso del quitosano HCI, la variación de potencial Z depende de la forma en la que se incorpora este biopolímero a la formulación. En este caso se encuentra en solución en la fase acuosa externa por lo que a medida que se aumenta su concentración aumenta el potencial Z. Sin embargo, en un punto dado, al seguir aumentando la concentración de este polímero, los sitios hidrofóbicos del biopolímero probablemente comienzan a apantanar la carga, reflejándose esto en una disminución de la carga superficial. For the potential function Z, the three-dimensional graphs obtained are shown in Figure 3. In this case the same variables mentioned above were fixed, but this time the variation of the potential Z was evaluated. In Figure 3A, it is observed that the quantity of Lauroglycol ® 90 is influential and that there is a limited region in which the Z potential is greater. In the case of bee pollen extract, there are no significant differences in the variation of potential Z when its concentration increases or decreases. In the case of bee pollen, the same behavior was observed as was seen in the case of size, there was no variation in the Z potential when changing the concentration or batch of extract. This reaffirms that the extract constitutes the innermost phase of the multiple nanosystem and that it is protected by the continuous oil phase. In Figure 3B, a situation similar to that described above is observed, that is, there is a very limited region where Z potentials of around +30 mV are obtained. Thus, it is observed that the surfactant Pluronic F68 ® does not significantly influence the increase in Z potential, however, it does vary significantly as the concentration of chitosan HCI is increased, the highest values for Z potential being found in the range from 10 to 20 mg of this polysaccharide. In the case of Pluronic F68 ® there is no history of its influence on the potential, however, as it is a non-ionic surfactant it is known that it does not provide electrostatic charge to the system. In the case of chitosan HCI, the variation in Z potential depends on the way in which this biopolymer is incorporated into the formulation. In this case, it is found in solution in the external aqueous phase, so as its concentration increases, the Z potential increases. However, at a given point, as the concentration of this polymer continues to increase, the hydrophobic sites of the biopolymer probably they begin to block the load, reflecting this in a decrease in the surface load.
En base a todos los experimentos realizados, se obtuvo la composición de la formulación óptima para el menor tamaño de partícula y el mayor potencial Z positivo. Esta formulación corresponde a la denominada F. Para facilitar la comprensión de resto del trabajo realizado, desde ahora en adelante, esta formulación se denominará NEMP (nanoemulsión múltiple que encapsula extracto de polen apícola). Y aquella formulación equivalente que empleó etanol como fase interna acuosa, se denominó NEMB (nanoemulsión múltiple blanco). Las composiciones de ambos nanosistemas se muestran en la Tabla 3. Based on all the experiments performed, the optimal formulation composition was obtained for the smallest particle size and the highest positive Z potential. This formulation corresponds to the so-called F. To facilitate the understanding of the rest of the work carried out, from now on, this formulation will be called NEMP (multiple nanoemulsion that encapsulates bee pollen extract). And that equivalent formulation that used ethanol as the internal phase aqueous, it was called NEMB (white multiple nanoemulsion). The compositions of both nanosystems are shown in Table 3.
Tabla 3. Composición de NEMP y NEMB. Table 3. Composition of NEMP and NEMB.
Figure imgf000014_0001
Figure imgf000014_0001
NEMP: nanoemulsiones múltiples de polen apícola. NEMB: nanoemulslones múltiples blancas. NEMP: multiple nanoemulsions of bee pollen. NEMB: multiple white nanoemulsions.
Ejemplo 3: Caracterización fisicoquímica de los sistemas desarrollados. Example 3: Physicochemical characterization of the developed systems.
La caracterización de nanosistemas múltiples se determinó midiendo sus propiedades fisicoquímicas como tamaño de partículas e índice de polidispersión utilizando la técnica de dispersión dinámica de la luz (DLS). Además, se estudió su potencial Z a través de la técnica de electroforesis láser Doppler (Malvern Instruments, Reino Unido). Para medir tamaño e índice de polidispersión se diluyó 1 pL de formulación (nanosistemas) en 999 pL de agua Mili Q. Para medir potencial Z se utilizó la misma dilución, pero está vez dispersando los nanosistemas en 999 pL de solución de cloruro de potasio 1 mM. Adicionalmente, se caracterizó el nanosistema optimizado utilizando el equipo Nanosight (Malvern Instruments, Reino Unido). Para ello se realizó una dilución de la muestra de 1 :45000 dispersando el nanosistema en agua ultra pura. a) Estudio de Morfología. The characterization of multiple nanosystems was determined by measuring their physicochemical properties such as particle size and polydispersity index using dynamic light scattering (DLS) technique. Furthermore, its Z potential was studied using the Doppler laser electrophoresis technique (Malvern Instruments, UK). To measure size and polydispersity index, 1 pL of formulation (nanosystems) was diluted in 999 pL of Milli Q water. To measure potential Z, the same dilution was used, but this time dispersing the nanosystems in 999 pL of potassium chloride solution 1 mM. Additionally, the optimized nanosystem was characterized using the Nanosight equipment (Malvern Instruments, UK). For this, a dilution of the sample of 1: 45000 was carried out by dispersing the nanosystem in ultra-pure water. a) Study of Morphology.
La morfología de las formulaciones se observó a través de microscopía electrónica de transmisión y barrido (STEM) (FEI Company, Estados Unidos). Brevemente, se colocó una gota de la formulación sobre la superficie de una rejilla de cobre recubierta de carbono, posteriormente se tiñeron por dos minutos con ácido fosfotúngstico 2% p/v y finalmente se lavó la rejilla con agua ultra pura. Las rejillas se dejaron en un desecador (Normax, Portugal) por 48 horas para ser analizadas posteriormente a través de STEM. The morphology of the formulations was observed through scanning transmission electron microscopy (STEM) (FEI Company, United States). Briefly, a drop of the formulation was placed on the surface of a carbon-coated copper grid, subsequently stained for two minutes with 2% w / v phosphotungstic acid and finally the grid was washed with ultra-pure water. The grids were left in a desiccator (Normax, Portugal) for 48 hours to be subsequently analyzed through STEM.
En la Tabla 4, se muestra las propiedades fisicoquímicas de NEMP, siendo los valores de tamaño y potencial Z predichos por el modelo 94 nm y +33 mV respectivamente, muy similares a lo obtenido experimentalmente. En el caso de NEMB es posible observar que la caracterización es muy similar, hecho que ha sido explicado previamente en la optimización de la formulación, donde se sabe que el extracto de polen apícola no interviene de forma significativa en el tamaño de partícula de los nanosistemas ni en su carga superficial. Table 4 shows the physicochemical properties of NEMP, the size and potential Z values predicted by the model being 94 nm and +33 mV respectively, very similar to what was obtained experimentally. In the case of NEMB it is possible to observe that the characterization is very similar, a fact that has been previously explained in the optimization of the formulation, where it is known that the bee pollen extract does not intervene significantly in the particle size of the nanosystems or in their surface charge.
Tabla 4. Caracterización fisicoquímica de nanoemulsiones múltiples optimizada mediante modelo matemático de aprendizaje supervisado, datos experimentales. Table 4. Physicochemical characterization of multiple nanoemulsions optimized by supervised learning mathematical model, experimental data.
Figure imgf000015_0001
Figure imgf000015_0001
(Promedio ± D.S, n= 3). NEMP: nanoemulsiones múltiples de polen apícola. NEMB: nanoemulsiones múltiples blancas. b) Cuantificación de contenido de polifenoles en polen apícola encapsulado. (Average ± S.D., n = 3). NEMP: multiple nanoemulsions of bee pollen. NEMB: multiple white nanoemulsions. b) Quantification of polyphenol content in encapsulated bee pollen.
Para cuantificar el contenido de polifenoles se utilizó cromatografía liquida de alta eficacia (HPLC) acoplado a detector de arreglo de diodos utilizando un equipo Hitachi Chromaster VWR (Hitachi, Japón) con una columna y pre-columna Purospher STAR RP-18 endcapped (5um, 250 x 4,6 mm), utilizando un método en gradiente escalonada, con un flujo de 0,8 mL/min, a una temperatura de 37°C, inyectando 10 mI_. Se realizó una curva de calibrado multiestándar de polifenoles, siendo el tiempo de corrida fue de 80 min. Para esto, se escogieron dos marcadores flavonoides (que correspondieron a miricetina y quercetina) y un marcador de ácido fenólico (que correspondió al ácido cinámico). El motivo de esta decisión fue la elevada concentración de estos polifenoles en el lote de polen utilizado. En la Tabla 5 se muestra el porcentaje de encapsulación de polen de las formulaciones que se elaboraron en triplicado durante la optimización del modelo matemático. To quantify the polyphenol content, high performance liquid chromatography (HPLC) coupled to a diode array detector was used using a Hitachi Chromaster VWR equipment (Hitachi, Japan) with an endcapped Purospher STAR RP-18 column and pre-column (5um, 250 x 4.6 mm), using a stepped gradient method, with a flow of 0.8 mL / min, at a temperature of 37 ° C, injecting 10 mI_. A multistandard polyphenol calibration curve was performed, the running time being 80 min. For this, two flavonoid markers (corresponding to myricetin and quercetin) and a phenolic acid marker (corresponding to cinnamic acid) were chosen. The reason for this decision was the high concentration of these polyphenols in the pollen lot used. Table 5 shows the percentage of pollen encapsulation of the formulations that were made in triplicate during the optimization of the mathematical model.
Tabla 5. Porcentaje de encapsulación para los marcadores quercetina, miricetina y ácido fenólico presentes en el extracto de polen apícola encapsulado. Porcentaje de encapsulación en base a NEMP no aislada. Table 5. Encapsulation percentage for the markers quercetin, myricetin and phenolic acid present in the encapsulated bee pollen extract. Encapsulation percentage based on non-isolated NEMP.
Figure imgf000015_0002
Figure imgf000016_0001
Figure imgf000015_0002
Figure imgf000016_0001
Del análisis del porcentaje de encapsulación, se encontró que todas las formulaciones encapsulan de forma eficiente los tres componentes o polifenoles del extracto utilizados como marcadores, encontrándose porcentajes superiores al 80% en todos los nanosistemas analizados. La formulación F, que como se señaló anteriormente, corresponde a la formulación optimizada NEMP, curiosamente presenta el mismo porcentaje de encapsulación para los tres marcadores estudiados. A su vez la formulación C fue la que presentó un mayor grado de encapsulación, esto puede deberse a que esta formulación tenía la mayor cantidad de aceite y a su vez la menor cantidad de extracto de polen apícola, lo que pudo contribuir a encapsular de forma más eficiente todos los polifenoles, sin embargo, no se consideró una formulación óptima debido a que presentaba un mayor tamaño (221 nm). From the analysis of the encapsulation percentage, it was found that all the formulations efficiently encapsulate the three components or polyphenols of the extract used as markers, finding percentages greater than 80% in all the analyzed nanosystems. Formulation F, which, as noted above, corresponds to the optimized NEMP formulation, curiously presents the same encapsulation percentage for the three markers studied. In turn, formulation C was the one that presented a higher degree of encapsulation, this may be due to the fact that this formulation had the greatest amount of oil and in turn the least amount of bee pollen extract, which could contribute to encapsulate more Efficient all polyphenols, however, it was not considered an optimal formulation due to its larger size (221 nm).
Estos resultados permiten demostrar que no solo se logró obtener un nanosistema optimizado en cuanto a su caracterización fisicoquímica, sino que además los compuestos bioactivos son incorporados de forma homogénea a la formulación y en un alto porcentaje. Esto demuestra que la composición de las nanoemulsiones múltiples diseñadas es robusta y que además de ser eficientes a la hora de incorporar los activos, son capaces de incorporar de forma homogénea y reproducible compuestos bioactivos de matrices naturales altamente complejas, en las cuales se esperaría una alta variabilidad. These results allow to demonstrate that not only was it possible to obtain an optimized nanosystem in terms of its physicochemical characterization, but also that the bioactive compounds are homogeneously incorporated into the formulation and in a high percentage. This shows that the composition of the multiple nanoemulsions designed is robust and that in addition to being efficient when incorporating the actives, they are capable of incorporating in a homogeneous and reproducible way bioactive compounds from highly complex natural matrices, in which a high variability.
Ejemplo 4: Estudios de estabilidad de las nanoemulsiones Example 4: Stability studies of nanoemulsions
Se estudió la estabilidad de los vehículos nanométricos en diversas condiciones, esto con el fin de obtener datos que permitieran respaldar que los nanosistemas mantendrán su tamaño nanométrico al enfrentarse a la diversas condiciones de pH a lo largo del tracto gastrointestinal en el proceso de absorción, y en condiciones de almacenamiento. Además, en esta fase experimental no solo se quiso evaluar la estabilidad del nanosistema como vehículo, sino que también se evaluó la estabilidad de los polifenoles encapsulados en dichos nanosistemas. The stability of nanometric vehicles was studied under various conditions, this in order to obtain data that would allow to support that the nanosystems will maintain their nanometric size when facing the various pH conditions throughout the gastrointestinal tract in the absorption process, and in storage conditions. Furthermore, in this experimental phase it was not only wanted to evaluate the stability of the nanosystem as a vehicle, but the stability of the polyphenols encapsulated in said nanosystems was also evaluated.
Para evaluar la integridad de los nanosistemas se realizaron estudios de estabilidad en distintos buffer que simularon condiciones fisiológicos mediante el seguimiento de la caracterización fisicoquímica de tamaño e IPD, todos estos ensayos fueron realizados utilizando la nanoemulsión múltiple optimizada NEMP. Se evalúo la estabilidad de los nanosistemas en primera instancia en 2 condiciones de pH de interés 1 ,2 y 6,8 respectivamente. Se utilizaron estas condiciones debido a que los nanosistemas que encapsulan compuestos bioactivos en su paso para absorberse por vía oral, deberán enfrentar diversas condiciones, entre ellas: un entorno gastrointestinal complejo debido a la presencia de enzimas metabólicas, las limitaciones de solubilidad de los activos y las condiciones de pH extremas que contribuyen a la degradación de los compuestos bioactivos. Se tiene el antecedente para este trabajo de susceptibilidad de los compuestos polifenólicos a condiciones de pH extremas, por lo que la estabilidad del nanosistema juega un rol importante. To evaluate the integrity of the nanosystems, stability studies were carried out in different buffers that simulated physiological conditions by monitoring the physicochemical characterization of size and IPD, all these tests were carried out using the optimized multiple nanoemulsion NEMP. The stability of the nanosystems was evaluated in the first instance in 2 pH conditions of interest 1, 2 and 6.8 respectively. These conditions were used because the nanosystems that encapsulate bioactive compounds in their passage to be absorbed orally, will have to face various conditions, among them: a complex gastrointestinal environment due to the presence of metabolic enzymes, the solubility limitations of the active ingredients and extreme pH conditions that contribute to the degradation of bioactive compounds. I know has the antecedent for this work of susceptibility of polyphenolic compounds to extreme pH conditions, so the stability of the nanosystem plays an important role.
En la Figura 4 se muestran los estudios para NEMP a pH 1 ,2 y 6,8; a 37eC. Con respecto a las condiciones de fluido gástrico simulado (pH 1 ,2), el nanosistema mantiene su estructura en el rango de los 100 nm durante todo el período de ensayo y una baja polidispersión alrededor de 0,1 , esto último es indicativo de que no solo se mantuvo el tamaño promedio, sino que además la población de partículas se mantuvo homogénea. En el caso del fluido intestinal simulado (pH 6,8), hubo un pequeño aumento de tamaño de los nanosistemas de aproximadamente 20 nm, sin embargo, el vehículo sigue manteniendo un rango de tamaño óptimo para ver favorecida su absorción y, una baja polidispersión (< 0,2). Debido a estos resultados queda demostrado que en estas condiciones de pH la nanoemulsión múltiple que encapsula polen apícola, es estable por al menos 4 horas, tiempo suficiente para una futura administración in vivo pueda ser absorbida. Finalmente, se evaluó la estabilidad de NEMP en buffer fosfato salino (pH 7,4) con el objetivo de comprobar su estabilidad en condiciones fisiológicas. En la Figura 5 se muestra la caracterización para tamaño e IPD del nanosistema durante el ensayo, queda demostrado que el nanosistema es estable por al menos 48 horas mantenidos sus características fisicoquímicas iniciales. In Figure 4 the studies for NEMP at pH 1, 2 and 6.8 are shown; at 37 e C. With respect to simulated gastric fluid conditions (pH 1, 2), the nanosystem maintains its structure in the range of 100 nm throughout the test period and a low polydispersity around 0.1, this The latter is indicative that not only was the average size maintained, but also that the particle population remained homogeneous. In the case of the simulated intestinal fluid (pH 6.8), there was a small increase in the size of the nanosystems of approximately 20 nm, however, the vehicle continues to maintain an optimal size range to see its absorption favored and a low polydispersity (<0.2). Due to these results, it is demonstrated that under these pH conditions the multiple nanoemulsion that encapsulates bee pollen is stable for at least 4 hours, sufficient time for future in vivo administration to be absorbed. Finally, the stability of NEMP in phosphate buffered saline (pH 7.4) was evaluated in order to verify its stability under physiological conditions. Figure 5 shows the characterization for size and IPD of the nanosystem during the test, it is shown that the nanosystem is stable for at least 48 hours, maintaining its initial physicochemical characteristics.
Luego, se evaluó la estabilidad en condiciones de almacenamiento a 4eC, evaluándose tanto para NEMP como para NEMB con el objetivo de observar la evolución del tamaño de partícula a través del tiempo. En la Figura 6 se muestra la variación del tamaño de partícula durante los 4 meses desde comenzado este ensayo. Para NEMP se observó que en el transcurso de 4 meses aun cuando se mantiene el tamaño nanométrico, este ha duplicado, sin embargo, se mantuvo un bajo IPD<0,3 por lo que la familia de partículas modificó su tamaño de partícula de forma homogénea. Por otra parte, NEMB triplicó su tamaño durante los 4 meses del ensayo, pero también mantuvo su un IPD < 0,3, demostrando solo una población de partículas. Adicionalmente, no se observó separación de fases en ninguno de los nanosistemas estudiados, el potencial Z se mantuvo en todo momento en el rango aproximado de +30 mV. Considerando que ambos nanosistemas partieron el estudio con tamaños de partícula similares existe un fenómeno que ha permitido que el nanosistema que comprende polen apícola mantenga su tamaño inicial más estable en el tiempo, sin embargo, del número reducido de trabajos que poseen nanosistemas múltiples en la literatura, no se han realizado estudios de estabilidad en condiciones de almacenamiento. Tampoco se cuenta con antecedentes de nanoemulsiones múltiples que contengan está distribución de excipientes por lo que no es posible atribuir dicha inestabilidad a algún excipiente en particular. Then, stability was evaluated under storage conditions at 4 e C, evaluated both NEMP to NEMB order to observe the evolution of the particle size over time. Figure 6 shows the variation in particle size during the 4 months since this test began. For NEMP, it was observed that in the course of 4 months, even when the nanometric size is maintained, it has doubled, however, a low IPD <0.3 was maintained, so the family of particles modified their particle size in a homogeneous way . On the other hand, NEMB tripled in size during the 4 months of the trial, but also maintained its IPD <0.3, demonstrating only one particle population. Additionally, no phase separation was observed in any of the studied nanosystems, the Z potential was maintained at all times in the approximate range of +30 mV. Considering that both nanosystems started the study with similar particle sizes, there is a phenomenon that has allowed the nanosystem that comprises bee pollen to maintain its initial size more stable over time, however, from the reduced number of studies that have multiple nanosystems in the literature , stability studies have not been performed under storage conditions. Nor is there a history of multiple nanoemulsions that contain this distribution of excipients, so it is not possible to attribute said instability to any particular excipient.
Cabe destacar, que aunque se produjo un aumento en el tamaño de partícula se tiene antecedentes de que nanosistemas bajo los 300 nm son capaces de absorberse de forma favorecida por vía oral. Por otra parte, el bajo IPD de ambos nanosistemas es indicativo de que aún se mantienen estables como nanovehículos no agregados, a pesar de haber aumentado su tamaño, esto podría deberse a que poseen un potencial Z favorable para su estabilidad que no se ha visto afectado en el tiempo (>+30). It should be noted that although there was an increase in particle size, there is a history that nanosystems below 300 nm are capable of absorbing themselves favored orally. On the other hand, the low IPD of both nanosystems is indicative that they are still stable as non-aggregated nanocarriers, despite having increased their size, this could be due to the fact that they have a favorable Z potential for their stability that has not been affected. in time (> +30).
Ejemplo 5: Estabilidad de los polifenoles del polen apícola encapsulado en NEMP Example 5: Stability of polyphenols from bee pollen encapsulated in NEMP
Con el fin de comprobar la estabilidad del extracto polifenólico encapsulado en el nanosistema (NEMP) se realizaron dos ensayos. El primero correspondió a la cuantificación de los compuestos marcadores de dicho polen (expuestos en 3.2.2.3) luego de almacenar los nanosistemas durante 4 meses a 4°C; empleándose para ello HPLC. El segundo correspondió a la determinación de fenoles totales realizado con el fin de cuantificar la concentración total en los nanosistemas de este tipo de compuestos, empleándose el ensayo de Folin Ciocalteu. In order to verify the stability of the polyphenolic extract encapsulated in the nanosystem (NEMP), two tests were carried out. The first corresponded to the quantification of the marker compounds of said pollen (exposed in 3.2.2.3) after storing the nanosystems for 4 months at 4 ° C; using HPLC for this. The second corresponded to the determination of total phenols carried out in order to quantify the total concentration in the nanosystems of this type of compounds, using the Folin Ciocalteu test.
Se cuantificó el contenido de polifenoles presentes en las muestras almacenadas utilizando el método HPLC. Las muestras utilizadas para este experimento fueron las mismas empleadas para los estudios de estabilidad de tamaño de partícula en condiciones de almacenamiento. En la Figura 7 se muestran las concentraciones de los marcadores escogidos para cada una de las muestras. En la Figura 7A es posible analizar que la concentración de todos los polifenoles presentes en la muestra de extracto de polen apícola no encapsulado ha decaído en el tiempo, siendo la concentración de quercetina la más afectada con casi un 33% de degradación, seguido por la miricetina con 23% y ácido cinámico con un 19,8 de pérdida del activo respecto de la concentración inicial. En la Figura 7B se puede observar la estabilidad del extracto apícola que ha sido encapsulado en los nanosistemas. Del análisis se obtiene que ninguna de las concentraciones de los marcadores flavonoides disminuyó más de un 20%, en el caso del marcador ácido cinámico su concentración no se vio afectada en el tiempo, cabe destacar que la concentración de quercetina que es nuestro marcador más estable que se vio bastante afectada en la muestra de polen no encapsulado, tuvo una disminución bastante inferior (8%). The polyphenol content present in the stored samples was quantified using the HPLC method. The samples used for this experiment were the same ones used for the particle size stability studies under storage conditions. Figure 7 shows the concentrations of the markers chosen for each of the samples. In Figure 7A, it is possible to analyze that the concentration of all the polyphenols present in the sample of non-encapsulated bee pollen extract has decreased over time, with quercetin concentration being the most affected with almost 33% degradation, followed by the Myricetin with 23% and cinnamic acid with a 19.8 loss of the active compared to the initial concentration. In Figure 7B the stability of the bee extract that has been encapsulated in the nanosystems can be observed. From the analysis it is obtained that none of the concentrations of the flavonoid markers decreased by more than 20%, in the case of the cinnamic acid marker its concentration was not affected over time, it should be noted that the concentration of quercetin, which is our most stable marker which was quite affected in the non-encapsulated pollen sample, had a much lower decrease (8%).
Estos resultados fueron obtenidos comparando la concentración inicial de cada polifenol en la muestra de extracto con su concentración después de 4 meses de almacenamiento, cabe destacar que no son directamente comparables estas concentraciones con las muestras de NEMP, debido a que en el proceso de encapsulación de extracto existe pérdida de los activos debido a que este proceso no tiene un 100% de rendimiento y los polifenoles como ha sido mencionado en este trabajo, son inestables. Sin embargo, esto no perjudica el análisis, ya que lo que se buscó observar es como evolucionaba la concentración de los marcadores escogidos en el tiempo, y si esta se vio afectada por las condiciones de almacenamiento a 4°C o el nanosistema. Con estos ensayos queda demostrado que NEMP no solo es capaz de mantener su estabilidad fisicoquímica en condiciones fisiológicas, sino que además en solución acuosa, los activos encapsulados se encuentran preservados en mejores condiciones que los polifenoles no encapsulados en el almacenamiento. Ejemplo 6: Capacidad antioxidante de las nanoemulsiones desarrolladas These results were obtained by comparing the initial concentration of each polyphenol in the extract sample with its concentration after 4 months of storage, it should be noted that these concentrations are not directly comparable with the NEMP samples, because in the encapsulation process of extract, there is a loss of assets due to the fact that this process does not have a 100% yield and the polyphenols, as mentioned in this work, are unstable. However, this does not harm the analysis, since what was sought to observe is how the concentration of the chosen markers evolved over time, and if it was affected by the storage conditions at 4 ° C or the nanosystem. With these tests it is demonstrated that NEMP is not only capable of maintaining its physicochemical stability under physiological conditions, but also that in aqueous solution, encapsulated actives are preserved in better conditions than non-encapsulated polyphenols in storage. Example 6: Antioxidant capacity of the developed nanoemulsions
Como estrategia adicional de evaluación de los nanosistemas diseñados, se decidió utilizar el ensayo ORAC-FL para evaluar el potencial antioxidante de NEMP. Este método refleja la capacidad de los compuestos que contengan grupos fenólicos para neutralizar radicales libres inducidos térmicamente por la actividad del compuesto AAPH (2,2 '-AZO-bis (2-Amidina-propano) dihidrocloruro). En presencia de oxígeno, estos radicales son interconvertidos a radicales peroxilo que son capaces de oxidar a un marcador fluorescente, en este caso fluoresceína (FL). Es así como al interactuar con el marcador, este va perdiendo su fluorescencia a través del tiempo, siendo posible registrar las curvas de decaimiento del marcador en presencia o ausencia de sustancias antioxidantes. Para realizar este análisis, se cuantificó el valor ORAC de NEMP y NEMB el día de su formulación y a un mes de almacenamiento a 4°C (ver Tabla 6). Esto con el fin de evaluar si existía una variación en el potencial antioxidante de la formulación a través del tiempo. Se realizó el ensayo utilizando además como control extracto de polen apícola diluido en la misma proporción que las nanoemulsiones múltiples (NEMP) con el objetivo de observar si existía alguna mejora en su potencial antioxidante o empeoramiento al encontrarse los polifenoles encapsulados. Adicionalmente, ambos nanosistemas estudiados (NEMP y NEMB) se utilizaron de forma íntegra y destruidos, esto con el objetivo de evaluar si existe alguna diferencia entre las muestras que comprenden los polifenoles encapsulados y las muestras en las cuales son liberados los polifenoles de los nanosistemas. Los resultados obtenidos para este ensayo se muestran en la Tabla 6, en ella es posible ver los valores ORAC para las 5 muestras analizadas a los diferentes tiempos. Es importante, antes de la interpretación de los resultados, considerar que los valores ORAC deben ser tomados como valores de referencia del potencial antioxidante que tienen una muestra y no como valores absolutos, ya que al ser matrices complejas provenientes en la gran mayoría de los casos de fuentes naturales. Por esto, el potencial antioxidante de una especie de origen vegetal varía en cada muestra, aun cuando se trate de la misma variedad, por el solo hecho de que estas hayan experimentado diferentes condiciones ambiéntale. Por otra parte, existen factores que generan variabilidad entre un experimento y otro (tiempos de exposición a la luz de las muestras, interpretación de áreas bajo la curva, etc), las cuales son propias del experimento y están consideradas en la desviación estándar de cada punto. A pesar de todo esto, este ensayo nos permite evaluar y comparar el potencial antioxidante de matrices altamente complejas. As an additional evaluation strategy of the designed nanosystems, it was decided to use the ORAC-FL assay to evaluate the antioxidant potential of NEMP. This method reflects the ability of compounds containing phenolic groups to neutralize free radicals thermally induced by the activity of the compound AAPH (2,2' -AZO-bis (2-Amidine-propane) dihydrochloride). In the presence of oxygen, these radicals are interconverted to peroxyl radicals that are capable of oxidizing a fluorescent marker, in this case fluorescein (FL). Thus, when interacting with the marker, it loses its fluorescence over time, making it possible to record the decay curves of the marker in the presence or absence of antioxidant substances. To perform this analysis, the ORAC value of NEMP and NEMB was quantified on the day of their formulation and after one month of storage at 4 ° C (see Table 6). This in order to evaluate if there was a variation in the antioxidant potential of the formulation over time. The test was also carried out using bee pollen extract diluted in the same proportion as multiple nanoemulsions (NEMP) as a control with the aim of observing if there was any improvement in its antioxidant potential or deterioration when encapsulated polyphenols were found. Additionally, both nanosystems studied (NEMP and NEMB) were used in their entirety and destroyed, this in order to evaluate if there is any difference between the samples that comprise the encapsulated polyphenols and the samples in which the polyphenols from the nanosystems are released. The results obtained for this test are shown in Table 6, in it it is possible to see the ORAC values for the 5 samples analyzed at the different times. It is important, before interpreting the results, to consider that the ORAC values should be taken as reference values of the antioxidant potential that a sample has and not as absolute values, since being complex matrices originating in the vast majority of cases from natural sources. For this reason, the antioxidant potential of a species of plant origin varies in each sample, even when it is the same variety, due to the mere fact that they have experienced different environmental conditions. On the other hand, there are factors that generate variability between one experiment and another (times of exposure to light of the samples, interpretation of areas under the curve, etc.), which are specific to the experiment and are considered in the standard deviation of each point. Despite all this, this test allows us to evaluate and compare the antioxidant potential of highly complex matrices.
Tabla 6. Capacidad antioxidante de nanoemulsiones múltiples en el tiempo obtenido para muestras almacenadas a 4 ° C.
Figure imgf000020_0001
Table 6. Antioxidant capacity of multiple nanoemulsions in the time obtained for samples stored at 4 ° C.
Figure imgf000020_0001
(Promedio ± D.S, n= 3). NEMP: nanoemulsiones múltiples de polen apícola. NEMB: nanoemulsiones múltiples blancas. (Average ± S.D., n = 3). NEMP: multiple nanoemulsions of bee pollen. NEMB: multiple white nanoemulsions.
Del análisis de los resultados obtenidos en la Tabla 6, se puede ver que a nivel general que los valores ORAC obtenidos a tiempo 0 y a 1 mes de almacenamiento son bastante diferentes para cada una de las muestras. Respecto del control de extracto de polen apícola que fue almacenado en las mismas condiciones que las nanoemulsiones, su valor ORAC disminuyó considerablemente en 1 mes, esto respalda los resultados obtenidos en el punto 4.3.2.1 , donde se aprecia que la muestra de polen no encapsulado es menos estable en el tiempo, y mostrando que la conservación de los polifenoles se ve afectada. Con respecto a las muestras NEMP se ve que si bien es cierto su valor ORAC ha disminuido en el tiempo, ha sido en un porcentaje bastante inferior al 60% valor de disminución para la muestra de polen no encapsulado. Además, el polen apícola encapsulado en NEMP demuestra tener un potencial antioxidante superior al doble al respecto de la muestra no encapsulada a tiempo cero. Lo anterior puede ser explicado, al analizar lo ocurrido por el control NEMB que corresponde a la misma formulación, pero sin el extracto de polen encapsulado donde se observa que la formulación aporta potencial antioxidante y que este efecto se vería potenciado de forma sinérgica, ya que en un inicio su valor ORAC es inferior al valor ORAC mostrado por la muestra de polen apícola. Finalmente, analizando la diferencia en la capacidad antioxidante de las muestras destruidas y no destruidas, se observa que al destruir NEMP el nanosistema aumenta el potencial antioxidante. Este fenómeno podría estar explicado por la liberación de los polifenoles que permanecen encapsulados, estando más disponibles para ejercer su efecto antioxidante. En la formulación blanca NEMB se observa el mismo fenómeno, pero con un aumento de valor ORAC menor en comparación con NEMP. Este resultado es concordante con lo observado, ya que esta formulación no tiene polifenoles, por lo que al ser destruida están más disponibles excipientes que pudieran tener efecto antioxidante por este mecanismo de evaluación de capacidad antioxidante. A modo de comparación es posible expresar el potencial antioxidante de la formulación NEMP en función de su valor ORAC por 1 g de polen fresco que genera el extracto que es encapsulado. Siendo así podemos, expresar su valor ORAC a tiempo cero en 451 pmol ET//1 g de polen. Revisando los valores ORAC entregados por el Instituto de Nutrición y Tecnología de Alimentos (INTA) y expresándolos en función de pmol ET//1 g de fruto fresco, podemos ver que los valores reportados por cada 1 g de fruto fresco por ejemplo para el arándano son de 54,81 ; en el caso de la palta Hass producida en nuestro país es de 48,53 y para un fruto como el maqui fresco reconocido por sus propiedades antioxidantes es de 371 ,74 pmol ET//1 g de fruto fresco. Este análisis anterior, permite comprender que si bien es cierto el polen apícola es una excelente fuente de antioxidantes, el polen apícola encapsulado mejora aún más está propiedad siendo incluso superior y comparable a una muestra de maqui fresco. From the analysis of the results obtained in Table 6, it can be seen that at a general level that the ORAC values obtained at time 0 and at 1 month of storage are quite different for each of the samples. Regarding the control of bee pollen extract that was stored under the same conditions as the nanoemulsions, its ORAC value decreased considerably in 1 month, this supports the results obtained in point 4.3.2.1, where it is appreciated that the non-encapsulated pollen sample It is less stable over time, showing that the conservation of polyphenols is affected. With respect to the NEMP samples, it can be seen that although its ORAC value has decreased over time, it has been a decrease in a percentage well below 60% for the non-encapsulated pollen sample. Furthermore, bee pollen encapsulated in NEMP shows to have an antioxidant potential greater than double that of the non-encapsulated sample at time zero. The foregoing can be explained by analyzing what happened by the NEMB control that corresponds to the same formulation, but without the encapsulated pollen extract, where it is observed that the formulation provides antioxidant potential and that this effect would be synergistically enhanced, since initially its ORAC value is lower than the ORAC value shown by the bee pollen sample. Finally, analyzing the difference in the antioxidant capacity of the destroyed and non-destroyed samples, it is observed that by destroying NEMP the nanosystem increases the antioxidant potential. This phenomenon could be explained by the release of polyphenols that remain encapsulated, being more available to exert their antioxidant effect. In the white NEMB formulation the same phenomenon is observed, but with a lower ORAC value increase compared to NEMP. This result is consistent with what was observed, since this formulation does not have polyphenols, so that when it is destroyed, more excipients are available that could have an antioxidant effect by this mechanism for evaluating antioxidant capacity. By way of comparison, it is possible to express the antioxidant potential of the NEMP formulation as a function of its ORAC value per 1 g of fresh pollen generated by the extract that is encapsulated. Thus, we can express your ORAC value at time zero at 451 pmol ET // 1 g of pollen. Reviewing the ORAC values provided by the Institute of Nutrition and Food Technology (INTA) and expressing them as a function of pmol ET // 1 g of fresh fruit, we can see that the values reported for each 1 g of fresh fruit, for example for blueberries they are 54.81; in the case of the Hass avocado produced in our country it is 48.53 and for a fruit like fresh maqui recognized for its antioxidant properties it is 371.74 pmol ET // 1 g of fresh fruit. This previous analysis allows us to understand that although it is true that bee pollen is an excellent source of antioxidants, encapsulated bee pollen further improves its property, being even superior and comparable to a sample of fresh maqui.
Ejemplo 7: Capacidad antibacteriana de las formulaciones optimizadas Example 7: Antibacterial capacity of optimized formulations
En primera instancia, se realizó un screening de diferentes muestras y su efecto contra los microrganismos de interés utilizando la técnica de difusión en agar. Entre las muestras utilizadas se encuentran las nanoemulsiones múltiples NEMP, utilizando como control las nanoemulsiones blancas (NEMB) con el objetivo de evaluar si existe algún efecto antibacteriano inherente al nanosistema solo como vehículo. Adicionalmente se exploró el impacto en el potencial antibacteriano del extracto de polen apícola no encapsulado conservado a 4°C y a -80°C, con el objetivo de evaluar si las condiciones de almacenamiento perjudican de alguna forma el potencial antibacteriano del extracto etanólico e polen. Por otra parte, se evalúo el efecto antibacteriano entregado por el excipiente quitosano HCI en solución a la misma concentración que se encontraba en las formulaciones. In the first instance, a screening of different samples and their effect against the microorganisms of interest was carried out using the agar diffusion technique. Among the samples used are multiple NEMP nanoemulsions, using white nanoemulsions (NEMB) as a control in order to evaluate if there is any antibacterial effect inherent to the nanosystem only as a vehicle. Additionally, the impact on the antibacterial potential of the non-encapsulated bee pollen extract preserved at 4 ° C and -80 ° C was explored, with the aim of evaluating whether the storage conditions harm in any way the antibacterial potential of the ethanolic extract and pollen. On the other hand, the antibacterial effect delivered by the excipient chitosan HCI in solution at the same concentration that was found in the formulations was evaluated.
Para complementar el estudio, se utilizaron las mismas muestras, pero está vez los nanosistemas fueron destruidos, con el objetivo de liberar los polifenoles encapsulados y evaluar si existía una mejoría o empeoramiento del potencial antibacteriano. Estas muestras estaban dos veces diluidas respecto de las muestras anteriormente mencionadas. Finalmente, se utilizó un control de etanol al 50%, para poder conocer el efecto antimicrobiano producido por la solución con la que se destruye las formulaciones. Experimentos realizados con etanol como control por el laboratorio botánico dan cuenta que sobre 50% si existe efecto antibacteriano. En la Tabla 7 se muestran los resultados obtenidos para el experimento de screening en 4 bacterias de interés. Al analizar los resultados se observa que solo NEMP y NEMB tuvieron un halo de inhibición importante susceptible de ser medido para el microorganismo S. pyyogenes. Al confirmarse este resultado se realizó un ensayo de difusión en agar solo para este microorganismo utilizando las mismas muestras detalladas anteriormente. También es posible corroborar que, a las concentraciones utilizadas de etanol, este excipiente no presenta ningún efecto en las bacterias utilizadas. To complement the study, the same samples were used, but this time the nanosystems were destroyed, with the aim of releasing the encapsulated polyphenols and evaluating whether there was an improvement or a worsening of the antibacterial potential. These samples were twice diluted with respect to the aforementioned samples. Finally, a 50% ethanol control was used, in order to know the antimicrobial effect produced by the solution with which the formulations are destroyed. Experiments carried out with ethanol as a control by the botanical laboratory show that there is an antibacterial effect over 50%. Table 7 shows the results obtained for the screening experiment in 4 bacteria of interest. When analyzing the results, it is observed that only NEMP and NEMB had an important inhibition halo that could be measured for the microorganism S. pyyogenes. When this result was confirmed, an agar diffusion test was performed only for this microorganism using the same samples detailed above. It is also possible to corroborate that, at the concentrations of ethanol used, this excipient does not have any effect on the bacteria used.
Tabla 7. Ensayos exploratorios de screening en 4 bacterias de interés. Formulaciones destruidas no superan el 50% de etanol en la muestra.
Figure imgf000022_0001
Table 7. Exploratory screening tests in 4 bacteria of interest. Destroyed formulations do not exceed 50% ethanol in the sample.
Figure imgf000022_0001
En la Tabla 8 se muestran los resultados obtenidos para las muestras por difusión en agar y microdiluciones seriadas realizadas en el microorganismo sensible S. pyogenes. Al analizar el ensayo de difusión en agar es posible observar que las muestras de polen apícola encapsulado en NEMP y su control NEMB muestran una importante inhibición del crecimiento bacteriano representado como halo de inhibición en mm. Al ser la diferencia entre ellas de solo 1 mm no permite obtener conclusiones respecto de cuál es el aporte del extracto de polen encapsulado en el efecto antibacteriano, sin embargo, esto demuestra que existe un importante aporte de la formulación como vehículo. Table 8 shows the results obtained for samples by diffusion on agar and serial microdilutions carried out in the sensitive microorganism S. pyogenes. When analyzing the agar diffusion test, it is possible to observe that the samples of bee pollen encapsulated in NEMP and its NEMB control show an important inhibition of bacterial growth represented as inhibition halo in mm. As the difference between them is only 1 mm, it does not allow conclusions to be drawn regarding the contribution of the encapsulated pollen extract in the antibacterial effect, however, this shows that there is an important contribution of the formulation as a vehicle.
Tabla 8. Ensayos de Difusión en agar y microdiluciones seriadas en microorganismo S. pyogenes. Table 8. Diffusion assays in agar and serial microdilutions in microorganism S. pyogenes.
Figure imgf000023_0001
Figure imgf000023_0001
Con respecto al análisis de las muestras de extracto de polen apícola no encapsulado conservado a 4°C y -80°C no existe diferencia en el halo de inhibición, lo que demuestra que el efecto antibacteriano aportado no se relaciona con la temperatura de almacenaje del extracto en el corto plazo (1 mes). Adicionalmente este resultado es concordante con lo reportado para este lote de polen (FIAV1827) previamente. En el caso de las formulaciones destruidas a diferencia de lo esperado, tampoco se encuentra una diferencia importante entre NEMP y NEMB, lo que permite solo demostrar que si bien las nanoemulsiones desarrolladas tienen un importante efecto antibacteriano; no es posible analizar el aporte del extracto encapsulado con este ensayo, que hay que destacar que solo tuvo un carácter exploratorio. Respecto de la disolución de quitosano HCI este tuvo un halo de inhibición de cero en ambos casos lo que indica que el efecto antibacteriano que se encuentra en literatura no se debe solo a la incorporación de este excipiente, sino más bien podría ser indicativo de que es su incorporación en un vehículo nanométrico lo que contribuye a dicho efecto. Finalmente, es posible destacar que el extracto de polen apícola encapsulado en NEMP tiene un efecto antibacteriano cercano al doble respecto de su símil no encapsulado, sin embargo, con el alcance de este ensayo exploratorio no es posible evaluar hasta qué punto este nanosistema es superior al vehículo que no incorpora extracto (NEMB). Por otra parte, las muestras destruidas no tuvieron halos de inhibición significativamente superiores respecto de las no destruidas (solo 1 mm de diferencia). Cabe destacar que en estos ensayos exploratorios se utilizó una concentración de muestra definida de manera arbitraria, en el caso de las nanoemulsiones múltiples no destruidas estas no estaban diluidas, pero las muestras destruidas por su naturaleza estaban 2 veces diluidas. Lo anterior, hace suponer que es requerida una cantidad de muestra de menor concentración para obtener el mismo efecto antibacteriano. Con el fin de analizar este último antecedente se realizaron ensayos de microdiluciones seriadas con el fin de explorar donde podría estar ubicada la concentración inhibitoria mínima (MIC) en dichas muestras. Al analizar las muestras no destruidas de NEMP y de NEMB, podemos concluir que no existe diferencia en el aporte antibacteriano hasta la dilución probada (8), lo que sería indicativo de que la MIC se encuentra por sobre esa dilución. Si fue posible demostrar con dicho experimento y la posterior realización del ensayo de difusión en agar con las 8 diluciones, que no hubo crecimiento bacteriano en los pocilios, y además se produjo la muerte bacteriana, por lo que se demuestra que las nanoemulsiones múltiples tienen un efecto bactericida sobre el microorganismo sensible ensayado. En cuanto a las muestras de extracto de polen apícola conservado en diferentes condiciones, llama la atención una leve mejoría en el efecto antibacteriano aportado por el extracto conservado a 4°C, sin embargo, con el alcance de este ensayo no es posible evaluar el motivo que originó dicho cambio. Regarding the analysis of the samples of non-encapsulated bee pollen extract preserved at 4 ° C and -80 ° C, there is no difference in the inhibition halo, which shows that the antibacterial effect provided is not related to the storage temperature of the extract in the short term (1 month). Additionally, this result is consistent with that previously reported for this pollen batch (FIAV1827). In the case of the formulations destroyed, unlike what was expected, there was also no significant difference between NEMP and NEMB, which only allows us to demonstrate that although the developed nanoemulsions have an important antibacterial effect; It is not possible to analyze the contribution of the encapsulated extract with this test, which It should be noted that it was only exploratory in nature. Regarding the HCI chitosan solution, this had an inhibition halo of zero in both cases, which indicates that the antibacterial effect found in literature is not only due to the incorporation of this excipient, but rather could be indicative that it is its incorporation into a nanometric vehicle which contributes to this effect. Finally, it is possible to highlight that the bee pollen extract encapsulated in NEMP has an antibacterial effect close to double with respect to its non-encapsulated simile, however, with the scope of this exploratory trial it is not possible to evaluate to what extent this nanosystem is superior to vehicle not incorporating extract (NEMB). On the other hand, the destroyed samples did not have significantly higher inhibition halos compared to the non-destroyed ones (only 1 mm difference). It should be noted that in these exploratory tests an arbitrarily defined sample concentration was used, in the case of multiple non-destroyed nanoemulsions these were not diluted, but the destroyed samples by their nature were 2 times diluted. The foregoing suggests that a lower concentration sample amount is required to obtain the same antibacterial effect. In order to analyze this last antecedent, serial microdilution tests were carried out in order to explore where the minimum inhibitory concentration (MIC) could be located in said samples. When analyzing the non-destroyed samples of NEMP and NEMB, we can conclude that there is no difference in the antibacterial contribution up to the tested dilution (8), which would be indicative that the MIC is above that dilution. If it was possible to demonstrate with this experiment and the subsequent performance of the agar diffusion test with the 8 dilutions, that there was no bacterial growth in the wells, and also bacterial death occurred, which is why it is shown that multiple nanoemulsions have a bactericidal effect on the sensitive microorganism tested. Regarding the samples of bee pollen extract preserved under different conditions, a slight improvement in the antibacterial effect provided by the extract preserved at 4 ° C is striking, however, with the scope of this test it is not possible to evaluate the reason that originated this change.
En cuanto a las muestras destruidas se observó exactamente el mismo comportamiento que las no destruidas, sin embargo, es este antecedente el que hace sospechar que la MIC se encuentra muy por sobre la dilución 256, ya que hay que recordar que estas muestras destruidas tenían un factor de dilución de dos previo al ensayo otorgado por la incorporación de solvente para destruir los nanosistemas. En cuanto a la muestra de quitosano analizada en dos casos diferentes, se observó una leve mejoría en la muestra disuelta en solvente de destrucción. Se tiene antecedentes de actividad antibacteriana de este polímero a concentraciones de 5 mg/mL, considerando que el nanosistema lo incorpora a 2,78 mg/mL, está podría ser la causa de que en solución no sea activo o su efecto sea leve. Se tiene antecedentes de que la actividad de quitosano se encuentra frente a cepas Gram positivo lo que es concordante con la sensibilidad presentada por S. pyogenes. Finalmente, al comparar las muestras de NEMP tanto destruidas como no destruidas con el extracto de polen no encapsulado, hasta el alcance de este ensayo, la concentración de extracto de polen necesaria para inhibir el crecimiento bacteriano es bastante menor respecto del polen no encapsulado, sin embargo, solo ensayos posteriores de búsqueda de la MIC podrán aclarar estas dudas, y explicar cuál es el aporte del extracto al potencial antibacteriano NEMP respecto de NEMB. Regarding the destroyed samples, exactly the same behavior was observed as the non-destroyed ones, however, it is this antecedent that makes us suspect that the MIC is well above the 256 dilution, since it must be remembered that these destroyed samples had a a dilution factor of two prior to the test given by the incorporation of solvent to destroy the nanosystems. Regarding the chitosan sample analyzed in two different cases, a slight improvement was observed in the sample dissolved in destruction solvent. There is a history of antibacterial activity of this polymer at concentrations of 5 mg / mL, considering that the nanosystem incorporates it at 2.78 mg / mL, this could be the reason that in solution it is not active or its effect is mild. There is a history that chitosan activity is found against Gram positive strains, which is consistent with the sensitivity presented by S. pyogenes. Finally, when comparing the NEMP samples both destroyed As not destroyed with the non-encapsulated pollen extract, up to the scope of this test, the concentration of pollen extract necessary to inhibit bacterial growth is considerably lower compared to the non-encapsulated pollen, however, only subsequent MIC search tests They will be able to clarify these doubts, and explain what is the contribution of the extract to the antibacterial potential NEMP compared to NEMB.
Ejemplo 8: Estudios de permeabilidad de nanoemulsiones múltiples (NEMP) mediante PAMPA Example 8: Multiple nanoemulsion permeability studies (NEMP) using PAMPA
Con el objetivo de estudiar la permeabilidad de los nanosistemas que encapsulan extracto etanólico de polen apícola, se realizó un estudio de permeabilidad in vitro PAMPA. Es necesario recordar que los polifenoles presentes en el extracto de polen apícola no solo son inestables, sino que además su biodisponibilidad es muy reducida como consecuencia de su baja permeabilidad, lo que finalmente limita las posibilidades de obtener un beneficio al ingerir estos compuestos, como ya fue expuesto en este trabajo. Es debido a lo anterior, que se sustenta la realización de este ensayo de permeabilidad, ya que se busca evaluar si este parámetro se ve favorecido al ser incorporados los polifenoles presentes en el extracto de polen apícola al nanosistema optimizado (NEMP). Se tiene como antecedente para realizar este ensayo, la excelente correlación entre el flujo a través de PAMPA y el grado de absorción para fármacos cuando son absorbidos principalmente por difusión pasiva. No existe una regla absoluta de cuáles son las condiciones que se deben utilizar en este ensayo, sin embargo, Avdeef y colaboradores entregan algunas sugerencias por ejemplo respecto a las concentraciones trabajo que pueden estar en el rango de 50 mM a 500 mM. Dicha concentración dependerá del límite de detección que tenga el método de cuantificación con el que se trabaje. Respecto a los tiempos de incubación del ensayo se sugieren rangos entre las 4 y 15 horas, finalmente las condiciones de pH sugeridas estás varían entre 5 y 7,4, sin embargo, todas estas recomendaciones aluden a moléculas puras y no a matrices complejas con una alta variabilidad como lo es el extracto de polen apícola. Es así como después de una extensa búsqueda de trabajos que incorporaran metodologías PAMPA, se decidió seguir el protocolo PAMPA reportado para nanosistemas que encapsulan quercetina, con algunas modificaciones. In order to study the permeability of the nanosystems that encapsulate ethanolic extract of bee pollen, an in vitro PAMPA permeability study was carried out. It is necessary to remember that the polyphenols present in the bee pollen extract are not only unstable, but also that their bioavailability is greatly reduced as a result of their low permeability, which ultimately limits the possibilities of obtaining a benefit when ingesting these compounds, as already was exposed in this work. It is due to the above, that the performance of this permeability test is supported, since it seeks to evaluate if this parameter is favored when the polyphenols present in the bee pollen extract are incorporated into the optimized nanosystem (NEMP). The precedent for this test is the excellent correlation between the flux through PAMPA and the degree of absorption for drugs when they are absorbed mainly by passive diffusion. There is no absolute rule of what conditions should be used in this assay, however, Avdeef et al. Provide some suggestions, for example, regarding working concentrations that may be in the range of 50 mM to 500 mM. Said concentration will depend on the detection limit of the quantification method with which one is working. Regarding the incubation times of the assay, ranges between 4 and 15 hours are suggested, finally the suggested pH conditions vary between 5 and 7.4, however, all these recommendations refer to pure molecules and not to complex matrices with a high variability such as bee pollen extract. Thus, after an extensive search for works that incorporated PAMPA methodologies, it was decided to follow the PAMPA protocol reported for quercetin-encapsulating nanosystems, with some modifications.
En la Tabla 9 se muestran los resultados de permeabilidad para cada una de las muestras, con el fin de contrastar el desempeño del polen no encapsulado versus el que se encuentra incorporado en las NEMP. Para ello, se utilizó extracto de polen apícola en la misma dilución de NEMP. Por otro lado, se utilizó como control positivo clorhidrato de verapamilo en una concentración 100 mM, por ser este fármaco un marcador de alta permeabilidad. Table 9 shows the permeability results for each of the samples, in order to contrast the performance of unencapsulated pollen versus that found incorporated in the NEMP. For this, bee pollen extract was used in the same dilution of NEMP. On the other hand, verapamil hydrochloride was used as a positive control at a concentration of 100 mM, as this drug is a marker of high permeability.
Tabla 9. Permeabilidad de nanoemulsión múltiple optimizada obtenidas mediante PAMPA.Table 9. Permeability of multiple optimized nanoemulsion obtained by PAMPA.
Los valores de permeabilidad determinados después de 5 h de incubación a 25 °C en buffer salino pH 6,8.
Figure imgf000026_0001
The permeability values determined after 5 h of incubation at 25 ° C in pH 6.8 saline buffer.
Figure imgf000026_0001
(Promedio ± D.S, n= 3). (Average ± S.D., n = 3).
Es necesario previo a la interpretación de los datos recordar que los compuestos con valores de Pe < 0, 1 x 10-6 cm/s son mal absorbidos (< 30% de absorción in vivo), valores entre 0,1 y 0,9 x10 6 cm/s se absorben moderadamente (30-70% de absorción in vivo) y los compuestos con valores de Pe > 0,9 x 10 6 cm/s tienen una alta absorción oral (< 70% in vivo) [67, 68]. Se encontró que la permeabilidad de los marcadores ácido cinámico, quercetina y miricetina en el extracto de polen apícola es 0; en el caso de los nanosistemas con polen apícola encapsulado es posible observar que tanto quercetina como ácido cinámico tuvieron valores de permeabilidad superiores a 0,9 x10 6 cm/s. El flavonoide miricetina tuvo problemas de cuantificación debido en parte a su inestabilidad. Finalmente, el control clorhidrato de verapamilo tuvo un valor de permeabilidad dentro de lo esperado, lo que indica que la metodología utilizada en el ensayo fue aplicada correctamente. Con estos resultados se pudo estimar que los polifenoles estudiados en el polen que se encuentran encapsulados en NEMP tendrán una absorción mayor al 70% in vivo [67, 68]. Esta situación contrasta con lo obtenido para los polifenoles presentes en el extracto de polen en solución, donde no fueron detectados en la solución receptora. Before interpreting the data, it is necessary to remember that compounds with Pe values <0.1 x 10 -6 cm / s are poorly absorbed (<30% absorption in vivo), values between 0.1 and 0.9 x10 6 cm / s are moderately absorbed (30-70% absorption in vivo) and compounds with Pe values> 0.9 x 10 6 cm / s have high oral absorption (<70% in vivo) [67, 68]. It was found that the permeability of the markers cinnamic acid, quercetin and myricetin in the bee pollen extract is 0; in the case of nanosystems with encapsulated bee pollen, it is possible to observe that both quercetin and cinnamic acid had permeability values greater than 0.9 x10 6 cm / s. The flavonoid myricetin had quantification problems due in part to its instability. Finally, the verapamil hydrochloride control had a permeability value within the expected, which indicates that the methodology used in the trial was applied correctly. With these results, it could be estimated that the polyphenols studied in pollen that are encapsulated in NEMP will have an absorption greater than 70% in vivo [67, 68]. This situation contrasts with that obtained for the polyphenols present in the pollen extract in solution, where they were not detected in the receiving solution.
En resumen, se logró diseñar y desarrollar una formulación de nanoemulsión múltiple W/O/W que incorporó excipientes apropiados para la incorporación de una matriz compleja como el polen apícola. El proceso fue optimizado mediante modelamiento matemático de aprendizaje supervisado del cual no se tiene antecedentes de su utilización aplicado a sistemas de liberación de moléculas activas (o del inglés: drug delivery system). Se tiene estudios que demuestran que el vehículo desarrollado es estable a condiciones de pH relevantes a nivel fisiológico, y en el almacenamiento favorece la conservación de la matriz compleja de interés. Por otra parte, la innovadora nanoemulsión múltiple es capaz de favorecer el efecto antioxidante ya aportado por los polifenoles encapsulados de forma sinérgica y que posee efecto antibacteriano en el microorganismo sensible S. pyogenes. Finalmente, el nuevo nanosistema demuestro ser capaz de mejorar la permeabilidad de los compuestos polifenólicos encapsulados en ensayos in vitro en condiciones biológicas simuladas acordes al paso de absorción de compuestos por vía oral en un ensayo PAMPA. In summary, it was possible to design and develop a multiple W / O / W nanoemulsion formulation that incorporated appropriate excipients for the incorporation of a complex matrix such as bee pollen. The process was optimized by mathematical modeling of supervised learning, of which there is no history of its use applied to active molecule delivery systems (or from English: drug delivery system). There are studies that show that the vehicle developed is stable at physiologically relevant pH conditions, and in storage it favors the conservation of the complex matrix of interest. On the other hand, the innovative multiple nanoemulsion is capable of promoting the antioxidant effect already provided by synergistically encapsulated polyphenols, which has an antibacterial effect on the sensitive microorganism S. pyogenes. Finally, the new nanosystem demonstrated to be capable of improving the permeability of encapsulated polyphenolic compounds in in vitro tests under simulated biological conditions according to the step of oral absorption of compounds in a PAMPA test.

Claims

REIVINDICACIONES
1 . Formulación para la protección de polifenoles, de manera de mantener y potenciar sus actividades antioxidantes, antibacterianas y poder usarlos como aditivos para alimentos, CARACTERIZADA porque comprende tres fases: a. una primera fase interior la cual comprende una solución hidrofílica compuesta mayoritariamente de agua; b. una segunda capa intermedia la cual comprende una solución hidrofóbica compuesta mayoritariamente por lípidos; y c. una tercera capa externa la cual comprende una solución hidrofílica en contacto con el medio exterior, cuya función es proteger los compuestos activos que están insertos en esta formulación, entregando una liberación controlada de dichos compuestos activos. 1 . Formulation for the protection of polyphenols, in order to maintain and enhance their antioxidant and antibacterial activities and to be able to use them as food additives, CHARACTERIZED because it comprises three phases: a. a first interior phase which comprises a hydrophilic solution composed mainly of water; b. a second intermediate layer which comprises a hydrophobic solution composed mainly of lipids; and c. a third external layer which comprises a hydrophilic solution in contact with the external environment, whose function is to protect the active compounds that are inserted in this formulation, delivering a controlled release of said active compounds.
2. Formulación de acuerdo a la reivindicación 1 , CARACTERIZADA porque la fase interior comprende extracto etanólico de polen. 2. Formulation according to claim 1, CHARACTERIZED in that the inner phase comprises ethanolic pollen extract.
3. Formulación de acuerdo a la reivindicación 2, CARACTERIZADA porque el extracto etanólico es de polen apícola. 3. Formulation according to claim 2, CHARACTERIZED in that the ethanolic extract is bee pollen.
4. Formulación de acuerdo a la reivindicación 2 o 3, CARACTERIZADA porque comprende entre 0,1 ml_ y 2,0 ml_ de extracto etanólico de polen apícola. 4. Formulation according to claim 2 or 3, CHARACTERIZED in that it comprises between 0.1 ml_ and 2.0 ml_ of ethanolic extract of bee pollen.
5. Formulación de acuerdo a la reivindicación 1 , CARACTERIZADA porque la solución hidrofóbica comprende al menos propilenglicol monolaurato tipo II en combinación con otros excipientes hidrofóbicos. 5. Formulation according to claim 1, CHARACTERIZED in that the hydrophobic solution comprises at least type II propylene glycol monolaurate in combination with other hydrophobic excipients.
6. Formulación de acuerdo a la reivindicación 5, CARACTERIZADA porque la cantidad de propilenglicol monolaurato tipo II es entre 100 mg y 1500 mg. 6. Formulation according to claim 5, CHARACTERIZED in that the amount of propylene glycol monolaurate type II is between 100 mg and 1500 mg.
7. Formulación de acuerdo a la reivindicación 1 o 5, CARACTERIZADA porque la solución hidrofóbica comprende al menos el surfactante polisorbato 80, en combinación con otros excipientes. 7. Formulation according to claim 1 or 5, CHARACTERIZED in that the hydrophobic solution comprises at least the surfactant polysorbate 80, in combination with other excipients.
8. Formulación de acuerdo a la reivindicación 7, CARACTERIZADA porque la cantidad de polisorbato 80 es entre 100 y 500 mg. 8. Formulation according to claim 7, CHARACTERIZED in that the amount of polysorbate 80 is between 100 and 500 mg.
9. Formulación de acuerdo a la reivindicación 1 o 5 o 7, CARACTERIZADA porque la solución hidrofóbica comprende al menos Lecitina, en combinación con otros excipientes hidrofóbicos. 9. Formulation according to claim 1 or 5 or 7, CHARACTERIZED in that the hydrophobic solution comprises at least Lecithin, in combination with other hydrophobic excipients.
10. Formulación de acuerdo a la reivindicación 9, CARACTERIZADA porque la lecitina corresponde a fosfolípidos de soja con 70% de fosfatidilcolina. 10. Formulation according to claim 9, CHARACTERIZED in that the lecithin corresponds to soy phospholipids with 70% phosphatidylcholine.
1 1 . Formulación de acuerdo a la reivindicación 10, CARACTERIZADA porque comprende entre 10 y 100 mg de fosfatidilcolina. eleven . Formulation according to claim 10, CHARACTERIZED in that it comprises between 10 and 100 mg of phosphatidylcholine.
12. Formulación de acuerdo a la reivindicación 1 , CARACTERIZADA porque la solución hidrofóbica comprende al menos un surfactante no iónico poloxámero, en combinación con otros excipientes. 12. Formulation according to claim 1, CHARACTERIZED in that the hydrophobic solution comprises at least one poloxamer non-ionic surfactant, in combination with other excipients.
13. Formulación de acuerdo a la reivindicación 12, CARACTERIZADA porque la cantidad de poloxámero es entre 100 y 800 mg. 13. Formulation according to claim 12, CHARACTERIZED in that the amount of poloxamer is between 100 and 800 mg.
14. Formulación de acuerdo a la reivindicación 1 , CARACTERIZADA la solución hidrofóbica correspondiente a la fase intermedia de la formulación comprende propilenglicol monolaurato tipo II, polisorbato 80, fosfolípidos de soja con 70% de fosfatidilcolina, y poloxámero. 14. Formulation according to claim 1, CHARACTERIZED the hydrophobic solution corresponding to the intermediate phase of the formulation comprises propylene glycol monolaurate type II, polysorbate 80, soy phospholipids with 70% phosphatidylcholine, and poloxamer.
15. Formulación de acuerdo a la reivindicación 14, CARACTERIZADA porque la solución hidrófobica comprende entre 100 y 1500 mg propilenglicol monolaurato tipo II, entre 100 y 500 mg polisorbato 80, entre 10 y 100 mg fosfolípidos de soja con 70% de fosfatidilcolina, y entre 100 y 800 mg poloxámero. 15. Formulation according to claim 14, CHARACTERIZED in that the hydrophobic solution comprises between 100 and 1500 mg propylene glycol monolaurate type II, between 100 and 500 mg polysorbate 80, between 10 and 100 mg soy phospholipids with 70% phosphatidylcholine, and between 100 and 800 mg poloxamer.
16. Formulación de acuerdo a la reivindicación 1 , CARACTERIZADA porque la solución hidrofílica de la capa externa comprende quitosano HCI. 16. Formulation according to claim 1, CHARACTERIZED in that the hydrophilic solution of the outer layer comprises chitosan HCI.
17. Formulación de acuerdo a la reivindicación 16, CARACTERIZADA porque la cantidad de quitosano HCI es entre 6 y 30 mg. 17. Formulation according to claim 16, CHARACTERIZED in that the amount of chitosan HCI is between 6 and 30 mg.
18. Formulación de acuerdo a la reivindicación 1 , CARACTERIZADA porque la formulación es una nanoemulsión que comprende: a. una solución interna que comprende entre 0,6 y 1 ,5 ml_ de una solución de extracto etanólico de polen apícola; b. una solución intermedia que comprende entre 100 y 1500 mg de propilenglicol monolaurato tipo II, entre 100 y 500 mg polisorbato 80, entre 10 y 100 mg Lipoid P75®, y entre 100 y 800 mg poloxámero; y c. una solución externa que comprende quitosano HCI entre 6 y 30 mg. 18. Formulation according to claim 1, CHARACTERIZED in that the formulation is a nanoemulsion comprising: a. an internal solution comprising between 0.6 and 1.5 ml_ of a solution of ethanolic extract of bee pollen; b. an intermediate solution comprising between 100 and 1500 mg of propylene glycol monolaurate type II, between 100 and 500 mg polysorbate 80, between 10 and 100 mg Lipoid P75 ® , and between 100 and 800 mg poloxamer; and c. an external solution comprising chitosan HCI between 6 and 30 mg.
19. Método para obtener la formulación de las reivindicaciones 1 a 18, CARACTERIZADO porque comprende los siguientes pasos: a. mezclar los componentes de la solución intermedia mediante agitación magnética a temperatura ambiente; b. mezclar la solución intermedia con la solución interna a temperatura ambiente; c. preparar la solución externa con diferentes cantidades de quitosano HCI y poloxámero disueltos en agua ultra pura; y d. preparar una nanoemulsión múltiple homogenizando a una velocidad de entre 21 .500 y 25.000 RPM en un baño de hielo. 19. Method to obtain the formulation of claims 1 to 18, CHARACTERIZED because it comprises the following steps: a. mixing the components of the intermediate solution by magnetic stirring at room temperature; b. mix the intermediate solution with the internal solution at room temperature; c. prepare the external solution with different amounts of chitosan HCI and poloxamer dissolved in ultra pure water; and d. Prepare a multiple nanoemulsion by homogenizing at a speed of between 21,500 and 25,000 RPM in an ice bath.
20. Uso de la formulación de acuerdo a las reivindicaciones 1 a 18, CARACTERIZADO porque sirve para proteger compuestos activos que se encuentran en la solución interior de la formulación de acuerdo a las reivindicaciones 1 a 18. 20. Use of the formulation according to claims 1 to 18, CHARACTERIZED in that it serves to protect active compounds found in the internal solution of the formulation according to claims 1 to 18.
21 . Uso de acuerdo a la reivindicación 20, CARACTERIZADO porque sirve para proteger compuestos activos de ambientes agresivos para su actividad. twenty-one . Use according to claim 20, CHARACTERIZED because it serves to protect active compounds from aggressive environments for their activity.
22. Uso de acuerdo a la reivindicación 21 , CARACTERIZADO porque sirve para proteger compuestos activos, en donde el ambiente agresivo es el tracto gastrointestinal. 22. Use according to claim 21, CHARACTERIZED because it serves to protect active compounds, where the aggressive environment is the gastrointestinal tract.
23. Uso de acuerdo a la reivindicación 20, 21 o 22, CARACTERIZADO porque los compuestos activos a proteger son compuestos fenólicos. 23. Use according to claim 20, 21 or 22, CHARACTERIZED in that the active compounds to be protected are phenolic compounds.
24. Uso de acuerdo a la reivindicación 23, CARACTERIZADO porque los compuestos fenólicos son polifenoles. 24. Use according to claim 23, CHARACTERIZED in that the phenolic compounds are polyphenols.
25. Uso de acuerdo a la reivindicación 24, CARACTERIZADO porque los compuestos polifenólicos son derivados de polen. 25. Use according to claim 24, CHARACTERIZED in that the polyphenolic compounds are derived from pollen.
26. Uso de acuerdo a la reivindicación 25, CARACTERIZADO porquelos compuestos fenólicos derivados del polen corresponden a flavonoides. 26. Use according to claim 25, CHARACTERIZED because the phenolic compounds derived from pollen correspond to flavonoids.
27. Uso de acuerdo a la reivindicación 24, 25 o 26, CARACTERIZADO porque los compuestos fenólicos y flavonoides del polen son seleccionados entre: ácido clorogénico, ácido siríngico, ácido cumárico, ácido sinápico, ácido ferúlico, ácido cinámico, epicatequina, miricetina, quercetina, apigenina, kaempferol, crisina, narigenina, ramnetina, pinocembrina, galangina, pinobanksina, hesperetina, CAPE (ácido fenil áster caféico), luteolina, 3 metilquercetina, isorramnetina, tectocrisina, ácido elágico, y rutina. 27. Use according to claim 24, 25 or 26, CHARACTERIZED in that the phenolic compounds and flavonoids of pollen are selected from: chlorogenic acid, syringic acid, coumaric acid, synapic acid, ferulic acid, cinnamic acid, epicatechin, myricetin, quercetin , apigenin, kaempferol, chrysin, narigenin, rhamnetin, pinocembrine, galangin, pinobanksin, hesperetin, CAPE (caffeic phenyl ester acid), luteolin, 3-methylquercetin, isorramnetin, tectocrisine, ellagic acid, and rutin.
PCT/CL2019/050055 2019-07-04 2019-07-04 Formulation that allows the protection of polyphenols, particularly those obtained from bee pollen extract WO2021000057A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050055 WO2021000057A1 (en) 2019-07-04 2019-07-04 Formulation that allows the protection of polyphenols, particularly those obtained from bee pollen extract

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2019/050055 WO2021000057A1 (en) 2019-07-04 2019-07-04 Formulation that allows the protection of polyphenols, particularly those obtained from bee pollen extract

Publications (1)

Publication Number Publication Date
WO2021000057A1 true WO2021000057A1 (en) 2021-01-07

Family

ID=74100409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2019/050055 WO2021000057A1 (en) 2019-07-04 2019-07-04 Formulation that allows the protection of polyphenols, particularly those obtained from bee pollen extract

Country Status (1)

Country Link
WO (1) WO2021000057A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150182472A1 (en) * 2010-10-17 2015-07-02 Technion Research And Development Foundtion Ltd. Denatured lactoglobulin and polyphenol coassemblies
KR20150104727A (en) * 2014-03-06 2015-09-16 한국식품연구원 Preparation method of w/o/w multiple emulsions
CN107898873A (en) * 2017-12-27 2018-04-13 北京红螺食品有限公司 A kind of preparation method for the food-grade W/O/W type emulsion for being used for realization tea polyphenols controlled release

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150182472A1 (en) * 2010-10-17 2015-07-02 Technion Research And Development Foundtion Ltd. Denatured lactoglobulin and polyphenol coassemblies
KR20150104727A (en) * 2014-03-06 2015-09-16 한국식품연구원 Preparation method of w/o/w multiple emulsions
CN107898873A (en) * 2017-12-27 2018-04-13 北京红螺食品有限公司 A kind of preparation method for the food-grade W/O/W type emulsion for being used for realization tea polyphenols controlled release

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BERENDSEN R. ET AL.: "A procyanidin-rich extract encapsulated in water-in-oil-in-water emulsions produced by premix membrane emulsification", FOOD HYDROCOLLOIDS, vol. 43, 2015, pages 636 - 648, XP055784606, DOI: 10.1016/j.foodhyd. 2014.07.02 3 *

Similar Documents

Publication Publication Date Title
Singh et al. Phytosome complexed with chitosan for gingerol delivery in the treatment of respiratory infection: In vitro and in vivo evaluation
Thakur et al. Novel approaches for stability improvement in natural medicines
Bonifacio et al. Nanotechnology-based drug delivery systems and herbal medicines: a review
Zou et al. Characterization and bioavailability of tea polyphenol nanoliposome prepared by combining an ethanol injection method with dynamic high-pressure microfluidization
Rahdar et al. Quercetin-loaded F127 nanomicelles: Antioxidant activity and protection against renal injury induced by gentamicin in rats
Ibrahim et al. Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways
Momeni et al. Development of liposomes loaded with anti-leishmanial drugs for the treatment of cutaneous leishmaniasis
Ni et al. Quercetin loaded nanostructured lipid carrier for food fortification: preparation, characterization and in vitro study
ES2424167T3 (en) Oil / water / oil emulsion containing a lignan compound, and composition containing the above
BR112021011087A2 (en) COMPOSITIONS FOR THE DELIVERY OF THERAPEUTIC AGENTS AND METHODS OF USE AND MANUFACTURE THEREOF
Costa et al. Polyphenols as antioxidants for extending food shelf-life and in the prevention of health diseases: encapsulation and interfacial phenomena
JP2005500369A (en) High molecular weight, lipophilic and orally ingestible bioactive substances in formulations with improved bioavailability
de Souza Ferreira et al. Microparticles containing propolis and metronidazole: in vitro characterization, release study and antimicrobial activity against periodontal pathogens
Ujilestari et al. Self-nanoemulsifying drug delivery system (SNEDDS) of Amomum compactum essential oil: design, formulation, and characterization
Kaur et al. Development of nanoemulsion based gel loaded with phytoconstituents for the treatment of urinary tract infection and in vivo biodistribution studies
ES2950497T3 (en) Conservation of microorganisms
Duvvuri et al. Delivery aspects of antioxidants in diabetes management
RU2362544C2 (en) Nano emulsion with biologically active substances
Hamed et al. A pilot study on the effect of thyme microemulsion compared with antibiotic as treatment of Salmonella enteritidis in broiler
CN104352566A (en) Oil-in-water compound chlortetracycline nanoemulsion
JP6907243B2 (en) Resveratrol solubilized products for pharmaceutical purposes
ES2582635T3 (en) Use of excipients as preservatives and pharmaceutical compositions containing them
WO2021000057A1 (en) Formulation that allows the protection of polyphenols, particularly those obtained from bee pollen extract
Zhang et al. Preparation and characterization of natural quercetin-based Mongolia Medicine SenDeng-4 nanoemulsion (N-QUE-NE) and its antibacterial activity
Kleynhans et al. A toxicity profile of the Pheroid® technology in rodents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935862

Country of ref document: EP

Kind code of ref document: A1