WO2020263123A1 - System for damping mechanical oscillations transmitted from the structural part of built structures to the electrical equipment and/or software and hardware systems of nuclear power stations - Google Patents

System for damping mechanical oscillations transmitted from the structural part of built structures to the electrical equipment and/or software and hardware systems of nuclear power stations Download PDF

Info

Publication number
WO2020263123A1
WO2020263123A1 PCT/RU2020/000069 RU2020000069W WO2020263123A1 WO 2020263123 A1 WO2020263123 A1 WO 2020263123A1 RU 2020000069 W RU2020000069 W RU 2020000069W WO 2020263123 A1 WO2020263123 A1 WO 2020263123A1
Authority
WO
WIPO (PCT)
Prior art keywords
software
vertical
damping
electrical equipment
nuclear power
Prior art date
Application number
PCT/RU2020/000069
Other languages
French (fr)
Russian (ru)
Inventor
Алексей Юрьевич ТЕНЯКОВ
Евгений Алексеевич ТЕНЯКОВ
Original Assignee
Акционерное общество "Единые автоматизированные технологии"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Единые автоматизированные технологии" filed Critical Акционерное общество "Единые автоматизированные технологии"
Priority to EP20832901.1A priority Critical patent/EP3992369A4/en
Publication of WO2020263123A1 publication Critical patent/WO2020263123A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/34Foundations for sinking or earthquake territories
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/023Bearing, supporting or connecting constructions specially adapted for such buildings and comprising rolling elements, e.g. balls, pins

Definitions

  • NPP nuclear power plants
  • the invention relates to means of protecting complete electronic and electrical equipment, as well as software and hardware complexes of an automated control system (PTC ACS TP), mainly for nuclear power plants, from earthquakes and man-made influences that lead to mechanical vibrations of the foundations of structures, as well as to means of protection against the impact of industrial vibration, leading to mechanical aging of the elements of devices included in the PTC ACS TP and electrical equipment.
  • PTC ACS TP automated control system
  • PTC APCS consisting of networked “Software and hardware (PTS)", which are cabinets, panels, consoles, display workstations, inside of which the identified equipment is located (device blocks and individual electronic, electrical, optical, electromechanical, wiring and wiring devices) - see "Standard STO 1.1.1.07.001.0675-2008 Rosenergoatom Concern JSC Nuclear Plants, EQUIPMENT, DEVICES, MEANS OF CONTROL AND CONTROL SYSTEMS, General technical requirements, Date of introduction 15.02.2009”.
  • PTS Software and hardware
  • the specified standard indicates that it is necessary to classify according to seismic resistance and vibration resistance: a) equipment, instruments and automation equipment, depending on the degree of their responsibility for ensuring safety in case of seismic effects and operability after the passage of an earthquake, should be classified into one of three categories of seismic resistance in accordance with NP-031-01, taking into account their safety class according to OPB 88/97; b) depending on the group of operating conditions and the place of installation, the equipment, instruments and automation equipment must be assigned to one of four groups of resistance to sinusoidal vibration effects.
  • the analogue provides for the use of cabinets, panels, consoles, display workstations, inside which the identified equipment is located (device blocks and single electronic, electrical, optical, electromechanical, wiring and wiring devices) installed on the base and / or seismic protection platforms and / or damping bases in which the bases for electrical equipment are built, consisting of 3D compensators, vibration sensors, automatic regulators, programmable controllers, which transmit to the network information about the amplitude-frequency characteristics of vibration of the floor and the base of the OB van (software and hardware).
  • an integrated information platform for controlling the mechanical aging of elements is additionally built into the complex, including a programmable controller-comparator of the spectral energy density (PSE), which is connected to the information system and contains a database on the permissible values of the PSE and the threshold values of the vibration dose of the elements of technical equipment, intended for processing vibration data received from the controllers from the bases for electrical equipment, integrating the current values of the PPE for software and hardware, comparing the current values of the PPE with the permissible ones and based on the data on the threshold vibration values for the elements of the hardware and transmitting a signal to the information network about the need to comply with the regulations tough work on software and hardware
  • NPP control systems must function not only during earthquakes, but also under the influence of industrial factors (IAEA Safety Standard, NS-G-3.1. IAEA, Vienna 2002).
  • the design requirements for certification of PTS for resistance to technogenic impacts are more stringent than for the maximum design earthquake (MP3), for example, for the Kudankulam NPP, the project regulates the swing range of up to ⁇ 14 mm at MP3, and certification for resistance to shock wave is required swing range ⁇ 32 mm (more than 2 times).
  • MP3 maximum design earthquake
  • seismic protection platforms are used in the foundations for electrical equipment and PTS, which screen the vibrations of the foundation, but their dimensions are strictly limited by design requirements, since seismic protection platforms are integrated into cabinets connected in sections.
  • the problem that the invention solves is to extinguish large mechanical vibrations in the PTC of the APCS from man-made impacts and earthquakes, without increasing the overall dimensions of the PTS construct.
  • This task is complicated by one more circumstance: - mechanical vibrations of a large swing are present in the low frequency range (1-25 Hz) and are statistically rare, since MP3, an aircraft crash on an object (PS), an air shock wave (VUW) from an explosion on an object are rare events, and constant industrial vibration, which leads to the aging of the PTS elements, is most significant in the frequency range of 25-50 Hz.
  • Industrial vibration is successfully damped by ZO-compensators built into seismic protection platforms or foundations of a structure, but they cannot damp large low-frequency vibrations due to dimensional limitations.
  • the technical result of the invention is the preservation of the functioning of the electronic equipment and software and hardware complexes of the automated control system of the NPP during man-made influences and earthquakes with a large amplitude of the vibration amplitude of the foundation on which the structure with the equipment is located or installed.
  • the above-mentioned problem and technical result are achieved by creating a system for damping mechanical vibrations of the foundations of structures for placing and / or installation of electrical equipment and / or software and hardware complex of the automated control system of the NPP, including the base of the structure, on which the electrical equipment and / or software and hardware complex of the automated control system of the NPP are installed and / or located, where the base of the structure is a load-bearing and / or support unit , which includes ZE-compensators, and the system additionally contains at least one load-bearing beam, at least one low-frequency vibration damping unit installed between the foundation of the structure to install the foundation of the structure and the load-bearing beam or beams on which or on which 3D- compensators, while the low-frequency vibration damping unit has a vertical vibration damper pre-compressed by a predetermined amount, blocked by a vertical damping activator lock, and a horizontal vibration damper in the form of a movable support mounted on a base plate through spherical
  • the vertical vibration damper is made in the form of one or a plurality of springs.
  • the vertical damping activator is a mechanism containing a retainer made of a Belleville spring, which prevents the springs or the spring of the vertical vibration damper from straightening, while the retainer is held in the operating position if the vertical movement of the support beam relative to the base plate is less than the structurally specified allowable movement.
  • FIG. 1 shows a general diagram of a system for damping mechanical vibrations of software and hardware complexes of an automated control system, mainly for nuclear power plants.
  • FIG. 2 shows a diagram of a unit that forms the basis for electrical equipment and software and hardware complexes of an automated control system, mainly for nuclear power plants.
  • FIG. 3 is a diagram of a low-frequency vibration damping unit.
  • FIG. 4 is a diagram of the mechanism of the activator assembly.
  • FIG. 5 shows a diagram of the construction of 3D expansion joints.
  • Fig. 1 where the equipment of the PTC APCS (1) is installed on a system for damping mechanical vibrations, consisting of bearing / supporting elements or parts of the structure, connected to each other, and blocks for damping low-frequency vibrations (6), which are installed on the foundation (30) through ball bearings (14) mounted on the base plate (12).
  • bearing parts or supporting elements for the equipment of the PTC APCS (1) are connected or interconnected bases for electrical equipment (2), seismic protection platforms (damping bases) (3), plinths (4) and bearing beams (5).
  • the base for the electrical apparatus (2) is shown in FIG. 2 and consists of 3D-compensators (7) installed on the support beam (11), to which are attached a controller - comparator of spectral energy density (SPE) (8), in which the actual vibration is automatically compared with the permissible threshold value, and 3D- a sensor for fixing the vibrations of the protected object (10), as well as the ZB-sensor of foundation vibrations (13), which measure the effective value of vibration, while the ZO-sensor (13) is placed on the base plate (12).
  • SPE spectral energy density
  • the low-frequency vibration damping unit (6) is shown in FIG. 3 and consists of compression springs (15) (there can be one or more springs), which in a compressed state are placed between the carrier beam (11) and the movable support (22) located above the ball bearings (14), and also includes an activator (21 ) a low-frequency unit, which consists of an anchor (16) rigidly connected to the base plate (12), a hook (18), which ensures fixation and holding of the latch (19) in a given (working) position.
  • the hook (18) is rigidly connected to the supporting beam (11).
  • FIG. 3 I denotes an assembly containing elements that make up the structure of the activator.
  • FIG. 4 shows an activator, in which the retainer is made of a forcibly turned-out Belleville spring (19), which will be brought into a normal state (20) and will not interfere with the operation of the compression springs after the mutual movement of the bearing beam (11) relative to the support plate (12) upwards by more than h.
  • the supporting beam rises by an amount sufficient to compensate for large vertical displacements of low frequency from man-made influences.
  • Technogenic impact is a rare event, therefore, after it, routine maintenance is carried out, including forced compression of the springs (15) and the restoration of the lock in the working position (19).
  • the unit for damping low-frequency vibrations (6) in normal operation is compressed, and compensation for industrial vibration is carried out due to the operation of ZB-compensators (7) placed on the supporting beam.
  • Fig. 5 shows one of the versions: the ZO-compensator is located in the housing (23), which is rigidly connected to the PTC equipment (1), the housing (23) through the Belleville springs (24) rests on the bearing element of horizontal compensations (25), located above the ball bearings (26) located inside the ZO-expansion joints and resting on a rigid base (27), which is connected to the supporting beam (11).
  • the Belleville springs (24) are designed for vertical compensation and are supported by an adjusting sleeve (28), which is fixed to the anchor (29), which prevents the PTS from tipping over during large vibrations due to engagement with the base (27).
  • spherical pits can be made for gravitational return of the compensator to its original position after the end of horizontal vibrations.
  • the compressed block for damping low-frequency vibrations (6) provides the required dimensions of the PTC, but under technogenic influences from the foundation, large vibrations arise, which activate the activator and the block for damping low-frequency vibrations (6) expands to dimensions that allow screening large vibrations. After technogenic impacts, the low-frequency vibration damping unit (6) is brought into a compressed state and the dimensions of the PTC again correspond to the design requirements.
  • FIG. 1-5 where the equipment of the PTC APCS (1) is installed on a system for damping mechanical vibrations, consisting of interconnected bases for electrical equipment (2), seismic protection platforms (damping bases) (3), plinths (4) and bearing beams (5) ...
  • a low-frequency vibration damping unit (6) is added, which is installed on the foundation through ball bearings (14) installed on the base plate (12).

Abstract

A system for damping mechanical oscillations transmitted from the structural part of built structures to the electrical equipment and/or software and hardware systems of an automatic control system of a nuclear power station comprises a base on which are mounted the electrical apparatus and/or the software and hardware system of an automatic control system of a nuclear power plant. The base is a load-bearing and/or supporting assembly which includes 3D compensators. The system contains at least one girder, and at least one unit for damping low-frequency oscillations that is mounted between the foundation of a built structure and said girder(s), the latter having 3D compensators mounted thereon. The unit for damping low-frequency oscillations has a vertical oscillation damper that is precompressed by a given amount and locked by a lock of a vertical oscillation activator, and a horizontal oscillation damper in the form of a movable support mounted on a supporting plate via spherical supports. The vertical oscillation damper is unlocked when a threshold value for the amplitude of vertical oscillations is reached. This makes it possible to maintain the functioning of the electrical equipment and the software and hardware systems of an automatic control system of a nuclear power plant in the event of man-made impacts and earthquakes causing large-amplitude oscillations of the foundation.

Description

Система гашения механических колебаний, передающихся от строительной части сооружений на комплектное электрооборудование и/или программно- технические комплексы атомных электростанций (АЭС) A system for damping mechanical vibrations transmitted from the construction part of structures to complete electrical equipment and / or software and hardware complexes of nuclear power plants (NPP)
Область техники Technology area
Изобретение относится к средствам защиты комплектного электронного и электротехнического оборудования, а также программно-технических комплексов автоматизированной системы управления (ПТК АСУ ТП), преимущественно для АЭС, от землетрясений и техногенных воздействий, которые приводят к механическим колебаниям фундаментов сооружений, а также к средствам защиты от воздействия промышленной вибрации, приводящей к механическому старению элементов устройств, входящих в ПТК АСУ ТП и электроаппаратуру. The invention relates to means of protecting complete electronic and electrical equipment, as well as software and hardware complexes of an automated control system (PTC ACS TP), mainly for nuclear power plants, from earthquakes and man-made influences that lead to mechanical vibrations of the foundations of structures, as well as to means of protection against the impact of industrial vibration, leading to mechanical aging of the elements of devices included in the PTC ACS TP and electrical equipment.
Известны ПТК АСУ ТП, состоящие из объединенных в сеть «Программно- технических средств (ПТС)», представляющих собой шкафы, панели, пульты, дисплейные рабочие станции, внутри которых размещена идентифицированная аппаратура (блоки устройств и единичные электронные, электротехнические, оптические, электромеханические, электроустановочные и электромонтажные устройства) - см. «Стандарт СТО 1.1.1.07.001.0675-2008 АО «Концерн Росэнергоатом» Атомные станции, АППАРАТУРА, ПРИБОРЫ, СРЕДСТВА СИСТЕМ КОНТРОЛЯ И УПРАВЛЕНИЯ, Общие технические требования, Дата введения 15.02.2009 г». Known PTC APCS, consisting of networked "Software and hardware (PTS)", which are cabinets, panels, consoles, display workstations, inside of which the identified equipment is located (device blocks and individual electronic, electrical, optical, electromechanical, wiring and wiring devices) - see "Standard STO 1.1.1.07.001.0675-2008 Rosenergoatom Concern JSC Nuclear Plants, EQUIPMENT, DEVICES, MEANS OF CONTROL AND CONTROL SYSTEMS, General technical requirements, Date of introduction 15.02.2009".
В указанном стандарте указано, что необходима классификация по сейсмостойкости и виброустойчивости: а) аппаратура, приборы и средства автоматизации в зависимости от степени их ответственности за обеспечение безопасности при сейсмических воздействиях и работоспособности после прохождения землетрясения должны быть отнесены к одной из трех категорий сейсмостойкости в соответствии с НП-031-01, с учетом их класса безопасности по ОПБ 88/97; б) в зависимости от группы условий эксплуатации и места установки аппаратура приборы и средства автоматизации должны быть отнесены к одной из четырех групп устойчивости к синусоидальным вибрационным воздействиям. The specified standard indicates that it is necessary to classify according to seismic resistance and vibration resistance: a) equipment, instruments and automation equipment, depending on the degree of their responsibility for ensuring safety in case of seismic effects and operability after the passage of an earthquake, should be classified into one of three categories of seismic resistance in accordance with NP-031-01, taking into account their safety class according to OPB 88/97; b) depending on the group of operating conditions and the place of installation, the equipment, instruments and automation equipment must be assigned to one of four groups of resistance to sinusoidal vibration effects.
В связи с тем, что на каждом объекте, где установлена ПТК АСУ ТП, существуют различные условия эксплуатации, то для каждого объекта приходилось проектировать и квалифицировать на стойкость к внешним воздействиями идивидуальный ПТК АСУТП с индивидуально подобранными Программно- техническими средствами и элементной базой, что значительно удорожало ПТК АСУ ТП и увеличивало сроки поставки. Наиболее близким аналогом заявляемого ПТК АСУ ТП определен «Программно-технический комплекс автоматизированной системы управления», описанный в патенте РФ >643210. Due to the fact that at each facility where the PTC of the APCS is installed, there are different operating conditions, for each facility it was necessary to design and qualify for resistance to external influences individual software and hardware complex of the process control system with individually selected software and hardware and element base, which significantly increased the cost of the hardware and software system for the process control system and increased the delivery time. The closest analogue of the claimed PTC ACS TP is defined as "Software and hardware complex of an automated control system", described in the patent of the Russian Federation> 643210.
В аналоге предусмотрено использование шкафов, панелей, пультов, дисплейных рабочих станций, внутри которых размещена идентифицированная аппаратура (блоки устройств и единичные электронные, электротехнические, оптические, электромеханические, электроустановочные и электромонтажные устройства), установленных на цоколи и/или сейсмозащитные платформы и/или демпфирующие основания, в которые встроены основания для электрической аппаратуры, состоящие из 3D - компенсаторов, датчиков вибрации, автоматических регуляторов, программируемых контроллеров, которые передают в сеть информацию об амплитудно- частотных характеристиках вибрации пола и основания ПТС (программно-технических средств). The analogue provides for the use of cabinets, panels, consoles, display workstations, inside which the identified equipment is located (device blocks and single electronic, electrical, optical, electromechanical, wiring and wiring devices) installed on the base and / or seismic protection platforms and / or damping bases in which the bases for electrical equipment are built, consisting of 3D compensators, vibration sensors, automatic regulators, programmable controllers, which transmit to the network information about the amplitude-frequency characteristics of vibration of the floor and the base of the OB van (software and hardware).
Это позволило использование ПТС, квалифицированных для нормальных внешних воздействующих факторов (ВВФ),- в экстремальных условиях эксплуатации по сейсмике и вибрации, т.е. один и тот же ПТК АСУ ТП может быть использован в различных условиях вибрации, а для повышении надежности ПТК АСУ ТП за счет упреждающей замены элементов ПТС, механическое старение которых приблизилось к паспортному пороговому значению, в комплекс дополнительно встроена интегральная информационная платформа управления механическим старением элементов, включающая программируемый контроллер-компаратор спектральной плотности энергии (СПЭ), который соединен с информационной системой и содержит базу данных о допустимых значениях СПЭ и пороговые значения дозы вибрации элементов технических средств, предназначенный для обработки данных о вибрации, поступающих от контроллеров из оснований для электрической аппаратуры, интегрирования текущих значений СПЭ для программно-технических средств, сравнения текущих значений СПЭ с допустимыми и на основании данных о пороговых значениях вибрации для элементов технических средств и передачи в информационную сеть сигнала о необходимости выполнения регламентных работ на программно- технических средствах, которые требуется выполнить по показателям вибрации. Однако, системы управления АЭС должны функционировать не только при землетрясениях, но и при воздействии техногенных факторов (Стандарт по безопасности МАГАТЭ, NS-G-3.1. IAEA, Vienna 2002). Проектные требования по аттестации ПТС на устойчивость к техногенным воздействиям более жесткие, чем к максимальному расчетному землетрясению (MP3), например для АЭС «Куданкулам» проектом регламентируется размах колебаний до ±14 мм при MP3, а аттестацию на устойчивость к воздействию ударной волны требуется выполнять при размахе колебаний ±32 мм (более чем в 2 раза). Для защиты от механических воздействий со стороны фундамента в основаниях для электроаппаратуры и ПТС используются сейсмозащитные платформы, которые экранируют колебания фундамента, но их габариты жестко ограничены проектными требованиями, т.к. сейсмозащитные платформы интегрируются в шкафы, соединенные в секции. This made it possible to use PTSs qualified for normal external influencing factors (VVF) - in extreme operating conditions for seismicity and vibration, i.e. one and the same PTC APCS can be used in different vibration conditions, and to increase the reliability of the PTC APCS due to the proactive replacement of the PTS elements, the mechanical aging of which has approached the passport threshold value, an integrated information platform for controlling the mechanical aging of elements is additionally built into the complex, including a programmable controller-comparator of the spectral energy density (PSE), which is connected to the information system and contains a database on the permissible values of the PSE and the threshold values of the vibration dose of the elements of technical equipment, intended for processing vibration data received from the controllers from the bases for electrical equipment, integrating the current values of the PPE for software and hardware, comparing the current values of the PPE with the permissible ones and based on the data on the threshold vibration values for the elements of the hardware and transmitting a signal to the information network about the need to comply with the regulations tough work on software and hardware, which must be performed according to vibration indicators. However, NPP control systems must function not only during earthquakes, but also under the influence of industrial factors (IAEA Safety Standard, NS-G-3.1. IAEA, Vienna 2002). The design requirements for certification of PTS for resistance to technogenic impacts are more stringent than for the maximum design earthquake (MP3), for example, for the Kudankulam NPP, the project regulates the swing range of up to ± 14 mm at MP3, and certification for resistance to shock wave is required swing range ± 32 mm (more than 2 times). To protect against mechanical influences from the foundation, seismic protection platforms are used in the foundations for electrical equipment and PTS, which screen the vibrations of the foundation, but their dimensions are strictly limited by design requirements, since seismic protection platforms are integrated into cabinets connected in sections.
Раскрытие изобретения Disclosure of invention
Задача, которую решает изобретение: погасить большие механические колебания в ПТК АСУ ТП от техногенных воздействий и землетрясений, без увеличения габаритных размеров конструктива ПТС. Эта задача усложняется еще одним обстоятельством: - механические колебания большого размаха присутствуют в области низких частот (1-25 Гц) и являются статистически редкими, т.к. MP3, падение самолета на объект (ПС), воздушная ударная волна (ВУВ) от взрыва на объекте - это редкие события, а постоянная промышленная вибрация, приводящая к старению элементов ПТС - наиболее существенная в частотном диапазоне 25-50 Гц. Промышленная вибрация успешно гасится ЗО-компенсаторами, встроенными в сейсмозащитные платформы или основания сооружения, но они не могут гасить низкочастотные колебания большого размаха из-за габаритных ограничений. The problem that the invention solves is to extinguish large mechanical vibrations in the PTC of the APCS from man-made impacts and earthquakes, without increasing the overall dimensions of the PTS construct. This task is complicated by one more circumstance: - mechanical vibrations of a large swing are present in the low frequency range (1-25 Hz) and are statistically rare, since MP3, an aircraft crash on an object (PS), an air shock wave (VUW) from an explosion on an object are rare events, and constant industrial vibration, which leads to the aging of the PTS elements, is most significant in the frequency range of 25-50 Hz. Industrial vibration is successfully damped by ZO-compensators built into seismic protection platforms or foundations of a structure, but they cannot damp large low-frequency vibrations due to dimensional limitations.
Таким образом, техническим результатом изобретения является сохранение функционирования электронного оборудования и программно-технических комплексов автоматизированной системы управления АЭС при техногенных воздействиях и землетрясениях с большим размахом амплитуды колебаний фундамента, на котором размещено или установлено сооружение с оборудованием. Thus, the technical result of the invention is the preservation of the functioning of the electronic equipment and software and hardware complexes of the automated control system of the NPP during man-made influences and earthquakes with a large amplitude of the vibration amplitude of the foundation on which the structure with the equipment is located or installed.
Упомянутые выше задача и технический результат достигаются путем создания системы гашения механических колебаний оснований сооружений для размещения и/ или установки электроаппаратуры и/или программно-технического комплекса автоматизированной системы управления АЭС, включающей основание сооружения, на котором установлены и/или размещены электроаппаратура и/или программно- технический комплекс автоматизированной системы управления АЭС, где основание сооружения представляет собой несущий и/или опорный узел, в состав которого входят ЗЭ-компенсаторы, причем система дополнительно содержит по меньшей мере одну несущую балку, по крайней мере один блок гашения низкочастотных колебаний, установленный между фундаментом сооружения для установки основания сооружения и несущей балкой или балками, на которой или которых установлены 3D- компенсаторы, при этом блок гашения низкочастотных колебаний имеет предварительно сжатый на заданную величину гаситель вертикальных колебаний, заблокированный фиксатором активатора вертикальных гашений, и гаситель горизонтальных колебаний в виде подвижной опоры, установленной на опорной пластине через сферические опоры, причем активатор выполнен таким образом, что разблокирование гасителя вертикальных колебаний происходит при достижении порогового значения амплитуды вертикальных колебаний. The above-mentioned problem and technical result are achieved by creating a system for damping mechanical vibrations of the foundations of structures for placing and / or installation of electrical equipment and / or software and hardware complex of the automated control system of the NPP, including the base of the structure, on which the electrical equipment and / or software and hardware complex of the automated control system of the NPP are installed and / or located, where the base of the structure is a load-bearing and / or support unit , which includes ZE-compensators, and the system additionally contains at least one load-bearing beam, at least one low-frequency vibration damping unit installed between the foundation of the structure to install the foundation of the structure and the load-bearing beam or beams on which or on which 3D- compensators, while the low-frequency vibration damping unit has a vertical vibration damper pre-compressed by a predetermined amount, blocked by a vertical damping activator lock, and a horizontal vibration damper in the form of a movable support mounted on a base plate through spherical supports ry, and the activator is designed in such a way that the unblocking of the vertical vibration damper occurs when the threshold value of the vertical vibration amplitude is reached.
Гаситель вертикальных колебаний выполнен в виде одной или множества пружин. The vertical vibration damper is made in the form of one or a plurality of springs.
Активатор вертикальных гашений представляет собой механизм, содержащий фиксатор, выполненный из тарельчатой пружины, которая препятствует распрямлению пружин или пружины гасителя вертикальных колебаний, при этом фиксатор удерживается в рабочем положении, если вертикальное перемещение несущей балки относительно опорной пластины будет меньше конструктивно заданного допустимого перемещения. Таким образом, вся совокупность перечисленных выше признаков позволяет обеспечить сохранение функционирования комплекса при техногенных воздействиях и землетрясениях с большим размахом амплитуды колебаний фундамента здания или сооружения, в котором размещены и/или установлены аппаратура комплекса АЭС. The vertical damping activator is a mechanism containing a retainer made of a Belleville spring, which prevents the springs or the spring of the vertical vibration damper from straightening, while the retainer is held in the operating position if the vertical movement of the support beam relative to the base plate is less than the structurally specified allowable movement. Thus, the totality of the above features allows to ensure the preservation of the functioning of the complex under anthropogenic impacts and earthquakes with a large amplitude of the oscillation amplitude of the foundation of a building or structure, in which the equipment of the NPP complex is located and / or installed.
Краткое описание чертежей Brief Description of Drawings
На Фиг. 1 представлена общая схема системы гашения механических колебаний программно-технических комплексов автоматизированной системы управления, преимущественно для АЭС. На Фиг. 2 представлена схема узла, составляющего основание для электрической аппаратуры и программно-технических комплексов автоматизированной системы управления, преимущественно для АЭС. На Фиг. 3 представлена схема блока гашения низкочастотных колебаний. На Фиг. 4 представлена схема механизма узла активатора. На Фиг. 5 представлена схема конструкции 3D- компенсаторов. FIG. 1 shows a general diagram of a system for damping mechanical vibrations of software and hardware complexes of an automated control system, mainly for nuclear power plants. FIG. 2 shows a diagram of a unit that forms the basis for electrical equipment and software and hardware complexes of an automated control system, mainly for nuclear power plants. FIG. 3 is a diagram of a low-frequency vibration damping unit. FIG. 4 is a diagram of the mechanism of the activator assembly. FIG. 5 shows a diagram of the construction of 3D expansion joints.
Осуществление изобретения Implementation of the invention
Решение задачи представлено на фиг. 1., где оборудование ПТК АСУТП (1) устанавливается на систему гашения механических колебаний, состоящую из несущих/ опорных элементов или частей сооружения, соединенных между собой, и блоков гашения низкочастотных колебаний (6), которые установлены на фундаменте (30) через шаровые опоры (14), установленные на опорной пластине (12). The solution to the problem is presented in Fig. 1., where the equipment of the PTC APCS (1) is installed on a system for damping mechanical vibrations, consisting of bearing / supporting elements or parts of the structure, connected to each other, and blocks for damping low-frequency vibrations (6), which are installed on the foundation (30) through ball bearings (14) mounted on the base plate (12).
По существу несущие части или опорные элементы для оборудования ПТК АСУТП (1) представляют собой соединенные или взаимосвязанные основания для электроаппаратуры (2), сейсмозащитные платформы (демпфирующие основания) (3), цоколи (4) и несущие балки (5). Essentially, the bearing parts or supporting elements for the equipment of the PTC APCS (1) are connected or interconnected bases for electrical equipment (2), seismic protection platforms (damping bases) (3), plinths (4) and bearing beams (5).
Основание для электрической аппаратуры (2) показано на фиг. 2 и состоит из 3D- компенсаторов (7), установленных на несущей балке (11), к которой прикреплены контроллер - компаратор спектральной плотности энергии (СПЭ) (8), в котором автоматически осуществляется сравнение действующей вибрации с допустимым пороговым значением, и 3D- датчик для фиксации колебаний защищаемого объекта (10), а также ЗБ-датчика колебаний фундамента (13), которые измеряют действующее значение вибрации, при этом ЗО-датчик (13) размещен на опорной пластине (12). The base for the electrical apparatus (2) is shown in FIG. 2 and consists of 3D-compensators (7) installed on the support beam (11), to which are attached a controller - comparator of spectral energy density (SPE) (8), in which the actual vibration is automatically compared with the permissible threshold value, and 3D- a sensor for fixing the vibrations of the protected object (10), as well as the ZB-sensor of foundation vibrations (13), which measure the effective value of vibration, while the ZO-sensor (13) is placed on the base plate (12).
Блок гашения низкочастотных колебаний (6) показан на фиг. 3 и состоит из пружин сжатия (15) (может быть одна или несколько пружин), которые в сжатом состоянии размещены между несущей балкой (11) и подвижной опорой (22), размещенной над шаровыми опорами (14), а также включает активатор (21) низкочастотного блока, который состоит из анкера (16), жестко связанного с опорной пластиной (12), зацепа (18), обеспечивающего фиксирование и удержание фиксатора (19) в заданном (рабочем) положении. Зацеп (18) жестко связан с несущей балкой (11). Фиксатор (19) препятствует распрямлению пружин (15) и регулировочного стопорного винта (17), который удерживает фиксатор (19) в рабочем положении, если вертикальное перемещение несущей балки (1 1) относительно опорной пластины будет меньше конструктивно заданного допустимого перемещения - h, приблизительно равного величине рабочего хода ЗО-компенсатора в вертикальном направлении. На фиг. 3 позицией I обозначен узел, содержащий элементы, которые составляют конструкцию активатора. The low-frequency vibration damping unit (6) is shown in FIG. 3 and consists of compression springs (15) (there can be one or more springs), which in a compressed state are placed between the carrier beam (11) and the movable support (22) located above the ball bearings (14), and also includes an activator (21 ) a low-frequency unit, which consists of an anchor (16) rigidly connected to the base plate (12), a hook (18), which ensures fixation and holding of the latch (19) in a given (working) position. The hook (18) is rigidly connected to the supporting beam (11). The retainer (19) prevents the springs (15) and the adjusting stop screw (17), which holds the latch (19) in the working position, if the vertical movement of the bearing beam (1 1) relative to the base plate is less than the structurally specified allowable movement - h, approximately equal to the value of the working stroke of the ZO compensator in the vertical direction. FIG. 3, I denotes an assembly containing elements that make up the structure of the activator.
Конструкция активатора может иметь различные исполнения. Так, на фиг. 4 узел I приведен в увеличенном масштабе. На фиг. 4 показан активатор, в котором фиксатор выполнен из принудительно вывернутой тарельчатой пружины (19), которая будет приведена в нормальное состояние (20) и не препятствовать срабатыванию пружин сжатия после взаимного перемещения несущей балки (11) относительно опорной пластины (12) вверх на величину более h. После срабатывания пружин сжатия (15), несущая балка поднимается на величину, достаточную для компенсации больших вертикальных перемещений низкой частоты от техногенных воздействий. Техногенное воздействие является редким событием, поэтому после него проводятся регламентные работы, включающие принудительное сжатие пружин (15) и восстановление фиксатора в рабочем положении (19). The design of the activator can be of various designs. Thus, in FIG. 4 node I is shown on an enlarged scale. FIG. 4 shows an activator, in which the retainer is made of a forcibly turned-out Belleville spring (19), which will be brought into a normal state (20) and will not interfere with the operation of the compression springs after the mutual movement of the bearing beam (11) relative to the support plate (12) upwards by more than h. After the compression springs (15) are triggered, the supporting beam rises by an amount sufficient to compensate for large vertical displacements of low frequency from man-made influences. Technogenic impact is a rare event, therefore, after it, routine maintenance is carried out, including forced compression of the springs (15) and the restoration of the lock in the working position (19).
При этом блок гашения низкочастотных колебаний (6) в режиме нормальной эксплуатации сжат, а компенсация промышленной вибрации осуществляется за счет работы ЗБ-компенсаторов (7), размещенных на несущей балке. In this case, the unit for damping low-frequency vibrations (6) in normal operation is compressed, and compensation for industrial vibration is carried out due to the operation of ZB-compensators (7) placed on the supporting beam.
Конструкция ЗО-компенсаторов может иметь различные исполнения, на фиг. 5 показано одно из исполнений: ЗО-компенсатор размещен в корпусе (23), который жестко соединен с оборудованием ПТК (1), корпус (23) через тарельчатые пружины (24) опирается на несущий элемент горизонтальных компенсаций (25), размещенный над шаровыми опорами (26), расположенными внутри ЗО-компенсаторов и опирающимися на жесткую базу (27), которая соединена с несущей балкой (11). Тарельчатые пружины (24) предназначены для вертикальных компенсаций и опираются на регулировочную втулку (28), которая закреплена на анкере (29), предотвращающем опрокидывание ПТС при больших колебаниях за счет зацепления с базой (27). В несущем элементе горизонтальных компенсаций (25) и/или в месте размещения шаровых опор (26) на базе (27), могут быть выполнены сферические приямки, для гравитационного возврата компенсатора в исходное положение после прекращения горизонтальных колебаний. Сжатый блок гашения низкочастотных колебаний (6) обеспечивает требуемые габариты ПТК, но при техногенных воздействиях со стороны фундамента возникают большие колебания, которые приводят в действие активатор и блока гашения низкочастотных колебаний (6) разжимается до габаритов, позволяющих экранировать большие колебания. После техногенных воздействий блок гашения низкочастотных колебаний (6) приводится в сжатое состояние и габариты ПТК опять соответствуют проектным требованиям. The design of the ZO-compensators can have various designs, in Fig. 5 shows one of the versions: the ZO-compensator is located in the housing (23), which is rigidly connected to the PTC equipment (1), the housing (23) through the Belleville springs (24) rests on the bearing element of horizontal compensations (25), located above the ball bearings (26) located inside the ZO-expansion joints and resting on a rigid base (27), which is connected to the supporting beam (11). The Belleville springs (24) are designed for vertical compensation and are supported by an adjusting sleeve (28), which is fixed to the anchor (29), which prevents the PTS from tipping over during large vibrations due to engagement with the base (27). In the bearing element of the horizontal compensations (25) and / or at the location of the ball bearings (26) on the base (27), spherical pits can be made for gravitational return of the compensator to its original position after the end of horizontal vibrations. The compressed block for damping low-frequency vibrations (6) provides the required dimensions of the PTC, but under technogenic influences from the foundation, large vibrations arise, which activate the activator and the block for damping low-frequency vibrations (6) expands to dimensions that allow screening large vibrations. After technogenic impacts, the low-frequency vibration damping unit (6) is brought into a compressed state and the dimensions of the PTC again correspond to the design requirements.
Сущность изобретения поясняется чертежами: фиг. 1-5, где оборудование ПТК АСУТП (1) устанавливается на систему гашения механических колебаний, состоящую из соединенных между собой оснований для электроаппаратуры (2), сейсмозащитных платформ (демпфирующих оснований) (3), цоколей (4) и несущих балок (5). При этом добавляется блок гашения низкочастотных колебаний (6), который установлен на фундаменте через шаровые опоры (14), установленные на опорной пластине (12). The essence of the invention is illustrated by drawings: FIG. 1-5, where the equipment of the PTC APCS (1) is installed on a system for damping mechanical vibrations, consisting of interconnected bases for electrical equipment (2), seismic protection platforms (damping bases) (3), plinths (4) and bearing beams (5) ... At the same time, a low-frequency vibration damping unit (6) is added, which is installed on the foundation through ball bearings (14) installed on the base plate (12).

Claims

Формула изобретения Claim
1. Система гашения механических колебаний, передающихся от строительной части сооружений на комплектное электрооборудование и/или программно-технические комплексы автоматизированной системы управления АЭС, включающая основание, на котором установлены и/или размещены электроаппаратура и/или программно- технический комплекс автоматизированной системы управления АЭС, где основание представляет собой несущий и/или опорный узел, в состав которого входят 3D- компенсаторы, отличающаяся тем, что система дополнительно содержит по меньшей мере одну несущую балку, по крайней мере один блок гашения низкочастотных колебаний, установленный между фундаментом сооружения для установки основания сооружения и несущей балкой или балками, на которой или которых установлены 3D- компенсаторы, при этом блок гашения низкочастотных колебаний имеет предварительно сжатый на заданную величину гаситель вертикальных колебаний, заблокированный фиксатором активатора вертикальных гашений, и гаситель горизонтальных колебаний в виде подвижной опоры, установленной на опорной пластине через сферические опоры, причем активатор выполнен таким образом, что разблокирование гасителя вертикальных колебаний происходит при достижении порогового значения амплитуды вертикальных колебаний. 1. A system for damping mechanical vibrations transmitted from the construction part of structures to complete electrical equipment and / or software and hardware complexes of the automated control system of the NPP, including the base on which the electrical equipment and / or software and hardware complex of the automated control system of the NPP are installed and / or located, where the base is a bearing and / or support unit, which includes 3D expansion joints, characterized in that the system additionally contains at least one bearing beam, at least one low-frequency vibration damping unit installed between the foundation of the structure to install the foundation of the structure and a supporting beam or beams on which or which 3D expansion joints are installed, while the low-frequency vibration damping unit has a vertical vibration damper pre-compressed by a predetermined amount, blocked by a vertical damping activator lock, and a horizontal damper baths in the form of a movable support mounted on the base plate through spherical supports, and the activator is designed in such a way that the vertical vibration damper is unlocked when the threshold value of the vertical vibration amplitude is reached.
2. Система по п. 1, отличающаяся тем, что гаситель вертикальных колебаний выполнен в виде одной или множества пружин. 2. The system of claim. 1, characterized in that the vertical vibration damper is made in the form of one or a plurality of springs.
3. Система по п. 2, отличающаяся тем, что активатор вертикальных гашений представляет собой механизм, содержащий фиксатор, выполненный из тарельчатой пружины, которая препятствует распрямлению пружин или пружины гасителя вертикальных колебаний, при этом фиксатор удерживается в рабочем положении, если вертикальное перемещение несущей балки относительно опорной пластины будет меньше конструктивно заданного допустимого перемещения. 3. The system according to claim 2, characterized in that the vertical damping activator is a mechanism containing a retainer made of a Belleville spring, which prevents the springs or the spring of the vertical vibration damper from straightening, while the retainer is held in the working position if the vertical movement of the supporting beam relative to the base plate will be less than the structurally specified permissible displacement.
PCT/RU2020/000069 2019-06-28 2020-02-12 System for damping mechanical oscillations transmitted from the structural part of built structures to the electrical equipment and/or software and hardware systems of nuclear power stations WO2020263123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20832901.1A EP3992369A4 (en) 2019-06-28 2020-02-12 System for damping mechanical oscillations transmitted from the structural part of built structures to the electrical equipment and/or software and hardware systems of nuclear power stations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2019120254A RU2709273C1 (en) 2019-06-28 2019-06-28 System for damping mechanical oscillations transmitted from the building part of structures to complete electrical equipment and / or software and hardware of nuclear power plants (npp)
RU2019120254 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020263123A1 true WO2020263123A1 (en) 2020-12-30

Family

ID=69006812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2020/000069 WO2020263123A1 (en) 2019-06-28 2020-02-12 System for damping mechanical oscillations transmitted from the structural part of built structures to the electrical equipment and/or software and hardware systems of nuclear power stations

Country Status (3)

Country Link
EP (1) EP3992369A4 (en)
RU (1) RU2709273C1 (en)
WO (1) WO2020263123A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2024689C1 (en) * 1991-06-17 1994-12-15 Ситков Борис Петрович Device for antiseismic protection of structures
RU2062833C1 (en) * 1994-02-15 1996-06-27 Владимир Кондратьевич Росолько Aseismic foundation (options)
RU2342493C2 (en) * 2006-10-31 2008-12-27 Игорь Степанович Годустов Method of decreasing of horisontal inertial load over object on seismological-isolating kinematic basement
RU2643210C1 (en) 2016-11-17 2018-01-31 Алексей Юрьевич Теняков Software and hardware complex of automated control system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2031456C1 (en) * 1990-01-29 1995-03-20 Всесоюзный научно-исследовательский институт гидротехники им.Б.Е.Веденеева Reactor compartment of atomic power station
JP2005282247A (en) * 2004-03-30 2005-10-13 Eisaku Hino Base-isolated foundation structure with return mechanism
CA3039634A1 (en) * 2016-10-27 2018-05-03 Mitsubishi Electric Corporation Base isolation apparatus, lifting apparatus, and base isolation unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2024689C1 (en) * 1991-06-17 1994-12-15 Ситков Борис Петрович Device for antiseismic protection of structures
RU2062833C1 (en) * 1994-02-15 1996-06-27 Владимир Кондратьевич Росолько Aseismic foundation (options)
RU2342493C2 (en) * 2006-10-31 2008-12-27 Игорь Степанович Годустов Method of decreasing of horisontal inertial load over object on seismological-isolating kinematic basement
RU2643210C1 (en) 2016-11-17 2018-01-31 Алексей Юрьевич Теняков Software and hardware complex of automated control system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992369A4

Also Published As

Publication number Publication date
EP3992369A1 (en) 2022-05-04
RU2709273C1 (en) 2019-12-17
EP3992369A4 (en) 2023-08-09

Similar Documents

Publication Publication Date Title
Hüffmann Full base isolation for earthquake protection by helical springs and viscodampers
US8851460B2 (en) System and method for tuning the resonance frequency of an energy absorbing device for a structure in response to a disruptive force
JP5934250B2 (en) System, horizontal damping device and seismic isolation bearing to mitigate structural damage from impact events
Carrillo et al. Improved external device for a mass‐carrying sliding system for shaking table testing
JPS6242192Y2 (en)
WO2020263123A1 (en) System for damping mechanical oscillations transmitted from the structural part of built structures to the electrical equipment and/or software and hardware systems of nuclear power stations
KR102197961B1 (en) System of designing seismic isolation mount for protecting electrical equipment comprising switchboard and control panel
KR102197956B1 (en) Method of designing seismic isolation mount for protecting electrical equipment comprising switchboard and control panel
Ries et al. Seismic qualification of an electrical cabinet: comparison of analysis-and testresults
Marsh The control of building motion by friction dampers
Venanzi et al. Active control of art objects subjected to seismic excitation
Lockau et al. The influence of high-frequency excitation on piping and support design
KR102353862B1 (en) Measurement and control panel having seismic isolation device for protecting electrical equipment from earthquake
KR102491365B1 (en) Apparatus for Stabilizing switchboard with enhanced safety function
Buttenshaw et al. Dynamic Analysis of Mine Blasting using the Spectral Response Analysis Methods of AS1170. 4
KR102353870B1 (en) High-voltage distribution panel having seismic isolation device for protecting electrical equipment from earthquake
KR102353879B1 (en) Distribution board having seismic isolation device for protecting electrical equipment from earthquake
Singh et al. Coupled Nonlinear Analysis for Evaluation of Seismic Demands on Electrical Equipment subjected to High–Frequency Ground Motions
Marinescu et al. A concept for earthquake protection of the Bucharest tandem accelerator
Gara et al. Dynamic behaviour of a retrofitted school building subjected to the after-shock sequence of the 2016 Central Italy earthquake
Maeda et al. Motion analysis of earthquake-resistant and non-resistant ceilings under seismic excitation
WO2022158997A1 (en) Shock-absorbing base
KR102353883B1 (en) Low-voltage distribution panel having seismic isolation device for protecting electrical equipment from earthquake
Malcher et al. HDR phase II vibrational experiments
KR102353874B1 (en) Motor control panel having seismic isolation device for protecting electrical equipment from earthquake

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020832901

Country of ref document: EP