WO2020263002A1 - Blood vessel segmentation method - Google Patents

Blood vessel segmentation method Download PDF

Info

Publication number
WO2020263002A1
WO2020263002A1 PCT/KR2020/008319 KR2020008319W WO2020263002A1 WO 2020263002 A1 WO2020263002 A1 WO 2020263002A1 KR 2020008319 W KR2020008319 W KR 2020008319W WO 2020263002 A1 WO2020263002 A1 WO 2020263002A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood vessel
image
learning
net
algorithm
Prior art date
Application number
PCT/KR2020/008319
Other languages
French (fr)
Korean (ko)
Inventor
조한용
권순성
Original Assignee
에이아이메딕 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이아이메딕 주식회사 filed Critical 에이아이메딕 주식회사
Publication of WO2020263002A1 publication Critical patent/WO2020263002A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0042Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing

Definitions

  • the present invention relates to a vascular segmentation method. More specifically, the present disclosure relates to a method of segmenting a blood vessel region by processing a plurality of 2D blood vessel tomography images by a deep running method.
  • a medical image processing device is a device that acquires an image capable of non-invasively showing the internal structure of a human body.
  • the medical image output from the medical image processing device may be analyzed and used to diagnose a patient's disease.
  • Devices for photographing and processing medical images include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Single Photon Emission Computed Tomography (SPECT), and positron tomography. PET, Positron Emission Tomography) and Ultrasound.
  • MRI Magnetic Resonance Imaging
  • CT Computed Tomography
  • SPECT Single Photon Emission Computed Tomography
  • positron tomography PET, Positron Emission Tomography
  • Ultrasound Ultrasound.
  • CT and MRI are widely used for the diagnosis of cerebrovascular diseases. Since the causes of cerebrovascular diseases are diverse and treatment methods and prognosis may vary depending on the patient, the exact cause analysis, determination of appropriate treatment methods, and prognosis Various imaging techniques are being developed for prediction.
  • the method using CT has the disadvantage of not knowing the extent of the cerebral infarction accurately and the use of radiation exposure and contrast media, and MRI can determine the extent of the cerebral infarction more accurately, but it takes a relatively long time to obtain an image and requires emergency such as acute cerebral infarction. It can be limited in the situation, is very sensitive to the patient's movements, and is relatively safer than CT, but it also has the disadvantage of requiring a contrast medium.
  • segmentation to generate a three-dimensional shape model of a blood vessel by processing a plurality of two-dimensional tomographic images is required.
  • a method of accurately and quickly segmenting a blood vessel region is required.
  • a medical image processing technology using a deep running or machine learning technique has been developed.
  • development to diagnose diseases by applying deep running techniques to medical images acquired from devices such as X-ray, ultrasound, CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), etc.
  • an auxiliary diagnostic system has been developed to classify whether the tissue shown in medical images is normal or abnormal, and in the case of tumors, whether it is positive or negative using deep running techniques, and it is known that it has been developed to the level in which radiology doctors can read images. .
  • Algorithms such as naive bayes, SVM (Support Vector Machine), ANN (Artificial Neural Network), and HMM (Hidden Markov Model) are known as algorithms for automatically classifying the presence or absence of such lesions.
  • machine learning algorithms can be used for this classification, and machine learning algorithms are largely classified into supervised learning and unsupervised learning algorithms.
  • An object of the present invention is to provide a method for segmenting a blood vessel region by processing a plurality of tomography medical images.
  • the present invention provides a method for segmenting a blood vessel region.
  • the segmentation method according to the present invention includes the steps of receiving a plurality of 2D tomography images, preprocessing the received 2D tomography images to display an area where a blood vessel is located to generate training image data, and Generating a blood vessel feature image prediction model by learning from the training image data, and inputting a plurality of two-dimensional tomographic images into the generated blood vessel feature image prediction model to output a plurality of two-dimensional tomographic images displaying blood vessel features. do.
  • the GAN algorithm in the learning of the blood vessel feature image prediction model, and to use the U-net algorithm as a generator module in the GAN algorithm.
  • the GAN algorithm is used, and the U-net algorithm is used as a generator module in the GAN algorithm, first initial learning of U-net, and initial learning of the U-net.
  • the MR segmentation image output from U-net is a fake image, and to learn simultaneously with the inspector module.
  • a method of segmenting a blood vessel region by processing a plurality of two-dimensional tomographic images to accurately and quickly diagnose and analyze a lesion of a blood vessel such as cardiovascular or cerebrovascular disease.
  • FIG. 1 is a schematic diagram of a conventional blood vessel modeling method
  • FIG. 2 is an MRI image showing (a) an original image, (b) an image for learning, (c) an original image preprocessing result, and (d) a training image preprocessing result.
  • FIG. 3 is a schematic diagram of a U-net learning algorithm according to the present invention.
  • FIG. 5 is a schematic diagram of a cerebrovascular target method using the windowing technique of the present invention
  • FIG. 6 is a schematic diagram of a U-net architecture according to the present invention.
  • FIG. 7 is a schematic diagram of a GAN algorithm according to the present invention.
  • FIG. 9 is a schematic diagram of an embodiment of a GAN algorithm according to the present invention.
  • image may mean multi-dimensional data composed of discrete image elements (eg, pixels in a 2D image and voxels in a 3D image).
  • the image may include a medical image of an object acquired by an MRI or CT imaging apparatus.
  • the "object” may include a human or an animal, or a part of a human or animal.
  • the subject may include organs such as liver, heart, uterus, brain, breast, and abdomen, or blood vessels.
  • the "object” may include a phantom.
  • the phantom refers to a material having a volume very close to the density and effective atomic number of an organism, and may include a sphere-shaped phantom having properties similar to the body.
  • the "user" may be a medical expert, such as a doctor, a nurse, a clinical pathologist, a medical imaging expert, and the like, and may be a technician who repairs a medical device, but is not limited thereto.
  • the CT image may be a cardiovascular or cerebrovascular image, but is not limited thereto, and any tomography image including a blood vessel may be used.
  • the brain MRA image was used as an example in the detailed description of the present invention, it should be understood as an exemplary.
  • a commercial medical image viewer receives MRA data (DICOM file) and outputs two to three hundred two-dimensional images in an axial view.
  • MRA data DICOM file
  • cerebrovascular and tissues similar to cerebrovascular intensity are primarily divided.
  • stenosis is implemented, disconnected blood vessels are connected, and tissues other than blood vessels are removed according to manual work in the divided cerebrovascular shape. In this case, the worker needs segmentation know-how and anatomical knowledge.
  • the mesh is created to complete the grid for computer simulation.
  • a method of segmenting a blood vessel region of a blood vessel according to the present invention is a method of segmenting a plurality of 2D tomographic images using a deep running technique.
  • Fig. 2 shows an image for learning according to the segmentation method according to the present invention.
  • Fig. 2(a) is an original image
  • Fig. 2(b) is an image showing a blood vessel area for learning (Ground Truth)
  • Fig. 2(c) is an image preprocessed of the original image
  • Fig. 2(d) is a training image This is the pre-processed MRI image.
  • FIG. 4 shows a result of automatically extracting a cerebrovascular region from an MR image predicted by an artificial intelligence system according to an embodiment of the present invention, and the green part represents the cerebrovascular region.
  • the segmentation method includes the steps of receiving a plurality of 2D tomography images, preprocessing the received 2D tomography images to display an area where a blood vessel is located to generate training image data, and Generating a blood vessel feature image prediction model by learning from the training image data, and inputting a plurality of two-dimensional tomographic images into the generated blood vessel feature image prediction model to output a plurality of two-dimensional tomographic images displaying blood vessel features.
  • a model capable of obtaining a 2D tomography image showing a blood vessel region is trained by performing machine learning using a 2D tomography image showing a blood vessel region.
  • the FCN Full Convolutional Network
  • the FCN model uses a method of properly mixing by upsampling the values of the convolutional lower pooling layer so that the output is not a class value but a pixel heat map.
  • an algorithm that approaches the global optimal function is implemented by learning using pairs of data consisting of an input (raw CT image) and a result (clinically verified cerebrovascular segmentation image).
  • U-net algorithm can also be used as a machine learning algorithm.
  • the U-net algorithm is an algorithm developed based on FCN, and has the characteristic of obtaining more accurate segmentation results even with little data.
  • U-net is a name given because it has a U-shaped shape, and the left is called a contracting path and the right is called an expansive path based on the center of the network.
  • a blue box indicates a multi-channel feature map, and each arrow indicates a different operation for each color.
  • the red arrow is max pooling, the yellow arrow is up-convolution, and the green is copy and crop, which is a concept of skip connection.
  • cerebrovascular blood vessels are a three-dimensional structure that connects from the top to the bottom of the head, rather than determining the location of cerebrovascular blood vessels in a single MR image and making them regions, information on the distribution of cerebrovascular vessels by considering all the front and rear of the image to be region.
  • 150 MR images included in one case of cerebrovascular blood vessels used for learning are a collection of images showing a cross section moving from the top to the bottom of the head. Therefore, instead of a single MR image, a windowing technique was used in which multiple MR images were bundled and context information was input to the development network to learn data without a repetitive structure.
  • a stack was constructed by stacking a single MR image as a target, and k images in the +Z-axis direction and k-images in the -Z-axis direction of the image.
  • this stack is composed of (x, y, 2k+1) dimensional tensors. Therefore, the window stack is input to the U-net algorithm, not a single MR image, and the channel size of the neural network input unit is 2k+1.
  • the cerebrovascular vessel is a structure that is connected from the top to the bottom without a disconnected area, and when comparing through continuous images constituting a window, overlapping sections are necessarily generated. When the distributions of these sections are overlapped, only the cerebrovascular area, which is the target of regionalization, appears prominently as shown in the stacked-distribution shown in FIG. 5.
  • the contracting path of the U-net follows a general convolutional network, and performs two repeated 3x3 convolution operations including stride 2, 2x2 max pooling operation and Relu function for down-sampling.
  • stride 2x2 max pooling operation and Relu function for down-sampling.
  • it is calculated in the order of 3x3convolution-Relu-2x2max pooling-3x3convolution-Relu-2x2max pooling, and the number of feature map channels doubles during the down-sampling process. This is concatenated with the feature map created in the expansive path and the feature map created in the contracting path.
  • the U-net model according to the present invention uses ADAM (Adaptive Moment Estimation) among gradient descent algorithms to learn to find a variable that minimizes cross entropy.
  • Cross entropy is a value that expresses two different probability distributions describing the same event, and is a measure of how close the probability distribution of the model is to the probability distribution of the actual label in the artificial intelligence learning process.
  • the system developed according to the present invention processed a total of 70 case data to proceed with learning of the artificial intelligence system.
  • 50 case MR images were amplified into 360 cases and used for learning, and 15 cases were used as verification data.
  • a total of 100,000 iterations were performed, and various variables were tested to obtain parameter values optimized for cerebrovascular regionalization.
  • the weight (weight) and bias (bias) values were learned by themselves to construct an optimal neural network, and the following variables (hyperparameters) were tuned.
  • the learning rate is a variable that determines how much error of the result is reflected in learning. If the learning rate is high, the result is likely to vibrate without convergence. If the learning rate is low, the learning rate is slow and there is a possibility that convergence to the local minimum.
  • the cost function is a function that calculates the difference between the expected value and the actual value according to the input.
  • the developer decides which function to use among various cost functions so that the problem to be solved by artificial intelligence can be efficiently learned. Typical examples include mean square error and cross entropy error.
  • -Mini-batch size It takes a lot of time to calculate the cost function of all data, so some of the data are used to update the weights. At this time, if the size of the mini-batch is large, the learning speed can be increased, and if the size of the mini-batch is small, the weight can be updated more frequently, so the accuracy of the neural network may vary.
  • -Training repetition number If the number of training is too many, the actual accuracy of the test data may decrease even if the accuracy is increased during training due to overfitting.
  • Dropout omits part of the network. Randomly omitting neurons in some networks, reducing the likelihood of overfitting. There is a difference in neural network performance depending on the proportion of neurons that are omitted.
  • the GAN algorithm in the learning of the blood vessel feature image prediction model, and to use the U-net algorithm as a generator module in the GAN algorithm.
  • the GAN algorithm is used, and the U-net algorithm is used as a generator module in the GAN algorithm, first initial learning of U-net, and initial learning of the U-net.
  • the MR segmentation image output from U-net is a fake image, and to learn simultaneously with the inspector module.
  • the GAN algorithm was used to further improve the performance of U-net.
  • GAN is a pair of mathematical models composed of a generator and a discriminator.
  • the generator and the inspector oppose each other hostilely and are gradually improving each other's performance.
  • the creator tries to deceive the inspector by falsifying data like a banknote counterfeiter, and the inspector is a method of improving performance through efforts to discriminate the forged data from real data.
  • the generator module of the GAN model according to the present invention becomes a U-Net, and the inspector module is configured to estimate a probability value whether the received data is an output of U-Net or actual data.
  • the relationship between the two modules constituting the GAN algorithm is expressed by the following equation.
  • D(x) is trained so that it becomes 1, and the random noise probability distribution z is converted to the resultant G(z) of the inspector module. Enter the function D and learn so that the value D(G(z)) becomes 0.
  • the generator module attempts to increase the probability that the inspector module makes a mistake, while the inspector module attempts to reduce the performance of the generator module by identifying the counterfeit product generated by the generator module as false.
  • the creator's ability to forge data and the inspector's ability to discriminate data gradually improve with each other, thereby enhancing the creator's ability one step further.
  • the blue dotted line represents the probability distribution of the inspector
  • the black dotted line represents the actual data distribution
  • the green solid line represents the fake data distribution generated from the generator.
  • the blue dotted line which is the probability distribution of the inspector
  • the general GAN model trains two network models, the generator module and the inspector module at the same time, and modifies the weight and bias variables that minimize cross entropy by applying the inspector's gradient to the generator.
  • the GAN algorithm according to the present invention proceeds to learn by separating into two steps.
  • FIG. 9 is a schematic diagram of an embodiment of the GAN algorithm according to the present invention.
  • the U-net is initially trained and the output MR segmentation image is regarded as a fake image, that is, U-net is applied as a GAN generator module to proceed with learning.
  • the generator performs a function to find the location of cerebrovascular vessels by learning independently without receiving the examiner's gradient.
  • learning proceeds with the examiner at the same time, where the generator receives the examiner's gradient and modifies the weights and bias variables again.
  • additional performance enhancements are made to the generator module, which has already converged and cannot be expected to improve performance any more.
  • the inspector module receives the original MR image and the territorialized data as a set, and determines whether the received territorialized image is real data or a counterfeit output from the creator.
  • MRA image and regionized image are compressed by passing through multi-layer convolution and pooling layers, respectively. At this time, a zero-padding technique is applied to each convolution layer to preserve the original size of the image regardless of the kernel size. Therefore, the image received in the Convolutional-Relu-Pooling step is accurately compressed horizontally and vertically into 1/2 size and transmitted to the next layer.
  • the MRA image and the segmented image that passed through the inspector module are converted into a feature map compressed to 1/32 size, and the feature map of the compressed MRA image and the segmented feature map are combined and delivered to a fully connected layer. .
  • a total of four fully connected layers were used, and all of the activation functions were Relu functions. Through all these networks, it is determined whether it is a real video or a fake video output from the creator.
  • the GAN model according to the present invention is implemented using the following equation as described above.
  • the inspector module learns in the direction of widening the gap between D(Xct,Ygt) and D(Xct,S(ct)), and the generator module reduces the gap between Ygt and S(Xct) and finally D(Xct,S(ct)) is learned in the same direction as each other.
  • the GAN learning process checks the performance change every short learning section, While staying near the minimum of cross entropy, finely adjust according to the gradient of the above equation. Compared to initial learning through tests, only a very small number of variables are updated. It is possible to converge, and the change of parameters is not large in the transfer learning section, which is performed relatively short in the examiner module.
  • the GAN algorithm stores the weights and biases of the neural network with improved performance, and completes the development of a network that segments the cerebrovascular area when MRA data is input using this.

Abstract

The present invention relates to a blood vessel segmentation method. More specifically, the present invention relates to a method for segmenting a blood vessel region by processing a plurality of two-dimensional blood vessel tomography images by a deep learning method. A blood vessel region segmentation method according to the present invention is provided. The segmentation method according to the present invention comprises the steps of: receiving, as an input, a plurality of two-dimensional tomography images; preprocessing the plurality of two-dimensional tomography images received as the input to mark a region in which a blood vessel is located to thereby generate training image data; performing learning with the generated training image data to generate a blood vessel feature image prediction model; and inputting the plurality of two-dimensional tomography images into the generated blood vessel feature image prediction model to receive, as an output, a plurality of two-dimensional tomography images displaying blood vessel features.

Description

혈관 세그멘테이션 방법Blood vessel segmentation method
본 발명은 혈관 세그멘테이션 방법에 관한 것이다. 보다 상세하게는 복수의 2차원 혈관 단층 영상을 딥런닝 방법에 의해 처리하여 혈관 영역을 세그멘테이션 하는 방법에 관한 것이다.The present invention relates to a vascular segmentation method. More specifically, the present disclosure relates to a method of segmenting a blood vessel region by processing a plurality of 2D blood vessel tomography images by a deep running method.
의료 영상 처리 장치는 비침습적으로 인체의 내부 구조를 보여줄 수 있는 영상을 취득하는 장치이다. 의료 영상 처리 장치에서 출력되는 의료 영상을 분석하여 환자의 질병 진단에 이용할 수 있다.A medical image processing device is a device that acquires an image capable of non-invasively showing the internal structure of a human body. The medical image output from the medical image processing device may be analyzed and used to diagnose a patient's disease.
의료 영상을 촬영 및 처리하기 위한 장치로는 자기공명영상 (MRI, Magnetic Resonance Imaging), 컴퓨터 단층촬영(CT, Computed Tomography), 단일광자 단층촬영(SPECT, Single Photon Emission Computed Tomography), 양전자 단층촬영(PET, Positron Emission Tomography) 및 초음파(Ultrasound) 등이 있다.Devices for photographing and processing medical images include Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Single Photon Emission Computed Tomography (SPECT), and positron tomography. PET, Positron Emission Tomography) and Ultrasound.
뇌혈관 질환의 진단에는 CT와 MRI가 많이 이용되고 있는데, 뇌혈관 질환은 발생 원인이 다양하고 환자에 따라 치료방법과 예후가 달라질 수 있기 때문에 정확한 원인의 분석, 적절한 치료방법의 결정, 그리고 예후의 예측을 위한 다양한 영상화기법들이 개발되고 있다.CT and MRI are widely used for the diagnosis of cerebrovascular diseases. Since the causes of cerebrovascular diseases are diverse and treatment methods and prognosis may vary depending on the patient, the exact cause analysis, determination of appropriate treatment methods, and prognosis Various imaging techniques are being developed for prediction.
CT를 이용한 방법은 뇌경색의 범위를 정확하게 알지 못하고 방사선 노출과 조영제를 사용해야 하는 단점이 있고, MRI는 더 정확한 뇌경색의 범위를 알 수 있지만 영상을 얻는데 비교적 많은 시간이 걸려 급성 뇌경색과 같이 응급을 요하는 상황에서 제한적일 수 있으며 환자의 움직임에 매우 민감하고 CT 보다는 상대적으로 안전하지만 역시 조영제가 필요할 수 있다는 단점이 있다.The method using CT has the disadvantage of not knowing the extent of the cerebral infarction accurately and the use of radiation exposure and contrast media, and MRI can determine the extent of the cerebral infarction more accurately, but it takes a relatively long time to obtain an image and requires emergency such as acute cerebral infarction. It can be limited in the situation, is very sensitive to the patient's movements, and is relatively safer than CT, but it also has the disadvantage of requiring a contrast medium.
뇌경색 또는 뇌출혈이나 관상 동맥 협착과 같은 혈관의 병변을 진단하고 분석하기 위하여는 복수의 2차원 단층 이미지를 처리하여 혈관의 3차원 형상 모델을 생성하기 위한 세그멘테이션이 필요하다. 특히 정확하고, 신속한 진단을 위하여는 정확하고 신속하게 혈관 영역을 세그멘테이션하는 방법이 필요하다.In order to diagnose and analyze vascular lesions such as cerebral infarction or cerebral hemorrhage or coronary artery stenosis, segmentation to generate a three-dimensional shape model of a blood vessel by processing a plurality of two-dimensional tomographic images is required. In particular, for accurate and rapid diagnosis, a method of accurately and quickly segmenting a blood vessel region is required.
최근 딥런닝(DeepLearning) 또는 기계학습(Maching learning) 기법을 활용한 의료영상처리 기술이 개발되고 있다. 특히, X-ray, 초음파, CT(Computed Tomography), MRI(Magnetic Resonance Imaging), PET(Positron Emission Tomography) 등의 기기들로부터 획득된 의료 영상에 딥런닝 기법을 적용하여 질병을 진단하고자 하는 개발이 진행되고 있다. 즉, 딥런닝 기법을 이용하여 의료 영상에 나타난 조직이 정상인지 비정상인지, 종양의 경우 양성인지 음성인지 분류하는보조 진단시스템이 개발되어 있으며, 영상의학과 의사가 영상을 판독하는 수준까지 발전된 것으로 알려져 있다.Recently, a medical image processing technology using a deep running or machine learning technique has been developed. In particular, development to diagnose diseases by applying deep running techniques to medical images acquired from devices such as X-ray, ultrasound, CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PET (Positron Emission Tomography), etc. It is going on. That is, an auxiliary diagnostic system has been developed to classify whether the tissue shown in medical images is normal or abnormal, and in the case of tumors, whether it is positive or negative using deep running techniques, and it is known that it has been developed to the level in which radiology doctors can read images. .
이러한 병변의 유무를 자동으로 분류하기 위한 알고리즘으로 naive bayes, SVM(Support Vector Machine), ANN(Artificial Neural Network), HMM(Hidden Markov Model) 등의 알고리즘이 알려져 있다. 또한, 이러한 분류에 기계학습(machine learning) 알고리즘을 사용할 수 있으며, 기계학습 알고리즘은 크게 지도학습(Supervised Learning)과 비지도학습(Unsupervised Learning) 알고리즘으로 분류 된다.Algorithms such as naive bayes, SVM (Support Vector Machine), ANN (Artificial Neural Network), and HMM (Hidden Markov Model) are known as algorithms for automatically classifying the presence or absence of such lesions. In addition, machine learning algorithms can be used for this classification, and machine learning algorithms are largely classified into supervised learning and unsupervised learning algorithms.
딥런닝 또는 기계학습 알고리즘을 이용하여 의료 영상을 처리하여 정확하고 신속하게 혈관 영역을 세그멘테이션하는 기술이 요구되고 있다. 본 발명은 복수의 단층 의료 영상을 처리하여 혈관 영역을 세그멘테이션 하는 방법을 제공하는 것을 목적으로 한다.There is a need for a technology to accurately and quickly segment a blood vessel region by processing medical images using deep running or machine learning algorithms. An object of the present invention is to provide a method for segmenting a blood vessel region by processing a plurality of tomography medical images.
본 발명은 혈관 영역 세그멘테이션 방법이 제공된다. 본 발명에 따른 세그멘테이션 방법은, 복수의 2차원 단층 영상을 입력받는 단계와, 입력받은 복수의 2차원 단층 영상을 전처리하여 혈관이 위치하는 영역을 표시하여 학습 이미지 데이타를 생성하는 단계와, 생성된 학습 이미지 데이타로 학습하여 혈관 특징 이미지 예측 모델을 생성하는 단계와, 복수의 2차원 단층 이미지를 상기 생성된 혈관 특징 이미지 예측 모델에 입력하여 혈관 특징 표시 복수의 2차원 단층 이미지를 출력 받는 단계를 포함한다.The present invention provides a method for segmenting a blood vessel region. The segmentation method according to the present invention includes the steps of receiving a plurality of 2D tomography images, preprocessing the received 2D tomography images to display an area where a blood vessel is located to generate training image data, and Generating a blood vessel feature image prediction model by learning from the training image data, and inputting a plurality of two-dimensional tomographic images into the generated blood vessel feature image prediction model to output a plurality of two-dimensional tomographic images displaying blood vessel features. do.
상기 혈관 특징 이미지 예측모델을 학습하는 단계는 U-net 알고리즘을 사용하는 것이 바람직하다. It is preferable to use a U-net algorithm to learn the blood vessel feature image prediction model.
또한, 상기 혈관 특징 이미지 예측모델을 학습하는 단계는 GAN 알고리즘을 사용하고, GAN 알고리즘에 있어서 생성자 모듈로 U-net 알고리즘을 사용하는 것이 보다 바람직하다.In addition, it is more preferable to use the GAN algorithm in the learning of the blood vessel feature image prediction model, and to use the U-net algorithm as a generator module in the GAN algorithm.
또한, 상기 혈관 특징 이미지 예측모델을 학습하는 단계는 GAN 알고리즘을 사용하고, GAN 알고리즘에 있어서 생성자 모듈로 U-net 알고리즘을 사용하고, 먼저 U-net을 초동학습하고, U-net의 초동학습이 완료되면 U-net에서 출력된 MR segmentation 영상을 fake image로 간주하여, 검수자 모듈과 동시에 학습하는 것이 보다 바람직하다.In addition, in the step of learning the blood vessel feature image prediction model, the GAN algorithm is used, and the U-net algorithm is used as a generator module in the GAN algorithm, first initial learning of U-net, and initial learning of the U-net. Upon completion, it is more preferable to consider the MR segmentation image output from U-net as a fake image, and to learn simultaneously with the inspector module.
본 발명에 따르면, 심혈관 또는 뇌혈관 질환과 같은 혈관의 병변을 정확하고 신속하게 진단하고 분석할 수 있도록 복수의 2차원 단층 이미지를 처리하여 혈관 영역을 세그멘테이션 하는 방법이 제공된다.According to the present invention, there is provided a method of segmenting a blood vessel region by processing a plurality of two-dimensional tomographic images to accurately and quickly diagnose and analyze a lesion of a blood vessel such as cardiovascular or cerebrovascular disease.
도 1은 종래의 혈관 모델링 방법의 개략도1 is a schematic diagram of a conventional blood vessel modeling method
도 2는 (a) 원본 이미지, (b) 학습을 위한 이미지, (c) 원본 이미지 전처리결과, (d) 학습 이미지 전처리 결과를 나타내는 MRI 이미지2 is an MRI image showing (a) an original image, (b) an image for learning, (c) an original image preprocessing result, and (d) a training image preprocessing result.
도 3은 본 발명에 따른 U-net 학습 알고리즘의 개략도3 is a schematic diagram of a U-net learning algorithm according to the present invention
도 4는 예측 모델을 이용하여 예측된 뇌혈관 출력 이미지4 is a predicted cerebrovascular output image using a prediction model
도 5는 본 발명의 Windowing 기법을 이용한 뇌혈관 target 방법의 개략도5 is a schematic diagram of a cerebrovascular target method using the windowing technique of the present invention
도 6은 본 발명에 따른 U-net 아키텍처의 개략도6 is a schematic diagram of a U-net architecture according to the present invention
도 7은 본 발명에 따른 GAN 알고리즘의 개략도7 is a schematic diagram of a GAN algorithm according to the present invention
도 8은 본 발명에 따른 GAN 알고리즘 적용시의 확률분포의 변화도8 is a change diagram of probability distribution when applying the GAN algorithm according to the present invention
도 9는 본 발명에 따른 GAN 알고리즘의 일실시예의 개략도9 is a schematic diagram of an embodiment of a GAN algorithm according to the present invention
본 명세서에서 "영상"은 이산적인 영상 요소들(예를 들어, 2차원 영상에 있어서의 픽셀들 및 3차원 영상에 있어서의 복셀들)로 구성된 다차원(multi-dimensional) 데이터를 의미할 수 있다. 예를 들어, 영상은 MRI 또는 CT 촬영 장치 에 의해 획득된 대상체의 의료 영상 등을 포함할 수 있다.In the present specification, "image" may mean multi-dimensional data composed of discrete image elements (eg, pixels in a 2D image and voxels in a 3D image). For example, the image may include a medical image of an object acquired by an MRI or CT imaging apparatus.
본 명세서에서 "대상체(object)"는 사람 또는 동물, 또는 사람 또는 동물의 일부를 포함할 수 있다. 예를 들어, 대상체는 간, 심장, 자궁, 뇌, 유방, 복부 등의 장기, 또는 혈관을 포함할 수 있다. 또한, "대상체"는 팬텀(phantom)을 포함할 수도 있다. 팬텀은 생물의 밀도와 실효 원자 번호에 아주 근사한 부피를 갖는 물질을 의미하는 것으로, 신체와 유사한 성질을 갖는 구형(sphere)의 팬텀을 포함할 수 있다.In the present specification, the "object" may include a human or an animal, or a part of a human or animal. For example, the subject may include organs such as liver, heart, uterus, brain, breast, and abdomen, or blood vessels. Further, the "object" may include a phantom. The phantom refers to a material having a volume very close to the density and effective atomic number of an organism, and may include a sphere-shaped phantom having properties similar to the body.
본 명세서에서 "사용자"는 의료 전문가로서 의사, 간호사, 임상 병리사, 의료 영상 전문가 등이 될 수 있으며, 의료 장치를 수리하는 기술자가 될 수 있으나, 이에 한정되지 않는다. CT 영상은 심혈관, 뇌혈관 영상일 수 있으나, 이에 한정되지 않고, 혈관을 포함하는 복수의 단층 촬영 영상이면 어느 것이나 가능하다. 본 발명의 상세한 설명에서 실시예로 뇌 MRA 영상을 이용하였으나, 예시적인 것으로 이해되어야 한다.In the present specification, the "user" may be a medical expert, such as a doctor, a nurse, a clinical pathologist, a medical imaging expert, and the like, and may be a technician who repairs a medical device, but is not limited thereto. The CT image may be a cardiovascular or cerebrovascular image, but is not limited thereto, and any tomography image including a blood vessel may be used. Although the brain MRA image was used as an example in the detailed description of the present invention, it should be understood as an exemplary.
도 1에는 종래의 뇌혈관 3차원 모델링 방법이 도시되어 있다. 먼저, 상용 medical image viewer MRA data(DICOM 파일)를 입력받아 2~3 백장의 2차원 영상을 axial view로 출력한다. 다음으로, 출력된 axial view 영상의 intensity 임계값을 조절하여 뇌혈관과, 뇌혈관 intensity와 비슷한 조직들을 일차적으로 분할한다. 다음으로, 분할된 뇌혈관 형상에서 매뉴얼 작업에 따라 협착(stenosis) 구현, 끊어진 혈관 연결, 혈관 이외의 조직들 제거 등을 수행한다. 이 경우에 작업자에게는 segmentation know-how 및 해부학적 지식이 요구된다. 다음으로, 메시를 생성하여 컴퓨터 시뮬레이션을 위해 격자를 완성한다.1 shows a conventional method for modeling cerebrovascular 3D. First, a commercial medical image viewer receives MRA data (DICOM file) and outputs two to three hundred two-dimensional images in an axial view. Next, by adjusting the intensity threshold of the output axial view image, cerebrovascular and tissues similar to cerebrovascular intensity are primarily divided. Next, stenosis is implemented, disconnected blood vessels are connected, and tissues other than blood vessels are removed according to manual work in the divided cerebrovascular shape. In this case, the worker needs segmentation know-how and anatomical knowledge. Next, the mesh is created to complete the grid for computer simulation.
본 발명에 따른 혈관의 혈관 영역의 세그멘테이션 방법은 복수의 2차원 단층 영상을 딥런링 기법을 이용하여 세그멘테이션하는 방법이다.A method of segmenting a blood vessel region of a blood vessel according to the present invention is a method of segmenting a plurality of 2D tomographic images using a deep running technique.
도 2에는 본 발명에 따른 세그멘테이션 방법에 따라 학습을 위한 이미지가 도시되어 있다. 도 2(a)는 원본 이미지, 도 2(b)는 학습을 위해 혈관 영역을 표시한 이미지(Ground Truth), 도 2(c)는 원본 이미지를 전처리한 이미지, 도 2(d)는 학습 이미지를 전처리한 MRI 이미지이다.2 shows an image for learning according to the segmentation method according to the present invention. Fig. 2(a) is an original image, Fig. 2(b) is an image showing a blood vessel area for learning (Ground Truth), Fig. 2(c) is an image preprocessed of the original image, and Fig. 2(d) is a training image This is the pre-processed MRI image.
도 4에는 본 발명에 따른 일실시예의 인공지능 시스템을 통해 예측한 MR 영상에서 뇌혈관 영역을 자동 추출한 결과로, 초록색 부분이 뇌혈관 영역을 나타낸다.4 shows a result of automatically extracting a cerebrovascular region from an MR image predicted by an artificial intelligence system according to an embodiment of the present invention, and the green part represents the cerebrovascular region.
이하에서는 본 발명에 따른 세그멘테이션 방법을 상세히 설명한다.Hereinafter, the segmentation method according to the present invention will be described in detail.
본 발명에 따른 세그멘테이션 방법은, 복수의 2차원 단층 영상을 입력받는 단계와, 입력받은 복수의 2차원 단층 영상을 전처리하여 혈관이 위치하는 영역을 표시하여 학습 이미지 데이타를 생성하는 단계와, 생성된 학습 이미지 데이타로 학습하여 혈관 특징 이미지 예측 모델을 생성하는 단계와, 복수의 2차원 단층 이미지를 생성된 혈관 특징 이미지 예측 모델에 입력하여 혈관 특징 표시 복수의 2차원 단층 이미지를 출력 받는 단계를 포함한다.The segmentation method according to the present invention includes the steps of receiving a plurality of 2D tomography images, preprocessing the received 2D tomography images to display an area where a blood vessel is located to generate training image data, and Generating a blood vessel feature image prediction model by learning from the training image data, and inputting a plurality of two-dimensional tomographic images into the generated blood vessel feature image prediction model to output a plurality of two-dimensional tomographic images displaying blood vessel features. .
먼저, 혈관의 영역이 표시된 2차원 단층 영상으로 기계학습을 하여 혈관 영역이 표시된 2차원 단층 영상을 얻을 수 있는 모델을 학습한다. 모델 학습에는 FCN(Fully Convolutional Network) 알고리즘이 이용된다. FCN 모델은 convolutional 하단 pooling layer의 값들을 upsampling해 적절히 mix하는 방법을 사용해 출력을 class 값이 아닌 pixel heat map이 나오도록 하는 방법을 사용한다. FCN 모델 기반으로 입력(raw CT image)과 결과(임상 검증 된 뇌혈관 분할 image)로 이루어지는 쌍의 데이터를 이용해 학습시켜서 전역 최적함수에 근접하는 알고리즘을 구현한다.First, a model capable of obtaining a 2D tomography image showing a blood vessel region is trained by performing machine learning using a 2D tomography image showing a blood vessel region. The FCN (Fully Convolutional Network) algorithm is used for model training. The FCN model uses a method of properly mixing by upsampling the values of the convolutional lower pooling layer so that the output is not a class value but a pixel heat map. Based on the FCN model, an algorithm that approaches the global optimal function is implemented by learning using pairs of data consisting of an input (raw CT image) and a result (clinically verified cerebrovascular segmentation image).
상기 혈관 특징 이미지 예측모델을 학습하는 단계는 U-net 알고리즘을 사용하는 것이 바람직하다.It is preferable to use a U-net algorithm to learn the blood vessel feature image prediction model.
<U-net 알고리즘><U-net algorithm>
기계학습 알고리즘으로 U-net 알고리즘을 사용할 수도 있다. U-net 알고리즘은 FCN을 기반으로 개발된 알고리즘으로, 적은 데이터를 가지고도 더욱 정확한 segmentation 결과를 얻을 수 있는 특징이 있다. U-net은 도 3에 도시된 것과 같이, 모양이 U자 형태를 띄우기 때문에 붙여진 이름으로, network의 중심을 기준으로 왼쪽을 contracting path, 오른쪽을 expansive path 라고 한다. 도 3에서 파란색 박스는 multi channel feature map을 의미하고 각각의 화살표는 색 마다 서로 다른 operation을 의미한다. 붉은색 화살표는 max pooling, 노란색 화살표는 up-convolution, 녹색은 copy and crop으로 skip connection의 개념이라 할 수 있다.U-net algorithm can also be used as a machine learning algorithm. The U-net algorithm is an algorithm developed based on FCN, and has the characteristic of obtaining more accurate segmentation results even with little data. As shown in FIG. 3, U-net is a name given because it has a U-shaped shape, and the left is called a contracting path and the right is called an expansive path based on the center of the network. In FIG. 3, a blue box indicates a multi-channel feature map, and each arrow indicates a different operation for each color. The red arrow is max pooling, the yellow arrow is up-convolution, and the green is copy and crop, which is a concept of skip connection.
skip connection을 사용하는 이유는 딥런닝 특성상 층이 깊어질수록 local feature의 정보는 잃고, global feature의 정보가 우세해지는 데 결과적으로 MRA 영상으로부터 뇌혈관의 위치는 잘 찾아내지만, 혈관의 면적을 세밀하고 정확하게 추출하지 못할 가능성이 커지기 때문이다. U-net의 구조에서 contracting path는 영상의 context를 포착할 수 있도록 도와주며, expansive path는 feature map을 up-sampling하고 이를 contracting path에서 포착한 feature map의 context와 결합하여 더욱 정확한 localization을 수행한다. 본 발명에 있어서 이러한 특징이 U-net의 주요한 idea이며, 기존 FCN 알고리즘과 다른 중요한 점은 up-sampling 과정에서 feature channel 수가 더 많다는 것이다.The reason for using skip connection is that the deeper the layer is, the more information on the local feature is lost and the information on the global feature becomes dominant due to the nature of deep running.As a result, the location of the cerebrovascular vessels from the MRA image is well located, but the area of the blood vessels is detailed. This is because the possibility of not being able to extract accurately increases. In the structure of U-net, the contracting path helps to capture the context of the image, and the expansive path up-sampling the feature map and combining it with the context of the feature map captured in the contracting path performs more accurate localization. In the present invention, this characteristic is the main idea of U-net, and an important point different from the existing FCN algorithm is that the number of feature channels is larger in the up-sampling process.
도 4는 U-net 알고리즘을 적용하여 생성된 뇌혈관 영역을 나타내는 하나의 이미지이다. 뇌혈관은 머리의 상부에서부터 하부로 연결되는 3차원 구조물이기 때문에 낱장의 MR 영상에서만 뇌혈관 위치를 판단하여 영역화하기보다, 영역화하고자 하는 해당 영상의 전후를 모두 고려하여 뇌혈관 분포에 대한 정보를 학습에 적용하였다. 학습에 사용되는 뇌혈관 1 case에 포함된 150여장의 MR 영상을 머리의 상부에서 하부로 이동하는 단면을 보여주는 영상의 모음이라 가정한다. 따라서 낱장의 MR 영상이 아니라 여러 장의 MR 영상을 묶어 context 정보를 개발 네트워크에 입력시켜 반복되는 구조 없이도 데이터를 학습하도록 하는 윈도윙(windowing) 기법을 사용하였다. 표지 대상인 단일 MR 영상과 함께 해당 영상의 +Z축 방향 영상 k장과 -Z축 방향 영상 k장을 함께 쌓아 스택(stack)을 구성하였다. MR 영상 X축, Y축 방향 크기를 각각 x, y로 정의할 경우 이 스택은(x, y, 2k+1)차원의 텐서로 구성된다. 따라서 U-net 알고리즘에는 단일 MR 영상이 아니라 윈도우 스택이 입력되며, 신경망 입력부의 채널 크기를 2k+1로 가지게 된다. 구체적으로 뇌혈관은 단절되는 구역이 없이 상부에서 하부로 연결되는 구조체로, 윈도우를 구성하는 연속된 영상을 통해 비교할 경우 반드시 겹쳐지는 구간이 발생하게 된다. 이 구간의 분포를 중첩할 경우 도 5에 나타난 분포도(stacked-distribution)와 같이 영역화 대상인 뇌혈관 영역만이 두드러지게 나타난다.4 is an image showing a cerebrovascular area generated by applying the U-net algorithm. Since cerebrovascular blood vessels are a three-dimensional structure that connects from the top to the bottom of the head, rather than determining the location of cerebrovascular blood vessels in a single MR image and making them regions, information on the distribution of cerebrovascular vessels by considering all the front and rear of the image to be region. Was applied to learning. It is assumed that 150 MR images included in one case of cerebrovascular blood vessels used for learning are a collection of images showing a cross section moving from the top to the bottom of the head. Therefore, instead of a single MR image, a windowing technique was used in which multiple MR images were bundled and context information was input to the development network to learn data without a repetitive structure. A stack was constructed by stacking a single MR image as a target, and k images in the +Z-axis direction and k-images in the -Z-axis direction of the image. When the size of the MR image in the X-axis and Y-axis directions is defined as x and y, this stack is composed of (x, y, 2k+1) dimensional tensors. Therefore, the window stack is input to the U-net algorithm, not a single MR image, and the channel size of the neural network input unit is 2k+1. Specifically, the cerebrovascular vessel is a structure that is connected from the top to the bottom without a disconnected area, and when comparing through continuous images constituting a window, overlapping sections are necessarily generated. When the distributions of these sections are overlapped, only the cerebrovascular area, which is the target of regionalization, appears prominently as shown in the stacked-distribution shown in FIG. 5.
본 발명에 따른 U-net의 contracting path는 일반적인 convolutional network를 따르며, down-sampling을 위해 stride 2, 2x2 max pooling연산과 Relu 함수를 포함해 두 번의 반복된 3x3 convolution 연산을 수행한다. 정리하면, 3x3convolution - Relu - 2x2max pooling - 3x3convolution - Relu - 2x2max pooling 순으로 연산되며, down-sampling 과정에서 feature map channel의 수는 두 배로 증가한다. 이를 expansive path에서 생성된 feature map과 contracting path에서 생성된 feature map과 concatenation 시킨다.The contracting path of the U-net according to the present invention follows a general convolutional network, and performs two repeated 3x3 convolution operations including stride 2, 2x2 max pooling operation and Relu function for down-sampling. In summary, it is calculated in the order of 3x3convolution-Relu-2x2max pooling-3x3convolution-Relu-2x2max pooling, and the number of feature map channels doubles during the down-sampling process. This is concatenated with the feature map created in the expansive path and the feature map created in the contracting path.
본 발명에 따른 U-net 모델은 gradient descent 알고리즘 중에서 ADAM(Adaptive Moment Estimation)을 사용하여 cross entropy를 최소화하는 변수를 찾기 위한 학습을 진행한다. cross entropy란 동일 사건을 기술하는 서로 다른 두 개의 확률분포를 표현하는 값으로, 인공지능 학습 과정에서 모델의 확률분포가 실제 label의 확률분포와 얼마나 근사한지를 보여주는 척도이다.The U-net model according to the present invention uses ADAM (Adaptive Moment Estimation) among gradient descent algorithms to learn to find a variable that minimizes cross entropy. Cross entropy is a value that expresses two different probability distributions describing the same event, and is a measure of how close the probability distribution of the model is to the probability distribution of the actual label in the artificial intelligence learning process.
본 발명에 따라서 개발된 시스템은, 일실시예로, 인공지능 시스템의 학습을 진행하기 위하여 총 70 case 데이터를 가공하였다. 이 중 50 case MR 영상을 360 case로 증폭하여 학습에 사용하고, 15 case를 검증 데이터로 사용하였다. 또한, U-net을 학습하기 위하여 총 100,000번의 iteration을 진행하였으며, 여러 가지 변수들을 실험하여 뇌혈관 영역화에 최적화된 parameter 값을 확보하였다. 딥런닝에 있어서, weight(가중치) 및 bias(편향) 값은 스스로 학습하여 최적의 신경망을 구성하고, 다음의 변수(hyperparameter)를 튜닝하였다.The system developed according to the present invention, in one embodiment, processed a total of 70 case data to proceed with learning of the artificial intelligence system. Of these, 50 case MR images were amplified into 360 cases and used for learning, and 15 cases were used as verification data. In addition, in order to learn U-net, a total of 100,000 iterations were performed, and various variables were tested to obtain parameter values optimized for cerebrovascular regionalization. In deep running, the weight (weight) and bias (bias) values were learned by themselves to construct an optimal neural network, and the following variables (hyperparameters) were tuned.
- Learning rate : Learning rate는 결과의 오차를 학습에 얼마나 반영할지를 결정하는 변수임. 학습률이 높으면 결과가 수렴되지 않고 진동할 가능성이 있으며, 학습률이 낮으면 학습속도가 느려지며 local minimum에 수렴하게 될 가능성이 있다. -Learning rate: The learning rate is a variable that determines how much error of the result is reflected in learning. If the learning rate is high, the result is likely to vibrate without convergence. If the learning rate is low, the learning rate is slow and there is a possibility that convergence to the local minimum.
- Cost function : Cost function은 입력에 따른 기대 값과 실제 값의 차이를 계산하는 함수임. 인공지능으로 해결하고자 하는 문제를 효율적으로 학습할 수 있게 여러 가지 cost function 중 사용할 함수를 개발자가 결정함. 대표적으로는 평균 제곱 오차, 교차 엔트로피 오차 등이 있음.-Cost function: The cost function is a function that calculates the difference between the expected value and the actual value according to the input. The developer decides which function to use among various cost functions so that the problem to be solved by artificial intelligence can be efficiently learned. Typical examples include mean square error and cross entropy error.
- Mini-batch 크기 : 모든 데이터의 cost function을 계산하려면 많은 시간이 걸리기 때문에 데이터 중 일부를 사용하여 가중치를 갱신함. 이때 mini-batch의 크기가 크면 학습 속도를 높일 수 있고, 크기가 작으면 더 자주 가중치 갱신을 할 수 있어 신경망 정확도가 달라질 수 있음.-Mini-batch size: It takes a lot of time to calculate the cost function of all data, so some of the data are used to update the weights. At this time, if the size of the mini-batch is large, the learning speed can be increased, and if the size of the mini-batch is small, the weight can be updated more frequently, so the accuracy of the neural network may vary.
- Training 반복 횟수 : Training 횟수가 너무 많으면 overfitting되어 학습 시 정확도를 높아져도 test 데이터에 대한 실제 정확도는 떨어질 수 있음.-Training repetition number: If the number of training is too many, the actual accuracy of the test data may decrease even if the accuracy is increased during training due to overfitting.
- Hidden unint 개수 : Hidden layer의 unit의 개수가 많으면 네트워크로 표현력이 넓어져 더 좋은 성능을 낼 수도 있지만, overfitting이 될 수 있는 문제점이 있으며, 반대로 너무 적으면 underfitting이 될 수 있음.-Number of hidden unints: If the number of units of the hidden layer is large, the expressive power of the network becomes wider, which may result in better performance, but there is a problem that may result in overfitting. Conversely, if it is too small, it may be underfitting.
- Dropout : Dropout은 네트워크의 일부를 생략하는 것임. 무작위로 일부 네트워크의 뉴런을 생략하여 overfitting의 가능성을 줄여줌. 생략하는 뉴런의 비율에 따라 신경망 성능의 차이가 발생함.-Dropout: Dropout omits part of the network. Randomly omitting neurons in some networks, reducing the likelihood of overfitting. There is a difference in neural network performance depending on the proportion of neurons that are omitted.
이 외에도, regularization parameter, 가중치 초기화 방법 등을 시행착오를 통하여 설정한다.In addition to this, regularization parameters and weight initialization methods are set through trial and error.
또한, 상기 혈관 특징 이미지 예측모델을 학습하는 단계는 GAN 알고리즘을 사용하고, GAN 알고리즘에 있어서 생성자 모듈로 U-net 알고리즘을 사용하는 것이 보다 바람직하다. 또한, 상기 혈관 특징 이미지 예측모델을 학습하는 단계는 GAN 알고리즘을 사용하고, GAN 알고리즘에 있어서 생성자 모듈로 U-net 알고리즘을 사용하고, 먼저 U-net을 초동학습하고, U-net의 초동학습이 완료되면 U-net에서 출력된 MR segmentation 영상을 fake image로 간주하여, 검수자 모듈과 동시에 학습하는 것이 보다 바람직하다.In addition, it is more preferable to use the GAN algorithm in the learning of the blood vessel feature image prediction model, and to use the U-net algorithm as a generator module in the GAN algorithm. In addition, in the step of learning the blood vessel feature image prediction model, the GAN algorithm is used, and the U-net algorithm is used as a generator module in the GAN algorithm, first initial learning of U-net, and initial learning of the U-net. Upon completion, it is more preferable to consider the MR segmentation image output from U-net as a fake image, and to learn simultaneously with the inspector module.
<GAN 알고리즘><GAN algorithm>
U-net의 성능을 한 단계 더 향상하기 위해서 GAN 알고리즘을 사용하였다.The GAN algorithm was used to further improve the performance of U-net.
GAN은 생성자(generator)와 검수자(discriminator)로 구성되는 한 쌍의 수학적 모델로 생성자와 검수자는 서로 적대적으로 대립하며 서로의 성능을 점차 개선해나가는 방법이다. 생성자는 일종의 지폐 위조범과 같이 데이터를 위조해 검수자를 속이려 하고, 검수자는 위조된 데이터를 실제 데이터와 감별하기 위한 노력을 통해 성능이 향상되는 방법이다.GAN is a pair of mathematical models composed of a generator and a discriminator. The generator and the inspector oppose each other hostilely and are gradually improving each other's performance. The creator tries to deceive the inspector by falsifying data like a banknote counterfeiter, and the inspector is a method of improving performance through efforts to discriminate the forged data from real data.
본 발명에 따른 GAN 모델의 생성자 모듈은 U-Net이 되며, 검수자 모듈은 입력받은 데이터가 U-Net의 출력물인지 실제 데이터인지 확률 값을 추정하도록 구성한다. GAN 알고리즘을 구성하는 두 개의 모듈 사이의 관계는 다음의 수식으로 표현된다. The generator module of the GAN model according to the present invention becomes a U-Net, and the inspector module is configured to estimate a probability value whether the received data is an output of U-Net or actual data. The relationship between the two modules constituting the GAN algorithm is expressed by the following equation.
Figure PCTKR2020008319-appb-I000001
Figure PCTKR2020008319-appb-I000001
검수자 모듈의 함수 D에 실제 데이터 x 를 입력한 D(x)는 1이 되도록 학습을 진행하고, 임의의 노이즈 확률분포인 z 를 생성자 함수 G를 통해 출력된 결과물인 G(z)를 검수자 모듈의 함수 D에 입력하여 값이D(G(z))는 0이 되도록 학습을 진행한다. 이 과정에서 생성자 모듈은 검수자 모듈이 실수할 확률을 증가시키려 하고, 반대로 검수자 모듈은 생성자 모듈이 생성한 모조품을 거짓으로 잘 판별하여 생성자 모듈의 성능을 감소시키려 한다. 두 모듈의 경쟁이 계속되면 생성자의 데이터 위조 능력과 검수자의 데이터 판별 능력이 서로 점차 향상되고, 이로 인하여 생성자의 능력이 한 단계 더 향상하게 된다.After inputting the actual data x into the function D of the inspector module, D(x) is trained so that it becomes 1, and the random noise probability distribution z is converted to the resultant G(z) of the inspector module. Enter the function D and learn so that the value D(G(z)) becomes 0. In this process, the generator module attempts to increase the probability that the inspector module makes a mistake, while the inspector module attempts to reduce the performance of the generator module by identifying the counterfeit product generated by the generator module as false. As the competition between the two modules continues, the creator's ability to forge data and the inspector's ability to discriminate data gradually improve with each other, thereby enhancing the creator's ability one step further.
도 8에서 파란색 점선은 검수자의 확률분포를 나타내며, 검정색 점선이 실제 데이터 분포, 녹색 실선은 생성자로부터 생성한 가짜 데이터 분포를 나타낸다. 도 8에 나타난 것과 같이 학습을 진행할수록 생성자 성능이 점점 좋아져 녹색 선이 검은색 점선과 구분할 수 없는 수준이 되면 검수자 확률분포인 파란색 점선이 수평이 되어 실제와 가짜 데이터를 구분할 수 없게 된다. 이 지점에서 모델의 학습을 종료하고 생성자만을 활용하여 실제 데이터와 유사한 위조 데이터를 생성하게 된다.In FIG. 8, the blue dotted line represents the probability distribution of the inspector, the black dotted line represents the actual data distribution, and the green solid line represents the fake data distribution generated from the generator. As shown in FIG. 8, as the learning progresses, the generator performance gradually improves, and when the green line becomes indistinguishable from the black dotted line, the blue dotted line, which is the probability distribution of the inspector, becomes horizontal, so that real and fake data cannot be distinguished. At this point, the training of the model is terminated, and counterfeit data similar to the real data is generated using only the generator.
일반적인 GAN 모델은 처음부터 두 네트워크 모델인 생성자 모듈과 검수자 모듈을 동시에 학습시키며, 검수자의 gradient를 생성자에 적용해 cross entropy를 최소로 하는 weight 및 bias 변수를 수정해 나간다. 그러나 본 발명에 따른 GAN 알고리즘은 두 단계로 분리하여 학습을 진행한다.The general GAN model trains two network models, the generator module and the inspector module at the same time, and modifies the weight and bias variables that minimize cross entropy by applying the inspector's gradient to the generator. However, the GAN algorithm according to the present invention proceeds to learn by separating into two steps.
도 9에는 본 발명에 따른 GAN 알고리즘의 일실시예의 개략도가 도시되어 있다. 먼저, U-net을 초동학습 하여 출력된 MR segmentation 영상을 fake image로 간주하여, 즉 U-net을 GAN의 생성자 모듈로 적용하여 학습을 진행한다. 초동학습 단계에서는 생성자는 검수자의 gradient를 입력받지 않고 독립적으로 학습하여 뇌혈관의 위치를 찾기 위한 기능을 수행한다. 초동학습이 종료된 이후에는 검수자와 동시에 학습을 진행하는데, 여기서 생성자는 검수자의 gradient를 입력받아 weight와 bias 변수를 다시 수정한다. 이 과정에서 이미 수렴하여 더 이상의 성능 향상을 기대할 수 없던 생성자 모듈에 추가적인 성능 향상이 이루어지게 된다. 검수자 모듈에서는 MR 원본 영상과 영역화가 완료된 데이터를 한 세트로 입력받아, 입력받은 영역화된 영상이 실제 데이터인지 생성자로부터 출력된 모조품인지를 판별하게 된다. MRA 영상과 영역화된 영상을 각각 다층의 convolution layer와 pooling layer를 통과시켜 압축한다. 이때, 각각의 convolution layer에는 zero-padding 기법을 적용해 커널 사이즈와 관계없이 영상의 원본 크기를 보존하도록 한다. 따라서 Convolutional-Relu-Pooling 단계에서 입력받은 이미지를 정확히 가로, 세로를 1/2크기로 압축하여 다음 layer에 전달하게 된다. 검수자 모듈을 거친 MRA 영상과 영역화 영상은 1/32크기로 압축된 피쳐맵으로 변환되고, 압축된 MRA 영상의 피처맵과 영역화가 진행된 피처맵이 합쳐져 완전 연결층(fully connected layer)로 전달된다. 일실시예에 있어서, 완전 연결층은 총 4개로 구성하였으며 활성 함수(activation function)는 모두 Relu 함수를 사용하였다. 이 모든 네트워크를 거쳐 real 영상인지 생성자에서 출력된 fake 영상인지를 판단하게 된다.9 is a schematic diagram of an embodiment of the GAN algorithm according to the present invention. First, the U-net is initially trained and the output MR segmentation image is regarded as a fake image, that is, U-net is applied as a GAN generator module to proceed with learning. In the initial learning stage, the generator performs a function to find the location of cerebrovascular vessels by learning independently without receiving the examiner's gradient. After the initial learning is finished, learning proceeds with the examiner at the same time, where the generator receives the examiner's gradient and modifies the weights and bias variables again. In this process, additional performance enhancements are made to the generator module, which has already converged and cannot be expected to improve performance any more. The inspector module receives the original MR image and the territorialized data as a set, and determines whether the received territorialized image is real data or a counterfeit output from the creator. MRA image and regionized image are compressed by passing through multi-layer convolution and pooling layers, respectively. At this time, a zero-padding technique is applied to each convolution layer to preserve the original size of the image regardless of the kernel size. Therefore, the image received in the Convolutional-Relu-Pooling step is accurately compressed horizontally and vertically into 1/2 size and transmitted to the next layer. The MRA image and the segmented image that passed through the inspector module are converted into a feature map compressed to 1/32 size, and the feature map of the compressed MRA image and the segmented feature map are combined and delivered to a fully connected layer. . In one embodiment, a total of four fully connected layers were used, and all of the activation functions were Relu functions. Through all these networks, it is determined whether it is a real video or a fake video output from the creator.
본 발명에 따른 GAN 모델은 상기 설명된 내용과 같이 다음의 수식을 이용하여 구현한다.The GAN model according to the present invention is implemented using the following equation as described above.
Figure PCTKR2020008319-appb-I000002
Figure PCTKR2020008319-appb-I000002
검수자 모듈은 D(Xct,Ygt)와 D(Xct,S(ct))의 격차를 벌리는 방향으로 학습되며, 생성자 모듈은 Ygt와 S(Xct)의 격차가 줄어들어 최종적으로 D(Xct,Ygt)와 D(Xct,S(ct))가 서로 동일해지는 방향으로 학습된다. 위 식의
Figure PCTKR2020008319-appb-I000003
는 U-Net 초동학습 시 cross entropy 로만 최적화 되었으므로 도함수 내에서 극소점이 아닐 가능성이 크다. 따라서 초동학습 이후 GAN 학습 과정은 짧은 학습 구간마다 성능 변화를 확인해가며,
Figure PCTKR2020008319-appb-I000004
가 cross entropy의 극소 부근에 머무르면서 위의 식의 gradient에 따라 미세조정 한다. 테스트를 통해 초동학습에 비해 굉장히 적은 수의 변수 업데이트만으로
Figure PCTKR2020008319-appb-I000005
를 수렴하는 것이 가능하며, 검수자 모듈은 상대적으로 짧게 수행되는 전이학습 구간에서는 파라미터의 변화가 크지 않게 된다.
The inspector module learns in the direction of widening the gap between D(Xct,Ygt) and D(Xct,S(ct)), and the generator module reduces the gap between Ygt and S(Xct) and finally D(Xct,S(ct)) is learned in the same direction as each other. Above
Figure PCTKR2020008319-appb-I000003
Is optimized only by cross entropy during U-Net initial learning, so it is highly likely that it is not the minimum point within the derivative. Therefore, after initial learning, the GAN learning process checks the performance change every short learning section,
Figure PCTKR2020008319-appb-I000004
While staying near the minimum of cross entropy, finely adjust according to the gradient of the above equation. Compared to initial learning through tests, only a very small number of variables are updated.
Figure PCTKR2020008319-appb-I000005
It is possible to converge, and the change of parameters is not large in the transfer learning section, which is performed relatively short in the examiner module.
결과적으로, GAN 알고리즘을 통해 성능이 향상된 신경망의 weight 및 bias를 저장하고, 이를 이용해 MRA 데이터를 입력하였을 때 뇌혈관 영역을 segmentation하는 네트워크 개발을 완료하게 된다.As a result, the GAN algorithm stores the weights and biases of the neural network with improved performance, and completes the development of a network that segments the cerebrovascular area when MRA data is input using this.

Claims (4)

  1. 컴퓨터 시스템을 이용하여 혈관 영역을 세그멘테이션하는 방법으로,A method of segmenting a blood vessel region using a computer system,
    복수의 2차원 단층 영상을 입력받는 단계와,Receiving a plurality of 2D tomography images; and
    입력받은 복수의 2차원 단층 영상을 전처리하여 혈관이 위치하는 영역을 표시하여 학습 이미지 데이타를 생성하는 단계와,Generating training image data by pre-processing a plurality of input 2D tomography images to display an area where blood vessels are located;
    생성된 학습 이미지 데이타로 학습하여 혈관 특징 이미지 예측 모델을 생성하는 단계와,Learning from the generated training image data to generate a blood vessel feature image prediction model,
    복수의 2차원 단층 이미지를 상기 생성된 혈관 특징 이미지 예측 모델에 입력하여 혈관 특징 표시 복수의 2차원 단층 이미지를 출력 받는 단계를 포함하는 혈관 영역 세그멘테이션 방법.And receiving a plurality of two-dimensional tomographic images displaying blood vessel features by inputting a plurality of two-dimensional tomographic images into the generated blood vessel feature image prediction model.
  2. 제1항에 있어서,The method of claim 1,
    상기 혈관 특징 이미지 예측모델을 학습하는 단계는 U-net 알고리즘을 사용하는 혈관 영역 세그멘테이션 방법.The learning of the blood vessel feature image prediction model is a blood vessel region segmentation method using a U-net algorithm.
  3. 제1항에 있어서,The method of claim 1,
    상기 혈관 특징 이미지 예측모델을 학습하는 단계는 GAN 알고리즘을 사용하고, GAN 알고리즘에 있어서 생성자 모듈로 U-net 알고리즘을 사용하는 혈관 영역 세그멘테이션 방법.In the step of learning the blood vessel feature image prediction model, a GAN algorithm is used, and a U-net algorithm is used as a generator module in the GAN algorithm.
  4. 제1항에 있어서,The method of claim 1,
    상기 혈관 특징 이미지 예측모델을 학습하는 단계는 GAN 알고리즘을 사용하고, GAN 알고리즘에 있어서 생성자 모듈로 U-net 알고리즘을 사용하고,In the learning of the blood vessel characteristic image prediction model, a GAN algorithm is used, and a U-net algorithm is used as a generator module in the GAN algorithm,
    먼저 U-net을 초동학습하고, U-net의 초동학습이 완료되면 U-net에서 출력된 MR segmentation 영상을 fake image로 간주하여, 검수자 모듈과 동시에 학습하는 혈관 영역 세그멘테이션 방법.First, the U-net is initially learned, and when the U-net is completed, the MR segmentation image output from the U-net is regarded as a fake image, and the blood vessel region segmentation method is learned simultaneously with the inspector module.
PCT/KR2020/008319 2019-06-27 2020-06-26 Blood vessel segmentation method WO2020263002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0077024 2019-06-27
KR1020190077024A KR102267219B1 (en) 2019-06-27 2019-06-27 Method for Blood Vessel Segmentation

Publications (1)

Publication Number Publication Date
WO2020263002A1 true WO2020263002A1 (en) 2020-12-30

Family

ID=74059792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008319 WO2020263002A1 (en) 2019-06-27 2020-06-26 Blood vessel segmentation method

Country Status (2)

Country Link
KR (1) KR102267219B1 (en)
WO (1) WO2020263002A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102526434B1 (en) * 2021-07-13 2023-04-26 경희대학교 산학협력단 Apparatus for diagnosing lesion and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016293A1 (en) * 2008-08-08 2010-02-11 コニカミノルタエムジー株式会社 Medical image display device, and medical image display method and program
KR20160047921A (en) * 2014-10-23 2016-05-03 삼성전자주식회사 Ultrasound imaging apparatus and control method for the same
KR20180099119A (en) * 2017-02-28 2018-09-05 연세대학교 산학협력단 Ct image database-based cardiac image segmentation method and an apparatus thereof
KR20190056880A (en) * 2017-11-17 2019-05-27 안영샘 Apparatus for converting diagnostic images, method thereof and computer recordable medium storing program to perform the method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016293A1 (en) * 2008-08-08 2010-02-11 コニカミノルタエムジー株式会社 Medical image display device, and medical image display method and program
KR20160047921A (en) * 2014-10-23 2016-05-03 삼성전자주식회사 Ultrasound imaging apparatus and control method for the same
KR20180099119A (en) * 2017-02-28 2018-09-05 연세대학교 산학협력단 Ct image database-based cardiac image segmentation method and an apparatus thereof
KR20190056880A (en) * 2017-11-17 2019-05-27 안영샘 Apparatus for converting diagnostic images, method thereof and computer recordable medium storing program to perform the method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LARGENT, A. ET AL.: "Pseudo-CT Generation for Mri-only Radiotherapy: Comparative Study Between A Generative Adversarial Network, A U-Net Network, A Patch-Based, and an Atlas Based Methods", 2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019, 2019, pages 1109 - 1113, XP033576402, DOI: 10.1109/ISBI.2019.8759278 *

Also Published As

Publication number Publication date
KR102267219B1 (en) 2021-06-21
KR20210001233A (en) 2021-01-07

Similar Documents

Publication Publication Date Title
WO2021030629A1 (en) Three dimensional object segmentation of medical images localized with object detection
Omonigho et al. Breast cancer: tumor detection in mammogram images using modified alexnet deep convolution neural network
ES2914387T3 (en) immediate study
CN107563434B (en) Brain MRI image classification method and device based on three-dimensional convolutional neural network
Ashwin et al. Efficient and reliable lung nodule detection using a neural network based computer aided diagnosis system
KR20200080626A (en) Method for providing information of lesion diagnosis and device for providing information of lesion diagnosis using the same
EP3973539A1 (en) System and method for interpretation of multiple medical images using deep learning
JP2020010805A (en) Specification device, program, specification method, information processing device, and specifier
Shahangian et al. Automatic brain hemorrhage segmentation and classification in CT scan images
Lu et al. Breast cancer detection based on merging four modes MRI using convolutional neural networks
WO2021183765A1 (en) Automated detection of tumors based on image processing
Das et al. Cross-population train/test deep learning model: abnormality screening in chest x-rays
Hasan et al. Performance of grey level statistic features versus Gabor wavelet for screening MRI brain tumors: A comparative study
Nayan et al. A deep learning approach for brain tumor detection using magnetic resonance imaging
Sengun et al. Automatic liver segmentation from CT images using deep learning algorithms: a comparative study
Krishna et al. Automated classification of common maternal fetal ultrasound planes using multi-layer perceptron with deep feature integration
WO2020263002A1 (en) Blood vessel segmentation method
Zeng et al. A 2.5 D deep learning-based method for drowning diagnosis using post-mortem computed tomography
Xu et al. Improved cascade R-CNN for medical images of pulmonary nodules detection combining dilated HRNet
Kathalkar et al. Artificial neural network based brain cancer analysis and classification
Kanawade et al. A Deep Learning Approach for Pneumonia Detection from X− ray Images
Kolarik et al. Planar 3D transfer learning for end to end unimodal MRI unbalanced data segmentation
CN115004225A (en) Weakly supervised lesion segmentation
Farzana et al. Semantic Segmentation of Brain Tumor from 3D Structural MRI Using U-Net Autoencoder
Srivastava et al. Design of novel hybrid model for detection of liver cancer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832194

Country of ref document: EP

Kind code of ref document: A1