WO2020262688A1 - Plaque originale de plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique et procédé d'impression lithographique - Google Patents

Plaque originale de plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique et procédé d'impression lithographique Download PDF

Info

Publication number
WO2020262688A1
WO2020262688A1 PCT/JP2020/025410 JP2020025410W WO2020262688A1 WO 2020262688 A1 WO2020262688 A1 WO 2020262688A1 JP 2020025410 W JP2020025410 W JP 2020025410W WO 2020262688 A1 WO2020262688 A1 WO 2020262688A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
printing plate
compound
original plate
lithographic printing
Prior art date
Application number
PCT/JP2020/025410
Other languages
English (en)
Japanese (ja)
Inventor
洋平 石地
和朗 榎本
俊佑 柳
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020262688A1 publication Critical patent/WO2020262688A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1008Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by removal or destruction of lithographic material on the lithographic support, e.g. by laser or spark ablation; by the use of materials rendered soluble or insoluble by heat exposure, e.g. by heat produced from a light to heat transforming system; by on-the-press exposure or on-the-press development, e.g. by the fountain of photolithographic materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2201/00Location, type or constituents of the non-imaging layers in lithographic printing formes
    • B41C2201/02Cover layers; Protective layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/04Negative working, i.e. the non-exposed (non-imaged) areas are removed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/08Developable by water or the fountain solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/22Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by organic non-macromolecular additives, e.g. dyes, UV-absorbers, plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C2210/00Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation
    • B41C2210/24Preparation or type or constituents of the imaging layers, in relation to lithographic printing forme preparation characterised by a macromolecular compound or binder obtained by reactions involving carbon-to-carbon unsaturated bonds, e.g. acrylics, vinyl polymers

Definitions

  • This disclosure relates to a lithographic printing plate original plate, a method for producing a lithographic printing plate, and a lithographic printing method.
  • a lithographic printing plate comprises a lipophilic image portion that receives ink in the printing process and a hydrophilic non-image portion that receives dampening water.
  • the oil-based image part of the flat plate printing plate is the ink receiving part
  • the hydrophilic non-image part is the dampening water receiving part (ink non-receptive part).
  • a lithographic printing plate original plate in which a lipophilic photosensitive resin layer (image recording layer) is provided on a hydrophilic support has been widely used.
  • PS plate lithographic printing plate original plate
  • image recording layer image recording layer
  • a flat plate printing plate is obtained by performing plate making by a method of dissolving and removing with a solvent to expose the surface of a hydrophilic support to form a non-image portion.
  • machine development As one of the simple manufacturing methods, a method called "machine development” is performed. That is, after the lithographic printing plate original plate is exposed, the conventional development is not performed, and the printing machine is mounted as it is, and unnecessary portions of the image recording layer are removed at the initial stage of the normal printing process.
  • Patent Document 1 describes (A) a radically polymerizable compound, (B) an infrared absorbing dye, (C) a radical generator, (D) an oil-based resin on the core portion, and the following general formula on the shell portion on the support.
  • a lithographic printing plate precursor having an image recording layer that contains resin fine particles having a core-shell structure having a resin having the structural unit represented by (I) and can be removed by at least one of ink and dampening water.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a methyl group, and m and l are 0 or positive integers satisfying 1 ⁇ m + l ⁇ 200. is there.
  • Patent Document 2 describes a color-developing composition containing a compound represented by the following formula 1 used for an image recording layer.
  • A represents a ring structure containing at least one atom selected from the group consisting of a nitrogen atom, an oxygen atom and a sulfur atom
  • a + represents a ring structure containing N + , O + or S + .
  • Each of X independently represents a carbon atom or a nitrogen atom, and at least one of X is a nitrogen atom, and when X is a nitrogen atom, R 1 , R 2 or R 3 bonded to the nitrogen atom is present.
  • R 1 , R 2 and R 3 are independently hydrogen atom, halogen atom, hydrocarbon group, alkoxy group, aryloxy group, alkylthio group, arylthio group, acyl group, hydroxy group, alkoxycarbonyl group and acyloxy. Representing a group, amino group, urethane group, urea group, amide group, nitrile group or imino group, two or more R 1 to R 3 may be bonded to form a ring structure, and one or more R 1 to R may be formed. 3 and A or A + may be combined to form a ring structure, where n represents an integer of 1 to 6 and Z represents a counterion for neutralizing the charge.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2012-711590
  • Patent Document 2 International Publication No. 2018/043150
  • An object to be solved by the embodiment of the present invention is to provide a lithographic printing plate original plate having excellent printing durability of the obtained lithographic printing plate even when UV ink is used.
  • An object to be solved by another embodiment of the present invention is to provide a method for producing a lithographic printing plate or a lithographic printing method using the lithographic printing plate original plate.
  • the means for solving the above problems include the following aspects.
  • ⁇ 3> The planographic printing plate original plate according to ⁇ 1> or ⁇ 2>, wherein the polymethine dye contains a cyanine dye having an electron-attracting group or a heavy atom-containing group in at least one of the aromatic rings at both ends.
  • ⁇ 4> The planographic printing plate original plate according to any one of ⁇ 1> to ⁇ 3>, wherein the HOMO of the polymethine dye is ⁇ 5.3 eV or less.
  • ⁇ 5> The planographic printing plate original plate according to any one of ⁇ 1> to ⁇ 4>, wherein the image recording layer is the outermost layer.
  • ⁇ 6> The planographic printing plate original plate according to any one of ⁇ 1> to ⁇ 4>, which has a protective layer containing a discoloring compound on the image recording layer.
  • ⁇ 7> The planographic printing plate original plate according to ⁇ 6>, wherein the brightness change ⁇ L before and after the exposure is 2.0 or more when exposure is performed with infrared rays having a wavelength of 830 nm at an energy density of 110 mJ / cm 2 .
  • ⁇ 8> The lithographic printing plate original plate according to ⁇ 6> or ⁇ 7>, wherein the discoloring compound contains a compound that develops color due to infrared exposure.
  • ⁇ 9> The planographic printing plate original plate according to any one of ⁇ 6> to ⁇ 8>, wherein the discoloring compound contains a decomposable compound that decomposes due to infrared exposure.
  • the discoloring compound contains a degradable compound that is decomposed by heat, electron transfer, or both due to infrared exposure.
  • the discoloring compound is a cyanine pigment.
  • the discoloring compound is a compound represented by the following formula 1-1.
  • R 1 represents a group represented by any of the following formulas 2 to 4, and R 11 to R 18 are independently hydrogen atom, halogen atom, -R a , -OR b , and so on.
  • -SR c or represents -NR d R e
  • R a ⁇ R e each independently represents a hydrocarbon group
  • a 1 a 2 and a plurality of R 11 ⁇ R 18 are linked monocyclic or Polycycles may be formed, where A 1 and A 2 independently represent an oxygen atom, a sulfur atom, or a nitrogen atom, and n 11 and n 12 each independently represent an integer of 0 to 5.
  • n 11 and n 12 is 2 or more, n 13 and n 14 independently represent 0 or 1, L represents an oxygen atom, a sulfur atom, or -NR 10- , and R 10 Represents a hydrogen atom, an alkyl group, or an aryl group, and Za represents a counterion that neutralizes the charge.
  • R 20 , R 30 , R 41 and R 42 independently represent an alkyl group or an aryl group
  • Zb represents a charge-neutralizing counterion
  • the wavy line represents the above formula 1-.
  • R 1 represents a group represented by any of the above formulas 2 to 4, and R 19 to R 22 are independently hydrogen atom, halogen atom, -R a , -OR b , and so on.
  • -CN, -SR c, or represents -NR d R e, R 23 and R 24 each independently represent a hydrogen atom, or represents a -R a, each is R a ⁇ R e independently, hydrocarbon Representing a group, R 19 and R 20 , R 21 and R 22 , or R 23 and R 24 may be linked to form a monocyclic or polycyclic, where L is an oxygen atom, a sulfur atom, or , -NR 10- , R 10 represents a hydrogen atom, an alkyl group, or an aryl group, and R d1 to R d4 , W 1 and W 2 may independently have substituents. It represents an alkyl group and Za represents a counterion that neutralizes the charge.
  • R 1 represents a group represented by any of the above formulas 2 to 4, and R 19 to R 22 are independent hydrogen atoms, halogen atoms, and ⁇ R a. , -OR b , -CN, -SR c , or -NR d R e , and R 25 and R 26 independently represent a hydrogen atom, a halogen atom, or -R a , and R a to R e.
  • W 1 and W 2 in the above formulas 1-2 to 1-7 are each independently an alkyl group having a substituent, and as the above substituents,-(OCH 2 CH 2 )-and sulfo.
  • the flat plate printing plate original plate according to ⁇ 13> or ⁇ 14> which is a group, a salt of a sulfo group, a carboxy group, or a group having at least a salt of a carboxy group.
  • ⁇ 16> The planographic printing plate original plate according to any one of ⁇ 13> to ⁇ 15>, wherein L in the above formulas 1-2 to 1-7 is an oxygen atom.
  • the ratio M X / M Y between the content M Y of the infrared absorber content M X and the image recording layer of the discoloring compound of the protective layer is at least 0.2 ⁇ 6>
  • ⁇ 18> The planographic printing plate original plate according to any one of ⁇ 6> to ⁇ 17>, wherein the protective layer contains a water-soluble polymer.
  • the water-soluble polymer contains polyvinyl alcohol having a saponification degree of 50% or more.
  • ⁇ 20> The planographic printing plate original plate according to ⁇ 18> or ⁇ 19>, wherein the water-soluble polymer contains polyvinylpyrrolidone.
  • ⁇ 21> The planographic printing plate original plate according to any one of ⁇ 18> to ⁇ 20>, wherein the protective layer contains a hydrophobic polymer.
  • ⁇ 22> The planographic printing plate original plate according to ⁇ 21>, wherein the hydrophobic polymer is hydrophobic polymer particles.
  • the hydrophobic polymer contains a polyvinylidene chloride resin.
  • the protective layer contains an oil-sensitive agent.
  • the amount of the protective layer is 0.1 g / m 2 to 2.0 g / m 2 .
  • ⁇ 30> The planographic printing plate original plate according to any one of ⁇ 1> to ⁇ 29>, wherein the layer on the aluminum support contains a hydroxycarboxylic acid or a salt thereof.
  • ⁇ 31> The planographic printing plate original plate according to ⁇ 30>, wherein the hydroxycarboxylic acid or a salt thereof contains a compound having two or more hydroxy groups.
  • ⁇ 32> The planographic printing plate original plate according to ⁇ 30> or ⁇ 31>, wherein the hydroxycarboxylic acid or a salt thereof contains a compound having three or more hydroxy groups.
  • ⁇ 33> The planographic printing plate original plate according to any one of ⁇ 1> to ⁇ 32>, wherein the image recording layer contains particles.
  • planographic printing plate original plate according to ⁇ 33> wherein the particles include polymer particles.
  • the polymer particles have a hydrophilic group.
  • the polymer particles have a group represented by the following formula Z as the hydrophilic group.
  • Q represents a divalent linking group
  • W represents a divalent group having a hydrophilic structure or a divalent group having a hydrophobic structure
  • Y represents a monovalent group having a hydrophilic structure or It represents a monovalent group having a hydrophobic structure, either W or Y has a hydrophilic structure
  • * represents a binding site with another structure.
  • planographic printing plate original plate according to ⁇ 37> wherein the polymer particles have a polypropylene oxide structure as the polyoxyalkylene oxide structure.
  • the planographic printing plate original plate according to ⁇ 37> or ⁇ 38> wherein the polymer particles have at least a polyethylene oxide structure and a polypropylene oxide structure as the polyoxyalkylene oxide structure.
  • the polymer particles contain a resin having a structure obtained by at least reacting an isocyanate compound represented by the following formula (Iso) with water. Planographic printing plate original plate.
  • n represents an integer from 0 to 10.
  • the polymer particles have a structure obtained by at least reacting an isocyanate compound represented by the above formula (Iso) with water, and have a polyethylene oxide structure and a polypropylene oxide structure as polyoxyalkylene structures.
  • the planographic printing plate original plate according to ⁇ 40> containing a resin.
  • ⁇ 43> The planographic printing plate original plate according to ⁇ 42>, wherein the HOMO value of the polymethine dye and the HOMO value of the electron-donating polymerization initiator is 0.70 eV or less.
  • ⁇ 44> The planographic printing plate original plate according to any one of ⁇ 1> to ⁇ 43>, wherein the image recording layer further contains a color former.
  • ⁇ 45> The planographic printing plate original plate according to ⁇ 44>, wherein the color former in the image recording layer is an acid color former.
  • ⁇ 46> The lithographic printing plate original plate according to ⁇ 45>, wherein the acid color former in the image recording layer is a leuco dye.
  • ⁇ 47> The planographic printing plate original plate according to ⁇ 46>, wherein the leuco dye in the image recording layer is a leuco dye having a phthalide structure or a fluorine structure.
  • the leuco dye having the phthalide structure or the fluorine structure in the image recording layer is a compound represented by any of the following formulas (Le-1) to (Le-3), according to ⁇ 47>.
  • each ERG independently represents an electron donating group
  • each X 1 ⁇ X 4 independently represent a hydrogen atom, a halogen atom or a dialkyl anilino group
  • X 5 to X 10 independently represent a hydrogen atom, a halogen atom or a monovalent organic group
  • Y 1 and Y 2 independently represent C or N, and when Y 1 is N, If X 1 is absent and Y 2 is N, then X 4 is absent, Ra 1 represents a hydrogen atom, an alkyl group or an alkoxy group, and Rb 1 to Rb 4 are independent alkyl groups. Or represents an aryl group.
  • the leuco dye having the phthalide structure or the fluorine structure in the image recording layer is a compound represented by any of the following formulas (Le-4) to (Le-6) ⁇ 47> or ⁇ 48>. > The lithographic printing plate original plate described in.
  • each ERG independently represents an electron donating group
  • each X 1 ⁇ X 4 independently represent a hydrogen atom, a halogen atom or a dialkyl anilino group
  • Y 1 and Y 2 independently represent C or N, and if Y 1 is N, then X 1 does not exist, and if Y 2 is N, then X 4 does not exist and Ra.
  • 1 represents a hydrogen atom, an alkyl group or an alkoxy group
  • Rb 1 to Rb 4 independently represent an alkyl group or an aryl group, respectively.
  • the leuco dye having the phthalide structure or the fluorine structure in the image recording layer is a compound represented by any of the following formulas (Le-7) to (Le-9) ⁇ 47> to ⁇ 49.
  • each X 1 ⁇ X 4 is independently a hydrogen atom, a halogen atom or a dialkyl anilino group
  • Y 1 and Y 2 are each independently, C or Representing N, when Y 1 is N, X 1 does not exist, when Y 2 is N, X 4 does not exist
  • Ra 1 to Ra 4 are independent hydrogen atoms and alkyl, respectively.
  • Rb 1 to Rb 4 independently represent an alkyl group or an aryl group
  • Rc 1 and Rc 2 each independently represent an aryl group.
  • ⁇ 51> The lithographic printing plate original plate according to ⁇ 50>, wherein each of Ra 1 to Ra 4 is an alkoxy group independently.
  • ⁇ 52> The planographic printing plate original plate according to ⁇ 50> or ⁇ 51>, wherein the leuco dye having the phthalide structure or the fluorine structure in the image recording layer is a compound represented by the above formula (Le-8).
  • ⁇ 53> The planographic printing plate original plate according to ⁇ 52>, wherein X 1 to X 4 are hydrogen atoms, and Y 1 and Y 2 are C.
  • Rb 1 and Rb 2 are independently alkyl groups.
  • the polymethine dye has an organic anion in which ⁇ d in the solubility parameter of Hansen is 16 or more, ⁇ p is 16 or more and 32 or less, and ⁇ h is 60% or less of ⁇ p ⁇ 1> to ⁇ 54>.
  • the lithographic printing plate original plate described in any one of. ⁇ 56> The planographic printing plate original plate according to any one of ⁇ 1> to ⁇ 55>, wherein the polymerization initiator contains an electron-accepting polymerization initiator.
  • the electron-accepting polymerization initiator has an organic anion in which ⁇ d in the solubility parameter of Hansen is 16 or more, ⁇ p is 16 or more and 32 or less, and ⁇ h is 60% or less of ⁇ p ⁇ 56>.
  • the original plate of the lithographic printing plate described in. ⁇ 58> The planographic printing plate original plate according to ⁇ 56> or ⁇ 57>, wherein the electron-accepting polymerization initiator contains a compound represented by the following formula (II).
  • X represents a halogen atom and R 3 represents an aryl group.
  • ⁇ 59> The planographic printing plate original plate according to any one of ⁇ 1> to ⁇ 58>, wherein the image recording layer further contains polyvinyl acetal as a binder polymer.
  • the image recording layer further contains a fluoroaliphatic group-containing copolymer.
  • the fluoroaliphatic group-containing copolymer has a structural unit formed of a compound represented by any of the following formulas (F1) and (F2). Original version.
  • R F1 independently represents a hydrogen atom or a methyl group
  • X independently represents an oxygen atom, a sulfur atom, or -N ( RF2 )-.
  • m represents an integer of 1 ⁇ 6
  • n represents an integer of 1 ⁇ 10
  • l represents an integer of 0 ⁇ 10
  • R F2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the fluoroaliphatic group-containing copolymer further has a structural unit formed by at least one compound selected from the group consisting of poly (oxyalkylene) acrylate and poly (oxyalkylene) methacrylate ⁇ 61.
  • the on-board development type lithographic printing plate original plate described in. ⁇ 63> The machine-developed lithographic printing plate original plate according to any one of ⁇ 1> to ⁇ 62>, wherein the polymerizable compound contains a compound having an ethylenically unsaturated bond value of 5.0 mmol / g or more.
  • the compound having an ethylenically unsaturated bond value of 5.0 mmol / g or more has at least one structure selected from the group consisting of an adduct structure, a biuret structure, and an isocyanurate structure ⁇ 63> or ⁇ 64>
  • the on-machine development type lithographic printing plate original plate. ⁇ 66> The machine-developed lithographic printing plate original plate according to any one of ⁇ 1> to ⁇ 65>, wherein the polymerizable compound contains a compound having one or two ethylenically unsaturated groups.
  • the aluminum support has an aluminum plate and an anodic oxide film of aluminum arranged on the aluminum plate, and the anodic oxide film is located closer to the image recording layer than the aluminum plate.
  • the anodic oxide film has micropores extending in the depth direction from the surface on the image recording layer side, and the average diameter of the micropores on the surface of the anodic oxide film is more than 10 nm and 100 nm or less, and the anode.
  • the micropore communicates with a large-diameter hole extending from the surface of the anodic oxide film to a depth of 10 nm to 1,000 nm and the bottom of the large-diameter hole, and has a depth of 20 nm to 2 from the communicating position. It is composed of a small-diameter hole extending to a position of 000 nm, the average diameter of the large-diameter hole on the surface of the anodic oxide film is 15 nm to 100 nm, and the average diameter of the small-diameter hole at the communication position is 13 nm.
  • ⁇ 69> The step of exposing the lithographic printing plate original plate according to any one of ⁇ 1> to ⁇ 68> to an image, and at least one selected from the group consisting of printing ink and dampening water on a printing machine.
  • a method for producing a lithographic printing plate which includes a step of removing an image recording layer in a non-image area by supplying a lithographic printing plate.
  • a step of exposing the planographic printing plate original plate according to any one of ⁇ 1> to ⁇ 68> to an image, and supplying at least one selected from the group consisting of printing ink and dampening water are supplied.
  • a lithographic printing method including a step of removing an image recording layer of a non-image portion on a printing machine to produce a lithographic printing plate, and a step of printing with the obtained lithographic printing plate.
  • a lithographic printing plate original plate having excellent printing durability of the obtained lithographic printing plate even when UV ink is used. Further, according to another embodiment of the present invention, it is possible to provide a method for producing a lithographic printing plate or a lithographic printing method using the lithographic printing plate original plate.
  • FIG. 3 is a schematic cross-sectional view of another embodiment of an aluminum support. It is a graph which shows an example of the alternating waveform current waveform diagram used for the electrochemical roughening process in the manufacturing method of an aluminum support. It is a side view which shows an example of the radial type cell in the electrochemical roughening treatment using alternating current in the manufacturing method of an aluminum support. It is the schematic of the anodizing treatment apparatus used for the anodizing treatment in manufacturing of an aluminum support.
  • the notation that does not describe substitution and non-substitution includes those having no substituent as well as those having a substituent.
  • the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • (meth) acrylic is a term used in a concept that includes both acrylic and methacrylic
  • “(meth) acryloyl” is a term that is used as a concept that includes both acryloyl and methacryloyl. Is.
  • process in the present specification is not limited to an independent process, and even if it cannot be clearly distinguished from other processes, the term “process” will be used as long as the intended purpose of the process is achieved. included. Further, in the present disclosure, “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous. Further, in the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the present disclosure use columns of TSKgel GMHxL, TSKgel G4000HxL, and TSKgel G2000HxL (all are trade names manufactured by Toso Co., Ltd.). It is a molecular weight converted by detecting with a solvent THF (tetrahydrofuran) and a differential refractometer by a gel permeation chromatography (GPC) analyzer and using polystyrene as a standard substance.
  • THF tetrahydrofuran
  • GPC gel permeation chromatography
  • the term "lithographic printing plate original plate” includes not only a lithographic printing plate original plate but also a discarded plate original plate.
  • lithographic printing plate includes not only a lithographic printing plate produced by subjecting a lithographic printing plate original plate through operations such as exposure and development as necessary, but also a discarded plate. In the case of a discarded original plate, exposure and development operations are not always necessary.
  • the discard plate is a planographic printing plate original plate for attaching to an unused plate cylinder when printing a part of the paper surface in a single color or two colors in, for example, color newspaper printing.
  • the lithographic printing plate original plate according to the present disclosure has an aluminum support and an image recording layer on the aluminum support, and the image recording layer is an infrared absorbent polymethine dye having a HOMO of ⁇ 5.2 eV or less. It contains a polymerization initiator and a polymerizable compound, and the ethylenically unsaturated bond value of the image recording layer is 1.0 mmol / g or more.
  • the lithographic printing plate original plate according to the present disclosure is a negative type lithographic printing plate original plate, and can be suitably used as a lithographic printing plate original plate for on-machine development.
  • the lithographic printing plate original plate according to the present disclosure has a polymethine dye having a specific oxidation potential in the image recording layer and has a high ethylenically unsaturated bond value, so that the ink penetrates, dissolves with the ink, and The loss of the image portion due to printing wear and the like is suppressed, and even when UV ink is used, the plate skipping property is excellent.
  • plate skipping refers to a phenomenon in which the image recording layer in a lithographic printing plate is thinned and the ink is partially lost. The number of printed sheets until "plate skipping" occurs in a lithographic printing plate is an index indicating that "plate skipping is unlikely to occur”.
  • the lithographic printing plate original plate according to the present disclosure has a polymethine dye having a specific oxidation potential in the image recording layer, and has a high ethylenically unsaturated bond value, so that it has on-machine developability and features. It also has excellent fleshing properties (spot color fleshing properties).
  • the spot color ink is an ink other than the yellow, magenta, or cyan color tone ink, and examples thereof include color tone inks such as red, green, blue, white, and metallic inks, and colorless clear inks.
  • the lithographic printing plate original plate according to the present disclosure has an image recording layer containing an infrared absorbing polymethine dye having a HOMO of -5.2 eV or less, a polymerization initiator, and a polymerizable compound, and has an ethylenic property of the image recording layer.
  • the unsaturated bond value is 1.0 mmol / g or more.
  • the image recording layer in the present disclosure is a negative image recording layer, and is preferably a water-soluble or water-dispersible negative image recording layer. Further, the image recording layer in the present disclosure is preferably an on-board development type image recording layer. Further, the image recording layer in the present disclosure is preferably the outermost layer from the viewpoint of UV printing resistance, UV plate skipping inhibitory property, and special color carving property.
  • the ethylenically unsaturated bond value of the image recording layer in the present disclosure is 1.0 mmol / g or more, and is 1.5 mmol / g from the viewpoint of UV printing resistance, UV plate skipping inhibitory property, and characteristic carving property.
  • the above is preferable, 2.0 mmol / g or more is more preferable, 2.5 mmol / g or more is further preferable, and 3.7 mmol / g or more is particularly preferable.
  • the upper limit of the ethylenically unsaturated bond value of the image recording layer is not particularly limited, but is preferably 10 mmol / g or less, and more preferably 8 mmol / g or less.
  • the ethylenically unsaturated bond value in the image recording layer in the present disclosure represents the number of moles of ethylenically unsaturated bond per 1 g of the image recording layer.
  • the ethylenically unsaturated bond in the polymer particles having an ethylenically unsaturated group is not included in the ethylenically unsaturated bond value.
  • the ethylenically unsaturated bond value in the image recording layer in the present disclosure is determined by each of the ethylenically unsaturated compound contained in 1 g of the image recording layer and the polymer having an ethylenically unsaturated group (excluding polymer particles). The content and each structure shall be identified, and the number of moles of ethylenically unsaturated bonds per 1 g of the image recording layer shall be calculated by calculation.
  • the image recording layer in the present disclosure preferably contains polymer particles having an ethylenically unsaturated group, which will be described later.
  • a polymerizable compound having a pentafunctionality or higher may be contained in an amount of 50% by mass or more based on the total mass of the polymerizable compound. It is preferable to contain 70% by mass or more, more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the image recording layer in the present disclosure preferably contains a polymerizable compound having 10 or more functionalities, and has a polymerizable compound of 12 or more functionalities, from the viewpoints of UV printing resistance, UV plate skipping inhibitory property, and special color carving property. It is more preferable to contain a compound, and it is particularly preferable to contain a polymerizable compound having 15 or more functionalities. Furthermore, the image recording layer in the present disclosure is a polymerizable compound having five or more functionalities and a polymer having an ethylenically unsaturated group from the viewpoints of UV printing resistance, UV plate skipping inhibitory property, and special color carving property. It preferably contains particles.
  • each component contained in the image recording layer will be described.
  • the image recording layer contains an infrared-absorbing polymethine dye (also referred to as "specific polymethin dye”) having a HOMO (maximum occupied orbital) of ⁇ 5.2 eV or less.
  • the HOMO of the specific polymethine dye is ⁇ 5.2 eV or less, and is preferably ⁇ 5.25 eV or less from the viewpoint of UV printing resistance, UV plate skipping inhibitory property, and characteristic carving property. It is more preferably 3 eV or less, further preferably -6.0 eV or more and -5.3 eV or less, and particularly preferably -5.6 eV or more and -5.3 eV or less.
  • the highest occupied orbital (HOMO) and the lowest empty orbital (LUMO) are calculated by the following methods.
  • free counterions in the compound to be calculated are excluded from the calculation.
  • the cationic one-electron accepting polymerization initiator and the cationic infrared absorber exclude the counter anion
  • the anionic one-electron donating polymerization initiator excludes the counter cation from the calculation target.
  • free as used herein means that the target compound and its counterion are not covalently linked.
  • Quantum chemistry calculation software Gaussian09 is used, and structural optimization is performed by DFT (B3LYP / 6-31G (d)).
  • the MO energy Ebare (unit: hartree) obtained by the above MO energy calculation is converted into Escaled (unit: eV) used as the values of HOMO and LUMO in the present disclosure by the following formula.
  • Escaled 0.823168 x 27.2114 x Ebare-1.07634 Note that 27.2114 is simply a coefficient for converting heartree to eV, 0.823168 and ⁇ 1.07634 are adjustment coefficients, and HOMO and LUMO of the compound to be calculated are calculated values. Determine to suit.
  • the specific polymethine pigment examples include pigments having a polymethine chain. Among them, cyanine pigments, pyrylium pigments, thiopyrylium pigments, azulenium pigments and the like are preferably mentioned, and cyanine pigments are preferable from the viewpoint of easy availability, solvent solubility at the time of introduction reaction and the like. Further, the specific polymethine dye may be a pigment or a dye.
  • the above-mentioned polymethine dye is a cyanine dye having an electron-attracting group or a heavy atom-containing group on at least one of the aromatic rings at both ends from the viewpoints of UV printing resistance, UV plate skipping inhibitory property, and characteristic carving property. It is preferable to contain a cyanine dye having a halogen atom, an alkoxycarbonyl group or an aryloxycarbonyl group in at least one of the aromatic rings at both ends, and it is more preferable to contain a cyanine having a halogen atom in at least one of the aromatic rings at both ends.
  • the polymethine dye is a cyanine dye having an electron-attracting group or a heavy atom-containing group in each of the aromatic rings at both ends from the viewpoints of UV printing resistance, UV plate skipping inhibitory property, and characteristic carving property. It is preferable to include it. Further, the polymethine dye may contain a cyanine dye having an electron-attracting group in at least one of the aromatic rings at both ends from the viewpoints of UV printing resistance, UV plate skipping inhibitory property, and characteristic carving property. preferable. In the present disclosure, when the group corresponds to both an electron-attracting group and a heavy atom-containing group, the electron-attracting group containing a heavy atom shall be treated as an electron-attracting group.
  • a group having a Hammett substituent constant ⁇ para value of 0.01 or more is preferable, and a ⁇ para value is preferable from the viewpoint of UV printing resistance, UV plate skipping inhibitory property, and characteristic color-forming property.
  • a group having a ⁇ para value of 0.05 or more is more preferable, a group having a ⁇ para value of 0.20 or more is further preferable, and a group having a ⁇ para value of 0.30 or more is particularly preferable.
  • Examples of groups having a ⁇ para value of 0.05 or more include halogen atoms such as fluorine atom (0.06), chlorine atom (0.30), bromine atom (0.27), and iodine atom (0.30); -CHO (0.22), - COCH 3 (0.50), - COC 6 H 5 (0.46), - CONH 2 (0.36), - COO - (0.30), - COOH (0 .41), carbonyl substituents such as -COOCH 3 (0.39), -COOC 2 H 5 (0.45); -SOCH 3 (0.49), -SO 2 CH 3 (0.72),- SO 2 C 6 H 5, -SO 2 CF 3 (0.93), - SO 2 NH 2 (0.57), - SO 2 OC 6 H 5, -SO 3 - (0.09), - SO 3 A sulfonyl or sulfinyl substituent such as H (0.50); -CN (0.01), -N (CH 3
  • an electron-attracting group include, for example, a substituent having an unshared electron pair.
  • substituent having an unshared electron pair include a halogen atom, a group having a carbonyl group, a group having a sulfonyl group, a group having a sulfinyl group, and a group having an ether bond.
  • a halogen atom or a group having a carbonyl group is preferable, a halogen atom, an alkoxycarbonyl group or an aryloxycarbonyl group is more preferable, a halogen atom is further preferable, and a chlorine atom is particularly preferable.
  • the group having a carbonyl group include an acyl group such as an acetyl group and a benzoyl group; an alkoxycarbonyl group such as a methoxycarbonyl group and a toluyloxycarbonyl group, or an aryloxycarbonyl group; an amide such as a diethylaminocarbonyl group.
  • acyl group such as an acetyl group and a benzoyl group
  • an alkoxycarbonyl group such as a methoxycarbonyl group and a toluyloxycarbonyl group, or an aryloxycarbonyl group
  • an amide such as a diethylaminocarbonyl group.
  • carboxy group is mentioned. These may be attached to the aromatic ring or heterocycle of the cyanine dye via a divalent or higher linking group.
  • the "heavy atom-containing group” means a group containing an atom having an atomic weight of 28 or more.
  • atoms having an atomic weight of 28 or more include silicon atom (28.09), phosphorus atom (30.97), sulfur atom (32.07), chlorine atom (35.45), germanium atom (72.61), and the like.
  • Arsenic atom (74.92), selenium atom (78.96), bromine atom (79.90), tin atom (118.71), antimony atom (121.76), tellurium atom (127.60), iodine atom (126.90) is preferably mentioned.
  • the numerical value in parentheses is the atomic weight of each atom.
  • a group containing a silicon atom, a phosphorus atom, or a halogen atom is preferable from the viewpoint of safety and availability of raw materials. It is preferable that these groups containing atoms having an atomic weight of 28 or more (heavy atom-containing groups) become substituents on the aromatic ring of the cyanine dye alone or in combination with other atoms. Further, such a substituent may be bonded to the aromatic ring of the cyanine dye via a divalent or higher valent linking group.
  • Examples of the group containing a silicon atom include an alkyl group such as a trimethylsilyl group, a t-butyldimethylsilyl group, and a dimethylphenylsilyl group, or a group having an aryl group on the silicon atom.
  • Examples of the group containing a phosphorus atom include a group having an alkyl group such as a dimethylphosphino group and a diphenylphosphino group or an aryl group on the phosphorus atom; a phosphono group.
  • the group containing a sulfur atom partially overlaps with the above-mentioned electron-attracting group, but for example, an alkylsulfonyl group such as a methylsulfonyl group or a phenylsulfonyl group or an arylsulfonyl group; an alkyl such as an ethylsulfinyl group or a toluylsulfinyl group.
  • Sulfinyl group or arylsulfinyl group; sulfur acid group such as sulfo group, sulfino group, sulfeno group or salt thereof or ester derivative thereof; alkylthio group or arylthio group such as methylthio group and phenylthio group can be mentioned.
  • the group containing a halogen atom include a halogen atom, a halogen-substituted alkyl group, and a halogen-substituted aryl group, which partially overlap with the above-mentioned electron-attracting group.
  • Specific examples of the specific polymethine dye include those having a HOMO of -5.2 eV or less among those shown below.
  • Specific examples of the cyanine dye include the compounds described in paragraphs 0017 to 0019 of JP-A-2001-133769, paragraphs 0016 to 0021 of JP-A-2002-0233360, and paragraphs 0012 to 0037 of JP-A-2002-040638.
  • Examples thereof include the compounds described in 0043 and the compounds described in paragraphs 0105 to 0113 of JP2012-206495A. Further, the compounds described in paragraphs 0008 to 0009 of JP-A-5-5005 and paragraphs 0022 to 0025 of JP-A-2001-222101 can also be preferably used.
  • the pigment the compounds described in paragraphs 0072 to 0076 of JP-A-2008-195018 are preferable.
  • the specific polymethine dye a polymethine dye that decomposes by infrared exposure (also referred to as “degradable polymethine dye”) can be preferably used.
  • the polymethine dye decomposed by infrared exposure those described in Japanese Patent Publication No. 2008-544322, International Publication No. 2016/027886, International Publication No. 2017/141882, or International Publication No. 2018/0432559 are preferably used. Can be used.
  • the content of the specific polymethine dye in the image recording layer is preferably 0.1% by mass to 10.0% by mass, more preferably 0.5% by mass to 5.0% by mass, based on the total mass of the image recording layer. preferable.
  • the image recording layer in the lithographic printing plate original plate according to the present disclosure contains a polymerization initiator.
  • the polymerization initiator preferably contains an electron-accepting polymerization initiator, and more preferably contains an electron-accepting polymerization initiator and an electron-donating polymerization initiator.
  • the image recording layer preferably contains an electron-accepting polymerization initiator as the polymerization initiator.
  • the electron-accepting polymerization initiator is a compound that generates a polymerization initiator such as a radical by accepting one electron by electron transfer between molecules when the electrons of the infrared absorber are excited by infrared exposure.
  • the electron-accepting polymerization initiator used in the present disclosure is a compound that generates a polymerization initiator such as a radical or a cation by energy of light, heat, or both, and is a known thermal polymerization initiator and has a small bond dissociation energy.
  • a compound having a bond, a photopolymerization initiator and the like can be appropriately selected and used.
  • a radical polymerization initiator is preferable, and an onium salt compound is more preferable.
  • the electron-accepting polymerization initiator is preferably an infrared photosensitive polymerization initiator.
  • the electron-accepting radical polymerization initiator include (a) an organic halide, (b) a carbonyl compound, (c) an azo compound, (d) an organic peroxide, (e) a metallocene compound, and (f) an azide compound. , (G) hexaarylbiimidazole compounds, (i) disulfone compounds, (j) oxime ester compounds, and (k) onium salt compounds.
  • the compounds described in paragraphs 0022 to 0023 of JP-A-2008-195018 are preferable.
  • B) As the carbonyl compound for example, the compound described in paragraph 0024 of JP-A-2008-195018 is preferable.
  • C) As the azo compound for example, the azo compound described in JP-A-8-108621 can be used.
  • D) As the organic peroxide for example, the compound described in paragraph 0025 of JP-A-2008-195018 is preferable.
  • the metallocene compound for example, the compound described in paragraph 0026 of JP-A-2008-195018 is preferable.
  • Examples of the (f) azide compound include compounds such as 2,6-bis (4-azidobenzylidene) -4-methylcyclohexanone.
  • Examples of the hexaarylbiimidazole compound for example, the compound described in paragraph 0027 of JP-A-2008-195018 is preferable.
  • Examples of the disulfon compound include the compounds described in JP-A-61-166544 and JP-A-2002-328465.
  • As the (j) oxime ester compound for example, the compounds described in paragraphs 0028 to 0030 of JP-A-2008-195018 are preferable.
  • oxime ester compounds and onium salt compounds are preferable from the viewpoint of curability.
  • an iodonium salt compound, a sulfonium salt compound or an azinium salt compound is preferable, an iodonium salt compound or a sulfonium salt compound is more preferable, and an iodonium salt compound is particularly preferable. Specific examples of these compounds are shown below, but the present disclosure is not limited thereto.
  • a diaryl iodonium salt compound is preferable, a diphenyl iodonium salt compound substituted with an electron donating group such as an alkyl group or an alkoxyl group is more preferable, and an asymmetric diphenyl iodonium salt compound is preferable.
  • a triarylsulfonium salt compound is preferable, and in particular, an electron-attracting group, for example, a triarylsulfonium salt compound in which at least a part of a group on the aromatic ring is substituted with a halogen atom is preferable, and aromatic.
  • a triarylsulfonium salt compound having a total number of halogen atoms substituted on the ring of 4 or more is more preferable.
  • triphenylsulfonium hexafluorophosphate
  • triphenylsulfonium benzoylformate
  • bis (4-chlorophenyl) phenylsulfonium benzoylformate
  • bis (4-chlorophenyl) -4-methylphenylsulfonium tetrafluoro.
  • Tris (4-chlorophenyl) Sulfonium 3,5-bis (methoxycarbonyl) Benzene Sulfonium
  • Tris (4-chlorophenyl) Sulfonium Hexafluorophosphate
  • a sulfonamide anion or a sulfonimide anion is preferable, and a sulfonimide anion is more preferable.
  • a sulfonamide anion an aryl sulfonamide anion is preferable.
  • a bisaryl sulfonimide anion is preferable. Specific examples of the sulfonamide anion or the sulfonamide anion are shown below, but the present disclosure is not limited thereto. In the specific examples below, Ph represents a phenyl group, Me represents a methyl group, and Et represents an ethyl group.
  • the electron-accepting polymerization initiator may contain a compound represented by the following formula (II) from the viewpoint of developability and UV printing resistance in the obtained lithographic printing plate.
  • X represents a halogen atom and R 3 represents an aryl group.
  • X in the formula (II) include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • a chlorine atom or a bromine atom is preferable because it has excellent sensitivity, and a bromine atom is particularly preferable.
  • R 3 from the viewpoint of excellent balance between sensitivity and storage stability, an aryl group substituted with an amide group.
  • electron-accepting polymerization initiator represented by the above formula (II) include compounds represented by the following formula, but the present disclosure is not limited thereto.
  • the minimum empty orbital (LUMO) of the electron-accepting polymerization initiator is preferably ⁇ 3.00 eV or less, and more preferably ⁇ 3.02 eV or less, from the viewpoint of improving sensitivity and making plate skipping less likely to occur. preferable. Further, as the lower limit, it is preferably -3.80 eV or more, and more preferably -3.60 eV or more.
  • the electron-accepting polymerization initiator may be used alone or in combination of two or more.
  • the content of the electron-accepting polymerization initiator is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, based on the total mass of the image recording layer. It is preferably 0.8% by mass to 20% by mass, and particularly preferably 0.8% by mass.
  • Electron donation type polymerization initiator (polymerization aid)
  • the image recording layer preferably contains an electron-donating polymerization initiator (also referred to as a "polymerization aid") as a polymerization initiator, and contains an electron-accepting polymerization initiator and an electron-donating polymerization initiator. Is more preferable.
  • the electron donating type polymerization initiator in the present disclosure donates one electron by intermolecular electron transfer to an orbit where one electron is missing from the infrared absorber when the electron of the infrared absorber is excited or moved intramolecularly by infrared exposure. This is a compound that generates a polymerization-initiated species such as a radical.
  • the electron-donating type polymerization initiator is preferably an electron-donating radical polymerization initiator.
  • the image recording layer more preferably contains the electron donating type polymerization initiator described below, and examples thereof include the following five types.
  • Alkyl or arylate complex It is considered that the carbon-heterobond is oxidatively cleaved to generate an active radical. Specifically, a borate compound is preferable.
  • N-arylalkylamine compound It is considered that the CX bond on the carbon adjacent to nitrogen is cleaved by oxidation to generate an active radical.
  • a hydrogen atom, a carboxyl group, a trimethylsilyl group or a benzyl group is preferable.
  • N-phenylglycines which may or may not have a substituent on the phenyl group
  • N-phenyliminodiacetic acid which may or may not have a substituent on the phenyl group.
  • Sulfur-containing compound The above-mentioned amines in which the nitrogen atom is replaced with a sulfur atom can generate an active radical by the same action.
  • phenylthioacetic acid (which may or may not have a substituent on the phenyl group) can be mentioned.
  • Tin-containing compounds The above-mentioned amines in which the nitrogen atom is replaced with a tin atom can generate active radicals by the same action.
  • Sulfinates Oxidation can generate active radicals. Specific examples thereof include arylsulfinic sodium.
  • the image recording layer preferably contains a borate compound from the viewpoint of printing resistance.
  • the borate compound is preferably a tetraaryl borate compound or a monoalkyl triaryl borate compound, and more preferably a tetraaryl borate compound from the viewpoint of print resistance and color development.
  • the counter cation contained in the borate compound is not particularly limited, but is preferably an alkali metal ion or a tetraalkylammonium ion, and more preferably a sodium ion, a potassium ion, or a tetrabutylammonium ion.
  • sodium tetraphenylborate is preferably mentioned as the borate compound.
  • B-1 to B-9 are shown below as preferable specific examples of the electron donating type polymerization initiator, but it goes without saying that the present invention is not limited to these. Further, in the following chemical formula, Ph represents a phenyl group and Bu represents an n-butyl group.
  • the maximum occupied orbital (HOMO) of the electron donating type polymerization initiator used in the present disclosure is preferably ⁇ 6.00 eV or more from the viewpoint of improving sensitivity and making plate skipping less likely to occur, preferably ⁇ 5. It is more preferably .95 eV or more, and even more preferably ⁇ 5.93 eV or more.
  • the upper limit is preferably ⁇ 5.00 eV or less, and more preferably ⁇ 5.40 eV or less.
  • the electron donating type polymerization initiator only one kind may be added, or two or more kinds may be used in combination.
  • the content of the electron donating type polymerization initiator is preferably 0.01% by mass to 30% by mass, preferably 0.05% by mass, based on the total mass of the image recording layer from the viewpoint of sensitivity and printing resistance. It is more preferably to 25% by mass, and further preferably 0.1% by mass to 20% by mass.
  • the image recording layer contains an onium ion and an anion in the above-mentioned electron donating type polymerization initiator
  • the image recording layer is assumed to contain an electron accepting type polymerization initiator and the above-mentioned electron donating type polymerization initiator. ..
  • the image recording layer in the present disclosure contains the electron-donating polymerization initiator and the specific polymethine dye, and is a HOMO of the specific polymethine dye-the electron-donating polymerization initiator.
  • the HOMO value is preferably 0.70 eV or less, and more preferably 0.70 eV to ⁇ 0.10 eV.
  • a negative value means that the HOMO of the electron-donating polymerization initiator is higher than that of the specific polymethine dye.
  • ⁇ d in the solubility parameter of Hansen is 16 or more, ⁇ p is 16 to 32, and ⁇ h is 60 of ⁇ p from the viewpoint of improving sensitivity and making it difficult for plate skipping to occur. It is a preferred embodiment to have an organic anion of% or less.
  • the electron-accepting polymerization initiator in the present disclosure has a solubility parameter of Hansen of 16 or more, ⁇ p of 16 to 32, and ⁇ h from the viewpoint of improving sensitivity and preventing plate skipping. It is a preferable embodiment to have an organic anion which is 60% or less of ⁇ p.
  • ⁇ d, ⁇ p and ⁇ h in the Hansen solubility parameter in the present disclosure have the dispersion term ⁇ d [unit: MPa 0.5 ] and the polarity term ⁇ p [unit: MPa 0.5 ] in the Hansen solubility parameter.
  • the solubility parameter of Hansen is expressed in a three-dimensional space by dividing the solubility parameter introduced by Hildebrand into three components of a dispersion term ⁇ d, a polar term ⁇ p, and a hydrogen bond term ⁇ h. It is a thing. For more information on Hansen's solubility parameters, see Charles M. It is described in the document "Hansen Solubility Parameter; A Users Handbook (CRC Press, 2007)" by Hansen.
  • ⁇ d, ⁇ p and ⁇ h in the Hansen solubility parameter of the organic anion are estimated from the chemical structure by using the computer software “Hansen Solubility Parameters in Practice (HSPiP ver. 4.1.07)”. The value.
  • organic anions having ⁇ d of 16 or more, ⁇ p of 16 to 32, and ⁇ h of 60% or less of ⁇ p in Hansen's solubility parameter are I-1 to I-15 and I described above. -17 to I-21, I-23 to I-25, and the following are preferable, but it goes without saying that the present invention is not limited thereto. Among them, bis (halogen-substituted benzenesulfonyl) imide anion is more preferably mentioned, and I-5 described above is particularly preferable.
  • the image recording layer preferably contains a polymerizable compound.
  • the polymerizable compound used in the present disclosure may be, for example, a radical-polymerizable compound or a cationically polymerizable compound, but is an addition-polymerizable compound having at least one ethylenically unsaturated bond (ethyleney). It is preferably an unsaturated compound).
  • the ethylenically unsaturated compound is preferably a compound having at least one terminal ethylenically unsaturated bond, and more preferably a compound having two or more terminal ethylenically unsaturated bonds.
  • Polymerizable compounds have chemical forms such as, for example, monomers, prepolymers, ie dimers, trimers or oligomers, or mixtures thereof.
  • Examples of the monomer include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides, and unsaturated carboxylic acids are preferable.
  • Esters of an acid and a polyhydric alcohol compound, and amides of an unsaturated carboxylic acid and a polyhydric amine compound are used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having a nucleophilic substituent such as a hydroxy group, an amino group or a mercapto group with a monofunctional or polyfunctional isocyanate or an epoxy, and a monofunctional or polyfunctional group.
  • a dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
  • an addition reaction product of an unsaturated carboxylic acid ester or amide having a polyelectron substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, an amine or a thiol, and a halogen atom is also suitable.
  • the monomer of the ester of the polyhydric alcohol compound and the unsaturated carboxylic acid include ethylene glycol diacrylate, 1,3-butanediol diacrylate, tetramethylene glycol diacrylate, and propylene glycol diacrylate as acrylic acid esters.
  • EO ethylene oxide
  • methacrylic acid ester As methacrylic acid ester, tetramethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropantrimethacrylate, ethylene glycol dimethacrylate, pentaerythritol trimethacrylate, bis [p- (3-methacryloxy-2-hydroxypropoxy) phenyl] There are dimethylmethane, bis [p- (methacrylicoxyethoxy) phenyl] dimethylmethane and the like.
  • amide monomer of the polyvalent amine compound and the unsaturated carboxylic acid examples include methylenebisacrylamide, methylenebismethacrylamide, 1,6-hexamethylenebisacrylamide, and 1,6-hexamethylenebismethacrylamide.
  • a urethane-based addition-polymerizable compound produced by using an addition reaction of isocyanate and a hydroxy group is also suitable, and specific examples thereof include, for example, 2 per molecule described in JP-A-48-41708.
  • a vinyl urethane compound containing two or more polymerizable vinyl groups in one molecule obtained by adding a vinyl monomer containing a hydroxy group represented by the following formula (M) to a polyisocyanate compound having two or more isocyanate groups. And so on.
  • CH 2 C (R M4) COOCH 2 CH (R M5) OH (M)
  • RM4 and RM5 each independently represent a hydrogen atom or a methyl group.
  • urethane acrylates described in JP-A-51-37193, JP-A-2-32293, JP-A-2-16765, JP-A-2003-344997, and JP-A-2006-65210 Ethylene described in Japanese Patent Application Laid-Open No. 58-49860, Japanese Patent Publication No. 56-17654, Japanese Patent Publication No. 62-39417, Japanese Patent Application Laid-Open No. 62-39418, Japanese Patent Application Laid-Open No. 2000-250211, and Japanese Patent Application Laid-Open No. 2007-94138.
  • Kind is also suitable.
  • the ethylenically unsaturated bond value of the specific compound B1 is preferably 5.5 mmol / g or more, and more preferably 6.0 mmol / g or more.
  • the upper limit of the ethylenically unsaturated bond value of the specific compound B1 is, for example, 10.0 mmol / g or less, and more preferably 8.5 mmol / g or less.
  • the ethylenically unsaturated bond value of the compound in the present disclosure is determined by the following method. First, for a compound having a predetermined sample amount (for example, 0.2 g), the structure of the compound is specified by using, for example, thermal decomposition GC / MS, FT-IR, NMR, TOF-SIMS, etc., and ethylenically unsaturated. Find the total amount (mmol) of the groups. The ethylenically unsaturated bond value of a compound is calculated by dividing the total amount (mmol) of the determined ethylenically unsaturated groups by the sample amount (g) of the compound.
  • a predetermined sample amount for example, 0.2 g
  • the structure of the compound is specified by using, for example, thermal decomposition GC / MS, FT-IR, NMR, TOF-SIMS, etc.
  • X represents an n-valent organic group having a hydrogen-bonding group
  • Y represents a monovalent group having two or more ethylenically unsaturated groups
  • n represents an integer of two or more.
  • the molecular weight of X / (molecular weight of Y ⁇ n) is 1 or less.
  • the hydrogen-bonding group in X of the formula (I) is not particularly limited as long as it is a hydrogen-bondable group, and whether it is a hydrogen-bond-donating group or a hydrogen-bond-accepting group, both of them. It may be.
  • the hydrogen-bonding group include a hydroxy group, a carboxy group, an amino group, a carbonyl group, a sulfonyl group, a urethane group, a urea group, an imide group, an amide group, a sulfonamide group and the like.
  • the hydrogen-bonding group is at least one group selected from the group consisting of a urethane group, a urea group, an imide group, an amide group, and a sulfonamide group from the viewpoint of on-machine developability and print resistance. It is more preferable to contain at least one group selected from the group consisting of a urethane group, a urea group, an imide group, and an amide group, and more preferably than the group consisting of a urethane group, a urea group, and an imide group. It is more preferably at least one selected group, and particularly preferably containing at least one group selected from the group consisting of urethane groups and urea groups.
  • X in the formula (I) is preferably an organic group having no ethylenically unsaturated bond. Further, X in the formula (I) is a monovalent to n-valent aliphatic hydrocarbon group, a monovalent to n-valent aromatic hydrocarbon group, a urethane bond, or a urea from the viewpoint of on-machine developability and printing resistance. It is preferably a group that combines two or more structures selected from the group consisting of a bond, a biuret bond, and an allophanate bond, and is preferably a monovalent to n-valent aliphatic hydrocarbon group and a monovalent to n-valent aromatic group. It is more preferable that the group is a combination of two or more structures selected from the group consisting of a hydrocarbon group, a urethane bond, a urea bond, and a biuret bond.
  • X in the formula (I) is a quantified product in which a polyfunctional isocyanate compound is increased in a large amount (including an adducted body of a polyfunctional alcohol compound such as a trimethylolpropane adduct) from the viewpoint of on-machine developability and print resistance.
  • the group is a group obtained by removing the terminal isocyanate group from the group, and is a group obtained by removing the terminal isocyanate group from a quantifier (including an adduct of a polyfunctional alcohol compound) in which a bifunctional isocyanate compound is abundant. Is more preferable, and a group in which the terminal isocyanate group is removed from a quantifier (including an adduct of a polyfunctional alcohol compound) in which hexamethylene diisocyanate is increased is particularly preferable.
  • the molecular weight of X in the formula (I) is preferably 100 to 1,000, more preferably 150 to 800, and particularly preferably 150 to 500, from the viewpoint of on-machine developability and print resistance.
  • the ethylenically unsaturated group in Y of the formula (I) is not particularly limited, and from the viewpoint of reactivity, on-machine developability, and print resistance, a vinylphenyl group, a vinyl ester group, a vinyl ether group, an allyl group, ( It is preferably at least one group selected from the group consisting of a meta) acryloxy group and a (meth) acrylamide group. From the same viewpoint as above, the ethylenically unsaturated group in Y of the formula (I) is at least one group selected from the group consisting of a vinylphenyl group, a (meth) acryloxy group, and a (meth) acrylamide group.
  • the ethylenically unsaturated group in Y of the formula (I) preferably contains a (meth) acryloxy group from the viewpoint of on-machine developability and print resistance.
  • Y in the formula (I) is preferably a group having three or more (meth) acryloxy groups, more preferably a group having five or more (meth) acryloxy groups, and five or more twelve. It is more preferable that the group has the following (meth) acryloxy group.
  • Y in the formula (I) may have a structure represented by the following formula (Y-1) or the formula (Y-2) from the viewpoint of on-machine developability and print resistance.
  • R independently represents an acrylic group or a methacrylic group, and the wavy line portion represents the bonding position with another structure.
  • R is preferably an acrylic group.
  • n Ys in the formula (I) are all the same group.
  • the molecular weight of Y in the formula (I) is preferably 200 or more and 1,000 or less, and more preferably 250 or more and 800 or less, from the viewpoint of on-machine developability and print resistance.
  • N in the formula (I) is an integer of 2 or more, and is more preferably 2 to 3 from the viewpoint of on-machine developability and print resistance.
  • the molecular weight of X / (molecular weight of Y ⁇ n) is 1 or less, preferably 0.01 to 0.8, preferably 0.1 to 0.5, from the viewpoint of on-machine developability and print resistance. More preferably.
  • the structure of the specific compound B1 preferably includes a structure in which the terminal isocyanate group of the quantifier (including the adduct) of the polyfunctional isocyanate compound is sealed with a compound having an ethylenically unsaturated group. .. Among them, as the quantifier of the polyfunctional isocyanate compound, the quantifier of the bifunctional isocyanate compound is preferable.
  • the specific compound B1 is a polyfunctional ethylene having a hydroxy group (also referred to as a hydroxyl group) at the end of the terminal isocyanate group of the multimerized product in which the polyfunctional isocyanate compound is increased in quantity. It is preferably a compound obtained by reacting a sex unsaturated compound.
  • the specific compound B1 is a polyfunctional ethylenic compound having a hydroxy group at the terminal isocyanate group of a multimeric compound (including an adduct compound of a polyfunctional alcohol compound) in which a difunctional isocyanate compound is increased in quantity.
  • the compound is obtained by reacting an unsaturated compound.
  • the specific compound B1 is a polyfunctional ethylenically non-polyfunctional compound having a hydroxy group at the terminal isocyanate group of the multimer (including the adduct of the polyfunctional alcohol compound) in which hexamethylene diisocyanate is increased. It is particularly preferable that the compound is obtained by reacting a saturated compound.
  • the polyfunctional isocyanate compound is not particularly limited, and known compounds can be used, and may be an aliphatic polyfunctional isocyanate compound or an aromatic polyfunctional isocyanate compound.
  • Specific examples of the polyfunctional isocyanate compound include 1,3-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, pentamethylene diisocyanate, hexamethylene diisocyanate, and 1,3-.
  • Cyclopentane diisocyanate, 9H-fluorene-2,7-diisocyanate, 9H-fluoren-9-on-2,7-diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,3-phenylenediisocyanate, trilen-2 , 4-Diisocyanate, Trilen-2,6-Diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 2,2-bis (4-isocyanatophenyl) hexafluoropropane, 1,5-di Isocyanatonaphthalene, dimers of these polyisocyanates, trimmers (isocyanurate bonds) and the like are preferably mentioned.
  • a biuret compound obtained by reacting the above polyisocyanate compound with a known amine compound may be used.
  • the polyfunctional ethylenically unsaturated compound having a hydroxy group is preferably a trifunctional or higher functional ethylenically unsaturated compound having a hydroxy group, and is a pentafunctional or higher functional ethylenically unsaturated compound having a hydroxy group. Is more preferable.
  • the polyfunctional ethylenically unsaturated compound having a hydroxy group is preferably a polyfunctional (meth) acrylate compound having a hydroxy group.
  • the specific compound B1 preferably has at least one structure selected from the group consisting of an adduct structure, a biuret structure, and an isocyanurate structure from the viewpoint of on-machine developability and print resistance. From the same viewpoint as above, it is more preferable that the specific compound B1 has at least one structure selected from the group consisting of a trimethylolpropane adduct structure, a biuret structure, and an isocyanurate structure, and the trimethylolpropane adduct structure is formed. It is particularly preferable to have.
  • the specific compound B1 preferably has a structure represented by any of the following formulas (A-1) to (A-3), and the following formula (A-). It is more preferable to have the structure represented by 1).
  • RA1 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and the wavy line portion represents a bond position with another structure.
  • R A1 in the formula (A1) from the viewpoint of on-press development property and printing durability, a hydrogen atom, or preferably an alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 3 carbon atoms It is more preferably present, more preferably a methyl group or an ethyl group, and particularly preferably an ethyl group.
  • the specific compound B1 is preferably a (meth) acrylate compound having a urethane group, that is, a urethane (meth) acrylate oligomer from the viewpoint of on-machine developability and print resistance.
  • the specific compound B1 may be an oligomer having a polyester bond (hereinafter, also referred to as a polyester (meth) acrylate oligomer) as long as the ethylenically unsaturated bond value is 5.0 mmol / g or more, or an epoxy residue may be used. It may be an oligomer having an oligomer (hereinafter, also referred to as an epoxy (meth) acrylate oligomer). Here, the epoxy residues in the epoxy (meth) acrylate oligomer are as described above.
  • the number of ethylenically unsaturated groups in the polyester (meth) acrylate oligomer which is the specific compound B1 is preferably 3 or more, and more preferably 6 or more.
  • the epoxy (meth) acrylate oligomer which is the specific compound B1 a compound containing a hydroxy group in the compound is preferable.
  • the number of ethylenically unsaturated groups in the epoxy (meth) acrylate oligomer is preferably 2 to 6, and more preferably 2 to 3.
  • the epoxy (meth) acrylate oligomer can be obtained, for example, by reacting a compound having an epoxy group with acrylic acid.
  • the molecular weight of the specific compound B1 (weight average molecular weight when having a molecular weight distribution) is preferably more than 1,000, more preferably 1,100 to 10,000, and even more preferably 1,100 to 5,000.
  • Specific compound B1 a synthetic product or a commercially available product may be used.
  • Specific examples of the specific compound B1 include, for example, the following commercially available products, but the specific compound B1 used in the present disclosure is not limited thereto.
  • the content of the specific compound B1 in the image recording layer with respect to the total mass of the polymerizable compound is preferably 10% by mass to 100% by mass, preferably 50% by mass to 100% by mass. Is more preferable, and 80% by mass to 100% by mass is further preferable.
  • the polymerizable compound may contain, as a low molecular weight compound, a compound having one or two ethylenically unsaturated bonding groups (hereinafter, also referred to as a specific compound B2).
  • a preferred embodiment of the ethylenically unsaturated group contained in the specific compound B2 is the same as that of the ethylenically unsaturated group in the specific compound B1.
  • the specific compound B2 is preferably a compound having two ethylenically unsaturated bonding groups (that is, a bifunctional polymerizable compound) from the viewpoint of suppressing a decrease in on-machine developability.
  • the specific compound B2 is preferably a methacrylate compound, that is, a compound having a methacryloxy group, from the viewpoint of on-machine developability and print resistance.
  • the specific compound B2 preferably contains an alkyleneoxy structure or a urethane bond from the viewpoint of on-machine developability.
  • the molecular weight (weight average molecular weight when having a molecular weight distribution) of the specific compound B2 is preferably 50 or more and less than 1,000, more preferably 200 to 900, and more preferably 250 to 800. More preferred.
  • specific compound B2 commercially available products shown below may be used, but the specific compound B2 used in the present disclosure is not limited thereto.
  • Specific examples of the specific compound B2 include BPE-80N (compound of (1) above) manufactured by Shin Nakamura Chemical Industry Co., Ltd., BPE-100, BPE-200, BPE-500, and CN104 manufactured by Sartmer Co., Ltd. Examples thereof include ethoxylated bisphenol A dimethacrylate such as the compound of 1).
  • Specific examples of the specific compound B2 include ethoxylated bisphenol A diacrylates such as A-BPE-10 (compound of (2) above) manufactured by Shin Nakamura Chemical Industry Co., Ltd. and A-BPE-4. ..
  • specific examples of the specific compound B2 include bifunctional methacrylate such as FST 510 manufactured by AZ Electronics.
  • FST 510 is a reaction product of 1 mol of 2,2,4-trimethylhexamethylene diisocyanate and 2 mol of hydroxyethyl methacrylate, and is a solution of the compound of the above (3) in an 82% by mass of methyl ethyl ketone. is there.
  • the content of the specific compound B2 is preferably 1% by mass to 60% by mass, and 5% by mass to 55% by mass, based on the total mass of the image recording layer, from the viewpoint of on-machine developability and print resistance. Is more preferable, and 5% by mass to 50% by mass is further preferable.
  • the content of the specific compound B2 with respect to the total mass of the polymerizable compound in the image recording layer is preferably 10% by mass to 100% by mass, preferably 50% by mass to 100% by mass. Is more preferable, and 80% by mass to 100% by mass is further preferable.
  • the details of the method of use such as the structure of the polymerizable compound, whether it is used alone or in combination, and the amount of addition can be arbitrarily set.
  • the content of the polymerizable compound is preferably 5% by mass to 75% by mass, more preferably 10% by mass to 70% by mass, and 15% by mass to 60% by mass with respect to the total mass of the image recording layer. It is particularly preferably by mass%.
  • the image recording layer preferably contains particles from the viewpoints of UV printing resistance, UV plate skipping inhibitory property, and characteristic carving property.
  • the particles may be organic particles or inorganic particles, but are preferably containing organic particles from the viewpoints of UV printing resistance, UV plate skipping inhibitory property, and characteristic carving property, and are polymer. It is more preferable to contain particles.
  • the inorganic particles known inorganic particles can be used, and metal oxide particles such as silica particles and titania particles can be preferably used.
  • the polymer particles may be selected from the group consisting of thermoplastic polymer particles, heat-reactive polymer particles, polymer particles having a polymerizable group, microcapsules containing a hydrophobic compound, and microgels (crosslinked polymer particles). preferable. Of these, polymer particles or microgels having a polymerizable group are preferable. In a particularly preferred embodiment, the polymer particles contain at least one ethylenically unsaturated polymerizable group. The presence of such polymer particles has the effect of enhancing the print resistance of the exposed portion and the on-machine developability of the unexposed portion. Further, the polymer particles are preferably thermoplastic polymer particles.
  • thermoplastic polymer particles Research Disclosure No. 1 of January 1992.
  • the thermoplastic polymer particles described in 33303, JP-A-9-123387, JP-A-9-131850, JP-A-9-171249, JP-A-9-171250, and European Patent No. 931647 are preferable.
  • Specific examples of the polymer constituting the thermoplastic polymer particles include ethylene, styrene, vinyl chloride, methyl acrylate, ethyl acrylate, methyl methacrylate, ethyl methacrylate, vinylidene chloride, acrylonitrile, vinylcarbazole, and a polyalkylene structure.
  • thermoplastic polymer particles examples include homopolymers or copolymers of monomers such as acrylates or methacrylates or mixtures thereof.
  • a copolymer containing polystyrene, styrene and acrylonitrile, or polymethylmethacrylate can be mentioned.
  • the average particle size of the thermoplastic polymer particles is preferably 0.01 ⁇ m to 3.0 ⁇ m.
  • heat-reactive polymer particles examples include polymer particles having a heat-reactive group.
  • the heat-reactive polymer particles form a hydrophobic region by cross-linking due to a heat reaction and the change of functional groups at that time.
  • the thermally reactive group in the polymer particles having a thermally reactive group may be a functional group that undergoes any reaction as long as a chemical bond is formed, but a polymerizable group is preferable, and as an example, it is preferable.
  • Eethylene unsaturated groups eg, acryloyl group, methacryloyl group, vinyl group, allyl group, etc.
  • cationically polymerizable groups eg, vinyl group, vinyloxy group, epoxy group, oxetanyl group, etc.
  • Preferred examples thereof include a hydroxy group or an amino group as a partner, an acid anhydride for carrying out a ring-opening addition
  • the microcapsules for example, as described in JP-A-2001-277740 and JP-A-2001-277742, at least a part of the constituent components of the image recording layer is encapsulated in the microcapsules.
  • the constituent components of the image recording layer can also be contained outside the microcapsules.
  • the image recording layer containing the microcapsules is preferably configured such that the hydrophobic constituents are encapsulated in the microcapsules and the hydrophilic constituents are contained outside the microcapsules.
  • the microgel (crosslinked polymer particles) can contain a part of the constituent components of the image recording layer on at least one of the surface or the inside thereof.
  • a reactive microgel having a radically polymerizable group on its surface is preferable from the viewpoint of the sensitivity of the obtained lithographic printing plate original plate and the printing durability of the obtained lithographic printing plate.
  • a known method can be applied to microencapsulate or microgelify the constituents of the image recording layer.
  • an adduct of a polyhydric phenol compound having two or more hydroxy groups in the molecule and isophorone diisocyanate from the viewpoint of printing resistance, stain resistance and storage stability of the obtained flat plate printing plate.
  • the one obtained by the reaction of the polyhydric isocyanate compound and the compound having active hydrogen is preferable.
  • the multivalent phenol compound a compound having a plurality of benzene rings having a phenolic hydroxy group is preferable.
  • a polyol compound or a polyamine compound is preferable, a polyol compound is more preferable, and at least one compound selected from the group consisting of propylene glycol, glycerin and trimethylolpropane is further preferable.
  • the resin particles obtained by the reaction of the polyhydric phenol compound having two or more hydroxy groups in the molecule, the polyhydric isocyanate compound which is an adduct of isophorone diisocyanate, and the compound having active hydrogen include The polymer particles described in paragraphs 0032 to 0905 of JP-206495 are preferably mentioned.
  • the polymer particles have a hydrophobic main chain from the viewpoint of printing resistance and solvent resistance of the obtained lithographic printing plate, and i) a pendant cyano group directly bonded to the hydrophobic main chain. It is preferable to include both a constituent unit having and ii) a constituent unit having a pendant group containing a hydrophilic polyalkylene oxide segment.
  • Acrylic resin chains are preferably mentioned as the hydrophobic main chain.
  • the pendant cyano group -[CH 2 CH (C ⁇ N)-] or-[CH 2 C (CH 3 ) (C ⁇ N)-] is preferably mentioned.
  • the constituent unit having the pendant cyano group can be easily derived from an ethylene-based unsaturated monomer such as acrylonitrile or methacrylonitrile, or from a combination thereof.
  • an ethylene-based unsaturated monomer such as acrylonitrile or methacrylonitrile, or from a combination thereof.
  • the alkylene oxide in the hydrophilic polyalkylene oxide segment ethylene oxide or propylene oxide is preferable, and ethylene oxide is more preferable.
  • the number of repetitions of the alkylene oxide structure in the hydrophilic polyalkylene oxide segment is preferably 10 to 100, more preferably 25 to 75, and even more preferably 40 to 50.
  • Both a constituent unit having a hydrophobic backbone and i) having a pendant cyano group directly attached to the hydrophobic backbone and ii) a constituent unit having a pendant group containing a hydrophilic polyalkylene oxide segment are preferably mentioned.
  • the polymer particles preferably have a hydrophilic group from the viewpoint of UV printing resistance, special color carving property, and on-machine developability.
  • the hydrophilic group is not particularly limited as long as it has a hydrophilic structure, and examples thereof include an acid group such as a carboxy group, a hydroxy group, an amino group, a cyano group, and a polyalkylene oxide structure.
  • a polyalkylene oxide structure is preferable from the viewpoints of on-machine developability, UV printing resistance, UV plate skipping inhibitory property, and characteristic carving property, and a polyethylene oxide structure, a polypropylene oxide structure, or a polyethylene / propylene oxide structure Is more preferable.
  • the polyalkylene oxide structure preferably has a polypropylene oxide structure, and may have a polyethylene oxide structure and a polypropylene oxide structure. More preferred.
  • the hydrophilic group preferably contains a structural unit having a cyano group or a group represented by the following formula Z from the viewpoint of print resistance, fillability and on-machine developability. It is more preferable to include a structural unit represented by the following formula (AN) or a group represented by the following formula Z, and it is particularly preferable to include a group represented by the following formula Z.
  • Q represents a divalent linking group
  • W represents a divalent group having a hydrophilic structure or a divalent group having a hydrophobic structure
  • Y represents a monovalent group having a hydrophilic structure or It represents a monovalent group having a hydrophobic structure, either W or Y has a hydrophilic structure
  • * represents a binding site with another structure.
  • RAN represents a hydrogen atom or a methyl group.
  • the polymer contained in the polymer particles preferably contains a structural unit formed of a compound having a cyano group.
  • the cyano group is usually preferably introduced into the resin A as a structural unit containing a cyano group by using a compound (monomer) having a cyano group.
  • Examples of the compound having a cyano group include acrylonitrile compounds, and (meth) acrylonitrile is preferable.
  • the structural unit having a cyano group is preferably a structural unit formed of an acrylonitrile compound, and more preferably a structural unit formed of (meth) acrylonitrile, that is, a structural unit represented by the above formula (AN). ..
  • the content of the structural unit having a cyano group, preferably the structural unit represented by the above formula (AN), in the polymer having a structural unit having a cyano group. Is preferably 5% by mass to 90% by mass, and more preferably 20% by mass to 80% by mass, based on the total mass of the polymer having a structural unit having a cyano group, from the viewpoint of UV printing resistance. It is preferable, and it is particularly preferable that it is 30% by mass to 60% by mass.
  • the polymer particles preferably contain polymer particles having a group represented by the above formula Z from the viewpoints of printing resistance, meat-forming property, special color-forming property, and on-machine developability.
  • Q in the above formula Z is preferably a divalent linking group having 1 to 20 carbon atoms, and more preferably a divalent linking group having 1 to 10 carbon atoms. Further, Q in the above formula Z is preferably an alkylene group, an arylene group, an ester bond, an amide bond, or a group in which two or more of these are combined, and may be a phenylene group, an ester bond, or an amide bond. More preferred.
  • the divalent group having a hydrophilic structure in W of the above formula Z is preferably a polyalkyleneoxy group or a group in which -CH 2 CH 2 NR W- is bonded to one end of a polyalkyleneoxy group. ..
  • R W represents a hydrogen atom or an alkyl group.
  • the RWAs are independently linear, branched or cyclic alkylene groups having 6 to 120 carbon atoms, haloalkylene groups having 6 to 120 carbon atoms, arylene groups having 6 to 120 carbon atoms, and alcoholylenes having 6 to 120 carbon atoms. It represents a group (a divalent group obtained by removing one hydrogen atom from an alkylaryl group) or an aralkylene group having 6 to 120 carbon atoms.
  • the monovalent group having a hydrophobic structure in Y of the above formula Z is a linear, branched or cyclic alkyl group having 6 to 120 carbon atoms, a haloalkyl group having 6 to 120 carbon atoms, an aryl group having 6 to 120 carbon atoms, and the like.
  • RWB represents an alkyl group having 6 to 20 carbon atoms.
  • the polymer particle having a group represented by the above formula Z is a divalent group in which W has a hydrophilic structure from the viewpoints of printing resistance, fleshing property, characteristic fleshing property, and on-machine developability. More preferably, Q is a phenylene group, an ester bond, or an amide bond, W is a polyalkyleneoxy group, and Y is a polyalkyleneoxy group having a hydrogen atom or an alkyl group at the end. More preferred.
  • the polymer particles preferably contain polymer particles having a polymerizable group from the viewpoints of printing resistance, meat-forming property, special color-forming property, UV plate skipping inhibitory property, and on-machine developability. It is more preferable to contain polymer particles having a polymerizable group on the surface. Further, from the viewpoint of printing resistance, the polymer particles preferably contain polymer particles having a hydrophilic group and a polymerizable group. Even if the polymerizable group is a cationically polymerizable group, it is a radically polymerizable group. However, from the viewpoint of reactivity, a radically polymerizable group is preferable.
  • the polymerizable group is not particularly limited as long as it is a polymerizable group, but from the viewpoint of reactivity, an ethylenically unsaturated group is preferable, and a vinylphenyl group (styryl group), a (meth) acryloxy group, or a (meth) acryloxy group, or A (meth) acrylamide group is more preferred, and a (meth) acryloxy group is particularly preferred.
  • the polymer in the polymer particles having a polymerizable group preferably has a structural unit having a polymerizable group.
  • a polymerizable group may be introduced on the surface of the polymer particles by a polymer reaction.
  • the polymer particles are made of a resin having a urea bond from the viewpoints of printing resistance, fleshing property, characteristic fleshing property, UV plate skipping suppressing property, on-machine development property, and developing residue suppressing property during on-machine development. It is preferable to include a resin having a structure obtained by at least reacting an isocyanate compound represented by the following formula (Iso) with water, and an isocyanate compound represented by the following formula (Iso) and water. It is particularly preferable to contain a resin having a structure obtained by at least reacting with and having a polyethylene oxide structure and a polypropylene oxide structure as the polyoxyalkylene structure. Further, the particles containing the resin having a urea bond are preferably microgels.
  • n represents an integer from 0 to 10.
  • a compound having active hydrogen reactive with an isocyanate group such as an alcohol compound or an amine compound
  • an isocyanate group such as an alcohol compound or an amine compound
  • the structure of the alcohol compound or the amine compound is introduced into the resin having a urea bond. You can also do it.
  • the compound having active hydrogen those described in the above-mentioned microgel are preferably mentioned.
  • the resin having a urea bond preferably has an ethylenically unsaturated group, and more preferably has a group represented by the following formula (PETA).
  • the average particle size of the particles is preferably 0.01 ⁇ m to 3.0 ⁇ m, more preferably 0.03 ⁇ m to 2.0 ⁇ m, and even more preferably 0.10 ⁇ m to 1.0 ⁇ m. Good resolution and stability over time can be obtained in this range.
  • the average primary particle size of the particles in the present disclosure is measured by a light scattering method, or an electron micrograph of the particles is taken, and a total of 5,000 particle sizes are measured on the photograph, and the average value is obtained. Shall be calculated. For non-spherical particles, the particle size value of spherical particles having the same particle area as the particle area on the photograph is used as the particle size. Further, the average particle size in the present disclosure shall be the volume average particle size unless otherwise specified.
  • the image recording layer may contain particles, particularly polymer particles, alone or in combination of two or more.
  • the content of the particles in the image recording layer, particularly the polymer particles is relative to the total mass of the image recording layer from the viewpoints of developability, UV printing resistance, UV plate skipping inhibitory property, and characteristic color carving property. It is preferably 5% by mass to 90% by mass, more preferably 10% by mass to 90% by mass, further preferably 20% by mass to 90% by mass, and 50% by mass to 90% by mass. Especially preferable.
  • the content of the polymer particles in the image recording layer has a molecular weight of 3,000 or more in the image recording layer from the viewpoints of developability, UV printing resistance, UV plate skipping inhibitory property, and special color carving property. 20% by mass to 100% by mass, more preferably 35% by mass to 100% by mass, further preferably 50% by mass to 100% by mass, and 80% by mass to 100% by mass, based on the total mass of the components of. It is particularly preferably 100% by mass.
  • the image recording layer may contain a binder polymer, but it is preferable that the image recording layer does not contain the binder polymer from the viewpoints of on-machine developability, UV printing resistance, UV plate skipping inhibitory property, and special color carving property.
  • the binder polymer is a polymer other than the polymer particles, that is, a binder polymer that is not in the form of particles.
  • a (meth) acrylic resin, a polyvinyl acetal resin, or a polyurethane resin is preferable.
  • a known binder polymer used for the image recording layer of the lithographic printing plate original plate can be preferably used.
  • a binder polymer (hereinafter, also referred to as a binder polymer for on-machine development) used in a machine-developed planographic printing plate original plate will be described in detail.
  • a binder polymer for on-machine development a binder polymer having an alkylene oxide chain is preferable.
  • the binder polymer having an alkylene oxide chain may have a poly (alkylene oxide) moiety in the main chain or the side chain.
  • graft polymer having a poly (alkylene oxide) in a side chain, or a block copolymer of a block composed of a poly (alkylene oxide) -containing repeating unit and a block composed of a (alkylene oxide) -free repeating unit.
  • a polyurethane resin is preferable.
  • the polymer of the main chain is (meth) acrylic resin, polyvinyl acetal resin, polyurethane resin, polyurea resin, polyimide resin, polyamide resin, epoxy resin, polystyrene resin, novolak type. Examples thereof include phenol resin, polyester resin, synthetic rubber and natural rubber, and (meth) acrylic resin is particularly preferable.
  • a high molecular weight polymer chain having a polyfunctional thiol having 6 or more functionalities and 10 or less functional as a nucleus and being bonded to the nucleus by a sulfide bond, and the polymer chain having a polymerizable group examples thereof include molecular compounds (hereinafter, also referred to as star-shaped polymer compounds).
  • the star-shaped polymer compound for example, the compound described in JP2012-148555 can be preferably used.
  • the star-shaped polymer compound contains a polymerizable group such as an ethylenically unsaturated bond for improving the film strength of the image portion as described in JP-A-2008-195018, with a main chain or a side chain, preferably a side chain. Examples include those held in the chain.
  • the polymerizable group forms crosslinks between the polymer molecules to promote curing.
  • an ethylenically unsaturated group such as a (meth) acrylic group, a vinyl group, an allyl group or a styryl group or an epoxy group is preferable, and a (meth) acrylic group, a vinyl group or a styryl group is polymerizable.
  • a (meth) acrylic group is particularly preferable.
  • These groups can be introduced into the polymer by polymer reaction or copolymerization. For example, a reaction between a polymer having a carboxy group in the side chain and glycidyl methacrylate, or a reaction between a polymer having an epoxy group and an ethylenically unsaturated group-containing carboxylic acid such as methacrylic acid can be used. These groups may be used together.
  • the molecular weight of the binder polymer preferably has a weight average molecular weight (Mw) of 2,000 or more, more preferably 5,000 or more, and is 10,000 to 300,000 as a polystyrene-equivalent value by the GPC method. It is more preferable to have.
  • Mw weight average molecular weight
  • hydrophilic polymers such as polyacrylic acid and polyvinyl alcohol described in JP-A-2008-195018 can be used in combination.
  • a lipophilic polymer and a hydrophilic polymer can be used in combination.
  • the binder polymer used in the present disclosure preferably has a glass transition temperature (Tg) of 50 ° C. or higher, preferably 70 ° C. or higher, from the viewpoint of suppressing a decrease in on-machine developability over time. More preferably, it is more preferably 80 ° C. or higher, and particularly preferably 90 ° C. or higher.
  • the upper limit of the glass transition temperature of the binder polymer is preferably 200 ° C., more preferably 120 ° C. or lower, from the viewpoint of easy water penetration into the image recording layer.
  • polyvinyl acetal is preferable from the viewpoint of further suppressing the decrease in on-machine developability with time.
  • Polyvinyl acetal is a resin obtained by acetalizing the hydroxy group of polyvinyl alcohol with an aldehyde.
  • polyvinyl butyral in which the hydroxy group of polyvinyl alcohol is acetalized (that is, butyralized) with butyraldehyde is preferable.
  • the polyvinyl acetal preferably contains a structural unit represented by the following (a) by acetalizing the hydroxy group of polyvinyl alcohol with an aldehyde.
  • R represents a residue of the aldehyde used for acetalization.
  • R include a hydrogen atom, an alkyl group and the like, as well as an ethylenically unsaturated group described later.
  • the content of the structural unit represented by (a) above (also referred to as the amount of ethylene groups in the main chain contained in the structural unit represented by (a) above, and also referred to as the degree of acetalization) is polyvinyl acetal. 50 mol% to 90 mol% is preferable, 55 mol% to 85 mol% is more preferable, and 55 mol% to 80 mol% is further more preferable with respect to the total structural unit (total ethylene group amount of the main chain).
  • the degree of acetalization is the amount of ethylene groups to which acetal groups are bonded (the amount of ethylene groups in the main chain included in the structural unit represented by (a) above) divided by the total amount of ethylene groups in the main chain. It is a value showing the molar fraction obtained by the above as a percentage. The same applies to the content of each structural unit of polyvinyl acetal, which will be described later.
  • the polyvinyl acetal preferably has an ethylenically unsaturated group from the viewpoint of improving printing resistance.
  • the ethylenically unsaturated group contained in the polyvinyl acetal is not particularly limited, and from the viewpoint of reactivity, on-machine developability, and print resistance, a vinylphenyl group (styryl group), a vinyl ester group, a vinyl ether group, It is more preferable that it is at least one group selected from the group consisting of an allyl group, a (meth) acryloxy group, and a (meth) acrylamide group, and a vinyl group, an allyl group, a (meth) acryloxy group and the like are preferable.
  • the polyvinyl acetal preferably contains a structural unit having an ethylenically unsaturated group.
  • the structural unit having an ethylenically unsaturated group may be a structural unit having an acetal ring described above, or a structural unit other than the structural unit having an acetal ring.
  • polyvinyl acetal is preferably a compound in which an ethylenically unsaturated group is introduced into the acetal ring. That is, it is preferable that R has an ethylenically unsaturated group in the structural unit represented by (a) above.
  • the structural unit having an ethylenically unsaturated group is a structural unit other than the structural unit having an acetal ring, for example, the structural unit having an acrylate group, specifically, the structural unit represented by the following (d). There may be.
  • the content of this structural unit is the same as that of all the structural units of polyvinyl acetal. It is preferably 1 mol% to 15 mol%, more preferably 1 mol% to 10 mol%.
  • the polyvinyl acetal preferably further contains a structural unit having a hydroxy group from the viewpoint of on-machine developability and the like. That is, the polyvinyl acetal preferably contains a structural unit derived from vinyl alcohol. Examples of the structural unit having a hydroxy group include the structural unit represented by the following (b).
  • the content (also referred to as the amount of hydroxyl groups) of the structural unit represented by (b) above is preferably 5 mol% to 50 mol%, preferably 10 mol%, based on all the structural units of polyvinyl acetal from the viewpoint of on-machine developability. It is more preferably from 40 mol%, still more preferably from 20 mol% to 40 mol%.
  • the polyvinyl acetal may further contain other structural units.
  • the other structural unit include a structural unit having an acetyl group, specifically, a structural unit represented by the following (c).
  • the content (also referred to as the amount of acetyl group) of the structural unit represented by the above (c) is preferably 0.5 mol% to 10 mol%, preferably 0.5 mol% to 8 mol%, based on all the structural units of polyvinyl acetal. Is more preferable, and 1 mol% to 3 mol% is further preferable.
  • the degree of acetalization, the amount of acrylate groups, the amount of hydroxyl groups, and the amount of acetyl groups can be determined as follows. That is, the mol content is calculated from the proton peak area ratios of the methyl or methylene moiety of acetal, the methyl moiety of the acrylate group, and the methyl moiety of the hydroxyl group and the acetyl group by 1 H NMR measurement.
  • the weight average molecular weight of the polyvinyl acetal is preferably 18,000 to 150,000.
  • Solubility parameter of the polyvinyl acetal (also referred to as SP value) is preferably from 17.5MPa 1/2 ⁇ 20.0MPa 1/2, to be 18.0MPa 1/2 ⁇ 19.5MPa 1/2 More preferable.
  • the “solubility parameter (unit: (MPa) 1/2 )” in the present disclosure uses the Hansen solubility parameter.
  • the Hansen solubility parameter is a three-dimensional space obtained by dividing the solubility parameter introduced by Hildebrand into three components, a dispersion term ⁇ d, a polarity term ⁇ p, and a hydrogen bond term ⁇ h.
  • the solubility parameter (hereinafter, also referred to as SP value) is represented by ⁇ (unit: (MPa) 1/2 ), and a value calculated using the following formula is used.
  • ⁇ (MPa) 1/2 ( ⁇ d 2 + ⁇ p 2 + ⁇ h 2 ) 1/2
  • the dispersion term ⁇ d, the polarity term ⁇ p, and the hydrogen bond term ⁇ h are more sought after by Hansen and his successors, and are described in detail in the Polymer Handbook (fourth edition), VII-698-711. ..
  • the details of the value of the solubility parameter of Hansen are described in the document "Hansen Solubility Parameters; A Users Handbook (CRC Press, 2007)" by Charles M. Hansen.
  • the Hansen solubility parameter in the partial structure of the compound can be a value estimated from the chemical structure by using the computer software "Hansen Solubility Parameters in Practice (HSPiP ver.4.1.07)".
  • Hansen Solubility Parameters in Practice HSPiP ver.4.1.07
  • the SP value for each monomer unit is shown as the total amount multiplied by the molar fraction, and the compound has no monomer unit. If it is a molecular compound, it is the SP value of the entire compound.
  • the SP value of the polymer may be calculated from the molecular structure of the polymer by the Hoy method described in the Polymer Handbook (fourth edition).
  • polyvinyl acetals [P-1 to P-3] are listed below, but the polyvinyl acetals used in the present disclosure are not limited thereto.
  • “l” is 50 mol% to 90 mol%
  • “m” is 0.5 mol% to 10 mass%
  • "n” is 5 mol% to 50 mol%
  • “o” is 1 mol% to 1 mol%. It is 15 mol%.
  • polyvinyl acetal a commercially available product can be used.
  • Eslek series specifically, Eslek BX-L, BX-1, BX-5, BL-7Z, BM-1, BM-5, BH -6, BH-3, etc.
  • the image recording layer in the present disclosure preferably contains a resin having a fluorine atom, and more preferably contains a fluoroaliphatic group-containing copolymer.
  • a resin having a fluorine atom, particularly a fluoroaliphatic group-containing copolymer it is possible to suppress surface quality abnormalities due to foaming during formation of the image recording layer, improve the coating surface shape, and further form the image recording layer.
  • the inking property of the ink in the image recording layer can be improved.
  • the image recording layer containing the fluoroaliphatic group-containing copolymer has high gradation, for example, high sensitivity to laser light, good fog resistance due to scattered light, reflected light, etc., and excellent printing resistance. An excellent lithographic printing plate can be obtained.
  • the fluoroaliphatic group-containing copolymer preferably has a structural unit formed of a compound represented by either the following formula (F1) or the following formula (F2).
  • R F1 independently represents a hydrogen atom or a methyl group
  • X independently represents an oxygen atom, a sulfur atom, or -N ( RF2 )-.
  • m represents an integer of 1 ⁇ 6
  • n represents an integer of 1 ⁇ 10
  • l represents an integer of 0 ⁇ 10
  • R F2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms represented by RF2 in the formulas (F1) and (F2) is preferably a methyl group, an ethyl group, an n-propyl group, or an n-butyl group, preferably a hydrogen atom or a methyl group. Is more preferable. It is preferable that X in the formulas (F1) and (F2) is an oxygen atom.
  • the m in the formula (F1) is preferably 1 or 2, and more preferably 2.
  • N in the formula (F1) is preferably 2, 4, 6, 8, or 10, and more preferably 4 or 6.
  • the l in the formula (F1) is preferably 0.
  • the fluoroaliphatic group-containing copolymer is composed of poly (oxyalkylene) acrylate and poly (oxyalkylene) in addition to the structural unit formed from the compound represented by any of the above formulas (F1) and (F2). It is preferable to further have a structural unit formed by at least one compound selected from the group consisting of methacrylates.
  • the polyoxyalkylene group in the poly (oxyalkylene) acrylate and the poly (oxyalkylene) methacrylate can be represented by- (OR F3 ) x- , RF3 represents an alkyl group, and x is an integer of 2 or more. Represent.
  • the RF3 is preferably a linear or branched alkylene group having 2 to 4 carbon atoms. Examples of the linear or branched alkylene group having a carbon number of 2 ⁇ 4, -CH 2 CH 2 -, - CH 2 CH 2 CH 2 -, - CH (CH 3) CH 2 -, or -CH (CH 3 ) CH (CH 3 )-preferably.
  • x is preferably an integer of 2 to 100.
  • x "OR F3 " may be the same or different. That is, the polyoxyalkylene group may be one in which two or more kinds of "OR F3 " are regularly or irregularly bonded.
  • the polyoxyalkylene group may be one in which linear or branched oxypropylene units and oxyethylene units are regularly or irregularly bonded. More specifically, the polyoxyalkylene group may be a combination of a linear or branched block of oxypropylene units and a block of oxyethylene units.
  • the polyoxyalkylene group may contain one or more linking groups (for example, -CONH-Ph-NHCO-, -S-, etc., where Ph represents a phenylene group). ..
  • the molecular weight of the polyoxyalkylene group is preferably 250 to 3,000.
  • poly (oxyalkylene) acrylate and the poly (oxyalkylene) methacrylate a commercially available product or a synthetic product may be used.
  • the poly (oxyalkylene) acrylate and the poly (oxyalkylene) methacrylate react, for example, with a hydroxypoly (oxyalkylene) compound with acrylic acid, methacrylic acid, acrylic chloride, methacrylic chloride, anhydrous acrylic acid, or the like by a known method. It can be synthesized by letting it.
  • hydroxypoly (oxyalkylene) compound a commercially available product may be used, for example, ADEKA (registered trademark) Pluronic manufactured by ADEKA Corporation, ADEKA polyether manufactured by ADEKA Corporation, and Union Carbide Corporation. Examples thereof include Carbowax (registered trademark), Triton manufactured by Dow Chemical Corporation, and PEG manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • ADEKA registered trademark
  • ADEKA polyether manufactured by ADEKA Corporation ADEKA Corporation
  • Union Carbide Corporation examples thereof include Carbowax (registered trademark), Triton manufactured by Dow Chemical Corporation, and PEG manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • poly (oxyalkylene) acrylate and the poly (oxyalkylene) methacrylate poly (oxyalkylene) diacrylate or the like synthesized by a known method may be used.
  • one type of binder polymer may be used alone, or two or more types may be used in combination.
  • the binder polymer can be contained in the image recording layer in an arbitrary amount, but from the viewpoints of on-machine developability, UV printing resistance, UV plate skipping inhibitory property, and special color carving property, the binder polymer can be contained.
  • the content of the binder polymer is preferably more than 0% by mass and 20% by mass or less with respect to the total mass of the image recording layer, and the binder polymer is not contained or the content of the binder polymer is not contained.
  • the content of the binder polymer is more preferably more than 0% by mass and 10% by mass or less with respect to the total mass of the image recording layer, and either does not contain the binder polymer or contains the binder polymer. Is more preferably more than 0% by mass and 5% by mass or less with respect to the total mass of the image recording layer, and either does not contain the binder polymer or the content of the binder polymer is the content of the image recording layer. It is particularly preferably more than 0% by mass and 2% by mass or less with respect to the total mass, and most preferably it does not contain the binder polymer.
  • the image recording layer preferably contains a color former, and more preferably contains an acid color former. Moreover, it is preferable that the color former contains a leuco compound.
  • the "color former” used in the present disclosure means a compound having the property of changing the color of the image recording layer by developing or decoloring the color by a stimulus such as light or acid, and the "acid color former" is used. It means a compound having a property of developing or decoloring and changing the color of an image recording layer by heating in a state of receiving an electron-accepting compound (for example, a proton such as an acid).
  • the acid color former has a partial skeleton such as lactone, lactam, salton, spiropyrane, ester, and amide, and when it comes into contact with an electron-accepting compound, these partial skeletons are rapidly ring-opened or cleaved. Compounds are preferred.
  • Examples of such acid color formers are 3,3-bis (4-dimethylaminophenyl) -6-dimethylaminophthalide (referred to as "crystal violet lactone") and 3,3-bis (4).
  • -Dimethylaminophenyl) phthalide 3- (4-dimethylaminophenyl) -3- (4-diethylamino-2-methylphenyl) -6-dimethylaminophthalide, 3- (4-dimethylaminophenyl) -3- ( 1,2-dimethylindole-3-yl) phthalide, 3- (4-dimethylaminophenyl) -3- (2-methylindole-3-yl) phthalide, 3,3-bis (1,2-dimethylindole-) 3-yl) -5-dimethylaminophthalide, 3,3-bis (1,2-dimethylindole-3-yl) -6-dimethylaminophthalide, 3,3-bis (9-ethy
  • the color former used in the present disclosure is preferably at least one compound selected from the group consisting of a spiropyran compound, a spirooxazine compound, a spirolactone compound, and a spirolactam compound from the viewpoint of color development. .. From the viewpoint of visibility, the hue of the dye after color development is preferably green, blue or black.
  • the acid coloring agent is preferably a leuco dye from the viewpoint of color developing property and visibility of the exposed portion.
  • the leuco dye is not particularly limited as long as it has a leuco structure, but preferably has a spiro structure, and more preferably has a spirolactone ring structure.
  • the leuco dye is preferably a leuco dye having a phthalide structure or a fluorine structure from the viewpoint of color development and visibility of the exposed portion.
  • the leuco dye having the phthalide structure or the fluorine structure is a compound represented by any of the following formulas (Le-1) to (Le-3) from the viewpoint of color development and visibility of the exposed portion. It is more preferable that the compound is represented by the following formula (Le-2).
  • each ERG independently represents an electron donating group
  • each X 1 ⁇ X 4 independently represent a hydrogen atom, a halogen atom or a dialkyl anilino group
  • X 5 to X 10 independently represent a hydrogen atom, a halogen atom or a monovalent organic group
  • Y 1 and Y 2 independently represent C or N, and when Y 1 is N, If X 1 is absent and Y 2 is N, then X 4 is absent, Ra 1 represents a hydrogen atom, an alkyl group or an alkoxy group, and Rb 1 to Rb 4 are independent alkyl groups. Or represents an aryl group.
  • the electron-donating groups in the ERGs of the formulas (Le-1) to (Le-3) include amino groups, alkylamino groups, arylamino groups, and dialkylamino groups from the viewpoint of color development and visibility of the exposed area.
  • a group, a monoalkyl monoarylamino group, a diarylamino group, an alkoxy group, an aryloxy group, or an alkyl group is preferable, and an amino group, an alkylamino group, an arylamino group, a dialkylamino group, or a monoalkyl monoarylamino group.
  • a diarylamino group, an alkoxy group, or an aryloxy group is more preferable, a monoalkyl monoarylamino group or a diarylamino group is further preferable, and a monoalkyl monoarylamino group is particularly preferable. ..
  • Formula (Le-1) ⁇ formula each X 1 ⁇ X 4 is in (Le-3) independently chromogenic, and, from the viewpoint of visibility of the exposure unit, a hydrogen atom, or, be a chlorine atom preferably , A hydrogen atom is more preferable.
  • X 5 to X 10 in the formula (Le-2) or the formula (Le-3) are independently, from the viewpoint of color development and visibility of the exposed part, hydrogen atom, halogen atom, alkyl group, aryl group, respectively.
  • a hydrogen atom is particularly preferable. It is preferable that at least one of Y 1 and Y 2 in the formulas (Le-1) to (Le-3) is C from the viewpoint of color development and visibility of the exposed portion, and Y 1 and Y are Y. It is more preferable that both of 2 are C.
  • Ra 1 in the formulas (Le-1) to (Le-3) is preferably an alkyl group or an alkoxy group, and more preferably an alkoxy group, from the viewpoint of color development and visibility of the exposed portion. It is preferably a methoxy group, and particularly preferably a methoxy group.
  • Rb 1 to Rb 4 in the formulas (Le-1) to (Le-3) are preferably hydrogen atoms or alkyl groups independently from the viewpoint of color development and visibility of the exposed part, and are alkyl. It is more preferably a group, and particularly preferably a methyl group.
  • the leuco dye having the phthalide structure or the fluorene structure has the following formulas (Le-4) to the following formulas (Le-4) from the viewpoint of color development and visibility of the exposed portion.
  • the compound represented by any of Le-6) is more preferable, and the compound represented by the following formula (Le-5) is further preferable.
  • each ERG independently represents an electron donating group
  • each X 1 ⁇ X 4 independently represent a hydrogen atom, a halogen atom or a dialkyl anilino group
  • Y 1 and Y 2 independently represent C or N, and if Y 1 is N, then X 1 does not exist, and if Y 2 is N, then X 4 does not exist and Ra.
  • 1 represents a hydrogen atom, an alkyl group or an alkoxy group
  • Rb 1 to Rb 4 independently represent an alkyl group or an aryl group, respectively.
  • ERG, X 1 to X 4 , Y 1 , Y 2 , Ra 1 and Rb 1 to Rb 4 in the formulas (Le-4) to (Le-6) are the formulas (Le-1) to the formulas (Le-1) to Rb 4 , respectively.
  • the leuco dye having the phthalide structure or the fluorane structure has the following formulas (Le-7) to the following formulas (Le-7) from the viewpoint of color development and visibility of the exposed portion.
  • a compound represented by any of Le-9) is more preferable, and a compound represented by the following formula (Le-8) is particularly preferable.
  • each X 1 ⁇ X 4 is independently a hydrogen atom, a halogen atom or a dialkyl anilino group
  • Y 1 and Y 2 are each independently, C or Representing N, when Y 1 is N, X 1 does not exist, when Y 2 is N, X 4 does not exist
  • Ra 1 to Ra 4 are independent hydrogen atoms and alkyl, respectively.
  • Rb 1 to Rb 4 independently represent an alkyl group or an aryl group
  • Rc 1 and Rc 2 each independently represent an aryl group.
  • Ra 1 to Ra 4 in the formulas (Le-7) to (Le-9) are preferably alkyl groups or alkoxy groups independently from the viewpoint of color development and visibility of the exposed portion, respectively, and are alkoxy groups. It is more preferably a group, and particularly preferably a methoxy group.
  • Rb 1 to Rb 4 in the formulas (Le-7) to (Le-9) are independently substituted with a hydrogen atom, an alkyl group, or an alkoxy group from the viewpoint of color development and visibility of the exposed portion. It is preferably a group, more preferably an alkyl group, and particularly preferably a methyl group.
  • Rc 1 and Rc 2 in the formula (Le-8) are preferably phenyl groups or alkylphenyl groups, and are preferably phenyl groups, independently from the viewpoint of color development and visibility of the exposed portion. Is more preferable.
  • X 1 to X 4 are hydrogen atoms and Y 1 and Y 2 are C from the viewpoint of color development and visibility of the exposed portion.
  • Rb 1 and Rb 2 are independently alkyl groups or aryl groups substituted with an alkoxy group.
  • the alkyl group in the formulas (Le-1) to (Le-9) may be linear, have a branch, or have a ring structure. Further, the number of carbon atoms of the alkyl group in the formulas (Le-1) to (Le-9) is preferably 1 to 20, more preferably 1 to 8, and further preferably 1 to 4. It is preferably 1 or 2, and particularly preferably 1. The number of carbon atoms of the aryl group in the formulas (Le-1) to (Le-9) is preferably 6 to 20, more preferably 6 to 10, and particularly preferably 6 to 8.
  • each group such as a monovalent organic group, an alkyl group, an aryl group, a dialkylanilino group, an alkylamino group and an alkoxy group in the formulas (Le-1) to (Le-9) has a substituent.
  • substituents include alkyl groups, aryl groups, halogen atoms, amino groups, alkylamino groups, arylamino groups, dialkylamino groups, monoalkyl monoarylamino groups, diarylamino groups, hydroxy groups, alkoxy groups, allyloxy groups and acyl groups. Examples thereof include a group, an alkoxycarbonyl group, an aryloxycarbonyl group and a cyano group. Further, these substituents may be further substituted with these substituents.
  • Examples of the leuco dye having a phthalide structure or a fluorine structure that are preferably used include the following compounds.
  • Me represents a methyl group.
  • ETAC, S-205, BLACK305, BLACK400, BLACK100, BLACK500, H-7001, GREEN300, NIRBLACK78, H-3035, ATP, H-1046, H-2114, GREEN-DCF, Blue-63. , GN-169, and crystal violet lactone are preferable because the film to be formed has a good visible light absorption rate.
  • color formers may be used alone or in combination of two or more kinds of components.
  • the content of the color former is preferably 0.5% by mass to 10% by mass, and more preferably 1% by mass to 5% by mass, based on the total mass of the image recording layer.
  • the image recording layer used in the present disclosure may contain a chain transfer agent.
  • the chain transfer agent contributes to the improvement of printing durability in the lithographic printing plate.
  • a thiol compound is preferable, a thiol having 7 or more carbon atoms is more preferable from the viewpoint of boiling point (difficulty in volatilization), and a compound having a mercapto group on the aromatic ring (aromatic thiol compound) is further preferable.
  • the thiol compound is preferably a monofunctional thiol compound.
  • chain transfer agent examples include the following compounds.
  • the content of the chain transfer agent is preferably 0.01% by mass to 50% by mass, more preferably 0.05% by mass to 40% by mass, and 0.1% by mass to 30% by mass with respect to the total mass of the image recording layer. % Is more preferable.
  • the image recording layer may contain a low molecular weight hydrophilic compound in order to improve on-machine developability while suppressing a decrease in printing resistance.
  • the low molecular weight hydrophilic compound is preferably a compound having a molecular weight of less than 1,000, more preferably a compound having a molecular weight of less than 800, and further preferably a compound having a molecular weight of less than 500.
  • low molecular weight hydrophilic compound examples include, as water-soluble organic compounds, glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, and tripropylene glycol, ethers or ester derivatives thereof, and glycerin.
  • glycols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, and tripropylene glycol, ethers or ester derivatives thereof, and glycerin.
  • Polyols such as pentaerythritol and tris (2-hydroxyethyl) isocyanurate
  • organic amines such as triethanolamine, diethanolamine and monoethanolamine and salts thereof
  • organic sulfates such as alkyl sulfonic acid, toluene sulfonic acid and benzene sulfonic acid.
  • organic sulfamic acids such as alkylsulfamic acid and salts thereof, organic sulfates such as alkylsulfuric acid and alkylether sulfuric acid and salts thereof, organic phosphonic acids such as phenylphosphonic acid and salts thereof, tartrate acid, oxalic acid, quench Examples thereof include organic carboxylic acids such as acids, malic acids, lactic acids, gluconic acids and amino acids, salts thereof, and betaines.
  • the low molecular weight hydrophilic compound it is preferable to contain at least one selected from polyols, organic sulfates, organic sulfonates and betaines.
  • organic sulfonates include alkyl sulfonates such as sodium n-butyl sulfonate, sodium n-hexyl sulfonate, sodium 2-ethylhexyl sulfonate, sodium cyclohexyl sulfonate, and sodium n-octyl sulfonate; 5 , 8,11-Trioxapentadecane-1-sulfonate, 5,8,11-trioxaheptadecane-1-sulfonate, 13-ethyl-5,8,11-trioxaheptadecane-1-sulfon Alkyl sulfonates containing ethylene oxide chains such as sodium acid, sodium 5,8,11,14-tetraoxatetracosan-1-sulfonate; sodium benzenesulfonate, sodium p-toluenesulfonate, p-hydroxybenzenesulfonic
  • organic sulfates include sulfates of alkyl, alkenyl, alkynyl, aryl or heterocyclic monoether of polyethylene oxide.
  • the number of ethylene oxide units is preferably 1 to 4, and the salt is preferably a sodium salt, a potassium salt or a lithium salt.
  • Specific examples include the compounds described in paragraphs 0034 to 0038 of JP-A-2007-276454.
  • betaines compounds having 1 to 5 carbon atoms of the hydrocarbon substituent on the nitrogen atom are preferable, and specific examples thereof include trimethylammonium acetate, dimethylpropylammonium acetate, and 3-hydroxy-4-trimethylammonium.
  • Obutyrate, 4- (1-pyridinio) butyrate, 1-hydroxyethyl-1-imidazolioacetate, trimethylammonium methanesulfonate, dimethylpropylammonium methanesulfonate, 3-trimethylammonio-1-propanesulfonate, 3 -(1-Pyridinio) -1-propanesulfonate and the like can be mentioned.
  • the low-molecular-weight hydrophilic compound has a small structure of the hydrophobic part and has almost no surface-active action, dampening water permeates the exposed part (image part) of the image recording layer and reduces the hydrophobicity and film strength of the image part. It is possible to maintain good ink acceptability and printing resistance of the image recording layer.
  • the content of the low molecular weight hydrophilic compound is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 15% by mass, and 2% by mass to 10% by mass with respect to the total mass of the image recording layer. Is more preferable. Good on-machine developability and print resistance can be obtained in this range.
  • the low molecular weight hydrophilic compound may be used alone or in combination of two or more.
  • the image recording layer may contain a fat-sensing agent such as a phosphonium compound, a nitrogen-containing low molecular weight compound, and an ammonium group-containing polymer in order to improve the meat-forming property.
  • a fat-sensing agent such as a phosphonium compound, a nitrogen-containing low molecular weight compound, and an ammonium group-containing polymer in order to improve the meat-forming property.
  • these compounds function as a surface coating agent for the inorganic layered compound, and it is possible to suppress a decrease in inking property during printing due to the inorganic layered compound.
  • the fat sensitive agent it is preferable to use a phosphonium compound, a nitrogen-containing low molecular weight compound, and an ammonium group-containing polymer in combination, and the phosphonium compound, a quaternary ammonium salt, and an ammonium group-containing polymer are used in combination. Is more preferable.
  • Examples of the phosphonium compound include the phosphonium compounds described in JP-A-2006-297907 and JP-A-2007-50660. Specific examples include tetrabutylphosphonium iodide, butyltriphenylphosphonium bromide, tetraphenylphosphonium bromide, 1,4-bis (triphenylphosphonio) butane-di (hexafluorophosphine), and 1,7-bis (tri). Phenylphosphonio) heptane-sulfate, 1,9-bis (triphenylphosphonio) nonane-naphthalen-2,7-disulfonate and the like can be mentioned.
  • nitrogen-containing low molecular weight compounds examples include amine salts and quaternary ammonium salts.
  • imidazolinium salts, benzoimidazolinium salts, pyridinium salts, quinolinium salts and the like can also be mentioned. Of these, quaternary ammonium salts and pyridinium salts are preferable.
  • tetramethylammonium hexafluorophosphate
  • tetrabutylammonium hexafluorophosphate
  • dodecyltrimethylammonium p-toluenesulfonate
  • benzyltriethylammonium hexafluorophosphate
  • benzyldimethyloctylammonium hexafluorophos.
  • Examples thereof include fert, benzyldimethyldodecylammonium-hexafluorophosphate, compounds described in paragraphs 0021 to 0037 of JP-A-2008-284858 and paragraphs 0030 to 0057 of JP-A-2009-90645.
  • the ammonium group-containing polymer may have an ammonium group in its structure, and a polymer containing 5 mol% to 80 mol% of a (meth) acrylate having an ammonium group in the side chain as a copolymerization component is preferable.
  • Specific examples include the polymers described in paragraphs 0008-0105 of JP2009-208458A.
  • the ammonium salt-containing polymer preferably has a reduced specific viscosity (unit: ml / g) value in the range of 5 to 120, which is obtained according to the measurement method described in JP-A-2009-208458, and is in the range of 10 to 110. Is more preferable, and those in the range of 15 to 100 are particularly preferable.
  • Mw weight average molecular weight
  • the content of the oil-sensitive agent is preferably 0.01% by mass to 30.0% by mass, more preferably 0.1% by mass to 15.0% by mass, and 1% by mass with respect to the total mass of the image recording layer. % To 10% by mass is more preferable.
  • the image recording layer may contain, as other components, a surfactant, a polymerization inhibitor, a higher fatty acid derivative, a plasticizer, inorganic particles, an inorganic layered compound and the like. Specifically, the description in paragraphs 0114 to 0159 of JP-A-2008-284817 can be referred to.
  • the image recording layer in the lithographic printing plate original plate according to the present disclosure is coated by dispersing or dissolving each of the necessary components in a known solvent, for example, as described in paragraphs 0142 to 0143 of Japanese Patent Application Laid-Open No. 2008-195018. It can be formed by preparing a liquid, applying the coating liquid on the support by a known method such as coating with a bar coater, and drying. As the solvent, a known solvent can be used.
  • the solvent may be used alone or in combination of two or more.
  • the solid content concentration in the coating liquid is preferably about 1 to 50% by mass.
  • the coating amount (solid content) of the image recording layer after coating and drying varies depending on the application, but from the viewpoint of obtaining good sensitivity and good film characteristics of the image recording layer, 0.3 g / m 2 to 3.0 g / m 2 is preferred.
  • the aluminum support in the lithographic printing plate original plate according to the present disclosure can be appropriately selected from known aluminum supports for lithographic printing plate original plates and used.
  • the aluminum support is also simply referred to as a "support”.
  • an aluminum support having a hydrophilic surface (hereinafter, also referred to as “hydrophilic aluminum support”) is preferable.
  • the aluminum support in the lithographic printing plate original plate according to the present disclosure has a contact angle with water on the surface of the aluminum support on the image recording layer side by the aerial water droplet method of 110 ° or less from the viewpoint of suppressing scratches and stains.
  • the contact angle with water by the aerial water droplet method on the surface of the aluminum support on the image recording layer side shall be measured by the following method.
  • the lithographic printing plate original plate is immersed in a solvent capable of removing the image recording layer (for example, the solvent used in the coating liquid for the image recording layer), the image recording layer is scraped off at least one of the sponge and cotton, and the image recording layer is used as a solvent.
  • the surface of the aluminum support is exposed by dissolving in it.
  • the contact angle with water on the surface of the exposed aluminum support on the image recording layer side is measured on the surface at 25 ° C. by a fully automatic contact angle meter (for example, DM-501 manufactured by Kyowa Surface Chemistry Co., Ltd.) as a measuring device. It is measured as the contact angle of water droplets (after 0.2 seconds).
  • the aluminum support in the present disclosure an aluminum plate that has been roughened and anodized by a known method is preferable. That is, the aluminum support in the present disclosure preferably has an aluminum plate and an anodized film of aluminum arranged on the aluminum plate.
  • the support (1) has an aluminum plate and an anodized film of aluminum arranged on the aluminum plate, and the anodized film is located closer to the image recording layer than the aluminum plate.
  • the anodic oxide film has micropores extending in the depth direction from the surface on the image recording layer side, and the average diameter of the micropores on the surface of the anodic oxide film is more than 10 nm and 100 nm or less, and the anodic oxidation.
  • the value of the brightness L * in the L * a * b * color system of the surface of the film on the image recording layer side is 70 to 100.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of the aluminum support 12a.
  • the aluminum support 12a has a laminated structure in which an aluminum plate 18 and an anodized film 20a of aluminum (hereinafter, also simply referred to as “anodized film 20a”) are laminated in this order.
  • the anodized film 20a in the aluminum support 12a is located closer to the image recording layer than the aluminum plate 18. That is, it is preferable that the lithographic printing plate original plate according to the present disclosure has at least an anodized film, an image recording layer, and a water-soluble resin layer on an aluminum plate in this order.
  • the anodized film 20a is a film formed on the surface of the aluminum plate 18 by anodizing treatment, and this film is extremely fine micropores 22a which are substantially perpendicular to the film surface and are uniformly distributed among individuals.
  • the micropores 22a extend from the surface of the anodized film 20a on the image recording layer side (the surface of the anodized film 20a on the side opposite to the aluminum plate 18 side) along the thickness direction (aluminum plate 18 side).
  • the average diameter (average opening diameter) of the micropores 22a in the anodized film 20a on the surface of the anodized film is preferably more than 10 nm and 100 nm or less. Among them, from the viewpoint of the balance between printing resistance, stain resistance, and image visibility, 15 nm to 60 nm is more preferable, 20 nm to 50 nm is further preferable, and 25 nm to 40 nm is particularly preferable.
  • the diameter inside the pores may be wider or narrower than the surface layer. If the average diameter exceeds 10 nm, the printing resistance and image visibility are further excellent. Further, when the average diameter is 100 nm or less, the printing resistance is further excellent.
  • the average diameter of the micropores 22a is 400 nm ⁇ 600 nm in the four images obtained by observing the surface of the anodized film 20a with a field emission scanning electron microscope (FE-SEM) at a magnification of 150,000.
  • the diameter (diameter) of the micropores existing in the range of is measured at 50 points and calculated as an arithmetic average value. If the shape of the micropore 22a is not circular, the diameter equivalent to the circle is used.
  • the "circle equivalent diameter” is the diameter of a circle when the shape of the opening is assumed to be a circle having the same projected area as the projected area of the opening.
  • the depth of the micropore 22a is not particularly limited, but is preferably 10 nm to 3,000 nm, more preferably 50 nm to 2,000 nm, and even more preferably 300 nm to 1,600 nm.
  • the depth is an average value obtained by taking a photograph (150,000 times) of the cross section of the anodized film 20a and measuring the depths of 25 or more micropores 22a.
  • the shape of the micropore 22a is not particularly limited, and in FIG. 1, it is a substantially straight tubular (substantially cylindrical) shape, but it may be a conical shape whose diameter decreases in the depth direction (thickness direction).
  • the shape of the bottom of the micropore 22a is not particularly limited, and may be curved (convex) or flat.
  • the value of L * a * b * brightness L * in the color system of the surface of the aluminum support 12a on the image recording layer side (the surface of the anodized film 20a on the image recording layer side) is preferably 70 to 100. .. Among them, 75 to 100 is preferable, and 75 to 90 is more preferable, in that the balance between printing resistance and image visibility is more excellent.
  • the brightness L * is measured using a color difference meter Specro Eye manufactured by X-Light Co., Ltd.
  • the micropore communicates with the large-diameter hole extending from the surface of the anodic oxide film to a depth of 10 nm to 1,000 nm and the bottom of the large-diameter hole, and is deep from the communication position. It is composed of a small-diameter hole extending from 20 nm to 2,000 nm, and the average diameter of the large-diameter hole on the surface of the anodic oxide film is 15 nm to 150 nm, and the average diameter of the small-diameter hole at the communication position.
  • a mode in which the diameter is 13 nm or less (hereinafter, the support according to the above mode is also referred to as “support (2)”) is also preferably mentioned.
  • support (2) is also preferably mentioned.
  • the aluminum support 12b includes an aluminum plate 18 and an anodic oxide film 20b having a micropore 22b composed of a large-diameter hole portion 24 and a small-diameter hole portion 26.
  • the micropores 22b in the anodized film 20b have a large-diameter hole portion 24 extending from the surface of the anodized film to a depth of 10 nm to 1,000 nm (depth D: see FIG. 2) and a bottom portion of the large-diameter hole portion 24.
  • the large-diameter hole portion 24 and the small-diameter hole portion 26 will be described in detail below.
  • the average diameter of the large-diameter pore portion 24 on the surface of the anodized film 20b is the same as the average diameter of the micropores 22a in the above-mentioned anodized film 20a on the surface of the anodized film, which is more than 10 nm and 100 nm or less, and the preferable range is also the same. Is.
  • the method for measuring the average diameter on the surface of the anodic oxide film 20b of the large-diameter hole portion 24 is the same as the method for measuring the average diameter on the surface of the anodic oxide film of the micropores 22a in the anodic oxide film 20a.
  • the bottom of the large-diameter hole portion 24 is located at a depth of 10 nm to 1,000 nm (hereinafter, also referred to as a depth D) from the surface of the anodized film. That is, the large-diameter hole portion 24 is a hole portion extending from the surface of the anodized film to a position of 10 nm to 1,000 nm in the depth direction (thickness direction).
  • the depth is preferably 10 nm to 200 nm.
  • the depth is an average value obtained by taking a photograph (150,000 times) of the cross section of the anodized film 20b, measuring the depths of 25 or more large-diameter hole portions 24, and averaging them.
  • the shape of the large-diameter hole portion 24 is not particularly limited, and examples thereof include a substantially straight tubular shape (substantially cylindrical) and a conical shape whose diameter decreases in the depth direction (thickness direction). preferable.
  • the small-diameter hole portion 26 is a hole portion that communicates with the bottom portion of the large-diameter hole portion 24 and extends further in the depth direction (thickness direction) from the communication position.
  • the average diameter of the small-diameter hole portion 26 at the communication position is preferably 13 nm or less. Of these, 11 nm or less is preferable, and 10 nm or less is more preferable.
  • the lower limit is not particularly limited, but it is often 5 nm or more.
  • the diameter (diameter) of the (small diameter hole) is measured and obtained as an arithmetic mean value. If the large-diameter hole is deep, the upper part of the anodic oxide film 20b (the region with the large-diameter hole) is cut (for example, cut with argon gas), and then the anodic oxide film 20b is cut.
  • the surface may be observed with the above FE-SEM to obtain the average diameter of the small-diameter holes.
  • the diameter equivalent to a circle is used.
  • the "circle equivalent diameter” is the diameter of a circle when the shape of the opening is assumed to be a circle having the same projected area as the projected area of the opening.
  • the bottom portion of the small-diameter hole portion 26 is located at a position extending 20 nm to 2,000 nm in the depth direction from the communication position with the large-diameter hole portion 24.
  • the small-diameter hole portion 26 is a hole portion that extends further in the depth direction (thickness direction) from the communication position with the large-diameter hole portion 24, and the depth of the small-diameter hole portion 26 is 20 nm to 2,000 nm. ..
  • the depth is preferably 500 nm to 1,500 nm.
  • the depth is an average value obtained by taking a photograph (50,000 times) of the cross section of the anodized film 20b and measuring the depths of 25 or more small-diameter holes.
  • the shape of the small-diameter hole portion 26 is not particularly limited, and examples thereof include a substantially straight tubular (approximately cylindrical) shape and a conical shape whose diameter decreases in the depth direction, and a substantially straight tubular shape is preferable.
  • -Manufacturing method of aluminum support As a method for manufacturing the aluminum support used in the present disclosure, for example, a manufacturing method in which the following steps are sequentially performed is preferable.
  • -Roughening treatment step A step of roughening an aluminum plate-Anodization treatment step: A step of anodizing an aluminum plate that has been roughened-Pore wide treatment step: Anodizer obtained in an anodization treatment step Step of bringing an aluminum plate having an oxide film into contact with an acid aqueous solution or an alkaline aqueous solution to increase the diameter of micropores in the anodic oxide film.
  • the roughening treatment step is a step of applying a roughening treatment including an electrochemical roughening treatment to the surface of the aluminum plate. This step is preferably carried out before the anodizing treatment step described later, but it may not be carried out in particular as long as the surface of the aluminum plate already has a preferable surface shape.
  • the roughening treatment may be carried out only by the electrochemical roughening treatment, but is carried out by combining the electrochemical roughening treatment with the mechanical roughening treatment and / or the chemical roughening treatment. You may.
  • the electrochemical roughening treatment is preferably carried out using direct current or alternating current in an aqueous solution mainly containing nitric acid or hydrochloric acid.
  • the method of mechanical roughening treatment is not particularly limited, and examples thereof include the methods described in Japanese Patent Publication No. 50-40047.
  • the chemical roughening treatment is also not particularly limited, and known methods can be mentioned.
  • the chemical etching treatment performed after the mechanical roughening treatment smoothes the uneven edges on the surface of the aluminum plate, prevents ink from getting caught during printing, and improves the stain resistance of the printing plate. , It is performed to remove unnecessary substances such as abrasive particles remaining on the surface.
  • Examples of the chemical etching treatment include etching with an acid and etching with an alkali, and as a method particularly excellent in terms of etching efficiency, a chemical etching treatment using an alkaline aqueous solution (hereinafter, also referred to as “alkali etching treatment”) can be mentioned. Be done.
  • the alkaline agent used in the alkaline aqueous solution is not particularly limited, and examples thereof include caustic soda, caustic potash, sodium metasilicate, sodium carbonate, sodium aluminate, and sodium gluconate.
  • the alkaline aqueous solution may contain aluminum ions.
  • the concentration of the alkaline agent in the alkaline aqueous solution is preferably 0.01% by mass or more, more preferably 3% by mass or more, and preferably 30% by mass or less.
  • the alkaline etching treatment When the alkaline etching treatment is performed, it is preferable to perform a chemical etching treatment (hereinafter, also referred to as "desmat treatment") using a low-temperature acidic aqueous solution in order to remove the product generated by the alkaline etching treatment.
  • the acid used in the acidic aqueous solution is not particularly limited, and examples thereof include sulfuric acid, nitric acid, and hydrochloric acid.
  • the temperature of the acidic aqueous solution is preferably 20 ° C to 80 ° C.
  • (1) mechanical roughening treatment may be carried out before the treatment of (2) of the A aspect or (10) of the B aspect.
  • the amount of the aluminum plate dissolved in the first alkali etching treatment and the fourth alkali etching treatment is preferably 0.5 g / m 2 to 30 g / m 2, and more preferably 1.0 g / m 2 to 20 g / m 2 .
  • Examples of the nitric acid-based aqueous solution used in the first electrochemical roughening treatment in the A aspect include an aqueous solution used in the electrochemical roughening treatment using direct current or alternating current.
  • an aqueous solution obtained by adding aluminum nitrate, sodium nitrate, ammonium nitrate or the like to an aqueous nitric acid solution of 1 to 100 g / L can be mentioned.
  • the aqueous solution mainly containing hydrochloric acid used in the second electrochemical roughening treatment in the A aspect and the third electrochemical roughening treatment in the B aspect is an electrochemical rough surface using ordinary direct current or alternating current. Examples thereof include an aqueous solution used for the chemical treatment.
  • an aqueous solution obtained by adding 0 g / L to 30 g / L of sulfuric acid to a 1 g / L to 100 g / L hydrochloric acid aqueous solution can be mentioned.
  • nitrate ions such as aluminum nitrate, sodium nitrate and ammonium nitrate
  • hydrochloric acid ions such as aluminum chloride, sodium chloride and ammonium chloride may be further added to this solution.
  • FIG. 3 is a graph showing an example of an alternating waveform current waveform diagram used in the electrochemical roughening process.
  • ta is the anode reaction time
  • ct is the cathode reaction time
  • tp is the time from 0 to the peak of the current
  • Ia is the peak current on the anode cycle side
  • Ic is the peak current on the cathode cycle side.
  • AA is the current of the anode reaction of the aluminum plate
  • CA is the current of the cathode reaction of the aluminum plate.
  • the time tp from 0 to the peak of the current is preferably 1 ms to 10 ms.
  • the conditions for one cycle of AC used for electrochemical roughening are that the ratio ct / ta of the anode reaction time ta and the cathode reaction time ct of the aluminum plate is 1 to 20, and the amount of electricity Qc and the anode when the aluminum plate is the anode.
  • the ratio Qc / Qa of the amount of electricity Qa at the time is in the range of 0.3 to 20 and the anode reaction time ta is in the range of 5 ms to 1,000 ms.
  • the current density is the peak value of the trapezoidal wave, and is preferably 10 A / dm 2 to 200 A / dm 2 for both the anode cycle side Ia and the cathode cycle side Ic of the current.
  • Ic / Ia is preferably 0.3 to 20.
  • the total amount of electricity furnished to anode reaction of the aluminum plate at the time the electrochemical graining is completed, 25C / dm 2 ⁇ 1,000C / dm 2 is preferred.
  • FIG. 4 is a side view showing an example of a radial cell in an electrochemical roughening treatment using alternating current.
  • 50 is a main electrolytic cell
  • 51 is an AC power supply
  • 52 is a radial drum roller
  • 53a and 53b are main poles
  • 54 is an electrolytic solution supply port
  • 55 is an electrolytic solution
  • 56 is a slit
  • 57 is an electrolytic solution passage.
  • 58 is an auxiliary anode
  • 60 is an auxiliary anode tank
  • W is an aluminum plate.
  • the arrow A1 indicates the supply direction of the electrolytic solution
  • the arrow A2 indicates the discharge direction of the electrolytic solution. Is.
  • the electrolysis conditions may be the same or different.
  • the aluminum plate W is wound around a radial drum roller 52 immersed in the main electrolytic cell 50 and is electrolyzed by the main poles 53a and 53b connected to the AC power supply 51 during the transfer process.
  • the electrolytic solution 55 is supplied from the electrolytic solution supply port 54 to the electrolytic solution passage 57 between the radial drum roller 52 and the main poles 53a and 53b through the slit 56.
  • the aluminum plate W treated in the main electrolytic cell 50 is then electrolyzed in the auxiliary anode tank 60.
  • An auxiliary anode 58 is arranged to face the aluminum plate W in the auxiliary anode tank 60, and the electrolytic solution 55 is supplied so as to flow in the space between the auxiliary anode 58 and the aluminum plate W.
  • the amount of the aluminum plate dissolved in the second alkali etching treatment is preferably 1.0 g / m 2 or more, and more preferably 2.0 g / m 2 to 10 g / m 2 in that a predetermined printing plate original plate can be easily produced.
  • the amount of the aluminum plate dissolved in the third alkali etching treatment and the fourth alkali etching treatment is preferably 0.01 g / m 2 to 0.8 g / m 2 and 0.05 g in that a predetermined printing plate original plate can be easily produced.
  • / M 2 to 0.3 g / m 2 is more preferable.
  • an acidic aqueous solution containing phosphoric acid, nitric acid, sulfuric acid, chromium acid, hydrochloric acid, or a mixed acid containing two or more of these acids is preferably used.
  • the acid concentration of the acidic aqueous solution is preferably 0.5% by mass to 60% by mass.
  • the procedure of the anodizing treatment step is not particularly limited as long as the above-mentioned micropores can be obtained, and known methods can be mentioned.
  • aqueous solutions of sulfuric acid, phosphoric acid, oxalic acid and the like can be used as the electrolytic bath.
  • the concentration of sulfuric acid is 100 g / L to 300 g / L.
  • the conditions for the anodic oxidation treatment are appropriately set depending on the electrolytic solution used, and for example, the liquid temperature is 5 ° C. to 70 ° C. (preferably 10 ° C. to 60 ° C.), and the current density is 0.5 A / dm 2 to 60 A / dm 2.
  • the pore-wide treatment is a treatment (pore diameter enlargement treatment) for enlarging the diameter (pore diameter) of micropores existing in the anodizing film formed by the above-mentioned anodizing treatment step.
  • the pore-wide treatment can be carried out by bringing the aluminum plate obtained by the above-mentioned anodizing treatment step into contact with an acid aqueous solution or an alkaline aqueous solution.
  • the method of contact is not particularly limited, and examples thereof include a dipping method and a spraying method.
  • the planographic printing plate original plate according to the present disclosure preferably has an undercoat layer (sometimes referred to as an intermediate layer) between the image recording layer and the support.
  • the undercoat layer strengthens the adhesion between the support and the image recording layer in the exposed portion, and makes it easy for the image recording layer to peel off from the support in the unexposed portion, so that the developability is not impaired. Contributes to improving.
  • the undercoat layer functions as a heat insulating layer, so that the heat generated by the exposure is diffused to the support to prevent the sensitivity from being lowered.
  • Examples of the compound used for the undercoat layer include polymers having an adsorptive group and a hydrophilic group that can be adsorbed on the surface of the support.
  • a polymer having an adsorptive group and a hydrophilic group and further having a crosslinkable group is preferable in order to improve the adhesion to the image recording layer.
  • the compound used for the undercoat layer may be a low molecular weight compound or a polymer.
  • two or more kinds may be mixed and used as needed.
  • the compound used for the undercoat layer is a polymer
  • a copolymer of a monomer having an adsorptive group, a monomer having a hydrophilic group and a monomer having a crosslinkable group is preferable.
  • Adsorbent groups that can be adsorbed on the surface of the support include phenolic hydroxy groups, carboxy groups, -PO 3 H 2 , -OPO 3 H 2 , -CONHSO 2- , -SO 2 NHSO 2- , -COCH 2 COCH 3 Is preferable.
  • As the hydrophilic group a sulfo group or a salt thereof, or a salt of a carboxy group is preferable.
  • the polymer may have a crosslinkable group introduced by salt formation of the polar substituent of the polymer, a substituent having a pair charge with the polar substituent and a compound having an ethylenically unsaturated bond, and the above.
  • a monomer other than the above, preferably a hydrophilic monomer, may be further copolymerized.
  • a phosphorus compound having a double bond reactive group is preferably used.
  • Crosslinkable groups preferably ethylenically unsaturated bonding groups
  • supports described in JP-A-2005-238816, JP-A-2005-125479, JP-A-2006-239867, and JP-A-2006-215263 Low molecular weight or high molecular weight compounds having functional and hydrophilic groups that interact with the surface are also preferably used.
  • More preferable examples thereof include polymer polymers having an adsorptive group, a hydrophilic group and a crosslinkable group that can be adsorbed on the surface of the support described in JP-A-2005-125794 and JP-A-2006-188038.
  • the content of the ethylenically unsaturated bond group in the polymer used for the undercoat layer is preferably 0.1 mmol to 10.0 mmol, more preferably 0.2 mmol to 5.5 mmol per 1 g of the polymer.
  • the weight average molecular weight (Mw) of the polymer used in the undercoat layer is preferably 5,000 or more, and more preferably 10,000 to 300,000.
  • the undercoat layer preferably contains a hydrophilic compound from the viewpoint of developability.
  • the hydrophilic compound is not particularly limited, and a known hydrophilic compound used for the undercoat layer can be used.
  • Preferred examples of the hydrophilic compound include phosphonic acids having an amino group such as carboxymethyl cellulose and dextrin, organic phosphonic acid, organic phosphoric acid, organic phosphinic acid, amino acids, and hydrochloride of amine having a hydroxy group.
  • hydrophilic compound a compound having an amino group or a functional group having a polymerization prohibitive ability and a group interacting with the surface of the support (for example, 1,4-diazabicyclo [2.2.2] octane (DABCO)).
  • DABCO 1,4-diazabicyclo [2.2.2] octane
  • 2,3,5,6-tetrahydroxy-p-quinone, chloranyl, sulfophthalic acid, ethylenediaminetetraacetic acid (EDTA) or its salt, hydroxyethylethylenediaminetriacetic acid or its salt, dihydroxyethylethylenediaminediacetic acid or its salt, hydroxy (Ethyliminodiacetic acid or a salt thereof, etc.) is preferably mentioned.
  • the hydrophilic compound preferably contains hydroxycarboxylic acid or a salt thereof from the viewpoint of suppressing scratches and stains. Further, the hydrophilic compound, preferably hydroxycarboxylic acid or a salt thereof, is preferably contained in the layer on the aluminum support from the viewpoint of suppressing scratches and stains. Further, the layer on the aluminum support is preferably a layer on the side where the image recording layer is formed, and is preferably a layer in contact with the aluminum support. As the layer on the aluminum support, an undercoat layer or an image recording layer is preferably mentioned as a layer in contact with the aluminum support.
  • a layer other than the layer in contact with the aluminum support for example, a protective layer or an image recording layer may contain a hydrophilic compound, preferably hydroxycarboxylic acid or a salt thereof.
  • the image recording layer contains hydroxycarboxylic acid or a salt thereof from the viewpoint of suppressing scratches and stains.
  • an embodiment in which the surface of the aluminum support on the image recording layer side is surface-treated with a composition containing at least hydroxycarboxylic acid or a salt thereof is also preferably mentioned. Be done.
  • the treated hydroxycarboxylic acid or a salt thereof is detected in a layer on the image recording layer side (for example, an image recording layer or an undercoat layer) in contact with the aluminum support.
  • a layer on the image recording layer side for example, an image recording layer or an undercoat layer
  • the surface of the aluminum support on the image recording layer side can be made hydrophilic, and the aluminum support can also be made hydrophilic.
  • the contact angle with water on the surface of the image recording layer side by the aerial water droplet method can be easily set to 110 ° or less, and the scratch stain suppressing property is excellent.
  • Hydroxycarboxylic acid is a general term for organic compounds having one or more carboxy groups and one or more hydroxy groups in one molecule, and is also called hydroxy acid, oxyic acid, oxycarboxylic acid, or alcoholic acid (). Iwanami Physics and Chemistry Dictionary 5th Edition, published by Iwanami Shoten Co., Ltd. (1998)).
  • the hydroxycarboxylic acid or a salt thereof is preferably represented by the following formula (HC).
  • R HC (OH) mhc ( COMM HC ) nhc formula (HC)
  • R HC represents a mhc + nhc valent organic group
  • M HC independently represents a hydrogen atom, an alkali metal or onium
  • mhc and nhc each independently represent an integer of 1 or more, n. If is 2 or more, the MHC may be the same or different.
  • the organic group for mhc + NHC value represented by R HC includes mhc + NHC valent hydrocarbon group.
  • the hydrocarbon group may have a substituent and / or a linking group.
  • a group having a mhc + nhc valence derived from an aliphatic hydrocarbon for example, an alkylene group, an alcantryyl group, an alkanetetrayl group, an alcampentile group, an alkenylene group, an arcentryyl group, an alkentetrayl group.
  • Mhc + nhc valent groups derived from aromatic hydrocarbons such as groups, alkenylpentyl groups, alkynylene groups, alkyntriyl groups, alkynetetrayl groups, alkynpentyl groups, etc., such as allylene groups, allenetriyl groups, allenes. Examples thereof include a tetrayl group and an arenepentile group. Examples of the substituent other than the hydroxy group and the carboxy group include an alkyl group, an alkenyl group, an alkynyl group, an aralkyl group, an aryl group and the like.
  • substituents include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, hexadecyl group, Octadecyl group, eicosyl group, isopropyl group, isobutyl group, s-butyl group, t-butyl group, isopentyl group, neopentyl group, 1-methylbutyl group, isohexyl group, 2-ethylhexyl group, 2-methylhexyl group, cyclohexyl group, Cyclopentyl group, 2-norbornyl group, methoxymethyl group, methoxyethoxyethyl group, allyloxymethyl group, phenoxymethyl group, acetyloxymethyl
  • the linking group is composed of at least one atom selected from the group consisting of hydrogen atom, carbon atom, oxygen atom, nitrogen atom, sulfur atom and halogen atom, and the number of atoms is preferably 1 to 50. Is. Specific examples thereof include an alkylene group, a substituted alkylene group, an arylene group and a substituted arylene group, and a plurality of these divalent groups are linked by any of an amide bond, an ether bond, a urethane bond, a urea bond and an ester bond. It may have an esterified structure.
  • Examples of the alkali metal represented by MHC include lithium, sodium, potassium and the like, and sodium is particularly preferable.
  • Examples of onium include ammonium, phosphonium, sulfonium and the like, and ammonium is particularly preferable.
  • M HC from the viewpoint of scratch stain inhibitory, preferably an alkali metal or an onium, and more preferably an alkali metal.
  • the total number of mhc and nhc is preferably 3 or more, more preferably 3 to 8, and even more preferably 4 to 6.
  • the hydroxycarboxylic acid or a salt thereof preferably has a molecular weight of 600 or less, more preferably 500 or less, and particularly preferably 300 or less.
  • the molecular weight is preferably 76 or more.
  • Specific examples of the hydroxycarboxylic acid constituting the hydroxycarboxylic acid or the salt of the hydroxycarboxylic acid include gluconic acid, glycolic acid, lactic acid, tartron acid, and hydroxybutyric acid (2-hydroxybutyric acid, 3-hydroxybutyric acid, ⁇ -Hydroxybutyric acid, etc.), malic acid, tartaric acid, citramal acid, citric acid, isocitrate, leucic acid, mevalonic acid, pantoic acid, ricinolic acid, ricineraidic acid, cerebronic acid, quinic acid, shikimic acid, monohydroxybenzoic acid derivative (Salicylic acid, cleosortic acid (homosalicylic acid, hydroxy (methyl) benzoic
  • hydroxycarboxylic acid or the hydroxycarboxylic acid constituting the salt of the hydroxycarboxylic acid a compound having two or more hydroxy groups is preferable from the viewpoint of suppressing scratches and stains, and a hydroxy group is preferable.
  • a compound having 3 or more hydroxy groups is more preferable, a compound having 5 or more hydroxy groups is further preferable, and a compound having 5 to 8 hydroxy groups is particularly preferable.
  • gluconic acid or shikimic acid is preferable as a substance having one carboxy group and two or more hydroxy groups.
  • Citric acid or malic acid is preferable as having two or more carboxy groups and one hydroxy group.
  • Tartaric acid is preferable as having two or more carboxy groups and two or more hydroxy groups.
  • gluconic acid is particularly preferable as the hydroxycarboxylic acid.
  • the hydrophilic compound may be used alone or in combination of two or more.
  • the undercoat layer contains a hydrophilic compound, preferably hydroxycarboxylic acid or a salt thereof
  • the content of the hydrophilic compound, preferably hydroxycarboxylic acid and its salt is 0.01% by mass or more based on the total mass of the undercoat layer. It is preferably 50% by mass, more preferably 0.1% by mass to 40% by mass, and particularly preferably 1.0% by mass to 30% by mass.
  • the undercoat layer may contain a chelating agent, a secondary or tertiary amine, a polymerization inhibitor, or the like in order to prevent stains over time.
  • the undercoat layer is applied by a known method.
  • the coating amount (solid content) of the undercoat layer is preferably 0.1 mg / m 2 to 100 mg / m 2, and more preferably 1 mg / m 2 to 30 mg / m 2 .
  • the planographic printing plate original plate according to the present disclosure may have a protective layer (sometimes referred to as an overcoat layer) on the image recording layer.
  • the protective layer may have a function of suppressing an image formation inhibition reaction by blocking oxygen, a function of preventing the occurrence of scratches on the image recording layer, and a function of preventing ablation during high-intensity laser exposure.
  • Protective layers with such properties are described, for example, in US Pat. Nos. 3,458,311 and JP-A-55-49729.
  • the oxygen low-permeability polymer used for the protective layer either a water-soluble polymer or a water-insoluble polymer can be appropriately selected and used, and if necessary, two or more kinds may be mixed and used. it can.
  • Specific examples thereof include polyvinyl alcohol, modified polyvinyl alcohol, polyvinylpyrrolidone, water-soluble cellulose derivatives, poly (meth) acrylonitrile, and the like.
  • the modified polyvinyl alcohol an acid-modified polyvinyl alcohol having a carboxy group or a sulfo group is preferably used.
  • Specific examples thereof include the modified polyvinyl alcohols described in JP-A-2005-250216 and JP-A-2006-259137.
  • the protective layer preferably contains an inorganic layered compound in order to enhance oxygen blocking property.
  • Inorganic laminar compound is a particle having a thin tabular shape, for example, natural mica, micas such as synthetic mica, wherein: talc represented by 3MgO ⁇ 4SiO ⁇ H 2 O, teniolite, montmorillonite, saponite, hectorite Examples include light, zirconium phosphate and the like.
  • the inorganic layered compound preferably used is a mica compound.
  • Examples of the mica compound include formula: A (B, C) 2-5 D 4 O 10 (OH, F, O) 2 [However, A is any of K, Na, Ca, and B and C are It is any of Fe (II), Fe (III), Mn, Al, Mg, and V, and D is Si or Al. ] Can be mentioned as a group of mica such as natural mica and synthetic mica.
  • natural mica includes muscovite, paragonite, phlogopite, biotite and lepidolite.
  • synthetic mica non-swelling mica such as fluorine gold mica KMg 3 (AlSi 3 O 10 ) F 2 , potassium tetrasilicon mica KMg 2.5 Si 4 O 10 ) F 2 , and Na tetrasilic mica Namg 2.
  • the lattice layer causes a positive charge shortage, and in order to compensate for this, cations such as Li + , Na + , Ca 2+ , and Mg 2+ are adsorbed between the layers.
  • the cations intervening between these layers are called exchangeable cations and can be exchanged with various cations.
  • the bond between the layered crystal lattices is weak because the ionic radius is small, and the cations swell greatly with water.
  • Swellable synthetic mica has this tendency and is particularly preferably used.
  • the aspect ratio is preferably 20 or more, more preferably 100 or more, and particularly preferably 200 or more.
  • the aspect ratio is the ratio of the major axis to the thickness of the particles, which can be measured, for example, from a micrograph projection of the particles. The larger the aspect ratio, the greater the effect obtained.
  • the average major axis of the mica compound is preferably 0.3 ⁇ m to 20 ⁇ m, more preferably 0.5 ⁇ m to 10 ⁇ m, and particularly preferably 1 ⁇ m to 5 ⁇ m.
  • the average thickness of the particles is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and particularly preferably 0.01 ⁇ m or less.
  • the preferred embodiment is such that the thickness is about 1 nm to 50 nm and the surface size (major axis) is about 1 ⁇ m to 20 ⁇ m.
  • the content of the inorganic layered compound is preferably 1% by mass to 60% by mass, more preferably 3% by mass to 50% by mass, based on the total solid content of the protective layer. Even when a plurality of types of inorganic layered compounds are used in combination, the total amount of the inorganic layered compounds is preferably the above content. Oxygen blocking property is improved in the above range, and good sensitivity can be obtained. In addition, it is possible to prevent deterioration of meat-forming property.
  • the protective layer preferably contains a discoloring compound.
  • the protective layer may contain other components such as a water-soluble polymer, a hydrophobic polymer, a fat-sensing agent, an acid generator, and an infrared absorber.
  • the lithographic printing plate original plate has a brightness change ⁇ L before and after exposure when exposed to infrared rays having an energy density of 110 mJ / cm 2 and a wavelength of 830 nm. It is preferably 0 or more.
  • the brightness change ⁇ L is more preferably 3.0 or more, further preferably 5.0 or more, particularly preferably 8.0 or more, and most preferably 10.0 or more.
  • An upper limit of the brightness change ⁇ L is, for example, 20.0.
  • a protective layer containing a discoloring compound it is preferable to satisfy the above-mentioned preferable numerical range of the above-mentioned brightness change ⁇ L.
  • the brightness change ⁇ L is measured by the following method.
  • the original plate of the lithographic printing plate is printed by Luxel PLATESETTER T-9800 manufactured by FUJIFILM Graphic Systems Co., Ltd. equipped with an infrared semiconductor laser with a wavelength of 830 nm.
  • Output 99.5%, outer drum rotation speed 220 rpm, resolution 2,400 dpi (dots per inch, Exposure is performed under the condition of 1 inch 25.4 mm) (energy density 110 mJ / cm 2 ).
  • the exposure is performed in an environment of 25 ° C. and 50% RH.
  • a spectrophotometer eXact manufactured by X-Rite is used for the measurement.
  • the absolute value of the difference between the L * value of the image recording layer after exposure and the L * value of the image recording layer before exposure is changed by the brightness change ⁇ L.
  • the "discolorable compound” refers to a compound whose absorption in the visible light region (wavelength: 400 nm or more and less than 750 nm) changes due to infrared exposure. That is, in the present disclosure, “discoloration” means that the absorption in the visible light region (wavelength: 400 nm or more and less than 750 nm) changes due to infrared exposure.
  • the discoloring compounds in the present disclosure are (1) a compound in which absorption in the visible light region is increased due to infrared exposure compared to before infrared exposure, and (2) absorption in the visible light region due to infrared exposure.
  • the infrared rays in the present disclosure are light rays having a wavelength of 750 nm to 1 mm, and preferably light rays having a wavelength of 750 nm to 1,400 nm.
  • the discoloring compound preferably contains a compound that develops color due to infrared exposure. Further, the discoloring compound preferably contains a decomposable compound that decomposes due to infrared exposure, and in particular, contains a decomposable compound that decomposes due to heat, electron transfer, or both due to infrared exposure. Is preferable. More specifically, the discoloring compounds in the present disclosure are decomposed by infrared exposure (more preferably, by heat, electron transfer, or both due to infrared exposure) and before infrared exposure. It is preferable that the compound has increased absorption in the visible light region, or the absorption has a shorter wavelength and has absorption in the visible light region.
  • decomposition by electron transfer means that an electron excited from HOMO (highest occupied orbital) to LUMO (lowest empty orbital) of a discoloring compound by infrared exposure is an electron accepting group (LUMO and potential) in the molecule. It means that the electron transfers in the molecule to a group close to), and the decomposition occurs accordingly.
  • the degradable compound may be a compound that absorbs and decomposes at least one part of light in the infrared wavelength range (wavelength range of 750 nm to 1 mm, preferably wavelength range of 750 nm to 1,400 nm), but may be 750 nm to 1, It is preferably a compound having maximum absorption in the wavelength range of 400 nm. More specifically, the degradable compound is preferably a compound that decomposes due to infrared exposure to produce a compound having a maximum absorption wavelength in the wavelength range of 500 nm to 600 nm.
  • the degradable compound may be a cyanine dye having a group (specifically, R 1 in the following formulas 1-1 to 1-7) that is decomposed by infrared exposure from the viewpoint of enhancing the visibility of the exposed portion.
  • R 1 in the following formulas 1-1 to 1-7
  • the degradable compound is more preferably a compound represented by the following formula 1-1 from the viewpoint of enhancing the visibility of the exposed portion.
  • R 1 represents a group represented by any of the following formulas 2 to 4, and R 11 to R 18 independently represent a hydrogen atom, a halogen atom, -R a , -OR b , and so on.
  • -SR c or represents -NR d R e, in each of R a ⁇ R e independently represents a hydrocarbon group, a 1, a 2 and a plurality of R 11 ⁇ R 18 are linked monocyclic or Polycycles may be formed, where A 1 and A 2 independently represent an oxygen atom, a sulfur atom, or a nitrogen atom, and n 11 and n 12 each independently represent an integer of 0 to 5.
  • n 11 and n 12 is 2 or more, n 13 and n 14 independently represent 0 or 1, L represents an oxygen atom, a sulfur atom, or -NR 10- , and R 10 represents a hydrogen atom, an alkyl group, or an aryl group, and Za represents a counterion that neutralizes the charge.
  • R 20 , R 30 , R 41 and R 42 independently represent an alkyl group or an aryl group
  • Zb represents a charge-neutralizing counterion
  • the wavy line represents the above formula 1-.
  • R 1 represents a group represented by any of the above formulas 2 to 4.
  • the group represented by the formula 2 the group represented by the formula 3, and the group represented by the formula 4 will be described.
  • R 20 represents an alkyl group or an aryl group, and the wavy line portion represents a binding site with a group represented by L in formula 1-1.
  • the alkyl group represented by R 20 an alkyl group having 1 to 30 carbon atoms is preferable, an alkyl group having 1 to 15 carbon atoms is more preferable, and an alkyl group having 1 to 10 carbon atoms is further preferable.
  • the alkyl group may be linear, have a branch, or have a ring structure.
  • aryl group represented by R 20 an aryl group having 6 to 30 carbon atoms is preferable, an aryl group having 6 to 20 carbon atoms is more preferable, and an aryl group having 6 to 12 carbon atoms is further preferable.
  • the R 20 is preferably an alkyl group from the viewpoint of color development.
  • degradable and, from the viewpoint of coloring properties, be the alkyl group represented by R 20, is preferably a secondary alkyl group or a tertiary alkyl group, tertiary alkyl group preferable.
  • the degradability, and, from the viewpoint of coloring properties, the alkyl group represented by R 20, preferably an alkyl group having 1 to 8 carbon atoms, branched alkyl groups having 3 to 10 carbon atoms It is more preferable to have a branched alkyl group having 3 to 6 carbon atoms, an isopropyl group or a tert-butyl group is particularly preferable, and a tert-butyl group is most preferable.
  • represents the binding site with the group represented by L in the formula 1-1.
  • R 30 represents an alkyl group or an aryl group, and the wavy line portion represents a binding site with a group represented by L in formula 1-1.
  • the alkyl group and aryl group represented by R 30 are the same as those of the alkyl group and aryl group represented by R 20 in Formula 2, and the preferred embodiment is also the same.
  • the alkyl group represented by R 30 is preferably a secondary alkyl group or a tertiary alkyl group, and preferably a tertiary alkyl group.
  • the alkyl group represented by R 30, preferably an alkyl group having 1 to 8 carbon atoms, branched alkyl groups having 3 to 10 carbon atoms It is more preferable to have a branched alkyl group having 3 to 6 carbon atoms, an isopropyl group or a tert-butyl group is particularly preferable, and a tert-butyl group is most preferable.
  • the alkyl group represented by R 30 is preferably a substituted alkyl group, more preferably a fluorosubstituted alkyl group, and a perfluoroalkyl group. Is more preferable, and a trifluoromethyl group is particularly preferable.
  • the aryl group represented by R 30 is preferably a substituted aryl group, and the substituent is an alkyl group (preferably an alkyl group having 1 to 4 carbon atoms) or an alkoxy. Examples thereof include a group (preferably an alkoxy group having 1 to 4 carbon atoms).
  • represents the binding site with the group represented by L in the formula 1-1.
  • R 41 and R 42 independently represent an alkyl group or an aryl group
  • Zb represents a charge-neutralizing counterion
  • the wavy line portion is a group represented by L in Formula 1-1. Represents the binding site with.
  • the alkyl group and aryl group represented by R 41 or R 42 are the same as those of the alkyl group and aryl group represented by R 20 in Formula 2, and the preferred embodiment is also the same.
  • the R 41 is preferably an alkyl group from the viewpoint of decomposability and color development.
  • R 42 is preferably an alkyl group from the viewpoint of decomposability and color development.
  • the alkyl group represented by R 41 is preferably an alkyl group having 1 to 8 carbon atoms, and more preferably an alkyl group having 1 to 4 carbon atoms. , Methyl group is particularly preferred.
  • the alkyl group represented by R 42 is preferably a secondary alkyl group or a tertiary alkyl group, and preferably a tertiary alkyl group.
  • the alkyl group represented by R 42 is preferably an alkyl group having 1 to 8 carbon atoms, and is a branched alkyl group having 3 to 10 carbon atoms.
  • a branched alkyl group having 3 to 6 carbon atoms an isopropyl group or a tert-butyl group is particularly preferable, and a tert-butyl group is most preferable.
  • Zb in the formula 4 may be a counterion for neutralizing the charge, and the compound as a whole may be contained in Za in the formula 1-1.
  • Zb is preferably a sulfonate ion, a carboxylate ion, a tetrafluoroborate ion, a hexafluorophosphate ion, a p-toluenesulfonate ion, or a perchlorate ion, and more preferably a tetrafluoroborate ion.
  • represents the binding site with the group represented by L in the formula 1-1.
  • L is preferably an oxygen atom or ⁇ NR 10 ⁇ , and an oxygen atom is particularly preferable.
  • R 10 in ⁇ NR 10 ⁇ is preferably an alkyl group.
  • the alkyl group represented by R 10 an alkyl group having 1 to 10 carbon atoms is preferable.
  • the alkyl group represented by R 10 may be linear, have a branch, or have a ring structure.
  • a methyl group or a cyclohexyl group is preferable.
  • R 10 in ⁇ NR 10 ⁇ is an aryl group
  • an aryl group having 6 to 30 carbon atoms is preferable, an aryl group having 6 to 20 carbon atoms is more preferable, and an aryl group having 6 to 12 carbon atoms is further preferable.
  • these aryl groups may have a substituent.
  • R 11 ⁇ R 18 are each independently a hydrogen atom, -R a, is preferably -OR b, -SR c, or -NR d R e.
  • Hydrocarbon groups represented by R a ⁇ R e is preferably a hydrocarbon group having 1 to 30 carbon atoms, more preferably a hydrocarbon group having 1 to 15 carbon atoms, further a hydrocarbon group having 1 to 10 carbon atoms preferable.
  • the hydrocarbon group may be linear, have a branch, or have a ring structure.
  • an alkyl group is particularly preferable.
  • an alkyl group having 1 to 30 carbon atoms is preferable, an alkyl group having 1 to 15 carbon atoms is more preferable, and an alkyl group having 1 to 10 carbon atoms is further preferable.
  • the alkyl group may be linear, have a branch, or have a ring structure. Specifically, for example, methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, hexadecyl group, octadecyl group.
  • the alkyl group may have a substituent.
  • substituents include an alkoxy group, an aryloxy group, an amino group, an alkylthio group, an arylthio group, a halogen atom, a carboxy group, a carboxylate group, a sulfo group, a sulfonate group, an alkyloxycarbonyl group, an aryloxycarbonyl group, and these. Examples include a group in which the above are combined.
  • R 11 to R 14 in the formula 1-1 are each independently preferably a hydrogen atom or —R a (that is, a hydrocarbon group), more preferably a hydrogen atom or an alkyl group, and the following Except for the case of, it is more preferably a hydrogen atom.
  • R 11 and R 13 bonded to the carbon atom to which L is bonded are preferably an alkyl group, and it is more preferable that both are linked to form a ring.
  • the ring formed may be a monocyclic ring or a polycyclic ring.
  • the ring formed include a monocycle such as a cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring and a cyclohexadiene ring, and a polycycle such as an indene ring and an indole ring.
  • R 12 bonded to the carbon atom to which A 1 + is bonded preferably is linked to R 15 or R 16 (preferably R 16 ) to form a ring, and R is bonded to the carbon atom to which A 2 is bonded.
  • 14 is preferably linked to R 17 or R 18 (preferably R 18 ) to form a ring.
  • n 13 is preferably 1 and R 16 is preferably —R a (ie, a hydrocarbon group). Further, it is preferable that R 16 is linked to R 12 bonded to the carbon atom to which A 1 + is bonded to form a ring.
  • R 16 is linked to R 12 bonded to the carbon atom to which A 1 + is bonded to form a ring.
  • an indolium ring, a pyrylium ring, a thiopyrylium ring, a benzoxazoline ring, or a benzoimidazoline ring is preferable, and an indolium ring is more preferable from the viewpoint of enhancing the visibility of the exposed portion. These rings may further have a substituent.
  • n 14 is preferably 1 and R 18 is preferably —R a (ie, a hydrocarbon group). Further, it is preferable that R 18 is linked to R 14 bonded to the carbon atom to which A 2 is bonded to form a ring.
  • R 18 is linked to R 14 bonded to the carbon atom to which A 2 is bonded to form a ring.
  • an indole ring, a pyran ring, a thiopyran ring, a benzoxazole ring, or a benzimidazole ring is preferable, and an indole ring is more preferable from the viewpoint of enhancing the visibility of the exposed portion. These rings may further have a substituent.
  • R 16 and R 18 in the formula 1-1 are preferably the same group, and when they form a ring, it is preferable to form a ring having the same structure except for A 1 + and A 2 .
  • R 15 and R 17 in the formula 1-1 are the same group. Further, R 15 and R 17 are preferably —R a (that is, a hydrocarbon group), more preferably an alkyl group, and further preferably a substituted alkyl group.
  • R 15 and R 17 are preferably substituent alkyl groups from the viewpoint of improving water solubility.
  • Examples of the substituted alkyl group represented by R 15 or R 17 include a group represented by any of the following formulas (a1) to (a4).
  • R W0 represents an alkylene group having 2 to 6 carbon atoms
  • W is a single bond or an oxygen atom
  • n W1 represents an integer of 1 ⁇ 45
  • R W5 represents an alkyl group having 1 to 12 carbon atoms
  • R W2 ⁇ R W4 are each independently a single bond or 1 carbon atoms It represents an alkylene group of ⁇ 12
  • M represents a hydrogen atom, a sodium atom, a potassium atom, or an onium group.
  • alkylene group represented by RW0 in the formula (a1) examples include an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, an isobutylene group, an n-pentylene group, an isopentylene group, and n-.
  • examples thereof include a hexyl group and an isohexyl group, and an ethylene group, an n-propylene group, an isopropylene group, or an n-butylene group is preferable, and an n-propylene group is particularly preferable.
  • n W1 is preferably 1 to 10, more preferably 1 to 5, and particularly preferably 1 to 3.
  • alkyl group represented by RW1 examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group and neopentyl.
  • a group, an n-hexyl group, an n-octyl group, an n-dodecyl group and the like can be mentioned, and a methyl group, an ethyl group, an n-propyl group, an isopropyl group, or an n-butyl group and a tert-butyl group are preferable.
  • Alkyl group represented by R W5 is the same as defined for the alkyl group represented by R W1, preferred embodiments are also the same as the preferred embodiment of the alkyl group represented by R W1.
  • Me represents a methyl group
  • Et represents an ethyl group
  • * represents a binding site
  • alkylene groups represented by RW2 to RW4 in the formulas (a2) to (a4) include a methylene group, an ethylene group, an n-propylene group, an isopropylene group, an n-butylene group, and an isobutylene group.
  • an ethylene group or an n-propylene group is particularly preferable.
  • the two existing Ms may be the same or different.
  • examples of the onium group represented by M include an ammonium group, an iodonium group, a phosphonium group, a sulfonium group and the like.
  • the CO 2 M in the formula (a2), the PO 3 M 2 in the formula (a 2), and the SO 3 M in the formula (a 4) may all have an anion structure in which M is dissociated.
  • Counter cation of the anion structure may be a A 1 +, may be a cation may be included in R 1 -L in Formula 1-1.
  • the group represented by the formula (a1), the formula (a2), or the formula (a4) is preferable.
  • n 11 and n 12 in the formula 1-1 are the same, and an integer of 1 to 5 is preferable, an integer of 1 to 3 is more preferable, 1 or 2 is further preferable, and 2 is particularly preferable.
  • a 1 and A 2 in the formula 1-1 independently represent an oxygen atom, a sulfur atom, or a nitrogen atom, and a nitrogen atom is preferable. It is preferable that A 1 and A 2 in the formula 1-1 are the same atom.
  • Za in Equation 1-1 represents a counterion that neutralizes the charge. If all of R 11 to R 18 and R 1- L are charge-neutral groups, Za is a monovalent counter anion. However, R 11 to R 18 and R 1 to L may have an anion structure or a cation structure. For example, when R 11 to R 18 and R 1 to L have two or more anion structures, Za Can also be a countercation. If the cyanine dye represented by the formula 1-1 has a charge-neutral structure as a whole except for Za, Za is not necessary.
  • Za is a counter anion
  • sulfonate ion carboxylate ion, tetrafluoroborate ion, hexafluorophosphate ion, p-toluenesulfonate ion, perchlorate ion and the like
  • tetrafluoroborate ion is preferable.
  • alkali metal ion, alkaline earth metal ion, ammonium ion, pyridinium ion, sulfonium ion and the like can be mentioned, and sodium ion, potassium ion, ammonium ion, pyridinium ion or sulfonium ion is preferable, and sodium is preferable. Ions, potassium ions, or ammonium ions are more preferred.
  • the degradable compound is more preferably a compound represented by the following formula 1-2 (that is, a cyanine pigment) from the viewpoint of enhancing the visibility of the exposed portion.
  • R 1 represents a group represented by any of the above formulas 2 to 4, and R 19 to R 22 are independently hydrogen atom, halogen atom, -R a , -OR b , and so on.
  • -CN represents -SR c, or -NR d R e
  • R 23 and R 24 each independently represent a hydrogen atom, or represents a -R a, each is R a ⁇ R e independently, a hydrocarbon group
  • R 19 and R 20 , R 21 and R 22 , or R 23 and R 24 may be connected to form a monocyclic or polycyclic, and L may be an oxygen atom, a sulfur atom, or a sulfur atom.
  • R 10 represents a hydrogen atom, an alkyl group, or an aryl group
  • R d1 to R d4 , W 1 and W 2 each independently may have a substituent.
  • Za represents a counterion that neutralizes the charge.
  • R 1 in Equation 1-2 is synonymous with R 1 in Equation 1-1, and so is the preferred embodiment.
  • R 19 to R 22 are preferably hydrogen atoms, halogen atoms, -R a , -OR b , or -CN, respectively, independently of each other. More specifically, R 19 and R 21 are preferably hydrogen atom, or a -R a. Further, R 20 and R 22 are preferably hydrogen atoms, -R a , -OR b , or -CN. As —R a represented by R 19 to R 22 , an alkyl group or an alkenyl group is preferable. When all of R 19 to R 22 are ⁇ R a, it is preferable that R 19 and R 20 and R 21 and R 22 are connected to form a monocyclic or polycyclic ring. Examples of the ring formed by connecting R 19 and R 20 or R 21 and R 22 include a benzene ring and a naphthalene ring.
  • R 23 and R 24 are connected to form a monocyclic or polycyclic ring.
  • the ring formed by connecting R 23 and R 24 may be a monocyclic ring or a polycyclic ring.
  • Specific examples of the ring formed include a monocycle such as a cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring and a cyclohexadiene ring, and a polycycle such as an inden ring.
  • R d1 to R d4 are preferably unsubstituted alkyl groups. Further, it is preferable that R d1 to R d4 are all the same group. Examples of the unsubstituted alkyl group include an unsubstituted alkyl group having 1 to 4 carbon atoms, and among them, a methyl group is preferable.
  • W 1 and W 2 are preferably substituted alkyl groups independently from the viewpoint of increasing water solubility in the compound represented by formula 1-2.
  • Examples of the substituted alkyl group represented by W 1 and W 2 include groups represented by any of the formulas (a1) to (a4) in the formula 1-1, and the preferred embodiment is also the same.
  • W 1 and W 2 are independently alkyl groups having a substituent from the viewpoint of on-machine developability, and the above-mentioned substituents include- (OCH 2 CH 2 )-, a sulfo group and a sulfo group.
  • a carboxy group, or a group having at least a salt of a carboxy group is preferable.
  • Za represents a counterion that neutralizes the charge in the molecule. If all of R 19 to R 22 , R 23 to R 24 , R d1 to R d4 , W 1 , W 2 , and R 1 to L are charge-neutral groups, then Za is a monovalent pair. It becomes an anion. However, R 19 to R 22 , R 23 to R 24 , R d1 to R d4 , W 1 , W 2 , and R 1 to L may have an anionic structure or a cation structure, for example, R.
  • Za can also be a counter cation if 19 -R 22 , R 23 -R 24 , R d1 -R d4 , W 1 , W 2 , and R 1- L have more than one anionic structure. If the compound represented by the formula 1-2 has a charge-neutral structure as a whole except for Za, Za is not necessary.
  • the example when Za is a counter anion is the same as that of Za in the formula 1-1, and the preferred embodiment is also the same. Further, the case where Za is a counter cation is the same as that of Za in the formula 1-1, and the preferred embodiment is also the same.
  • the cyanine dye as a degradable compound is more preferably a compound represented by any of the following formulas 1-3 to 1-7 from the viewpoint of degradability and color development.
  • the compound represented by any of the formulas 1-3, 1-5, and 1-6 is preferable.
  • R 1 represents a group represented by any of the above formulas 2 to 4, and R 19 to R 22 are independently hydrogen atom, halogen atom, and ⁇ R a. , -OR b, -CN, -SR c, or represents -NR d R e, each R 25 and R 26 independently represent a hydrogen atom, a halogen atom, or represents a -R a, R a ⁇ R e each independently represents a hydrocarbon group, and R 19 and R 20 , R 21 and R 22 , or R 25 and R 26 may be linked to form a monocyclic or polycyclic, and L is , Oxygen atom, sulfur atom, or -NR 10- , R 10 represents a hydrogen atom, an alkyl group, or an aryl group, and R d1 to R d4 , W 1 and W 2 are independent of each other.
  • Za represents a counteri
  • R 1, R 19 ⁇ R 22 in Formula 1-3 to Formula 1-7, R d1 ⁇ R d4, W 1, W 2, and L is, R 1 in Formula 1-2, R 19 ⁇ R 22, R d1 ⁇ R d4, W 1, W 2, and has the same meaning as L, and also the same preferred embodiment.
  • R 25 and R 26 in Formula 1-7 are each independently preferably a hydrogen atom or an alkyl group, more preferably an alkyl group, and particularly preferably a methyl group.
  • the infrared absorbing compound described in International Publication No. 2019/219560 can be preferably used.
  • the said discoloring compound may contain an acid color former.
  • the acid color former those described as the acid color developer in the image recording layer can be used, and the preferred embodiment is also the same.
  • the discoloring compound may be used alone or in combination of two or more kinds of components.
  • the discoloring compound the above-mentioned decomposable compound and the acid generator described later may be used in combination.
  • the content of the discoloring compound in the protective layer is preferably 0.10% by mass to 50% by mass, more preferably 0.50% by mass to 30% by mass, based on the total mass of the protective layer. , 1.0% by mass to 20% by mass is more preferable.
  • the ratio M X / M Y between the content M Y of the infrared absorber content M X and the image recording layer of the discoloring compound of the protective layer is, in terms of color development property, is 0.1 or more It is preferable, 0.2 or more is more preferable, and 0.3 or more and 3.0 or less is particularly preferable.
  • the protective layer preferably contains a water-soluble polymer from the viewpoint of developability (more preferably, on-machine developability).
  • the water-soluble polymer is a solution in which 1 g or more is dissolved in 100 g of pure water at 70 ° C. and 1 g of the polymer is dissolved in 100 g of pure water at 70 ° C., and the solution is cooled to 25 ° C. A polymer that does not precipitate even if.
  • the water-soluble polymer used for the protective layer include polyvinyl alcohol, modified polyvinyl alcohol, polyvinylpyrrolidone, water-soluble cellulose derivative, polyethylene glycol, poly (meth) acrylonitrile and the like.
  • modified polyvinyl alcohol an acid-modified polyvinyl alcohol having a carboxy group or a sulfo group is preferably used. Specific examples thereof include the modified polyvinyl alcohols described in JP-A-2005-250216 and JP-A-2006-259137.
  • polyvinyl alcohol is preferable. Above all, as the water-soluble polymer, it is more preferable to use polyvinyl alcohol having a saponification degree of 50% or more.
  • the saponification degree is preferably 60% or more, more preferably 70% or more, still more preferably 85% or more.
  • the upper limit of the saponification degree is not particularly limited, and may be 100% or less.
  • the degree of saponification is measured according to the method described in JIS K 6726: 1994.
  • polyvinylpyrrolidone is also preferable.
  • hydrophilic polymer it is also preferable to use polyvinyl alcohol and polyvinylpyrrolidone in combination.
  • the water-soluble polymer may be used alone or in combination of two or more.
  • the content of the water-soluble polymer is preferably 1% by mass to 99% by mass and 3% by mass to 97% by mass with respect to the total mass of the protective layer. Is more preferable, and 5% by mass to 95% by mass is further preferable.
  • the protective layer may contain other components such as a hydrophobic polymer, a fat-sensing agent, an acid generator, and an infrared absorber.
  • a hydrophobic polymer such as a polyethylene glycol dimethacrylate copolymer, polyethylene glycol dimethacrylate copolymer, polyethylene glycol dimethacrylate copolymer, polyethylene glycol dimethacrylate copolymer, polyethylene glycol dimethacrylate, poly(ethylene glycol) terpolymer, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, ethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polypropylene glycol dimethacrylate,
  • the protective layer preferably contains a hydrophobic polymer.
  • the hydrophobic polymer means a polymer that dissolves or does not dissolve in less than 1 g in 100 g of pure water at 70 ° C.
  • examples of the hydrophobic polymer include polyethylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, poly (meth) acrylate alkyl ester (for example, methyl poly (meth) acrylate, ethyl poly (meth) acrylate, and poly (meth). ) Butyl acrylate, etc.), copolymers in which raw material monomers of these polymers are combined, and the like.
  • the hydrophobic polymer preferably contains a polyvinylidene chloride resin. Further, the hydrophobic polymer preferably contains a styrene-acrylic copolymer. Furthermore, the hydrophobic polymer is preferably hydrophobic polymer particles from the viewpoint of on-machine developability.
  • the hydrophobic polymer may be used alone or in combination of two or more.
  • the content of the hydrophobic polymer is preferably 1% by mass to 80% by mass and 5% by mass to 50% by mass with respect to the total mass of the protective layer. Is more preferable.
  • the occupied area ratio of the hydrophobic polymer on the surface of the protective layer is preferably 30 area% or more, more preferably 40 area% or more, and further preferably 50 area% or more.
  • the upper limit of the occupied area ratio on the surface of the protective layer of the hydrophobic polymer is, for example, 90 area%.
  • the occupied area ratio of the hydrophobic polymer on the surface of the protective layer can be measured as follows.
  • the surface of the protective layer is irradiated with a Bi ion beam (primary ion) at an acceleration voltage of 30 kV and emitted from the surface.
  • a Bi ion beam primary ion
  • the hydrophobic part is mapped, and the area of the hydrophobic part occupying 1 ⁇ m 2 is measured, and the hydrophobic part is measured.
  • the occupied area ratio of the above is obtained, and this is referred to as the "occupied area ratio on the surface of the protective layer of the hydrophobic polymer".
  • the hydrophobic polymer is an acrylic resin
  • the measurement is carried out by the peak of C 6 H 13 O ⁇ .
  • the hydrophobic polymer is polyvinylidene chloride
  • the measurement is performed by the peak of C 2 H 2 Cl + .
  • the occupied area ratio can be adjusted by the amount of the hydrophobic polymer added or the like.
  • the protective layer preferably contains a fat-sensing agent from the viewpoint of ink penetration.
  • a fat-sensing agent from the viewpoint of ink penetration.
  • the oil-sensitive agent used in the protective layer the oil-sensitive agent described in the image recording layer can be used, and the preferred embodiment is also the same.
  • the oil sensitizer may be used alone or in combination of two or more.
  • the content of the fat-sensitive agent is preferably 0.5% by mass to 30% by mass, and 1% by mass to 20% by mass, based on the total mass of the protective layer. More preferably.
  • the protective layer preferably contains an acid generator.
  • the "acid generator” in the present disclosure is a compound that generates an acid by light or heat, and specifically, a compound that is decomposed by infrared exposure to generate an acid.
  • the acid to be generated is preferably a strong acid having a pKa of 2 or less, such as sulfonic acid and hydrochloric acid.
  • the acid generated from the acid generator can discolor the above-mentioned acid color former.
  • the onium salt compound is preferable as the acid generator from the viewpoint of sensitivity and stability.
  • the onium salt suitable as the acid generator include the compounds described in paragraphs 0121 to 0124 of International Publication No. 2016/047392. Among them, triarylsulfonium, or diaryliodonium, sulfonates, carboxylates, BPh 4 -, BF 4 - , PF 6 -, ClO 4 - and the like are preferable.
  • Ph represents a phenyl group.
  • the acid generator may be used alone or in combination of two or more.
  • the content of the acid generator is preferably 0.5% by mass to 30% by mass, and 1% by mass to 20% by mass, based on the total mass of the protective layer. More preferably.
  • the protective layer may contain known additives such as an inorganic layered compound and a surfactant in addition to the above-mentioned components.
  • the protective layer is formed by applying it by a known method and drying it.
  • the coating amount of the protective layer (solid content) is preferably from 0.01g / m 2 ⁇ 10g / m 2, more preferably 0.02g / m 2 ⁇ 3g / m 2, 0.1g / m 2 ⁇ 2.0g / M 2 is particularly preferred.
  • the film thickness of the protective layer is preferably 0.1 ⁇ m to 5.0 ⁇ m, and more preferably 0.3 ⁇ m to 4.0 ⁇ m.
  • the film thickness of the protective layer is preferably 0.1 to 5.0 times, more preferably 0.2 to 3.0 times, the film thickness of the image recording layer described later.
  • the protective layer may contain known additives such as a plasticizer for imparting flexibility, a surfactant for improving coatability, and inorganic particles for controlling the slipperiness of the surface.
  • a lithographic printing plate can be produced by subjecting the original plate of the lithographic printing plate according to the present disclosure to an image and developing the plate.
  • the method for producing a lithographic printing plate according to the present disclosure comprises a step of exposing the lithographic printing plate original plate according to the present disclosure to an image (hereinafter, also referred to as an “exposure step”), and a group consisting of printing ink and dampening water. It is preferable to include a step of supplying at least one of the selected ones and removing the image recording layer of the non-image portion on the printing machine (hereinafter, also referred to as “on-machine development step”).
  • the lithographic printing method according to the present disclosure includes a step of exposing the lithographic printing plate original plate according to the present disclosure to an image (exposure step) and printing by supplying at least one selected from the group consisting of printing ink and dampening water. It is preferable to include a step of removing the image recording layer of the non-image portion on the machine to produce a lithographic printing plate (on-machine development step) and a step of printing with the obtained lithographic printing plate (printing step).
  • exposure step a step of removing the image recording layer of the non-image portion on the machine to produce a lithographic printing plate (on-machine development step) and a step of printing with the obtained lithographic printing plate (printing step).
  • the lithographic printing plate original plate according to the present disclosure can also be developed with a developing solution.
  • the exposure step and the on-machine development step in the lithographic printing plate manufacturing method will be described, but the exposure step in the lithographic printing plate manufacturing method according to the present disclosure and the exposure step in the lithographic printing method according to the present disclosure are the same. It is a step, and the on-machine development step in the lithographic printing plate manufacturing method according to the present disclosure and the on-machine development step in the lithographic printing method according to the present disclosure are the same steps. Further, it is estimated that a part of the outermost layer is removed at the time of on-machine development, and a part remains on the surface of the image part or permeates into the inside of the image part by printing ink.
  • the method for producing a lithographic printing plate according to the present disclosure preferably includes an exposure step of exposing the lithographic printing plate original plate according to the present disclosure to an image to form an exposed portion and an unexposed portion.
  • the planographic printing plate original plate according to the present disclosure is preferably exposed by laser exposure through a transparent original image having a line image, a halftone dot image, or the like, or by laser light scanning with digital data or the like.
  • the wavelength of the light source is preferably 750 nm to 1,400 nm.
  • a solid-state laser and a semiconductor laser that emit infrared rays are suitable.
  • the output is preferably 100 mW or more, the exposure time per pixel is preferably within 20 microseconds, and the irradiation energy amount is 10 mJ / cm 2 to 300 mJ / cm 2. preferable. Further, it is preferable to use a multi-beam laser device in order to shorten the exposure time.
  • the exposure mechanism may be any of an inner drum method, an outer drum method, a flatbed method and the like. Image exposure can be performed by a conventional method using a platesetter or the like. In the case of on-machine development, the lithographic printing plate original plate may be mounted on the printing machine and then the image may be exposed on the printing machine.
  • the method for producing a lithographic printing plate according to the present disclosure involves an on-machine development step of supplying at least one selected from the group consisting of printing ink and dampening water to remove an image recording layer in a non-image area on a printing machine. It is preferable to include it.
  • the on-machine development method will be described below.
  • the image-exposed lithographic printing plate original plate supplies oil-based ink and water-based components on the printing machine, and the image recording layer in the non-image area is removed to produce a lithographic printing plate.
  • the flat plate printing plate original plate is mounted on the printing machine as it is without any development processing after the image exposure, or the flat plate printing plate original plate is mounted on the printing machine and then the image is exposed on the printing machine, and then When printing is performed by supplying an oil-based ink and a water-based component, in the non-image area, an uncured image recording layer is formed by either or both of the supplied oil-based ink and the water-based component in the initial stage of printing.
  • the image recording layer cured by exposure forms an oil-based ink receiving portion having a lipophilic surface.
  • the first supply to the printing plate may be an oil-based ink or a water-based component, but the oil-based ink is first supplied in terms of preventing contamination by the components of the image recording layer from which the water-based components have been removed. Is preferable.
  • the lithographic printing plate original plate is developed on the printing machine and used as it is for printing a large number of sheets.
  • the oil-based ink and the water-based component ordinary printing ink for lithographic printing and dampening water are preferably used.
  • the wavelength of the light source is preferably 300 nm to 450 nm or 750 nm to 1,400 nm as the laser for image-exposing the lithographic printing plate original plate according to the present disclosure.
  • a light source having a wavelength of 300 nm to 450 nm a lithographic printing plate original plate containing a sensitizing dye having an absorption maximum in this wavelength region in the image recording layer is preferably used, and the light source having a wavelength of 750 nm to 1,400 nm is as described above. It is preferably used.
  • a semiconductor laser is suitable as a light source having a wavelength of 300 nm to 450 nm.
  • the method for producing a lithographic printing plate according to the present disclosure includes a step of exposing the lithographic printing plate original plate according to the present disclosure to an image, and a step of removing the image recording layer of the non-image portion with a developing solution to prepare a lithographic printing plate ( It may also be a method including "developer development step"). Further, the lithographic printing method according to the present disclosure includes a step of exposing the lithographic printing plate original plate according to the present disclosure to an image, and a step of removing the image recording layer of the non-image portion with a developing solution to prepare a lithographic printing plate. A method may include a step of printing with the obtained lithographic printing plate.
  • the developing solution a known developing solution can be used.
  • the pH of the developing solution is not particularly limited and may be a strong alkaline developing solution, but a developing solution having a pH of 2 to 11 is preferable.
  • a developing solution having a pH of 2 to 11 for example, a developing solution containing at least one of a surfactant and a water-soluble polymer compound is preferable.
  • a strong alkaline developer a method in which the protective layer is removed by a pre-washing step, then alkaline development is performed, the alkali is washed and removed in a post-washing step, a gum solution treatment is performed, and the drying step is performed. Can be mentioned.
  • the developer-gum solution treatment can be performed at the same time. Therefore, the post-washing step is not particularly required, and the drying step can be performed after the development and the gum liquid treatment are performed with one liquid. Further, since the protective layer can be removed at the same time as the development and the gum solution treatment, the pre-washing step is not particularly required. After the development treatment, it is preferable to remove excess developer using a squeeze roller or the like and then dry.
  • the lithographic printing method includes a printing step of supplying printing ink to a lithographic printing plate to print a recording medium.
  • the printing ink is not particularly limited, and various known inks can be used as desired. Further, as the printing ink, oil-based ink or ultraviolet curable ink (UV ink) is preferably mentioned. Further, in the printing process, dampening water may be supplied as needed. Further, the printing step may be continuously performed in the on-machine development step or the developer development step without stopping the printing machine.
  • the recording medium is not particularly limited, and a known recording medium can be used as desired.
  • lithographic printing is performed before, during, and between exposure and development as necessary.
  • the entire surface of the plate original may be heated.
  • Heating before development is preferably performed under mild conditions of 150 ° C. or lower.
  • very strong conditions for heating after development preferably in the range of 100 ° C. to 500 ° C. Within the above range, a sufficient image enhancement effect can be obtained, and problems such as deterioration of the support and thermal decomposition of the image portion can be suppressed.
  • the molecular weight is the weight average molecular weight (Mw), and the ratio of the constituent repeating units is a molar percentage, except for those specified specifically.
  • Mw weight average molecular weight
  • the weight average molecular weight (Mw) is a value measured as a polystyrene-equivalent value by a gel permeation chromatography (GPC) method.
  • GPC gel permeation chromatography
  • the average particle size means a volume average particle size unless otherwise specified.
  • Polymer particles R-2 were synthesized according to Examples (Preparation 1) of JP2013-503365A.
  • the polymer particles R-2 are particles having the structure shown below.
  • the total amount of electricity stored in the anodic reaction of the aluminum plate was 450 C / dm 2 , and the electrolysis treatment was carried out in 4 steps with an energization interval of 125 C / dm 2 for 4 seconds.
  • a carbon electrode was used as the counter electrode of the aluminum plate. Then, it was washed with water.
  • Alkaline etching treatment The aluminum plate after the electrochemical roughening treatment is etched by spraying an aqueous solution of caustic soda having a caustic soda concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass with a spray tube at a temperature of 45 ° C. Processing was performed. The dissolved amount of aluminum on the surface subjected to the electrochemical roughening treatment was 0.2 g / m 2 . Then, it was washed with water.
  • the anodized aluminum plate is immersed in a caustic soda aqueous solution having a temperature of 35 ° C., a caustic soda concentration of 5% by mass, and an aluminum ion concentration of 0.5% by mass under the conditions shown in Table 1 for pore wide treatment. Was done. Then, it was washed with water by spraying.
  • Second-stage anodizing treatment was performed using an anodizing apparatus by direct current electrolysis having the structure shown in FIG. Anodizing was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness. From the above surface treatment A, the support S1 of the example was obtained.
  • Depth (nm) of large and small holes, pit density (micropore density, unit; piece / ⁇ m 2 ), and thickness of anodic oxide film from the bottom of the small holes to the surface of the aluminum plate. (Nm) are summarized in Table 2.
  • the diameters of the micropores (large-diameter hole portion and small-diameter hole portion) existing in the range of 400 nm ⁇ 600 nm were measured and averaged in the four images obtained.
  • the upper part of the anodic oxide film is cut, and then Various diameters were calculated.
  • depth of the micropores depth of the large-diameter hole and the small-diameter hole
  • FE-SEM observation of the depth of the large-diameter hole: 150,000 times, small diameter
  • the depths of 25 arbitrary micropores were measured and averaged.
  • the amount of film (AD) in the first anodizing treatment column and the amount of film (AD) in the second anodizing treatment column represent the amount of film obtained in each treatment.
  • the electrolytic solution used is an aqueous solution containing the components in Table 1.
  • the total amount of electricity stored in the anodic reaction of the aluminum plate was 450 C / dm 2 , and the electrolysis treatment was carried out in 4 steps with an energization interval of 125 C / dm 2 for 4 seconds.
  • a carbon electrode was used as the counter electrode of the aluminum plate. Then, it was washed with water.
  • (Bd) Alkaline etching treatment The aluminum plate after the electrochemical roughening treatment is etched by spraying an aqueous solution of caustic soda having a caustic soda concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass with a spray tube at a temperature of 45 ° C. Processing was performed. The dissolved amount of aluminum on the surface subjected to the electrochemical roughening treatment was 0.2 g / m 2 . Then, it was washed with water.
  • the first stage anodizing treatment was performed using an anodizing apparatus by direct current electrolysis having the structure shown in FIG. Anodizing was performed under the conditions shown in Table 1 to form an anodized film having a predetermined film thickness.
  • the obtained support S1 was used as the support A, and the support S2 was used as the support B.
  • the support A had micropores having a large-diameter hole and a small-diameter hole, and the average diameter of the micropores was 15 nm, and the L * value was 80.
  • the support B had micropores having only large-diameter holes, the average diameter of the micropores was 60 nm, and the L * value was 85.
  • undercoat layer coating solution having the following composition was prepared.
  • the preparation method of the inorganic layered compound dispersion liquid (1) used in the protective layer coating liquid is shown below.
  • An image recording layer coating liquid was prepared according to the following photosensitive liquid (1) and the description in Tables 3 to 5.
  • the amount of each material added shown in Tables 3 to 5 is the amount of solid content.
  • the photosensitive liquid in which the components shown in Tables 3 to 5 other than the polymer particles are mixed and the polymer particle dispersion liquid are shown in Tables 3 to 5.
  • the composition was adjusted by mixing and stirring immediately before coating.
  • Electron-donated polymerization initiators shown in Tables 3 to 5 Amounts shown in Tables 3 to 5 ⁇ Polymerizable compounds shown in Tables 3 to 5: Amounts shown in Tables 3 to 5 ⁇ Tables 3 to 3 Polymer particles shown in Table 5: Amounts shown in Tables 3 to 5 ⁇ Binder polymers shown in Tables 3 to 5: Amounts shown in Tables 3 to 5 ⁇ Leuco dyes shown in Tables 3 to 5 ( Acid color-developing agent): Amount shown in Tables 3 to 5 ⁇ Surfactant shown in Tables 3 to 5: Amount shown in Tables 3 to 5 ⁇ 2-Butanone: 1.091 parts by mass ⁇ 1-methoxy -2-Propanol: 8.609 parts by mass ⁇ Distilled water: 2.425 parts by mass
  • a protective layer coating solution having the above composition was bar-coated on the image recording layer and dried in an oven at 120 ° C. for 60 seconds to form a protective layer having a dry coating amount of 0.15 g / m 2 .
  • "Yes" was described in the column of the protective layer in Tables 3 to 5.
  • lithographic printing plate original plate The lithographic printing plate original plate produced as described above is mounted on a Magnus 800 Quantum manufactured by Kodak equipped with an infrared semiconductor laser, and has an output of 27 W, an outer drum rotation speed of 450 rpm, and a resolution of 2,400 dpi (dot per inch, 1 inch is 2.54 cm). Exposure was performed under the conditions of (corresponding to irradiation energy of 110 mJ / cm 2 ). The exposed image includes a solid image and a chart of 3% halftone dots on the AM screen (Amplitude Modulation Screen).
  • UV curable ink print resistance UV print resistance
  • the number of printed copies is taken as the number of printed copies when the value measured by the Gretag densitometer (manufactured by Gretag Macbeth) for the halftone dot area ratio of the AM screen 3% halftone dot in the printed matter is 1% lower than the measured value of the 500th printed sheet.
  • the print resistance was evaluated. The evaluation was made based on the relative printing resistance of 100 when the number of printed sheets was 50,000. The larger the value, the better the printing durability. The evaluation results are shown in Tables 3 to 5.
  • Relative printing resistance (number of prints of target lithographic printing plate original plate) / 50,000 x 100
  • the lithographic printing plate original plate produced as described above was subjected to a Magnus 800 Quantum manufactured by Kodak equipped with an infrared semiconductor laser, and had an output of 27 W, an outer drum rotation speed of 450 rpm, and a resolution of 2,400 dpi (dot per). Exposure (corresponding to irradiation energy 110 mJ / cm 2 ) was performed under the condition of inch (1 inch is 2.54 cm). The exposed image includes a solid image and a chart of AM screen (Amplitude Modified Screening) 3% halftone dots.
  • AM screen Amplitude Modified Screening
  • a piano wire (manufactured by Esco Co., Ltd.) with a diameter of 0.4 mm is attached to the halftone dots of the obtained exposed original plate in a direction perpendicular to the rotation direction of the plate cylinder, and is of chrysanthemum size without development processing. It was attached to the cylinder of the Heidelberg printing machine SX-74. A non-woven fabric filter and a dampening water circulation tank having a capacity of 100 L containing a temperature control device were connected to the printing machine.
  • Damping water S-Z1 (manufactured by Fujifilm Co., Ltd.) 2.0% dampening water 80L is charged in the circulation device, and T & K UV OFS K-HS ink GE-M (manufactured by T & K TOKA Co., Ltd.) is used as printing ink.
  • T & K UV OFS K-HS ink GE-M (manufactured by T & K TOKA Co., Ltd.) is used as printing ink. ) Is used to supply dampening water and ink using the standard automatic printing start method, and then printed on Tokuryo Art (manufactured by Mitsubishi Paper Co., Ltd., continuous weight: 76.5 kg) at a printing speed of 10,000 sheets per hour. I printed it. When the number of printed sheets reached 2,000, the piano wire was removed from the plate, set in the printing machine again, and printing was started.
  • B Ink density 1.5 to 1.7: The ink density is slightly reduced, but it is an acceptable level.
  • C Ink density 1.0 to 1.4: The ink density is clearly reduced, which is an unacceptable level.
  • D Ink density 0.9 or less: Ink density decrease is extremely poor.
  • Electron-accepting polymerization initiators I-1 to I-4 and I'-1 The following compounds
  • Infrared absorbing polymethine dyes D-1 to D-4, D'-1 and D'-2 The following compounds
  • Electron-donated polymerization initiator T-1 Sodium tetraphenylborate
  • Polymerizable compound M-1 U-15HA: Urethane acrylate containing the following compounds (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.)
  • Polymerizable Compound M-2 Dipentaerythritol Pentaacrylate, SR-399, manufactured by Sartmer Polymerized Compound M-3: Tris (acryloyloxyethyl) isocyanurate, NK ester A-9300, manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • Polymer particles R-1 Polymer particles (microgel (1) below), and the image recording layer coating liquid containing the polymer particles R-1 is prepared by mixing the components shown in Table 3 or Table 4 other than the microgel liquid below. The photosensitive liquid and the following microgel liquid were mixed and stirred immediately before application.
  • the preparation method of the microgel (1) used in the above microgel solution is shown below.
  • microgel (1) The following oil phase components and aqueous phase components were mixed and emulsified at 12,000 rpm for 10 minutes using a homogenizer. After stirring the obtained emulsion at 45 ° C. for 4 hours, 10 mass of 1,8-diazabicyclo [5.4.0] undec-7-ene-octylate (U-CAT SA102, manufactured by San-Apro Co., Ltd.) 5.20 g of% aqueous solution was added, the mixture was stirred at room temperature for 30 minutes, and allowed to stand at 45 ° C. for 24 hours. The solid content concentration was adjusted to 20% by mass with distilled water to obtain an aqueous dispersion of microgel (1). When the average particle size was measured by the light scattering method, it was 0.28 ⁇ m.
  • Oil phase component ⁇ (Component 1) Ethyl acetate: 12.0 g (Component 2) Addition in which trimethylolpropane (6 mol) and xylene diisocyanate (18 mol) are added, and one-terminal methylated polyoxyethylene (1 mol, number of repetitions of oxyethylene unit: 90) is added thereto.
  • Multivalent isocyanate compound (1) (as 50% by mass ethyl acetate solution): 15.0 g (Component 4) 65 mass% ethyl acetate solution of dipentaerythritol pentaacrylate (SR-399, manufactured by Sartmer): 11.54 g (Component 5) 10% ethyl acetate solution of sulfonate-type surfactant (Pionin A-41-C, manufactured by Takemoto Oil & Fat Co., Ltd .): 4.42 g
  • Polymer particles R-2 Polymer particles R-2 produced above Polymer particles
  • R-3 Polymer particles R-3 produced above Polymer particles 18-22: Particles 18-22 prepared by the following method
  • Me represents a methyl group.
  • Neostan U-600 was added to the three-necked flask, and the mixture was heated and stirred for 3 hours. Then, it cooled to room temperature, and wall material C (solid content 50% by mass) was obtained.
  • Pionin A-41-C manufactured by Takemoto Oil & Fat Co., Ltd. 0.45 g, wall material C 14.99 g, SR-399E 7.49 g, wall material B 1.89 g, wall material D 1.89 g, And 16.56 g of ethyl acetate was added, and the mixture was stirred at room temperature. Then, 46.89 g of pure water was added to the aluminum cup, and the mixture was stirred with a homogenizer at 12,000 rpm for 12 minutes. Then, 16.64 g of pure water was further added, the temperature was raised to 45 ° C., and the mixture was heated and stirred for 4 hours.
  • Pionin A-41-C manufactured by Takemoto Oil & Fat Co., Ltd. 0.45 g, wall material A 14.99 g, SR-399E 7.49 g, wall material B 1.89 g, wall material D 1.89 g, And 16.56 g of ethyl acetate was added, and the mixture was stirred at room temperature. Then, 46.89 g of pure water was added to the aluminum cup, and the mixture was stirred with a homogenizer at 12,000 rpm for 12 minutes. Then, 16.64 g of pure water was further added, the temperature was raised to 45 ° C., and the mixture was heated and stirred for 4 hours.
  • Pionin A-41-C manufactured by Takemoto Oil & Fat Co., Ltd.
  • wall material A 14.99 g wall material A 14.99 g
  • SR-399E 7.49 g wall material D 3.78 g
  • ethyl acetate 16.56 g was added and stirred at room temperature.
  • 46.89 g of pure water was added to the aluminum cup, and the mixture was stirred with a homogenizer at 12,000 rpm for 12 minutes.
  • 16.64 g of pure water was further added, the temperature was raised to 45 ° C., and the mixture was heated and stirred for 4 hours.
  • the ethylenically unsaturated bond value of the particle 22 is 2.01 mmol / g, which corresponds to the specific particle A.
  • the median diameter of the particles 22 was 185 nm, and the coefficient of variation was 27.5%.
  • the resin contained in the particles 22 is shown below. In the following resins, the subscripts under each compound (monomer) and the subscripts at the lower right of the parentheses indicate the content ratio (mass ratio).
  • Binder polymer P-1 Polymer shown below, ethylenically unsaturated bond value 0.33 mmol / g
  • the content of each structural unit (subscript at the bottom right of the parentheses) represents the mass ratio, and the subscript at the bottom right of the parentheses of the ethyleneoxy structure represents the number of repetitions.
  • Binder polymer P-2 Klucel M, manufactured by Hercules, hydroxypropyl cellulose, ethylenically unsaturated bond value 0 mmol / g
  • Acid color former SA-1 S-205 (leuco dye with fluorin structure, manufactured by Fukui Yamada Chemical Industry Co., Ltd.)
  • Surfactant W-1 Compound with the following structure
  • the lithographic printing plate originals of Examples 1 to 28, which are the lithographic printing plate originals according to the present disclosure are the lithographic printing plates obtained even when UV ink is used. Has excellent printing resistance.
  • the lithographic printing plate originals of Examples 1 to 28, which are the lithographic printing plate originals according to the present disclosure have UV plate skipping property, on-machine developability, and spot color fleshing property. Also, it is excellent in suppressing development residue during on-machine development.
  • Example 29-40 Preparation of image recording layer coating liquid> A photosensitive liquid (1) and an image recording layer coating liquid were prepared in the same manner as in Example 1 except that the composition was changed to that shown in Table 6. In addition, the obtained image recording layer coating liquid was used to prepare a lithographic printing plate original plate in the same manner as in Example 1.
  • the measurement was performed by the SCE (specular reflection light removal) method using a spectrocolorimeter CM2600d manufactured by Konica Minolta Co., Ltd. and an operation software CM-S100W. Chromogenic uses the L * a * b * color system of L * value (lightness) was evaluated by the difference ⁇ L between the L * values of the L * value and the unexposed portions of the exposed portion. The larger the value of ⁇ L, the better the color development.
  • Undercoat layer coating liquids (2) and (3) having the following compositions were prepared, respectively.
  • Example 41 to 46 Preparation of lithographic printing plate original plate>
  • the undercoat layer coating solution shown in Table 7 was applied onto the support A so that the dry coating amount was 20 mg / m 2 to form an undercoat layer.
  • the image recording layer coating solution shown in Table 7 was bar-coated on the undercoat layer and dried in an oven at 120 ° C. for 40 seconds to form an image recording layer having a dry coating amount of 1.0 g / m 2 .
  • the image recording layer coating liquid was prepared by mixing and stirring the polymer particles immediately before coating.
  • the obtained planographic printing plate original plate was used with a Luxel PLATESETTER T-6000III manufactured by FUJIFILM Corporation equipped with an infrared semiconductor laser, and had an outer drum rotation speed of 1,000 rpm (revolutions per minute), a laser output of 70%, and a resolution of 2, The exposure was performed under the condition of 400 dpi (dot per inch). After the exposure treatment, the lithographic printing plate obtained in an environment of a temperature of 25 ° C. and a humidity of 70% RH was scratched by a scratch tester.
  • HEIDON scratching Intersity TESTER HEIDEN-18 was used, and a sapphire needle having a diameter of 0.1 mm was used, and the scratch load was 50 (g).
  • the scratched plate was attached to the plate cylinder of a diamond IF2 printing machine manufactured by Mitsubishi Heavy Industries, Ltd. without developing.
  • the “surface contact angle” shown in Table 7 represents the contact angle with water by the aerial water droplet method on the surface of the aluminum support on the image recording layer side. The contact angle was measured by the method described above.
  • the UV printing resistance of the planographic printing plate original plates of Examples 41 to 46 was the same as that of Example 1.
  • the details of the hydrophilic compounds shown in Table 7 are shown below.
  • Example 47 The process up to the formation of the image recording layer was carried out in the same manner as in Example 46, except that the composition of each layer was the composition shown in Table 8 or Table 9.
  • Protective layer coating liquid containing the components listed in Table 8 or Table 9 below on the image recording layer (however, the protective layer coating liquid contains each component shown in Table 8 or Table 9 and has a solid content of ion exchange: Was coated with a bar and dried in an oven at 120 ° C. for 60 seconds to form a protective layer having a dry coating amount of 0.50 g / m 2 . Through the above steps, a planographic printing plate original plate was obtained.
  • the obtained flat plate printing plate original plate was used as a light source in an environment of room temperature (25 ° C.) and humidity of 50%, and an OSRAM FLR40SW fluorescent lamp manufactured by Mitsubishi Electric Corporation was used as a light source to make a pocket illuminance meter ANA-F9 type manufactured by Tokyo Photoelectric Co., Ltd.
  • the flat plate printing plate original plate was set at a position of illuminance of 1000 lpx and irradiated with white light for 2 hours.
  • the on-machine developability (2 hours after exposure to white light) was measured in the same manner as in the above-mentioned on-machine developability evaluation. The results are shown in Table 8 or Table 9.
  • the obtained planographic printing plate original plate was used with a Luxel PLATESETTER T-6000III manufactured by FUJIFILM Corporation equipped with an infrared semiconductor laser, and had an outer drum rotation speed of 1,000 rpm (revolutions per minute), a laser output of 70%, and a resolution of 2, The exposure was performed under the condition of 400 dpi (dots per inch). After the exposure treatment, the lithographic printing plate obtained in an environment of a temperature of 25 ° C. and a humidity of 70% was scratched by a scratch tester.
  • HEIDON scratching Intersity TESTER HEIDEN-18 was used, and a sapphire needle having a diameter of 0.1 mm was used, and the scratch load was 50 (g).
  • the scratched plate was attached to the plate cylinder of a Mitsubishi diamond IF2 printing machine without development processing.
  • the evaluation standard is preferably 10 to 6 points.
  • S-1 Compound with the following structure
  • S-2 Compound with the following structure
  • P-1 Compound with the following structure (polyvinylidene chloride resin, weight average molecular weight 40,000)
  • Int-1 A compound having the following structure, Ph represents a phenyl group.
  • Int-2 Compound with the following structure
  • the lithographic printing plate originals of Examples 47 to 62 which are the lithographic printing plate originals according to the present disclosure, are the lithographic printing plates obtained even when UV ink is used. Has excellent printing resistance. Further, from the results shown in Tables 8 and 9, the lithographic printing plate original plates of Examples 47 to 62, which are the lithographic printing plate original plates according to the present disclosure, have visibility (color development) and visibility over time (color development over time). It is also excellent in on-machine developability, on-machine developability over time, and scratch resistance.
  • the protective layer coating solution (2) having the following composition shown in Table 13 is bar-coated on the image recording layer and dried in an oven at 120 ° C. for 60 seconds to obtain the dry coating amount shown in Table 13.
  • a protective layer (overcoat layer) was formed on the surface to prepare an on-machine development type lithographic printing plate original plate.
  • the obtained planographic printing plate original plate was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 13.
  • Desmat treatment in an acidic aqueous solution (first desmat treatment)
  • a desmat treatment was performed in an acidic aqueous solution.
  • an aqueous solution of sulfuric acid of 150 g / L was used as the acidic aqueous solution used for the desmat treatment.
  • the liquid temperature was 30 ° C.
  • the desmat solution was sprayed and treated with desmat for 3 seconds. Then, it was washed with water.
  • the total amount of electricity stored in the anodic reaction of the aluminum plate was 450 C / dm 2 , and the electrolysis treatment was carried out in 4 steps with an energization interval of 125 C / dm 2 for 4 seconds.
  • a carbon electrode was used as the counter electrode of the aluminum plate. Then, it was washed with water.
  • (Dd) Alkaline etching treatment The aluminum plate after the electrochemical roughening treatment is etched by spraying an aqueous solution of caustic soda having a caustic soda concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass with a spray tube at a temperature of 45 ° C. Processing was performed. The dissolved amount of aluminum on the surface subjected to the electrochemical roughening treatment was 0.2 g / m 2 . Then, it was washed with water.
  • (Df) First-stage anodizing treatment The first-stage anodizing treatment was performed using an anodizing apparatus by direct current electrolysis having the structure shown in FIG.
  • the anodizing treatment was performed under the conditions shown in Table 10 to form an anodized film having a predetermined film thickness.
  • Second-stage anodizing treatment was performed using an anodizing apparatus by direct current electrolysis having the structure shown in FIG.
  • the anodizing treatment was performed under the conditions shown in Table 10 to form an anodized film having a predetermined film thickness.
  • Depth (nm) of large and small holes, pit density (micropore density, unit; piece / ⁇ m 2 ), and thickness of anodic oxide film from the bottom of the small holes to the surface of the aluminum plate. (Nm) are summarized in Table 10.
  • the diameters of the micropores (large-diameter hole portion and small-diameter hole portion) existing in the range of 400 nm ⁇ 600 nm were measured and averaged in the four images obtained.
  • the upper part of the anodic oxide film is cut, and then Various diameters were calculated.
  • depth of the micropores depth of the large-diameter hole and the small-diameter hole
  • FE-SEM observation of the depth of the large-diameter hole: 150,000 times, small diameter
  • the depths of 25 arbitrary micropores were measured and averaged.
  • the amount of film (AD) in the first anodizing treatment column and the amount of film (AD) in the second anodizing treatment column represent the amount of film obtained in each treatment.
  • the electrolytic solution used is an aqueous solution containing the components in Table 10.
  • the electric amount was 450C / dm 2 in terms of the total electric quantity aluminum plate participating in the anode reaction, electrolytic treatment was carried out four times to open the energization interval 112.5C / dm 2 by 4 seconds. A carbon electrode was used as the counter electrode of the aluminum plate. Then, it was washed with water.
  • a desmat treatment was performed using an acidic aqueous solution. Specifically, an acidic aqueous solution was sprayed onto an aluminum plate to perform a desmat treatment for 3 seconds.
  • an acidic aqueous solution used for the desmat treatment an aqueous solution having a sulfuric acid concentration of 170 g / L and an aluminum ion concentration of 5 g / L was used.
  • the liquid temperature was 30 ° C.
  • (Af) First-stage anodizing treatment The first-stage anodizing treatment was performed using an anodizing apparatus by direct current electrolysis having the structure shown in FIG. The anodizing treatment was carried out under the conditions of the "first anodizing treatment" column shown in Table 12 to form an anodized film having a predetermined amount of film.
  • the anodized aluminum plate is immersed in a caustic soda aqueous solution having a temperature of 40 ° C., a caustic soda concentration of 5% by mass and an aluminum ion concentration of 0.5% by mass under the time conditions shown in Table 12, and then pore wide. Processing was performed. Then, it was washed with water by spraying.
  • Second-stage anodizing treatment was performed using an anodizing apparatus by direct current electrolysis having the structure shown in FIG.
  • the anodizing treatment was carried out under the conditions of the "second anodizing treatment" column shown in Table 12 to form an anodized film having a predetermined amount of film.
  • TsO ⁇ represents a tosylate anion.
  • ⁇ Electron-donated polymerization initiator> B'-1: Sodium tetraphenylborate, HOMO -5.92 eV ⁇ Polymerizable compound> M'-1: Urethane acrylate synthesized according to the following synthesis example, ethylenically unsaturated bond value: 7.22 mmol / g M'-2: Triacrylate ethoxylated isocyanuric acid, A-9300 manufactured by Shin Nakamura Chemical Industry Co., Ltd., ethylenically unsaturated bond value: 7.09 mmol / g M'-3: The following compound, ethylenically unsaturated bond value: 4.25 mmol / g M'-4: The following compounds, ethylenically unsaturated bond value: 4.42 mmol / g
  • Neostan U-600 bismuth-based polycondensation catalyst, manufactured by Nitto Kasei Co., Ltd.
  • the reaction solution was cooled to room temperature (25 ° C.), and methyl ethyl ketone was added to synthesize a urethane acrylate solution having a solid content of 50% by mass.
  • a recycle type GPC (equipment: LC908-C60, column: JAIGEL-1H-40 and 2H-40 (manufactured by Nippon Analytical Industry Co., Ltd.)) was used in a tetrahydrofuran (THF) eluent, and the molecular weight of the urethane acrylate solution was increased. Fractionation was carried out to obtain urethane acrylate M'-1.
  • Oil phase component ⁇ (Component 1) Ethyl acetate: 12.0 parts (Component 2) Trimethylol propane (6 molar equivalents) and xylene diisocyanate (18 molar equivalents) are added, and one-terminal methylated polyoxyethylene (1 molar equivalent, oxy) is added thereto.
  • Additive 50 mass% ethyl acetate solution, manufactured by Mitsui Kagaku Co., Ltd.: 3.76 parts (component 3) polyhydric isocyanate compound (1) (50 mass% acetate) As an ethyl solution): 15.0 parts (component 4) 65% by mass ethyl acetate solution of dipentaerythritol pentaacrylate (SR-399, manufactured by Sartmer) 11.54 parts (component 5) sulfonate type surfactant 10% ethyl acetate solution (Pionin A-41-C, manufactured by Takemoto Oil & Fat Co., Ltd.): 4.42 parts
  • aqueous phase component was added to the oil phase component and mixed, and the obtained mixture was emulsified with a homogenizer at 12,000 rpm for 16 minutes to obtain an emulsion.
  • 16.8 g of distilled water was added to the obtained emulsion, and the obtained liquid was stirred at room temperature for 180 minutes.
  • the stirred liquid was heated to 45 ° C., and the mixture was stirred for 5 hours while maintaining the liquid temperature at 45 ° C. to distill off ethyl acetate from the above liquid.
  • the solid content concentration was adjusted to 20% by mass with distilled water to obtain an aqueous dispersion of polymer particles R'-2.
  • the volume average particle diameter of R'-2 was 165 nm as measured by a laser diffraction / scattering type particle size distribution measuring device LA-920 (manufactured by Horiba Seisakusho Co., Ltd.).
  • WP'-1 Polyvinyl alcohol, Gosenol L-3266 manufactured by Mitsubishi Chemical Corporation, Saponification degree 86-89% or more
  • WP'-2 Mowiol 4-88 (Polyvinyl alcohol (PVA), manufactured by Sigma-Aldrich)
  • WP'-3 Mowiool 8-88 (Polyvinyl alcohol (PVA), manufactured by Sigma-Aldrich)
  • WR'-2 Polyvinylidene chloride aqueous dispersion, Diofan (registered trademark) A50 manufactured by Solvin ⁇ Surfactant>
  • V'-1 Surfactant, Emarex 710, manufactured by Nippon Emulsion Co., Ltd.
  • wIR'-1 The following compounds
  • the lithographic printing plate original plates of Examples 63 to 70 which are the lithographic printing plate original plates according to the present disclosure, have the printing durability of the lithographic printing plate obtained even when UV ink is used. Is excellent. Further, from the results shown in Table 13, the lithographic printing plate original plates of Examples 63 to 70, which are the lithographic printing plate original plates according to the present disclosure, have UV plate skipping inhibitory property, on-machine developability, spot color fleshing property, and It also has excellent ability to suppress development residue during on-machine development.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Materials For Photolithography (AREA)

Abstract

La présente invention concerne: une plaque originale de plaque d'impression lithographique ayant un support en aluminium et une couche d'impression d'image sur le support en aluminium, la couche d'impression d'image comprenant un colorant de polyméthine absorbant les infrarouges ayant une valeur HOMO de -5,2 eV ou moins, un initiateur de polymérisation et un composé polymérisable, et la valence éthyléniquement insaturée de la couche d'impression d'image étant de 1,0 mmol/g ou plus; un procédé de fabrication d'une plaque d'impression lithographique ; et un procédé d'impression lithographique.
PCT/JP2020/025410 2019-06-28 2020-06-26 Plaque originale de plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique et procédé d'impression lithographique WO2020262688A1 (fr)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2019-122479 2019-06-28
JP2019122479 2019-06-28
JP2019-158812 2019-08-30
JP2019158812 2019-08-30
JP2019-169808 2019-09-18
JP2019169808 2019-09-18
JP2020-034236 2020-02-28
JP2020034236 2020-02-28

Publications (1)

Publication Number Publication Date
WO2020262688A1 true WO2020262688A1 (fr) 2020-12-30

Family

ID=74061286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025410 WO2020262688A1 (fr) 2019-06-28 2020-06-26 Plaque originale de plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique et procédé d'impression lithographique

Country Status (1)

Country Link
WO (1) WO2020262688A1 (fr)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137226A (ja) * 1986-11-29 1988-06-09 Fuji Photo Film Co Ltd 光重合性組成物
JPS63202497A (ja) * 1987-02-18 1988-08-22 Fuji Photo Film Co Ltd 感光性平版印刷版用支持体の製造方法
JP2004347676A (ja) * 2003-05-20 2004-12-09 Konica Minolta Medical & Graphic Inc 平版印刷版、並びに平版印刷版の処理方法、画像形成方法
US20090269699A1 (en) * 2008-04-29 2009-10-29 Munnelly Heidi M On-press developable elements and methods of use
JP2012501878A (ja) * 2008-09-04 2012-01-26 イーストマン コダック カンパニー ネガ型画像形成性要素及び使用方法
WO2016027886A1 (fr) * 2014-08-22 2016-02-25 富士フイルム株式会社 Composition de développement de couleur, plaque d'original d'impression lithographique, procédé de fabrication de plaque d'impression lithographique et révélateur chromogène
WO2017141882A1 (fr) * 2016-02-19 2017-08-24 富士フイルム株式会社 Composition chromogénique, plaque originale d'impression planographique, procédé de production de plaque d'impression planographique, et composé chromogénique
WO2018159640A1 (fr) * 2017-02-28 2018-09-07 富士フイルム株式会社 Composition durcissable, plaque originale pour plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique, et composé
WO2018230412A1 (fr) * 2017-06-12 2018-12-20 富士フイルム株式会社 Plaque originale pour plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique, particules de polymère organique, et composition de résine photosensible
WO2019004471A1 (fr) * 2017-06-30 2019-01-03 富士フイルム株式会社 Plaque originale d'impression lithographique et procédé de production d'une plaque d'impression lithographique
WO2019013268A1 (fr) * 2017-07-13 2019-01-17 富士フイルム株式会社 Plaque originale de plaque d'impression lithographique, et procédé de fabrication de plaque d'impression lithographique
JP6461447B1 (ja) * 2017-09-29 2019-01-30 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法及び平版印刷方法
WO2019150788A1 (fr) * 2018-01-31 2019-08-08 富士フイルム株式会社 Cliché matrice pour plaque lithographique, et procédé de production de plaque lithographique

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63137226A (ja) * 1986-11-29 1988-06-09 Fuji Photo Film Co Ltd 光重合性組成物
JPS63202497A (ja) * 1987-02-18 1988-08-22 Fuji Photo Film Co Ltd 感光性平版印刷版用支持体の製造方法
JP2004347676A (ja) * 2003-05-20 2004-12-09 Konica Minolta Medical & Graphic Inc 平版印刷版、並びに平版印刷版の処理方法、画像形成方法
US20090269699A1 (en) * 2008-04-29 2009-10-29 Munnelly Heidi M On-press developable elements and methods of use
JP2012501878A (ja) * 2008-09-04 2012-01-26 イーストマン コダック カンパニー ネガ型画像形成性要素及び使用方法
WO2016027886A1 (fr) * 2014-08-22 2016-02-25 富士フイルム株式会社 Composition de développement de couleur, plaque d'original d'impression lithographique, procédé de fabrication de plaque d'impression lithographique et révélateur chromogène
WO2017141882A1 (fr) * 2016-02-19 2017-08-24 富士フイルム株式会社 Composition chromogénique, plaque originale d'impression planographique, procédé de production de plaque d'impression planographique, et composé chromogénique
WO2018159640A1 (fr) * 2017-02-28 2018-09-07 富士フイルム株式会社 Composition durcissable, plaque originale pour plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique, et composé
WO2018230412A1 (fr) * 2017-06-12 2018-12-20 富士フイルム株式会社 Plaque originale pour plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique, particules de polymère organique, et composition de résine photosensible
WO2019004471A1 (fr) * 2017-06-30 2019-01-03 富士フイルム株式会社 Plaque originale d'impression lithographique et procédé de production d'une plaque d'impression lithographique
WO2019013268A1 (fr) * 2017-07-13 2019-01-17 富士フイルム株式会社 Plaque originale de plaque d'impression lithographique, et procédé de fabrication de plaque d'impression lithographique
JP6461447B1 (ja) * 2017-09-29 2019-01-30 富士フイルム株式会社 平版印刷版原版、平版印刷版の作製方法及び平版印刷方法
WO2019150788A1 (fr) * 2018-01-31 2019-08-08 富士フイルム株式会社 Cliché matrice pour plaque lithographique, et procédé de production de plaque lithographique

Similar Documents

Publication Publication Date Title
WO2019013268A1 (fr) Plaque originale de plaque d'impression lithographique, et procédé de fabrication de plaque d'impression lithographique
JP7096435B2 (ja) 機上現像型平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
WO2020262686A1 (fr) Plaque originale pour plaque d'impression lithographique de type à développement sur presse, procédé de fabrication de plaque d'impression lithographique et procédé d'impression lithographique
WO2020262685A1 (fr) Plaque originale d'impression planographique, procédé de fabrication de plaque d'impression planographique, et procédé d'impression planographique
WO2020262696A1 (fr) Plaque originale pour plaque d'impression lithographique du type à développement sur presse, procédé de fabrication de plaque d'impression lithographique et procédé d'impression lithographique
WO2017141882A1 (fr) Composition chromogénique, plaque originale d'impression planographique, procédé de production de plaque d'impression planographique, et composé chromogénique
JP6832431B2 (ja) 平版印刷版原版、平版印刷版の作製方法、及び、発色組成物
WO2021065278A1 (fr) Plaque originale pour plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique, et procédé d'impression lithographique
WO2020262689A1 (fr) Précurseur de plaque d'impression lithographique de type à développement à la presse, procédé de fabrication de plaque d'impression lithographique et procédé d'impression lithographique
JP2023171431A (ja) 平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
JP7464691B2 (ja) 平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
WO2020262694A1 (fr) Précurseur de plaque d'impression lithographique, procédé de production de plaque d'impression lithographique et procédé d'impression lithographique
WO2021065279A1 (fr) Plaque originale pour plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique, et procédé d'impression lithographique
JPWO2020158139A1 (ja) 平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
WO2020262693A1 (fr) Plaque originale pour plaque d'impression lithographique, procédé de plaque d'impression lithographique et procédé d'impression lithographique
WO2021241693A1 (fr) Corps stratifié
WO2020262688A1 (fr) Plaque originale de plaque d'impression lithographique, procédé de fabrication de plaque d'impression lithographique et procédé d'impression lithographique
WO2020262690A1 (fr) Plaque originale d'impression lithographique de type à développement sur presse, procédé de production de plaque d'impression lithographique, et procédé d'impression lithographique
WO2020262687A1 (fr) Plaque originale d'impression planographique, procédé de fabrication de plaque d'impression planographique, et procédé d'impression planographique
WO2020262695A1 (fr) Original de plaque d'impression lithographique à développement sur machine, procédé de fabrication de plaque d'impression lithographique et procédé d'impression lithographique
JP7321115B2 (ja) 機上現像型平版印刷版原版、平版印刷版の作製方法、及び、平版印刷方法
WO2021065418A1 (fr) Procédé d'impression planographique
WO2022019217A1 (fr) Plaque originale pour plaque d'impression lithographique type développement sur presse, procédé de fabrication de plaque d'impression lithographique, et procédé d'impression lithographique
WO2021132610A1 (fr) Procédé de fabrication de plaque d'impression lithographique et procédé d'impression lithographique
JP2021189319A (ja) 機上現像型平版印刷版原版、平版印刷版の作製方法、並びに、平版印刷方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP