WO2020262363A1 - 自動分析装置及び試薬収容ユニット - Google Patents

自動分析装置及び試薬収容ユニット Download PDF

Info

Publication number
WO2020262363A1
WO2020262363A1 PCT/JP2020/024564 JP2020024564W WO2020262363A1 WO 2020262363 A1 WO2020262363 A1 WO 2020262363A1 JP 2020024564 W JP2020024564 W JP 2020024564W WO 2020262363 A1 WO2020262363 A1 WO 2020262363A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
container
unit
container lid
opening
Prior art date
Application number
PCT/JP2020/024564
Other languages
English (en)
French (fr)
Inventor
哲 山村
弘和 矢後
近藤 純一
弘至 高橋
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to JP2021527632A priority Critical patent/JPWO2020262363A1/ja
Priority to CN202080045102.9A priority patent/CN113994212A/zh
Priority to EP20832180.2A priority patent/EP3988939A4/en
Publication of WO2020262363A1 publication Critical patent/WO2020262363A1/ja
Priority to US17/561,567 priority patent/US20220120773A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/026Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations having blocks or racks of reaction cells or cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00742Type of codes
    • G01N2035/00752Type of codes bar codes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0403Sample carriers with closing or sealing means
    • G01N2035/0405Sample carriers with closing or sealing means manipulating closing or opening means, e.g. stoppers, screw caps, lids or covers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0443Rotary sample carriers, i.e. carousels for reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers

Definitions

  • the present invention relates to an automatic analyzer and a reagent storage unit capable of obtaining measurement information regarding various analysis items by treating a sample (sample) such as blood or urine with various reagents and measuring the sample.
  • the reagent supply unit accommodates reagents corresponding to various kinds of analysis items. It consists of holding a plurality of reagent containers on a rotary table.
  • the reagent supply unit (reagent container storage device) of the analyzer disclosed in Patent Document 1 includes a reagent disk (rotary table) that holds a reagent container in which three are horizontally integrated by a frame in the radial direction.
  • the container lid opening / closing mechanism of the analyzer disclosed in Patent Document 1 is designed to open the completely closed locked container lid, when the container lid is opened, it is opened by a predetermined size. A force (torque) must be applied to the container lid to unlock the container lid. Therefore, in Patent Document 1, a large-scale link mechanism for generating a lid opening force is provided. Further, when an opening force capable of releasing the lock is applied to the container lid upward in the lid opening direction, the reagent container is lifted upward. In order to suppress this, in Patent Document 1, the reagent container is described. A rise prevention mechanism is also provided to prevent the rise.
  • the present invention has been made by paying attention to the above-mentioned problems, and an object of the present invention is to provide an automatic analyzer and a reagent storage unit capable of opening a reagent container lid without requiring a large opening force.
  • the present invention is provided in an automatic analyzer that obtains measurement information regarding a predetermined analysis item by processing a sample with a reagent supplied from a reagent supply unit and measuring the sample, and supplies the reagent.
  • a reagent container unit for accommodating reagents in a unit a reagent container unit having a plurality of reagent containers, a container holder for accommodating and holding the reagent container unit in a fitted state, and the reagent container unit for the container holder. It is characterized by having a container lid partial opening mechanism that partially opens the container lid that opens and closes the opening of each of the reagent containers when the fitting is inserted.
  • the container lid of each reagent container has already been partially opened by the container lid partial opening mechanism. (Therefore, since the locked state of the container lid has been released), in this state, for example, when the container lid is opened by the container lid opening / closing mechanism, only a small opening force needs to be applied to the container lid. Therefore, unlike Patent Document 1 described above, it is not necessary to provide a large-scale link mechanism for generating a lid opening force. Further, according to the above configuration, it is not necessary to apply a large opening force capable of releasing the lock to the container lid upward in the lid opening direction, so that the reagent container is raised as in Patent Document 1 described above.
  • the reagent container lid can be opened without requiring a large opening force, and the above-mentioned large-scale link mechanism, the rise prevention mechanism for preventing the reagent container from rising, and the twisting Since the coil spring is not required, the device can be simplified and downsized, which can contribute to the reduction of manufacturing cost.
  • the container lid portion opening mechanism abuts the protrusions provided on each container lid and the protrusions when the reagent container unit is fitted and inserted into the container holder, and pushes up the container lid by a predetermined amount to partially push up the container lid. It may be composed of a raised portion of a container holder that is effectively opened. According to this, the container lid partial opening mechanism can be realized with a simple configuration, and the container lid can be partially opened efficiently and easily.
  • the present invention also provides an automatic analyzer equipped with a reagent storage unit having the above-mentioned characteristics. According to such an automatic analyzer, it is possible to obtain the same action and effect as the above-mentioned reagent storage unit.
  • an automatic analyzer and a reagent storage unit that can open the reagent container lid without requiring a large opening force.
  • FIG. 1 It is a schematic overall external view of the automatic analyzer which concerns on one Embodiment of this invention. It is a schematic plan view which shows the internal structure of the automatic analyzer of FIG. It is a top view of the rotary table of the reagent supply part including the opening / closing operation body of the reagent container lid opening / closing mechanism.
  • A is a partial plan view showing a state in which the container lids of all the reagent containers of one of the adjacent reagent storage units arranged on the rotary table of the reagent supply unit are simultaneously opened by the opening / closing actuator.
  • B is a front view of the state of (a)
  • (c) is a side view of the state of (a).
  • (A) is a partial plan view schematically showing a state in which the container lids of all the reagent containers of the reagent storage unit are simultaneously opened by the opening / closing actuator
  • (b) is a view taken along the line A of (a).
  • (c) is a view taken along the A direction of (a), showing a state in which the container lid is opened by the opening / closing operating body.
  • It is a figure which shows. It is a perspective view of the reagent storage unit with the container lid open. It is a perspective view of the container holder which comprises the reagent storage unit of FIG.
  • (A) is a side view of the container holder of FIG. 7, and (b) is a plan view of the container holder of FIG. 7 (arrow view in the B direction of (a)).
  • (A) is a view taken along the line C of FIG. 8 (b)
  • (b) is a cross-sectional view taken along the line DD of FIG. 8 (b)
  • (c) is E- of FIG. 8 (b). It is sectional drawing which follows the E line.
  • (A) is a plan view of a container triple unit (reagent container unit) that constitutes the reagent storage unit of FIG. 6 and is housed and held in the container holder of FIG. 7, and (b) is FF of (a).
  • a cross-sectional view taken along the line, (c) is a cross-sectional view taken along the line GG of (a). It is a perspective view which shows the 1st modification of the opening / closing operation body which opens and closes a container lid individually. It is a perspective view which shows the 2nd modification of the opening / closing operation body which opens and closes a container lid individually. It is a schematic block diagram of the drive mechanism of an automatic analyzer.
  • FIG. 1 is a schematic overall external view of the automatic analyzer of the present embodiment
  • FIG. 2 is a schematic plan view showing an internal configuration of the upper side of the automatic analyzer of FIG.
  • an outer frame thereof is formed by the housing 100, and a space for performing various treatments on a sample in the upper part of the housing 100 (hereinafter referred to as a space).
  • a space for performing various treatments on a sample in the upper part of the housing 100
  • a processing space S is formed.
  • the automatic analyzer 1 includes a transport unit 10 for transporting the rack, a sample supply unit 20 for supplying a predetermined sample such as a biological sample, and a reagent supply for supplying a reagent corresponding to a predetermined analysis item.
  • a unit 30, a reaction unit 40 for reacting a sample and a reagent, and a processing / measuring unit for processing and measuring a reacted sample (for example, a B / F separation / measuring unit described later in this embodiment).
  • These processing units 10, 20, 30, 40, 50 are arranged in the housing 100 (see FIG. 1).
  • the transport unit 10 is a rack loaded with a predetermined number of disposable instruments used in the analytical measurement process, for example, in the present embodiment, a nozzle tip T for sucking a sample and a reaction vessel into which a sample is dispensed (for example, A rack R in which 60 cuvettes) C and 60 pieces are two-dimensionally arranged and held is conveyed to a predetermined instrument take-out position II described later.
  • the transport unit 10 is provided so as to extend vertically on one side of the housing 100, and the upper side thereof faces the processing space S. Further, the sample supply unit 20, the reagent supply unit 30, the reaction unit 40, and the measurement unit 50 are arranged in the processing space S.
  • the automatic analyzer 1 includes a control unit 300 (see FIG. 13) for controlling the operation of these processing units 10, 20, 30, 40, 50, and the processing units 10, 20, 30, 40, 50.
  • a transfer mechanism 200 (see FIG. 13) including various transfer units that move upward in the XY directions is further provided.
  • the transfer mechanism 200 includes, for example, an instrument transfer unit, a sample transfer unit, a reagent transfer unit, a measurement target transfer unit, and the like. In FIG. 13, these various transfer units are collectively shown as a transfer mechanism 200.
  • the transfer mechanism 200 grips an instrument such as the nozzle tip T or the reaction vessel C by using a gripping arm or the like in order to transfer the nozzle tip T or the reaction vessel C or the like, or to suck the sample and the reagent by the nozzle. Can move in the XY directions.
  • the control unit 300 includes a control device main body (not shown) and a display input unit 60 including, for example, a touch panel.
  • Each transfer unit of the transfer mechanism 200 can be moved in the X direction and the Y direction at the upper part in the processing space S along a rail extending in the X direction and the Y direction, for example, under the control of the control unit 300, and at a predetermined position. It can also be moved (up and down) in the vertical direction (Z direction).
  • the transport unit 10 transports the above-mentioned plurality of racks R in which the unused nozzle tip T and the reaction vessel C are loaded, respectively, in the apparatus 1 as follows. First, a plurality of racks R are stacked in the vertical direction and raised by an elevating mechanism to convey the racks toward the rack standby position (supply side position) I in the upper processing space S in the housing 100. After that, the rack R is moved from the rack standby position I to the take-out position (collection side position) II where the nozzle tip T and the reaction vessel C are taken out for analysis and measurement processing, and the tip is moved by the instrument transfer unit (not shown). Wait for transfer to reaction vessel standby position III. Further, the rack R in which the nozzle tip T and the reaction vessel C are all taken out and emptied is sequentially lowered by the elevating mechanism and collected.
  • the operator pulls out the transport unit 10 to the outside of the device 1 along the Y direction (the drawn transport unit is indicated by reference numeral 10'in FIG. 2).
  • the drawn transport unit is indicated by reference numeral 10'in FIG. 2.
  • an empty rack R can be recovered from the transport unit 10, and an unused rack R loaded with the nozzle tip T and the reaction vessel C can be replenished in the transport unit 10.
  • the nozzle tip T and the reaction vessel C in the rack R located at the take-out position II are held and transferred by the holding portion of the instrument transfer unit which is one of the transfer mechanisms 200.
  • the reaction vessel C may be directly transferred from the rack R to the reaction unit 40 and set by the holding unit of the instrument transfer unit without passing through the chip / reaction vessel standby position III. ..
  • the tip / reaction vessel standby position III shows a storage place for the nozzle tip (two nozzle tips T and / or the reaction vessel C below the standby position III).
  • a storage place (the position where one rack above the standby position III is shown) can be provided in which the operator can manually replace the nozzle tip T and / or the reaction vessel C for each rack. ..
  • the sample supply unit 20 is arranged on a sample table 23 that can be moved along the X direction in FIG. 2, and a plurality of box-shaped sample racks 22 are arranged, for example, along the moving direction of the sample table 23. Become. Further, each sample rack 22 is loaded with a plurality of sample containers 21, and each of these sample containers 21 contains a sample to be analyzed and measured. In particular, in the present embodiment, at a predetermined timing of the analysis sequence of the automatic analyzer 1, for example, the sample supply unit 20 located on the right side in FIG. 2 moves to the left side in FIG. One sample rack 22 including a plurality of sample containers 21 is transferred to the sample suction position IV between the reaction unit 40 and the chip / reaction container standby position III, and stands by at this position. ..
  • the chip / reaction vessel standby position III By providing the chip / reaction vessel standby position III, the chip / reaction vessel standby position III, the sample suction position IV, and at least a part of the reaction unit 40 are arranged in a line in the processing space S.
  • a uniaxial transfer line (specimen transfer line) L1 is formed. Therefore, the sample transfer unit (not shown) provided with the sample suction nozzle simply moves in the uniaxial direction (X-axis direction) along the first uniaxial transfer line, and the nozzle tip T is attached to the sample suction nozzle. , A series of operations such as suction of the sample and dispensing of the sample into the reaction vessel can be completed.
  • the sample suction nozzle (not shown) is moved by the sample transfer unit in the + direction of the X-axis (right direction in FIG. 2), and temporarily placed at the tip of the sample suction nozzle (not shown) at the tip / reaction vessel standby position III.
  • the nozzle tip T is connected (at the time of connection, the sample suction nozzle is moved up and down in the Z-axis direction by the sample transfer unit).
  • the sample is sucked through the nozzle tip T from the sample container 21 which is further moved in the negative direction of the X-axis (leftward in FIG. 2) while holding the nozzle tip T at the tip and waits at the sample suction position IV, and further reacts.
  • the reaction vessel C temporarily placed in the chip / reaction vessel standby position III is already transferred to the reaction unit 40 by the instrument transfer unit, which is one of the transfer mechanisms 200, and is set and stands by. .. Therefore, the sample suction nozzle dispenses (discharges) the sample sucked through the nozzle tip T into the reaction vessel C in the reaction unit 40 located on the first uniaxial transfer line L1. After that, the sample suction nozzle is X-axis toward the chip disposal section 121 (provided between the reaction section 40 and the sample suction position IV) located on the first uniaxial transfer line L1 by the sample transfer section. The used nozzle tip T is separated from the sample suction nozzle and discarded in the tip disposal section 121.
  • the reaction unit 40 includes a rotary table 42 that is driven to rotate, and a plurality of reaction container support portions 43 are provided on the outer peripheral portion of the rotary table 42 at predetermined intervals over the entire circumference. As described above, the unused reaction vessel C is transferred to and set in these reaction vessel support portions 43 by the instrument transfer portion. Then, as described above, the sample is discharged from the sample suction nozzle into the reaction vessel C rotated to the sample receiving (dispensing) position (located on the first uniaxial transfer line L1) by the rotary table 42.
  • the reagent supply unit 30 holds a plurality of reagent storage units 32 that store reagents corresponding to various types of analysis items by a rotary table 34, for example, in a unit form, and the reagent storage unit corresponding to the analysis items in the reaction unit 40.
  • a rotary table 34 for example, in a unit form
  • the reagent storage unit corresponding to the analysis items in the reaction unit 40.
  • a plurality of reagent storage units U are arranged radially in the radial direction of the rotary table 34.
  • the reagent storage unit U is configured by accommodating and holding a reagent container unit 132 composed of an elongated reagent container in which a plurality of reagent storage units 32 are connected or integrally formed in a container holder 130.
  • the reagent storage unit U is a triple container in which, for example, three reagent containers 135A, 135B, 135C (reagent storage portions 32) are connected or integrally formed so as to be arranged along the radial direction of the rotary table 34.
  • the unit (reagent container unit) 132 is housed and held in the container holder 130.
  • the reagent supply unit 30 of the present embodiment shows an example in which a predetermined number of such reagent storage units U are arranged radially in the circumferential direction of the rotary table 34. Further, the reagent supply unit 30 closes a cooling device 36 (see FIG. 2) for cooling the reagent and a container lid 137 (FIG. 2) that closes the openings of the reagent containers 135A, 135B, and 135C constituting the reagent storage unit U. 4 to 6) are further provided with a reagent container lid opening / closing mechanism 160 (see FIGS. 2 and 13) described later for opening / closing at the same time.
  • a conductive chip supply unit 70 is provided on the outside of the reagent supply unit 30, that is, on the opposite side of the reaction unit 40 with respect to the reagent supply unit 30.
  • the conductive chip supply unit 70 has a rack 74 in which a plurality of conductive chips 72 are loaded, and suctions reagents as necessary, such as when executing an analysis item that is difficult to share with ordinary analysis items.
  • a conductive tip 72 is connected to the tip of the nozzle. Specifically, the conductive chip supply unit 70 moves the rack 74 along the Y direction under position control using a position sensor to move the conductive chip 72 on the rack 74 to a second axis described later. It is located on the transfer line L2.
  • a second uniaxial transfer line (reagent transfer line) L2 is formed in which the reagent transfer section (not shown) for reagent transfer moves only in the uniaxial direction (X-axis direction) along this straight line.
  • the nozzle cleaning unit 29 and the chip disposal unit 25 are each provided, three second uniaxial transfer lines L2 are also provided (of course, the number of the second uniaxial transfer lines L2 is large. It is not limited to three. It may be four or more, or two or less).
  • each of the second uniaxial transfer lines L2 the holding unit that holds the reagent suction nozzle (not shown) is moved only in the X-axis direction by the reagent transfer unit.
  • Each reagent suction nozzle corresponding to each second uniaxial transfer line L2 is located at the tip of the corresponding reagent storage unit 32 located at the corresponding reagent suction position V on the rotary table 34 in the reagent supply unit 30.
  • the reagent corresponding to the analysis item is directly sucked through the nozzle suction part, and then moved toward the reaction part 40 in the + direction of the X-axis.
  • each reagent suction nozzle can dispense (discharge) the sucked reagent to the corresponding reaction vessel C. After that, each reagent suction nozzle is moved in the ⁇ direction of the X-axis and cleaned by the corresponding nozzle cleaning unit 29.
  • the conductive tip 72 may be connected to the tip of the reagent suction nozzle, if necessary.
  • the conductive chip supply unit 70 on the second uniaxial transfer line L2 is connected to the conductive chip 72 at the tip of the reagent suction nozzle. (At the time of connection, the reagent suction nozzle is moved up and down in the Z-axis direction by the reagent transfer unit).
  • the reagent suction nozzle When the conductive tip 72 is connected, the reagent suction nozzle is further moved in the + direction of the X axis while holding the conductive tip 72 at the tip, and the reagent is sucked through the conductive tip 72 in the reagent supply unit 30.
  • the reagent suction nozzle that sucks the reagent is further moved in the + direction of the X-axis toward the reaction unit 40, and dispenses (discharges) the reagent to the reaction vessel C located at the reagent receiving position as described above. ..
  • the reagent suction nozzle is moved in the negative direction of the X-axis toward the corresponding chip disposal unit 25 in the chip disposal unit 25 by the reagent transfer unit, and the conductive chip 72 used in the chip disposal unit 25 is used. Is separated from the reagent suction nozzle and discarded.
  • the mixed solution of the sample and the reagent dispensed into the reaction vessel C in the reaction unit 40 was reacted at a predetermined temperature for a predetermined time on the rotary table 42, and then a reaction product was formed.
  • the container C is rotated to the reaction container take-out position VI by the rotation of the rotary table 42.
  • the reaction vessel C located at the reaction vessel take-out position VI is gripped by a holding portion (grip arm or the like) transferred by a measurement target transfer unit (not shown), which is one of the transfer mechanisms 200, and is processed / measured. Introduced within 50.
  • the processing / measuring unit 50 performs a predetermined treatment on the introduced reaction product and performs measurement electrically and optically. Specifically, for example, in analytical measurement using an immunoassay, B / F separation is performed in which labeled antibodies that do not form an immune complex are washed and discarded, and the washing section, stirring section, and B / F separation for that purpose are performed. In addition to being provided with magnets used in the above, a measuring unit 120 that attracts the processed material treated by them and measures them based on electrochemical light emission is also provided. In that case, the processing / measuring unit 50 may be referred to as the B / F separation / measuring unit 50.
  • the used reaction vessel C for which the measurement has been completed is moved to a predetermined position by the rotation of the rotary table 52, and is gripped by the holding portion transferred by the corresponding transfer unit constituting the transfer mechanism 200 for predetermined disposal. Discarded in the department.
  • reagent supply unit 30 of the present embodiment described above will be described in more detail.
  • three reagent containers 135A, 135B, 135C (reagent storage unit 32) are arranged along the radial direction of the rotary table 34.
  • a plurality of reagent storage units U configured by storing and holding a container triple unit (reagent container unit) 132 integrally formed in the container holder 130 are provided.
  • the rotary table 34 has a container lid opening / closing position VIII in which the container lid 137 of each reagent container 135A, 135B, 135C is opened / closed by the opening / closing operating body 106 described later of the reagent container lid opening / closing mechanism 160, and the reagent suction position described above. It is designed to be at least rotated with and from V.
  • the reagent inhalation position V has three reagent dispensing positions V', V ", V'" corresponding to each of the three second uniaxial transfer lines (reagent transfer lines) L2, and these reagent dispensing positions.
  • the reagents contained in the reagent containers 135A, 135B, and 135C at positions V', V ", and V'" are dispensed into the sample. Specifically, at the first reagent dispensing position V', the reagent is dispensed (sucked) from the first reagent container 135A located on the innermost side in the radial direction, and the third reagent dispensing position V'". The reagent is dispensed (sucked) from the third reagent container 135C located on the outermost side in the radial direction, and is located between the first and third reagent containers 135A and 135C at the second reagent dispensing position V ".
  • the reagent is dispensed (sucked) from the second reagent container 135B.
  • a container triple unit including three reagent containers has been illustrated, but the number of reagent containers is not limited to three, and may be two or four or more.
  • the rotary table 34 also has a data code reading position IX in addition to the container lid opening / closing position VIII and the three reagent dispensing positions V', V ", V'". At this data code reading position IX, the container The required data can be read by the two-dimensional bar code reader from the two-dimensional bar code attached to the triple unit 132.
  • the data code reading position IX is provided with a window for reading data (not shown) and a fan (not shown) for preventing dew condensation on the window.
  • a one-dimensional bar code is attached to the central portion of the rotary table 34, whereby it is possible to monitor the container holder 130 for non-mounting or improper installation of the container triple unit 132. ..
  • a stirring device 150 for stirring the reagent in the reagent container at the container lid opening / closing position VIII.
  • the container lid 137 of each reagent container 135A, 135B, 135C of the reagent storage unit U located at the container lid opening / closing position VIII is closed (in this embodiment, the container lid 137 is a part as described later.
  • a non-contact stirring rod underneath the reagent storage unit U for example, by imparting an intermittent centrifugal rotation action to the reagent container in a state of being in a closed position, which is slightly open), thereby providing the reagent in the container. Can be agitated.
  • the operating principle of the stirring device 150 is not limited to this, and various operating principles can be adopted. Further, in the present embodiment, the first to third reagent containers 135A to 135C are set as stirring targets by the stirring device 150, but the present invention is not limited to this, and some reagent containers or individual reagent containers may be configured to be agitated. good.
  • the reagent container of the reagent storage unit U is stirred by the stirring device 150 at the container lid opening / closing position VIII, and then the opening / closing operation body of the reagent container lid opening / closing mechanism 160 described later is performed.
  • the container lid 137 of each reagent container 135A, 135B, 135C is opened by 106. After that, by rotating the rotary table 34, the reagent containers 135A, 135B, and 135C are moved to the respective reagent dispensing positions V', V ", V'", and the reagents are dispensed.
  • each reagent container 135A is returned by the opening / closing actuator 106 of the reagent container lid opening / closing mechanism 160.
  • 135B, 135C container lid 137 is closed to the closing position described above.
  • the reagent container lid opening / closing mechanism 160 engages with the engaging portion 139 provided on the upper surface of the container lid 137 of each reagent container 135A, 135B, 135C in a disengaged manner.
  • An advancing / retracting operating body 106 having a portion (exemplified as an engaging groove 109: see FIG. 4C), an advancing / retreating mechanism 102 for advancing / retreating the opening / closing operating body 106 along the longitudinal axis O direction, and an opening / closing operating body. It includes a rotation mechanism 104 that rotationally drives the 106.
  • the retracting position X at which the opening / closing operating body 106 is separated from the respective reagent containers 135A, 135B, 135C and the engaging groove 109 of the opening / closing operating body 106 engage with the engaging portion 139 of the container lid 137.
  • the opening / closing actuator 106 is moved back and forth along the longitudinal axis O direction with and from the position XX.
  • the rotation drive mechanism 104 engages the opening / closing operation body 106 along the predetermined arc trajectory C (see (b) and (c) of FIG. 5), for example, as shown in FIG. 4, in which the reagent container units U are adjacent to each other.
  • the joint portion 139 and the opening / closing operating body 106 are rotationally moved to a rotation angle (for example, 90 °) that does not interfere with each other.
  • a rotation angle for example, 90 °
  • the lid opening position XXX is a position where the container lid 137 is opened to a state where reagents can be taken out from the reagent containers 135A, 135B, 135C.
  • a through groove in which the engaging groove 109 penetrates the opening / closing operating body 106 is illustrated, but the engaging groove does not penetrate and has a depth halfway through the opening / closing operating body 106. It may be a groove.
  • the opening / closing engaging portion exemplified as the engaging groove 109 in the embodiment shown in FIG. 4C is not limited to the groove shape, and is freely engaged with the engaging portion 139 of the lid portion.
  • the container lid 137 may be opened and closed by the rotational operation of the opening / closing operating body 106, and may have an L-shape or another shape (the same applies to the following examples).
  • the opening / closing engaging portion may be brought into contact with the container lid 137 by the rotational operation of the opening / closing operation body 106 to perform the closing operation.
  • advance / retreat mechanism 102 and the rotation mechanism 104 may include, for example, a drive motor and a power transmission mechanism including a gear train or a link mechanism, and may further include an actuator such as a piston. Further, without being limited to this, other well-known conventional techniques for performing rotation operation and advance / retreat operation can be applied as appropriate.
  • the opening / closing actuator 106 has, for example, a rod shape, and is arranged on the same side as the cooling device 36 so as to face the reagent container unit U located at the container lid opening / closing position VIII from the radial outside of the rotary table 34. (See Fig. 3). Further, the engaging groove 109 (see FIG. 4C) of the opening / closing operating body 106 is three reagents aligned along the advancing / retreating direction of the opening / closing operating body 106 (longitudinal axis O direction and radial direction of the rotary table 34).
  • a cross section extending along the longitudinal axis O direction is formed as a substantially U-shaped printing groove so as to simultaneously engage with each engaging portion 139 of the container lid 137 of the containers 135A, 135B, 135C at the engaging position XX. It forms the working portion 106a (see FIG. 4A) of the opening / closing operating body 106.
  • the engaging portion 139 of the container lid 137 that engages with the engaging groove 109 of the opening / closing operating body 106 has, for example, a U-shape in cross section (see FIG. 4A), and the straight portion 139b thereof.
  • FIG. 5 (a) The opening / closing actuator 106 at the retracted position X shown on the upper left side of) is advanced toward the reagent container unit U by the advancing / retreating mechanism 102. Then, when the opening / closing operating body 106 is advanced to the lower left side of FIG. 5A and the engagement position XX shown in FIG. 5B, each of the container lids 137 of the three reagent containers 135A, 135B, and 135C is engaged.
  • the joint portion 139 comes to be simultaneously engaged with the engaging groove 109 of the opening / closing operating body 106.
  • the opening / closing operating body 106 is maintained in the engaged state with the container lid 137 by the rotation mechanism 104, and FIG. )
  • the lid opening position XXX shown in FIGS. 4 and 5 (c) along a predetermined arc trajectory C (see FIGS. 5 (b) and 5 (c)).
  • the container lid 137 is in a state where reagents can be taken out from each reagent container 135A, 135B, 135C and until a rotation angle at which the engaging portion 139 of the adjacent reagent container unit U and the opening / closing operating body 106 do not interfere with each other. Is released.
  • the reagent container lid opening / closing mechanism 160 performs an operation opposite to the series of lid opening operations described above with respect to the reagent container unit U that has completed the reagent dispensing and returned to the container lid opening / closing position VIII as described above.
  • the three container lids 137 are closed at the same time. Alternatively, the container lid 137 may be closed immediately after the reagent is sucked.
  • the reagent storage unit U has a container holder 130 in which, for example, three reagent containers 135A, 135B, and 135C are integrally formed so as to be arranged along the radial direction of the rotary table 34. It is constructed by accommodating and holding it inside.
  • the container triple unit 132 has a connection frame 132b for connecting the three reagent containers 135A, 135B, 135C, and the three reagent containers 135A, 135B, 135C are aligned in the alignment direction.
  • a locking portion 153 for engaging and disengaging the container triple unit 132 with respect to the container holder 130 is provided on both sides.
  • the locking portion 153 is elastically expandable and contractible, and has a locking protrusion 147 that is elastically locked in the locking hole 130a described later of the container holder 130.
  • the end of the container triple unit 132 which is positioned inward in the radial direction of the rotary table 34, is a tapered portion (thickness reducing portion) 132a formed so as to taper (see FIG. 10A). ), And correspondingly, the corresponding end of the container holder 130 that accommodates and holds the container triple unit 132 is also formed so as to be tapered (thickness reduction portion) 130f (FIG. 6 to 8) is preferable.
  • each reagent containing unit U is arranged adjacent to each other on the radial inside of the rotary table 34 without interfering with the adjacent reagent containing units U, as shown partially on the right side of FIG. As many reagent container units U as possible can be compactly arranged on the rotary table 34 without forming wasted space.
  • the container holder 130 for accommodating and holding the container triple unit 132 includes the holder body 130A and a pair of legs extending from the holder body 130A and assembled to the rotary table 34 side, as shown in FIGS. 7 to 9. It has 130B and.
  • the holder body 130A is formed in a frame shape so as to define an insertion hole 130b into which the container triple unit 132 is inserted in the fitted state. It is preferable that the container triple unit 132 is provided with a lightening hole 130e as illustrated in FIG. 7 from the holder main body 130A to the leg 130B for the purpose of weight reduction and the like.
  • the container triple unit 132 has an insertion hole 130b of the container holder 130.
  • a locking hole 130a is provided in which the locking protrusion 147 of the locking portion 153 of the container triple unit 132 can be locked when the container is fitted and inserted into the container. Therefore, when the container triple unit 132 is fitted and inserted into the insertion hole 130b of the container holder 130, the locking portion 153 of the container triple unit 132 is first pressed by the inner wall of the holder body 130A forming the insertion hole 130b. It is elastically contracted inward.
  • the locking protrusion 147 of the locking portion 153 is aligned with the locking hole 130a at the complete insertion position of the container triple unit 132.
  • the pressed state is released and the locking portion 153 expands outward.
  • the locking protrusion 147 elastically protrudes into the locking hole 130a and locks with the locking hole 130a, and as a result, the container triple unit 132 is held in the container holder 130 in a locked state.
  • the container triple unit 132 is removed from the container holder 130 by pushing the locking protrusion 147 inward through the locking hole 130a to release the locked state between the locking protrusion 147 and the locking hole 130a. Can be done.
  • the reagent storage unit U is a container lid partial opening mechanism that partially (or slightly) opens the container lid 137 of each reagent container 135A, 135B, 135C when the container triple unit 132 is fitted and inserted into the container holder 130. It is preferable to have a structure that also has.
  • this container lid portion opening mechanism when the reagent container unit U is inserted and fitted into the container holder 130, the peripheral edge of the container lid portion 137 of the reagent container unit U is a raised portion on one side surface of the container holder 130. It can be configured to be partially opened by abutting engagement with (protruding portion) 130c (see FIG. 7)) and being slightly pushed in the direction in which the container lid is released.
  • the opening amount of the container lid 137 can be adjusted and the container lid 137 can be partially and more reliably. It may be configured so that it can be opened.
  • a protrusion 137a is provided on the peripheral edge of the inner surface of each container lid 137, and the container lid 137 is partially opened by engaging the protrusion 137a with the raised portion 130c of the container holder 130. An example is shown.
  • the raised portion 130c abuts on the protrusion 137a of the container lid 137 and pushes up the container lid 137 by a predetermined amount to partially push the container lid 137. (Or just a little) open.
  • the container lid portion opening mechanism is provided, the raised portion 130c extends along the alignment direction of the reagent containers 135A, 135B, 135C with the container triple unit 132 fitted and inserted into the insertion hole 130b of the container holder 130.
  • one lateral side wall 130Ab of the pair of lateral side walls 130A of the holder main body 130A is preferable to set one lateral side wall 130Ab of the pair of lateral side walls 130A of the holder main body 130A to a size higher than that of the other lateral side wall 130Ab.
  • three contact portions 130ca, 130cc, and 130cc are illustrated as contact portions that come into contact with the raised portion 130c so as to face the protrusion 137a of each container lid 137.
  • the upper end of the raised portion 130c has a uniform height along the alignment direction of the three reagent containers 135A, 135B, and 135C, but only the contact position with each container lid 137. It may be a raised portion having a partially protruding shape.
  • the container triple unit 132 when the container triple unit 132 is fitted and inserted into the container holder 130, the raised portion 130c of the container holder 130 comes into contact with the protrusion 137a of the container lid 137 and pushes up the container lid 137 by a predetermined amount.
  • the container lid 137 is unlocked and the container lid 137 is slightly lifted, whereby the reagent containers 135A, 135B and 135C are partially opened.
  • the opening / closing actuating body 106 of the reagent container lid opening / closing mechanism 160 described above is shown in the container lid 137 (for example, FIG. 5B) in the above-mentioned closed position which is partially opened at the engaging position XX.
  • each container lid 137 is engaged with the engaging portion 139 of the container lid 137 in the closed position (in a state of being tilted from the horizontal state).
  • FIGS. 4, 5, 6 and 10 show an example in which each of the three container lids 137 is partially opened at the same time, each container lid 137 is configured to be partially opened individually. You may.
  • the container lid portion opening mechanism (130c, 137a) is used to completely accommodate and hold the container triplet units 132. Since the container lid 137 of 135C has already been partially or slightly opened (thus, the locked state of the container lid 137 has been released), the container is opened by the reagent container lid opening / closing mechanism 160 in this state.
  • opening the lid 137 it is only necessary to apply a small opening force to the container lid 137. Therefore, unlike Patent Document 1 described above, it is not necessary to provide a large-scale link mechanism for generating a lid opening force.
  • the reagent container it is not necessary to apply a large opening force capable of releasing the lock to the container lid 137 upward in the lid opening direction, and therefore, as in Patent Document 1 described above, the reagent container. It is not necessary to provide a rise prevention mechanism for preventing the rise of 135A, 135B, 135C. Further, according to the present embodiment, since the partially opened container lid 137 is opened to a state where the reagent can be taken out, it is necessary to consider the difference in the degree of opening of the lid due to the variation in the dimensions of the container lid 137. Therefore, it is not necessary to provide a torsion coil spring or the like for absorbing the difference in the opening degree of the container lid 137 as in Patent Document 1 described above.
  • the reagent container lids 135A, 135B, 135C can be opened without requiring a large opening force, and the above-mentioned large-scale link mechanism and the rise of the reagent container are prevented. Since the rise prevention mechanism and the torsion coil spring are not required, the device can be simplified and downsized, which can contribute to the reduction of manufacturing cost.
  • the container lid partial opening mechanism abuts the protrusion 137a provided on each container lid 137 and the protrusion 137a when the reagent container unit 132 is fitted and inserted into the container holder 130 to provide the container lid 137. Since it is composed of the raised portion 130c of the container holder 130 that partially opens the container lid 137 by pushing up a fixed amount, the container lid partial opening mechanism can be realized with a simple configuration, and the container lid 137 can be efficiently and easily opened. Partially open.
  • the present invention is not limited to this, and the container lids 137 of a plurality of (not limited to three) reagent containers may be individually opened and closed by an opening / closing operating body. Examples of modifications of such an opening / closing operating body are illustrated in FIGS. 11 and 12. That is, the opening / closing operating body 106A according to the first modification shown in FIG.
  • the opening / closing operating body 106B extends at the tip thereof with a length capable of engaging with only the engaging portion 139 of one reagent container 135A (135B, 135C).
  • the working portion 106a "having the engaging groove 109' is provided, but in this case, the working portion 106a" is provided on the lower surface of the opening / closing operating body 106A. According to such individual opening / closing type opening / closing actuators 106A and 106B, it is possible to prevent the scattering of reagents and the mixing of foreign substances, which is beneficial.
  • the present invention is not limited to the above-described embodiment, and can be modified in various ways without departing from the gist thereof.
  • the number of reagent containers in the reagent storage unit is three, but the number of reagent containers in the reagent storage unit is not limited to this and can be set arbitrarily.
  • the configuration and form of the processing unit of the analyzer are not limited to those described above, and can be variously changed depending on the application.
  • the individual configurations described in the various embodiments shown herein such as the structure of the rack, the structure of the sample or reagent holding section, the transport section for moving and collecting the rack, the reagent lid opening / closing mechanism, and the sample transfer line.
  • a configuration in which the reagent transfer line is aligned with the uniaxial transfer line L1 or L2 or other individual configurations may be extracted from each embodiment as necessary, and they may be appropriately combined to form a configuration.
  • the specific positions I to IX shown in the embodiments are examples, and the positions can be appropriately changed to positions that meet the conditions required by the present invention shown in the present specification.
  • Reagent supply unit 130 Container holder 130c Raised part (protruding part) 132 Reagent container unit (triple container unit) 135A, 135B, 135C Reagent container 137 Container lid 137a Protrusion U Reagent storage unit

Abstract

大きな開放力を要することなく試薬容器蓋を開放できるようにする自動分析装置及び試薬収容ユニットを提供する。本発明の試薬収容ユニットUは、複数の試薬容器135A,135B,135Cが一体形成されて成る試薬容器ユニット132と、この試薬容器ユニット132を嵌合状態で収容保持するための容器ホルダ130と、容器ホルダ130に対する試薬容器ユニット132の嵌合挿入時に各試薬容器135A,135B,135Cの開口を開閉する容器蓋を同時に部分的に開放する容器蓋部分開放機構130c、137aとを有する。

Description

自動分析装置及び試薬収容ユニット
 本発明は、血液や尿などのサンプル(検体)を種々の試薬で処理して測定することにより様々な分析項目に関して測定情報を得ることができる自動分析装置及び試薬収容ユニットに関する。
 血液凝固分析装置や、免疫測定法を用いた分析測定装置など、血液や尿などの生体サンプルを種々の試薬で処理して測定することにより様々な分析項目に関して測定情報を得ることができる自動分析装置は、従来から様々な形態のものが知られており、例えば、生体サンプルとしての検体を検体容器から反応容器に分注し、その分注した検体に測定項目に応じた試薬を混合させて各種の測定及び分析を行なう。
 そのような試薬を用いた検体の分析測定処理では、試薬供給部から所定の分析項目に対応する試薬が供給され、その場合、試薬供給部は、多種類の分析項目に対応する試薬を収容する複数の試薬容器を回転テーブル上に保持して成る。例えば、特許文献1に開示される分析装置の試薬供給部(試薬容器保存装置)は、フレームにより3個が横に一体化された試薬容器を径方向に保持する試薬ディスク(回転テーブル)を備えており、各試薬容器の開口を閉塞する容器蓋が容器蓋開閉機構によって開放されることにより各試薬容器から対応する試薬がノズルによって吸引されて対応する反応容器へと分注される。
特許第2955613号
 ところで、特許文献1に開示される分析装置の前記容器蓋開閉機構は、完全に閉塞されたロック状態の容器蓋を開放するようになっているため、容器蓋開放時には、所定の大きさの開放力(トルク)を容器蓋に作用させて容器蓋のロックを解除しなければならない。そのため、この特許文献1では、蓋開放力を生起するための大掛かりなリンク機構が設けられている。また、容器蓋に対してそのロックを解除し得る開放力を蓋開放方向である上向きに作用させると、試薬容器が上方に持ち上げられるため、それを抑えるべく、この特許文献1では、試薬容器の上昇を防止する上昇防止機構も設けられている。更に、完全に閉塞されたロック状態の容器蓋を開放する場合には、容器蓋の寸法のばらつきによる蓋の開き具合の違いも考慮する必要があり、そのため、この特許文献1では、そのような開き具合の違いを吸収するためのねじりコイルバネも設けられている。
 このように、完全に閉塞されたロック状態の容器蓋を容器蓋開閉機構によって開放する場合には、大掛かりなリンク機構、試薬容器の上昇を防止する上昇防止機構、及び、ねじりコイルバネを必要とし、したがって、装置が大型化及び複雑化し、装置の製造コストの増大も懸念される。
 本発明は、上記した問題に着目してなされたものであり、大きな開放力を要することなく試薬容器蓋を開放できるようにする自動分析装置及び試薬収容ユニットを提供することを目的とする。
 上記した目的を達成するために、本発明は、試薬供給部から供給される試薬により検体を処理して測定することにより所定の分析項目に関して測定情報を得る自動分析装置に設けられ、前記試薬供給部で試薬を収容する試薬収容ユニットであって、複数の試薬容器を備える試薬容器ユニットと、この試薬容器ユニットを嵌合状態で収容保持するための容器ホルダと、前記容器ホルダに対する前記試薬容器ユニットの嵌合挿入時に前記各試薬容器の開口を開閉する容器蓋を部分的に開放する容器蓋部分開放機構とを有することを特徴とする。
 上記構成の試薬収容ユニットによれば、容器ホルダに試薬容器ユニットを完全に収容保持させた状態では、容器蓋部分開放機構によって各試薬容器の容器蓋が既に部分的に開放されてしまっているため(したがって、容器蓋のロック状態が解除されてしまっているため)、この状態で例えば容器蓋開閉機構によって容器蓋を開放する場合には、小さい開放力を容器蓋に作用させるだけで済む。そのため、前述した特許文献1のように、蓋開放力を生起するための大掛かりなリンク機構を設ける必要がない。また、上記構成によれば、容器蓋に対してそのロックを解除し得る大きな開放力を蓋開放方向である上向きに作用させる必要もないため、前述した特許文献1のように、試薬容器の上昇を防止する上昇防止機構を設ける必要もない。更に、上記構成によれば、部分的に開放された容器蓋を試薬取り出し可能な状態まで開放することとなるため、容器蓋の寸法のばらつきによる蓋の開き具合の違いを考慮する必要もなく、そのため、前述した特許文献1のように、容器蓋の開き具合の違いを吸収するためのねじりコイルバネ等を設ける必要もない。すなわち、上記構成の試薬収容ユニットによれば、大きな開放力を要することなく試薬容器蓋を開放できるようになり、前述した大掛かりなリンク機構、試薬容器の上昇を防止する上昇防止機構、及び、ねじりコイルバネも不要となるため、装置を簡略化して小型化を図ることができ、製造コストの低減にも寄与し得る。
 また、上記構成において、容器蓋部分開放機構は、各容器蓋に設けられる突起と、容器ホルダに対する試薬容器ユニットの嵌合挿入時に突起と当接して容器蓋を所定量押し上げことにより容器蓋を部分的に開放する容器ホルダの隆起部とによって構成されてもよい。これによれば、簡単な構成で容器蓋部分開放機構を実現でき、容器蓋を効率的に且つ容易に部分開放できる。
 また、本発明は、前述した特徴を有する試薬収容ユニットを備える自動分析装置も提供する。そのような自動分析装置によれば、前述した試薬収容ユニットと同様の作用効果を得ることができる。
 本発明によれば、大きな開放力を要することなく試薬容器蓋を開放できるようにする自動分析装置及び試薬収容ユニットが提供される。
本発明の一実施形態に係る自動分析装置の概略的な全体外観図である。 図1の自動分析装置の内部構成を示す概略的な平面図である。 試薬容器蓋開閉機構の開閉作動体を含む試薬供給部の回転テーブルの平面図である。 (a)は、試薬供給部の回転テーブル上に配設される隣り合う試薬収容ユニットのうちの一方の全ての試薬容器の容器蓋が開閉作動体によって同時に開放された状態を示す部分平面図、(b)は(a)の状態の正面図、(c)は(a)の状態の側面図である。 (a)は、開閉作動体によって試薬収容ユニットの全ての試薬容器の容器蓋を同時に開放した状態を模式的に示す部分平面図、(b)は、(a)のA方向矢視図であり、部分閉鎖位置にある容器蓋に開閉作動体が係合した状態を示す図、(c)は、(a)のA方向矢視図であり、容器蓋が開閉作動体によって開放された状態を示す図である。 容器蓋が開放された状態の試薬収容ユニットの斜視図である。 図6の試薬収容ユニットを構成する容器ホルダの斜視図である。 (a)は図7の容器ホルダの側面図、(b)は図7の容器ホルダの平面図((a)のB方向矢視図)である。 (a)は図8の(b)のC方向矢視図、(b)は図8の(b)のD-D線に沿う断面図、(c)は図8の(b)のE-E線に沿う断面図である。 (a)は、図6の試薬収容ユニットを構成するとともに図7の容器ホルダ内に収容保持される容器三連ユニット(試薬容器ユニット)の平面図、(b)は(a)のF-F線に沿う断面図、(c)は(a)のG-G線に沿う断面図である。 容器蓋を個別に開閉する開閉作動体の第1の変形例を示す斜視図である。 容器蓋を個別に開閉する開閉作動体の第2の変形例を示す斜視図である。 自動分析装置の駆動機構の概略的なブロック図である。
 以下、図面を参照しながら本発明の実施形態について説明する。
 図1は本実施形態の自動分析装置の概略的な全体外観図、図2は図1の自動分析装置の上側の内部構成を示す概略的な平面図である。これらの図に示されるように、本実施形態の自動分析装置1は、筐体100によってその外枠が形成されるとともに、筐体100内の上部で検体に対して各種処理を行う空間(以下、単に処理空間という)Sが形成されている。また、自動分析装置1は、ラックを搬送する搬送部10と、生体サンプル等の所定の検体を供給するための検体供給部20と、所定の分析項目に対応する試薬を供給するための試薬供給部30と、検体と試薬とを反応させるための反応部40と、反応済みの検体を処理して測定するための処理・測定部(本実施形態では例えば後述するB/F分離・測定部)50とを有している。これらの処理部10,20,30,40,50は筐体100(図1参照)内に配設される。搬送部10は、分析測定処理で使用されるディスポーザプルな所定数の器具が装填されたラック、例えば本実施形態では、検体吸引のためのノズルチップTと検体が分注される反応容器(例えばキュベット)Cとがそれぞれ60個ずつ2次元的に配列されて保持されたラックRを後述する所定の器具取り出し位置IIへと搬送する。この場合、搬送部10は、筐体100内の一方側で上下に延在して設けられ、その上側が処理空間S内に臨んでいる。また、検体供給部20、試薬供給部30、反応部40、及び、測定部50は、処理空間S内に配設される。
 また、自動分析装置1は、これらの処理部10,20,30,40,50の動作を制御するための制御部300(図13参照)と、処理部10,20,30,40,50の上方でX-Y方向に移動する各種移送部を備える移送機構200(図13参照)とを更に備える。移送機構200には、例えば、器具移送部、検体移送部、試薬移送部、測定対象移送部などがある。図13においてはこれらの各種移送部を総称して移送機構200として示している。移送機構200は、ノズルチップTや反応容器C等の移送や、ノズルによる検体及び試薬の吸引等を行なうために、把持アーム等を用いてノズルチップTや反応容器C等の器具を把持してX-Y方向に移動できる。制御部300は、制御装置本体(図示せず)と、例えばタッチパネルから成る表示入力部60とを有する。移送機構200の各移送部は、制御部300による制御によって、例えばX方向、Y方向に延在されたレールに沿って処理空間S内の上部でX方向、Y方向に移動できるとともに、所定位置で更に上下方向(Z方向)に移動(昇降)することもできる。
 搬送部10は、装置1内において、未使用のノズルチップT及び反応容器Cがそれぞれ装填された前述の複数のラックRを以下のように搬送する。まず複数のラックRを上下方向に積み重ねた状態で昇降機構により上昇させることにより、筐体100内の上部の処理空間S内のラック待機位置(供給側位置)Iへ向けて搬送する。その後、ラックRをラック待機位置IからノズルチップT及び反応容器Cが分析測定処理のために取り出される取り出し位置(回収側位置)IIへ移動させて、器具移送部(図示せず)によりチップ・反応容器待機位置IIIに移送されるのを待つ。また、ノズルチップT及び反応容器Cが全て取り出されて空になったラックRは昇降機構によって順次に下降させて回収される。
 具体的には、図2に矢印で示されるように、操作者は、搬送部10をY方向に沿って装置1の外部へ引き出す(引き出された搬送部が図2中に参照符号10’で示される)ことによって、空のラックRを搬送部10から回収できるとともに、ノズルチップT及び反応容器Cがそれぞれ装填された未使用のラックRを搬送部10内に補充することができる。
 また、本実施形態において、取り出し位置IIに位置されるラックR内のノズルチップT及び反応容器Cは、移送機構200の一つである器具移送部の保持部により保持されて移送されることにより、搬送部10の近傍に位置されるチップ・反応容器待機位置IIIに仮置きされる。しかしながら、他の変形例では、反応容器Cが、前記器具移送部の保持部によってラックRからチップ・反応容器待機位置IIIを経由することなく直接に反応部40へ移送されてセットされてもよい。
 なお、図2に例示するように、チップ・反応容器待機位置IIIには、ノズルチップのための置き場(待機位置IIIの下側の2つのノズルチップT及び/又は反応容器Cが示されている位置)だけでなく、操作者が手でノズルチップT及び/又は反応容器Cをラック毎入れ替えることのできる置き場(待機位置IIIの上側の一個のラックが示されている位置)を設けることができる。
 検体供給部20は、図2中のX方向に沿って移動可能な検体テーブル23上に配置されており、箱型の複数の検体ラック22が例えば検体テーブル23の移動方向に沿って配列されて成る。また、各検体ラック22には複数本の検体容器21が装填されており、これらの検体容器21にはそれぞれ分析測定されるべき検体が収容されている。特に本実施形態では、自動分析装置1の分析シーケンスの所定のタイミングで、例えば図2中の右側に位置される検体供給部20が図2中の左側へと移動するような動作態様を成して複数本の検体容器21を備える1つの検体ラック22が反応部40とチップ・反応容器待機位置IIIとの間の検体吸引位置IVへと移送されてこの位置で待機されるようになっている。
 チップ・反応容器待機位置IIIを設けることにより、処理空間S内に、チップ・反応容器待機位置IIIと検体吸引位置IVと反応部40の少なくとも一部とが一直線に沿って一列に並ぶ第1の一軸移送ライン(検体移送ライン)L1が形成される。そのため、検体吸引ノズルを備える検体移送部(図示せず)が、この第1の一軸移送ラインに沿って一軸方向(X軸方向)に移動するだけで、検体吸引ノズルへのノズルチップTの装着、検体の吸引、検体の反応容器への分注という一連の動作を完結することができる。具体的には、まず検体吸引ノズル(図示せず)が前記検体移送部によってX軸の+方向(図2において右方向)に移動されて、その先端にチップ・反応容器待機位置IIIに仮置きされたノズルチップTが接続される(接続時は検体吸引ノズルが前記検体移送部によりZ軸方向に昇降される)。その後、ノズルチップTを先端に保持したまま更にX軸の-方向(図2において左方向)に移動されて検体吸引位置IVで待機する検体容器21からノズルチップTを通じて検体を吸引し、さらに反応部40へ向けてX軸の-方向に移動する。
 このとき既に、反応部40には、チップ・反応容器待機位置IIIに仮置きされていた反応容器Cが、移送機構200の一つである器具移送部によって移送されてセッティングされ、待機している。したがって、検体吸引ノズルは、ノズルチップTを通じて吸引した検体を第1の一軸移送ラインL1上に位置する反応部40における反応容器C内へ分注(吐出)する。その後、検体吸引ノズルは、前記検体移送部により、第1の一軸移送ラインL1上に位置される(反応部40と検体吸引位置IVとの間に設けられる)チップ廃棄部121へ向けてX軸の+方向に移動され、そのチップ廃棄部121で使用済みのノズルチップTが検体吸引ノズルから離脱されて廃棄される。
 反応部40は回転駆動される回転テーブル42を備えており、この回転テーブル42の外周部には全周にわたり所定の間隔を隔てて複数の反応容器支持部43が設けられる。これらの反応容器支持部43には、前述したように器具移送部によって未使用の反応容器Cが移送されてセッティングされる。そして、回転テーブル42によって検体受け入れ(分注)位置(第1の一軸移送ラインL1上に位置する)まで回転された反応容器C内に前述したように検体吸引ノズルから検体が吐出される。
 試薬供給部30は、多種類の分析項目に対応する試薬を収容する複数の試薬収容部32を回転テーブル34によって例えばユニット形態で保持しており、反応部40における分析項目に対応する試薬収容部32を、回転テーブル34による回転によって後述する第2の一軸移送ラインL2上に位置されるそれぞれの対応する試薬吸入位置V(図2中には1つの試薬吸入位置にのみ参照符号Vが付されている)に移動させる。本実施形態の試薬供給部30では、図3に明確に示されるように、複数の試薬収容ユニットUが回転テーブル34の径方向に放射状に配列されている。試薬収容ユニットUは、複数の試薬収容部32が連結又は一体形成された細長い形態の試薬容器から成る試薬容器ユニット132を容器ホルダ130内に収容保持して構成される。
 本実施形態では、試薬収容ユニットUは、例えば3つの試薬容器135A,135B,135C(試薬収容部32)が回転テーブル34の径方向に沿って配列されるように連結または一体形成した容器三連ユニット(試薬容器ユニット)132を、容器ホルダ130内に収容保持している。本実施形態の試薬供給部30では、このような試薬収容ユニットUが、所定の数だけ、回転テーブル34の周方向に向かって放射状に配列されている例を示している。また、試薬供給部30は、その試薬を冷却するための冷却装置36(図2参照)と、試薬収容ユニットUを構成する各試薬容器135A,135B,135Cの開口を閉塞する容器蓋137(図4~図6参照)を同時に開閉するための後述する試薬容器蓋開閉機構160(図2及び図13参照)とを更に備える。
 試薬供給部30の外側、すなわち、試薬供給部30に対して反応部40の反対側には、導電性チップ供給部70が設けられる。この導電性チップ供給部70は、複数の導電性チップ72が装填されたラック74を有しており、通常の分析項目との共用化が難しい分析項目を実行する場合など必要に応じて試薬吸引ノズルの先端に導電性チップ72を接続するようになっている。具体的には、導電性チップ供給部70は、位置センサを用いた位置制御下でラック74をY方向に沿って移動させることにより、ラック74上の導電性チップ72を後述する第2の一軸移送ラインL2上に位置させる。なお、試薬供給部30の内側、具体的には、試薬供給部30と反応部40との間には、後述する第2の一軸移送ラインL2上に位置して、試薬吸引ノズルを洗浄するための複数(本実施形態では3つ)のノズル洗浄部29と、チップを廃棄するための複数(本実施形態では3つ)のチップ廃棄部25とが設けられる。
 導電性チップ供給部70、試薬供給部30、ノズル洗浄部29、チップ廃棄部25、及び、反応部40が一直線に沿って一列に並ぶ処理空間Sの領域では、移送機構200の一つである試薬移送のための試薬移送部(図示せず)がこの一直線に沿って一軸方向(X軸方向)にのみ移動する第2の一軸移送ライン(試薬移送ライン)L2が形成される。特に、本実施形態では、ノズル洗浄部29及びチップ廃棄部25がそれぞれ3つ設けられることから、第2の一軸移送ラインL2も3つ設けられる(無論、第2の一軸移送ラインL2の本数は3つに限定されない。4本以上であってもよく、或いは、2本以下であってもよい)。具体的には、それぞれの第2の一軸移送ラインL2において、試薬吸引ノズル(図示せず)を保持する保持部が前記試薬移送部によりX軸方向にのみ移動される。
 それぞれの第2の一軸移送ラインL2に対応する各試薬吸引ノズルは、試薬供給部30において、回転テーブル34上の対応する試薬吸入位置Vに位置される対応する試薬収容部32から、その先端のノズル吸引部を通じて直接に分析項目に対応する試薬を吸引し、その後、反応部40へ向けてX軸の+方向に移動される。このとき、反応部40には、前述の検体受け入れ位置で検体を既に受け入れた反応容器Cが、回転テーブル42によってそれぞれの対応する試薬受け入れ位置まで回転されている。したがって、各試薬吸引ノズルは、吸引した試薬を対応する反応容器Cに対して分注(吐出)することができる。その後、各試薬吸引ノズルは、X軸の-方向に移動されて、対応するノズル洗浄部29において洗浄される。
 一方、通常の分析項目との共用化が難しい分析項目を実行する場合がある。例えばノズル洗浄だけでは不十分な場合には、必要に応じて試薬吸引ノズルの先端に導電性チップ72が接続されてもよい。このような場合には、試薬供給部30で試薬を吸引する前に、第2の一軸移送ラインL2上にある導電性チップ供給部70において試薬吸引ノズルの先端に導電性チップ72に接続することが好ましい(接続時は試薬吸引ノズルが前記試薬移送部によりZ軸方向に昇降される)。導電性チップ72が接続されると、試薬吸引ノズルは導電性チップ72を先端に保持したまま更にX軸の+方向に移動され、試薬供給部30において導電性チップ72を通じて試薬を吸引する。試薬を吸引した試薬吸引ノズルは、更に反応部40へ向けてX軸の+方向に移動され、前述したように試薬受け入れ位置に位置される反応容器Cに対して試薬を分注(吐出)する。その後、試薬吸引ノズルは、前記試薬移送部によってチップ廃棄部25のうちの対応するチップ廃棄部25へ向けてX軸の-方向に移動され、そのチップ廃棄部25で使用済みの導電性チップ72が試薬吸引ノズルから離脱されて廃棄される。
 反応部40において前述したように反応容器Cに分注された検体及び試薬の混合液は、回転テーブル42上で所定時間にわたり所定温度で反応が進められ、その後、反応生成物が形成された反応容器Cは、回転テーブル42の回転によって反応容器取り出し位置VIまで回転される。反応容器取り出し位置VIに位置された反応容器Cは、移送機構200の一つである測定対象移送部(図示せず)によって移送される保持部(把持アーム等)により把持されて処理・測定部50内へ導入される。
 処理・測定部50は、導入された反応生成物に対して所定の処理を施して電気的及び光学的に測定を実施する。具体的には、例えば免疫測定法を用いた分析測定では、免疫複合体を形成していない標識抗体を洗浄廃棄するB/F分離が行なわれ、そのための洗浄部及び撹拌部、B/F分離に使用されるマグネットが設けられるとともに、それらによって処理した処理物を吸引して下方で電気化学発光に基づき測定する測定部120も設けられる。その場合には、処理・測定部50がB/F分離・測定部50と称されてもよい。なお、測定が完了した使用済みの反応容器Cは、回転テーブル52の回転により所定の位置まで移動され、移送機構200を構成する対応する移送部により移送される保持部により把持されて所定の廃棄部で廃棄される。
 次に、前述した本実施形態の試薬供給部30について更に詳しく説明する。
 図3に明確に示されるように、試薬供給部30は、前述したごとく、例えば3つの試薬容器135A,135B,135C(試薬収容部32)が回転テーブル34の径方向に沿って配列されるように一体形成されて成る容器三連ユニット(試薬容器ユニット)132を容器ホルダ130内に収容保持して構成される試薬収容ユニットUを複数備える。この場合、回転テーブル34は、試薬容器蓋開閉機構160の後述する開閉作動体106によって各試薬容器135A,135B,135Cの容器蓋137が開閉される容器蓋開閉位置VIIIと、前述した試薬吸入位置Vとの間で少なくとも回転されるようになっている。試薬吸入位置Vは、3つの第2の一軸移送ライン(試薬移送ライン)L2にそれぞれ対応する3つ試薬分注位置V’,V”,V’”を有しており、これらの試薬分注位置V’,V”,V’”で各試薬容器135A,135B,135Cに収容された試薬が検体へと分注されるようになっている。具体的には、第1の試薬分注位置V’では径方向の最も内側に位置される第1の試薬容器135Aから試薬が分注(吸引)され、第3の試薬分注位置V’”では径方向の最も外側に位置される第3の試薬容器135Cから試薬が分注(吸引)され、第2の試薬分注位置V”では第1及び第3の試薬容器135A,135C間に位置される第2の試薬容器135Bから試薬が分注(吸引)されるようになっている。なお、本実施形態では、試薬容器を3個備える容器三連ユニットを例示したが、試薬容器の数は3個に限定されず、2個であっても、4個以上であっても良い。
 また、回転テーブル34の回転方向に沿う所定の位置、少なくとも試薬分注位置V’,V”,V’”には、これらの位置に対する試薬収容ユニットUの到達を検知する位置センサ239が設けられている。また、回転テーブル34は、容器蓋開閉位置VIII及び3つ試薬分注位置V’,V”,V’”に加えて、データコード読み取り位置IXも有し、このデータコード読み取り位置IXでは、容器三連ユニット132に貼り付けられた2次元バーコードから2次元バーコードリーダによって所要のデータが読み取られるようになっている。なお、データコード読み取り位置IXには、データ読み取り用の窓(図示せず)が設けられるとともに、この窓の結露を防止するための図示しないファンを設けることが好ましい。また、図示しないが、回転テーブル34の中央部には、1次元バーコードが貼り付けられており、これにより、容器ホルダ130に対する容器三連ユニット132の未実装や設置不備を監視することができる。
 また、容器蓋開閉位置VIIIに、試薬容器内の試薬を撹拌するための撹拌装置150を設けることが好ましい。この撹拌装置150により、容器蓋開閉位置VIIIに位置される試薬収容ユニットUの各試薬容器135A,135B,135Cの容器蓋137が閉鎖位置(本実施形態では、後述するように容器蓋137が部分的に又は少しだけ開放された閉鎖位置)にある状態で、試薬収容ユニットUの下方において非接触型の撹拌棒が例えば間欠的な遠心回転作用を試薬容器に与えることにより該容器内の試薬を撹拌することができる。なお、撹拌装置150の作動原理はこれに限定されず、様々な作動原理を採用できる。また、本実施形態では、第1~第3の試薬容器135A~135Cが撹拌装置150による撹拌対象として設定されるが、これに限らず、一部試薬容器又は個別攪拌できるように構成しても良い。
 このような構成を備える試薬供給部30では、容器蓋開閉位置VIIIで、試薬収容ユニットUの試薬容器の撹拌が撹拌装置150により行なわれた後、試薬容器蓋開閉機構160の後述する開閉作動体106によって各試薬容器135A,135B,135Cの容器蓋137が開放される。その後、回転テーブル34の回転によって、各試薬容器135A,135B,135Cがそれぞれの試薬分注位置V’,V”,V’”へ移動されて試薬の分注が行なわれる。そして、全ての分注が完了した試薬収容ユニットUは、回転テーブル34の回転により再び容器蓋開閉位置VIIIに戻され、この位置で試薬容器蓋開閉機構160の開閉作動体106によって各試薬容器135A,135B,135Cの容器蓋137が前述した閉鎖位置まで閉じられる。
 続いて、図4、図5、及び、図13を参照して、試薬容器蓋開閉機構160を更に詳しく説明する。これらの図に例示されるように、試薬容器蓋開閉機構160は、各試薬容器135A,135B,135Cの容器蓋137の上面に設けられる係合部139と係脱可能に係合する開閉係合部(係合溝109として例示:図4(c)参照)を有する進退可能な開閉作動体106と、開閉作動体106をその長手軸O方向に沿って進退させる進退機構102と、開閉作動体106を回転駆動する回転機構104とを備える。
 進退機構102は、開閉作動体106が各試薬容器135A,135B,135Cから離間される退避位置Xと開閉作動体106の係合溝109が容器蓋137の係合部139と係合する係合位置XXとの間で開閉作動体106をその長手軸O方向に沿って進退させる。回転駆動機構104は、開閉作動体106を、所定の円弧軌道C(図5の(b)(c)参照)に沿って、例えば、図4に示されるように隣り合う試薬容器ユニットUの係合部139と開閉作動体106とが干渉しない回転角度(例えば90°)まで回転移動させる。これにより、容器蓋137は、係合位置XXから蓋開放位置XXXへ移動する。蓋開放位置XXXは、容器蓋137が各試薬容器135A,135B,135Cから試薬を取り出し可能な状態まで開放される位置である。
 なお、図4(c)においては、係合溝109が開閉作動体106を貫通する貫通溝を例示しているが、係合溝は貫通することなく開閉作動体106の途中までの深さの溝であっても良い。さらに、図4(c)等の実施形態において係合溝109として例示している開閉係合部は、溝形状に限定されるものではなく、蓋部の係合部139と係脱自在に係合して開閉作動体106の回転動作により容器蓋137を開閉できれば良く、例えばL字形状又はその他の形状であっても良い(以下の例においても同じ)。L字形状の場合は、開閉動作体106の回転動作により、開閉係合部を容器蓋137に当接させることで閉動作をするようにしてもよい。また、進退機構102及び回転機構104は、例えば、駆動モータとギア列やリンク機構を伴う動力伝達機構とを備えていてもよく、更にピストン等のアクチュエータを伴っていてもよい。さらにこれに限定されることなく、適宜、回転動作、進退動作を行うための他の周知慣用技術を適用することができる。
 開閉作動体106は、例えば棒状を成しており、冷却装置36と同じ側に配設されて容器蓋開閉位置VIIIに位置される試薬容器ユニットUと回転テーブル34の径方向外側から対向するようになっている(図3参照)。また、開閉作動体106の係合溝109(図4(c)参照)は、開閉作動体106の進退方向(長手軸O方向及び回転テーブル34の径方向)に沿って整列される3つの試薬容器135A,135B,135Cの容器蓋137の各係合部139と係合位置XXで同時に係合するように、長手軸O方向に沿って延びる断面が略U字型の刷り割り溝として形成されており、開閉作動体106の作用部106a(図4(a)参照)を形成している。なお、開閉作動体106の係合溝109と係合する容器蓋137の係合部139は、断面が例えばコの字状を成しており(図4(a)参照)、その直線部139b(同図参照)の一方側の面と直線部139bの他方側の面の両側から延びる張り出し部139a(同図参照)の端部とが係合溝109の両側面に当接状態で係合するようになっている(図4(c)参照)。
 このような構成の試薬容器蓋開閉機構160によって容器蓋開閉位置VIIIに位置される試薬容器ユニットUの試薬容器135A,135B,135Cの容器蓋137を開放する場合には、まず、図5(a)の左上側に示される退避位置Xにある開閉作動体106が進退機構102によって試薬容器ユニットUへ向けて前進される。そして、図5(a)の左下側及び図5(b)に示される係合位置XXまで開閉作動体106が前進されると、3つの試薬容器135A,135B,135Cの容器蓋137の各係合部139が開閉作動体106の係合溝109に同時に係合するようになる。この係合位置XXで開閉作動体106の前進動作が停止されると、続いて、回転機構104によって、開閉作動体106が、容器蓋137との係合状態を保ったまま、図5(a)の右下側及び図4並びに図5(c)に示される蓋開放位置XXXへと所定の円弧軌道C(図5(b)及び(c)参照)に沿って移動される。この蓋開放位置XXXでは、各試薬容器135A,135B,135Cから試薬を取り出し可能な状態まで且つ隣り合う試薬容器ユニットUの係合部139と開閉作動体106とが干渉しない回転角度まで容器蓋137が開放される。なお、試薬容器蓋開閉機構160は、前述したように試薬分注を完了して再び容器蓋開閉位置VIIIに戻された試薬容器ユニットUに対して、前述した一連の蓋開放動作と逆の動作を施すことによって3つの容器蓋137を同時に閉鎖する。または、試薬を吸引した後すぐに容器蓋137を閉鎖するように構成しても良い。
 最後に、図6~図10を参照して、試薬収容ユニットUについて更に詳しく説明する。
 試薬収容ユニットUは、前述したように、例えば3つの試薬容器135A,135B,135Cが回転テーブル34の径方向に沿って配列されるように一体形成されて成る容器三連ユニット132を容器ホルダ130内に収容保持して構成される。
 図6及び図10では、容器三連ユニット132は、3つの試薬容器135A,135B,135C同士を接続する接続フレーム132bを有するとともに、3つの試薬容器135A,135B,135Cが整列される整列方向の両側に、容器三連ユニット132を容器ホルダ130に対して係脱可能に係止させるための係止部153を有する例を示している。また、係止部153は、弾性的に拡縮できるようになっており、容器ホルダ130の後述する係止孔130aに弾性的に係止される係止突部147を有している。
 なお、回転テーブル34の径方向内側に方向付けられて位置される容器三連ユニット132の端部は、先細るように形成されるテーパ部(肉厚減少部)132a(図10(a)参照)となっており、また、これに対応して、容器三連ユニット132を収容保持する容器ホルダ130の対応する端部も先細るように形成されるテーパ部(肉厚減少部)130f(図6~図8参照)となっていることが好ましい。これにより、各試薬収容ユニットUは、図3の右側に部分的に示されるように、回転テーブル34の径方向内側で隣り合う試薬収容ユニットUと干渉することなく隣接して配置され、その結果、可能な限り多くの試薬容器ユニットUを回転テーブル34上に無駄なスペースを形成することなくコンパクトに配置できるようになっている。
 一方、容器三連ユニット132を収容保持する容器ホルダ130は、特に図7~図9に示されるように、ホルダ本体130Aと、ホルダ本体130Aから延びて回転テーブル34側に組み付けられる一対の脚部130Bとを有する。ホルダ本体130Aは、容器三連ユニット132が嵌合状態で挿入される挿入穴130bを画定するように枠状に形成される。なお、容器三連ユニット132には、軽量化等を目的として、そのホルダ本体130Aから脚部130Bにわたって、図7に例示するような肉抜き穴130eを設けることが好ましい。
 また、試薬容器135A,135B,135Cの整列方向の両端に位置されるホルダ本体130Aの各縦側壁130Aa(図7,8参照)にはそれぞれ、容器三連ユニット132が容器ホルダ130の挿入穴130bに嵌合挿入されたときに、容器三連ユニット132の係止部153の係止突部147が係止可能な係止孔130aが設けられる。したがって、容器ホルダ130の挿入穴130b内に容器三連ユニット132を嵌合挿入していくと、まず容器三連ユニット132の係止部153が挿入穴130bを形成するホルダ本体130Aの内壁によって押圧されて内側に弾性的に収縮する。その状態から更に容器三連ユニット132の挿入を続けると、係止部153の係止突部147が係止孔130aと位置合わせされる容器三連ユニット132の完全挿入位置で、係止部153の押圧状態が解放されて係止部153が外側に拡開する。それにより、係止突部147が係止孔130a内へ弾性的に突出してこの係止孔130aと係止し、その結果、容器三連ユニット132が容器ホルダ130内に係止状態で保持される。なお、係止孔130aを通じて係止突部147を内側に押し込んで係止突部147と係止孔130aとの係止状態を解除することにより、容器三連ユニット132を容器ホルダ130から取り外すことができる。
 また、試薬収容ユニットUは、容器ホルダ130に対する容器三連ユニット132の嵌合挿入時に各試薬容器135A,135B,135Cの容器蓋137を部分的に(または少しだけ)開放する容器蓋部分開放機構も有するように構成することが好ましい。例えば、この容器蓋部分開放機構は、試薬容器ユニットUが容器ホルダ130に挿入篏合されたときに、試薬容器ユニットUの容器蓋部137の周縁部が容器ホルダ130の一方の側面の隆起部(突出部)130c(図7参照) )と当接係合して容器蓋部が解放される方向に僅かに押されることにより、部分的に開放されるよう構成することができる。さらに、容器蓋137の隆起部130cと当接係合する位置に所定の高さの突起を設けることにより、容器蓋部137の開放量を調整しつつ、より確実に容器蓋137を部分的に開放することができるように構成しても良い。図4~図6では、各容器蓋137の内面の周端縁に突起137aを設けて、該突起137aと容器ホルダ130の隆起部130cとが係合することによって容器蓋137を部分的に開放する例を示している。隆起部130cは、容器ホルダ130に対する容器三連ユニット(試薬容器ユニット)132の嵌合挿入時に、容器蓋137の突起137aと当接して容器蓋137を所定量押し上げことにより容器蓋137を部分的に(または少しだけ)開放する。
 容器蓋部分開放機構を設ける場合、隆起部130cは、容器三連ユニット132が容器ホルダ130の挿入穴130bに嵌合挿入された状態で試薬容器135A,135B,135Cの整列方向に沿って延在するホルダ本体130Aの一対の横側壁130Abのうちの一方の横側壁130Abを他方の横側壁130Abよりも高い寸法に設定することが好ましい。図4(a)においては、隆起部130cに、各容器蓋137の突起137aと対向して当接する当接部として、3つの当接部130ca,130cb,130ccを例示している。なお、図7~図9では、隆起部130cの上端部は3つの試薬容器135A,135B,135Cの整列方向に沿って均一の高さとなっているが、各容器蓋137との当接位置のみ部分的に突出した形状の隆起部としても良い。
  したがって、この構成例では、容器三連ユニット132を容器ホルダ130に嵌合挿入させると、容器ホルダ130の隆起部130cが容器蓋137の突起137aと当接して容器蓋137を所定量押し上げることにより容器蓋137のロックが外れて容器蓋137が少し浮いた状態となり、それにより、試薬容器135A,135B,135Cが部分的に開放される。その結果、前述した試薬容器蓋開閉機構160の開閉作動体106は、その係合位置XXで、部分的に開放された前述の閉鎖位置にある容器蓋137(例えば図5(b)に示されるように、容器蓋137は、この閉鎖位置で、水平状態から傾けられた状態にある)の係合部139と係合されるようになる。
 なお、図4,5,6、10においては、3つの各容器蓋137が同時に部分的に開放される例を示しているが、各容器蓋137が個別に部分的に開放されるように構成しても良い。
 以上説明したように、本実施形態によれば、容器ホルダ130に容器三連ユニット132を完全に収容保持させた状態では、容器蓋部分開放機構(130c、137a)によって各試薬容器135A,135B,135Cの容器蓋137が既に部分的に又は少しだけ開放されてしまっているため(したがって、容器蓋137のロック状態が解除されてしまっているため)、この状態で試薬容器蓋開閉機構160によって容器蓋137を開放する場合には、小さい開放力を容器蓋137に作用させるだけで済む。そのため、前述した特許文献1のように、蓋開放力を生起するための大掛かりなリンク機構を設ける必要がない。また、本実施形態によれば、容器蓋137に対してそのロックを解除し得る大きな開放力を蓋開放方向である上向きに作用させる必要もないため、前述した特許文献1のように、試薬容器135A,135B,135Cの上昇を防止する上昇防止機構を設ける必要もない。更に、本実施形態によれば、部分的に開放された容器蓋137を試薬取り出し可能な状態まで開放することとなるため、容器蓋137の寸法のばらつきによる蓋の開き具合の違いを考慮する必要もなく、そのため、前述した特許文献1のように、容器蓋137の開き具合の違いを吸収するためのねじりコイルバネ等を設ける必要もない。すなわち、本実施形態の試薬収容ユニットUによれば、大きな開放力を要することなく試薬容器蓋135A,135B,135Cを開放できるようになり、前述した大掛かりなリンク機構、試薬容器の上昇を防止する上昇防止機構、及び、ねじりコイルバネも不要となるため、装置を簡略化して小型化を図ることができ、製造コストの低減にも寄与し得る。
 また、本実施形態においては、容器蓋部分開放機構は、各容器蓋137に設けられる突起137aと、容器ホルダ130に対する試薬容器ユニット132の嵌合挿入時に突起137aと当接して容器蓋137を所定量押し上げことにより容器蓋137を部分的に開放する容器ホルダ130の隆起部130cとによって構成されるため、簡単な構成で容器蓋部分開放機構を実現でき、容器蓋137を効率的に且つ容易に部分開放できる。
 ところで、前述した実施形態では、試薬容器蓋開閉機構160の開閉作動体106によって3つの試薬容器135A,135B,135Cの容器蓋137が同時に開閉される構成を例示している。しかしこれに限らず、複数(3個に限定されない)の試薬容器の容器蓋137を開閉作動体によって個別に開閉される構成としてもよい。そのような開閉作動体の変形例を図11及び図12に例示する。すなわち、図11に示される第1の変形例に係る開閉作動体106Aは、その先端に、1つの試薬容器135A(135B,135C)の係合部139のみと係合できる長さで延在する係合溝109’を有する作用部106a’を備える。この場合、作用部106a’は、開閉作動体106Aの側面に設けられる。一方、図12に示される第2の変形例に係る開閉作動体106Bは、その先端に、1つの試薬容器135A(135B,135C)の係合部139のみと係合できる長さで延在する係合溝109’を有する作用部106a”を備えるが、この場合、作用部106a”は、開閉作動体106Aの下面に設けられる。このような個別開閉型の開閉作動体106A,106Bによれば、試薬の飛散や異物の混入等を防止でき、有益である。
 なお、本発明は、前述した実施形態に限定されず、その要旨を逸脱しない範囲で種々変形して実施できる。例えば、前述した実施形態では、試薬収容ユニットにおける試薬容器の数が3つであったが、試薬収容ユニットにおける試薬容器の数はこれに限らず任意に設定できる。また、分析装置の処理部の構成及び形態も前述したものに限定されず、用途に応じて種々変更することができる。
 さらに、本明細書で示した各種実施形態中に記載した個々の構成、例えば、ラックの構造、検体や試薬保持部の構造、ラックを移動回収する搬送部、試薬の蓋開閉機構、検体移送ライン又は試薬移送ラインを一軸移送ラインL1、又はL2に整列させる構成その他の個々の構成を、必要に応じて各実施形態から抜き出して、それらを適宜に組み合わせた構成とすることも可能である。
 また、実施形態で示す具体的な各位置I~IXは例示であり、本明細書で示されている本発明で求められる条件に適合する位置に、適宜変更することが可能である。
1 自動分析装置
30 試薬供給部
130 容器ホルダ
130c 隆起部(突出部)
132 試薬容器ユニット(容器三連ユニット)
135A,135B,135C 試薬容器
137 容器蓋
137a 突起
U 試薬収容ユニット

Claims (6)

  1.  試薬供給部から供給される試薬により検体を処理して測定することにより所定の分析項目に関して測定情報を得る自動分析装置に設けられ、前記試薬供給部で試薬を収容する試薬収容ユニットであって、
     複数の試薬容器を備える試薬容器ユニットと、この試薬容器ユニットを嵌合状態で収容保持するための容器ホルダと、前記容器ホルダに対する前記試薬容器ユニットの嵌合挿入時に前記各試薬容器の開口を開閉する容器蓋を部分的に開放する容器蓋部分開放機構とを有することを特徴とする試薬収容ユニット。
  2.  前記容器蓋部分開放機構は、前記各容器蓋と、前記容器ホルダに対する前記試薬容器ユニットの嵌合挿入時に前記各容器蓋と当接係合して前記容器蓋を所定量押し上げことにより前記容器蓋を部分的に開放する前記容器ホルダの隆起部とによって構成されることを特徴とする請求項1に記載の試薬収容ユニット。
  3.  前記容器蓋部分開放機構は、前記容器蓋の前記隆起部に係合する位置に突起を備えることを特徴とする請求項2に記載の試薬収容ユニット。
  4.  検体を試薬で処理して測定することにより所定の分析項目に関して測定情報を得る自動分析装置であって、
     所定の分析項目に対応する試薬を供給する試薬供給部と、
     前記試薬供給部で試薬を収容する試薬収容ユニットと、
     を備え、
     前記試薬収容ユニットは、複数の試薬容器を備える試薬容器ユニットと、この試薬容器ユニットを嵌合状態で収容保持するための容器ホルダと、前記容器ホルダに対する前記試薬容器ユニットの嵌合挿入時に前記各試薬容器の開口を開閉する容器蓋を部分的に開放する容器蓋部分開放機構とを有することを特徴とする自動分析装置。
  5.  前記容器蓋部分開放機構は、前記各容器蓋と、前記容器ホルダに対する前記試薬容器ユニットの嵌合挿入時に前記各容器蓋と当接係合して前記容器蓋を所定量押し上げことにより前記容器蓋を部分的に開放する前記容器ホルダの隆起部とによって構成されることを特徴とする請求項4に記載の自動分析装置。
  6.   前記容器蓋部分開放機構は、前記容器蓋の前記隆起部に当接係合する位置に突起を備えることを特徴とする請求項5に記載の自動分析装置。
PCT/JP2020/024564 2019-06-24 2020-06-23 自動分析装置及び試薬収容ユニット WO2020262363A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021527632A JPWO2020262363A1 (ja) 2019-06-24 2020-06-23
CN202080045102.9A CN113994212A (zh) 2019-06-24 2020-06-23 自动分析装置以及试剂收容单元
EP20832180.2A EP3988939A4 (en) 2019-06-24 2020-06-23 AUTOMATIC ANALYSIS DEVICE, AND REAGENT ADMISSION UNIT
US17/561,567 US20220120773A1 (en) 2019-06-24 2021-12-23 Automated analaysis device and reagent storage unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-116089 2019-06-24
JP2019116089 2019-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/561,567 Continuation US20220120773A1 (en) 2019-06-24 2021-12-23 Automated analaysis device and reagent storage unit

Publications (1)

Publication Number Publication Date
WO2020262363A1 true WO2020262363A1 (ja) 2020-12-30

Family

ID=74061395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024564 WO2020262363A1 (ja) 2019-06-24 2020-06-23 自動分析装置及び試薬収容ユニット

Country Status (5)

Country Link
US (1) US20220120773A1 (ja)
EP (1) EP3988939A4 (ja)
JP (1) JPWO2020262363A1 (ja)
CN (1) CN113994212A (ja)
WO (1) WO2020262363A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2955613B2 (ja) 1994-09-21 1999-10-04 株式会社日立製作所 分析装置
JP2010078510A (ja) * 2008-09-26 2010-04-08 Sysmex Corp 分析装置
JP2010127936A (ja) * 2008-11-28 2010-06-10 F Hoffmann-La Roche Ag 液体試料の処理のためのシステムおよび方法
JP2012247421A (ja) * 2011-05-25 2012-12-13 F Hoffmann-La Roche Ag 流体容器を開放/閉鎖するための装置および方法
WO2015025616A1 (ja) * 2013-08-20 2015-02-26 株式会社 日立ハイテクノロジーズ 自動分析装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346265B2 (ja) * 2009-09-30 2013-11-20 シスメックス株式会社 検体分析装置および検体分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2955613B2 (ja) 1994-09-21 1999-10-04 株式会社日立製作所 分析装置
JP2010078510A (ja) * 2008-09-26 2010-04-08 Sysmex Corp 分析装置
JP2010127936A (ja) * 2008-11-28 2010-06-10 F Hoffmann-La Roche Ag 液体試料の処理のためのシステムおよび方法
JP2012247421A (ja) * 2011-05-25 2012-12-13 F Hoffmann-La Roche Ag 流体容器を開放/閉鎖するための装置および方法
WO2015025616A1 (ja) * 2013-08-20 2015-02-26 株式会社 日立ハイテクノロジーズ 自動分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3988939A4

Also Published As

Publication number Publication date
JPWO2020262363A1 (ja) 2020-12-30
US20220120773A1 (en) 2022-04-21
CN113994212A (zh) 2022-01-28
EP3988939A1 (en) 2022-04-27
EP3988939A4 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
US11754582B2 (en) Automated diagnostic analyzer and method for its operation
TWI755498B (zh) 自動化製備生物樣本之系統及方法
JP6837362B2 (ja) 自動分析装置
JP4246720B2 (ja) リフトシステム付き装置
JP7032235B2 (ja) 自動分析装置
WO2020262363A1 (ja) 自動分析装置及び試薬収容ユニット
WO2020262362A1 (ja) 自動分析装置及びその試薬容器蓋開閉機構
WO2020262360A1 (ja) 自動分析装置
WO2020262361A1 (ja) 自動分析装置
WO2020262359A1 (ja) 自動分析装置
EP1582875A1 (en) Analyser with a lift system
WO2022024425A1 (ja) 自動分析装置
WO2024097727A2 (en) Multiple lane extraction drawer and plate sealer
CN117203531A (zh) 自动分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021527632

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020832180

Country of ref document: EP

Effective date: 20220124