WO2020262343A1 - Absorber and absorbent article - Google Patents

Absorber and absorbent article Download PDF

Info

Publication number
WO2020262343A1
WO2020262343A1 PCT/JP2020/024503 JP2020024503W WO2020262343A1 WO 2020262343 A1 WO2020262343 A1 WO 2020262343A1 JP 2020024503 W JP2020024503 W JP 2020024503W WO 2020262343 A1 WO2020262343 A1 WO 2020262343A1
Authority
WO
WIPO (PCT)
Prior art keywords
absorbent
weight
absorber
polymer absorbent
aqueous solution
Prior art date
Application number
PCT/JP2020/024503
Other languages
French (fr)
Japanese (ja)
Inventor
響 菊池
若菜 岩井
中下 将志
裕樹 合田
Original Assignee
ユニ・チャーム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニ・チャーム株式会社 filed Critical ユニ・チャーム株式会社
Priority to JP2021526994A priority Critical patent/JPWO2020262343A1/ja
Priority to BR112021020337A priority patent/BR112021020337A2/en
Priority to KR1020217039445A priority patent/KR20220027061A/en
Priority to CN202311460873.6A priority patent/CN117838442A/en
Priority to CN202080046486.6A priority patent/CN114080241A/en
Priority to AU2020306265A priority patent/AU2020306265A1/en
Publication of WO2020262343A1 publication Critical patent/WO2020262343A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/45Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
    • A61F13/49Absorbent articles specially adapted to be worn around the waist, e.g. diapers
    • A61F13/49007Form-fitting, self-adjusting disposable diapers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/45Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the shape
    • A61F13/49Absorbent articles specially adapted to be worn around the waist, e.g. diapers
    • A61F13/496Absorbent articles specially adapted to be worn around the waist, e.g. diapers in the form of pants or briefs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/425Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530583Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530708Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the absorbency properties

Definitions

  • the present invention relates to an absorber and an absorbent article.
  • absorbent articles such as disposable diapers and sanitary napkins using a highly absorbent polymer (so-called "SAP") having a high absorption amount
  • SAP highly absorbent polymer
  • Patent Document 1 an absorber in which an absorbent resin particle (highly absorbent polymer) 5 having an excellent absorption amount and a hydrophilic fiber 13 such as a pulp fiber having an excellent absorption rate are combined.
  • the absorbent article 30 using 15 is disclosed.
  • the thickness of the absorbent article 30 be reduced from the viewpoint of distribution, storage, portability, and the like.
  • the absorption rate is inferior, so that when the body fluid or the like is vigorously excreted, the body fluid cannot be sufficiently absorbed. It was.
  • the absorbent resin particles 5 and the hydrophilic fibers 13 are combined, the absorber 15 may become bulky.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an absorber and an absorbent article that easily absorb body fluids.
  • the main invention for achieving the above object is an absorber for absorbing body fluid, which has a polymer absorbent having a continuous skeleton and continuous pores, and the polymer absorbent is (meth).
  • An absorber which is a hydrolyzate of a crosslinked polymer of an acrylic acid ester and a compound containing two or more vinyl groups in one molecule, and also contains at least one -COONa group.
  • the continuous skeleton when the polymer absorbent absorbs the body fluid, the continuous skeleton is elongated, and the continuous skeleton is easily expanded, so that the body fluid is easily taken into the continuous pores by the capillary phenomenon. As an absorber, it becomes easier to absorb body fluids.
  • FIG. 1 is a schematic perspective view of a pants-type disposable diaper 1.
  • FIG. 2A is a schematic plan view of the unfolded and stretched diaper 1 as viewed from the side surface of the skin.
  • FIG. 2B is a schematic cross-sectional view taken along the line XX in FIG. 2A.
  • FIG. 3 is a diagram illustrating a manufacturing process of the absorbent a.
  • FIG. 4 is an SEM photograph of the absorbent a at a magnification of 50 times.
  • FIG. 5 is an SEM photograph of the absorbent a at a magnification of 100 times.
  • FIG. 6 is an SEM photograph of the absorbent a at a magnification of 500 times.
  • FIG. 7 is an SEM photograph of the absorbent a at a magnification of 1000 times.
  • FIG. 8 is an SEM photograph of the absorbent a at a magnification of 1500 times.
  • FIG. 9 is a diagram showing each measurement result of the absorbent a.
  • FIG. 10 is a graph showing the absorption rate and the absorption amount test result of the absorbent A.
  • FIG. 11 is a graph showing the absorption rate and absorption amount test results of the highly absorbent polymer of the comparative example.
  • FIG. 12A is an SEM photograph of the fracture surface of the absorbent A.
  • FIG. 12B is a mapping diagram of the Na distribution of the same portion as that of FIG. 12A.
  • FIG. 13 is a graph showing the relationship between the amount of absorption and the time of the absorbent a and the absorbent b when the liquid to be absorbed is pure water.
  • An absorber for absorbing body fluid which has a polymer absorbent having a continuous skeleton and continuous pores, and the polymer absorbent is a (meth) acrylic acid ester and two in one molecule. It is a hydrolyzate of the crosslinked polymer of the above vinyl group-containing compound, and is an absorber characterized by containing at least one -COONa group.
  • the continuous skeleton is elongated, and the continuous pores are likely to expand as the continuous skeleton is elongated. Therefore, the continuous pores of the body fluid are caused by the capillary phenomenon. It becomes easier to take in the body fluid as an absorber.
  • the polymer absorbent is a monolith-like absorbent.
  • the monolith-like absorber when the monolith-like absorber absorbs the body fluid, it becomes easier to take in the body fluid into the penetrating hole that widens with the elongation of the continuous skeleton, and it becomes easier to absorb the body fluid as an absorber.
  • the first absorption weight in which the polymer absorbent per unit weight absorbs a NaCl aqueous solution having a concentration of 0.9 wt% and the polymer absorbent per unit weight have concentrations.
  • the second absorption weight for absorbing 0 to 2.0 wt% NaCl aqueous solution it is desirable that the first absorption weight is 0.5 to 1.9 times the second absorption weight.
  • a first polymer absorber that has absorbed a concentration of 0.9 wt% of a NaCl aqueous solution by the first absorption weight and a NaCl aqueous solution having a concentration of 0 to 2.0 wt% are absorbed by the second absorption weight.
  • the second polymer absorbent was dehydrated for 90 seconds at 150 G at 850 rpm using a centrifuge for a predetermined time, and then the concentration of 0.9 wt% absorbed by the first polymer absorbent was 0.9 wt%. It is desirable that the weight of the NaCl aqueous solution is 0.5 to 1.6 times the weight of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% absorbed by the second polymer absorbent.
  • the weight of the NaCl aqueous solution having a concentration of 0.9 wt% absorbed by the first polymer absorber after the dehydration is defined as the first water retention weight, and the weight after the dehydration is defined as the first water retention weight.
  • the weight of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% absorbed by the second polymer absorbent is defined as the second water retention weight, and the first absorption weight and the first water retention of the first polymer absorbent.
  • the value obtained by dividing the difference from the weight by the first absorption weight is 50 to 80%, and the difference between the second absorption weight and the second water retention weight of the second polymer absorbent is the above. It is desirable that the value divided by the second absorbed weight is 40 to 85%.
  • the polymer absorbent easily transfers the body fluid once absorbed to another substance, so that absorption and water separation can be repeated, and the body fluid can be removed from the polymer absorbent. After moving, it is possible to make the user less likely to feel wet.
  • the time for 2.0 g of the polymer absorbent to absorb 50 g of a 0.9 wt% NaCl aqueous solution by the vortex method is 1.0 to 10.0 seconds.
  • the polymer absorbent can absorb the liquid in a short time, so that the body fluid can be absorbed more quickly.
  • the absorption weight of the polymer absorbent for absorbing the CaCl2 aqueous solution having a concentration of 0.5 wt% is 13 times or more the weight of the polymer absorbent.
  • the absorber easily absorbs the body fluid even if the body fluid contains a large amount of divalent ions.
  • the concentration of the polymer absorbent is 0. It is desirable that the absorption amount of the 9.wt% NaCl aqueous solution is 15 ml or more.
  • the polymer absorber can quickly absorb a large amount of liquid even in the direction against gravity, so that the absorber can easily absorb the body fluid from various angles.
  • the lower end of 2.0 g of the polymer absorbent in such an absorber under a load of 600 gw is in contact with the water surface of a 0.9 wt% NaCl aqueous solution.
  • the amount of absorption of the aqueous NaCl solution having a concentration of 0.9 wt% by the polymer absorbent is 1.0 ml or more, and after 15 minutes, the amount of the aqueous solution of NaCl having a concentration of 0.9 wt% by the polymer absorbent is absorbed. , 5.0 ml or more is desirable.
  • the volume of the voids in the pores per unit volume of the polymer absorbent is 85% or more in such an absorber.
  • the capillary phenomenon makes it easier to take in the body fluid into the continuous pores, and makes it easier to absorb the body fluid as an absorber.
  • the polymer absorbent contains 0.1 to 30.0% of crosslinked polymerization residues.
  • the continuous skeleton when the body fluid is absorbed, the continuous skeleton is elongated, and as the continuous skeleton is elongated, the continuous pores can be easily expanded to be a polymer absorbent.
  • the average diameter of the continuous pores of such an absorber is 1 to 1000 ⁇ m.
  • the capillary phenomenon makes it easier to take in the body fluid into the continuous pores, and makes it easier to absorb the body fluid as an absorber.
  • the absorber has the polymer absorbent and a polymer compound having a higher water retention ratio than the polymer absorbent.
  • the polymer absorbent which easily absorbs the body fluid by the capillary phenomenon can absorb the body fluid, and the polymer compound can retain the body fluid. Therefore, as an absorber, the body fluid is quickly absorbed. And, it is possible to keep the body fluid in a water-retaining state.
  • the total ion exchange capacity of -COONa groups per unit weight of the polymer absorbent is 4.0 mg equivalent / g or more.
  • the polymer absorber is more likely to absorb body fluids than when the total ion exchange capacity of -COONa groups per unit weight is less than 4.0 mg equivalent / g, thus extending the continuous skeleton.
  • the continuous skeleton is elongated, the continuous pores are easily expanded, and the body fluid is easily taken into the continuous pores by the capillary phenomenon, so that the body fluid is easily absorbed as an absorber.
  • the article is an absorbent article having any of the above absorbers.
  • the continuous skeleton is elongated, and the continuous pores are easily expanded as the continuous skeleton is elongated. Therefore, the body fluid is caused by the capillary phenomenon. Can be easily taken into continuous pores, and can be made into an absorbent article that easily absorbs body fluids.
  • the absorbent articles using the absorbent body are not limited to pants-type disposable diapers, but also include absorbent articles such as tape-type disposable diapers, sanitary napkins, absorbent pads, disposable diapers for pets, and absorbent pads for pets. It can be used as an absorber. Disposable diapers, absorbent pads and the like can be used for both infants and adults.
  • the body fluid refers to a fluid discharged from living organisms including animals as well as humans. For example, sweat, urine, stool, menstrual blood, vaginal discharge, breast milk, blood, exudate and the like can be mentioned.
  • FIG. 1 is a schematic perspective view of a pants-type disposable diaper 1.
  • FIG. 2A is a schematic plan view of the unfolded and stretched diaper 1 as viewed from the side surface of the skin.
  • FIG. 2B is a schematic cross-sectional view taken along the line XX in FIG. 2A.
  • the "deployed state" means that the joints of the side portion 30a of the ventral member 30 and the side portion 40a of the dorsal member 40 on both sides of the diaper 1 are separated from each other and opened to expand the entire diaper 1 in a plane. It is in a state.
  • the “extended state” refers to a state in which the elastic member included in the diaper 1 is extended to the extent that the wrinkles of the diaper 1 become invisible. Specifically, it shows a state in which the dimensions of each member (for example, the ventral member 30 described later) constituting the diaper 1 are extended until the dimensions match or are close to the dimensions of the member alone.
  • the CC line in FIGS. 2A and 2B is the center line in the left-right direction. In FIG. 2B, the adhesive is omitted for convenience.
  • the pants-type diaper 1 has a vertical direction, a horizontal direction, and a front-rear direction, and the diaper 1 is formed with a waist circumference opening BH and a pair of leg circumference openings LH.
  • the vertical direction of the unfolded and extended diaper 1 in FIG. 2A is referred to as the "longitudinal direction", one side in the longitudinal direction is also referred to as the "ventral side", and the other side is also referred to as the "dorsal side”.
  • the ventral side of the wearer is the front side
  • the dorsal side of the wearer is the rear side.
  • the diaper 1 has a thickness direction as shown in FIG. 2B, and the side in the thickness direction that comes into contact with the wearer is the skin side, and the opposite side is the non-skin side.
  • the diaper 1 is a so-called three-piece type, and has an absorbent main body 10, a ventral member 30, and a dorsal member 40.
  • the ventral member 30 and the dorsal member 40 have a substantially rectangular shape in a plan view, and their longitudinal directions are along the left-right direction.
  • the ventral member 30 covers the wearer's ventral side
  • the dorsal member 40 covers the wearer's dorsal side.
  • the absorbent body 10 has a substantially rectangular shape in a plan view.
  • the ventral end 10ea and the dorsal end 10eb of the absorbent body 10 are overlapped with the skin side surface of the ventral member 30 and the dorsal member 40, respectively.
  • the unfolded and extended diaper 1 has a shape symmetrical with respect to the center line CC.
  • the non-skin side surface of the ventral end 10ea and the dorsal end 10eb of the absorbent body 10 and the skin side surface of the ventral member 30 and the dorsal member 40 are joined with an adhesive or the like (not shown), and the ventral member is joined.
  • the absorbent body 10 is folded in half so that the 30 and the dorsal member 40 face each other, and the left and right side portions 30a of the ventral member 30 and the left and right side portions 40a of the dorsal member 40 are side-welded portions.
  • the diaper 1 becomes a pants type.
  • the ventral member 30 and the dorsal member 40 are provided with skin-side sheets 31, 41 and non-skin-side sheets 32, 42 made of a flexible non-woven fabric or the like, and a plurality of thread rubbers 35, 45 that expand and contract in the left-right direction, respectively.
  • the plurality of rubber threads 35, 45 are arranged side by side with an interval in the vertical direction, and are fixed between the two sheets (31 and 32, 41 and 42) in a state of being extended in the horizontal direction. .. Therefore, the ventral member 30 and the dorsal member 40 can be expanded and contracted in the left-right direction to fit the wearer's waist circumference.
  • the skin side sheet 31, the thread rubber 35, and the non-skin side sheet 32 are stacked in order from the skin side in the thickness direction, and are joined to each other by an adhesive such as hot melt.
  • the skin side sheet 41, the thread rubber 45, and the non-skin side sheet 42 are stacked in order from the skin side in the thickness direction, and are joined to each other by an adhesive such as hot melt. ..
  • the skin side sheets 31, 41 and the non-skin side sheets 32, 42 are sheets made of non-woven fabric, respectively, and specifically, spunbonded non-woven fabric.
  • a non-woven fabric such as SMS (spun bond / melt blown / spun bond) non-woven fabric may be used.
  • a single fiber of polypropylene (PP), which is a thermoplastic resin is used as a constituent fiber of the non-woven fabric, but the present invention is not limited to this.
  • a single fiber of another thermoplastic resin such as polyethylene (PE) may be used, or a composite fiber having a sheath core structure such as PE and PP may be used.
  • all of the skin-side sheets 31, 41 and the non-skin-side sheets 32, 42 do not have to be non-woven fabrics, and only one of the skin-side sheets 31, 41 or the non-skin-side sheets 32, 42 is other than the non-woven fabric.
  • Other soft sheet materials may be used.
  • the absorbent main body 10 includes a top sheet 13, an absorber 11, and a back sheet 15, each of which is adhered with an adhesive such as hot melt.
  • the top sheet 13 may be a liquid permeable sheet, and examples thereof include hydrophilic air-through non-woven fabrics and spunbonded non-woven fabrics.
  • the back sheet 15 may be a liquid-impermeable sheet, and examples thereof include a polyethylene film, a polypropylene film, and a hydrophobic SMS non-woven fabric.
  • the top sheet 13 and the back sheet 15 have a size that covers the entire absorber 11.
  • the absorbent body 10 has leg gathers LG provided at the ends in the left-right direction and expands and contracts in the longitudinal direction, and three-dimensional gathers provided on the skin side of the absorber 11 as a leak-proof wall portion for preventing lateral leakage.
  • the leg gather LG and the three-dimensional gather LSG each include an elastic member 17 and an elastic member 18 that extend in the longitudinal direction (vertical direction).
  • the absorber 11 has a substantially rectangular shape in a plan view and includes an absorbent core 11c that absorbs a liquid.
  • the absorbent core 11c is formed by wrapping a polymer absorbent (absorbent A) and a highly absorbent polymer (so-called SAP) with a tissue or the like to form a substantially hourglass shape.
  • SAP highly absorbent polymer
  • the polymer absorbent (absorbent A) and the highly absorbent polymer (SAP) for example, granular ones can be used, and a sieve is used so that the particles each have a particle size within a predetermined range. Is preferable.
  • the particulate polymer absorbent (absorbent A) will be described, but the present invention is not limited to this.
  • the polymer absorbent (absorbent A) used for an absorbent article such as diaper 1 can be appropriately used depending on the state of use, such as particulate, fine particle, block, sheet, and thread.
  • the polymer absorbent is a hydrolyzate of a (meth) acrylic acid ester and a crosslinked polymer of a compound having two or more vinyl groups in one molecule, and is a polymer compound having at least -COONa group.
  • the (meth) acrylic acid ester means an acrylic acid ester or a methacrylic acid ester.
  • the polymer absorbent is a monolithic organic porous body having at least one -COONa group in one molecule. In addition, it may have a —COOH group. -COONa groups are distributed substantially uniformly in the skeleton of the porous body.
  • “Monolith-like” refers to a porous body having penetrating pores and a skeleton and having a network-like co-continuous structure.
  • the polymer absorbent which is a hydrolyzate of a crosslinked polymer of (meth) acrylic acid ester and divinylbenzene, has a continuous skeleton formed by an organic polymer having at least a -COONa group, and absorbs the liquid to be absorbed between the skeletons. It has a communication hole (continuous hole) that serves as a field. Further, since the hydrolysis treatment uses the -COOR group (carboxylic acid ester group) of the crosslinked polymer as the -COONa group or the -COOH group (FIG. 3), the polymer absorbent has a -COOR group. May be. The presence of -COOH group and -COONa group in the organic polymer forming a continuous skeleton can be confirmed by analysis by infrared spectrophotometric method or a method of quantifying weakly acidic ion exchange groups.
  • FIG. 3 is a diagram illustrating the manufacturing process of the absorbent A.
  • the upper figure shows the constituent raw materials of the polymerization
  • the middle figure shows the monolith A as a crosslinked polymer of (meth) acrylic acid ester and divinylbenzene
  • the lower figure shows the monolith A in the middle figure.
  • the absorbent A which has been decomposed and dried is shown.
  • a hydrolyzate of a crosslinked polymer of (meth) acrylic acid ester and divinylbenzene (hereinafter, also referred to as “absorbent A”) as an example of a polymer absorbent will be described.
  • the polymer absorbent is not limited to the absorbent A, and may be a hydrolyzate of a (meth) acrylic acid ester and a crosslinked polymer of a compound containing two or more vinyl groups in one molecule.
  • “monolith A” is an organic porous body composed of a crosslinked polymer of (meth) acrylic acid ester and divinylbenzene before being hydrolyzed, and is also referred to as "monolith-like organic porous body". ..
  • Absorbent A is a hydrolyzate of a crosslinked polymer (monolith A) of (meth) acrylic acid ester and divinylbenzene after being hydrolyzed and dried.
  • the absorbent A refers to a dry state.
  • Absorbent A has a continuous skeleton and continuous pores.
  • the absorbent A which is an organic polymer forming a continuous skeleton, is obtained by cross-linking polymerization using a (meth) acrylic acid ester which is a polymerization monomer and divinylbenzene which is a cross-linking monomer. It is obtained by hydrolyzing the crosslinked polymer (monomer A).
  • the organic polymer forming a continuous skeleton has ethylene group polymerization residues (hereinafter, also referred to as “constituent unit X”) and crosslinked polymerization residues of divinylbenzene (hereinafter, also referred to as “constituent unit Y”) as constituent units. .) And.
  • the polymerization residue (constituent unit X) of the ethylene group in the organic polymer forming the continuous skeleton has a -COONa group or -COOH group and -COONa group formed by hydrolysis of the carboxylic acid ester group.
  • the polymerization monomer is a (meth) acrylic acid ester
  • the polymerization residue (constituent unit X) of the ethylene group has a —COONa group, a —COOH group, and an ester group.
  • the production of the absorbent a using butyl methacrylate as a polymerization monomer and divinylbenzene as a cross-linking monomer will be described later.
  • the ratio of the crosslinked polymerization residue (constituent unit Y) of divinylbenzene in the organic polymer forming the continuous skeleton is 0.1 to 30 mol%, preferably 0.1 to 30 mol% with respect to all the structural units. It is 20 mol%.
  • the ratio of the cross-linked polymerization residue (constituent unit Y) of divinylbenzene to the organic polymer forming the continuous skeleton is the total structural unit.
  • the ratio of the crosslinked polymerized residue of divinylbenzene in the organic polymer forming the continuous skeleton is less than the above range, the strength of the absorbent A decreases, and if it exceeds the above range, the amount of the liquid to be absorbed is absorbed. descend.
  • the ratio of the structural unit Y to the total number of moles of the structural unit X and the structural unit Y in the organic polymer forming the continuous skeleton is preferably 0.1 to 30 mol%, particularly preferably 0.5 to. It is 20 mol%.
  • the ratio of the structural unit Y to the total number of moles of the structural unit X and the structural unit Y in the organic polymer forming the continuous skeleton is preferable. Is 0.1 to 10 mol%, particularly preferably 0.3 to 8 mol%.
  • the strength of the absorbent A decreases, and if it exceeds the above range, it is absorbed.
  • the amount of the target liquid absorbed decreases.
  • the organic polymer forming the continuous skeleton may consist only of the structural unit X and the structural unit Y, or in addition to the structural unit X and the structural unit Y, the structural unit X and the constitution. It may have a structural unit other than the unit Y, that is, a polymer residue of a monomer other than (meth) acrylic acid ester and divinylbenzene.
  • the structural units other than the structural unit X and the structural unit Y include styrene, ⁇ -methylstyrene, vinyltoluene, vinylbenzyl chloride, glycidyl (meth) acrylate, isobutene, butadiene, isoprene, chloroprene, vinyl chloride, vinyl bromide, and the like.
  • Polymerization residues of monomers such as vinylidene chloride, tetrafluoroethylene, (meth) acrylonitrile, vinyl acetate, ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, and trimethylpropantri (meth) acrylate can be mentioned. ..
  • the ratio of the structural units other than the structural unit X and the structural unit Y in the organic polymer forming the continuous skeleton is 0 to 50 mol%, preferably 0 to 30 mol% with respect to all the structural units.
  • the ratio of the structural units other than the structural unit X and the structural unit Y in the organic polymer forming the continuous skeleton is relative to the total structural units. , 0 to 50 mol%, preferably 0 to 30 mol%.
  • the thickness of the continuous skeleton of the absorbent A is 0.1 to 100 ⁇ m. If the thickness of the continuous skeleton of the absorbent A is less than 0.1 ⁇ m, the space (vacancy) for taking in the porous water is likely to be crushed during absorption, and the absorption amount may decrease. On the other hand, if the thickness of the continuous skeleton is thicker than 100 ⁇ m, the absorption of the liquid may be delayed. Since the pore structure of the continuous skeleton of the absorbent A is an open cell structure, the thickness of the continuous skeleton is measured by using the skeleton cross section appearing on the test piece for electron microscope measurement as the evaluation point of the thickness.
  • the skeleton is often polygonal because it is formed at intervals between water (water droplets) that are removed by dehydration / drying treatment after hydrolysis, which will be described later. Therefore, the thickness of the skeleton is the average value of the diameters of the circles circumscribing the polygonal cross section. In rare cases, there may be a small hole in the polygon, in which case the circumscribed circle of the cross section of the polygon surrounding the small hole is measured.
  • Absorbent A also has an average diameter of continuous pores of 1 to 1000 ⁇ m. If the average diameter of the continuous pores of the absorbent A is less than 1 ⁇ m, the space (vacancy) for taking in the porous water is likely to be crushed during absorption, and the absorption rate may decrease. On the other hand, if the average diameter of the continuous pores is thicker than 1000 ⁇ m, the absorption rate of the liquid may decrease.
  • the average diameter of the continuous pores of the absorbent A can be measured by the mercury intrusion method, and is the maximum value of the pore distribution curve obtained by the mercury intrusion method. As a sample for measuring the average diameter of continuous pores, a sample dried at 50 ° C. for 18 hours or more by a vacuum dryer is used regardless of the ionic form of the absorbent A. The final ultimate pressure is 0TORR.
  • the absorbent A has a structure in which bubble-like macropores overlap each other (see FIGS. 4 to 8), and the overlapping portions have an average diameter of 1 to 1000 ⁇ m, preferably 10 to 200 ⁇ m, and particularly preferably 20 to 100 ⁇ m. It has an open cell structure that is an open cell structure (continuous macropore structure) that serves as a common opening (mesopore). Most of them have an open pore structure.
  • the overlap of macropores is 1 to 12 for one macropore, and 3 to 10 for most macropores.
  • FIG. 4 is an SEM photograph of the absorbent a at a magnification of 50 times.
  • FIG. 5 is an SEM photograph of the absorbent a at a magnification of 100 times.
  • FIG. 6 is an SEM photograph of the absorbent a at a magnification of 500 times.
  • FIG. 7 is an SEM photograph of the absorbent a at a magnification of 1000 times.
  • FIG. 8 is an SEM photograph of the absorbent a at a magnification of 1500 times.
  • the absorbent a is an example of the absorbent A in which butyl methacrylate is used as a polymerization monomer and divinylbenzene is used as a cross-linked monomer, and the absorbents a in FIGS. 4 to 8 are cubes of 2 mm square, respectively.
  • FIGS. 4 to 8 show scanning electron microscope (SEM) photographs of a morphological example of the absorbent a, which is a specific example of the absorbent A.
  • the absorbent a shown in FIGS. 4 to 8 has a large number of bubbles. It has a shaped macropore, and the bubble-shaped macropores overlap each other, and this overlapping portion serves as a common opening (mesopore) to form an open cell structure. Most of them have an open pore structure. If the average diameter of the mesopore in the dry state is less than the above range, the absorption rate of the liquid to be absorbed becomes too slow, and if it exceeds the above range, the absorbent a (absorbent A) becomes brittle.
  • the absorbent A has such an open cell structure, a macropore group and a mesopore group can be uniformly formed, and compared with a particle-aggregated porous body as described in Japanese Patent Application Laid-Open No. 8-252579. , The pore volume and specific surface area can be significantly increased.
  • the total pore volume of the pores (vacancy) of the absorbent A is preferably 1 to 50 ml / g, preferably 2 to 30 ml / g.
  • the total pore volume of the absorbent A is less than 0.5 ml / g, the space (vacancy) for taking in the porous water is easily crushed at the time of absorption, and the absorption amount and the absorption rate are lowered. There is a fear.
  • the strength of the absorbent A decreases.
  • the total pore volume can be measured by the mercury press-fitting method. As the sample for measuring the total pore volume, the absorbent A which has been dried in a vacuum dryer at a temperature of 50 ° C. for 18 hours or more is used regardless of the ionic form of the absorbent A.
  • the final ultimate pressure is 0TORR.
  • body fluid a liquid such as a body fluid
  • the weight of the absorbed body fluid is substantially proportional to the amount of body fluid, the weight of the body fluid is also referred to as "the amount of body fluid” below.
  • the continuous pores included in the absorbent A are pores in which a plurality of pores (vacancy) communicate with each other, and many pores are provided from the appearance. You can see that. Due to the capillary phenomenon, a certain amount of body fluid enters the large number of pores, and the absorbent A absorbs the body fluid. A part of the fixed amount of body fluid absorbed by the absorbent A is absorbed by the continuous skeleton by osmotic pressure, and the continuous skeleton is elongated. Of the fixed amount of body fluid absorbed by the absorbent A, the body fluid not absorbed by the continuous skeleton is absorbed in a state of being retained in the pores.
  • Absorbent A has the property of extending the continuous skeleton when it absorbs a liquid.
  • the extension of this continuous skeleton extends in almost all directions.
  • the size of each pore also increases.
  • the absorbent A which has grown by absorbing a certain amount of body fluid, can further absorb a predetermined amount of body fluid by the capillary phenomenon. Further, since the body fluid is absorbed by the capillary phenomenon, the absorbent A can quickly absorb the body fluid. Regarding the body fluid absorbed by the absorbent A, there are more body fluids retained in the pores than those absorbed by the continuous skeleton.
  • the porosity which is the ratio of the volume of the pores (total pore volume) The larger the volume of the voids in the pores relative to the volume of the absorbent A), the more body fluid can be absorbed.
  • the porosity is preferably 85% or more.
  • the porosity of the absorbent a is determined.
  • the specific surface area of the absorbent a obtained by the mercury injection method is 400 m 2 / g, and the pore volume is 15.5 ml / g.
  • the pore volume of 15.5 ml is the volume of the pores in 1 g of the absorbent A.
  • the specific gravity of the absorbent A is 1 g / ml
  • the volume occupied in 1 g of the absorbent A is 15.5 ml for the pore volume and 1 ml for the absorbent A, respectively.
  • the total volume (volume) of 1 g of the absorbent A is 15.5 + 1 [ml]
  • the ratio of the pore volume is the porosity.
  • the porosity is 15.5 / (15.5 + 1) ⁇ 100 ⁇ 94%.
  • This absorbent A (absorbent a) has little change in the amount absorbed depending on the composition of the body fluid.
  • the weight by which the absorbent A per unit weight absorbs the NaCl aqueous solution having a concentration of 0.9 wt% (first absorption weight) is the weight at which the NaCl aqueous solution having a concentration of 0 to 2.0 wt% is absorbed (second absorption weight). It is preferably 0.5 to 1.9 times that of.
  • the NaCl aqueous solution having a concentration of 0.9 wt% is a saline solution having a concentration similar to that of a so-called physiological saline solution, which is said to have a composition close to that of a body fluid.
  • the absorber 11 provided with the absorbent A having a first absorption weight of 0.5 to 1.9 times the second absorption weight is less likely to be affected by the concentration of electrolyte ions in the body fluid in terms of the amount of body fluid absorbed.
  • the absorber 11 can more reliably absorb the body fluid.
  • the composition of body fluids which are liquids discharged from living organisms such as sweat, urine, stool, menstrual blood, cages, breast milk, blood, and exudate, changes not only depending on the type of body fluid, but also on individual differences and health conditions.
  • concentration of electrolytes in the urine component of living organisms is different between humans and animals in terms of the concentration of ions such as Na + , K + , and Ca 2+ , and also in their health condition.
  • Highly absorbent polymers which are widely used in absorbent articles, absorb body fluids by the principle of osmotic pressure, so that as the number of electrolyte ions increases (as the electrolyte concentration increases), the body fluids are absorbed.
  • the absorbent A (absorbent a) depends on the composition of the body fluid, particularly the electrolyte concentration, because the amount absorbed by the body fluid taken into the pores by the capillary phenomenon is larger than the amount absorbed by the body fluid based on the principle of osmotic pressure. The amount of absorption is unlikely to decrease.
  • FIG. 9 is a diagram showing each measurement result of the absorbent a.
  • Water absorption weight” and “water absorption rate” in FIG. 9 are synonymous with “absorption weight” and “absorption rate”.
  • the absorbent a having a particle size of 500 to 850 ⁇ m and the absorbent a having a particle size of 250 ⁇ m or less are measured a plurality of times.
  • the results of SAP (Aquakeep SA60S manufactured by Sumitomo Seika Chemical Co., Ltd.), which is a highly absorbent polymer, are also shown.
  • the absorption weight for absorbing the NaCl aqueous solution of each concentration can be measured by the following method. First, a container containing 1000 ml of each is prepared for each concentration of NaCl aqueous solution. Next, two nylon nets (255 mesh nylon net NBC Meshtec Inc. N-No. 255HD) cut to 200 mm x 200 mm are overlapped, and 1.0 g of absorbent A is sandwiched between the nylon nets. In this state, heat seal on all sides to make a bag containing the sample.
  • nylon nets 255 mesh nylon net NBC Meshtec Inc. N-No. 255HD
  • the bag containing the sample is immersed so as to touch the bottom surface of the container containing the NaCl aqueous solution of each concentration, and the upper side of the bag is fixed to the edge of the container with washing scissors and left for 1 hour. Then, the bag is pulled up from the aqueous NaCl solution, and draining is performed for 15 minutes with the portion 5 mm from the upper end of the bag and 50 mm from both ends sandwiched between washing scissors. Finally, the weight of the bag containing the absorbent A is measured, and the weight of the bag alone and 1.0 g (the weight of the absorbent A before absorbing the NaCl aqueous solution) are reduced from the measurement result to obtain the absorbent. The weight of the aqueous NaCl solution absorbed by A can be obtained.
  • the weight (first) of an aqueous NaCl solution having a concentration of 0.9 wt% absorbed by 1.0 g of the absorbent a (first polymer absorbent, hereinafter also referred to as “first absorbent”).
  • Absorption weight) is 37.71 to 62.09 g
  • concentration of 1.0 g of the absorbent a (second polymer absorbent, hereinafter also referred to as “second absorbent”) is 0 to 2.
  • the weight of the 0 wt% NaCl aqueous solution (second absorption weight) is 34.40 to 68.61 g.
  • the lower limit of the ratio of the first absorbed weight to the second absorbed weight is (minimum value of the first absorbed weight / maximum value of the second absorbed weight), and the upper limit is (first absorbed weight).
  • the numerical value is calculated by using two significant figures after the decimal point.
  • the weight of the NaCl aqueous solution having a concentration of 0.9 wt% absorbed by 1.0 g of SAP is 60.08 to 63.69 g, which is 1.0 g.
  • the weight of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% absorbed by the SAP (second SAP) (second SAP absorption weight) is 45.74 to 311.12 g.
  • SAP the higher the concentration of the NaCl aqueous solution, the lower the absorption amount of the NaCl aqueous solution.
  • the absorbent A (absorbent a) enables absorption equal to or greater than that of SAP, and the absorption amount of the NaCl aqueous solution of the absorbent A does not change much depending on the concentration. Therefore, the absorber 11 using the absorbent A secures the same amount of body fluid as SAP, and reduces the possibility that the absorption capacity is lowered due to the concentration of electrolyte ions like SAP. Can be done.
  • the change in the amount of the aqueous solution (water retention amount) held in the absorbent A is unlikely to change depending on the electrolyte ion concentration. Since the change in the amount of water retained in the aqueous solution due to the electrolyte ion concentration is small, it is possible to reduce the possibility that the amount of body fluid retained in the absorbent A will change depending on the composition of the body fluid.
  • the first absorbent (first polymer absorbent) that absorbed the first absorption amount of the NaCl aqueous solution having a concentration of 0.9 wt% and the concentration of 0 to 2.0 wt% by the same method as the above-mentioned measurement of the weight of the NaCl aqueous solution.
  • a second absorbent (second polymer absorbent) that has absorbed the NaCl aqueous solution by the second absorption amount is prepared.
  • the first absorbent and the second absorbent are dehydrated for 90 seconds at 150 G and 850 rpm using a centrifuge for each predetermined time.
  • the weight of the NaCl aqueous solution absorbed by the first absorbent and the second absorbent is determined.
  • the weight is 0.5 to 1.6 times the weight of the NaCl aqueous solution (second water retention weight) having a concentration of 0 to 2.0 wt% absorbed by the second absorbent.
  • the absorbent A which has a first water retention weight of 0.5 to 1.6 times the second water retention weight, easily moves the body fluid once absorbed to the outside of the absorbent A and allows the body fluid to be absorbed by another substance. Become.
  • the weight (first water retention weight) of the NaCl aqueous solution having a concentration of 0.9 wt% in a state where 1.0 g of the absorbent a retains water is 13.59 to 17.12 g, which is 1.0 g.
  • the weight (second water retention weight) of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% in the state where the absorbent a is retained is 11.46 to 19.47 g. From this result, it can be seen that the difference in weight of the NaCl aqueous solution retained by the absorbent a due to the difference in the concentration of the NaCl aqueous solution is small.
  • the lower limit of the ratio of the first water retention weight to the second water retention weight is (minimum value of the first water retention weight / maximum value of the second water retention weight), and the upper limit is (first water retention weight).
  • the numerical value is calculated by using two significant figures after the decimal point.
  • the water retention weight of the NaCl aqueous solution at each concentration is smaller for the absorbent a than for SAP as a whole.
  • the weight of an aqueous NaCl solution having a concentration of 0.9 wt% (first SAP water retention weight) in a state where 1.0 g of SAP (first SAP) retains water is 39.98 to 40.41 g, which is 1.0 g.
  • the weight (second SAP water retention weight) of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% in the state where the SAP (second SAP) retains water is 29.31 to 286.11 g.
  • the lower limit of the ratio of the first SAP water retention to the second SAP water retention is (minimum value of the first SAP water retention / maximum value of the second SAP water retention), and the upper limit is (maximum value of the first SAP water retention). / The minimum value of the second SAP water retention amount). Therefore, the ratio of the first SAP water retention amount to the second SAP water retention amount is (39.98 / 286.11) to (40.41 / 9.31) ⁇ 0.14 to 1.38 times.
  • the difference between the above-mentioned absorption weight and water retention weight is the weight of the liquid (hereinafter, also referred to as "water separation weight") that releases (separates) the liquid once absorbed by the absorbent A or SAP to the outside.
  • the value obtained by dividing the water separation weight by the absorption weight is the ratio of the water separation weight to the amount of the liquid once absorbed, and is also referred to as the water separation ratio.
  • the value obtained by dividing the difference between the first absorption weight and the first water retention weight by the first absorption weight of the first absorbent is preferably 50 to 80%.
  • the value obtained by dividing the difference between the second absorption weight and the second water retention weight by the second absorption weight is preferably 40 to 85%.
  • the absorbent A which has the above-mentioned numerical water separation rate, easily moves the body fluid once absorbed to another substance. That is, it is easy to repeatedly absorb and separate water. By moving the body fluid once absorbed to the outside of the absorbent A, it becomes easy to reduce the wet feeling given to the wearer by the absorber 11 provided with the absorbent A.
  • the lower limit of the first water separation rate which is the value obtained by dividing the water separation weight of the NaCl aqueous solution having a concentration of 0.9 wt% by the first absorbent by the first absorption weight, is ⁇ (the minimum value of the first absorption weight).
  • the upper limit of the first water separation rate is ⁇ (Maximum value of first absorption weight-Minimum value of first water retention weight) / Maximum value of first absorbed weight ⁇ ⁇ 100.
  • the lower limit of the second water separation rate which is the value obtained by dividing the water separation weight of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% by the second absorbent by the second absorption weight, is ⁇ (minimum value of the second absorption weight-second).
  • the upper limit of the second water separation rate is ⁇ (minimum value of second absorption weight-maximum value of second water retention weight) / second Minimum value of absorbed weight ⁇ ⁇ 100.
  • the first water separation rate of the absorbent a is ⁇ (37.71-17.12) /37.71 ⁇ ⁇ 100 to ⁇ (62.09-13.59) /62.09 ⁇ . ⁇ 100 ⁇ 54.60 to 78.11.
  • the second water separation rate of the absorbent a is ⁇ (34.40-19.47) /34.40 ⁇ ⁇ 100 to ⁇ (68.61-11.46) /68.61 ⁇ ⁇ 100 ⁇ 43.40 to It becomes 83.30.
  • the numerical value is calculated by using two significant figures after the decimal point.
  • the absorbent A absorbs 50 g of a 0.9 wt% NaCl aqueous solution by the vortex method for 1.0 to 10.0 seconds. Since the absorbent A capable of absorbing the aqueous NaCl solution within this time can absorb the liquid in a short time, the absorber 11 provided with the absorbent A can quickly absorb the body fluid.
  • the absorption time is measured by the vortex method as follows.
  • a rotor having a size of 30 ⁇ 8 mm is placed in a container, and a 50 g concentration of 0.9 wt% NaCl aqueous solution adjusted to a liquid temperature of 25 ° C ⁇ 1 ° C is placed therein.
  • Adjust the rotor to a rotation speed of 600 ⁇ 30 rpm with a magnetic stirrer (MITAMURA RIKEN KOGYO INC. MAGMIX STIRRER (AC100W)) and stir the aqueous NaCl solution. 2.00 g of the absorbent A is charged into the stirring container, and the time measurement is started at the same time as the charging.
  • the flattening of the solution surface is determined by observing the disappearance of the light reflected on the liquid surface of the vortex, assuming that the slope of the violently rotating liquid vortex approaches a flat surface.
  • the time for 2.0 g of the absorbent a to absorb 50 g of a 0.9 wt% NaCl aqueous solution is 1.69 to 1.93 seconds.
  • the time for absorbing the aqueous solution of NaCl having a lower concentration of 0.3 wt% is 1.56 to 2.01 seconds, and the concentration of 2.0 wt% is higher.
  • the time for 2.0 g of the absorbent a to absorb 50 g of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% is 1.34. It is ⁇ 2.29 seconds, and it can be seen that the change in absorption time depending on the concentration of the NaCl aqueous solution is small.
  • the absorber 11 of the absorbent article such as the diaper 1 has a higher water retention ratio than the absorbent A together with the absorbent A. It is more preferable to include a polymer compound.
  • the polymer compound having a higher water retention ratio than the absorbent A include so-called SAP such as sodium polyacrylate. Since SAP has high water retention and low water release, it can continue to retain the body fluid once absorbed. However, the absorption rate is slow (see FIG. 9), and it takes time to absorb the body fluid.
  • the absorber 11 since the absorber 11 is provided with the absorbent A and SAP, when the body fluid comes into contact with the absorber 11, the absorbent A having a high absorption rate first absorbs the body fluid. Then, the absorbent A having a high water separation rate releases the body fluid into the absorber 11. The body fluid is retained in the SAP as the SAP absorbs the released body fluid over time. As a result, the absorber 11 moves the body fluid once absorbed by the absorbent A to the SAP so that the amount of the body fluid retained in the absorbent A is small, so that the body fluid remains on the surface of the absorber 11. It reduces the risk of getting wet and reduces the feeling of wetness that the wearer feels. Further, as the absorber 11, the excrement is easily kept in the internal SAP, so that the possibility of the excrement leaking from the absorbent article such as the diaper 1 can be reduced.
  • absorption of the 0.9 wt% NaCl aqueous solution by the absorbent A after 1 minute has passed in a state where the lower end of 1.0 g of the absorbent A is in contact with the water surface of the 0.9 wt% NaCl aqueous solution.
  • the amount is preferably 15 ml or more.
  • the state in which the lower end portion of the absorbent A is in contact with the water surface of the NaCl aqueous solution is a state in which the absorbent A absorbs the NaCl aqueous solution in the direction against gravity.
  • the absorbent A which can absorb 15 ml or more of a 0.9 wt% NaCl aqueous solution in a time of 1 minute, enables quick absorption of a larger amount of the NaCl aqueous solution.
  • the absorber 11 including the agent A can absorb the body fluid from various angles.
  • the amount of the aqueous NaCl solution having a concentration of 0.9 wt% absorbed by the absorbent a after 1 minute is 20.2 to 26.5 ml.
  • the absorbent a can be well absorbed in the direction against gravity.
  • the amount of the 0.9 wt% NaCl aqueous solution absorbed after 1 minute is 14.0 to 18.0 ml. From this result, it can be seen that the absorbent A can absorb the body fluid more quickly than the SAP even in the direction against gravity.
  • the concentration absorbed by the absorbent A after 2 minutes has passed in a state where the lower end of 2.0 g of the absorbent A under a load of 600 gw is in contact with the water surface of the NaCl aqueous solution having a concentration of 0.9 wt%. More preferably, the 0.9 wt% NaCl aqueous solution is 1.0 ml or more, and the 0.9 wt% NaCl aqueous solution absorbed by the absorbent A after 15 minutes is 5.0 ml or more.
  • the absorber 11 once absorbed the excrement may be crushed in the thickness direction depending on the weight of the wearer, or crushed in the left-right direction by both legs of the wearer. To do.
  • the absorbent A can absorb the NaCl aqueous solution, and can also absorb the NaCl aqueous solution in the direction against gravity.
  • the body 11 can absorb the body fluid from various angles even when a load is applied to the absorber 11 (absorbent A).
  • the absorbent A As shown in FIG. 9, with respect to the absorbent a, the amount of the 0.9 wt% NaCl aqueous solution absorbed by 2.0 g of the absorbent A after 2 minutes was 2.6 to 5.6 ml, and 15 minutes had passed.
  • the concentration of 0.9 wt% NaCl aqueous solution absorbed by 2.0 g of SAP after 2 minutes was 0.8 to 1.0 ml, and the concentration of 0.9 wt% absorbed by the absorbent A after 15 minutes.
  • % NaCl aqueous solution is 4.0 ml. From this result, it can be seen that the absorbent A has better absorbency than SAP even in the state of being pressurized and in the direction against gravity.
  • the absorbent A per unit weight absorbs the CaCl 2 aqueous solution having a concentration of 0.5 wt% at least 13 times the weight of the absorbent A. Even in an aqueous solution of Ca2 + having more electrolyte ions than Na +, a solution 13 times or more the weight of the absorbent A can be absorbed. Therefore, the absorber 11 provided with the absorbent A has a body fluid composition. Regardless, it is possible to easily absorb body fluids.
  • FIG. 9 shows the weight at which 1 g of the absorbent a absorbed the CaCl 2 aqueous solution having a concentration of 0.5 wt%.
  • the absorption weight of the CaCl 2 aqueous solution is measured by the same method as the measurement of the weight of the NaCl aqueous solution.
  • the measurement result of the absorption weight for absorbing the CaCl 2 aqueous solution having a concentration of 0.5 wt% of the absorbent a is 16.29 to 27.69 g, and 1 g of the absorbent a has a concentration of 0.5 wt%.
  • % CaCl 2 aqueous solution absorbs 16.29 times or more the weight of the absorbent a.
  • the absorption weight of a CaCl 2 aqueous solution having a concentration of 0.5 wt% with 1 g of SAP is 6.71 to 7.43 g. Comparing the weight of 1 g of the absorbent a absorbing the 0.5 wt% CaCl 2 aqueous solution with the weight of 1 g of SAP absorbing the 0.5 wt% CaCl 2 aqueous solution, the absorbent a clearly absorbs. The weight is heavier. Further, the weight of 1 g of SAP absorbed by the CaCl 2 aqueous solution having a concentration of 0.5 wt% is less than the weight of 1 g of SAP absorbed by the NaCl aqueous solution having a concentration of 0.9 wt%.
  • the absorption amount of SAP decreases as the number of electrolyte ions increases, whereas the absorption amount of the absorbent a decreases due to the number of electrolyte ions, unlike SAP. Therefore, by using the absorbent a (absorbent A), it is possible to reduce the risk that the amount of absorption will decrease depending on the composition of the body fluid.
  • FIG. 10 is a graph showing the absorption rate and the absorption amount test result of the absorbent A.
  • FIG. 11 is a graph showing the absorption rate and absorption amount test results of the highly absorbent polymer of the comparative example.
  • the liquid to be absorbed was tested with pure water and a 0.9% sodium chloride aqueous solution, and the immersion time was 5 to reach the absorption amount of 90% of the saturated absorption amount in both cases. It was within seconds. Further, the absorption amount test of the absorbent A was carried out using 0.9% sodium chloride aqueous solution, 4% NaOH aqueous solution, 35% hydrochloric acid and 29% ammonia water as test water.
  • the absorption amount of 0.9% sodium chloride aqueous solution was 67 g / g-resin
  • the absorption amount of 4% NaOH aqueous solution was 78 g / g-resin
  • the absorption amount of 35% hydrochloric acid was 28 g / g-resin
  • 29% ammonia The amount of water absorbed was 105 g / g-resin.
  • a sample tube is a tube having a length of 100 mm and an inner diameter of 10 mm in which one end is sealed with a non-woven fabric and a dry absorbent A is put therein.
  • the weight of the tube before and after putting the absorbent A is measured, and the weight of the absorbent A in the tube is calculated in advance.
  • the tube is pulled up from the solution after a predetermined time has elapsed with the non-woven fabric side of the sample tube immersed in the solution to be absorbed having a known concentration. Then, after holding for 1 minute, the weight of the tube is measured. This immersion and measurement are repeated until there is no weight change.
  • the amount of absorption when the weight change disappears is defined as the saturated absorption amount.
  • Absorption test method Perform according to the JIS method.
  • a tea bag containing the absorbent A is used as a sample, and the absorption amount of the absorption target liquid is determined from the weights before and after the absorption before and after the sample is immersed in the absorption target liquid for 24 hours.
  • the absorption amount of the 0.9% sodium chloride aqueous solution was 52 g / g-resin, the absorption amount of the 4% NaOH aqueous solution was unmeasurable because it was dissolved during immersion, and the absorption amount of 35% hydrochloric acid was 2 g. It was / g-resin, and the absorption amount of 29% aqueous ammonia was 128 g / g-resin.
  • the absorbent A can also be used as a monolith ion exchanger, and the absorbent A is also referred to as a "monolith-like organic porous ion exchanger".
  • the total ion exchange capacity of the -COONa group and the -COOH group per unit weight of the absorbent A is 5 mg equivalent / g or more, preferably 6 mg equivalent / g or more. If the total ion exchange capacity of the -COOH group and the -COONa group in the dry state of the monolith ion exchanger is less than the above range, the absorption amount of the liquid to be absorbed decreases and the absorption rate also slows down.
  • the upper limit of the total ion exchange capacity of the -COOH group and the -COONa group in the dry state of the monolith ion exchanger is not particularly limited, but is, for example, 14.0 mg equivalent / g or less, or 13.0 mg equivalent /. g or less can be mentioned.
  • the total ion exchange capacity of -COONa group and -COOH group per unit weight of the absorbent a using butyl methacrylate as a polymerization monomer and divinylbenzene as a cross-linking monomer is 4.0 mg equivalent / g or more, preferably 6 mg equivalent / g. It is g or more.
  • the upper limit of the total ion exchange capacity of the -COOH group and the -COONa group in the dry state of the monolith ion exchanger of the absorbent a is not particularly limited, but is, for example, 11 mg equivalent / g or less, or 14 mg equivalent /. g or less can be mentioned. It is desirable that the total ion exchange capacity of the ⁇ COONa group per unit weight of the absorbent A is 4.0 mg equivalent / g or more. By using an absorbent A having a total ion exchange capacity of ⁇ COONa groups of 4.0 mg equivalent / g or more per unit weight, the total ion exchange capacity of ⁇ COONa groups per unit weight is 4.0 mg equivalent / g.
  • the polymer absorber absorbs the body fluid more easily than when the amount is less, the continuous skeleton is more likely to be elongated, and the continuous skeleton is more likely to expand as the continuous skeleton is elongated. By facilitating uptake, it becomes easier to absorb body fluid as an absorber.
  • the total ion exchange capacity of -COOH group and -COONa group is defined as-when the monolith ion exchanger of the present invention has only -COOH group among -COOH group and -COONa group. It refers to the ion exchange capacity of the COOH group, and when the monolith ion exchanger of the present invention has only the -COONa group among the -COOH group and the -COONa group, it refers to the ion exchange capacity of the -COONa group.
  • the monolith ion exchanger of the present invention When the monolith ion exchanger of the present invention has both -COOH group and -COONa group among -COOH group and -COONa group, it means the total ion exchange capacity of -COOH group and -COONa group.
  • the total ion exchange capacity of -COOH groups and -COONa groups per weight of the monolith ion exchanger in the dry state was set to all -COOH groups by using a sufficient amount of acid for the ion exchange groups of the monolith ion exchanger. It is measured by quantifying the amount of -COOH groups by neutralization titration using a sample, recovering the entire amount of the monolith ion exchanger used at this time, and determining the value of dry weight. Further, the total ion exchange capacity of -COONa groups per unit weight can be obtained from the amount of acid added to convert all the ion exchange groups of the monolith ion exchanger into -COOH groups.
  • the introduced ion exchange groups are uniformly distributed not only on the surface of the monolith but also inside the skeleton of the monolith.
  • the term "uniformly distributed ion-exchange groups" as used herein means that the distribution of ion-exchange groups is uniformly distributed on the surface and inside the skeleton on the order of at least ⁇ m. The distribution of ion-exchange groups can be easily confirmed by using EPMA.
  • Examples of the structure of the monolith ion exchanger include an open cell structure (Japanese Patent Laid-Open No. 2002-306976, JP-A-2009-62512), a co-continuous structure (Japanese Patent Laid-Open No. 2009-67982), and a particle-aggregated structure (Japanese Patent Laid-Open No. 2009-67982). Japanese Patent Application Laid-Open No. 2009-7550), particle composite structure (Japanese Patent Laid-Open No. 2009-108294) and the like can be mentioned.
  • the ion exchange capacity of the absorbent A as a monolith cation exchanger was 8 mg equivalent / g in a dry state, and it was confirmed that the carboxyl group was quantitatively introduced. Further, the average diameter of the three-dimensionally continuous pores of the absorbent A in the dry state, which was obtained from the measurement by the mercury intrusion method, was 49.1 ⁇ m, and the total pore volume in the dry state was 13.5 mL / g. there were. The thickness of the continuous skeleton obtained by SEM observation was 9.5 ⁇ m.
  • FIGS. 12A and 12B show the distribution state of sodium by EPMA in order to confirm the distribution state of the carboxyl group in the monolith A.
  • FIG. 12A is an SEM photograph of the fracture surface of the absorbent A.
  • FIG. 12B is a mapping diagram of the Na distribution of the same portion as that of FIG. 12A.
  • the distribution of carboxyl groups in the skeleton cross section is such that the carboxyl groups are uniformly distributed not only on the skeleton surface of the monolithic cation exchanger but also inside the skeleton, and the carboxyl groups are uniformly distributed in the monolith ion exchanger. It can be confirmed that it is uniformly introduced in.
  • the open cell structure disclosed in JP-A-2002-306976 and JP-A-2009-62512 and the co-continuous structure disclosed in JP-A-2009-67982 As an example of the structure of the absorbent A, the open cell structure disclosed in JP-A-2002-306976 and JP-A-2009-62512 and the co-continuous structure disclosed in JP-A-2009-67982. Further, there are monolith ion structures listed as a particle-aggregated structure disclosed in JP-A-2009-7550, a particle-composite structure disclosed in JP-A-2009-108294, and the like.
  • an oil-soluble monomer for cross-linking polymerization, a cross-linking monomer, a surfactant, water, and a polymerization initiator, if necessary, are mixed to obtain a water-in-oil emulsion.
  • the water-in-oil emulsion is an emulsion in which the oil phase is a continuous phase and water droplets are dispersed therein.
  • butyl methacrylate is used as the (meth) acrylic acid ester as the oil-soluble monomer
  • divinylbenzene is used as the crosslinkable monomer
  • sorbitanmono is used as the surfactant.
  • Monolith A is cross-linked and polymerized using oleate and isobutyronitrile as a polymerization initiator.
  • FIG. 10A is an SEM photograph of the fracture surface of the absorbent A.
  • FIG. 10B is a mapping diagram of the Na distribution of the same portion as that of FIG. 10A.
  • the monolith A had an open cell structure, and the thickness of the continuous skeleton was 5.4 ⁇ m.
  • the average diameter measured by the mercury intrusion method was 36.2 ⁇ m, and the total pore volume was 15.5 mL / g.
  • the content of divinylbenzene with respect to all the monomers is preferably 0.3 to 10 mol%, more preferably 0.3 to 5 mol%. Further, the ratio of divinylbenzene to the total of butyl methacrylate and divinylbenzene is preferably 0.1 to 10 mol%, and more preferably 0.3 to 8 mol%. In the absorbent A, the ratio of butyl methacrylate to the total of butyl methacrylate and divinylbenzene is 97.0 mol%, and the ratio of divinylbenzene is 3.0 mol%.
  • the amount of the surfactant added varies greatly depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores). It is preferably in the range of about 2 to 70% with respect to the total amount of the oil-soluble monomer and the surfactant.
  • alcohols such as methanol and stearyl alcohol, carboxylic acids such as stearic acid, hydrocarbons such as octane, dodecane and toluene, and cyclic ethers such as tetrahydrofuran and dioxane are used in the system. May coexist in.
  • the mixing method for forming the water-in-oil emulsion There is no particular limitation on the mixing method for forming the water-in-oil emulsion. A method in which each component is mixed at once, an oil-soluble component which is an oil-soluble monomer, a surfactant and an oil-soluble polymerization initiator, and a water-soluble component which is water or a water-soluble polymerization initiator are uniformly dissolved separately. After that, a mixing method such as a method of mixing each component can be adopted.
  • the mixing device for forming the emulsion is also not particularly limited, and in order to obtain the desired emulsion particle size, a normal mixer, a homogenizer, a high-pressure homogenizer, or an object to be treated is placed in a mixing container, and the mixing container is tilted.
  • An appropriate device can be selected from a so-called planetary stirrer or the like that stirs and mixes the object to be processed by rotating the object to be processed while revolving around the revolution axis in the state of being revolved.
  • the mixing conditions are not particularly limited, and the stirring rotation speed and the stirring time can be arbitrarily set in order to obtain the desired emulsion particle size.
  • the planetary stirrer can uniformly generate water droplets in the W / O emulsion, and the average diameter thereof can be arbitrarily set in a wide range.
  • Various conditions can be selected for the polymerization conditions for polymerizing the water-in-oil emulsion depending on the type of monomer and the initiator system. For example, when azobisisobutyronitrile, benzoyl peroxide, potassium persulfate or the like is used as the polymerization initiator, it is subjected to heat polymerization at 30 to 100 ° C. for 1 to 48 hours in a sealed container under an inert atmosphere. Just do it. When hydrogen peroxide-ferrous chloride, sodium persulfite-sodium bisulfite, etc. are used as the polymerization initiator, the polymerization may be carried out at 0 to 30 ° C.
  • the monolith A (crosslinked polymer) is hydrolyzed to obtain an absorbent A.
  • Monolith A is immersed in dichloroethane containing zinc bromide, stirred at 40 ° C. for 24 hours, and then contacted with methanol, 4% hydrochloric acid, 4% sodium hydroxide aqueous solution, and water in this order to hydrolyze and dry.
  • the block-shaped absorbent A is pulverized to a predetermined size to obtain a particulate absorbent A.
  • Monolith A there are no particular restrictions on the method of hydrolysis of Monolith A, and various methods can be used.
  • aromatic solvents such as toluene and xylene
  • halogen solvents such as chloroform and dichloroethane
  • ether solvents such as tetrahydrofuran and isopropyl ether
  • amide solvents such as dimethylformamide and dimethylacetamide
  • alcohol solvents such as methanol and ethanol.
  • Carboxylic acid solvent such as acetic acid and propionic acid, or water as a solvent and contact with strong base such as sodium hydroxide, hydrohalogen acid such as hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid , P-solvented acid such as toluene sulfonic acid, or Lewis acid such as zinc bromide, aluminum chloride, aluminum bromide, titanium (IV) chloride, cerium chloride / sodium iodide, magnesium iodide, etc. Can be mentioned.
  • strong base such as sodium hydroxide, hydrohalogen acid such as hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid , P-solvented acid such as toluene sulfonic acid, or Lewis acid such as zinc bromide, aluminum chloride, aluminum bromide, titanium (IV) chloride, cerium chloride / sodium i
  • the (meth) acrylic acid ester is not particularly limited, but the alkyl esters of C1 to C10 of the (meth) acrylic acid are preferable, and the (meth) acrylic acid is preferable.
  • C4 alkyl esters of acids are particularly preferred. Examples of the C4 alkyl ester of (meth) acrylic acid include (meth) acrylic acid t-butyl ester, (meth) acrylic acid n-butyl ester, and (meth) acrylic acid iso-butyl ester.
  • the monomer used for the cross-linking polymerization may be only (meth) acrylic acid ester and divinylbenzene, and in addition to (meth) acrylic acid ester and divinylbenzene, other than (meth) acrylic acid ester and divinylbenzene. It may contain a monomer.
  • monomers include styrene, ⁇ -methylstyrene, vinyltoluene, vinylbenzyl chloride, glycidyl (meth) acrylate, diethylhexyl (meth) acrylate, isobutene, butadiene, isobrene, chloroprene, vinyl chloride, vinyl bromide, Examples thereof include vinylidene chloride, tetrafluoroethylene, (meth) acrylonitrile, vinyl acetate, ethylene glycol di (meth) acrylate, and trimethylpropantri (meth) acrylate.
  • the proportion of the monomers other than the (meth) acrylic acid ester and divinylbenzene in all the monomers used for the cross-linking polymerization is preferably 0 to 80 mol%, more preferably 0 to 50 mol%.
  • Surfactants are not limited to sorbitan monooleate. Any material may be used as long as it can form a water-in-oil (W / O) emulsion when the cross-linking polymerization monomer and water are mixed.
  • nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene group nonylphenyl ether, polyoxyethylene group stearyl ether, polyoxyethylene group sorbitan monooleate, etc.
  • anionic surfactants such as potassium oleate, sodium dodecylbenzenesulfonate, sodium dioctyl sulfosuccinate, cationic surfactants such as distearyldimethylammonium chloride, and amphoteric surfactants such as lauryldimethylbetaine may be used. It can. These surfactants may be used alone or in combination of two or more.
  • the polymerization initiator a compound that generates radicals by heat and light irradiation is preferably used.
  • the polymerization initiator may be water-soluble or oil-soluble, and may be, for example, azobis (4-methoxy-2,4-dimethylvaleronitrile), azobisisobutyronitrile, azobisdimethylvaleronitrile, azobiscyclohexanenitrile, azobiscyclohexane.
  • Examples thereof include carbonitrile, azobis (2-methylpropionamidine) dihydrochloride, benzoyl peroxide, potassium persulfate, ammonium persulfate, hydrogen peroxide-ferrous chloride, sodium persulfate-sodium acid sulfite, tetramethylthium disulfide and the like. ..
  • the polymerization proceeds only by heating or light irradiation without adding the polymerization initiator, so that it is not necessary to add the polymerization initiator in such a system.
  • an absorbent b containing 6.4 g of t-butyl methacrylate and 2.8 g of diethylhexyl methacrylate may be used. It is the same as the absorbent a except that the oil-soluble monomer is 6.4 g of t-butyl methacrylate and 2.8 g of 2 ethylhexyl methacrylate.
  • the ion exchange capacity of the absorbent b in the dry state is 5.0 mg equivalent / g.
  • FIG. 13 is a graph showing the relationship between the amount of absorption and the time of the absorbent a and the absorbent b when the liquid to be absorbed is pure water.
  • the saturated absorption amount was 18 g / g-resin, and the immersion time was within 5 seconds to reach the absorption amount of 90% of the saturated absorption amount.
  • the absorber 11 includes the absorbent A (absorbent a) and SAP, but the present invention is not limited to this.
  • the absorber 11 may be composed of only the absorbent A.
  • the substance used together with the absorbent A is not limited to SAP.
  • the absorber 11 including the absorbent A and the pulp fiber may be used, or the absorber 11 including the absorbent A, SAP and the pulp fiber may be used.
  • 1 diaper (pants type disposable diaper, absorbent article), 10 absorbent body, 10ea end, 10eb end, 11 absorber, 11c absorbent core, 13 topsheet, 15 backsheet, 30 ventral member, 30a side Part, 31 skin side sheet, 32 non-skin side sheet, 35 thread rubber, 40 back side member, 40a side part, 41 skin side sheet, 42 non-skin side sheet, 45 thread rubber, SS welded part, LH leg circumference opening , BH waist opening

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

The present invention pertains to an absorber (11) for absorbing bodily fluids, the absorber characterized by comprising a polymer absorbent provided with a continuous skeleton and continuous pores, the polymer absorbent being a hydrolysate of a crosslinked polymer of a (meth)acrylic acid ester and a compound containing two or more vinyl groups per molecule, and the polymer absorbent containing at least one —COONa group.

Description

吸収体及び吸収性物品Absorbents and absorbent articles
 本発明は、吸収体及び吸収性物品に関する。 The present invention relates to an absorber and an absorbent article.
 従来、高い吸収量を有する高吸収性ポリマー(所謂「SAP」)を用いた使い捨ておむつや生理用品等の吸収性物品が知られている。例えば、特許文献1に開示されているように、吸収量が優れた吸収性樹脂粒子(高吸収性ポリマー)5と、吸収速度が優れたパルプ繊維等の親水性繊維13とを組み合わせた吸収体15を用いた吸収性物品30が開示されている。 Conventionally, absorbent articles such as disposable diapers and sanitary napkins using a highly absorbent polymer (so-called "SAP") having a high absorption amount have been known. For example, as disclosed in Patent Document 1, an absorber in which an absorbent resin particle (highly absorbent polymer) 5 having an excellent absorption amount and a hydrophilic fiber 13 such as a pulp fiber having an excellent absorption rate are combined. The absorbent article 30 using 15 is disclosed.
国際公開第2013-018571号公報International Publication No. 2013-018571
 吸収性物品30は、流通や保管、携帯性等の観点からその厚みを薄くすることが望まれている。しかし、例えば、吸収体15として吸収性樹脂粒子5のみを用いた場合には、吸収速度が劣るために、体液等が勢いよく排泄された場合に、その体液を十分に吸収できない事態を生じていた。一方、吸収性樹脂粒子5と親水性繊維13とを組み合わせると、吸収体15が嵩高になってしまう恐れがあった。 It is desired that the thickness of the absorbent article 30 be reduced from the viewpoint of distribution, storage, portability, and the like. However, for example, when only the absorbent resin particles 5 are used as the absorber 15, the absorption rate is inferior, so that when the body fluid or the like is vigorously excreted, the body fluid cannot be sufficiently absorbed. It was. On the other hand, when the absorbent resin particles 5 and the hydrophilic fibers 13 are combined, the absorber 15 may become bulky.
 本発明は、上記のような問題に鑑みてなされたものであって、その目的とするところは、体液を吸収しやすい吸収体及び吸収性物品を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide an absorber and an absorbent article that easily absorb body fluids.
 上記目的を達成するための主たる発明は、体液を吸収するための吸収体であって、連続骨格及び連続空孔を備えた高分子吸収剤を有し、前記高分子吸収剤は、(メタ)アクリル酸エステルと、一分子中に2個以上のビニル基を含有する化合物の架橋重合体の加水分解物であり、且つ、少なくとも1個以上の-COONa基を含有することを特徴とする吸収体である。
 本発明の他の特徴については、本明細書及び添付図面の記載により明らかにする。
The main invention for achieving the above object is an absorber for absorbing body fluid, which has a polymer absorbent having a continuous skeleton and continuous pores, and the polymer absorbent is (meth). An absorber which is a hydrolyzate of a crosslinked polymer of an acrylic acid ester and a compound containing two or more vinyl groups in one molecule, and also contains at least one -COONa group. Is.
Other features of the present invention will be clarified by the description in the present specification and the accompanying drawings.
 本発明によれば、高分子吸収剤が体液を吸収すると、連続骨格を伸長させ、連続骨格の伸長に伴って、連続空孔も広がりやすくなるため、毛細管現象によって体液を連続空孔に取り込みやすくなり、吸収体として体液を吸収しやすくなる。 According to the present invention, when the polymer absorbent absorbs the body fluid, the continuous skeleton is elongated, and the continuous skeleton is easily expanded, so that the body fluid is easily taken into the continuous pores by the capillary phenomenon. As an absorber, it becomes easier to absorb body fluids.
図1は、パンツ型使い捨ておむつ1の概略斜視図である。FIG. 1 is a schematic perspective view of a pants-type disposable diaper 1. 図2Aは、展開状態且つ伸長状態のおむつ1を肌側面側から見た概略平面図である。図2Bは、図2A中のX-X矢視で示す概略断面図である。FIG. 2A is a schematic plan view of the unfolded and stretched diaper 1 as viewed from the side surface of the skin. FIG. 2B is a schematic cross-sectional view taken along the line XX in FIG. 2A. 図3は、吸収剤aの製造過程について説明する図である。FIG. 3 is a diagram illustrating a manufacturing process of the absorbent a. 図4は、吸収剤aの拡大倍率50倍のSEM写真である。FIG. 4 is an SEM photograph of the absorbent a at a magnification of 50 times. 図5は、吸収剤aの拡大倍率100倍のSEM写真である。FIG. 5 is an SEM photograph of the absorbent a at a magnification of 100 times. 図6は、吸収剤aの拡大倍率500倍のSEM写真である。FIG. 6 is an SEM photograph of the absorbent a at a magnification of 500 times. 図7は、吸収剤aの拡大倍率1000倍のSEM写真である。FIG. 7 is an SEM photograph of the absorbent a at a magnification of 1000 times. 図8は、吸収剤aの拡大倍率1500倍のSEM写真である。FIG. 8 is an SEM photograph of the absorbent a at a magnification of 1500 times. 図9は、吸収剤aの各測定結果を示す図である。FIG. 9 is a diagram showing each measurement result of the absorbent a. 図10は、吸収剤Aの吸収速度及び吸収量試験結果を示すグラフである。FIG. 10 is a graph showing the absorption rate and the absorption amount test result of the absorbent A. 図11は、比較例の高吸収性ポリマーの吸収速度及び吸収量試験結果を示すグラフである。FIG. 11 is a graph showing the absorption rate and absorption amount test results of the highly absorbent polymer of the comparative example. 図12Aは、吸収剤Aの破断面のSEM写真である。図12Bは、図12Aと同一部分のNa分布のマッピング図である。FIG. 12A is an SEM photograph of the fracture surface of the absorbent A. FIG. 12B is a mapping diagram of the Na distribution of the same portion as that of FIG. 12A. 図13は、吸収剤aと吸収剤bについて、吸収対象液が純水のときの吸収量と時間の関係を示すグラフである。FIG. 13 is a graph showing the relationship between the amount of absorption and the time of the absorbent a and the absorbent b when the liquid to be absorbed is pure water.
 本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。
 体液を吸収するための吸収体であって、連続骨格及び連続空孔を備えた高分子吸収剤を有し、前記高分子吸収剤は、(メタ)アクリル酸エステルと、一分子中に2個以上のビニル基を含有する化合物の架橋重合体の加水分解物であり、且つ、少なくとも1個以上の-COONa基を含有することを特徴とする吸収体である。
The description of the present specification and the accompanying drawings will clarify at least the following matters.
An absorber for absorbing body fluid, which has a polymer absorbent having a continuous skeleton and continuous pores, and the polymer absorbent is a (meth) acrylic acid ester and two in one molecule. It is a hydrolyzate of the crosslinked polymer of the above vinyl group-containing compound, and is an absorber characterized by containing at least one -COONa group.
 このような吸収体によれば、高分子吸収剤が体液を吸収すると、連続骨格を伸長させ、連続骨格の伸長に伴って、連続空孔も広がりやすくなるため、毛細管現象によって体液を連続空孔に取り込みやすくなり、吸収体として体液を吸収しやすくなる。 According to such an absorber, when the polymer absorber absorbs the body fluid, the continuous skeleton is elongated, and the continuous pores are likely to expand as the continuous skeleton is elongated. Therefore, the continuous pores of the body fluid are caused by the capillary phenomenon. It becomes easier to take in the body fluid as an absorber.
 かかる吸収体であって、前記高分子吸収剤は、モノリス状の吸収剤であることが望ましい。 It is desirable that the polymer absorbent is a monolith-like absorbent.
 このような吸収体によれば、モノリス状の吸収剤が体液を吸収すると、連続骨格の伸長に伴って広がった貫通した孔に体液を取り込みやすくなり、吸収体として体液を吸収しやすくなる。 According to such an absorber, when the monolith-like absorber absorbs the body fluid, it becomes easier to take in the body fluid into the penetrating hole that widens with the elongation of the continuous skeleton, and it becomes easier to absorb the body fluid as an absorber.
 かかる吸収体であって、単位重さ当たりの前記高分子吸収剤が、濃度0.9wt%のNaCl水溶液を吸収する第1吸収重量と、前記単位重さ当たりの前記高分子吸収剤が、濃度0~2.0wt%のNaCl水溶液を吸収する第2吸収重量について、前記第1吸収重量が前記第2吸収重量の0.5~1.9倍 であることが望ましい。 In such an absorber, the first absorption weight in which the polymer absorbent per unit weight absorbs a NaCl aqueous solution having a concentration of 0.9 wt% and the polymer absorbent per unit weight have concentrations. With respect to the second absorption weight for absorbing 0 to 2.0 wt% NaCl aqueous solution, it is desirable that the first absorption weight is 0.5 to 1.9 times the second absorption weight.
 このような吸収体によれば、体液の成分によって吸収体の吸収重量が変化してしまう恐れを軽減させることができる。 According to such an absorber, it is possible to reduce the risk that the absorbed weight of the absorber will change depending on the components of the body fluid.
 かかる吸収体であって、濃度0.9wt%のNaCl水溶液を前記第1吸収重量だけ吸収した第1高分子吸収剤と、濃度0~2.0wt%のNaCl水溶液を前記第2吸収重量だけ吸収した第2高分子吸収剤について、それぞれ所定時間だけ遠心分離機を用いて、150Gで850rpmの条件下で90秒間脱水した後の、前記第1高分子吸収剤が吸収した濃度0.9wt%のNaCl水溶液の重さは、第2高分子吸収剤が吸収した濃度0~2.0wt%のNaCl水溶液の重さの0.5~1.6倍であることが望ましい。 In such an absorber, a first polymer absorber that has absorbed a concentration of 0.9 wt% of a NaCl aqueous solution by the first absorption weight and a NaCl aqueous solution having a concentration of 0 to 2.0 wt% are absorbed by the second absorption weight. The second polymer absorbent was dehydrated for 90 seconds at 150 G at 850 rpm using a centrifuge for a predetermined time, and then the concentration of 0.9 wt% absorbed by the first polymer absorbent was 0.9 wt%. It is desirable that the weight of the NaCl aqueous solution is 0.5 to 1.6 times the weight of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% absorbed by the second polymer absorbent.
 このような吸収体によれば、体液の成分によって吸収体の保水重量が変化してしまう恐れを軽減させることができる。 According to such an absorber, it is possible to reduce the risk that the water retention weight of the absorber will change depending on the components of the body fluid.
 かかる吸収体であって、前記脱水をした後の、前記第1高分子吸収剤に吸収された濃度0.9wt%のNaCl水溶液の重さを第1保水重量とし、前記脱水をした後の、前記第2高分子吸収剤に吸収された濃度0~2.0wt%のNaCl水溶液の重さを第2保水重量とし、前記第1高分子吸収剤の、前記第1吸収重量と前記第1保水重量との差を、前記第1吸収重量で除した値が、50~80%であり、前記第2高分子吸収剤の、前記第2吸収重量と前記第2保水重量との差を、前記第2吸収重量で除した値が、40~85%であることが望ましい。 In such an absorber, the weight of the NaCl aqueous solution having a concentration of 0.9 wt% absorbed by the first polymer absorber after the dehydration is defined as the first water retention weight, and the weight after the dehydration is defined as the first water retention weight. The weight of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% absorbed by the second polymer absorbent is defined as the second water retention weight, and the first absorption weight and the first water retention of the first polymer absorbent. The value obtained by dividing the difference from the weight by the first absorption weight is 50 to 80%, and the difference between the second absorption weight and the second water retention weight of the second polymer absorbent is the above. It is desirable that the value divided by the second absorbed weight is 40 to 85%.
 このような吸収体によれば、高分子吸収剤は、一旦吸収した体液を他の物質に移動させやすいため、吸収と離水を繰り返し行うことが可能であり、体液を高分子吸収剤の外に移動させた後は、使用者に濡れ感を感じさせにくくさせることができる。 According to such an absorber, the polymer absorbent easily transfers the body fluid once absorbed to another substance, so that absorption and water separation can be repeated, and the body fluid can be removed from the polymer absorbent. After moving, it is possible to make the user less likely to feel wet.
 かかる吸収体であって、ボルテックス法による、2.0gの前記高分子吸収剤が50gの濃度0.9wt%のNaCl水溶液を吸収する時間が1.0~10.0秒であることが望ましい。 It is desirable that the time for 2.0 g of the polymer absorbent to absorb 50 g of a 0.9 wt% NaCl aqueous solution by the vortex method is 1.0 to 10.0 seconds.
 このような吸収体によれば、高分子吸収剤は短時間で液体を吸収することができるため、体液をより速く吸収することができる。 According to such an absorber, the polymer absorbent can absorb the liquid in a short time, so that the body fluid can be absorbed more quickly.
 かかる吸収体であって、前記高分子吸収剤が、濃度0.5wt%のCaCl2水溶液を吸収する吸収重量は、前記高分子吸収剤の重さの13倍以上であることが望ましい。 It is desirable that the absorption weight of the polymer absorbent for absorbing the CaCl2 aqueous solution having a concentration of 0.5 wt% is 13 times or more the weight of the polymer absorbent.
 このような吸収体によれば、2価のイオンの含有量が多い体液であっても、吸収体が体液を吸収しやすい。 According to such an absorber, the absorber easily absorbs the body fluid even if the body fluid contains a large amount of divalent ions.
 かかる吸収体であって、1.0gの前記高分子吸収剤の下端部を、濃度0.9wt%のNaCl水溶液の水面に接触させた状態で1分経過後に、前記高分子吸収剤による濃度0.9wt%のNaCl水溶液の吸収量が、15ml以上であることが望ましい。 In such an absorber, after 1 minute has passed in a state where the lower end of 1.0 g of the polymer absorbent is in contact with the water surface of an aqueous NaCl solution having a concentration of 0.9 wt%, the concentration of the polymer absorbent is 0. It is desirable that the absorption amount of the 9.wt% NaCl aqueous solution is 15 ml or more.
 このような吸収体によれば、高分子吸収剤は、重力に逆らう方向にも液体を素早く多くの液体を吸収することができるため、吸収体は様々な角度から体液を吸収しやすくなる。 According to such an absorber, the polymer absorber can quickly absorb a large amount of liquid even in the direction against gravity, so that the absorber can easily absorb the body fluid from various angles.
 かかる吸収体であって、600gwの荷重を加えた状態の2.0gの前記高分子吸収剤の下端部を、濃度0.9wt%のNaCl水溶液の水面に接触させた状態で、2分経過後に、前記高分子吸収剤による濃度0.9wt%のNaCl水溶液の吸収量が、1.0ml以上であり、15分経過後に、前記高分子吸収剤による濃度0.9wt%のNaCl水溶液の吸収量が、5.0ml以上であることが望ましい。 After 2 minutes have passed, the lower end of 2.0 g of the polymer absorbent in such an absorber under a load of 600 gw is in contact with the water surface of a 0.9 wt% NaCl aqueous solution. The amount of absorption of the aqueous NaCl solution having a concentration of 0.9 wt% by the polymer absorbent is 1.0 ml or more, and after 15 minutes, the amount of the aqueous solution of NaCl having a concentration of 0.9 wt% by the polymer absorbent is absorbed. , 5.0 ml or more is desirable.
 このような吸収体によれば、荷重がかけられた高分子吸収剤であっても、重力に逆らう方向にも液体を吸収することができるため、吸収体は様々な角度から体液を吸収しやすくなる。 According to such an absorber, even a loaded polymer absorber can absorb the liquid in a direction against gravity, so that the absorber can easily absorb the body fluid from various angles. Become.
 かかる吸収体であって、前記高分子吸収剤の単位体積当たりの前記空孔の空隙の体積が85%以上であることが望ましい。 It is desirable that the volume of the voids in the pores per unit volume of the polymer absorbent is 85% or more in such an absorber.
 このような吸収体によれば、毛細管現象によって体液を連続空孔に取り込みやすくなり、吸収体として体液を吸収しやすくなる。 According to such an absorber, the capillary phenomenon makes it easier to take in the body fluid into the continuous pores, and makes it easier to absorb the body fluid as an absorber.
 かかる吸収体であって、前記高分子吸収剤は、0.1~30.0%の架橋重合残基を含有することが望ましい。 It is desirable that the polymer absorbent contains 0.1 to 30.0% of crosslinked polymerization residues.
 このような吸収体によれば、体液を吸収すると、連続骨格を伸長させ、連続骨格の伸長に伴って、連続空孔も広がりやすい高分子吸収剤とすることができる。 According to such an absorber, when the body fluid is absorbed, the continuous skeleton is elongated, and as the continuous skeleton is elongated, the continuous pores can be easily expanded to be a polymer absorbent.
 かかる吸収体であって、前記連続空孔の平均直径が、1~1000μmであることが望ましい。 It is desirable that the average diameter of the continuous pores of such an absorber is 1 to 1000 μm.
 このような吸収体によれば、毛細管現象によって体液を連続空孔に取り込みやすくなり、吸収体として体液を吸収しやすくなる。 According to such an absorber, the capillary phenomenon makes it easier to take in the body fluid into the continuous pores, and makes it easier to absorb the body fluid as an absorber.
 かかる吸収体であって、前記吸収体は、前記高分子吸収剤と、前記高分子吸収剤より高い保水倍率を備える高分子化合物とを有することが望ましい。 It is desirable that the absorber has the polymer absorbent and a polymer compound having a higher water retention ratio than the polymer absorbent.
 このような吸収体によれば、まず毛細管現象によって体液を吸収しやすい高分子吸収剤が体液を吸収しつつ、高分子化合物が体液を保水することができるため、吸収体として、体液の素早い吸収と、体液を保水した状態を保つことができる。 According to such an absorber, first, the polymer absorbent which easily absorbs the body fluid by the capillary phenomenon can absorb the body fluid, and the polymer compound can retain the body fluid. Therefore, as an absorber, the body fluid is quickly absorbed. And, it is possible to keep the body fluid in a water-retaining state.
 かかる吸収体であって、前記高分子吸収剤の単位重量当たりの-COONa基の総イオン交換容量が、4.0mg当量/g以上であることが望ましい。 It is desirable that the total ion exchange capacity of -COONa groups per unit weight of the polymer absorbent is 4.0 mg equivalent / g or more.
 このような吸収体によれば、単位重量当たりの-COONa基の総イオン交換容量が、4.0mg当量/gより少ない場合よりも高分子吸収剤が体液を吸収しやすいため、連続骨格を伸長させやすくなり、連続骨格の伸長に伴って、連続空孔も広がりやすくなり、毛細管現象によって体液を連続空孔に取り込みやすくなることで、吸収体として体液を吸収しやすくなる。 According to such an absorber, the polymer absorber is more likely to absorb body fluids than when the total ion exchange capacity of -COONa groups per unit weight is less than 4.0 mg equivalent / g, thus extending the continuous skeleton. As the continuous skeleton is elongated, the continuous pores are easily expanded, and the body fluid is easily taken into the continuous pores by the capillary phenomenon, so that the body fluid is easily absorbed as an absorber.
 上記のいずれかの吸収体を有する吸収性物品であることが望ましい。 It is desirable that the article is an absorbent article having any of the above absorbers.
 このような吸収性物品によれば、吸収体の高分子吸収剤が体液を吸収すると、連続骨格を伸長させ、連続骨格の伸長に伴って、連続空孔も広がりやすくなるため、毛細管現象によって体液を連続空孔に取り込みやすくなり、体液を吸収しやすい吸収性物品とすることができる。 According to such an absorbent article, when the polymer absorbent of the absorber absorbs the body fluid, the continuous skeleton is elongated, and the continuous pores are easily expanded as the continuous skeleton is elongated. Therefore, the body fluid is caused by the capillary phenomenon. Can be easily taken into continuous pores, and can be made into an absorbent article that easily absorbs body fluids.
===実施形態===
 本実施形態にかかる吸収体を用いた吸収性物品の一例として、所謂パンツ型使い捨ておむつを例に挙げて説明する。なお、吸収体を用いた吸収性物品としては、パンツ型使い捨ておむつに限らず、テープ型使い捨ておむつ、生理用ナプキン、吸収パッド、ペット用の使い捨ておむつやペット用の吸収パッド等の吸収性物品の吸収体として用いることができる。使い捨ておむつ及び吸収パッド等は、乳幼児用としても大人用としても利用可能である。なお、体液とは、人間だけでなく動物も含めた生物から排出される液体をいう。例えば、汗、尿、便、経血、おりもの、母乳、血液、滲出液等を挙げることができる。
=== Embodiment ===
As an example of the absorbent article using the absorbent body according to the present embodiment, a so-called pants-type disposable diaper will be described as an example. The absorbent articles using the absorbent body are not limited to pants-type disposable diapers, but also include absorbent articles such as tape-type disposable diapers, sanitary napkins, absorbent pads, disposable diapers for pets, and absorbent pads for pets. It can be used as an absorber. Disposable diapers, absorbent pads and the like can be used for both infants and adults. The body fluid refers to a fluid discharged from living organisms including animals as well as humans. For example, sweat, urine, stool, menstrual blood, vaginal discharge, breast milk, blood, exudate and the like can be mentioned.
===パンツ型使い捨ておむつ1の基本構成===
 図1は、パンツ型使い捨ておむつ1の概略斜視図である。図2Aは、展開状態且つ伸長状態のおむつ1を肌側面側から見た概略平面図である。図2Bは、図2A中のX-X矢視で示す概略断面図である。「展開状態」とは、おむつ1の両側部の、腹側部材30の側部30aと背側部材40の側部40aとの接合をそれぞれ分離し、開いておむつ1全体を平面的に展開した状態である。「伸長状態」とは、おむつ1の皺が視認できなくなる程度まで、おむつ1が備える弾性部材を伸長させた状態を示す。具体的には、おむつ1を構成する各部材(例えば、後述する腹側部材30等)の寸法がその部材単体の寸法と一致又はそれに近い寸法になるまで伸長させた状態を示す。図2A及び図2B中のC-C線は左右方向における中心線である。図2Bでは、便宜上、接着剤を省略して示している。
=== Basic configuration of pants-type disposable diaper 1 ===
FIG. 1 is a schematic perspective view of a pants-type disposable diaper 1. FIG. 2A is a schematic plan view of the unfolded and stretched diaper 1 as viewed from the side surface of the skin. FIG. 2B is a schematic cross-sectional view taken along the line XX in FIG. 2A. The "deployed state" means that the joints of the side portion 30a of the ventral member 30 and the side portion 40a of the dorsal member 40 on both sides of the diaper 1 are separated from each other and opened to expand the entire diaper 1 in a plane. It is in a state. The "extended state" refers to a state in which the elastic member included in the diaper 1 is extended to the extent that the wrinkles of the diaper 1 become invisible. Specifically, it shows a state in which the dimensions of each member (for example, the ventral member 30 described later) constituting the diaper 1 are extended until the dimensions match or are close to the dimensions of the member alone. The CC line in FIGS. 2A and 2B is the center line in the left-right direction. In FIG. 2B, the adhesive is omitted for convenience.
 図1に示すように、パンツ型のおむつ1は上下方向と左右方向と前後方向とを有し、おむつ1には胴回り開口部BH及び一対の脚回り開口部LHが形成されている。図2Aの展開かつ伸長状態のおむつ1の上下方向を「長手方向」といい、長手方向の一方側を「腹側」、他方側を「背側」ともいう。前後方向において、着用者の腹側となる側を前側とし、着用者の背側となる側を後側とする。また、おむつ1は図2Bに示すように厚さ方向を有し、厚さ方向において着用者に接触する側を肌側とし、その逆側を非肌側とする。 As shown in FIG. 1, the pants-type diaper 1 has a vertical direction, a horizontal direction, and a front-rear direction, and the diaper 1 is formed with a waist circumference opening BH and a pair of leg circumference openings LH. The vertical direction of the unfolded and extended diaper 1 in FIG. 2A is referred to as the "longitudinal direction", one side in the longitudinal direction is also referred to as the "ventral side", and the other side is also referred to as the "dorsal side". In the anterior-posterior direction, the ventral side of the wearer is the front side, and the dorsal side of the wearer is the rear side. Further, the diaper 1 has a thickness direction as shown in FIG. 2B, and the side in the thickness direction that comes into contact with the wearer is the skin side, and the opposite side is the non-skin side.
 おむつ1は、所謂3ピースタイプであり、吸収性本体10と腹側部材30、背側部材40とを有する。腹側部材30、背側部材40は平面視略長方形状であり、その長手方向が左右方向に沿っている。腹側部材30は、着用者の腹側を覆い、背側部材40は、着用者の背側を覆う。吸収性本体10は平面視略長方形形状である。吸収性本体10の腹側の端部10eaと背側の端部10ebは、それぞれ腹側部材30、背側部材40の肌側面と重ね合されている。 The diaper 1 is a so-called three-piece type, and has an absorbent main body 10, a ventral member 30, and a dorsal member 40. The ventral member 30 and the dorsal member 40 have a substantially rectangular shape in a plan view, and their longitudinal directions are along the left-right direction. The ventral member 30 covers the wearer's ventral side, and the dorsal member 40 covers the wearer's dorsal side. The absorbent body 10 has a substantially rectangular shape in a plan view. The ventral end 10ea and the dorsal end 10eb of the absorbent body 10 are overlapped with the skin side surface of the ventral member 30 and the dorsal member 40, respectively.
 図2Aに示すように、展開状態且つ伸長状態のおむつ1は、中心線C-Cに対して左右対称な形状を有している。吸収性本体10の腹側の端部10ea、背側の端部10ebの非肌側面と腹側部材30、背側部材40の肌側面とを接着剤等(不図示)により接合し、腹側部材30と背側部材40とが対向するように吸収性本体10を二つ折りして、腹側部材30の左右方向の両側部30aと背側部材40の左右方向の両側部40aとをサイド溶着部SSで溶着接合することにより、おむつ1はパンツ型となる。 As shown in FIG. 2A, the unfolded and extended diaper 1 has a shape symmetrical with respect to the center line CC. The non-skin side surface of the ventral end 10ea and the dorsal end 10eb of the absorbent body 10 and the skin side surface of the ventral member 30 and the dorsal member 40 are joined with an adhesive or the like (not shown), and the ventral member is joined. The absorbent body 10 is folded in half so that the 30 and the dorsal member 40 face each other, and the left and right side portions 30a of the ventral member 30 and the left and right side portions 40a of the dorsal member 40 are side-welded portions. By welding and joining with SS, the diaper 1 becomes a pants type.
 腹側部材30及び背側部材40はそれぞれ、柔軟な不織布等からなる肌側シート31、41と非肌側シート32、42と、左右方向に伸縮する複数の糸ゴム35、45を備える。複数の糸ゴム35、45は、上下方向に間隔を空けて並んで配されるとともに、左右方向に伸長した状態で2枚のシート(31と32、41と42)の間に固定されている。したがって、腹側部材30及び背側部材40は左右方向に伸縮可能であり、着用者の胴回りにフィットする。 The ventral member 30 and the dorsal member 40 are provided with skin- side sheets 31, 41 and non-skin- side sheets 32, 42 made of a flexible non-woven fabric or the like, and a plurality of thread rubbers 35, 45 that expand and contract in the left-right direction, respectively. The plurality of rubber threads 35, 45 are arranged side by side with an interval in the vertical direction, and are fixed between the two sheets (31 and 32, 41 and 42) in a state of being extended in the horizontal direction. .. Therefore, the ventral member 30 and the dorsal member 40 can be expanded and contracted in the left-right direction to fit the wearer's waist circumference.
 腹側部材30は、肌側から順に肌側シート31、糸ゴム35、非肌側シート32が厚さ方向に重ねられており、ホットメルト等の接着剤等によって互いに接合されている。同様に、背側部材40は、肌側から順に肌側シート41、糸ゴム45、非肌側シート42が厚さ方向に重ねられており、ホットメルト等の接着剤等によって互いに接合されている。 In the ventral member 30, the skin side sheet 31, the thread rubber 35, and the non-skin side sheet 32 are stacked in order from the skin side in the thickness direction, and are joined to each other by an adhesive such as hot melt. Similarly, in the dorsal member 40, the skin side sheet 41, the thread rubber 45, and the non-skin side sheet 42 are stacked in order from the skin side in the thickness direction, and are joined to each other by an adhesive such as hot melt. ..
 肌側シート31、41及び非肌側シート32、42は、それぞれ不織布からなるシートであり、具体的には、スパンボンド不織布である。但し、これに限らず、SMS(スパンボンド/メルトブローン/スパンボンド)不織布等の不織布を用いてもよい。また、本実施形態においては、不織布の構成繊維として熱可塑性樹脂のポリプロピレン(PP)の単独繊維を用いているが、これに限られない。例えば、ポリエチレン(PE)などの他の熱可塑性樹脂の単独繊維を用いても良いし、PE及びPP等の鞘芯構造を有した複合繊維を用いても良い。さらに、肌側シート31、41及び非肌側シート32、42の全てが不織布でなくてもよく、肌側シート31、41又は非肌側シート32、42のいずれか一方については、不織布以外の他の柔らかいシート素材を用いてもよい。 The skin side sheets 31, 41 and the non-skin side sheets 32, 42 are sheets made of non-woven fabric, respectively, and specifically, spunbonded non-woven fabric. However, the present invention is not limited to this, and a non-woven fabric such as SMS (spun bond / melt blown / spun bond) non-woven fabric may be used. Further, in the present embodiment, a single fiber of polypropylene (PP), which is a thermoplastic resin, is used as a constituent fiber of the non-woven fabric, but the present invention is not limited to this. For example, a single fiber of another thermoplastic resin such as polyethylene (PE) may be used, or a composite fiber having a sheath core structure such as PE and PP may be used. Further, all of the skin- side sheets 31, 41 and the non-skin- side sheets 32, 42 do not have to be non-woven fabrics, and only one of the skin- side sheets 31, 41 or the non-skin- side sheets 32, 42 is other than the non-woven fabric. Other soft sheet materials may be used.
 吸収性本体10は、トップシート13と、吸収体11と、バックシート15とを備え、それぞれホットメルト等の接着剤によって接着されている。トップシート13は液透過性シートであればよく、親水性のエアスルー不織布やスパンボンド不織布等を例示できる。バックシート15は液不透過性シートであればよく、ポリエチレンフィルムやポリプロピレンフィルム、疎水性のSMS不織布等を例示できる。トップシート13及びバックシート15は吸収体11全体を覆う大きさとする。 The absorbent main body 10 includes a top sheet 13, an absorber 11, and a back sheet 15, each of which is adhered with an adhesive such as hot melt. The top sheet 13 may be a liquid permeable sheet, and examples thereof include hydrophilic air-through non-woven fabrics and spunbonded non-woven fabrics. The back sheet 15 may be a liquid-impermeable sheet, and examples thereof include a polyethylene film, a polypropylene film, and a hydrophobic SMS non-woven fabric. The top sheet 13 and the back sheet 15 have a size that covers the entire absorber 11.
 吸収性本体10は、左右方向の端部に設けられた長手方向に伸縮するレッグギャザーLGと、吸収体11より肌側に設けられた横漏れを防止するための防漏壁部としての立体ギャザーLSGを有する。レッグギャザーLG及び立体ギャザーLSGは、それぞれ長手方向(上下方向)に伸長する弾性部材17、弾性部材18を備えている。 The absorbent body 10 has leg gathers LG provided at the ends in the left-right direction and expands and contracts in the longitudinal direction, and three-dimensional gathers provided on the skin side of the absorber 11 as a leak-proof wall portion for preventing lateral leakage. Has LSG. The leg gather LG and the three-dimensional gather LSG each include an elastic member 17 and an elastic member 18 that extend in the longitudinal direction (vertical direction).
 吸収体11は、平面視略矩形形状であり、液体を吸収する吸収性コア11cを備える。吸収性コア11cは、高分子吸収剤(吸収剤A)と高吸収性ポリマー(所謂SAP)とをティッシュ等で包んで、略砂時計形状に成形している。高分子吸収剤(吸収剤A)と高吸収性ポリマー(SAP)は、例えば、それぞれ粒状のものを用いることができ、ふるいを用いて、粒子がそれぞれ所定範囲内の粒度を有するものとすることが好ましい。以下の説明では、粒子状の高分子吸収剤(吸収剤A)について説明するが、これに限られない。おむつ1等の吸収性物品に用いる高分子吸収剤(吸収剤A)は、粒子状、微粒子状、ブロック状、シート状、糸状等、使用状態に応じて適宜用いることができる。 The absorber 11 has a substantially rectangular shape in a plan view and includes an absorbent core 11c that absorbs a liquid. The absorbent core 11c is formed by wrapping a polymer absorbent (absorbent A) and a highly absorbent polymer (so-called SAP) with a tissue or the like to form a substantially hourglass shape. As the polymer absorbent (absorbent A) and the highly absorbent polymer (SAP), for example, granular ones can be used, and a sieve is used so that the particles each have a particle size within a predetermined range. Is preferable. In the following description, the particulate polymer absorbent (absorbent A) will be described, but the present invention is not limited to this. The polymer absorbent (absorbent A) used for an absorbent article such as diaper 1 can be appropriately used depending on the state of use, such as particulate, fine particle, block, sheet, and thread.
 ===高分子吸収剤について===
 高分子吸収剤は、(メタ)アクリル酸エステルと、一分子中に2個以上のビニル基を備える化合物の架橋重合体の加水分解物であり、少なくとも-COONa基を備える高分子化合物である。(メタ)アクリル酸エステルとは、アクリル酸エステル又はメタクリル酸エステルをいう。高分子吸収剤は、一分子中に少なくとも1個以上の-COONa基を備えるモノリス状有機多孔質体である。さらに、-COOH基を備えていてもよい。多孔質体の骨格中に、-COONa基が略均一に分布されている。「モノリス状」とは、貫通した孔と骨格を有し,網目状の共連続構造をもつ多孔体をいう。
=== About polymer absorbents ===
The polymer absorbent is a hydrolyzate of a (meth) acrylic acid ester and a crosslinked polymer of a compound having two or more vinyl groups in one molecule, and is a polymer compound having at least -COONa group. The (meth) acrylic acid ester means an acrylic acid ester or a methacrylic acid ester. The polymer absorbent is a monolithic organic porous body having at least one -COONa group in one molecule. In addition, it may have a —COOH group. -COONa groups are distributed substantially uniformly in the skeleton of the porous body. "Monolith-like" refers to a porous body having penetrating pores and a skeleton and having a network-like co-continuous structure.
 (メタ)アクリル酸エステルと、ジビニルベンゼンとの架橋重合体の加水分解物である高分子吸収剤は、少なくとも-COONa基を有する有機ポリマーによって連続骨格が形成され、骨格間に吸収対象液の吸収場となる連通孔(連続空孔)を有している。また、加水分解処理は、架橋重合体の-COOR基(カルボン酸エステル基)を-COONa基又は-COOH基とするものであることから(図3)、高分子吸収剤が-COOR基を備えていてもよい。連続骨格を形成する有機ポリマー中の-COOH基及び-COONa基の存在は、赤外分光光度法、弱酸性イオン交換基を定量する方法により分析することにより確認することができる。 The polymer absorbent, which is a hydrolyzate of a crosslinked polymer of (meth) acrylic acid ester and divinylbenzene, has a continuous skeleton formed by an organic polymer having at least a -COONa group, and absorbs the liquid to be absorbed between the skeletons. It has a communication hole (continuous hole) that serves as a field. Further, since the hydrolysis treatment uses the -COOR group (carboxylic acid ester group) of the crosslinked polymer as the -COONa group or the -COOH group (FIG. 3), the polymer absorbent has a -COOR group. May be. The presence of -COOH group and -COONa group in the organic polymer forming a continuous skeleton can be confirmed by analysis by infrared spectrophotometric method or a method of quantifying weakly acidic ion exchange groups.
 図3は、吸収剤Aの製造過程について説明する図である。図3において、上図は、重合の構成原料を示し、中図は、(メタ)アクリル酸エステルとジビニルベンゼンとの架橋重合体としてのモノリスAを示し、下図は、中図のモノリスAに加水分解及び乾燥処理をした吸収剤Aを示している。 FIG. 3 is a diagram illustrating the manufacturing process of the absorbent A. In FIG. 3, the upper figure shows the constituent raw materials of the polymerization, the middle figure shows the monolith A as a crosslinked polymer of (meth) acrylic acid ester and divinylbenzene, and the lower figure shows the monolith A in the middle figure. The absorbent A which has been decomposed and dried is shown.
 以下、高分子吸収剤の一例としての、(メタ)アクリル酸エステルと、ジビニルベンゼンとの架橋重合体の加水分解物(以下、「吸収剤A」ともいう。)について、説明する。高分子吸収剤としては、吸収剤Aに限られず、(メタ)アクリル酸エステルと、一分子中に2個以上のビニル基を含有する化合物の架橋重合体の加水分解物であればよい。以下、「モノリスA」とは、加水分解処理がなされる前の(メタ)アクリル酸エステルとジビニルベンゼンとの架橋重合体からなる有機多孔質体であり、「モノリス状有機多孔質体」ともいう。「吸収剤A」は、加水分解処理及び乾燥処理がなされた後の(メタ)アクリル酸エステルとジビニルベンゼンとの架橋重合体(モノリスA)の加水分解物である。なお、以下の説明において、吸収剤Aは乾燥状態のものをいう。 Hereinafter, a hydrolyzate of a crosslinked polymer of (meth) acrylic acid ester and divinylbenzene (hereinafter, also referred to as “absorbent A”) as an example of a polymer absorbent will be described. The polymer absorbent is not limited to the absorbent A, and may be a hydrolyzate of a (meth) acrylic acid ester and a crosslinked polymer of a compound containing two or more vinyl groups in one molecule. Hereinafter, "monolith A" is an organic porous body composed of a crosslinked polymer of (meth) acrylic acid ester and divinylbenzene before being hydrolyzed, and is also referred to as "monolith-like organic porous body". .. "Absorbent A" is a hydrolyzate of a crosslinked polymer (monolith A) of (meth) acrylic acid ester and divinylbenzene after being hydrolyzed and dried. In the following description, the absorbent A refers to a dry state.
 吸収剤Aの構造について説明する。吸収剤Aは、連続骨格と連続空孔を有する。連続骨格を形成する有機ポリマーである吸収剤Aは、図3に示すように、重合モノマーである(メタ)アクリル酸エステルと、架橋モノマーであるジビニルベンゼンとを用いて、架橋重合させ、得られた架橋重合体(モノリスA)を加水分解することにより得られる。連続骨格を形成する有機ポリマーは、構成単位として、エチレン基の重合残基(以下、「構成単位X」ともいう。)と、ジビニルベンゼンの架橋重合残基(以下、「構成単位Y」ともいう。)とを備える。連続骨格を形成する有機ポリマー中のエチレン基の重合残基(構成単位X)は、カルボン酸エステル基の加水分解により生成する-COONa基、又は-COOH基と-COONa基を有する。なお、重合モノマーが(メタ)アクリル酸エステルであることから、エチレン基の重合残基(構成単位X)は、-COONa基、-COOH基、及びエステル基とを有する。具体的な例として、メタクリル酸ブチルを重合モノマーとし、ジビニルベンゼンを架橋モノマーとした吸収剤aの製造は、後述する。 The structure of the absorbent A will be described. Absorbent A has a continuous skeleton and continuous pores. As shown in FIG. 3, the absorbent A, which is an organic polymer forming a continuous skeleton, is obtained by cross-linking polymerization using a (meth) acrylic acid ester which is a polymerization monomer and divinylbenzene which is a cross-linking monomer. It is obtained by hydrolyzing the crosslinked polymer (monomer A). The organic polymer forming a continuous skeleton has ethylene group polymerization residues (hereinafter, also referred to as “constituent unit X”) and crosslinked polymerization residues of divinylbenzene (hereinafter, also referred to as “constituent unit Y”) as constituent units. .) And. The polymerization residue (constituent unit X) of the ethylene group in the organic polymer forming the continuous skeleton has a -COONa group or -COOH group and -COONa group formed by hydrolysis of the carboxylic acid ester group. Since the polymerization monomer is a (meth) acrylic acid ester, the polymerization residue (constituent unit X) of the ethylene group has a —COONa group, a —COOH group, and an ester group. As a specific example, the production of the absorbent a using butyl methacrylate as a polymerization monomer and divinylbenzene as a cross-linking monomer will be described later.
 吸収剤Aにおいて、連続骨格を形成する有機ポリマー中、ジビニルベンゼンの架橋重合残基(構成単位Y)の割合は、全構成単位に対し、0.1~30モル%、好ましくは0.1~20モル%である。メタクリル酸ブチルを重合モノマーとし、ジビニルベンゼンを架橋モノマーとした吸収剤aにおいては、連続骨格を形成する有機ポリマー中、ジビニルベンゼンの架橋重合残基(構成単位Y)の割合は、全構成単位に対し、約3%であり、0.1~10モル%が好ましく、より好ましくは0.3~8モル%である。連続骨格を形成する有機ポリマー中のジビニルベンゼンの架橋重合残基の割合が、上記範囲未満だと、吸収剤Aの強度が低下し、また、上記範囲を超えると、吸収対象液の吸収量が低下する。 In the absorbent A, the ratio of the crosslinked polymerization residue (constituent unit Y) of divinylbenzene in the organic polymer forming the continuous skeleton is 0.1 to 30 mol%, preferably 0.1 to 30 mol% with respect to all the structural units. It is 20 mol%. In the absorbent a using butyl methacrylate as the polymerization monomer and divinylbenzene as the cross-linking monomer, the ratio of the cross-linked polymerization residue (constituent unit Y) of divinylbenzene to the organic polymer forming the continuous skeleton is the total structural unit. On the other hand, it is about 3%, preferably 0.1 to 10 mol%, and more preferably 0.3 to 8 mol%. If the ratio of the crosslinked polymerized residue of divinylbenzene in the organic polymer forming the continuous skeleton is less than the above range, the strength of the absorbent A decreases, and if it exceeds the above range, the amount of the liquid to be absorbed is absorbed. descend.
 吸収剤Aにおいて、連続骨格を形成する有機ポリマー中、構成単位X及び構成単位Yの合計モル数に対する構成単位Yの割合は、好ましくは0.1~30モル%、特に好ましくは0.5~20モル%である。メタクリル酸ブチルを重合モノマーとし、ジビニルベンゼンを架橋モノマーとした吸収剤aにおいては、連続骨格を形成する有機ポリマー中、構成単位X及び構成単位Yの合計モル数に対する構成単位Yの割合は、好ましくは0.1~10モル%、特に好ましくは0.3~8モル%である。連続骨格を形成する有機ポリマー中の構成単位X及び構成単位Yの合計モル数に対する構成単位Yの割合が、上記範囲未満だと、吸収剤Aの強度が低下し、上記範囲を超えると、吸収対象液の吸収量が低下する。 In the absorbent A, the ratio of the structural unit Y to the total number of moles of the structural unit X and the structural unit Y in the organic polymer forming the continuous skeleton is preferably 0.1 to 30 mol%, particularly preferably 0.5 to. It is 20 mol%. In the absorbent a using butyl methacrylate as a polymerized monomer and divinylbenzene as a crosslinked monomer, the ratio of the structural unit Y to the total number of moles of the structural unit X and the structural unit Y in the organic polymer forming the continuous skeleton is preferable. Is 0.1 to 10 mol%, particularly preferably 0.3 to 8 mol%. If the ratio of the structural unit Y to the total number of moles of the structural unit X and the structural unit Y in the organic polymer forming the continuous skeleton is less than the above range, the strength of the absorbent A decreases, and if it exceeds the above range, it is absorbed. The amount of the target liquid absorbed decreases.
 吸収剤Aにおいて、連続骨格を形成する有機ポリマーは、構成単位X及び構成単位Yのみからなるものであってもよいし、あるいは、構成単位X及び構成単位Yに加えて、構成単位X及び構成単位Y以外の構成単位、すなわち、(メタ)アクリル酸エステル及びジビニルベンゼン以外のモノマーの重合残基を有していてもよい。構成単位X及び構成単位Y以外の構成単位としては、スチレン、α―メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、(メタ)アクリル酸グリシジル、イソブテン、ブタジエン、イソプレン、クロロプレン、塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン、(メタ)アクリロニトリル、酢酸ビニル、エチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等のモノマーの重合残基が挙げられる。また、連続骨格を形成する有機ポリマー中、構成単位X及び構成単位Y以外の構成単位の割合は、全構成単位に対し、0~50モル%、好ましくは0~30モル%である。メタクリル酸ブチルを重合モノマーとし、ジビニルベンゼンを架橋モノマーとした吸収剤aにおいては、連続骨格を形成する有機ポリマー中、構成単位X及び構成単位Y以外の構成単位の割合は、全構成単位に対し、0~50モル%、好ましくは0~30モル%である。 In the absorbent A, the organic polymer forming the continuous skeleton may consist only of the structural unit X and the structural unit Y, or in addition to the structural unit X and the structural unit Y, the structural unit X and the constitution. It may have a structural unit other than the unit Y, that is, a polymer residue of a monomer other than (meth) acrylic acid ester and divinylbenzene. The structural units other than the structural unit X and the structural unit Y include styrene, α-methylstyrene, vinyltoluene, vinylbenzyl chloride, glycidyl (meth) acrylate, isobutene, butadiene, isoprene, chloroprene, vinyl chloride, vinyl bromide, and the like. Polymerization residues of monomers such as vinylidene chloride, tetrafluoroethylene, (meth) acrylonitrile, vinyl acetate, ethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, and trimethylpropantri (meth) acrylate can be mentioned. .. Further, the ratio of the structural units other than the structural unit X and the structural unit Y in the organic polymer forming the continuous skeleton is 0 to 50 mol%, preferably 0 to 30 mol% with respect to all the structural units. In the absorbent a using butyl methacrylate as the polymerization monomer and divinylbenzene as the cross-linking monomer, the ratio of the structural units other than the structural unit X and the structural unit Y in the organic polymer forming the continuous skeleton is relative to the total structural units. , 0 to 50 mol%, preferably 0 to 30 mol%.
 吸収剤Aの連続骨格の厚みは0.1~100μmである。吸収剤Aの連続骨格の厚みが0.1μm未満の場合、多孔質の水を取り込むための空間(空孔)が、吸収時に潰れやすくなり、吸収量が低下してしまう恐れがある。一方、連続骨格の厚みが、100μmより厚くなると、液体の吸収が遅くなる恐れがある。なお、吸収剤Aの連続骨格の細孔構造は、連続気泡構造であるため、連続骨格の厚みの測定は、電子顕微鏡測定用の試験片に現れる骨格断面を厚みの評価箇所とする。骨格は、後述の加水分解後の脱水・乾燥処理で取り除かれる水(水滴)同士の間隔で形成されるため、多角形であることが多い。そのため、骨格の厚みは、多角形断面に外接する円の直径の平均値とする。まれに、多角形の中に小さな穴が開いている場合もあるが、その場合は、小さな穴を囲んでいる多角形の断面の外接円を測定する。 The thickness of the continuous skeleton of the absorbent A is 0.1 to 100 μm. If the thickness of the continuous skeleton of the absorbent A is less than 0.1 μm, the space (vacancy) for taking in the porous water is likely to be crushed during absorption, and the absorption amount may decrease. On the other hand, if the thickness of the continuous skeleton is thicker than 100 μm, the absorption of the liquid may be delayed. Since the pore structure of the continuous skeleton of the absorbent A is an open cell structure, the thickness of the continuous skeleton is measured by using the skeleton cross section appearing on the test piece for electron microscope measurement as the evaluation point of the thickness. The skeleton is often polygonal because it is formed at intervals between water (water droplets) that are removed by dehydration / drying treatment after hydrolysis, which will be described later. Therefore, the thickness of the skeleton is the average value of the diameters of the circles circumscribing the polygonal cross section. In rare cases, there may be a small hole in the polygon, in which case the circumscribed circle of the cross section of the polygon surrounding the small hole is measured.
 吸収剤Aは、また、連続空孔の平均直径は、1~1000μmである。吸収剤Aの連続空孔の平均直径が、1μm未満の場合、多孔質の水を取り込むための空間(空孔)が、吸収時に潰れやすくなり、吸収速度が低下してしまう恐れがある。一方、連続空孔の平均直径が、1000μmより厚くなると、液体の吸収速度が低下する恐れがある。なお、吸収剤Aの連続空孔の平均直径は、水銀圧入法によって測定することができ、水銀圧入法によって得られた細孔分布曲線の最大値である。連続空孔の平均直径の測定用サンプルについては、吸収剤Aのイオン形によらず減圧乾燥器によって50℃、18時間以上乾燥させたものをサンプルとして用いる。最終到達圧力を0TORRとする。 Absorbent A also has an average diameter of continuous pores of 1 to 1000 μm. If the average diameter of the continuous pores of the absorbent A is less than 1 μm, the space (vacancy) for taking in the porous water is likely to be crushed during absorption, and the absorption rate may decrease. On the other hand, if the average diameter of the continuous pores is thicker than 1000 μm, the absorption rate of the liquid may decrease. The average diameter of the continuous pores of the absorbent A can be measured by the mercury intrusion method, and is the maximum value of the pore distribution curve obtained by the mercury intrusion method. As a sample for measuring the average diameter of continuous pores, a sample dried at 50 ° C. for 18 hours or more by a vacuum dryer is used regardless of the ionic form of the absorbent A. The final ultimate pressure is 0TORR.
 吸収剤Aは、気泡状のマクロポア同士が重なっている構造を有し(図4~図8参照)、この重なる部分は、平均直径1~1000μm、好ましくは10~200μm、特に好ましくは20~100μmの共通の開口(メソポア)となる連続気泡構造体(連続マクロポア構造体)である連続気泡構造を有する。その大部分がオープンポア構造のものである。マクロポアとマクロポアの重なりは、1個のマクロポアで1~12個、多くのものは3~10個である。 The absorbent A has a structure in which bubble-like macropores overlap each other (see FIGS. 4 to 8), and the overlapping portions have an average diameter of 1 to 1000 μm, preferably 10 to 200 μm, and particularly preferably 20 to 100 μm. It has an open cell structure that is an open cell structure (continuous macropore structure) that serves as a common opening (mesopore). Most of them have an open pore structure. The overlap of macropores is 1 to 12 for one macropore, and 3 to 10 for most macropores.
 図4は、吸収剤aの拡大倍率50倍のSEM写真である。図5は、吸収剤aの拡大倍率100倍のSEM写真である。図6は、吸収剤aの拡大倍率500倍のSEM写真である。図7は、吸収剤aの拡大倍率1000倍のSEM写真である。図8は、吸収剤aの拡大倍率1500倍のSEM写真である。吸収剤aは、メタクリル酸ブチルを重合モノマーとし、ジビニルベンゼンを架橋モノマーとする吸収剤Aの一例であり、図4~図8の吸収剤aは、それぞれ2mm角の立方体である。 FIG. 4 is an SEM photograph of the absorbent a at a magnification of 50 times. FIG. 5 is an SEM photograph of the absorbent a at a magnification of 100 times. FIG. 6 is an SEM photograph of the absorbent a at a magnification of 500 times. FIG. 7 is an SEM photograph of the absorbent a at a magnification of 1000 times. FIG. 8 is an SEM photograph of the absorbent a at a magnification of 1500 times. The absorbent a is an example of the absorbent A in which butyl methacrylate is used as a polymerization monomer and divinylbenzene is used as a cross-linked monomer, and the absorbents a in FIGS. 4 to 8 are cubes of 2 mm square, respectively.
 図4~図8には、吸収剤Aの具体例である吸収剤aの形態例の走査型電子顕微鏡(SEM)写真を示すが、図4~図8に示す吸収剤aは、多数の気泡状のマクロポアを有しており、気泡状のマクロポア同士が重なり合い、この重なる部分が共通の開口(メソポア)となる連続気泡構造体となっている。その大部分がオープンポア構造である。メソポアの乾燥状態での平均直径が、上記範囲未満であると、吸収対象液の吸収速度が遅くなり過ぎ、また、上記範囲を超えると、吸収剤a(吸収剤A)が脆くなる。吸収剤Aがこのような連続気泡構造となることにより、マクロポア群やメソポア群を均一に形成できると共に、特開平8-252579号公報等に記載されるような粒子凝集型多孔質体に比べて、細孔容積や比表面積を格段に大きくすることができる。 4 to 8 show scanning electron microscope (SEM) photographs of a morphological example of the absorbent a, which is a specific example of the absorbent A. The absorbent a shown in FIGS. 4 to 8 has a large number of bubbles. It has a shaped macropore, and the bubble-shaped macropores overlap each other, and this overlapping portion serves as a common opening (mesopore) to form an open cell structure. Most of them have an open pore structure. If the average diameter of the mesopore in the dry state is less than the above range, the absorption rate of the liquid to be absorbed becomes too slow, and if it exceeds the above range, the absorbent a (absorbent A) becomes brittle. When the absorbent A has such an open cell structure, a macropore group and a mesopore group can be uniformly formed, and compared with a particle-aggregated porous body as described in Japanese Patent Application Laid-Open No. 8-252579. , The pore volume and specific surface area can be significantly increased.
 吸収剤Aの細孔(空孔)の全細孔容積は、1~50ml/gが好ましく、好ましくは2~30ml/gである。吸収剤Aの全細孔容積が、0.5ml/g未満の場合、多孔質の水を取り込むための空間(空孔)が、吸収時に潰れやすくなり、吸収量及び吸収速度が低下してしまう恐れがある。また、50ml/gを超えると、吸収剤Aの強度が低下する。なお、全細孔容積は、水銀圧入法で測定することができる。全細孔容積の測定用サンプルは、吸収剤Aのイオン形によらず、減圧乾燥器で50℃の温度のもと、18時間以上乾燥させた吸収剤Aを用いる。最終到達圧力を0TORRとする。 The total pore volume of the pores (vacancy) of the absorbent A is preferably 1 to 50 ml / g, preferably 2 to 30 ml / g. When the total pore volume of the absorbent A is less than 0.5 ml / g, the space (vacancy) for taking in the porous water is easily crushed at the time of absorption, and the absorption amount and the absorption rate are lowered. There is a fear. On the other hand, if it exceeds 50 ml / g, the strength of the absorbent A decreases. The total pore volume can be measured by the mercury press-fitting method. As the sample for measuring the total pore volume, the absorbent A which has been dried in a vacuum dryer at a temperature of 50 ° C. for 18 hours or more is used regardless of the ionic form of the absorbent A. The final ultimate pressure is 0TORR.
 以下、吸収剤Aと体液等の液体(以下、「体液」ともいう。)とが接触した場合の様子について説明するが、吸収剤Aを備える吸収体11と体液とが接触した場合も同様である。また、吸収された体液の重量は、体液量に略比例することから、以下において、体液重量を「体液量」ともいう。 Hereinafter, the state of contact between the absorbent A and a liquid such as a body fluid (hereinafter, also referred to as “body fluid”) will be described, but the same applies to the case where the absorber 11 including the absorbent A and the body fluid come into contact with each other. is there. Further, since the weight of the absorbed body fluid is substantially proportional to the amount of body fluid, the weight of the body fluid is also referred to as "the amount of body fluid" below.
 まず、体液が吸収剤Aと接触すると、毛細管現象によって、吸収剤Aの細孔(空孔)に吸収される。図4~図8に示すように、吸収剤Aが備える連続空孔は、複数の細孔(空孔)が互いに連通している空孔であり、外観からも空孔が多数設けられていることを視認することができる。毛細管現象によって、一定量の体液がこの多数の空孔に体液が入り込み、吸収剤Aが体液を吸収する。吸収剤Aに吸収された一定量の体液のうち、一部は、浸透圧によって連続骨格に吸収されて、連続骨格が伸長する。吸収剤Aに吸収された一定量の体液のうち、連続骨格に吸収されていない体液は、空孔内に留められた状態で吸収されている。 First, when the body fluid comes into contact with the absorbent A, it is absorbed into the pores (pores) of the absorbent A by the capillary phenomenon. As shown in FIGS. 4 to 8, the continuous pores included in the absorbent A are pores in which a plurality of pores (vacancy) communicate with each other, and many pores are provided from the appearance. You can see that. Due to the capillary phenomenon, a certain amount of body fluid enters the large number of pores, and the absorbent A absorbs the body fluid. A part of the fixed amount of body fluid absorbed by the absorbent A is absorbed by the continuous skeleton by osmotic pressure, and the continuous skeleton is elongated. Of the fixed amount of body fluid absorbed by the absorbent A, the body fluid not absorbed by the continuous skeleton is absorbed in a state of being retained in the pores.
 吸収剤Aは、液体を吸収すると、連続骨格が伸長する性質を有する。この連続骨格の伸長は、ほぼ全方位に亘って伸長する。連続骨格の伸長によって、吸収剤Aの外形が大きくなるのに伴い、各空孔の大きさも大きくなる。空孔の大きさが大きくなると、空孔内の容積が大きくなり、空孔内に留めることができる体液の量が増える。つまり、一定量の体液を吸収して大きくなった吸収剤Aは、毛細管現象によって、さらに所定量の体液を吸収することができる。また、毛細管現象によって体液を吸収するため、吸収剤Aは、体液の吸収を素早く行うことができる。なお、吸収剤Aが吸収した体液について、連続骨格が吸収する体液より空孔内に留められた体液の方が多い。 Absorbent A has the property of extending the continuous skeleton when it absorbs a liquid. The extension of this continuous skeleton extends in almost all directions. As the outer shape of the absorbent A increases due to the extension of the continuous skeleton, the size of each pore also increases. As the size of the hole increases, the volume inside the hole increases, and the amount of body fluid that can be retained in the hole increases. That is, the absorbent A, which has grown by absorbing a certain amount of body fluid, can further absorb a predetermined amount of body fluid by the capillary phenomenon. Further, since the body fluid is absorbed by the capillary phenomenon, the absorbent A can quickly absorb the body fluid. Regarding the body fluid absorbed by the absorbent A, there are more body fluids retained in the pores than those absorbed by the continuous skeleton.
 このように、吸収剤Aの体液の吸収の大部分は、毛細管現象によって空孔内に体液を留めることによって行われることから、空孔の体積(全細孔容積)の割合である空隙率(吸収剤Aの体積に対する空孔の空隙の体積)が大きいほど、より多くの体液を吸収できる。この空隙率が、85%以上であることが好ましい。 As described above, since most of the absorption of the body fluid of the absorbent A is performed by retaining the body fluid in the pores by the capillary phenomenon, the porosity (porosity) which is the ratio of the volume of the pores (total pore volume) The larger the volume of the voids in the pores relative to the volume of the absorbent A), the more body fluid can be absorbed. The porosity is preferably 85% or more.
 吸収剤aの空隙率を求める。水銀圧入法によって、得られた吸収剤aの比表面積は400m2/g、細孔容積は15.5ml/gである。この細孔容積15.5mlは、1gの吸収剤Aの中の細孔の容積である。仮に、吸収剤Aの比重を1g/mlとすると、1gの吸収剤Aの中で占める体積は、それぞれ細孔容積が15.5ml、吸収剤Aが1mlとなる。1gの吸収剤Aの全容積(体積)は、15.5+1[ml]となり、そのうちの細孔容積の比率が空隙率となる。この結果、空隙率は、15.5/(15.5+1)×100≒94%となる。 The porosity of the absorbent a is determined. The specific surface area of the absorbent a obtained by the mercury injection method is 400 m 2 / g, and the pore volume is 15.5 ml / g. The pore volume of 15.5 ml is the volume of the pores in 1 g of the absorbent A. Assuming that the specific gravity of the absorbent A is 1 g / ml, the volume occupied in 1 g of the absorbent A is 15.5 ml for the pore volume and 1 ml for the absorbent A, respectively. The total volume (volume) of 1 g of the absorbent A is 15.5 + 1 [ml], and the ratio of the pore volume is the porosity. As a result, the porosity is 15.5 / (15.5 + 1) × 100≈94%.
 この吸収剤A(吸収剤a)は、体液の組成による吸収量の変化が少ない。単位重さ当たりの吸収剤Aが、濃度0.9wt%のNaCl水溶液を吸収する重量(第1吸収重量)は、濃度0~2.0wt%のNaCl水溶液を吸収する重量(第2吸収重量)の0.5~1.9倍であることが好ましい。濃度0.9wt%のNaCl水溶液とは、体液の組成に近いとされる所謂生理食塩水と同程度の食塩水である。第1吸収重量が、第2吸収重量の0.5~1.9倍である吸収剤Aを備えた吸収体11は、体液の吸収量について、体液中の電解質イオン濃度に左右されにくいため、吸収体11は体液をより確実に吸収することができる。 This absorbent A (absorbent a) has little change in the amount absorbed depending on the composition of the body fluid. The weight by which the absorbent A per unit weight absorbs the NaCl aqueous solution having a concentration of 0.9 wt% (first absorption weight) is the weight at which the NaCl aqueous solution having a concentration of 0 to 2.0 wt% is absorbed (second absorption weight). It is preferably 0.5 to 1.9 times that of. The NaCl aqueous solution having a concentration of 0.9 wt% is a saline solution having a concentration similar to that of a so-called physiological saline solution, which is said to have a composition close to that of a body fluid. The absorber 11 provided with the absorbent A having a first absorption weight of 0.5 to 1.9 times the second absorption weight is less likely to be affected by the concentration of electrolyte ions in the body fluid in terms of the amount of body fluid absorbed. The absorber 11 can more reliably absorb the body fluid.
 汗、尿、便、経血、おりもの、母乳、血液、滲出液等の生物から排出される液体である体液は、その体液の種類だけでなく、個体差、健康状態等によってその組成が変化する。例えば、生物の尿成分中の電解質濃度は、Na+、K+、Ca2+等の各イオン濃度が人間と動物とで異なり、その健康状態等でも異なる。吸収性物品に広く用いられている高吸収性ポリマー(所謂SAP)は、浸透圧の原理によって体液を吸収するため、電解質イオンの数が多くなるにつれて(電解質濃度が高くなるにつれて)、体液を吸収できる重量が減少してしまう恐れがあった。一方、吸収剤A(吸収剤a)は、浸透圧の原理によって吸収する体液の吸収量より、毛細管現象によって空孔に体液を取り込むことによる吸収量が多いため、体液の組成、特に電解質濃度による吸収量の減少が起こりにくい。 The composition of body fluids, which are liquids discharged from living organisms such as sweat, urine, stool, menstrual blood, cages, breast milk, blood, and exudate, changes not only depending on the type of body fluid, but also on individual differences and health conditions. To do. For example, the concentration of electrolytes in the urine component of living organisms is different between humans and animals in terms of the concentration of ions such as Na + , K + , and Ca 2+ , and also in their health condition. Highly absorbent polymers (so-called SAP), which are widely used in absorbent articles, absorb body fluids by the principle of osmotic pressure, so that as the number of electrolyte ions increases (as the electrolyte concentration increases), the body fluids are absorbed. There was a risk that the weight that could be produced would decrease. On the other hand, the absorbent A (absorbent a) depends on the composition of the body fluid, particularly the electrolyte concentration, because the amount absorbed by the body fluid taken into the pores by the capillary phenomenon is larger than the amount absorbed by the body fluid based on the principle of osmotic pressure. The amount of absorption is unlikely to decrease.
 図9は、吸収剤aの各測定結果を示す図である。図9における「吸水重量」、「吸水速度」は、「吸収重量」、「吸収速度」と同義である。図9に示すように500~850μmの粒子の大きさの吸収剤aと、250μm以下の粒子の大きさの吸収剤aについて複数回の測定を行っている。また、比較例として、高吸収性ポリマーであるSAP(住友精化株式会社製 アクアキープSA60S)の結果を併せて示している。 FIG. 9 is a diagram showing each measurement result of the absorbent a. “Water absorption weight” and “water absorption rate” in FIG. 9 are synonymous with “absorption weight” and “absorption rate”. As shown in FIG. 9, the absorbent a having a particle size of 500 to 850 μm and the absorbent a having a particle size of 250 μm or less are measured a plurality of times. In addition, as a comparative example, the results of SAP (Aquakeep SA60S manufactured by Sumitomo Seika Chemical Co., Ltd.), which is a highly absorbent polymer, are also shown.
 各濃度のNaCl水溶液を吸収する吸収重量の測定は以下の方法で行うことができる。
 まず、それぞれ1000ml入れた容器を各濃度のNaCl水溶液毎に用意する。
 次に、200mm×200mmにカットされたナイロンネット(255メッシュナイロンネット 株式会社NBCメッシュテック製 N-No.255HD)を2枚重ね合わせ、1.0gの吸収剤Aをナイロンネット同士の間に挟んだ状態で、四方にヒートシールを行い、試料入りの袋とする。
 続いて、試料入りの袋を各濃度のNaCl水溶液が入れられた容器の底面に触れるように浸漬させ、袋の上部の一辺を洗濯はさみで容器の端に固定した状態で1時間放置する。
 その後、NaCl水溶液から袋を引き上げて、袋の上端より5mm、及び両端より50mmの部分を洗濯はさみで挟んだ状態で15分間水切りを行う。
 最後に、吸収剤Aが入った状態の袋の重量を測定し、測定結果から袋単体の重量及び1.0g(NaCl水溶液を吸収する前の吸収剤Aの重量)を減じることで、吸収剤Aが吸収したNaCl水溶液の重量を得ることができる。
The absorption weight for absorbing the NaCl aqueous solution of each concentration can be measured by the following method.
First, a container containing 1000 ml of each is prepared for each concentration of NaCl aqueous solution.
Next, two nylon nets (255 mesh nylon net NBC Meshtec Inc. N-No. 255HD) cut to 200 mm x 200 mm are overlapped, and 1.0 g of absorbent A is sandwiched between the nylon nets. In this state, heat seal on all sides to make a bag containing the sample.
Subsequently, the bag containing the sample is immersed so as to touch the bottom surface of the container containing the NaCl aqueous solution of each concentration, and the upper side of the bag is fixed to the edge of the container with washing scissors and left for 1 hour.
Then, the bag is pulled up from the aqueous NaCl solution, and draining is performed for 15 minutes with the portion 5 mm from the upper end of the bag and 50 mm from both ends sandwiched between washing scissors.
Finally, the weight of the bag containing the absorbent A is measured, and the weight of the bag alone and 1.0 g (the weight of the absorbent A before absorbing the NaCl aqueous solution) are reduced from the measurement result to obtain the absorbent. The weight of the aqueous NaCl solution absorbed by A can be obtained.
 図9に示すように、1.0gの吸収剤a(第1高分子吸収剤、以下、「第1吸収剤」ともいう。)が吸収した濃度0.9wt%のNaCl水溶液の重量(第1吸収重量)は、37.71~62.09gであり、1.0gの吸収剤a(第2高分子吸収剤、以下、「第2吸収剤」ともいう。)が吸収した濃度0~2.0wt%のNaCl水溶液の重量(第2吸収重量)は、34.40~68.61gである。この測定結果より、第1吸収重量の第2吸収重量に対する割合の下限値は、(第1吸収重量の最小値/第2吸収重量の最大値)であり、上限値は、(第1吸収重量の最大値/第2吸収重量の最小値)である。したがって、第1吸収重量の第2吸収重量に対する割合は、(37.71/68.61)~(62.09/34.40)≒0.55~1.80となり、第1吸収重量は、第2吸収重量の0.55~1.80倍となる。なお、当該数値の算出は、有効数字を小数点以下2桁として行っている。 As shown in FIG. 9, the weight (first) of an aqueous NaCl solution having a concentration of 0.9 wt% absorbed by 1.0 g of the absorbent a (first polymer absorbent, hereinafter also referred to as “first absorbent”). Absorption weight) is 37.71 to 62.09 g, and the concentration of 1.0 g of the absorbent a (second polymer absorbent, hereinafter also referred to as “second absorbent”) is 0 to 2. The weight of the 0 wt% NaCl aqueous solution (second absorption weight) is 34.40 to 68.61 g. From this measurement result, the lower limit of the ratio of the first absorbed weight to the second absorbed weight is (minimum value of the first absorbed weight / maximum value of the second absorbed weight), and the upper limit is (first absorbed weight). Maximum value / minimum value of the second absorbed weight). Therefore, the ratio of the first absorbed weight to the second absorbed weight is (37.71 / 68.61) to (62.09 / 34.40) ≈0.55 to 1.80, and the first absorbed weight is It is 0.55 to 1.80 times the second absorbed weight. The numerical value is calculated by using two significant figures after the decimal point.
 同様に、SAPについては、1.0gのSAP(第1SAP)が吸収した濃度0.9wt%のNaCl水溶液の重量(第1SAP吸収重量)が、60.08~63.69gであり、1.0gのSAP(第2SAP)が吸収した濃度0~2.0wt%のNaCl水溶液の重量(第2SAP吸収重量)が45.74~311.12gである。第1SAP吸収重量の第2SAP吸収重量に対する割合は、(第1SAP吸収量の最小値/第2SAP吸収重量の最大値)~(第1SAP吸収重量の最大値/第2SAP吸収重量の最小値)=(60.08/311.12)~(63.69/45.74)≒0.19~1.39となっている。SAPは、NaCl水溶液の濃度が高くなるほど、NaCl水溶液の吸収量が低下する。 Similarly, with respect to SAP, the weight of the NaCl aqueous solution having a concentration of 0.9 wt% absorbed by 1.0 g of SAP (first SAP) (first SAP absorbed weight) is 60.08 to 63.69 g, which is 1.0 g. The weight of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% absorbed by the SAP (second SAP) (second SAP absorption weight) is 45.74 to 311.12 g. The ratio of the first SAP absorption weight to the second SAP absorption weight is (minimum value of the first SAP absorption amount / maximum value of the second SAP absorption weight) to (maximum value of the first SAP absorption weight / minimum value of the second SAP absorption weight) = ( 60.08 / 311.12) to (63.69 / 45.74) ≈ 0.19 to 1.39. In SAP, the higher the concentration of the NaCl aqueous solution, the lower the absorption amount of the NaCl aqueous solution.
 この結果より、吸収剤A(吸収剤a)は、SAPと同等又はSAPより多くの吸収を可能としつつ、吸収剤AのNaCl水溶液の吸収量について、濃度による変化が少ないことがわかる。したがって、吸収剤Aを用いた吸収体11は、体液の吸収について、SAPと同程度の体液を確保しつつ、SAPのように電解質イオンの濃度によって吸収力が低下してしまう恐れを軽減させることができる。 From this result, it can be seen that the absorbent A (absorbent a) enables absorption equal to or greater than that of SAP, and the absorption amount of the NaCl aqueous solution of the absorbent A does not change much depending on the concentration. Therefore, the absorber 11 using the absorbent A secures the same amount of body fluid as SAP, and reduces the possibility that the absorption capacity is lowered due to the concentration of electrolyte ions like SAP. Can be done.
 また、吸収剤Aは、吸収剤A内に保持される水溶液の量(保水量)の変化が、電解質イオン濃度によって変動されにくい。電解質イオン濃度による水溶液の保水量の変化が小さいことから、体液の組成によって吸収剤A内に留められる体液の量が変わってしまう恐れを軽減させることができる。 Further, in the absorbent A, the change in the amount of the aqueous solution (water retention amount) held in the absorbent A is unlikely to change depending on the electrolyte ion concentration. Since the change in the amount of water retained in the aqueous solution due to the electrolyte ion concentration is small, it is possible to reduce the possibility that the amount of body fluid retained in the absorbent A will change depending on the composition of the body fluid.
 上述のNaCl水溶液の重量の測定と同じ方法で、濃度0.9wt%のNaCl水溶液を第1吸収量だけ吸収した第1吸収剤(第1高分子吸収剤)と、濃度0~2.0wt%のNaCl水溶液を第2吸収量だけ吸収した第2吸収剤(第2高分子吸収剤)とを準備する。第1吸収剤と第2吸収剤を、それぞれ所定時間だけ遠心分離機を用いて、150Gで850rpmの条件下で90秒間脱水する。そして、第1吸収剤及び第2吸収剤にそれぞれ吸収されているNaCl水溶液の重量を測定すると、第1吸収剤が吸収した濃度0.9wt%のNaCl水溶液の重さ(第1保水重量)は、第2吸収剤が吸収した濃度0~2.0wt%のNaCl水溶液(第2保水重量)の重さの0.5~1.6倍であることが好ましい。第1保水重量が第2保水重量の0.5~1.6倍である吸収剤Aは、一旦吸収した体液を、吸収剤Aの外側に移動させて、体液を他の物質に吸収させやすくなる。 The first absorbent (first polymer absorbent) that absorbed the first absorption amount of the NaCl aqueous solution having a concentration of 0.9 wt% and the concentration of 0 to 2.0 wt% by the same method as the above-mentioned measurement of the weight of the NaCl aqueous solution. A second absorbent (second polymer absorbent) that has absorbed the NaCl aqueous solution by the second absorption amount is prepared. The first absorbent and the second absorbent are dehydrated for 90 seconds at 150 G and 850 rpm using a centrifuge for each predetermined time. Then, when the weight of the NaCl aqueous solution absorbed by the first absorbent and the second absorbent is measured, the weight of the NaCl aqueous solution having a concentration of 0.9 wt% absorbed by the first absorbent (first water retention weight) is determined. , It is preferable that the weight is 0.5 to 1.6 times the weight of the NaCl aqueous solution (second water retention weight) having a concentration of 0 to 2.0 wt% absorbed by the second absorbent. The absorbent A, which has a first water retention weight of 0.5 to 1.6 times the second water retention weight, easily moves the body fluid once absorbed to the outside of the absorbent A and allows the body fluid to be absorbed by another substance. Become.
 図9に示すように、1.0gの吸収剤aが保水した状態の濃度0.9wt%のNaCl水溶液の重量(第1保水重量)は、13.59~17.12gであり、1.0gの吸収剤aが保水した状態の濃度0~2.0wt%のNaCl水溶液の重量(第2保水重量)は、11.46~19.47gである。この結果から、NaCl水溶液の濃度差による吸収剤aが保水するNaCl水溶液の重量の差が小さいことがわかる。 As shown in FIG. 9, the weight (first water retention weight) of the NaCl aqueous solution having a concentration of 0.9 wt% in a state where 1.0 g of the absorbent a retains water is 13.59 to 17.12 g, which is 1.0 g. The weight (second water retention weight) of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% in the state where the absorbent a is retained is 11.46 to 19.47 g. From this result, it can be seen that the difference in weight of the NaCl aqueous solution retained by the absorbent a due to the difference in the concentration of the NaCl aqueous solution is small.
 吸収剤aについて、第1保水重量の第2保水重量に対する割合の下限値は、(第1保水重量の最小値/第2保水重量の最大値)であり、上限値は、(第1保水重量の最大値/第2保水重量の最小値)である。したがって、第1保水重量の第2保水重量に対する割合は、(13.59/19.47)~(17.12/11.46)≒0.70~1.49倍となる。なお、当該数値の算出は、有効数字を小数点以下2桁として行っている。 For the absorbent a, the lower limit of the ratio of the first water retention weight to the second water retention weight is (minimum value of the first water retention weight / maximum value of the second water retention weight), and the upper limit is (first water retention weight). Maximum value / minimum value of the second water retention weight). Therefore, the ratio of the first water retention weight to the second water retention weight is (13.59 / 19.47) to (17.12 / 11.46) ≈0.70 to 1.49 times. The numerical value is calculated by using two significant figures after the decimal point.
 また、各濃度におけるNaCl水溶液の保水重量は、全体としてSAPより吸収剤aの方が少ないことがわかる。SAPについては、1.0gのSAP(第1SAP)が保水した状態の濃度0.9wt%のNaCl水溶液の重量(第1SAP保水重量)は、39.98~40.41gであり、1.0gのSAP(第2SAP)が保水した状態の濃度0~2.0wt%のNaCl水溶液の重量(第2SAP保水重量)は、29.31~286.11gである。したがって、第1SAP保水量の第2SAP保水量に対する割合の下限値は、(第1SAP保水量の最小値/第2SAP保水量の最大値)であり、上限値は、(第1SAP保水量の最大値/第2SAP保水量の最小値)である。したがって、第1SAP保水量の第2SAP保水量に対する割合は、(39.98/286.11)~(40.41/29.31)≒0.14~1.38倍となる。 Further, it can be seen that the water retention weight of the NaCl aqueous solution at each concentration is smaller for the absorbent a than for SAP as a whole. Regarding SAP, the weight of an aqueous NaCl solution having a concentration of 0.9 wt% (first SAP water retention weight) in a state where 1.0 g of SAP (first SAP) retains water is 39.98 to 40.41 g, which is 1.0 g. The weight (second SAP water retention weight) of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% in the state where the SAP (second SAP) retains water is 29.31 to 286.11 g. Therefore, the lower limit of the ratio of the first SAP water retention to the second SAP water retention is (minimum value of the first SAP water retention / maximum value of the second SAP water retention), and the upper limit is (maximum value of the first SAP water retention). / The minimum value of the second SAP water retention amount). Therefore, the ratio of the first SAP water retention amount to the second SAP water retention amount is (39.98 / 286.11) to (40.41 / 9.31) ≈0.14 to 1.38 times.
 上述の吸収重量と保水重量との差は、吸収剤A又はSAPがそれぞれ一旦吸収した液体を外部に放出(離水)した液体の重さ(以下、「離水重量」ともいう。)である。また、離水重量を吸収重量で除した値は、一旦吸収した液体の量に対する離水重量の割合であり、離水倍率ともいう。吸収剤Aは、第1吸収剤について、第1吸収重量と第1保水重量との差を、第1吸収重量で除した値が、50~80%であることが好ましい。同様に、第2吸収剤について、第2吸収重量と第2保水重量との差を、第2吸収重量で除した値が、40~85%であることが好ましい。上記数値の離水率となる吸収剤Aは、一旦吸収した体液を他の物質に移動させやすい。つまり、吸収と離水を繰り返し行いやすい。一旦吸収した体液を、吸収剤Aの外側に移動させることで、吸収剤Aを備える吸収体11が着用者へ与える濡れ感を減少させやすくなる。 The difference between the above-mentioned absorption weight and water retention weight is the weight of the liquid (hereinafter, also referred to as "water separation weight") that releases (separates) the liquid once absorbed by the absorbent A or SAP to the outside. Further, the value obtained by dividing the water separation weight by the absorption weight is the ratio of the water separation weight to the amount of the liquid once absorbed, and is also referred to as the water separation ratio. For the absorbent A, the value obtained by dividing the difference between the first absorption weight and the first water retention weight by the first absorption weight of the first absorbent is preferably 50 to 80%. Similarly, for the second absorbent, the value obtained by dividing the difference between the second absorption weight and the second water retention weight by the second absorption weight is preferably 40 to 85%. The absorbent A, which has the above-mentioned numerical water separation rate, easily moves the body fluid once absorbed to another substance. That is, it is easy to repeatedly absorb and separate water. By moving the body fluid once absorbed to the outside of the absorbent A, it becomes easy to reduce the wet feeling given to the wearer by the absorber 11 provided with the absorbent A.
 吸収剤aについて、第1吸収剤による濃度0.9wt%のNaCl水溶液の離水重量を第1吸収重量で除した値である第1離水率の下限値は、{(第1吸収重量の最小値-第1保水重量の最大値)/第1吸収重量の最小値}×100であり、第1離水率の上限値は、{(第1吸収重量の最大値-第1保水重量の最小値)/第1吸収重量の最大値}×100である。第2吸収剤による濃度0~2.0wt%のNaCl水溶液の離水重量を第2吸収重量で除した値である第2離水率の下限値は、{(第2吸収重量の最小値-第2保水重量の最大値)/第2吸収重量の最小値}×100であり、第2離水率の上限値は、{(第2吸収重量の最小値-第2保水重量の最大値)/第2吸収重量の最小値}×100である。図9に示すように、吸収剤aの第1離水率は、{(37.71-17.12)/37.71}×100~{(62.09-13.59)/62.09}×100≒54.60~78.11となる。吸収剤aの第2離水率は、{(34.40-19.47)/34.40}×100~{(68.61-11.46)/68.61}×100≒43.40~83.30となる。なお、当該数値の算出は、有効数字を小数点以下2桁として行っている。 For the absorbent a, the lower limit of the first water separation rate, which is the value obtained by dividing the water separation weight of the NaCl aqueous solution having a concentration of 0.9 wt% by the first absorbent by the first absorption weight, is {(the minimum value of the first absorption weight). -Maximum value of first water retention weight) / Minimum value of first absorption weight} x 100, and the upper limit of the first water separation rate is {(Maximum value of first absorption weight-Minimum value of first water retention weight) / Maximum value of first absorbed weight} × 100. The lower limit of the second water separation rate, which is the value obtained by dividing the water separation weight of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% by the second absorbent by the second absorption weight, is {(minimum value of the second absorption weight-second). Maximum value of water retention weight) / minimum value of second absorption weight} × 100, and the upper limit of the second water separation rate is {(minimum value of second absorption weight-maximum value of second water retention weight) / second Minimum value of absorbed weight} × 100. As shown in FIG. 9, the first water separation rate of the absorbent a is {(37.71-17.12) /37.71} × 100 to {(62.09-13.59) /62.09}. × 100 ≈ 54.60 to 78.11. The second water separation rate of the absorbent a is {(34.40-19.47) /34.40} × 100 to {(68.61-11.46) /68.61} × 100≈43.40 to It becomes 83.30. The numerical value is calculated by using two significant figures after the decimal point.
 なお、図9に示すように、吸収剤aとSAPの保水重量を比較すると、それぞれ吸収重量の値が異なっているため、単純比較は難しいが、SAPの保水重量より吸収剤aの保水重量の方が全体的に少ない。つまり、吸収剤aは、SAPより保水性が低い。 As shown in FIG. 9, when the water retention weights of the absorbent a and the SAP are compared, it is difficult to make a simple comparison because the values of the absorption weights are different from each other, but the water retention weight of the absorbent a is larger than the water retention weight of the SAP. There are fewer overall. That is, the absorbent a has a lower water retention than SAP.
 さらに、2.0gの吸収剤Aが、ボルテックス法によって50gの濃度0.9wt%のNaCl水溶液を吸収する時間が1.0~10.0秒であることが好ましい。この時間内にNaCl水溶液の吸収が可能な吸収剤Aは、短時間で液体を吸収することができるため、吸収剤Aを備えた吸収体11は、素早く体液を吸収することができる。 Further, it is preferable that 2.0 g of the absorbent A absorbs 50 g of a 0.9 wt% NaCl aqueous solution by the vortex method for 1.0 to 10.0 seconds. Since the absorbent A capable of absorbing the aqueous NaCl solution within this time can absorb the liquid in a short time, the absorber 11 provided with the absorbent A can quickly absorb the body fluid.
 ボルテックス法による吸収時間の測定は以下のように行う。
 容器に30×8mmの大きさの回転子を入れ、液温25度±1度に調整した50gの濃度0.9wt%のNaCl水溶液を入れる。
 マグネックスターラー(MITAMURA RIKEN KOGYO INC.MAGMIX STIRRER(AC100W)で回転子を600±30rpmの回転数に調整してNaCl水溶液を攪拌する。
 攪拌中の容器に2.00gの吸収剤Aを投入し、投入と同時に時間の計測を開始する。
 そして、溶液内の溶液表面がフラットになったときの時間を測定する。溶液表面がフラットになったときとは、激しく回転している液体の渦の傾斜が平面に近づく点とし、渦の液表面に反射する明かりの消失を観察することで判断する。
The absorption time is measured by the vortex method as follows.
A rotor having a size of 30 × 8 mm is placed in a container, and a 50 g concentration of 0.9 wt% NaCl aqueous solution adjusted to a liquid temperature of 25 ° C ± 1 ° C is placed therein.
Adjust the rotor to a rotation speed of 600 ± 30 rpm with a magnetic stirrer (MITAMURA RIKEN KOGYO INC. MAGMIX STIRRER (AC100W)) and stir the aqueous NaCl solution.
2.00 g of the absorbent A is charged into the stirring container, and the time measurement is started at the same time as the charging.
Then, the time when the surface of the solution in the solution becomes flat is measured. The flattening of the solution surface is determined by observing the disappearance of the light reflected on the liquid surface of the vortex, assuming that the slope of the violently rotating liquid vortex approaches a flat surface.
 図9に示すように、2.0gの吸収剤aが、50gの濃度0.9wt%のNaCl水溶液を吸収する時間は、1.69~1.93秒である。なお、2.0gの吸収剤aについて、より濃度の低い濃度0.3wt%のNaCl水溶液を吸収する時間が、1.56~2.01秒であり、より濃度の高い濃度2.0wt%のNaCl水溶液を吸収する時間が、1.36~2.29秒であることから、2.0gの吸収剤aが50gの濃度0~2.0wt%のNaCl水溶液を吸収する時間は、1.34~2.29秒であり、NaCl水溶液の濃度による吸収する時間の変化が小さいことがわかる。 As shown in FIG. 9, the time for 2.0 g of the absorbent a to absorb 50 g of a 0.9 wt% NaCl aqueous solution is 1.69 to 1.93 seconds. With respect to 2.0 g of the absorbent a, the time for absorbing the aqueous solution of NaCl having a lower concentration of 0.3 wt% is 1.56 to 2.01 seconds, and the concentration of 2.0 wt% is higher. Since the time for absorbing the NaCl aqueous solution is 1.36 to 2.29 seconds, the time for 2.0 g of the absorbent a to absorb 50 g of the NaCl aqueous solution having a concentration of 0 to 2.0 wt% is 1.34. It is ~ 2.29 seconds, and it can be seen that the change in absorption time depending on the concentration of the NaCl aqueous solution is small.
 上述のとおり、吸収剤Aが高い離水率を有し、吸収速度が速いことから、おむつ1等の吸収性物品の吸収体11においては、吸収剤Aとともに、吸収剤Aより高い保水倍率を備える高分子化合物を備えることがより好ましい。吸収剤Aより高い保水倍率を備える高分子化合物としては、例えば、ポリアクリル酸ナトリウム等の所謂SAPを挙げることができる。SAPは、保水性が高く、離水性も低いことから、一旦吸収した体液を保持し続けることができる。しかし、吸収速度が遅く(図9参照)、体液を吸収するのに時間がかかってしまう。この点、吸収体11が吸収剤AとSAPとを備えることで、吸収体11に体液が接触すると、まず、吸収速度の速い吸収剤Aが吸収する。そして、離水率が高い吸収剤Aは、体液を吸収体11内に放出する。放出された体液をSAPが時間をかけて吸収することで、体液は、SAP内に留められる。これによって、吸収体11としては、一旦吸収剤Aが吸収した体液をSAPに移動させて、吸収剤Aに留められた体液が少ない状態とすることで、吸収体11の表面に体液が残ってしまう恐れを軽減させて、着用者が感じる濡れ感を減少させる。また、吸収体11としては、内部のSAPに排泄物を留めた状態としやすくなるため、おむつ1等の吸収性物品から排泄物が漏れてしまう恐れを軽減させることができる。 As described above, since the absorbent A has a high water separation rate and a high absorption rate, the absorber 11 of the absorbent article such as the diaper 1 has a higher water retention ratio than the absorbent A together with the absorbent A. It is more preferable to include a polymer compound. Examples of the polymer compound having a higher water retention ratio than the absorbent A include so-called SAP such as sodium polyacrylate. Since SAP has high water retention and low water release, it can continue to retain the body fluid once absorbed. However, the absorption rate is slow (see FIG. 9), and it takes time to absorb the body fluid. In this respect, since the absorber 11 is provided with the absorbent A and SAP, when the body fluid comes into contact with the absorber 11, the absorbent A having a high absorption rate first absorbs the body fluid. Then, the absorbent A having a high water separation rate releases the body fluid into the absorber 11. The body fluid is retained in the SAP as the SAP absorbs the released body fluid over time. As a result, the absorber 11 moves the body fluid once absorbed by the absorbent A to the SAP so that the amount of the body fluid retained in the absorbent A is small, so that the body fluid remains on the surface of the absorber 11. It reduces the risk of getting wet and reduces the feeling of wetness that the wearer feels. Further, as the absorber 11, the excrement is easily kept in the internal SAP, so that the possibility of the excrement leaking from the absorbent article such as the diaper 1 can be reduced.
 また、1.0gの吸収剤Aの下端部を、濃度0.9wt%のNaCl水溶液の水面に接触させた状態で1分経過後の、吸収剤Aによる濃度0.9wt%のNaCl水溶液の吸収量が15ml以上であることが好ましい。吸収剤Aの下端部をNaCl水溶液の水面に接触させた状態とは、吸収剤Aが重力に逆らう方向にNaCl水溶液を吸収する状態である。このような重力に逆らう方向でも、1分間という時間で15ml以上の濃度0.9wt%のNaCl水溶液を吸収することができる吸収剤Aによって、素早く、より多くのNaCl水溶液の吸収が可能となり、吸収剤Aを備える吸収体11は、様々な角度から体液を吸収することが可能となる。 Further, absorption of the 0.9 wt% NaCl aqueous solution by the absorbent A after 1 minute has passed in a state where the lower end of 1.0 g of the absorbent A is in contact with the water surface of the 0.9 wt% NaCl aqueous solution. The amount is preferably 15 ml or more. The state in which the lower end portion of the absorbent A is in contact with the water surface of the NaCl aqueous solution is a state in which the absorbent A absorbs the NaCl aqueous solution in the direction against gravity. Even in the direction against gravity, the absorbent A, which can absorb 15 ml or more of a 0.9 wt% NaCl aqueous solution in a time of 1 minute, enables quick absorption of a larger amount of the NaCl aqueous solution. The absorber 11 including the agent A can absorb the body fluid from various angles.
 図9に示すように、吸収剤aが1分後に吸収した濃度0.9wt%のNaCl水溶液の量は、20.2~26.5mlである。このように、吸収剤aは、重力に逆らう方向にも良く吸収することができる。SAPについては、1分後に吸収した濃度0.9wt%のNaCl水溶液の量は、14.0~18.0mlである。この結果から、吸収剤Aは、SAPより重力に逆らう方向でも素早く体液の吸収が可能であることがわかる。 As shown in FIG. 9, the amount of the aqueous NaCl solution having a concentration of 0.9 wt% absorbed by the absorbent a after 1 minute is 20.2 to 26.5 ml. In this way, the absorbent a can be well absorbed in the direction against gravity. For SAP, the amount of the 0.9 wt% NaCl aqueous solution absorbed after 1 minute is 14.0 to 18.0 ml. From this result, it can be seen that the absorbent A can absorb the body fluid more quickly than the SAP even in the direction against gravity.
 さらに、600gwの荷重を加えた状態の2.0gの吸収剤Aの下端部を、濃度0.9wt%のNaCl水溶液の水面に接触させた状態で、2分経過後に吸収剤Aが吸収した濃度0.9wt%のNaCl水溶液が1.0ml以上であり、15分経過後に吸収剤Aが吸収した濃度0.9wt%のNaCl水溶液が5.0ml以上であることがより好ましい。吸収剤Aを吸収体11に用いた場合、一旦排泄物を吸収した吸収体11が、着用者の体重によって、厚さ方向に潰されたり、着用者の両脚によって左右方向に潰されてしまったりする。この点、吸収剤Aに所定の荷重を加えた状態でも、吸収剤Aは、NaCl水溶液の吸収が可能であり、且つ、重力に逆らう方向にもNaCl水溶液の吸収が可能であることから、吸収体11は、吸収剤Aを備えることで、吸収体11(吸収剤A)に荷重を加えられた場合でも、様々な角度から体液を吸収することが可能となる。 Further, the concentration absorbed by the absorbent A after 2 minutes has passed in a state where the lower end of 2.0 g of the absorbent A under a load of 600 gw is in contact with the water surface of the NaCl aqueous solution having a concentration of 0.9 wt%. More preferably, the 0.9 wt% NaCl aqueous solution is 1.0 ml or more, and the 0.9 wt% NaCl aqueous solution absorbed by the absorbent A after 15 minutes is 5.0 ml or more. When the absorbent A is used for the absorber 11, the absorber 11 once absorbed the excrement may be crushed in the thickness direction depending on the weight of the wearer, or crushed in the left-right direction by both legs of the wearer. To do. In this respect, even when a predetermined load is applied to the absorbent A, the absorbent A can absorb the NaCl aqueous solution, and can also absorb the NaCl aqueous solution in the direction against gravity. By providing the absorber A, the body 11 can absorb the body fluid from various angles even when a load is applied to the absorber 11 (absorbent A).
 図9に示すように、吸収剤aについては、2分経過後に2.0gの吸収剤Aが吸収した濃度0.9wt%のNaCl水溶液は、2.6~5.6mlであり、15分経過後に吸収剤Aが吸収した濃度0.9wt%のNaCl水溶液は、13.2~25.2mlである。SAPについては、2分経過後に2.0gのSAPが吸収した濃度0.9wt%のNaCl水溶液は、0.8~1.0mlであり、15分経過後に吸収剤Aが吸収した濃度0.9wt%のNaCl水溶液は、4.0mlである。この結果から、吸収剤Aが加圧された状態で、且つ重力に逆らう方向にも、SAPより優れた吸収性を有することがわかる。 As shown in FIG. 9, with respect to the absorbent a, the amount of the 0.9 wt% NaCl aqueous solution absorbed by 2.0 g of the absorbent A after 2 minutes was 2.6 to 5.6 ml, and 15 minutes had passed. The concentration of 0.9 wt% NaCl aqueous solution that was later absorbed by the absorbent A is 13.2 to 25.2 ml. Regarding SAP, the concentration of 0.9 wt% NaCl aqueous solution absorbed by 2.0 g of SAP after 2 minutes was 0.8 to 1.0 ml, and the concentration of 0.9 wt% absorbed by the absorbent A after 15 minutes. % NaCl aqueous solution is 4.0 ml. From this result, it can be seen that the absorbent A has better absorbency than SAP even in the state of being pressurized and in the direction against gravity.
 また、単位重さ当たりの吸収剤Aが、濃度0.5wt%のCaCl2水溶液を吸収する吸収重量が、吸収剤Aの重さの13倍以上であることが好ましい。電解質イオンの数がNa+より多いCa2+の水溶液においても、吸収剤Aの重さの13倍以上の溶液を吸収することができることから、吸収剤Aを備えた吸収体11は、体液の組成によらず、体液を吸収しやすくすることができる。 Further, it is preferable that the absorbent A per unit weight absorbs the CaCl 2 aqueous solution having a concentration of 0.5 wt% at least 13 times the weight of the absorbent A. Even in an aqueous solution of Ca2 + having more electrolyte ions than Na +, a solution 13 times or more the weight of the absorbent A can be absorbed. Therefore, the absorber 11 provided with the absorbent A has a body fluid composition. Regardless, it is possible to easily absorb body fluids.
 図9に、1gの吸収剤aが濃度0.5wt%のCaCl2水溶液を吸収した重量を示している。なお、CaCl2水溶液の吸収重量の測定は、NaCl水溶液の重量の測定と同じ方法で行う。図9に示すように、吸収剤aの濃度0.5wt%のCaCl2水溶液を吸収する吸収重量の測定結果は、16.29~27.69gであり、1gの吸収剤aが濃度0.5wt%のCaCl2水溶液を、吸収剤aの重量の16.29倍以上の量を吸収している。 FIG. 9 shows the weight at which 1 g of the absorbent a absorbed the CaCl 2 aqueous solution having a concentration of 0.5 wt%. The absorption weight of the CaCl 2 aqueous solution is measured by the same method as the measurement of the weight of the NaCl aqueous solution. As shown in FIG. 9, the measurement result of the absorption weight for absorbing the CaCl 2 aqueous solution having a concentration of 0.5 wt% of the absorbent a is 16.29 to 27.69 g, and 1 g of the absorbent a has a concentration of 0.5 wt%. % CaCl 2 aqueous solution absorbs 16.29 times or more the weight of the absorbent a.
 図9に示すように、1gのSAPが、濃度0.5wt%のCaCl2水溶液の吸収重量は、6.71~7.43gである。1gの吸収剤aが濃度0.5wt%のCaCl2水溶液を吸収した重量と、1gのSAPが濃度0.5wt%のCaCl2水溶液を吸収した重量とを比較すると、明らかに吸収剤aが吸収した重量の方が多い。また、この1gのSAPが濃度0.5wt%のCaCl2水溶液を吸収した重量は、1gのSAPが濃度0.9wt%のNaCl水溶液を吸収した重量より少ない。つまり、SAPは、電解質イオンの数が増えるほど、吸収量が低下してしまうところ、吸収剤aは、SAPのように電解質イオンの数による吸収量の低下の程度が低い。そのため、吸収剤a(吸収剤A)を用いることで、体液の組成によって吸収量が低下してしまう恐れを軽減させることができる。 As shown in FIG. 9, the absorption weight of a CaCl 2 aqueous solution having a concentration of 0.5 wt% with 1 g of SAP is 6.71 to 7.43 g. Comparing the weight of 1 g of the absorbent a absorbing the 0.5 wt% CaCl 2 aqueous solution with the weight of 1 g of SAP absorbing the 0.5 wt% CaCl 2 aqueous solution, the absorbent a clearly absorbs. The weight is heavier. Further, the weight of 1 g of SAP absorbed by the CaCl 2 aqueous solution having a concentration of 0.5 wt% is less than the weight of 1 g of SAP absorbed by the NaCl aqueous solution having a concentration of 0.9 wt%. That is, the absorption amount of SAP decreases as the number of electrolyte ions increases, whereas the absorption amount of the absorbent a decreases due to the number of electrolyte ions, unlike SAP. Therefore, by using the absorbent a (absorbent A), it is possible to reduce the risk that the amount of absorption will decrease depending on the composition of the body fluid.
 吸収剤Aについて下記の吸収速度試験及び吸収量試験を行った。図10は、吸収剤Aの吸収速度及び吸収量試験結果を示すグラフである。図11は、比較例の高吸収性ポリマーの吸収速度及び吸収量試験結果を示すグラフである。 The following absorption rate test and absorption amount test were performed on the absorbent A. FIG. 10 is a graph showing the absorption rate and the absorption amount test result of the absorbent A. FIG. 11 is a graph showing the absorption rate and absorption amount test results of the highly absorbent polymer of the comparative example.
 図10に示すように、当該吸収速度試験では吸収対象液を純水と0.9%塩化ナトリウム水溶液で試験し、いずれも飽和吸収量の90%の吸収量に到達するのに浸漬時間は5秒以内であった。さらに、吸収剤Aの吸収量試験を、試験水に、0.9%塩化ナトリウム水溶液、4%NaOH水溶液、35%塩酸、29%アンモニア水を用いて行った。その結果、0.9%塩化ナトリウム水溶液の吸収量は67g/g-resin、4%NaOH水溶液の吸収量は78g/g-resin、35%塩酸の吸収量は28g/g-resin、29%アンモニア水の吸収量は105g/g-resinであった。 As shown in FIG. 10, in the absorption rate test, the liquid to be absorbed was tested with pure water and a 0.9% sodium chloride aqueous solution, and the immersion time was 5 to reach the absorption amount of 90% of the saturated absorption amount in both cases. It was within seconds. Further, the absorption amount test of the absorbent A was carried out using 0.9% sodium chloride aqueous solution, 4% NaOH aqueous solution, 35% hydrochloric acid and 29% ammonia water as test water. As a result, the absorption amount of 0.9% sodium chloride aqueous solution was 67 g / g-resin, the absorption amount of 4% NaOH aqueous solution was 78 g / g-resin, the absorption amount of 35% hydrochloric acid was 28 g / g-resin, and 29% ammonia. The amount of water absorbed was 105 g / g-resin.
 (吸収速度試験方法)
 不織布で片端を封じた長さ100mm、内径10mmチューブに乾燥状態の吸収剤Aを入れたものをサンプルチューブとする。この吸収剤Aを入れる前後のチューブ重量を測定しておき、予めチューブ内の吸収剤Aの重量を算出しておく。次に濃度既知の吸収対象液にサンプルチューブの不織布側を浸漬させた状態で所定時間経過後に、溶液からチューブを引き上げる。そして、1分間保持した後にチューブ重量を測定する。この浸漬と測定を重量変化がなくなるまで繰り返す。重量変化がなくなった時点の吸収量を飽和吸収量とする。
(Absorption rate test method)
A sample tube is a tube having a length of 100 mm and an inner diameter of 10 mm in which one end is sealed with a non-woven fabric and a dry absorbent A is put therein. The weight of the tube before and after putting the absorbent A is measured, and the weight of the absorbent A in the tube is calculated in advance. Next, the tube is pulled up from the solution after a predetermined time has elapsed with the non-woven fabric side of the sample tube immersed in the solution to be absorbed having a known concentration. Then, after holding for 1 minute, the weight of the tube is measured. This immersion and measurement are repeated until there is no weight change. The amount of absorption when the weight change disappears is defined as the saturated absorption amount.
 (吸収量試験方法)
 JISの方法に準じて行う。ティーバッグに吸収剤Aを入れたものをサンプルとし、サンプルを吸収対象液に24時間浸漬させる前と浸漬させた後のそれぞれ吸収前後の重量から吸収対象液の吸収量を求める。
(Absorption test method)
Perform according to the JIS method. A tea bag containing the absorbent A is used as a sample, and the absorption amount of the absorption target liquid is determined from the weights before and after the absorption before and after the sample is immersed in the absorption target liquid for 24 hours.
 (比較例)
 和光純薬社製の超吸収性ポリマー商品名:高吸収性ポリマー(アクリル酸塩系)を用いて、吸収速度試験と吸収量試験を行う。図11に示すように、当該吸収量試験の結果、吸収速度試験では純水では飽和吸収量に対して90%の吸収量に到達するのに必要な浸漬時間は12分であり、0.9%塩化ナトリウム水溶液では飽和吸収量に対して90%の吸収量に到達するのに必要な浸漬時間は3.5分である。また、0.9%塩化ナトリウム水溶液の吸収量は52g/g-resinであり、4%NaOH水溶液の吸収量は浸漬中に溶解してしまったため測定不能であり、35%塩酸の吸収量は2g/g-resinであり、29%アンモニア水の吸収量は128g/g-resinであった。
(Comparison example)
Super-absorbent polymer manufactured by Wako Pure Chemical Industries, Ltd. Trade name: Absorption rate test and absorption amount test are performed using a highly absorbent polymer (acrylic acid salt type). As shown in FIG. 11, as a result of the absorption amount test, in the absorption rate test, the immersion time required to reach 90% of the saturated absorption amount in pure water is 12 minutes, which is 0.9. In the% sodium chloride aqueous solution, the immersion time required to reach 90% of the saturated absorption amount is 3.5 minutes. The absorption amount of the 0.9% sodium chloride aqueous solution was 52 g / g-resin, the absorption amount of the 4% NaOH aqueous solution was unmeasurable because it was dissolved during immersion, and the absorption amount of 35% hydrochloric acid was 2 g. It was / g-resin, and the absorption amount of 29% aqueous ammonia was 128 g / g-resin.
 吸収剤Aは、モノリスイオン交換体としても用いることができ、吸収剤Aを「モノリス状有機多孔質イオン交換体」ともいう。吸収剤Aの単位重量当たりの-COONa基及び-COOH基の総イオン交換容量は、5mg当量/g以上、好ましくは6mg当量/g以上である。モノリスイオン交換体の乾燥状態での-COOH基及び-COONa基の総イオン交換容量が、上記範囲未満では、吸収対象液の吸収量が減り、吸収速度も遅くなる。また、モノリスイオン交換体の乾燥状態での-COOH基及び-COONa基の総イオン交換容量の上限値は、特に制限されないが、例えば、14.0mg当量/g以下、あるいは、13.0mg当量/g以下が挙げられる。メタクリル酸ブチルを重合モノマーとし、ジビニルベンゼンを架橋モノマーとした吸収剤aの単位重量当たりの-COONa基及び-COOH基の総イオン交換容量は、4.0mg当量/g以上、好ましくは6mg当量/g以上である。また、吸収剤aのモノリスイオン交換体の乾燥状態での-COOH基及び-COONa基の総イオン交換容量の上限値は、特に制限されないが、例えば、11mg当量/g以下、あるいは、14mg当量/g以下が挙げられる。そして、吸収剤Aの単位重量当たりの-COONa基の総イオン交換容量が、4.0mg当量/g以上であることが望ましい。単位重量当たりの-COONa基の総イオン交換容量が、4.0mg当量/g以上の吸収剤Aとすることで、単位重量当たりの-COONa基の総イオン交換容量が、4.0mg当量/gより少ない場合よりも高分子吸収剤が体液を吸収しやすいため、連続骨格を伸長させやすくなり、連続骨格の伸長に伴って、連続空孔も広がりやすくなり、毛細管現象によって体液を連続空孔に取り込みやすくなることで、吸収体として体液を吸収しやすくなる。 The absorbent A can also be used as a monolith ion exchanger, and the absorbent A is also referred to as a "monolith-like organic porous ion exchanger". The total ion exchange capacity of the -COONa group and the -COOH group per unit weight of the absorbent A is 5 mg equivalent / g or more, preferably 6 mg equivalent / g or more. If the total ion exchange capacity of the -COOH group and the -COONa group in the dry state of the monolith ion exchanger is less than the above range, the absorption amount of the liquid to be absorbed decreases and the absorption rate also slows down. The upper limit of the total ion exchange capacity of the -COOH group and the -COONa group in the dry state of the monolith ion exchanger is not particularly limited, but is, for example, 14.0 mg equivalent / g or less, or 13.0 mg equivalent /. g or less can be mentioned. The total ion exchange capacity of -COONa group and -COOH group per unit weight of the absorbent a using butyl methacrylate as a polymerization monomer and divinylbenzene as a cross-linking monomer is 4.0 mg equivalent / g or more, preferably 6 mg equivalent / g. It is g or more. The upper limit of the total ion exchange capacity of the -COOH group and the -COONa group in the dry state of the monolith ion exchanger of the absorbent a is not particularly limited, but is, for example, 11 mg equivalent / g or less, or 14 mg equivalent /. g or less can be mentioned. It is desirable that the total ion exchange capacity of the −COONa group per unit weight of the absorbent A is 4.0 mg equivalent / g or more. By using an absorbent A having a total ion exchange capacity of −COONa groups of 4.0 mg equivalent / g or more per unit weight, the total ion exchange capacity of −COONa groups per unit weight is 4.0 mg equivalent / g. Since the polymer absorber absorbs the body fluid more easily than when the amount is less, the continuous skeleton is more likely to be elongated, and the continuous skeleton is more likely to expand as the continuous skeleton is elongated. By facilitating uptake, it becomes easier to absorb body fluid as an absorber.
 なお、本発明において、-COOH基及び-COONa基の総イオン交換容量とは、本発明のモノリスイオン交換体が、-COOH基及び-COONa基のうち、-COOH基のみを有する場合は、-COOH基のイオン交換容量を指し、また、本発明のモノリスイオン交換体が、-COOH基及び-COONa基のうち、-COONa基のみを有する場合は、-COONa基のイオン交換容量を指し、また、本発明のモノリスイオン交換体が、-COOH基及び-COONa基のうち、-COOH基及び-COONa基の両方を有する場合は、-COOH基及び-COONa基のイオン交換容量の合計を指す。また、モノリスイオン交換体の乾燥状態での重量当たりの-COOH基及び-COONa基の総イオン交換容量は、モノリスイオン交換体のイオン交換基を充分量の酸を用いてすべて-COOH基としたサンプルを用いて中和滴定により-COOH基の量を定量し、この時用いたモノリスイオン交換体を全量回収し、乾燥重量の値を求めることにより測定される。また、単位重量当たりの-COONa基の総イオン交換容量は、モノリスイオン交換体のイオン交換基を全て-COOH基にするために加えた酸の量から求めることができる。 In the present invention, the total ion exchange capacity of -COOH group and -COONa group is defined as-when the monolith ion exchanger of the present invention has only -COOH group among -COOH group and -COONa group. It refers to the ion exchange capacity of the COOH group, and when the monolith ion exchanger of the present invention has only the -COONa group among the -COOH group and the -COONa group, it refers to the ion exchange capacity of the -COONa group. When the monolith ion exchanger of the present invention has both -COOH group and -COONa group among -COOH group and -COONa group, it means the total ion exchange capacity of -COOH group and -COONa group. In addition, the total ion exchange capacity of -COOH groups and -COONa groups per weight of the monolith ion exchanger in the dry state was set to all -COOH groups by using a sufficient amount of acid for the ion exchange groups of the monolith ion exchanger. It is measured by quantifying the amount of -COOH groups by neutralization titration using a sample, recovering the entire amount of the monolith ion exchanger used at this time, and determining the value of dry weight. Further, the total ion exchange capacity of -COONa groups per unit weight can be obtained from the amount of acid added to convert all the ion exchange groups of the monolith ion exchanger into -COOH groups.
 モノリスイオン交換体において、導入されているイオン交換基は、モノリスの表面のみならず、モノリスの骨格内部にまで均一に分布している。ここで言う「イオン交換基が均一に分布している」とは、イオン交換基の分布が少なくともμmオーダーで表面及び骨格内部に均一に分布していることを指す。イオン交換基の分布状況は、EPMAを用いることで簡単に確認される。 In the monolith ion exchanger, the introduced ion exchange groups are uniformly distributed not only on the surface of the monolith but also inside the skeleton of the monolith. The term "uniformly distributed ion-exchange groups" as used herein means that the distribution of ion-exchange groups is uniformly distributed on the surface and inside the skeleton on the order of at least μm. The distribution of ion-exchange groups can be easily confirmed by using EPMA.
 モノリスイオン交換体の構造例としては、連続気泡構造(特開2002-306976号公報、特開2009-62512号公報)や、共連続構造(特開2009-67982号公報)、粒子凝集型構造(特開2009-7550号公報)、粒子複合型構造(特開2009-108294号公報)等を挙げることができる。 Examples of the structure of the monolith ion exchanger include an open cell structure (Japanese Patent Laid-Open No. 2002-306976, JP-A-2009-62512), a co-continuous structure (Japanese Patent Laid-Open No. 2009-67982), and a particle-aggregated structure (Japanese Patent Laid-Open No. 2009-67982). Japanese Patent Application Laid-Open No. 2009-7550), particle composite structure (Japanese Patent Laid-Open No. 2009-108294) and the like can be mentioned.
 吸収剤Aのモノリスカチオン交換体としてのイオン交換容量は、乾燥状態で8mg当量/gであり、カルボキシル基が定量的に導入されていることを確認した。また、水銀圧入法による測定から求めた、吸収剤Aの三次元的に連続した空孔の乾燥状態での平均直径は49.1μm、乾燥状態での全細孔容積は13.5mL/gであった。SEM観察で得られた連続骨格の厚みは9.5μmであった。 The ion exchange capacity of the absorbent A as a monolith cation exchanger was 8 mg equivalent / g in a dry state, and it was confirmed that the carboxyl group was quantitatively introduced. Further, the average diameter of the three-dimensionally continuous pores of the absorbent A in the dry state, which was obtained from the measurement by the mercury intrusion method, was 49.1 μm, and the total pore volume in the dry state was 13.5 mL / g. there were. The thickness of the continuous skeleton obtained by SEM observation was 9.5 μm.
 図12A及び図12Bは、モノリスA中のカルボキシル基の分布状態を確認するため、EPMAによるナトリウムの分布状態示している。図12Aは、吸収剤Aの破断面のSEM写真である。図12Bは、図12Aと同一部分のNa分布のマッピング図である。図12A及び図12Bによって、骨格断面におけるカルボキシル基の分布状態は、カルボキシル基はモノリスカチオン交換体の骨格表面のみならず、骨格内部にも均一に分布しており、カルボキシル基がモノリスイオン交換体中に均一に導入されていることが確認できる。 FIGS. 12A and 12B show the distribution state of sodium by EPMA in order to confirm the distribution state of the carboxyl group in the monolith A. FIG. 12A is an SEM photograph of the fracture surface of the absorbent A. FIG. 12B is a mapping diagram of the Na distribution of the same portion as that of FIG. 12A. According to FIGS. 12A and 12B, the distribution of carboxyl groups in the skeleton cross section is such that the carboxyl groups are uniformly distributed not only on the skeleton surface of the monolithic cation exchanger but also inside the skeleton, and the carboxyl groups are uniformly distributed in the monolith ion exchanger. It can be confirmed that it is uniformly introduced in.
 また、吸収剤Aの構造例として、特開2002-306976号公報や特開2009-62512号公報に開示されている連続気泡構造や、特開2009-67982号公報に開示されている共連続構造や、特開2009-7550号公報に開示されている粒子凝集型構造や、特開2009-108294号公報に開示されている粒子複合型構造等として挙げられたモノリスイオン構造体がある。 Further, as an example of the structure of the absorbent A, the open cell structure disclosed in JP-A-2002-306976 and JP-A-2009-62512 and the co-continuous structure disclosed in JP-A-2009-67982. Further, there are monolith ion structures listed as a particle-aggregated structure disclosed in JP-A-2009-7550, a particle-composite structure disclosed in JP-A-2009-108294, and the like.
 ===吸収剤Aの製造方法について===
 吸収剤Aは、図3に示すように、架橋重合工程と加水分解工程を経ることで得ることができる。以下、吸収剤Aの製造方法について説明する。
=== About the manufacturing method of absorbent A ===
As shown in FIG. 3, the absorbent A can be obtained through a cross-linking polymerization step and a hydrolysis step. Hereinafter, a method for producing the absorbent A will be described.
 まず、架橋重合用の油溶性モノマーと架橋性モノマーと、界面活性剤と、水と、必要に応じて重合開始剤とを混合して、油中水滴型エマルションを得る。油中水滴型エマルションとは、油相が連続相となり、その中に水滴が分散しているエマルションを言う。 First, an oil-soluble monomer for cross-linking polymerization, a cross-linking monomer, a surfactant, water, and a polymerization initiator, if necessary, are mixed to obtain a water-in-oil emulsion. The water-in-oil emulsion is an emulsion in which the oil phase is a continuous phase and water droplets are dispersed therein.
吸収剤Aにおいては、図3の上図に示すように、油溶性モノマーとして、(メタ)アクリル酸エステルとしてメタクリル酸ブチルを用い、架橋性モノマーとして、ジビニルベンゼンを用い、界面活性剤としてソルビタンモノオレエートを用い、重合開始剤としてイソブチロニトリルを用いて架橋重合させたモノリスAを形成する。 In the absorbent A, as shown in the upper part of FIG. 3, butyl methacrylate is used as the (meth) acrylic acid ester as the oil-soluble monomer, divinylbenzene is used as the crosslinkable monomer, and sorbitanmono is used as the surfactant. Monolith A is cross-linked and polymerized using oleate and isobutyronitrile as a polymerization initiator.
 吸収剤Aにおいては、図3の上図に示すように、まず、油溶性モノマーとしてメタクリル酸t-ブチル9.2g、架橋性モノマーとしてジビニルベンゼン0.28g、界面活性剤としてソルビタンモノオレエート(以下SMOと略す)1.0g及び重合開始剤として2,2’-アゾビス(イソブチロニトリル)0.4gを混合し、均一に溶解させる。 In the absorbent A, as shown in the upper part of FIG. 3, first, 9.2 g of t-butyl methacrylate as an oil-soluble monomer, 0.28 g of divinylbenzene as a crosslinkable monomer, and sorbitan monooleate as a surfactant (sorbitan monooleate). 1.0 g (hereinafter abbreviated as SMO) and 0.4 g of 2,2'-azobis (isobutyronitrile) as a polymerization initiator are mixed and uniformly dissolved.
 次に、メタクリル酸t-ブチル/ジビニルベンゼン/SMO/2,2'-アゾビス(イソブチロニトリル)混合物を180gの純水に添加し、遊星式撹拌装置である真空撹拌脱泡ミキサー(イーエムイー社製)を用いて減圧下撹拌して、油中水滴型エマルションを得る。 Next, a mixture of t-butyl methacrylate / divinylbenzene / SMO / 2,2'-azobis (isobutyronitrile) was added to 180 g of pure water, and a vacuum stirring defoaming mixer (EME), which is a planetary stirring device, was added. Stir under reduced pressure using (manufactured by the same company) to obtain a water-in-oil emulsion.
 その後、このエマルションを速やかに反応容器に移し、密封後静置下で60℃、24時間重合させる。重合終了後、内容物を取り出し、メタノールで抽出した後、減圧乾燥して、連続マクロポア構造を有するモノリスAを得る。このモノリスAの内部構造をSEMにより観察した。図10Aは、吸収剤Aの破断面のSEM写真である。図10Bは、図10Aと同一部分のNa分布のマッピング図である。モノリスAは、連続気泡構造を有しており、連続骨格の厚みは5.4μmであった。水銀圧入法により測定した平均直径は36.2μm、全細孔容積は15.5mL/gであった。 After that, this emulsion is immediately transferred to a reaction vessel, sealed, and polymerized at 60 ° C. for 24 hours under standing. After completion of the polymerization, the contents are taken out, extracted with methanol, and dried under reduced pressure to obtain a monolith A having a continuous macropore structure. The internal structure of this monolith A was observed by SEM. FIG. 10A is an SEM photograph of the fracture surface of the absorbent A. FIG. 10B is a mapping diagram of the Na distribution of the same portion as that of FIG. 10A. The monolith A had an open cell structure, and the thickness of the continuous skeleton was 5.4 μm. The average diameter measured by the mercury intrusion method was 36.2 μm, and the total pore volume was 15.5 mL / g.
 なお、全モノマーに対するジビニルベンゼンの含有量は、0.3~10モル%であることが好ましく、0.3~5モル%であることがより好ましい。また、メタアクリル酸ブチルとジビニルベンゼンの合計に対するジビニルベンゼンの割合が0.1~10モル%であることが好ましく、0.3~8モル%であることがより好ましい。吸収剤Aにおいては、メタアクリル酸ブチルとジビニルベンゼンの合計に対するメタアクリル酸ブチルの割合が、97.0モル%、ジビニルベンゼンの割合が3.0モル%である。 The content of divinylbenzene with respect to all the monomers is preferably 0.3 to 10 mol%, more preferably 0.3 to 5 mol%. Further, the ratio of divinylbenzene to the total of butyl methacrylate and divinylbenzene is preferably 0.1 to 10 mol%, and more preferably 0.3 to 8 mol%. In the absorbent A, the ratio of butyl methacrylate to the total of butyl methacrylate and divinylbenzene is 97.0 mol%, and the ratio of divinylbenzene is 3.0 mol%.
 界面活性剤の添加量としては、油溶性モノマーの種類および目的とするエマルション粒子(マクロポア)の大きさによって大幅に変動する。油溶性モノマーと界面活性剤の合計量に対して約2~70%の範囲とすることが好ましい。 The amount of the surfactant added varies greatly depending on the type of oil-soluble monomer and the size of the target emulsion particles (macropores). It is preferably in the range of about 2 to 70% with respect to the total amount of the oil-soluble monomer and the surfactant.
 また、モノリスAの気泡形状やサイズを制御するために、メタノール、ステアリルアルコール等のアルコール、ステアリン酸等のカルボン酸、オクタン、ドデカン、トルエン等の炭化水素、テトラヒドロフラン、ジオキサン等の環状エーテルを系内に共存させてもよい。 Further, in order to control the bubble shape and size of monolith A, alcohols such as methanol and stearyl alcohol, carboxylic acids such as stearic acid, hydrocarbons such as octane, dodecane and toluene, and cyclic ethers such as tetrahydrofuran and dioxane are used in the system. May coexist in.
 油中水滴型エマルションを形成させる際の混合方法としては、特に制限はない。各成分を一括して一度に混合する方法、油溶性モノマー、界面活性剤及び油溶性重合開始剤である油溶性成分と、水や水溶性重合開始剤である水溶性成分とを別々に均一溶解させた後、それぞれの成分を混合する方法等の混合方法を採用することができる。エマルションを形成させるための混合装置についても特に制限はなく、目的のエマルション粒径を得るために、通常のミキサー、ホモジナイザー、高圧ホモジナイザーや、被処理物を混合容器に入れ、該混合容器を傾斜させた状態で公転軸の周りに公転させながら自転させることで、被処理物を攪拌混合する、所謂遊星式攪拌装置等から適切な装置を選択することができる。また、混合条件についても特に制限はなく、目的のエマルション粒径を得るために、攪拌回転数や攪拌時間を、任意に設定することができる。これらの混合装置のうち、遊星式攪拌装置はW/Oエマルション中の水滴を均一に生成させることができ、その平均径を幅広い範囲で任意に設定することができる。 There is no particular limitation on the mixing method for forming the water-in-oil emulsion. A method in which each component is mixed at once, an oil-soluble component which is an oil-soluble monomer, a surfactant and an oil-soluble polymerization initiator, and a water-soluble component which is water or a water-soluble polymerization initiator are uniformly dissolved separately. After that, a mixing method such as a method of mixing each component can be adopted. The mixing device for forming the emulsion is also not particularly limited, and in order to obtain the desired emulsion particle size, a normal mixer, a homogenizer, a high-pressure homogenizer, or an object to be treated is placed in a mixing container, and the mixing container is tilted. An appropriate device can be selected from a so-called planetary stirrer or the like that stirs and mixes the object to be processed by rotating the object to be processed while revolving around the revolution axis in the state of being revolved. Further, the mixing conditions are not particularly limited, and the stirring rotation speed and the stirring time can be arbitrarily set in order to obtain the desired emulsion particle size. Among these mixing devices, the planetary stirrer can uniformly generate water droplets in the W / O emulsion, and the average diameter thereof can be arbitrarily set in a wide range.
 油中水滴型エマルションを重合させる重合条件は、モノマーの種類、開始剤系により様々な条件が選択できる。例えば、重合開始剤としてアゾビスイソブチロニトリル、過酸化ベンゾイル、過硫酸カリウム等を用いたときには、不活性雰囲気下の密封容器内において、30~100℃で1~48時間、加熱重合させればよい。重合開始剤として過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム等を用いたときには、不活性雰囲気下の密封容器内において、0~30℃で1~48時間重合させればよい。重合終了後、内容物を取り出し、イソプロパノール等の溶剤でソックスレー抽出し、未反応モノマーと残留界面活性剤を除去して図3の中図に示すモノリスAを得る。 Various conditions can be selected for the polymerization conditions for polymerizing the water-in-oil emulsion depending on the type of monomer and the initiator system. For example, when azobisisobutyronitrile, benzoyl peroxide, potassium persulfate or the like is used as the polymerization initiator, it is subjected to heat polymerization at 30 to 100 ° C. for 1 to 48 hours in a sealed container under an inert atmosphere. Just do it. When hydrogen peroxide-ferrous chloride, sodium persulfite-sodium bisulfite, etc. are used as the polymerization initiator, the polymerization may be carried out at 0 to 30 ° C. for 1 to 48 hours in a sealed container in an inert atmosphere. .. After completion of the polymerization, the contents are taken out and soxhlet extracted with a solvent such as isopropanol to remove the unreacted monomer and the residual surfactant to obtain the monolith A shown in the middle figure of FIG.
 続いて、モノリスA(架橋重合体)を加水分解して、吸収剤Aを得る。モノリスAを、臭化亜鉛を入れたジクロロエタンに浸漬させて40℃、24h撹拌した後、メタノール、4%塩酸、4%水酸化ナトリウム水溶液、水の順で接触させて、加水分解を行い、乾燥させた後、ブロック状の吸収剤Aを所定の大きさに粉砕して粒子状の吸収剤Aを得る。 Subsequently, the monolith A (crosslinked polymer) is hydrolyzed to obtain an absorbent A. Monolith A is immersed in dichloroethane containing zinc bromide, stirred at 40 ° C. for 24 hours, and then contacted with methanol, 4% hydrochloric acid, 4% sodium hydroxide aqueous solution, and water in this order to hydrolyze and dry. After that, the block-shaped absorbent A is pulverized to a predetermined size to obtain a particulate absorbent A.
 モノリスAの加水分解の方法については特に制限はなく、種々の方法で行うことができる。例えば、トルエン、キシレンなどの芳香族系溶媒、クロロホルム、ジクロロエタンなどのハロゲン系溶媒、テトラヒドロフランやイソプロピルエーテルなどのエーテル系溶媒、ジメチルホルムアミドやジメチルアセトアミドなどのアミド系溶媒、メタノールやエタノールなどのアルコール系溶媒、酢酸やプロピオン酸などのカルボン酸系溶媒、あるいは水を溶媒とし、水酸化ナトリウムなどの強塩基と接触させる方法や、塩酸などのハロゲン化水素酸、硫酸、硝酸、トリフルオロ酢酸、メタンスルホン酸、p-トルエンスルホン酸などのブレンステッド酸、あるいは臭化亜鉛、塩化アルミニウム、臭化アルミニウム、塩化チタン(IV)、塩化セリウム/ヨウ化ナトリウム、ヨウ化マグネシウムなどのルイス酸と接触させる方法等が挙げられる。 There are no particular restrictions on the method of hydrolysis of Monolith A, and various methods can be used. For example, aromatic solvents such as toluene and xylene, halogen solvents such as chloroform and dichloroethane, ether solvents such as tetrahydrofuran and isopropyl ether, amide solvents such as dimethylformamide and dimethylacetamide, alcohol solvents such as methanol and ethanol. , Carboxylic acid solvent such as acetic acid and propionic acid, or water as a solvent and contact with strong base such as sodium hydroxide, hydrohalogen acid such as hydrochloric acid, sulfuric acid, nitric acid, trifluoroacetic acid, methanesulfonic acid , P-solvented acid such as toluene sulfonic acid, or Lewis acid such as zinc bromide, aluminum chloride, aluminum bromide, titanium (IV) chloride, cerium chloride / sodium iodide, magnesium iodide, etc. Can be mentioned.
 吸収剤Aの連続骨格を形成する有機ポリマーの重合原料のうち、(メタ)アクリル酸エステルとしては、特に制限されないが、(メタ)アクリル酸のC1~C10のアルキルエステルが好ましく、(メタ)アクリル酸のC4アルキルエステルが特に好ましい。(メタ)アクリル酸のC4アルキルエステルとしては、(メタ)アクリル酸t-ブチルエステル、(メタ)アクリル酸n-ブチルエステル、(メタ)アクリル酸iso-ブチルエステルが挙げられる。 Among the polymerization raw materials of the organic polymer forming the continuous skeleton of the absorbent A, the (meth) acrylic acid ester is not particularly limited, but the alkyl esters of C1 to C10 of the (meth) acrylic acid are preferable, and the (meth) acrylic acid is preferable. C4 alkyl esters of acids are particularly preferred. Examples of the C4 alkyl ester of (meth) acrylic acid include (meth) acrylic acid t-butyl ester, (meth) acrylic acid n-butyl ester, and (meth) acrylic acid iso-butyl ester.
 架橋重合に用いるモノマーは、(メタ)アクリル酸エステル及びジビニルベンゼンのみであってもよいし、(メタ)アクリル酸エステル及びジビニルベンゼンに加えて、(メタ)アクリル酸エステル及びジビニルベンゼン以外の他のモノマーを含有していてもよい。他のモノマーとしては、スチレン、α―メチルスチレン、ビニルトルエン、ビニルベンジルクロライド、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2エチルヘキシル、イソブテン、ブタジエン、イソブレン、クロロプレン、塩化ビニル、臭化ビニル、塩化ビニリデン、テトラフルオロエチレン、(メタ)アクリロニトリル、酢酸ビニル、エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。なお、架橋重合に用いる全モノマー中、(メタ)アクリル酸エステル及びジビニルベンゼン以外のモノマーの割合は、0~80モル%が好ましく、0~50モル%がより好ましい。 The monomer used for the cross-linking polymerization may be only (meth) acrylic acid ester and divinylbenzene, and in addition to (meth) acrylic acid ester and divinylbenzene, other than (meth) acrylic acid ester and divinylbenzene. It may contain a monomer. Other monomers include styrene, α-methylstyrene, vinyltoluene, vinylbenzyl chloride, glycidyl (meth) acrylate, diethylhexyl (meth) acrylate, isobutene, butadiene, isobrene, chloroprene, vinyl chloride, vinyl bromide, Examples thereof include vinylidene chloride, tetrafluoroethylene, (meth) acrylonitrile, vinyl acetate, ethylene glycol di (meth) acrylate, and trimethylpropantri (meth) acrylate. The proportion of the monomers other than the (meth) acrylic acid ester and divinylbenzene in all the monomers used for the cross-linking polymerization is preferably 0 to 80 mol%, more preferably 0 to 50 mol%.
 界面活性剤は、ソルビタンモノオレエートに限られない。架橋重合用モノマーと水とを混合した際に、油中水滴型(W/O)エマルションを形成できるものであればよい。例えば、ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタントリオレエート、ポリオキシエチレン基ノニルフェニルエーテル、ポリオキシエチレン基ステアリルエーテル、ポリオキシエチレン基ソルビタンモノオレエート等の非イオン界面活性剤、オレイン酸カリウム、ドデシルベンゼンスルホン酸ナトリウム、スルホコハク酸ジオクチルナトリウム等の陰イオン界面活性剤、ジステアリルジメチルアンモニウムクロライド等の陽イオン界面活性剤、ラウリルジメチルベタイン等の両性界面活性剤を用いることができる。これら界面活性剤は一種単独又は二種類以上を組み合わせて使用してもよい。 Surfactants are not limited to sorbitan monooleate. Any material may be used as long as it can form a water-in-oil (W / O) emulsion when the cross-linking polymerization monomer and water are mixed. For example, nonionic surfactants such as sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan trioleate, polyoxyethylene group nonylphenyl ether, polyoxyethylene group stearyl ether, polyoxyethylene group sorbitan monooleate, etc. Agents, anionic surfactants such as potassium oleate, sodium dodecylbenzenesulfonate, sodium dioctyl sulfosuccinate, cationic surfactants such as distearyldimethylammonium chloride, and amphoteric surfactants such as lauryldimethylbetaine may be used. it can. These surfactants may be used alone or in combination of two or more.
 重合開始剤としては、熱及び光照射によりラジカルを発生する化合物が好適に用いられる。重合開始剤は水溶性でも油溶性でもよく、例えば、アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、アゾビスシクロヘキサンニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビス(2-メチルプロピオンアミジン)ジヒドロクロライド、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウム、過酸化水素-塩化第一鉄、過硫酸ナトリウム-酸性亜硫酸ナトリウム、テトラメチルチウラムジスルフィド等が挙げられる。ただし、場合によっては、重合開始剤を添加しなくても加熱のみや光照射のみで重合が進行する系もあるため、そのような系では重合開始剤の添加は不要である。 As the polymerization initiator, a compound that generates radicals by heat and light irradiation is preferably used. The polymerization initiator may be water-soluble or oil-soluble, and may be, for example, azobis (4-methoxy-2,4-dimethylvaleronitrile), azobisisobutyronitrile, azobisdimethylvaleronitrile, azobiscyclohexanenitrile, azobiscyclohexane. Examples thereof include carbonitrile, azobis (2-methylpropionamidine) dihydrochloride, benzoyl peroxide, potassium persulfate, ammonium persulfate, hydrogen peroxide-ferrous chloride, sodium persulfate-sodium acid sulfite, tetramethylthium disulfide and the like. .. However, in some cases, the polymerization proceeds only by heating or light irradiation without adding the polymerization initiator, so that it is not necessary to add the polymerization initiator in such a system.
 吸収剤Aの他の例として、吸収剤aのメタクリル酸t-ブチル9.2gに代えて、メタクリル酸t-ブチル6.4g及びメタクリル酸2エチルヘキシル2.8gとした吸収剤bを用いることもできる。油溶性モノマーをメタクリル酸t-ブチル6.4g及びメタクリル酸2エチルヘキシル2.8gとすること以外は、吸収剤aと同様である。乾燥状態の吸収剤bのイオン交換容量は、5.0mg当量/gである。 As another example of the absorbent A, instead of the absorbent a, t-butyl methacrylate (9.2 g), an absorbent b containing 6.4 g of t-butyl methacrylate and 2.8 g of diethylhexyl methacrylate may be used. it can. It is the same as the absorbent a except that the oil-soluble monomer is 6.4 g of t-butyl methacrylate and 2.8 g of 2 ethylhexyl methacrylate. The ion exchange capacity of the absorbent b in the dry state is 5.0 mg equivalent / g.
 吸収剤bについて、上述の吸収剤aと同様の方法で、吸収対象液を純水として、吸収速度試験を行った。図13は、吸収剤aと吸収剤bについて、吸収対象液が純水のときの吸収量と時間の関係を示すグラフである。図13に示すように、飽和吸収量は18g/g-resinであり、飽和吸収量の90%の吸収量に到達するのに浸漬時間は5秒以内であった。 For the absorbent b, an absorption rate test was conducted using pure water as the absorption target liquid in the same manner as the above-mentioned absorbent a. FIG. 13 is a graph showing the relationship between the amount of absorption and the time of the absorbent a and the absorbent b when the liquid to be absorbed is pure water. As shown in FIG. 13, the saturated absorption amount was 18 g / g-resin, and the immersion time was within 5 seconds to reach the absorption amount of 90% of the saturated absorption amount.
 ===その他の実施形態===
 上述の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更・改良され得ると共に、本発明には、その等価物が含まれることは言うまでもない。
=== Other embodiments ===
The above-described embodiment is for facilitating the understanding of the present invention, and is not for limiting the interpretation of the present invention. It goes without saying that the present invention can be modified or improved without departing from the spirit thereof, and the present invention includes an equivalent thereof.
 上述の実施形態では、吸収体11が吸収剤A(吸収剤a)とSAPとを備えるものとしたが、これに限られない。吸収体11が吸収剤Aのみから構成されるものであってもよい。また、吸収剤Aと一緒に用いる物質は、SAPのみに限らない。例えば、吸収剤Aとパルプ繊維とを備えた吸収体11や、吸収剤AとSAPとパルプ繊維とを備えた吸収体11であってもよい。 In the above-described embodiment, the absorber 11 includes the absorbent A (absorbent a) and SAP, but the present invention is not limited to this. The absorber 11 may be composed of only the absorbent A. Further, the substance used together with the absorbent A is not limited to SAP. For example, the absorber 11 including the absorbent A and the pulp fiber may be used, or the absorber 11 including the absorbent A, SAP and the pulp fiber may be used.
1 おむつ(パンツ型使い捨ておむつ、吸収性物品)、10 吸収性本体、10ea 端部、10eb 端部、11 吸収体、11c 吸収性コア、13 トップシート、15 バックシート、30 腹側部材、30a 側部、31 肌側シート、32 非肌側シート、35 糸ゴム、40 背側部材、40a 側部、41 肌側シート、42 非肌側シート、45 糸ゴム、SS 溶着部、LH 脚回り開口部、BH 胴回り開口部 1 diaper (pants type disposable diaper, absorbent article), 10 absorbent body, 10ea end, 10eb end, 11 absorber, 11c absorbent core, 13 topsheet, 15 backsheet, 30 ventral member, 30a side Part, 31 skin side sheet, 32 non-skin side sheet, 35 thread rubber, 40 back side member, 40a side part, 41 skin side sheet, 42 non-skin side sheet, 45 thread rubber, SS welded part, LH leg circumference opening , BH waist opening

Claims (15)

  1.  体液を吸収するための吸収体であって、
     連続骨格及び連続空孔を備えた高分子吸収剤を有し、
     前記高分子吸収剤は、(メタ)アクリル酸エステルと、一分子中に2個以上のビニル基を含有する化合物の架橋重合体の加水分解物であり、且つ、少なくとも1個以上の-COONa基を含有することを特徴とする吸収体。
    An absorber for absorbing body fluids
    It has a polymer absorbent with a continuous skeleton and continuous pores,
    The polymer absorbent is a hydrolyzate of a (meth) acrylic acid ester and a crosslinked polymer of a compound containing two or more vinyl groups in one molecule, and at least one -COONa group. An absorber characterized by containing.
  2.  請求項1に記載の吸収体であって、
     前記高分子吸収剤は、モノリス状の吸収剤であることを特徴とする吸収体。
    The absorber according to claim 1.
    The polymer absorbent is an absorber characterized by being a monolith-like absorbent.
  3.  請求項1又は2に記載の吸収体であって、
     単位重さ当たりの前記高分子吸収剤が、濃度0.9wt%のNaCl水溶液を吸収する第1吸収重量と、
     前記単位重さ当たりの前記高分子吸収剤が、濃度0~2.0wt%のNaCl水溶液を吸収する第2吸収重量について、
     前記第1吸収重量が前記第2吸収重量の0.5~1.9倍であることを特徴とする吸収体。
    The absorber according to claim 1 or 2.
    The first absorption weight of the polymer absorbent per unit weight for absorbing an aqueous NaCl solution having a concentration of 0.9 wt% and
    Regarding the second absorption weight at which the polymer absorbent per unit weight absorbs a NaCl aqueous solution having a concentration of 0 to 2.0 wt%.
    An absorber characterized in that the first absorbed weight is 0.5 to 1.9 times the second absorbed weight.
  4.  請求項3に記載の吸収体であって、
     濃度0.9wt%のNaCl水溶液を前記第1吸収重量だけ吸収した第1高分子吸収剤と、濃度0~2.0wt%のNaCl水溶液を前記第2吸収重量だけ吸収した第2高分子吸収剤について、
     それぞれ所定時間だけ遠心分離機を用いて、150Gで850rpmの条件下で90秒間脱水した後の、前記第1高分子吸収剤が吸収した濃度0.9wt%のNaCl水溶液の重さは、第2高分子吸収剤が吸収した濃度0~2.0wt%のNaCl水溶液の重さの0.5~1.6倍であることを特徴とする吸収体。
    The absorber according to claim 3.
    A first polymer absorbent that absorbs a concentration of 0.9 wt% NaCl aqueous solution by the first absorption weight, and a second polymer absorbent that absorbs a concentration of 0 to 2.0 wt% NaCl aqueous solution by the second absorption weight. about,
    The weight of the 0.9 wt% NaCl aqueous solution absorbed by the first polymer absorbent after dehydration at 150 G for 90 seconds under the condition of 850 rpm using a centrifuge for a predetermined time is the second. An absorber characterized by being 0.5 to 1.6 times the weight of an aqueous NaCl solution having a concentration of 0 to 2.0 wt% absorbed by the polymer absorbent.
  5.  請求項4に記載の吸収体であって、
     前記脱水をした後の、前記第1高分子吸収剤に吸収された濃度0.9wt%のNaCl水溶液の重さを第1保水重量とし、
     前記脱水をした後の、前記第2高分子吸収剤に吸収された濃度0~2.0wt%のNaCl水溶液の重さを第2保水重量とし、
     前記第1高分子吸収剤の、前記第1吸収重量と前記第1保水重量との差を、前記第1吸収重量で除した値が、50~80%であり、
     前記第2高分子吸収剤の、前記第2吸収重量と前記第2保水重量との差を、前記第2吸収重量で除した値が、40~85%であることを特徴とする吸収体。
    The absorber according to claim 4.
    The weight of the 0.9 wt% NaCl aqueous solution absorbed by the first polymer absorbent after the dehydration was defined as the first water retention weight.
    The weight of the aqueous NaCl solution having a concentration of 0 to 2.0 wt% absorbed by the second polymer absorbent after the dehydration was defined as the second water retention weight.
    The value obtained by dividing the difference between the first absorption weight and the first water retention weight of the first polymer absorbent by the first absorption weight is 50 to 80%.
    An absorber characterized in that the value obtained by dividing the difference between the second absorption weight and the second water retention weight of the second polymer absorbent by the second absorption weight is 40 to 85%.
  6.  請求項1から5のいずれか1項に記載の吸収体であって、
     ボルテックス法による、2.0gの前記高分子吸収剤が50gの濃度0.9wt%のNaCl水溶液を吸収する時間が1.0~10.0秒であることを特徴とする吸収体。
    The absorber according to any one of claims 1 to 5.
    An absorber according to a vortex method, wherein 2.0 g of the polymer absorbent absorbs 50 g of a 0.9 wt% NaCl aqueous solution for 1.0 to 10.0 seconds.
  7.  請求項1から6のいずれか1項に記載の吸収体であって、
     前記高分子吸収剤が、濃度0.5wt%のCaCl2水溶液を吸収する吸収重量は、前記高分子吸収剤の重さの13倍以上であることを特徴とする吸収体。
    The absorber according to any one of claims 1 to 6.
    An absorber characterized in that the absorption weight of the polymer absorbent for absorbing a CaCl2 aqueous solution having a concentration of 0.5 wt% is 13 times or more the weight of the polymer absorbent.
  8.  請求項1から7のいずれか1項に記載の吸収体であって、
     1.0gの前記高分子吸収剤の下端部を、濃度0.9wt%のNaCl水溶液の水面に接触させた状態で1分経過後に、前記高分子吸収剤による濃度0.9wt%のNaCl水溶液の吸収量が、15ml以上であることを特徴とする吸収体。
    The absorber according to any one of claims 1 to 7.
    After 1 minute has passed in a state where the lower end of 1.0 g of the polymer absorbent is in contact with the water surface of the NaCl aqueous solution having a concentration of 0.9 wt%, the NaCl aqueous solution having a concentration of 0.9 wt% due to the polymer absorbent is added. An absorber characterized in that the amount of absorption is 15 ml or more.
  9.  請求項1から8のいずれか1項に記載の吸収体であって、
     600gwの荷重を加えた状態の2.0gの前記高分子吸収剤の下端部を、濃度0.9wt%のNaCl水溶液の水面に接触させた状態で、
     2分経過後に、前記高分子吸収剤による濃度0.9wt%のNaCl水溶液の吸収量が、1.0ml以上であり、
     15分経過後に、前記高分子吸収剤による濃度0.9wt%のNaCl水溶液の吸収量が、5.0ml以上であることを特徴とする吸収体。
    The absorber according to any one of claims 1 to 8.
    With the lower end of 2.0 g of the polymer absorbent under a load of 600 gw in contact with the water surface of an aqueous NaCl solution having a concentration of 0.9 wt%,
    After 2 minutes, the amount of the NaCl aqueous solution having a concentration of 0.9 wt% absorbed by the polymer absorbent was 1.0 ml or more.
    An absorber characterized in that after 15 minutes, the amount of the NaCl aqueous solution having a concentration of 0.9 wt% absorbed by the polymer absorbent is 5.0 ml or more.
  10.  請求項1から9のいずれか1項に記載の吸収体であって、
     前記高分子吸収剤の単位体積当たりの前記空孔の空隙の体積が85%以上であることを特徴とする吸収体。
    The absorber according to any one of claims 1 to 9.
    An absorber characterized in that the volume of voids in the pores per unit volume of the polymer absorbent is 85% or more.
  11.  請求項1から10のいずれか1項に記載の吸収体であって、
     前記高分子吸収剤は、0.1~30.0%の架橋重合残基を含有することを特徴とする吸収体。
    The absorber according to any one of claims 1 to 10.
    The polymer absorbent is an absorber containing 0.1 to 30.0% of crosslinked polymerization residues.
  12.  請求項1から11のいずれか1項に記載の吸収体であって、
     前記連続空孔の平均直径が、1~1000μmであることを特徴とする吸収体。
    The absorber according to any one of claims 1 to 11.
    An absorber characterized in that the average diameter of the continuous pores is 1 to 1000 μm.
  13.  請求項1から12のいずれか1項に記載の吸収体であって、
     前記吸収体は、前記高分子吸収剤と、前記高分子吸収剤より高い保水倍率を備える高分子化合物とを有することを特徴とする吸収体。
    The absorber according to any one of claims 1 to 12.
    The absorber is characterized by having the polymer absorbent and a polymer compound having a higher water retention ratio than the polymer absorbent.
  14.  請求項1から13のいずれか1項に記載の吸収体であって、
     前記高分子吸収剤の単位重量当たりの-COONa基の総イオン交換容量が、4.0mg当量/g以上であることを特徴とする吸収体。
    The absorber according to any one of claims 1 to 13.
    An absorber characterized in that the total ion exchange capacity of -COONa groups per unit weight of the polymer absorbent is 4.0 mg equivalent / g or more.
  15.  請求項1から14のいずれか1項に記載の吸収体を有することを特徴とする吸収性物品。 An absorbent article comprising the absorber according to any one of claims 1 to 14.
PCT/JP2020/024503 2019-06-28 2020-06-23 Absorber and absorbent article WO2020262343A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2021526994A JPWO2020262343A1 (en) 2019-06-28 2020-06-23
BR112021020337A BR112021020337A2 (en) 2019-06-28 2020-06-23 Absorber and absorbent article
KR1020217039445A KR20220027061A (en) 2019-06-28 2020-06-23 Absorbents and absorbent articles
CN202311460873.6A CN117838442A (en) 2019-06-28 2020-06-23 Absorbent body and absorbent article
CN202080046486.6A CN114080241A (en) 2019-06-28 2020-06-23 Absorbent body and absorbent article
AU2020306265A AU2020306265A1 (en) 2019-06-28 2020-06-23 Absorber and absorbent article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-121033 2019-06-28
JP2019121033 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020262343A1 true WO2020262343A1 (en) 2020-12-30

Family

ID=74060991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024503 WO2020262343A1 (en) 2019-06-28 2020-06-23 Absorber and absorbent article

Country Status (7)

Country Link
JP (1) JPWO2020262343A1 (en)
KR (1) KR20220027061A (en)
CN (2) CN117838442A (en)
AU (1) AU2020306265A1 (en)
BR (1) BR112021020337A2 (en)
TW (1) TW202116274A (en)
WO (1) WO2020262343A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145243A1 (en) * 2020-12-29 2022-07-07 ユニ・チャーム株式会社 Composite absorbent body and sanitary article
WO2022145237A1 (en) * 2020-12-29 2022-07-07 オルガノ株式会社 Composite absorbent body and polymeric absorber
WO2022145241A1 (en) * 2020-12-29 2022-07-07 オルガノ株式会社 Composite absorber, and polymer absorbent
WO2023199775A1 (en) * 2022-04-15 2023-10-19 ユニ・チャーム株式会社 Composite absorber and sanitary product using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7467115B2 (en) * 2019-12-27 2024-04-15 ユニ・チャーム株式会社 Absorbent articles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06510075A (en) * 1991-08-12 1994-11-10 ザ、プロクター、エンド、ギャンブル、カンパニー Absorbent foam materials for aqueous body fluids and absorbent articles containing such materials
JP2002505702A (en) * 1997-06-19 2002-02-19 エスシーエー ハイジーン プロダクツ アーベー Absorbent material structure, manufacturing method and use thereof, and disposable absorbent article including such a material structure
JP2003102784A (en) * 2001-09-28 2003-04-08 Toyobo Co Ltd Moisture/water absorbing exothermic diaper

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832549B1 (en) 2011-08-03 2018-02-26 스미토모 세이카 가부시키가이샤 Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
KR102234761B1 (en) * 2014-01-27 2021-04-02 닛폰 에쿠스란 고교 가부시키가이샤 Hygroscopic polymer particles, as well as sheet, element, and total heat exchanger having said particles
JP2017119233A (en) * 2015-12-28 2017-07-06 オルガノ株式会社 Method of purifying organic solvent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06510075A (en) * 1991-08-12 1994-11-10 ザ、プロクター、エンド、ギャンブル、カンパニー Absorbent foam materials for aqueous body fluids and absorbent articles containing such materials
JP2002505702A (en) * 1997-06-19 2002-02-19 エスシーエー ハイジーン プロダクツ アーベー Absorbent material structure, manufacturing method and use thereof, and disposable absorbent article including such a material structure
JP2003102784A (en) * 2001-09-28 2003-04-08 Toyobo Co Ltd Moisture/water absorbing exothermic diaper

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022145243A1 (en) * 2020-12-29 2022-07-07 ユニ・チャーム株式会社 Composite absorbent body and sanitary article
WO2022145237A1 (en) * 2020-12-29 2022-07-07 オルガノ株式会社 Composite absorbent body and polymeric absorber
WO2022145241A1 (en) * 2020-12-29 2022-07-07 オルガノ株式会社 Composite absorber, and polymer absorbent
WO2023199775A1 (en) * 2022-04-15 2023-10-19 ユニ・チャーム株式会社 Composite absorber and sanitary product using same

Also Published As

Publication number Publication date
CN114080241A (en) 2022-02-22
CN117838442A (en) 2024-04-09
AU2020306265A1 (en) 2021-11-04
JPWO2020262343A1 (en) 2020-12-30
TW202116274A (en) 2021-05-01
KR20220027061A (en) 2022-03-07
BR112021020337A2 (en) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2020262343A1 (en) Absorber and absorbent article
WO2021131301A1 (en) Absorbent article
US9937084B2 (en) Absorbent body and absorbent article using the same
JPH10502954A (en) Absorbent gelling agent comprising a dry mixture of at least two types of hydrogel-forming particles and method for producing the same
WO2014034132A2 (en) Absorbent body and absorbent article using the same
WO2022145243A1 (en) Composite absorbent body and sanitary article
WO2022145231A1 (en) Composite absorbent and sanitary material
JP2003088553A (en) Absorber and absorptive article using it
WO2022145242A1 (en) Composite absorbent object and sanitary supply
WO2022145234A1 (en) Composite absorber and hygiene product
WO2022145240A1 (en) Composite absorbent body and sanitary article
WO2022145239A1 (en) Composite absorbent and sanitary material
WO2022145226A1 (en) Composite absorber and sanitary article
WO2024057952A1 (en) Composite absorber and sanitary goods using same
WO2023199775A1 (en) Composite absorber and sanitary product using same
CN116648219A (en) Composite absorber and polymer absorbent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832277

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021020337

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020306265

Country of ref document: AU

Date of ref document: 20200623

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021526994

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021020337

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211008

122 Ep: pct application non-entry in european phase

Ref document number: 20832277

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 521431221

Country of ref document: SA