WO2020262096A1 - Temperature detection device and electronic control device equipped with same - Google Patents

Temperature detection device and electronic control device equipped with same Download PDF

Info

Publication number
WO2020262096A1
WO2020262096A1 PCT/JP2020/023519 JP2020023519W WO2020262096A1 WO 2020262096 A1 WO2020262096 A1 WO 2020262096A1 JP 2020023519 W JP2020023519 W JP 2020023519W WO 2020262096 A1 WO2020262096 A1 WO 2020262096A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
transistor
sensor
resistor
detection device
Prior art date
Application number
PCT/JP2020/023519
Other languages
French (fr)
Japanese (ja)
Inventor
卓哉 片桐
隆夫 福田
雄爾 石田
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2021528246A priority Critical patent/JP7377265B2/en
Publication of WO2020262096A1 publication Critical patent/WO2020262096A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/25Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising

Definitions

  • the present invention relates to the configuration of a temperature sensor and its control, and particularly to a technique effective when applied to a temperature sensor for automobile exhaust gas.
  • a thermistor type temperature sensor whose resistance value changes according to the temperature is used as the temperature sensor for exhaust gas.
  • the thermistor type temperature sensor has a feature that the resistance value exponentially decreases from about 100 k ⁇ to about 0.1 k ⁇ as the temperature rises.
  • a pull-up resistor is provided between the other end of the temperature sensor whose one end is connected to the ground line and the power supply voltage.
  • a sensor voltage that is a voltage corresponding to the resistance value of the temperature sensor and is a voltage corresponding to the temperature of the detection target is generated, and the detection target is detected from the detection value of the sensor voltage. Calculate the temperature.
  • Patent Document 1 has a configuration in which "two series resistors are provided as pull-up resistors, and two output terminals of transistors are connected to both ends of the resistor on the power supply voltage side of the two resistors". Have been described.
  • the characteristics of the sensor voltage with respect to temperature are set to the first characteristic and the second characteristic by switching the transistor on and off and changing the resistance value of the pull-up resistor. It is switched to. With this configuration, it is possible to reliably detect a failure of the temperature sensor and improve the accuracy of temperature detection.
  • Patent Document 2 states, “By detecting the transistor output voltage, which is the voltage of the output terminal on the downstream side of the two output terminals of the transistor, the temperature is detected based on the transistor output voltage and the sensor voltage. The configuration of "increasing the temperature detection accuracy” is described.
  • the temperature detection device of Patent Document 1 when the temperature sensor becomes high due to the temperature rise, the transistor is turned on to lower the pull-up resistance value and the temperature is measured, but the transistor is turned on. In this case (high temperature), the temperature detection accuracy may deteriorate due to changes in the on-resistance of the transistor that change due to factors such as initial variation, deterioration over time, and temperature.
  • the voltage between the output terminals when the transistor is turned on is detected by detecting the transistor output voltage which is the voltage of the output terminal on the downstream side of the two output terminals of the transistor.
  • the change in the transistor on-time resistance) is corrected, but it is necessary to add a means for detecting the transistor output voltage.
  • microcomputer hereinafter, also referred to as a microcomputer
  • MPX multiplexer
  • an object of the present invention is to provide a temperature detection device capable of highly accurate temperature measurement over a wide temperature range with a simple configuration.
  • the present invention comprises an external terminal connected to an external temperature sensor, a first resistor connected to one end side of the external terminal and connected in series with the external temperature sensor, and the first resistor.
  • a second resistor connected in series to the other end side of the first resistor and a source connected to one end side of the second resistor and a drain connected to the other end side are connected in parallel with the second resistor.
  • FIG. It is a schematic block diagram which shows the temperature detection apparatus of Example 1.
  • FIG. It is a figure which shows the relationship between the temperature of a temperature sensor and a sensor voltage VS. It is a flowchart which shows the temperature detection method by the temperature detection apparatus of FIG. It is a flowchart which shows the abnormality detection method by the temperature detection apparatus of Example 2. It is a figure which shows the modification of FIG. It is a schematic block diagram which shows the temperature detection apparatus of Example 3. It is a figure which shows the modification of FIG.
  • FIG. 1 is a diagram showing a schematic configuration of the temperature detection device 1 of this embodiment.
  • Two at both ends of 5 (hereinafter, also simply referred to as resistor 5) and a second resistor 7 (hereinafter, also simply referred to as resistor 7) connected between the other end of the first resistor 5 and the power supply voltage Vcc.
  • a transistor 9 to which an output terminal is connected, a microcomputer 11 (hereinafter, also referred to as a microcomputer 11), and a multiplexer (MPX) 13 are provided.
  • the reference potential at one end of the temperature sensor 3 may be the power supply voltage Vcc instead of the ground potential.
  • the first resistor 5 and the second resistor 7 may be configured in parallel instead of in series as shown in FIG.
  • one end of the two output terminals of the transistor 9 is connected to one end of the first resistor 5 or the second resistor 7, and the other end of the transistor 9 is the power supply voltage Vcc or the temperature of the first resistor 5. It may be configured to connect to the connection point (P1) with the sensor 3.
  • the temperature sensor 3 is a thermistor whose resistance value changes according to the temperature of the detection target, and in this embodiment, it is assumed that the thermistor has a temperature characteristic (that is, a negative temperature characteristic) in which the resistance value decreases as the temperature rises. I will explain.
  • the temperature sensor 3 is provided, for example, in the exhaust pipe of an engine mounted on an automobile, and detects the exhaust temperature of the engine as the temperature to be detected.
  • a sensor having a temperature characteristic that is, a positive temperature characteristic in which the resistance value increases as the temperature rises can also be used.
  • the power supply voltage Vcc is a constant voltage, and is described as 5V in this embodiment, but a voltage other than 5V may be used.
  • Transistor 9 is a PNP transistor in this embodiment.
  • the collector of the transistor 9 is connected to the downstream end (the end on the resistor 5 side) of the end of the resistor 7, and the emitter of the transistor 9 is the upstream end of the end of the resistor 7. It is connected to (the end on the power supply voltage Vcc side).
  • the transistor 9 may be an NPN transistor or a transistor of a type other than a bipolar transistor such as an FET (Field-Effect Transistor) or a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor).
  • FET Field-Effect Transistor
  • MOSFET Metal-Oxide Semiconductor Field-Effect Transistor
  • the sensor voltage VS which is the voltage at the connection point (P1) between the first resistor 5 and the temperature sensor 3, is input to the multiplexer 13 via the resistor 15.
  • the resistor 15 forms a noise filter together with the capacitor 18 whose one end is connected to the ground potential.
  • a noise removing capacitor 17 is also connected between the connection point (P1) and the ground potential.
  • the voltage of the collector (hereinafter referred to as transistor output voltage), which is the output terminal on the downstream side, is input to the multiplexer 13 via the resistor 15. To.
  • the microcomputer 11 has a CPU 21 that executes a program, a ROM 22 that stores a program to be executed, fixed data, and the like, a RAM 23 that stores a calculation result by the CPU 21, and an A / D converter (ADC) 24. I have.
  • the microcomputer 11 inputs the sensor voltage VS via the multiplexer 13 and detects the sensor voltage VS by A / D conversion by the A / D converter 24.
  • the temperature sensor 3 When the transistor 9 is off, the temperature sensor 3 is pulled up to the power supply voltage Vcc via two resistors 5 and 7 connected in series, and when the transistor 9 is on, it is pulled up to the power supply voltage Vcc via the transistor 9 and the resistor 5. It will be pulled up.
  • the sensor voltage when the transistor 9 is off is VS1 when the transistor 9 is off.
  • the sensor voltage VS1 becomes a voltage obtained by dividing the power supply voltage Vcc by R3 and “R5 + R7”, and is represented by the following equation 1.
  • Equation 2 R3 is represented by Equation 2 below.
  • the sensor voltage when the transistor 9 is on is VS2
  • the resistance when the transistor 9 is on is Ron
  • the sensor voltage VS changes according to the resistance value R3 of the temperature sensor 3, and eventually changes according to the temperature of the detection target, but when the transistor 9 is off and on, it changes.
  • the change characteristics with respect to temperature will be different.
  • the microcomputer 11 controls the base current of the transistor 9 to switch the transistor 9 on and off, thereby switching the characteristic of the sensor voltage VS with respect to the temperature between the first characteristic and the second characteristic.
  • FIG. 2 shows the relationship between the temperature of the temperature sensor 3 and the sensor voltage VS.
  • the transistor 9 when the temperature is high, the transistor 9 is turned on to set the characteristic of the sensor voltage VS with respect to temperature as the first characteristic, and when the temperature is low, the transistor 9 is turned off and the characteristic of the sensor voltage VS with respect to temperature is set to the first characteristic. It has the characteristics of 2. By switching the characteristics in this way, the sensor voltage VS has characteristics that are close to linear in all temperature ranges, and the temperature detection accuracy is improved.
  • the on-time resistance Ron of the transistor 9 can be calculated by comparing the sensor voltages VS1 and VS2 immediately after the transistor 9 is turned on.
  • the on-time resistance Ron of the transistor 9 varies depending on the initial tolerance, and also changes due to factors such as deterioration over time and temperature. Since the resistance value R3 of the temperature sensor 3 becomes smaller at a high temperature, the influence of the variation or change of the on-time resistance Ron of the transistor 9 on the sensor voltage VS becomes remarkable at a high temperature.
  • the microcomputer 11 calculates the temperature of the detection target by applying at least the detected value of the sensor voltage VS to the sensor voltage / temperature conversion map in the ROM 22 showing the correspondence between the sensor voltage VS and the temperature. That is, by updating the sensor voltage / temperature conversion map in the ROM 22 based on the absolute value or the deviation amount from the initial value (design value) of the on-time resistance Ron of the transistor 9 calculated from the equation 6, the temperature The detection accuracy can be improved.
  • FIG. 3 is a flowchart showing a temperature detection method by the temperature detection device 1 of FIG.
  • the processing performed by the microcomputer 11 is realized by the CPU 21 executing the program in the ROM 22.
  • the microcomputer 11 repeats the temperature detection process of FIG. 3 at regular time intervals. For example, when the ignition switch of an automobile is turned on, the temperature detection device 1 is turned on. Further, when the microcomputer 11 is started, the transistor 9 is initially turned off. That is, the initial drive state of the transistor 9 is off. The initial drive state of the Tradista 9 may be ON.
  • step S110 whether or not the transistor 9 is in the off period (that is, whether or not the transistor 9 is currently turned off) is determined. judge.
  • the sensor voltage VS1 is detected in step S120. Specifically, the multiplexer (MPX) 13 is made to output the sensor voltage VS1, and the sensor voltage VS1 is A / D converted by the A / D converter (ADC) 24. At this time, the detected sensor voltage VS1 is substituted into Equation 2 to calculate the resistance value R3 of the temperature sensor 3. In Equation 2, known fixed values are used for each of R5, R7, and Vcc.
  • step S130 it is determined whether or not the transistor 9 is in the on period (that is, whether or not the transistor 9 is currently turned on).
  • the sensor voltage VS2 is detected in step S140.
  • the multiplexer (MPX) 13 is made to output the sensor voltage VS2, and the sensor voltage VS2 is A / D converted by the A / D converter (ADC) 24.
  • the transistor 9 is switched from off to on within a short time.
  • the detected sensor voltage VS2 and the resistance value R3 of the temperature sensor 3 calculated in step S120 are substituted into the equation 6, and the amount of deviation from the absolute value or the initial value (design value) of the on-time resistance Ron of the transistor 9. Ask for.
  • Equation 6 known fixed values are used for each of R5 and R7.
  • step S150 the sensor voltage / temperature conversion map (conversion) in the ROM 22 is based on the deviation amount from the absolute value or the initial value (design value) of the on-time resistance Ron of the transistor 9 calculated in step S140. Table) is updated.
  • step S160 the temperature of the detection target is calculated by applying it to the sensor voltage / temperature conversion map (conversion table) in the ROM 22 showing the correspondence between the sensor voltage VS and the temperature.
  • step S170 it is determined whether or not the temperature (detection temperature) calculated in step S160 is equal to or higher than the predetermined threshold value Tha. Then, when the detection temperature is less than the threshold value Tha, the microcomputer 11 proceeds to step S180 and ends the temperature detection process as it is. On the other hand, when the detection temperature is equal to or higher than the threshold value Tha, the transistor 9 is turned on from off in step S190, and then the temperature detection process is terminated.
  • the threshold value Tha is a threshold value for switching the characteristic of the sensor voltage VS with respect to temperature from the second characteristic for low temperature detection to the first characteristic for high temperature detection, and is set to, for example, 260 ° C. in this embodiment. (See Fig. 2)
  • the threshold value Tha may be set to hysteresis by providing a second threshold value, and it is possible to prevent hunting of characteristic switching from occurring when detecting a temperature close to the switching threshold value.
  • the electronic control device provided with the temperature detection device 1 of this embodiment is connected to an external terminal connected to an external temperature sensor (temperature sensor 3) and one end side of the external terminal, and is connected to an external temperature sensor (temperature sensor).
  • the first resistance 5 connected in series with 3
  • the second resistance 7 connected in series with the other end side of the first resistance 5, and the source connected to one end side of the second resistance 7 and the other end side.
  • the sensor voltage which is the voltage value between the MOS transistor (transistor 9) connected in parallel with the second resistor 7 and the first resistor 5 and the external temperature sensor (temperature sensor 3) by connecting the drain to the second resistor 7.
  • a temperature measuring unit (microcomputer 11) that measures the temperature from the value VS, and the MOS transistor (transistor) is based on the ratio of the sensor voltage value when the MOS transistor (transistor 9) is ON and the sensor voltage value when it is OFF. It is configured to include an estimation unit (microcomputer 11) for estimating the on-resistance of 9).
  • the external temperature sensor is a thermistor whose resistance value changes according to the temperature of the detection target.
  • the external temperature sensor (temperature sensor 3) is provided in the exhaust pipe of an engine mounted on an automobile, and the exhaust temperature of the engine is measured. Detect as the temperature to be detected.
  • the exhaust pipe of the engine may be provided with a filter for processing the exhaust gas, and if the exhaust temperature of the engine can be detected accurately and continuously, the exhaust temperature margin for filter protection can be narrowed. You can.
  • the temperature detection device according to the second embodiment of the present invention and its control method will be described with reference to FIGS. 4 and 5.
  • the same "1" as in the first embodiment is used.
  • the same reference numerals as those in the first embodiment are used for the same components and processes as in the first embodiment. And this also applies to other examples described later.
  • FIG. 4 is a flowchart showing an abnormality detection method (transistor diagnosis method) by the temperature detection device 1 of this embodiment.
  • FIG. 5 shows an example in which the step (step S350) for determining the abnormality of the transistor 9 is different from step S250 in FIG. 4, and corresponds to a modified example of FIG.
  • the microcomputer 11 repeats the transistor diagnosis process shown in FIG. 4, for example, at regular time intervals.
  • the execution cycle of the transistor diagnosis process may be shorter, longer, or the same as the execution cycle of the temperature detection process.
  • step S210 when the microcomputer 11 starts the transistor diagnosis process, first, in step S210, whether or not the transistor 9 is in the off period (that is, the transistor 9 is currently turned off). Whether or not) is determined.
  • step S220 the sensor voltage VS1 is detected (calculated) in step S220.
  • step S230 it is determined whether or not the transistor 9 is in the on period (that is, whether or not the transistor 9 is currently turned on).
  • the sensor voltage VS2 is detected (calculated) in step S240.
  • the transistor 9 is switched from off to on within a short time.
  • step S250 the ratio of the sensor voltages VS1 and VS2 is taken, and if the ratio value is 1 or near 1, it is determined in step S260 that the transistor 9 has failed (abnormal). On the other hand, if the value of the ratio of the sensor voltages VS1 and VS2 is other than 1 or 1 in step S250, it is determined in step S270 that there is no failure (normal).
  • the difference between the sensor voltages VS1 and VS2 is taken in step S350 for determining the abnormality of the transistor 9, and if the difference value is 0 or near 0, the transistor 9 has failed ( If it is determined as (abnormal) and the difference value is 0 or other than 0, it may be determined that there is no failure (normal).
  • the abnormality of the transistor 9 can be detected with a simple configuration. Since the normality / abnormality of the transistor 9 can be confirmed, the accuracy of the sensor voltages VS1 and VS2 can be confirmed.
  • FIG. 6 is a diagram showing a schematic configuration of the temperature detection device 1 of this embodiment.
  • FIG. 7 is a diagram showing a modified example of FIG.
  • the temperature detection device 1 of the first embodiment (FIG. 1), an example in which the transistor 9 is connected in parallel to the second resistor 7 is shown, but in the temperature detection device 1 of the present embodiment, as shown in FIG. In addition, it differs from the first embodiment (FIG. 1) in that the transistor 9 is connected in parallel to the first resistor 5.
  • the transistor 9 may be connected in parallel to both the first resistor 5 and the second resistor 7.
  • the temperature-voltage characteristic pattern can be increased by connecting the two output terminals of the transistor 9 to both ends of the first resistor 5 and the second resistor 7, respectively. .. That is, the variation of the sensor voltage / temperature conversion map (conversion table) in the ROM 22 can be increased, and the temperature can be measured with high accuracy over a wider temperature range.
  • the temperature detection device 1 of the present invention has a first resistor 5 having one end connected to an external temperature sensor (temperature sensor 3) and a first resistor 5 connected in series to the other end side of the first resistor 5. Between the 2 resistance 7 and the transistor 9 connected in parallel to either or both of the 1st resistance 5 and the 2nd resistance 7 and between the 1st resistance 5 and the external temperature sensor (temperature sensor 3). It is equipped with a temperature estimation unit (microcomputer 11) that estimates the temperature from the sensor voltage value VS, which is the voltage value of the above, and is based on the sensor voltage value VS2 when the transistor 9 is ON and the sensor voltage value VS1 when the transistor 9 is OFF. Detect (calculate) the temperature.
  • a temperature estimation unit microcomputer 11
  • the on-resistance Ron of the transistor 9 is estimated based on the sensor voltage value VS2 when the transistor 9 is ON and the sensor voltage value VS1 when the transistor 9 is OFF.
  • the sensor voltage value VS is corrected based on the estimated on-resistance Ron of the transistor 9.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
  • another pull-up resistor may be provided between the power supply voltage Vcc and the second resistor 7.
  • one or both of the resistors 5 and 7 may be composed of a plurality of resistors in series. Further, one or both of the resistors 5 and 7 may not be present, and a plurality of transistors 9 may be connected between the power supply voltage Vcc and the connection point P1.
  • the temperature sensor 3 may be other than the thermistor, and the temperature to be detected may be other than the exhaust temperature of the engine. Further, the temperature sensor 3 may also change in response to changes in the external environment such as pressure (atmospheric pressure) and humidity other than temperature.
  • the transistor 9 is not limited to the transistor, and may be another type of transistor such as a FET (Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
  • FET Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

The present invention provides a temperature detection device that has a simple configuration, and is capable of highly accurate temperature measurement over a wide temperature range. According to the present invention, an electronic control device is equipped with: an external terminal that is connected to an external temperature sensor; a first resistor that is connected to one end side of the external terminal, and connected in series to the external temperature sensor; a second resistor that is connected in series to the other end side of the first resistor; a MOS transistor that is connected in parallel to the second resistor by connecting the source thereof to one end side of the second resistor and connecting the drain thereof to the other end side of the second resistor; and a temperature measurement unit that measures the temperature from a sensor voltage value, which is the voltage value between the first resistor and the external temperature sensor. The electronic control device is further equipped with an estimation unit that estimates the on-resistance of the MOS transistor from the ratio of the sensor voltage value when the MOS transistor is on to the sensor voltage value when the MOS transistor is off.

Description

温度検出装置およびそれを備えた電子制御装置Temperature detector and electronic control device equipped with it
 本発明は、温度センサの構成とその制御に係り、特に、自動車の排ガス用温度センサに適用して有効な技術に関する。 The present invention relates to the configuration of a temperature sensor and its control, and particularly to a technique effective when applied to a temperature sensor for automobile exhaust gas.
 自動車に搭載される排ガス用温度センサは、燃焼制御や排ガス浄化システム制御用のセンサとして、ニーズが高まっている。この排ガス用温度センサは、従来は警告を発するための温度検知が出来れば良かったが、更なる省燃費や排ガスのクリーン化の要求に伴い、広範囲な温度域(-40℃~900℃)に渡って精度よく連続的に温度計測することが求められている。 There is an increasing need for exhaust gas temperature sensors installed in automobiles as sensors for combustion control and exhaust gas purification system control. Conventionally, this temperature sensor for exhaust gas should be able to detect the temperature to issue a warning, but with the demand for further fuel efficiency and clean exhaust gas, it has been expanded to a wide temperature range (-40 ° C to 900 ° C). It is required to measure the temperature continuously with high accuracy.
 一般的に、排ガス用温度センサには、温度に応じて抵抗値が変化するサーミスタタイプの温度センサが用いられる。サーミスタタイプの温度センサは、温度上昇に応じて、抵抗値が100kΩ程度から0.1kΩ程度へ指数関数的に減少する特徴を有している。 Generally, a thermistor type temperature sensor whose resistance value changes according to the temperature is used as the temperature sensor for exhaust gas. The thermistor type temperature sensor has a feature that the resistance value exponentially decreases from about 100 kΩ to about 0.1 kΩ as the temperature rises.
 この種の温度センサを用いた温度検出装置では、一端がグランドラインに接続された温度センサの他端と、電源電圧との間に、プルアップ用の抵抗を設けている。その抵抗と温度センサとの接続点に、温度センサの抵抗値に応じた電圧であって、検出対象の温度に応じた電圧であるセンサ電圧を発生させ、そのセンサ電圧の検出値から検出対象の温度を算出する。 In a temperature detection device using this type of temperature sensor, a pull-up resistor is provided between the other end of the temperature sensor whose one end is connected to the ground line and the power supply voltage. At the connection point between the resistance and the temperature sensor, a sensor voltage that is a voltage corresponding to the resistance value of the temperature sensor and is a voltage corresponding to the temperature of the detection target is generated, and the detection target is detected from the detection value of the sensor voltage. Calculate the temperature.
 本技術分野の背景技術として、例えば、特許文献1のような技術がある。特許文献1には「プルアップ用の抵抗として、2つの直列な抵抗を設けると共に、その2つの抵抗のうち、電源電圧側の抵抗の両端に、トランジスタの2つの出力端子を接続する」構成が記載されている。 As a background technology in this technical field, for example, there is a technology such as Patent Document 1. Patent Document 1 has a configuration in which "two series resistors are provided as pull-up resistors, and two output terminals of transistors are connected to both ends of the resistor on the power supply voltage side of the two resistors". Have been described.
 特許文献1に記載の温度検出装置では、トランジスタのオンとオフを切り換えて、プルアップ用抵抗の抵抗値を変えることにより、温度に対するセンサ電圧の特性を、第1の特性と第2の特性とに切り換えている。この構成により、温度センサの故障を確実に検出でき、温度の検出精度を高めることができるとしている。 In the temperature detection device described in Patent Document 1, the characteristics of the sensor voltage with respect to temperature are set to the first characteristic and the second characteristic by switching the transistor on and off and changing the resistance value of the pull-up resistor. It is switched to. With this configuration, it is possible to reliably detect a failure of the temperature sensor and improve the accuracy of temperature detection.
 また、特許文献2には「トランジスタの2つの出力端子のうち、下流側の出力端子の電圧であるトランジスタ出力電圧を検出することで、トランジスタ出力電圧とセンサ電圧とに基づき温度を検出することで温度の検出精度を高める」構成が記載されている。 Further, Patent Document 2 states, "By detecting the transistor output voltage, which is the voltage of the output terminal on the downstream side of the two output terminals of the transistor, the temperature is detected based on the transistor output voltage and the sensor voltage. The configuration of "increasing the temperature detection accuracy" is described.
 特許文献2に記載の温度検出装置では、トランジスタのオン時における出力端子間の電圧(トランジスタのオン時抵抗)の経時劣化や温度などの要因で変化することを想定し、温度の検出精度をさらに高めることができるとしている。 In the temperature detection device described in Patent Document 2, it is assumed that the voltage between the output terminals (resistance when the transistor is turned on) changes with time due to factors such as deterioration and temperature when the transistor is turned on, and the temperature detection accuracy is further improved. It is said that it can be increased.
特開2009-250613号公報Japanese Unexamined Patent Publication No. 2009-250613 特許第5776705号公報Japanese Patent No. 5776705
 しかしながら、上記特許文献1の温度検出装置では、温度センサが温度上昇により高温となった場合、トランジスタをオンとすることで、プルアップ抵抗値を低下させて温度測定を行うが、トランジスタをオンさせている場合(高温)において、初期ばらつきや経時劣化、温度などの要因で変化するトランジスタのオン抵抗の変化によって、温度の検出精度が悪化する可能性がある。 However, in the temperature detection device of Patent Document 1, when the temperature sensor becomes high due to the temperature rise, the transistor is turned on to lower the pull-up resistance value and the temperature is measured, but the transistor is turned on. In this case (high temperature), the temperature detection accuracy may deteriorate due to changes in the on-resistance of the transistor that change due to factors such as initial variation, deterioration over time, and temperature.
 また、上記特許文献2の温度検出装置では、トランジスタの2つの出力端子のうち、下流側の出力端子の電圧であるトランジスタ出力電圧を検出することで、トランジスタのオン時における出力端子間の電圧(トランジスタのオン時抵抗)の変化を補正しているが、トランジスタ出力電圧を検出する手段の追加が必要となる。 Further, in the temperature detection device of Patent Document 2, the voltage between the output terminals when the transistor is turned on is detected by detecting the transistor output voltage which is the voltage of the output terminal on the downstream side of the two output terminals of the transistor. The change in the transistor on-time resistance) is corrected, but it is necessary to add a means for detecting the transistor output voltage.
 このため、トランジスタ出力電圧の検出のためのマイクロコンピュータ(以下、マイコンとも称する)やマルチプレクサ(以下、MPXとも称する)に追加の検出用ポートが必要となり、コスト増加に繋がる。 For this reason, an additional detection port is required for the microcomputer (hereinafter, also referred to as a microcomputer) and the multiplexer (hereinafter, also referred to as MPX) for detecting the transistor output voltage, which leads to an increase in cost.
 そこで、本発明の目的は、簡易な構成で、広範囲な温度域に渡って高精度な温度計測が可能な温度検出装置を提供することにある。 Therefore, an object of the present invention is to provide a temperature detection device capable of highly accurate temperature measurement over a wide temperature range with a simple configuration.
 上記課題を解決するために、本発明は、外部温度センサに接続される外部端子と、該外部端子の一端側に接続され、該外部温度センサと直列に接続される第1抵抗と、該第1抵抗の他端側に直列に接続される第2抵抗と、該第2抵抗の一端側にソースが接続され、他端側にドレインが接続されることで、該第2抵抗と並列に接続されるMOSトランジスタと、該第1抵抗と該外部温度センサとの間の電圧値であるセンサ電圧値から温度を測定する温度測定部と、を備える電子制御装置において、前記MOSトランジスタがONの時のセンサ電圧値と、OFFの時のセンサ電圧値の比から、前記MOSトランジスタのオン抵抗を推定する推定部を備えることを特徴とする。 In order to solve the above problems, the present invention comprises an external terminal connected to an external temperature sensor, a first resistor connected to one end side of the external terminal and connected in series with the external temperature sensor, and the first resistor. A second resistor connected in series to the other end side of the first resistor and a source connected to one end side of the second resistor and a drain connected to the other end side are connected in parallel with the second resistor. When the MOS transistor is ON in an electronic control device including a MOS transistor to be used and a temperature measuring unit for measuring a temperature from a sensor voltage value which is a voltage value between the first resistor and the external temperature sensor. It is characterized by including an estimation unit that estimates the on-resistance of the MOS transistor from the ratio of the sensor voltage value of the above to the sensor voltage value at the time of OFF.
 また、本発明は、一端が外部温度センサに接続される第1抵抗と、前記第1抵抗の他端側に直列に接続される第2抵抗と、前記第1抵抗および前記第2抵抗のいずれか一方、または、両方の各々に並列に接続されるトランジスタと、前記第1抵抗と前記外部温度センサとの間の電圧値であるセンサ電圧値から温度を推定する温度推定部と、を備え、前記トランジスタがONの時のセンサ電圧値と、OFFの時のセンサ電圧値に基づき、温度を検出することを特徴とする。 Further, in the present invention, any of the first resistor whose one end is connected to the external temperature sensor, the second resistor which is connected in series with the other end side of the first resistor, and the first resistor and the second resistor. It includes a transistor connected in parallel to one or both of them, and a temperature estimation unit that estimates the temperature from a sensor voltage value which is a voltage value between the first resistor and the external temperature sensor. It is characterized in that the temperature is detected based on the sensor voltage value when the transistor is ON and the sensor voltage value when the transistor is OFF.
 本発明によれば、簡易な構成で、広範囲な温度域に渡って高精度な温度計測が可能な温度検出装置を実現することができる。 According to the present invention, it is possible to realize a temperature detection device capable of highly accurate temperature measurement over a wide temperature range with a simple configuration.
 これにより、高効率な自動車エンジンの燃焼制御や排ガス浄化システムの制御が可能となり、省燃費や排ガスのクリーン化に寄与できる。 This makes it possible to control the combustion of automobile engines and the exhaust gas purification system with high efficiency, which contributes to fuel saving and clean exhaust gas.
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Issues, configurations and effects other than those described above will be clarified by the explanation of the following embodiments.
実施例1の温度検出装置を示す概略構成図である。It is a schematic block diagram which shows the temperature detection apparatus of Example 1. FIG. 温度センサの温度とセンサ電圧VSの関係を示す図である。It is a figure which shows the relationship between the temperature of a temperature sensor and a sensor voltage VS. 図1の温度検出装置による温度検出方法を示すフローチャートである。It is a flowchart which shows the temperature detection method by the temperature detection apparatus of FIG. 実施例2の温度検出装置による異常検出方法を示すフローチャートである。It is a flowchart which shows the abnormality detection method by the temperature detection apparatus of Example 2. 図4の変形例を示す図である。It is a figure which shows the modification of FIG. 実施例3の温度検出装置を示す概略構成図である。It is a schematic block diagram which shows the temperature detection apparatus of Example 3. 図6の変形例を示す図である。It is a figure which shows the modification of FIG.
 以下、図面を用いて本発明の実施例を説明する。なお、各図面において同一の構成については同一の符号を付し、重複する部分についてはその詳細な説明は省略する。 Hereinafter, examples of the present invention will be described with reference to the drawings. In each drawing, the same components are designated by the same reference numerals, and the detailed description of overlapping portions will be omitted.
 図1から図3を参照して、本発明の実施例1の温度検出装置とその制御方法について説明する。図1は、本実施例の温度検出装置1の概略構成を示す図である。 The temperature detection device according to the first embodiment of the present invention and its control method will be described with reference to FIGS. 1 to 3. FIG. 1 is a diagram showing a schematic configuration of the temperature detection device 1 of this embodiment.
 図1に示すように、本実施例の温度検出装置1は、基準電位としてのグランド電位(=0V)に一端が接続された温度センサ3の他端に、一端が接続された第1の抵抗5(以下、単に抵抗5とも称する)と、第1の抵抗5の他端と電源電圧Vccとの間に接続された第2の抵抗7(以下、単に抵抗7とも称する)の両端に2つの出力端子が接続されたトランジスタ9と、マイクロコンピュータ11(以下、マイコン11とも称する)と、マルチプレクサ(MPX)13とを、備えている。 As shown in FIG. 1, in the temperature detection device 1 of the present embodiment, a first resistor having one end connected to the other end of the temperature sensor 3 having one end connected to the ground potential (= 0V) as a reference potential. Two at both ends of 5 (hereinafter, also simply referred to as resistor 5) and a second resistor 7 (hereinafter, also simply referred to as resistor 7) connected between the other end of the first resistor 5 and the power supply voltage Vcc. A transistor 9 to which an output terminal is connected, a microcomputer 11 (hereinafter, also referred to as a microcomputer 11), and a multiplexer (MPX) 13 are provided.
 なお、温度センサ3の一端の基準電位はグランド電位でなく電源電圧Vccでもよい。
また、第1の抵抗5と第2の抵抗7は、図1のように直列ではなく、並列で構成してもよい。さらに、第1の抵抗5または第2の抵抗7の一端に、トランジスタ9の2つの出力端子の内の一端が接続され、トランジスタ9の他端は、電源電圧Vccまたは第1の抵抗5の温度センサ3との接続点(P1)に接続する構成でもよい。
The reference potential at one end of the temperature sensor 3 may be the power supply voltage Vcc instead of the ground potential.
Further, the first resistor 5 and the second resistor 7 may be configured in parallel instead of in series as shown in FIG. Further, one end of the two output terminals of the transistor 9 is connected to one end of the first resistor 5 or the second resistor 7, and the other end of the transistor 9 is the power supply voltage Vcc or the temperature of the first resistor 5. It may be configured to connect to the connection point (P1) with the sensor 3.
 温度センサ3は、検出対象の温度に応じて抵抗値が変化するサーミスタであり、本実施例では、温度上昇に伴い抵抗値が減少する温度特性(即ち、負の温度特性)を有するサーミスタを想定して説明する。温度センサ3は、例えば、自動車に搭載されたエンジンの排気管に設けられ、そのエンジンの排気温度を検出対象の温度として検出する。 The temperature sensor 3 is a thermistor whose resistance value changes according to the temperature of the detection target, and in this embodiment, it is assumed that the thermistor has a temperature characteristic (that is, a negative temperature characteristic) in which the resistance value decreases as the temperature rises. I will explain. The temperature sensor 3 is provided, for example, in the exhaust pipe of an engine mounted on an automobile, and detects the exhaust temperature of the engine as the temperature to be detected.
 なお、温度センサ3としては、温度上昇に伴い抵抗値が増加する温度特性(即ち、正の温度特性)を有するものを用いることもできる。 As the temperature sensor 3, a sensor having a temperature characteristic (that is, a positive temperature characteristic) in which the resistance value increases as the temperature rises can also be used.
 電源電圧Vccは、一定の電圧であり、本実施例では5Vとして説明するが、5V以外の電圧でもよい。 The power supply voltage Vcc is a constant voltage, and is described as 5V in this embodiment, but a voltage other than 5V may be used.
 トランジスタ9は、本実施例ではPNPトランジスタである。トランジスタ9のコレクタが、抵抗7の端部のうち、下流側の端部(抵抗5側の端部)に接続され、トランジスタ9のエミッタが、抵抗7の端部のうち、上流側の端部(電源電圧Vcc側の端部)に接続されている。 Transistor 9 is a PNP transistor in this embodiment. The collector of the transistor 9 is connected to the downstream end (the end on the resistor 5 side) of the end of the resistor 7, and the emitter of the transistor 9 is the upstream end of the end of the resistor 7. It is connected to (the end on the power supply voltage Vcc side).
 なお、トランジスタ9は、NPNトランジスタでも良いし、FET(Field-Effect Transistor)やMOSFET(Metal-Oxide Semiconductor Field-Effect Transistor)などのバイポーラトランジスタ以外の種類のトランジスタでも良い。 The transistor 9 may be an NPN transistor or a transistor of a type other than a bipolar transistor such as an FET (Field-Effect Transistor) or a MOSFET (Metal-Oxide Semiconductor Field-Effect Transistor).
 マルチプレクサ13には、第1の抵抗5と温度センサ3との接続点(P1)の電圧であるセンサ電圧VSが、抵抗15を介して入力される。抵抗15は、グランド電位に一端が接続されたコンデンサ18と共にノイズフィルタを成す。接続点(P1)とグランド電位との間にも、ノイズ除去用のコンデンサ17が接続されている。 The sensor voltage VS, which is the voltage at the connection point (P1) between the first resistor 5 and the temperature sensor 3, is input to the multiplexer 13 via the resistor 15. The resistor 15 forms a noise filter together with the capacitor 18 whose one end is connected to the ground potential. A noise removing capacitor 17 is also connected between the connection point (P1) and the ground potential.
 また、マルチプレクサ13には、トランジスタ9の2つの出力端子(コレクタとエミッタ)のうち、下流側の出力端子であるコレクタの電圧(以下、トランジスタ出力電圧という)VTが、抵抗15を介して入力される。 Further, of the two output terminals (collector and emitter) of the transistor 9, the voltage of the collector (hereinafter referred to as transistor output voltage), which is the output terminal on the downstream side, is input to the multiplexer 13 via the resistor 15. To.
 マイコン11は、プログラムを実行するCPU21と、実行対象のプログラムや固定のデータ等が記憶されたROM22と、CPU21による演算結果等が記憶されるRAM23と、A/D変換器(ADC)24とを備えている。 The microcomputer 11 has a CPU 21 that executes a program, a ROM 22 that stores a program to be executed, fixed data, and the like, a RAM 23 that stores a calculation result by the CPU 21, and an A / D converter (ADC) 24. I have.
 マイコン11は、センサ電圧VSを、マルチプレクサ13を介して入力し、センサ電圧VSを、A/D変換器24によりA/D変換することで検出する。 The microcomputer 11 inputs the sensor voltage VS via the multiplexer 13 and detects the sensor voltage VS by A / D conversion by the A / D converter 24.
 温度センサ3は、トランジスタ9のオフ時には、直列接続された2つの抵抗5,7を介して電源電圧Vccにプルアップされ、トランジスタ9のオン時には、トランジスタ9および抵抗5を介して電源電圧Vccにプルアップされる。 When the transistor 9 is off, the temperature sensor 3 is pulled up to the power supply voltage Vcc via two resistors 5 and 7 connected in series, and when the transistor 9 is on, it is pulled up to the power supply voltage Vcc via the transistor 9 and the resistor 5. It will be pulled up.
 このため、温度センサ3の抵抗値をR3とし、抵抗5の抵抗値をR5とし、抵抗7の抵抗値をR7とすると、トランジスタ9のオフ時において、トランジスタ9のオフ時のセンサ電圧をVS1とすると、センサ電圧VS1は、電源電圧VccをR3と「R5+R7」とで分圧した電圧になり、下記の式1で表される。 Therefore, assuming that the resistance value of the temperature sensor 3 is R3, the resistance value of the resistor 5 is R5, and the resistance value of the resistor 7 is R7, the sensor voltage when the transistor 9 is off is VS1 when the transistor 9 is off. Then, the sensor voltage VS1 becomes a voltage obtained by dividing the power supply voltage Vcc by R3 and “R5 + R7”, and is represented by the following equation 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 そして、式1を変形すると、R3は下記の式2で表される。 Then, when Equation 1 is modified, R3 is represented by Equation 2 below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 また、トランジスタ9のオン時において、トランジスタ9のオン時のセンサ電圧をVS2とし、トランジスタ9のオン時の抵抗をRonとすると、センサ電圧VS2は、下記の式3で表される。 Further, when the transistor 9 is on, the sensor voltage when the transistor 9 is on is VS2, and the resistance when the transistor 9 is on is Ron, the sensor voltage VS2 is expressed by the following equation 3.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、本実施例において、抵抗7の抵抗値R7とトランジスタ9のオン時の抵抗Ronを比較すると、R7>>Ronとなることから、 In this embodiment, when the resistance value R7 of the resistor 7 and the resistance Ron when the transistor 9 is turned on are compared, it becomes R7 >> Ron.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 と簡略化できる。 Can be simplified as.
 このとき、トランジスタ9をオフからオンに変化させた直後は温度センサ3の抵抗値R3はほとんど変化しないことから、トランジスタ9をオフからオンに変化させた直後のR3は同一の値と見做し、VS1とVS2を比較すると、式1と式4から、 At this time, since the resistance value R3 of the temperature sensor 3 hardly changes immediately after the transistor 9 is changed from off to on, the R3 immediately after the transistor 9 is changed from off to on is regarded as having the same value. Comparing VS1 and VS2, from Equation 1 and Equation 4,
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 となり、式5を変形すると、Ronは下記の式6で表される。 Then, when Equation 5 is transformed, Ron is expressed by Equation 6 below.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式1と式4から、センサ電圧VSは、温度センサ3の抵抗値R3に応じて変化し、延いては、検出対象の温度に応じて変化するが、トランジスタ9のオフ時とオン時では、温度に対する変化特性が相違することとなる。そして、マイコン11は、トランジスタ9のベース電流を制御して、トランジスタ9のオンとオフとを切り替えることにより、センサ電圧VSの温度に対する特性を、第1の特性と第2の特性とに切り換える。 From Equations 1 and 4, the sensor voltage VS changes according to the resistance value R3 of the temperature sensor 3, and eventually changes according to the temperature of the detection target, but when the transistor 9 is off and on, it changes. The change characteristics with respect to temperature will be different. Then, the microcomputer 11 controls the base current of the transistor 9 to switch the transistor 9 on and off, thereby switching the characteristic of the sensor voltage VS with respect to the temperature between the first characteristic and the second characteristic.
 図2に、温度センサ3の温度とセンサ電圧VSの関係を示す。図2に示すように、高温時には、トランジスタ9をオンさせて、センサ電圧VSの温度に対する特性を第1の特性にし、低温時には、トランジスタ9をオフさせて、センサ電圧VSの温度に対する特性を第2の特性にする。このような特性の切換えにより、全ての温度領域において、センサ電圧VSが線形に近い特性になるようにして、温度の検出精度が良好となるようにしている。 FIG. 2 shows the relationship between the temperature of the temperature sensor 3 and the sensor voltage VS. As shown in FIG. 2, when the temperature is high, the transistor 9 is turned on to set the characteristic of the sensor voltage VS with respect to temperature as the first characteristic, and when the temperature is low, the transistor 9 is turned off and the characteristic of the sensor voltage VS with respect to temperature is set to the first characteristic. It has the characteristics of 2. By switching the characteristics in this way, the sensor voltage VS has characteristics that are close to linear in all temperature ranges, and the temperature detection accuracy is improved.
 また、式6から、トランジスタ9のオフからオン直後の各センサ電圧VS1およびVS2を比較することで、トランジスタ9のオン時抵抗Ronを算出できる。トランジスタ9のオン時抵抗Ronは初期の公差でばらつきをもっており、また、経時劣化や温度などの要因で変化する。高温において、温度センサ3の抵抗値R3はより小さくなるため、高温時においてトランジスタ9のオン時抵抗Ronのばらつきや変化がセンサ電圧VSに与える影響は顕著となる。 Further, from Equation 6, the on-time resistance Ron of the transistor 9 can be calculated by comparing the sensor voltages VS1 and VS2 immediately after the transistor 9 is turned on. The on-time resistance Ron of the transistor 9 varies depending on the initial tolerance, and also changes due to factors such as deterioration over time and temperature. Since the resistance value R3 of the temperature sensor 3 becomes smaller at a high temperature, the influence of the variation or change of the on-time resistance Ron of the transistor 9 on the sensor voltage VS becomes remarkable at a high temperature.
 従って、温度の検出精度を全ての温度領域において良好にするためには、トランジスタ9のオン時抵抗Ronのばらつきや変化に応じて、センサ電圧VSを補正する必要がある。 Therefore, in order to improve the temperature detection accuracy in all temperature ranges, it is necessary to correct the sensor voltage VS according to the variation or change of the on-time resistance Ron of the transistor 9.
 そして、マイコン11は、少なくともセンサ電圧VSの検出値を用いて、センサ電圧VSと温度の対応関係を示すROM22内のセンサ電圧/温度変換マップにあてはめることで、検出対象の温度を算出する。つまり、式6から算出した、トランジスタ9のオン時抵抗Ronの絶対値または初期値(設計値)からのずれ量を基に、ROM22内のセンサ電圧/温度変換マップを更新することで、温度の検出精度を向上させることができる。 Then, the microcomputer 11 calculates the temperature of the detection target by applying at least the detected value of the sensor voltage VS to the sensor voltage / temperature conversion map in the ROM 22 showing the correspondence between the sensor voltage VS and the temperature. That is, by updating the sensor voltage / temperature conversion map in the ROM 22 based on the absolute value or the deviation amount from the initial value (design value) of the on-time resistance Ron of the transistor 9 calculated from the equation 6, the temperature The detection accuracy can be improved.
 次に、マイコン11が行う処理について、図3を用いて説明する。図3は、図1の温度検出装置1による温度検出方法を示すフローチャートである。なお、マイコン11が行う処理は、CPU21がROM22内のプログラムを実行することで実現される。 Next, the processing performed by the microcomputer 11 will be described with reference to FIG. FIG. 3 is a flowchart showing a temperature detection method by the temperature detection device 1 of FIG. The processing performed by the microcomputer 11 is realized by the CPU 21 executing the program in the ROM 22.
 温度検出装置1への電源投入に伴い動作を開始すると、マイコン11は、図3の温度検出処理を一定時間毎に繰り返し行う。例えば、自動車のイグニッションスイッチがオンされると温度検出装置1に電源が投入される。また、マイコン11は、起動すると、最初はトランジスタ9をオフさせる。つまり、トランジスタ9の初期駆動状態はオフである。なお、トラジスタ9の初期駆動状態はオンであっても良い。 When the operation is started when the power is turned on to the temperature detection device 1, the microcomputer 11 repeats the temperature detection process of FIG. 3 at regular time intervals. For example, when the ignition switch of an automobile is turned on, the temperature detection device 1 is turned on. Further, when the microcomputer 11 is started, the transistor 9 is initially turned off. That is, the initial drive state of the transistor 9 is off. The initial drive state of the Tradista 9 may be ON.
 図3に示すように、マイコン11は、温度検出処理を開始すると、先ずステップS110にて、トランジスタ9のオフ期間中であるか否か(即ち、現在トランジスタ9をオフさせているか否か)を判定する。 As shown in FIG. 3, when the microcomputer 11 starts the temperature detection process, first, in step S110, whether or not the transistor 9 is in the off period (that is, whether or not the transistor 9 is currently turned off) is determined. judge.
 そして、トランジスタ9のオフ期間中であれば、ステップS120にて、センサ電圧VS1を検出する。具体的には、マルチプレクサ(MPX)13にセンサ電圧VS1を出力させ、そのセンサ電圧VS1をA/D変換器(ADC)24によりA/D変換する。このとき、検出したセンサ電圧VS1を式2に代入し、温度センサ3の抵抗値R3を算出する。
なお、式2において、R5,R7,Vccの各々は、既知の固定値を用いる。
Then, during the off period of the transistor 9, the sensor voltage VS1 is detected in step S120. Specifically, the multiplexer (MPX) 13 is made to output the sensor voltage VS1, and the sensor voltage VS1 is A / D converted by the A / D converter (ADC) 24. At this time, the detected sensor voltage VS1 is substituted into Equation 2 to calculate the resistance value R3 of the temperature sensor 3.
In Equation 2, known fixed values are used for each of R5, R7, and Vcc.
 次に、ステップS130において、トランジスタ9のオン期間中であるか否か(即ち、現在トランジスタ9をオンさせているか否か)を判定する。 Next, in step S130, it is determined whether or not the transistor 9 is in the on period (that is, whether or not the transistor 9 is currently turned on).
 そして、トランジスタ9のオン期間中であれば、ステップS140において、センサ電圧VS2を検出する。具体的には、マルチプレクサ(MPX)13にセンサ電圧VS2を出力させ、そのセンサ電圧VS2をA/D変換器(ADC)24によりA/D変換する。なお、トランジスタ9のオフからオンへの切換は短い時間内に行う。このとき、検出したセンサ電圧VS2とステップS120にて算出した温度センサ3の抵抗値R3を式6に代入し、トランジスタ9のオン時抵抗Ronの絶対値または初期値(設計値)からのずれ量を求める。なお、式6において、R5,R7の各々は、既知の固定値を用いる。 Then, during the ON period of the transistor 9, the sensor voltage VS2 is detected in step S140. Specifically, the multiplexer (MPX) 13 is made to output the sensor voltage VS2, and the sensor voltage VS2 is A / D converted by the A / D converter (ADC) 24. The transistor 9 is switched from off to on within a short time. At this time, the detected sensor voltage VS2 and the resistance value R3 of the temperature sensor 3 calculated in step S120 are substituted into the equation 6, and the amount of deviation from the absolute value or the initial value (design value) of the on-time resistance Ron of the transistor 9. Ask for. In Equation 6, known fixed values are used for each of R5 and R7.
 次に、ステップS150にて、ステップS140で算出した、トランジスタ9のオン時抵抗Ronの絶対値または初期値(設計値)からのずれ量を基に、ROM22内のセンサ電圧/温度変換マップ(変換テーブル)を更新する。 Next, in step S150, the sensor voltage / temperature conversion map (conversion) in the ROM 22 is based on the deviation amount from the absolute value or the initial value (design value) of the on-time resistance Ron of the transistor 9 calculated in step S140. Table) is updated.
 そして、ステップS160で、センサ電圧VSと温度の対応関係を示すROM22内のセンサ電圧/温度変換マップ(変換テーブル)にあてはめることで、検出対象の温度を算出する。 Then, in step S160, the temperature of the detection target is calculated by applying it to the sensor voltage / temperature conversion map (conversion table) in the ROM 22 showing the correspondence between the sensor voltage VS and the temperature.
 次に、ステップS170にて、ステップS160において算出した温度(検出温度)が所定の閾値Tha以上であるか否かを判定する。そして、マイコン11は、検出温度が閾値Tha未満の場合、ステップS180に移行し、そのまま温度検出処理を終了する。一方、検出温度が閾値Tha以上の場合、ステップS190にて、トランジスタ9をオフからオンさせ、その後、温度検出処理を終了する。 Next, in step S170, it is determined whether or not the temperature (detection temperature) calculated in step S160 is equal to or higher than the predetermined threshold value Tha. Then, when the detection temperature is less than the threshold value Tha, the microcomputer 11 proceeds to step S180 and ends the temperature detection process as it is. On the other hand, when the detection temperature is equal to or higher than the threshold value Tha, the transistor 9 is turned on from off in step S190, and then the temperature detection process is terminated.
 閾値Thaは、センサ電圧VSの温度に対する特性を、低温検出用の第2の特性から高温検出用の第1の特性へと切り替える閾値であり、本実施例では例えば260℃に設定されている。(図2参照)
 なお、閾値Thaは、第二の閾値を設けることでヒステリシスにしてもよく、切換え閾値に近い温度の検出を行う場合に、特性切換のハンチングが生じることを防止することができる。
The threshold value Tha is a threshold value for switching the characteristic of the sensor voltage VS with respect to temperature from the second characteristic for low temperature detection to the first characteristic for high temperature detection, and is set to, for example, 260 ° C. in this embodiment. (See Fig. 2)
The threshold value Tha may be set to hysteresis by providing a second threshold value, and it is possible to prevent hunting of characteristic switching from occurring when detecting a temperature close to the switching threshold value.
 以上説明した本実施例の温度検出装置1を車載用の電子制御装置に搭載することで、高効率な自動車エンジンの燃焼制御や排ガス浄化システムの制御が可能となり、省燃費や排ガスのクリーン化に寄与することができる。 By mounting the temperature detection device 1 of the present embodiment described above on an in-vehicle electronic control device, highly efficient combustion control of an automobile engine and control of an exhaust gas purification system become possible, resulting in fuel saving and clean exhaust gas. Can contribute.
 つまり、本実施例の温度検出装置1を備えた電子制御装置は、外部温度センサ(温度センサ3)に接続される外部端子と、当該外部端子の一端側に接続され、外部温度センサ(温度センサ3)と直列に接続される第1抵抗5と、第1抵抗5の他端側に直列に接続される第2抵抗7と、第2抵抗7の一端側にソースが接続され、他端側にドレインが接続されることで、第2抵抗7と並列に接続されるMOSトランジスタ(トランジスタ9)と、第1抵抗5と外部温度センサ(温度センサ3)との間の電圧値であるセンサ電圧値VSから温度を測定する温度測定部(マイコン11)を備えており、MOSトランジスタ(トランジスタ9)がONの時のセンサ電圧値と、OFFの時のセンサ電圧値の比から、MOSトランジスタ(トランジスタ9)のオン抵抗を推定する推定部(マイコン11)を備えるように構成される。 That is, the electronic control device provided with the temperature detection device 1 of this embodiment is connected to an external terminal connected to an external temperature sensor (temperature sensor 3) and one end side of the external terminal, and is connected to an external temperature sensor (temperature sensor). The first resistance 5 connected in series with 3), the second resistance 7 connected in series with the other end side of the first resistance 5, and the source connected to one end side of the second resistance 7 and the other end side. The sensor voltage, which is the voltage value between the MOS transistor (transistor 9) connected in parallel with the second resistor 7 and the first resistor 5 and the external temperature sensor (temperature sensor 3) by connecting the drain to the second resistor 7. It is equipped with a temperature measuring unit (microcomputer 11) that measures the temperature from the value VS, and the MOS transistor (transistor) is based on the ratio of the sensor voltage value when the MOS transistor (transistor 9) is ON and the sensor voltage value when it is OFF. It is configured to include an estimation unit (microcomputer 11) for estimating the on-resistance of 9).
 なお、外部温度センサ(温度センサ3)は、検出対象の温度に応じて抵抗値が変化するサーミスタであり、例えば、自動車に搭載されたエンジンの排気管に設けられ、そのエンジンの排気温度を、検出対象の温度として検出する。エンジンの排気管には、排気ガスを処理するためのフィルタが設けられている場合があり、精度よく連続的にエンジンの排気温度を検出できれば、フィルタ保護のための排気温度マージンを狭くすることが出来る。 The external temperature sensor (temperature sensor 3) is a thermistor whose resistance value changes according to the temperature of the detection target. For example, the external temperature sensor (temperature sensor 3) is provided in the exhaust pipe of an engine mounted on an automobile, and the exhaust temperature of the engine is measured. Detect as the temperature to be detected. The exhaust pipe of the engine may be provided with a filter for processing the exhaust gas, and if the exhaust temperature of the engine can be detected accurately and continuously, the exhaust temperature margin for filter protection can be narrowed. You can.
 フィルタ保護のため排気ガス温度を低く設定することでエンジンの排気ガス処理性能が悪化してしまうが、このフィルタ保護の温度マージンを狭くし、排気ガス温度を高く設定することができれば、フィルタ保護と排気ガス処理性能向上の両立が可能となる。 Setting the exhaust gas temperature low to protect the filter will deteriorate the exhaust gas processing performance of the engine, but if the temperature margin of this filter protection can be narrowed and the exhaust gas temperature can be set high, the filter protection will be It is possible to improve both exhaust gas treatment performance.
 図4および図5を参照して、本発明の実施例2の温度検出装置とその制御方法について説明する。なお、温度検出装置の符号としては、実施例1と同じ“1”を用いる。また、実施例1と同様の構成要素や処理についても、実施例1と同じ符号を用いる。そして、このことは、後述する他の実施例についても同様である。 The temperature detection device according to the second embodiment of the present invention and its control method will be described with reference to FIGS. 4 and 5. As the code of the temperature detection device, the same "1" as in the first embodiment is used. Further, the same reference numerals as those in the first embodiment are used for the same components and processes as in the first embodiment. And this also applies to other examples described later.
 図4は、本実施例の温度検出装置1による異常検出方法(トランジスタ診断方法)を示すフローチャートである。図5は、トランジスタ9の異常判定を行うステップ(ステップS350)が図4のステップS250と異なる例であり、図4の変形例に相当する。 FIG. 4 is a flowchart showing an abnormality detection method (transistor diagnosis method) by the temperature detection device 1 of this embodiment. FIG. 5 shows an example in which the step (step S350) for determining the abnormality of the transistor 9 is different from step S250 in FIG. 4, and corresponds to a modified example of FIG.
 本実施例の温度検出装置1では、実施例1と比較すると、マイコン11が、図4に示すトランジスタ診断処理を例えば一定時間毎に繰り返し行う。なお、トランジスタ診断処理の実行周期は、温度検出処理の実行周期と比べて、短くても良いし、長くても良いし、同じでも良い。 In the temperature detection device 1 of this embodiment, as compared with the first embodiment, the microcomputer 11 repeats the transistor diagnosis process shown in FIG. 4, for example, at regular time intervals. The execution cycle of the transistor diagnosis process may be shorter, longer, or the same as the execution cycle of the temperature detection process.
 本実施例では、図4に示すように、マイコン11は、トランジスタ診断処理を開始すると、先ずステップS210にて、トランジスタ9のオフ期間中であるか否か(即ち、現在トランジスタ9をオフさせているか否か)を判定する。 In this embodiment, as shown in FIG. 4, when the microcomputer 11 starts the transistor diagnosis process, first, in step S210, whether or not the transistor 9 is in the off period (that is, the transistor 9 is currently turned off). Whether or not) is determined.
 そして、トランジスタ9のオフ期間中であれば、ステップS220にて、センサ電圧VS1を検出(算出)する。 Then, during the off period of the transistor 9, the sensor voltage VS1 is detected (calculated) in step S220.
 次に、ステップS230において、トランジスタ9のオン期間中であるか否か(即ち、現在トランジスタ9をオンさせているか否か)を判定する。 Next, in step S230, it is determined whether or not the transistor 9 is in the on period (that is, whether or not the transistor 9 is currently turned on).
 そして、トランジスタ9のオン期間中であれば、ステップS240において、センサ電圧VS2を検出(算出)する。なお、トランジスタ9のオフからオンへの切換は短い時間内に行う。 Then, during the ON period of the transistor 9, the sensor voltage VS2 is detected (calculated) in step S240. The transistor 9 is switched from off to on within a short time.
 続いて、ステップS250において、センサ電圧VS1とVS2の比をとり、比の値が1または1付近であれば、ステップS260にてトランジスタ9が故障している(異常)と判定する。一方、ステップS250において、センサ電圧VS1とVS2の比の値が1または1付近以外であれば、ステップS270にて故障無し(正常)と判定する。 Subsequently, in step S250, the ratio of the sensor voltages VS1 and VS2 is taken, and if the ratio value is 1 or near 1, it is determined in step S260 that the transistor 9 has failed (abnormal). On the other hand, if the value of the ratio of the sensor voltages VS1 and VS2 is other than 1 or 1 in step S250, it is determined in step S270 that there is no failure (normal).
 なお、図5に示すように、トランジスタ9の異常判定を行うステップS350にてセンサ電圧VS1とVS2の差分をとり、差分の値が0または0付近であれば、トランジスタ9が故障している(異常)と判定し、差分の値が0または0付近以外であれば、故障無し(正常)と判定する方法にしてもよい。 As shown in FIG. 5, the difference between the sensor voltages VS1 and VS2 is taken in step S350 for determining the abnormality of the transistor 9, and if the difference value is 0 or near 0, the transistor 9 has failed ( If it is determined as (abnormal) and the difference value is 0 or other than 0, it may be determined that there is no failure (normal).
 以上説明したように、本実施例の温度検出装置1によれば、トランジスタ9の異常を、簡易的な構成で検出することができる。トランジスタ9の正常/異常を確認することができるため、センサ電圧VS1およびVS2の正確性を確認することができる。 As described above, according to the temperature detection device 1 of this embodiment, the abnormality of the transistor 9 can be detected with a simple configuration. Since the normality / abnormality of the transistor 9 can be confirmed, the accuracy of the sensor voltages VS1 and VS2 can be confirmed.
 そして、トランジスタ9の異常を検出した場合には、例えば、温度の検出動作を停止する等のフェイルセーフ処置を実施することにより、誤った温度検出結果を得てしまうことを回避することができる。 Then, when an abnormality of the transistor 9 is detected, it is possible to avoid obtaining an erroneous temperature detection result by implementing a fail-safe measure such as stopping the temperature detection operation.
 図6および図7を参照して、本発明の実施例3の温度検出装置について説明する。図6は、本実施例の温度検出装置1の概略構成を示す図である。また、図7は、図6の変形例を示す図である。 The temperature detection device according to the third embodiment of the present invention will be described with reference to FIGS. 6 and 7. FIG. 6 is a diagram showing a schematic configuration of the temperature detection device 1 of this embodiment. Further, FIG. 7 is a diagram showing a modified example of FIG.
 実施例1(図1)の温度検出装置1では、第2の抵抗7に対しトランジスタ9が並列に接続された例を示したが、本実施例の温度検出装置1では、図6に示すように、第1の抵抗5に対しトランジスタ9が並列に接続されている点において、実施例1(図1)とは異なっている。 In the temperature detection device 1 of the first embodiment (FIG. 1), an example in which the transistor 9 is connected in parallel to the second resistor 7 is shown, but in the temperature detection device 1 of the present embodiment, as shown in FIG. In addition, it differs from the first embodiment (FIG. 1) in that the transistor 9 is connected in parallel to the first resistor 5.
 本実施例(図6)のように、第1の抵抗5の両端にトランジスタ9の2つの出力端子を接続する構成としても、実施例1と同様の効果を得ることができる。 The same effect as in the first embodiment can be obtained even if the two output terminals of the transistor 9 are connected to both ends of the first resistor 5 as in the present embodiment (FIG. 6).
 さらに、図7に示すように、第1の抵抗5および第2の抵抗7の両方に対しトランジスタ9を並列に接続する構成としても良い。図7のように、第1の抵抗5および第2の抵抗7のそれぞれの両端にそれぞれトランジスタ9の2つの出力端子を接続する構成とすることで、温度-電圧特性のパターンを増やすことができる。即ち、ROM22内のセンサ電圧/温度変換マップ(変換テーブル)のバリエーションを増やすことができ、より広範囲な温度域に渡って高精度な温度計測が可能となる。 Further, as shown in FIG. 7, the transistor 9 may be connected in parallel to both the first resistor 5 and the second resistor 7. As shown in FIG. 7, the temperature-voltage characteristic pattern can be increased by connecting the two output terminals of the transistor 9 to both ends of the first resistor 5 and the second resistor 7, respectively. .. That is, the variation of the sensor voltage / temperature conversion map (conversion table) in the ROM 22 can be increased, and the temperature can be measured with high accuracy over a wider temperature range.
 以上説明したように、本発明の温度検出装置1は、一端が外部温度センサ(温度センサ3)に接続される第1抵抗5と、第1抵抗5の他端側に直列に接続される第2抵抗7と、第1抵抗5および第2抵抗7のいずれか一方、または、両方の各々に並列に接続されるトランジスタ9と、第1抵抗5と外部温度センサ(温度センサ3)との間の電圧値であるセンサ電圧値VSから温度を推定する温度推定部(マイコン11)を備えており、トランジスタ9がONの時のセンサ電圧値VS2と、OFFの時のセンサ電圧値VS1に基づき、温度を検出(算出)する。 As described above, the temperature detection device 1 of the present invention has a first resistor 5 having one end connected to an external temperature sensor (temperature sensor 3) and a first resistor 5 connected in series to the other end side of the first resistor 5. Between the 2 resistance 7 and the transistor 9 connected in parallel to either or both of the 1st resistance 5 and the 2nd resistance 7 and between the 1st resistance 5 and the external temperature sensor (temperature sensor 3). It is equipped with a temperature estimation unit (microcomputer 11) that estimates the temperature from the sensor voltage value VS, which is the voltage value of the above, and is based on the sensor voltage value VS2 when the transistor 9 is ON and the sensor voltage value VS1 when the transistor 9 is OFF. Detect (calculate) the temperature.
 また、トランジスタ9がONの時のセンサ電圧値VS2と、OFFの時のセンサ電圧値VS1に基づき、トランジスタ9のオン抵抗Ronを推定する。 Further, the on-resistance Ron of the transistor 9 is estimated based on the sensor voltage value VS2 when the transistor 9 is ON and the sensor voltage value VS1 when the transistor 9 is OFF.
 そして、推定したトランジスタ9のオン抵抗Ronに基づき、センサ電圧値VSを補正する。 Then, the sensor voltage value VS is corrected based on the estimated on-resistance Ron of the transistor 9.
 これにより、簡易な構成で、広範囲な温度域に渡って高精度な温度計測が可能な温度検出装置を実現することができる。 As a result, it is possible to realize a temperature detection device capable of highly accurate temperature measurement over a wide range of temperature with a simple configuration.
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.
 例えば、電源電圧Vccと第2の抵抗7との間に、別のプルアップ用抵抗が設けられていても良い。また、抵抗5,7の一方または両方が、複数の直列な抵抗から構成されていても良い。さらに、抵抗5,7の一方または両方がなくとも良く、トランジスタ9が電源電圧Vccと接続点P1の間に複数接続されていても良い。 For example, another pull-up resistor may be provided between the power supply voltage Vcc and the second resistor 7. Further, one or both of the resistors 5 and 7 may be composed of a plurality of resistors in series. Further, one or both of the resistors 5 and 7 may not be present, and a plurality of transistors 9 may be connected between the power supply voltage Vcc and the connection point P1.
 温度センサ3においても、温度に応じて抵抗値が変化するものであれば、サーミスタ以外でも良く、検出対象の温度は、エンジンの排気温度以外でも良い。また、温度センサ3も、温度以外の、例えば圧力(気圧)や湿度といった外部環境の変化に応じて変化するものであっても良い。 Also in the temperature sensor 3, as long as the resistance value changes according to the temperature, it may be other than the thermistor, and the temperature to be detected may be other than the exhaust temperature of the engine. Further, the temperature sensor 3 may also change in response to changes in the external environment such as pressure (atmospheric pressure) and humidity other than temperature.
 さらに、トランジスタ9はトランジスタに限らず、FET(Field-Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor:絶縁ゲートバイポーラトランジスタ)等の他種類のトランジスタでも良い。 Furthermore, the transistor 9 is not limited to the transistor, and may be another type of transistor such as a FET (Field-Effect Transistor) or an IGBT (Insulated Gate Bipolar Transistor).
 1…温度検出装置、3…温度センサ、5…第1の抵抗、7…第2の抵抗、9…トランジスタ、11…マイコン(温度測定部,温度推定部)、13…マルチプレクサ(MPX)、15…抵抗、17,18…コンデンサ、19…トランジスタ9のオン/オフ切換信号、21…CPU、22…ROM、23…RAM、24…A/D変換器(ADC)、P1…接続点。 1 ... Temperature detector, 3 ... Temperature sensor, 5 ... First resistor, 7 ... Second resistor, 9 ... Transistor, 11 ... Microcomputer (temperature measuring unit, temperature estimation unit), 13 ... multiplexer (MPX), 15 ... Resistance, 17, 18 ... Capacitor, 19 ... Transistor 9 on / off switching signal, 21 ... CPU, 22 ... ROM, 23 ... RAM, 24 ... A / D converter (ADC), P1 ... Connection point.

Claims (13)

  1.  外部温度センサに接続される外部端子と、
     該外部端子の一端側に接続され、該外部温度センサと直列に接続される第1抵抗と、
     該第1抵抗の他端側に直列に接続される第2抵抗と、
     該第2抵抗の一端側にソースが接続され、他端側にドレインが接続されることで、該第2抵抗と並列に接続されるMOSトランジスタと、
     該第1抵抗と該外部温度センサとの間の電圧値であるセンサ電圧値から温度を測定する温度測定部と、を備える電子制御装置において、
     前記MOSトランジスタがONの時のセンサ電圧値と、OFFの時のセンサ電圧値の比から、前記MOSトランジスタのオン抵抗を推定する推定部を備える電子制御装置。
    With the external terminal connected to the external temperature sensor,
    A first resistor connected to one end side of the external terminal and connected in series with the external temperature sensor,
    A second resistor connected in series with the other end of the first resistor,
    A MOS transistor connected in parallel with the second resistor by connecting the source to one end side of the second resistor and connecting the drain to the other end side.
    In an electronic control device including a temperature measuring unit for measuring a temperature from a sensor voltage value which is a voltage value between the first resistor and the external temperature sensor.
    An electronic control device including an estimation unit that estimates the on-resistance of the MOS transistor from the ratio of the sensor voltage value when the MOS transistor is ON and the sensor voltage value when the MOS transistor is OFF.
  2.  請求項1に記載の電子制御装置において、
     前記MOSトランジスタがONの時のセンサ電圧値と、OFFの時のセンサ電圧値の比から、該MOSトランジスタの診断を行う電子制御装置。
    In the electronic control device according to claim 1,
    An electronic control device that diagnoses the MOS transistor from the ratio of the sensor voltage value when the MOS transistor is ON and the sensor voltage value when the MOS transistor is OFF.
  3.  請求項1に記載の電子制御装置において、
     前記外部温度センサは、自動車の排ガス温度を検出する排ガス用温度センサである電子制御装置。
    In the electronic control device according to claim 1,
    The external temperature sensor is an electronic control device that is an exhaust gas temperature sensor that detects the exhaust gas temperature of an automobile.
  4.  一端が外部温度センサに接続される第1抵抗と、
     前記第1抵抗の他端側に直列に接続される第2抵抗と、
     前記第1抵抗および前記第2抵抗のいずれか一方、または、両方の各々に並列に接続されるトランジスタと、
     前記第1抵抗と前記外部温度センサとの間の電圧値であるセンサ電圧値から温度を推定する温度推定部と、を備え、
     前記トランジスタがONの時のセンサ電圧値と、OFFの時のセンサ電圧値に基づき、温度を検出する温度検出装置。
    The first resistor, one end of which is connected to an external temperature sensor,
    A second resistor connected in series with the other end of the first resistor,
    A transistor connected in parallel to either one or both of the first resistor and the second resistor, and
    A temperature estimation unit that estimates a temperature from a sensor voltage value, which is a voltage value between the first resistor and the external temperature sensor, is provided.
    A temperature detection device that detects a temperature based on a sensor voltage value when the transistor is ON and a sensor voltage value when the transistor is OFF.
  5.  請求項4に記載の温度検出装置において、
     前記トランジスタがONの時のセンサ電圧値と、OFFの時のセンサ電圧値に基づき、前記トランジスタのオン抵抗を推定する温度検出装置。
    In the temperature detection device according to claim 4,
    A temperature detection device that estimates the on-resistance of the transistor based on the sensor voltage value when the transistor is ON and the sensor voltage value when the transistor is OFF.
  6.  請求項5に記載の温度検出装置において、
     前記推定したトランジスタのオン抵抗に基づき、前記センサ電圧値を補正する温度検出装置。
    In the temperature detection device according to claim 5,
    A temperature detection device that corrects the sensor voltage value based on the estimated on-resistance of the transistor.
  7.  請求項5に記載の温度検出装置において、
     前記トランジスタがONの時のセンサ電圧値と、OFFの時のセンサ電圧値の比に基づき、前記トランジスタのオン抵抗を推定する温度検出装置。
    In the temperature detection device according to claim 5,
    A temperature detection device that estimates the on-resistance of the transistor based on the ratio of the sensor voltage value when the transistor is ON and the sensor voltage value when the transistor is OFF.
  8.  請求項5に記載の温度検出装置において、
     前記トランジスタがONの時のセンサ電圧値と、OFFの時のセンサ電圧値の差分に基づき、前記トランジスタのオン抵抗を推定する温度検出装置。
    In the temperature detection device according to claim 5,
    A temperature detection device that estimates the on-resistance of the transistor based on the difference between the sensor voltage value when the transistor is ON and the sensor voltage value when the transistor is OFF.
  9.  請求項4に記載の温度検出装置において、
     前記検出した温度が所定の閾値以上である場合、前記トランジスタをONする温度検出装置。
    In the temperature detection device according to claim 4,
    A temperature detection device that turns on the transistor when the detected temperature is equal to or higher than a predetermined threshold value.
  10.  請求項4に記載の温度検出装置において、
     前記トランジスタがONの時のセンサ電圧値と、OFFの時のセンサ電圧値に基づき、前記トランジスタの診断を行う温度検出装置。
    In the temperature detection device according to claim 4,
    A temperature detection device that diagnoses the transistor based on the sensor voltage value when the transistor is ON and the sensor voltage value when the transistor is OFF.
  11.  請求項4に記載の温度検出装置において、
     前記トランジスタは、MOSトランジスタである温度検出装置。
    In the temperature detection device according to claim 4,
    The transistor is a temperature detection device that is a MOS transistor.
  12.  請求項4に記載の温度検出装置において、
     前記トランジスタは、PNPトランジスタである温度検出装置。
    In the temperature detection device according to claim 4,
    The transistor is a temperature detection device that is a PNP transistor.
  13.  請求項4に記載の温度検出装置において、
     前記外部温度センサは、自動車の排ガス温度を検出する排ガス用温度センサである温度検出装置。
    In the temperature detection device according to claim 4,
    The external temperature sensor is a temperature detection device that is an exhaust gas temperature sensor that detects the exhaust gas temperature of an automobile.
PCT/JP2020/023519 2019-06-26 2020-06-16 Temperature detection device and electronic control device equipped with same WO2020262096A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021528246A JP7377265B2 (en) 2019-06-26 2020-06-16 Temperature detection device and electronic control device equipped with it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019118257 2019-06-26
JP2019-118257 2019-06-26

Publications (1)

Publication Number Publication Date
WO2020262096A1 true WO2020262096A1 (en) 2020-12-30

Family

ID=74061988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023519 WO2020262096A1 (en) 2019-06-26 2020-06-16 Temperature detection device and electronic control device equipped with same

Country Status (2)

Country Link
JP (1) JP7377265B2 (en)
WO (1) WO2020262096A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048094A (en) * 1994-12-26 2000-04-11 Siemens Automotive S.A. Method for measuring temperature using a negative temperature coefficient sensor, and corresponding device
JP2011075530A (en) * 2009-10-02 2011-04-14 Hanshin Electric Co Ltd Thermistor monitoring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048094A (en) * 1994-12-26 2000-04-11 Siemens Automotive S.A. Method for measuring temperature using a negative temperature coefficient sensor, and corresponding device
JP2011075530A (en) * 2009-10-02 2011-04-14 Hanshin Electric Co Ltd Thermistor monitoring device

Also Published As

Publication number Publication date
JPWO2020262096A1 (en) 2020-12-30
JP7377265B2 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
JP5776705B2 (en) Temperature detection device
US7573275B2 (en) Temperature sensor control apparatus
JP6243516B2 (en) Humidity detector
US10190899B2 (en) Thermal flow sensor
US11237035B2 (en) Physical quantity detecting device
WO2020262096A1 (en) Temperature detection device and electronic control device equipped with same
JPS5877630A (en) Temperature measuring device
WO2018142775A1 (en) Humidity measurement device, control device for internal-combustion engine, and abnormality detection device
JP7139978B2 (en) gas sensor controller
KR20160069944A (en) Validation Method for Measuring Internal Resistance of Oxygen Sensor, and Monitoring System for Exhaust Gas Operated Thereby
US20210247219A1 (en) Physical quantity detection device
JP6063282B2 (en) Insulation state detector
JP2006300625A (en) Abnormality detection device of oxygen sensor
JP7055873B2 (en) In-vehicle electronic control device
JP4824504B2 (en) Temperature sensor control device
CN107923780B (en) Air flow meter
JP4765742B2 (en) Exhaust gas sensor signal processing device
JP6396777B2 (en) Electronic control unit for automobile
JP5391754B2 (en) Air flow meter
KR102332634B1 (en) Method for mesuring temperature of power semiconductor and electronic device thereof
US7243022B1 (en) Apparatus for communicating inlet air parameters of an internal combustion engine
JP2008096327A (en) Temperature sensor circuit
US20150153751A1 (en) Power supply circuit and electronic control unit employing the same
JPH0518309A (en) Calibrator for detected value of temperature of water cooling engine
KR100481411B1 (en) Thermal air flow meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528246

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831363

Country of ref document: EP

Kind code of ref document: A1