WO2020261975A1 - Rubber composition, rubber/metal layered product, gasket, and method for producing rubber/metal layered product - Google Patents

Rubber composition, rubber/metal layered product, gasket, and method for producing rubber/metal layered product Download PDF

Info

Publication number
WO2020261975A1
WO2020261975A1 PCT/JP2020/022670 JP2020022670W WO2020261975A1 WO 2020261975 A1 WO2020261975 A1 WO 2020261975A1 JP 2020022670 W JP2020022670 W JP 2020022670W WO 2020261975 A1 WO2020261975 A1 WO 2020261975A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
parts
linking
cross
Prior art date
Application number
PCT/JP2020/022670
Other languages
French (fr)
Japanese (ja)
Inventor
勲 渡邊
Original Assignee
Nok株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok株式会社 filed Critical Nok株式会社
Priority to JP2021528111A priority Critical patent/JPWO2020261975A1/ja
Publication of WO2020261975A1 publication Critical patent/WO2020261975A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/06Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/12Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/14Sealings between relatively-stationary surfaces by means of granular or plastic material, or fluid

Definitions

  • the present invention relates to a method for producing a rubber composition, a rubber metal laminate, a gasket and a rubber metal laminate. Specifically, the present invention is to produce a rubber composition containing ethylene acrylate rubber, a rubber metal laminate, a gasket and a rubber metal laminate. Regarding the method.
  • the gasket material described in Patent Document 1 by cross-linking nitrile rubber with a quinoid-based cross-linking agent, an electrical component based on the sulfur component in the gasket material when the gasket material is used for the electrical component, etc. Prevents metal corrosion.
  • the gasket material described in Patent Document 2 is based on the sulfur component in the gasket material when the gasket material is used for electronic parts by vulcanizing a carboxyl group-modified nitrile rubber using an epoxy compound as a cross-linking agent. Prevents metal corrosion of electronic parts.
  • a peroxide-based cross-linking agent peroxide-based cross-linking agent containing a peroxide for cross-linking the nitrile rubber
  • a gasket having a foam rubber layer using oven vulcanization which is generally vulcanized in an oven, is used. It cannot be used in manufacturing.
  • the gasket material described in Patent Document 1 and the gasket material described in Patent Document 2 can prevent corrosion of electronic parts and the like based on the sulfur component, while nitrile rubber is used as the rubber material, so that it is not always necessary. Sufficient heat resistance may not be obtained, and it may not be possible to use it in an environment of 100 ° C. or higher.
  • the present invention has been made in view of such circumstances, and is a rubber composition, a rubber metal laminate, a gasket, and a rubber composition, which can prevent metal corrosion due to a sulfur component and can obtain a gasket having excellent heat resistance. It is an object of the present invention to provide a method for producing a rubber metal laminate.
  • the rubber composition according to the present invention contains 100 parts by mass of ethylene acrylate rubber, 1 part by mass or more and 200 parts by mass or less of carbon black, 0.1 parts by mass or more and 20 parts by mass or less of an amine-based cross-linking agent, and 1 part by mass of a foaming agent. It is characterized by containing more than 50 parts by mass and less.
  • the rubber composition according to the present invention since the ethylene acrylate rubber is crosslinked with an amine-based cross-linking agent, it is not necessary to use a sulfur component for cross-linking the ethylene acrylate rubber. As a result, the content of the sulfur component in the rubber composition after cross-linking is significantly reduced in the rubber composition as compared with the case where a sulfur-based cross-linking agent is used, so that the sulfur component in the rubber composition after cross-linking is significantly reduced. It is possible to prevent corrosion of metal members due to the release of sulfur. Further, since the rubber composition contains ethylene acrylate rubber having higher heat resistance than nitrile rubber as a rubber component, it is possible to obtain excellent heat resistance that can be used even in an environment of 100 ° C. or higher.
  • the rubber composition can prevent the reaction between the amine-based cross-linking agent and air, the ethylene acrylate rubber can be sufficiently cross-linked even when cross-linking is performed in an oven, and the rubber after cross-linking can be sufficiently cross-linked. It is possible to prevent the composition from adhering to the metal member. As a result, the rubber composition can prevent metal corrosion due to the sulfur component, and can obtain a gasket having excellent heat resistance.
  • the amine-based cross-linking agent contains diamines.
  • the foaming agent is at least one selected from the group consisting of a heat expansion type foaming agent and a pyrolysis type foaming agent.
  • the rubber-metal laminate according to the present invention is characterized by including a metal member and a foamed rubber layer provided on the metal member and formed by cross-linking the rubber composition.
  • the rubber metal laminate according to the present invention since the ethylene acrylate rubber is crosslinked with an amine-based cross-linking agent, it is not necessary to use a sulfur component for cross-linking the ethylene acrylate rubber in the rubber composition. As a result, the content of the sulfur component in the foamed rubber layer after cross-linking is significantly reduced in the rubber metal laminate as compared with the case where a sulfur-based cross-linking agent is used. It is possible to prevent corrosion of metal members due to the release of sulfur components. Further, since the rubber metal laminate contains ethylene acrylate rubber having better heat resistance than nitrile rubber as a rubber component, it is possible to obtain excellent heat resistance that can be used even in an environment of 100 ° C. or higher.
  • the rubber metal laminate can prevent the reaction between the amine-based cross-linking agent and air, the ethylene acrylate rubber can be sufficiently cross-linked even when the rubber composition is cross-linked in an oven. , It is possible to prevent the rubber composition from adhering to the metal member after cross-linking. As a result, the rubber metal laminate can prevent metal corrosion due to the sulfur component and can obtain a gasket having excellent heat resistance.
  • the brass plate, the steel plate and the stainless steel plate do not corrode in the corrosion and stickiness test according to JIS B2403 9.2.
  • the rubber-metal laminate can prevent corrosion of metal members and the like based on the components released from the foamed rubber layer.
  • the hardness change of the pencil hardness of the foamed rubber layer in the scratch hardness test (pencil method) based on JIS K5600-5-4 before and after heat aging at 150 ° C. for 24 hours is 3 points or less. Is preferable. With this configuration, the rubber metal laminate can obtain a foamed rubber layer having excellent heat resistance.
  • the gasket according to the present invention is characterized by including the above-mentioned rubber metal laminate.
  • the gasket according to the present invention since the ethylene acrylate rubber is crosslinked with an amine-based cross-linking agent, it is not necessary to use a sulfur component for cross-linking the ethylene acrylate rubber in the rubber composition. As a result, the gasket contains significantly less sulfur component in the foamed rubber layer after cross-linking than when a sulfur-based cross-linking agent is used, so that the sulfur component in the foamed rubber layer after cross-linking is significantly reduced. Corrosion of metal members due to liberation can be prevented. Further, since the gasket contains ethylene acrylate rubber, which has higher heat resistance than nitrile rubber as a rubber component, it is possible to obtain excellent heat resistance that can be used even in an environment of 100 ° C.
  • the gasket can prevent the reaction between the amine-based cross-linking agent and air, the ethylene acrylate rubber can be sufficiently cross-linked even when the rubber composition is cross-linked in an oven, and after the cross-linking. Can be prevented from adhering to the metal member of the rubber composition. As a result, the gasket can prevent metal corrosion due to the sulfur component and can have excellent heat resistance.
  • the method for producing the rubber metal laminate according to the present embodiment includes 100 parts by mass of ethylene acrylate rubber, 1 part by mass or more and 200 parts by mass or less of carbon black, 0.1 parts by mass or more and 20 parts by mass or less of an amine-based cross-linking agent, and a foaming agent.
  • the method for producing a rubber metal laminate according to the present invention since the ethylene acrylate rubber is crosslinked with an amine-based cross-linking agent, it is not necessary to use a sulfur component for cross-linking the ethylene acrylate rubber of the rubber composition. As a result, the produced rubber metal laminate has a significantly smaller content of the sulfur component in the foamed rubber layer after cross-linking as compared with the case where a sulfur-based cross-linking agent is used. It is possible to prevent corrosion of the metal member due to the release of the sulfur component in the layer.
  • the produced rubber metal laminate contains ethylene acrylate rubber having higher heat resistance than nitrile rubber as a rubber component, it is possible to obtain excellent heat resistance that can be used even in an environment of 100 ° C. or higher. Further, since the produced rubber metal laminate can prevent the reaction between the amine-based cross-linking agent and air, the ethylene acrylate rubber is sufficiently cross-linked even when the rubber composition is cross-linked in an oven. It is possible to prevent the rubber composition from adhering to the metal member after cross-linking. As a result, the method for producing a rubber metal laminate can prevent metal corrosion due to a sulfur component and can obtain a rubber metal laminate capable of obtaining a gasket having excellent heat resistance.
  • the present invention it is possible to realize a method for producing a rubber composition, a rubber metal laminate, a gasket and a rubber metal laminate, which can prevent metal corrosion due to a sulfur component and can obtain a gasket having excellent heat resistance.
  • FIG. 1 is an explanatory diagram of a corrosion and stickiness test according to an embodiment of the present invention.
  • the rubber composition comprises 100 parts by mass of ethylene acrylate rubber, 1 part by mass or more and 200 parts by mass or less of carbon black, 0.1 parts by mass or more and 20 parts by mass or less of an amine-based cross-linking agent, and 1 part by mass or more and 50 parts by mass of a foaming agent. It contains less than one part.
  • each component of the rubber composition will be described in detail.
  • Ethylene acrylate rubber is a substance having good heat resistance and cold resistance, and is a copolymer of ethylene and acrylic acid esters.
  • the ethylene acrylate rubber includes a binary copolymer of ethylene and acrylic acid ester crosslinked by a peroxide-based cross-linking agent, and a ternary copolymer of ethylene, acrylic acid esters and a carboxyl group-containing unsaturated compound.
  • ethylene acrylate rubber a ternary copolymer of ethylene, acrylic acid esters, and a carboxyl group-containing unsaturated compound crosslinked by an amine-based cross-linking agent is used.
  • This ethylene acrylate rubber is a special cross-linked type acrylic rubber material in which a carboxyl group-containing unsaturated compound serves as a cross-linking point.
  • acrylate esters include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, and methacrylic acid.
  • Alkyl groups having 1 to 8 carbon atoms such as methyl acetate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, etc.
  • Acrylic acid alkyl ester having, and acrylic acid alkoxy having an alkoxyalkyl group having 1 to 8 carbon atoms such as methoxymethyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, n-butoxyethyl acrylate, and ethoxypropyl acrylate.
  • Alkyl esters are used.
  • acrylic acid esters are advantageous in terms of cold resistance when the chain length of the alkyl group is long, and are advantageous in terms of oil resistance when the chain length of the alkyl group is short.
  • the acrylic acid alkyl ester for example, ethyl acrylate and n-butyl acrylate are preferable from the viewpoint of the balance between oil resistance and cold resistance.
  • Examples of the unsaturated compound containing a carboxyl group include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, 2-pentenoic acid, maleic acid, fumaric acid and itaconic acid, and maleic acid, fumaric acid, itaconic acid and citracon.
  • Examples thereof include monoalkyl esters of unsaturated dicarboxylic acids such as acids such as methyl, ethyl, propyl, isopropyl, n-butyl and isobutyl.
  • maleic acid mono-n-butyl ester, fumaric acid monoethyl ester, and fumaric acid mono-n-butyl ester are preferable.
  • the ethylene acrylate rubber may be further copolymerized with another copolymerizable ethylenically unsaturated monomer.
  • copolymerizable ethylenically unsaturated monomers include, for example, styrene, ⁇ -methylstyrene, vinyltoluene, vinylnaphthalene, acrylonitrile, metaacrylonitrile, acrylate amide, vinyl acetate, cyclohexyl acrylate, benzyl acrylate, 2 -Hydroxyethyl acrylate, 4-hydroxybutyl acrylate, ethylene, propylene, piperylene, butadiene, isoprene, pentadiene and the like can be mentioned.
  • Ethylene acrylate rubber is obtained by emulsifying, suspending, polymerizing, solution-polymerizing, or lumping the above-mentioned ethylene, acrylic acid esters, carboxyl group-containing unsaturated compounds, and other copolymerizable ethylenically unsaturated monomer components. It is obtained by copolymerizing with a known polymerization method such as polymerization.
  • ethylene acrylate rubber for example, commercially available products such as the trade names "Vamac (registered trademark) GLS” and “Vamac G” (manufactured by DuPont Dow Elastomer) may be used.
  • Vamac registered trademark
  • Vamac G manufactured by DuPont Dow Elastomer
  • the blending amount of the ethylene acrylate rubber in the rubber composition is preferably 40% by mass or more and 90% by mass or less, preferably 45% by mass, from the viewpoint of improving the sealing property and heat resistance of the gasket obtained from the rubber composition. It is more preferably 85% by mass or less, and further preferably 50% by mass or more and 80% by mass or less.
  • Carbon black is blended in the rubber composition as a filler and a reinforcing material.
  • Examples of carbon black include super wear resistant (SAF: Super Abrasion Finance) carbon black, semi-super wear resistant (ISAF: Intermediate Super Abrasion Furnace) carbon black, high wear resistance (HAF: High Brazil Furnace) carbon black, and carbon black.
  • Hard carbon such as processable channel (EPC: Easy Processing Channel) carbon black, conductive (XCF: Extra Conducive Furnace) carbon black, good extrusion (FEF: Fast Extruding Furnace) carbon black, versatility (G) Purpose (Furnace) carbon black, high stress (HMF: High Modulus Furnace) carbon black, medium reinforcing (SRF: Semi-Reinforcing Furnace) carbon black, fine grain thermal decomposition (FT: Fine Thermal) carbon black, and medium grain thermal decomposition (FT) MT: Medium Thermal) Soft carbon such as carbon black can be mentioned.
  • One type of these carbon blacks may be used alone, or two or more types may be used in combination.
  • soft carbon is preferable as the carbon black, and among the soft carbons, medium-reinforced carbon black and medium-grain pyrolysis carbon black are more preferable.
  • a commercially available medium-grain pyrolyzed carbon black product such as the product name "THERMAX (registered trademark) N990 LSR" (manufactured by Cancurve) may be used, and the product name "HTC # SS" (Nittetsu Carbon) may be used.
  • a commercially available product of medium reinforcing carbon black such as (manufactured by Asahi Carbon Co., Ltd.) and the trade name “ASAHI # 50HG” (manufactured by Asahi Carbon Co., Ltd.) may be used.
  • the amount of carbon black blended is 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass of ethylene acrylate from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition. It is preferably 5 parts by mass or more and 150 parts by mass or less, more preferably 10 parts by mass or more and 100 parts by mass or less, and further preferably 15 parts by mass or more and 80 parts by mass or less.
  • the amount of carbon black to be blended is 5% by mass or more and 60% by mass or less with respect to the total mass of the rubber composition from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition. It is more preferably 10% by mass or more and 50% by mass or less, and further preferably 15% by mass or more and 45% by mass or less.
  • the blending amount of the carbon black is 100 mass of ethylene acrylate from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition. It is preferably 5 parts by mass or more and 50 parts by mass or less, more preferably 10 parts by mass or more and 30 parts by mass or less, and further preferably 15 parts by mass or more and 25 parts by mass or less.
  • the blending amount of the carbon black is the total mass of the rubber composition from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition.
  • it is preferably 2.5% by mass or more and 40% by mass or less, more preferably 7.5% by mass or more and 20% by mass or less, and 10% by mass or more and 17.5% by mass or less. Is more preferable.
  • the blending amount of the carbon black is 100 parts by mass of ethylene acrylate from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition.
  • it is preferably 10 parts by mass or more and 200 parts by mass or less, more preferably 25 parts by mass or more and 100 parts by mass or less, and further preferably 45 parts by mass or more and 65 parts by mass or less.
  • the blending amount of the carbon black is the total mass of the rubber composition from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition. On the other hand, it is preferably 5% by mass or more and 70% by mass or less, more preferably 10% by mass or more and 50% by mass or less, and further preferably 15% by mass or more and 45% by mass or less.
  • the cross-linking agent (vulcanizing agent) forms a cross-linking bond between the ethylene acrylate rubbers.
  • an amine-based cross-linking agent is used as the cross-linking agent.
  • diamines are preferable from the viewpoint of easily forming a cross-linked structure with a carboxyl group which is a cross-linking point derived from a carboxyl group-containing unsaturated compound contained in ethylene acrylate rubber.
  • the diamines may be aliphatic or aromatic.
  • diamines include hexamethylenediamine, hexamethylenediamine carbamate, N, N'-dicinnamylidene-1,6-hexanediamine, 4,4'-methylenebis (cyclohexylamine) carbamate, and 4,4'-methylenedianiline.
  • 4,4'-Oxyphenyldiphenylamine m-phenylenediamine, p-phenylenediamine, 4,4'-methylenebis (o-chloroaniline), 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4 , 4'-(m-phenylenediisopropyridene) dianiline, 4,4'-(p-phenylenediisopropyridene) dianiline, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 4, 4'-diaminobenzanilide, 4,4'-bis (4-aminophenoxy) biphenyl, m-xylylenediamine, p-xylylenediamine, hexamethylenediamine-cinnamaldehyde adduct, hexamethylenediamine-dibenzoate salt, etc.
  • amine-based cross-linking agents include hexamethylenediamine carbamate, N, N'-dicinnamylidene-1,6-hexanediamine, 4,4'-methylenebis (cyclohexylamine) carbamate, and 4,4'-diaminodiphenyl ether.
  • At least one kind of alkylenediamines selected from the above group is preferable, and alkylenediamines containing hexamethylenediamine carbamate are more preferable.
  • amine-based cross-linking agent examples include the trade name "Cheminox AC6-66 (hexamethylenediamine carbamate)" (manufactured by Unimatec) and the trade name "Diak No. 1 (hexamethylenediamine carbamate)" (Dupont Dow. Elastomer), product name "Diak No. 3: N, N'-dicinnamilyden-1,6-hexanediamine” (Dupont Dow Elastomer), product name "Diak No.
  • the blending amount of the amine-based cross-linking agent is 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of ethylene acrylate rubber from the viewpoint of improving the cross-linking density and improving the heat resistance of the rubber composition. It is more preferable, it is more preferably 0.5 parts by mass or more and 10 parts by mass or less, and further preferably 1 part by mass or more and 7.5 parts by mass or less.
  • the amount of the amine-based cross-linking agent blended is based on 100 parts by mass of ethylene acrylate rubber with respect to the total mass of the rubber composition from the viewpoint of improving the cross-linking density and improving the heat resistance of the rubber composition. It is preferably 0.5% by mass or more and 10% by mass or less, more preferably 0.75% by mass or more and 5% by mass or less, and further preferably 1% by mass or more and 3% by mass or less.
  • the amine-based cross-linking accelerator promotes the formation of a cross-linking reaction of ethylene acrylate rubber by the amine-based cross-linking agent.
  • the amine-based cross-linking accelerator include amine-based cross-linking accelerators such as a tertiary amine complex adsorbed on an amorphous silica carrier.
  • amine-based cross-linking accelerator for example, a commercially available product such as "Vulcofac (registered trademark) ACT-55 (amination derivative: tertiary amine complex adsorbed on an amorphous silica carrier)" (manufactured by DuPont) is used. You may.
  • the blending amount of the amine-based cross-linking accelerator is, for example, 0.1 part by mass or more and 15 parts by mass or less with respect to 100 parts by mass of ethylene acrylate rubber from the viewpoint of improving the cross-linking density and improving the heat resistance of the rubber composition. It is more preferably 0.5 parts by mass or more and 10 parts by mass or less, and further preferably 1 part by mass or more and 5 parts by mass or less.
  • the blending amount of the amine-based cross-linking accelerator is, for example, 0.1% by mass or more and 10% by mass or less with respect to the total mass of the rubber composition from the viewpoint of improving the cross-linking density and improving the heat resistance of the rubber composition. It is more preferably 0.5% by mass or more and 5% by mass or less, and further preferably 0.75% by mass or more and 3% by mass or less.
  • foaming agent various foaming agents can be used as long as the effects of the present invention are exhibited.
  • foaming agent for example, various thermal expansion type foaming agents and various thermal decomposition type foaming agents are used.
  • heat-expandable foaming agent include heat-expandable microcapsules in which a low-boiling hydrocarbon expansion agent is encapsulated.
  • a pyrolysis type foaming agent for example, a chemical foaming agent containing an organic compound or an inorganic compound having a pyrolysis property can be mentioned.
  • the chemical foaming agent examples include a chemical foaming agent containing an organic compound such as azodicarboxylic amide, N, N'-dinitrosopentamethylenetetramine and N, N'-dinitrosopentamethylenetetramine, and sodium hydrogencarbonate.
  • Examples thereof include chemical foaming agents containing the above inorganic compounds.
  • the foaming agent a chemically expandable microcapsule and a chemical foaming agent containing azodicarbonamide are preferable from the viewpoint of improving the sealing property and heat resistance of the gasket obtained from the rubber composition.
  • the foaming agent for example, the trade name "Advancel EM304 (thermally expandable microcapsule)" (manufactured by Sekisui Chemical Co., Ltd.) and the trade name “Vinihole AC # 3 (azodicarbonamide)” (manufactured by Eiwa Kasei Co., Ltd.) Goods may be used.
  • the amount of the foaming agent to be blended is 100 parts by mass of ethylene acrylate rubber from the viewpoint of efficiently foaming the rubber composition at the time of crosslinking to obtain a foamed rubber layer having excellent sealing properties and heat resistance of the gasket using the rubber composition.
  • it is preferably 1 part by mass or more and 50 parts by mass or less, more preferably 5 parts by mass or more and 45 parts by mass or less, and further preferably 7.5 parts by mass or more and 40 parts by mass or less.
  • the amount of the foaming agent to be blended is set to the total mass of the rubber composition from the viewpoint of efficiently foaming the rubber composition at the time of crosslinking to obtain a foamed rubber layer having excellent sealing properties and heat resistance of the gasket using the rubber composition.
  • it is preferably 1% by mass or more and 50% by mass or less, more preferably 2.5% by mass or more and 30% by mass or less, and further preferably 5% by mass or more and 25% by mass or less.
  • the rubber composition may contain a filler such as calcium carbonate and silica, if necessary.
  • a filler such as calcium carbonate and silica
  • various calcium carbonates such as heavy calcium carbonate and synthetic calcium carbonate can be used.
  • the rubber composition may contain an auxiliary agent generally used in the rubber industry, such as zinc oxide, a plasticizer, stearic acid, an antiaging agent, and paraffin wax, if necessary.
  • an auxiliary agent generally used in the rubber industry, such as zinc oxide, a plasticizer, stearic acid, an antiaging agent, and paraffin wax, if necessary.
  • the plasticizer functions as a processing aid that appropriately lowers the viscosity of the rubber composition and improves workability.
  • the plasticizer include commercially available products such as the trade name "Mezamol (registered trademark)" (manufactured by LANXESS).
  • the blending amount of the plasticizer is, for example, 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • stearic acid for example, a commercially available product such as the trade name "DTST" (manufactured by Miyoshi Oil & Fat Co., Ltd.) may be used.
  • the blending amount of stearic acid is, for example, 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the anti-aging agent for example, a commercially available product such as the trade name "Nocrack (registered trademark) CD" (4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine) may be used.
  • the blending amount of the anti-aging agent is, for example, 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the rubber-metal laminate according to the present embodiment includes a metal member and a foamed rubber layer provided on the metal member and formed by cross-linking the rubber composition.
  • This rubber metal laminate can be suitably used as a sealing member for various gaskets and the like.
  • the foamed rubber layer is the hardness of the pencil hardness in the scratch hardness test (pencil method) according to JIS K5600-5-4 before and after heat aging at 150 ° C. for 24 hours.
  • the change is preferably 3 points or less. This makes it possible to obtain a foamed rubber layer having excellent heat resistance in the rubber metal laminate.
  • the hardness change here is the amount of change in pencil hardness. For example, when the pencil hardness before heat aging at 150 ° C. for 24 hours is 6B and the pencil hardness after heat aging at 150 ° C. for 24 hours is 5B, the hardness change is 1. It will be a point. Further, when the pencil hardness before heat aging at 150 ° C. for 24 hours is F and the pencil hardness after heat aging at 150 ° C. for 24 hours is H, the hardness change is 1 point.
  • the hardness change of the pencil hardness is more preferably 2 points or less, and further preferably 1 point or less.
  • the foaming ratio of the foamed rubber layer is preferably 2 times or more, more preferably 2.5 times or more, from the viewpoint of improving the sealing property of a sealing member such as a gasket using a rubber metal laminate. It is more preferably 3 times or more, more preferably 20 times or less, further preferably 10 times or less, and further preferably 7.5 times or less.
  • the brass plate, the steel plate and the stainless steel plate do not corrode in the corrosion and stickiness test according to JIS B2403 9.2. This makes it possible for the rubber-metal laminate to prevent corrosion of metal members and the like based on the components released from the foamed rubber layer.
  • a metal plate such as iron, stainless steel, aluminum, magnesium, zinc-plated steel and copper is used.
  • iron for example, cold-rolled steel sheet (SPCC: Steel Plate Cold Commercial), high-strength steel sheet, mild steel sheet and the like are used.
  • stainless steel for example, a stainless steel plate such as a ferrite type, a martensitic type, or an austenitic type can be used. Specific examples of stainless steel include SUS304, SUS301, SUS301H and SUS430.
  • aluminum an aluminum plate, an aluminum die-cast plate, or the like is used.
  • the metal member in a state where the surface is degreased by an alkaline degreasing treatment or the like. Further, the metal member is used by roughening the metal surface by shot blasting, Scotch bride (registered trademark), hairline, dull finish or the like, if necessary.
  • the base treatment is not particularly limited, and a known base treatment can be used.
  • a known base treatment can be used.
  • the base treatment when iron materials such as cold-rolled steel sheets and high-tensile steel sheets and stainless steel materials are used as metal members, chemical conversion treatment methods using various chemical conversion treatment agents, electroplating with metals such as zinc, and hot-dip plating are performed. Various plating methods such as are preferable.
  • the chemical conversion treatment agent for metal members include phosphoric acid-based treatment agents such as zinc phosphate treatment agents and iron phosphate treatment agents, and coating-type chromate treatment agents.
  • a chromium-free chemical conversion treatment agent that does not substantially contain chromium is preferable from the viewpoint of environmental protection.
  • the base treatment of the metal member with the chemical conversion treatment agent is performed by contacting the metal member with the chemical conversion treatment agent by a known liquid contact method such as spraying, spraying, dipping, brush coating and a roll coater.
  • a reactive chemical conversion treatment agent it is required to secure the time and temperature required for the reaction.
  • the rubber metal laminate it is preferable that a primer layer is formed on the metal member in addition to the base treatment or instead of the base treatment.
  • a primer layer By applying a base treatment or providing a primer layer, the adhesiveness between the rubber layer and the metal member in the rubber metal laminate can be improved, and the heat resistance and water resistance of the rubber metal laminate can be significantly improved. it can.
  • the rubber metal laminate can be suitably used as a gasket which is a laminated composite metal in which a rubber metal laminate and another metal plate or the like are laminated by subjecting a base treatment or forming a primer layer. it can.
  • the primer layer includes silicon compounds, metal compounds such as titanium, zirconium, vanadium, aluminum, molybdenum, tungsten, manganese, zinc and cerium, inorganic compounds such as these oxides, silicone resins, phenolic resins and epoxies. It can be provided by a resin, an organic compound such as polyurethane, or the like.
  • a commercially available primer solution may be used, or other primer solutions according to various known techniques can be used for the primer layer.
  • the primer layer is provided by a primer solution in which a raw material containing the above-mentioned various inorganic compounds and organic compounds is dissolved or dispersed in an organic solvent or an aqueous solvent.
  • organic solvent examples include alcohols such as methanol, ethanol and isopropyl alcohol, and ketones such as acetone and methyl ethyl ketone.
  • the primer solution may be prepared as an aqueous solution using an aqueous solvent as long as the liquid stability is maintained.
  • the obtained primer solution is applied onto a metal plate by spraying, dipping, brushing, a roll coater, or the like. Then, the primer layer is provided by drying the primer solution applied on the metal plate at room temperature or warm air, or by baking the primer solution.
  • the adhesive adheres the rubber layer and the metal member.
  • the adhesive generally commercially available adhesives such as phenol resin, epoxy resin, polyurethane resin and silane are used. These adhesives can be appropriately selected depending on the use of the rubber metal laminate.
  • the metal plate and the rubber layer are adhered to each other via at least one selected from the group consisting of phenol resin and epoxy resin.
  • the rubber-metal laminate improves the adhesiveness between the metal plate and the rubber layer, so that the sealing property of the member to be sealed when used for various gaskets and the like is further improved.
  • phenol resin for example, a novolak type phenol resin and a resol type phenol resin are used.
  • the novolak type phenol resin and the resol type phenol resin one type may be used alone, or two or more types may be used in combination.
  • the adhesive one containing two types of phenolic resins, a novolak type phenolic resin and a resole type phenolic resin, and uncrosslinked nitrile rubber may be used.
  • the novolak type phenol resin one obtained by condensation reaction of phenols and formaldehyde in the presence of an acid catalyst is used.
  • the phenols for example, at least one of the o-position and the p-position with respect to the phenolic hydroxyl group such as phenol, p-cresol, m-cresol, p-third butylphenol, p-phenylphenol, and bisphenol A. Those having two or three substitutable hydrogen atoms are used. One of these phenolic resins may be used alone, or two or more thereof may be used in combination.
  • the acid catalyst for example, oxalic acid, hydrochloric acid, maleic acid and the like are used.
  • the novolak type phenol resin those having a melting point of 80 ° C. or higher and 150 ° C. or lower are preferable from the viewpoint of improving the adhesiveness between the metal plate and the rubber layer, and obtained by using m-cresol and formaldehyde. Those having a melting point of 120 degrees or higher are more preferable.
  • resol type phenol resin one obtained by condensation reaction of phenols and formaldehyde in the presence of a base catalyst is used.
  • phenols include at least one of the o- and p-positions with respect to phenolic hydroxyl groups such as phenol, p-cresol, m-cresol, and p-third butylphenol, p-phenylphenol, and bisphenol A.
  • the one having 2 or 3 replaceable hydrogen atoms is used.
  • One of these phenolic resins may be used alone, or two or more thereof may be used in combination.
  • the base catalyst for example, alkali metal hydroxides such as ammonia and sodium hydroxide, magnesium hydroxide, sodium carbonate and the like are used.
  • Examples of the epoxy resin include bisphenol A type, cresol novolac type, biphenyl type, and brominated epoxy resin. One of these epoxy resins may be used alone, or two or more of these epoxy resins may be used in combination. Among these epoxy resins, bisphenol A type epoxy resin and cresol novolac type epoxy resin are preferable from the viewpoint of easy availability of commercially available products and excellent heat resistance.
  • Examples of the bisphenol A type epoxy resin include DIC's product names "EPICON 860", “EPICON 1055”, “EPICON 2050”, “EPICON 3050", product names "EPICON 4050", "EPICON 7050", and "EPICON". Commercially available products such as "HM-091" may be used.
  • cresol novolac type epoxy resins for example, DIC's trade names "EPICLON N-660”, “EPICLON N-670”, “EPICLON N-680”, “EPICLON N-690”, etc.
  • Commercially available products may be used.
  • the above-mentioned various adhesives are used as a solution dissolved in an organic solvent.
  • organic solvent for example, ketones such as methyl ethyl ketone and methyl isobutyl ketone, aromatic hydrocarbons such as toluene and xylene, and the like are used.
  • ketones such as methyl ethyl ketone and methyl isobutyl ketone
  • aromatic hydrocarbons such as toluene and xylene, and the like are used.
  • One of these organic solvents may be used alone, or two or more of these organic solvents may be used in combination.
  • the adhesive is preferably blended in a ratio of 10 parts by mass or more and 1000 parts by mass or less, and 60 parts by mass or more and 400 parts by mass or less, with respect to 100 parts by mass of the novolak type phenol resin. It is more preferable to do so.
  • 1000 parts by mass or less of the resol type phenol resin with respect to 100 parts by mass of the novolak type phenol resin, it is possible to prevent a decrease in the adhesiveness of the rubber layer, and the adhesive should be 10 parts by mass or more. This makes it possible to prevent a decrease in adhesiveness with the surface of the metal member.
  • the adhesive is preferably provided on the metal plate on which the primer layer is formed from the viewpoint of improving the adhesiveness between the metal member and the rubber layer.
  • the adhesive layer may be provided as one layer or may be provided as multiple layers.
  • a phenol-based adhesive layer containing a Yuki metal compound is formed on a primer layer provided on a metal member, and then a phenol-based adhesive layer is further provided on the adhesive layer to spread an adhesive in multiple stages. It may be provided as a structure. By forming the adhesive layer having such a multi-stage structure, the adhesiveness between the primer layer and the rubber layer can be further strengthened.
  • the adhesive is prepared as an adhesive solution having a solid content concentration of 1% by mass or more and 10% by mass or less by using a ketone-based organic solvent such as acetone, methyl ethyl ketone and methyl isobutyl ketone and a mixed solvent thereof.
  • the adhesive solution is applied onto the metal member and then dried and baked for about 1 minute or more and 30 minutes under the conditions of 100 ° C. or higher and 250 ° C. or lower to form an adhesive layer.
  • the amount of the adhesive applied is preferably in the range of 50 mg / m 2 or more and 2000 mg / m 2 or less after the drying and baking treatment after the application. Further, the adhesive is preferably applied so that the thickness of the adhesive layer after drying is 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the foam rubber layer may contain other rubber components as long as the effects of the present invention are exhibited.
  • other rubber components include nitrile rubber (NBR: Nitrile Butadiene Rubber), which is an acrylonitrile-butadiene copolymer, hydride nitrile rubber (H-NBR) in which the unsaturated bond portion of nitrile rubber is hydrogenated, and nitrile rubber.
  • NBR Nitrile Butadiene Rubber
  • H-NBR hydride nitrile rubber
  • the thickness of the foamed rubber layer after cross-linking is preferably 10 ⁇ m or more and 700 ⁇ m or less, and more preferably 20 ⁇ m or more and 600 ⁇ m or less, from the viewpoint of obtaining sufficient sealing properties and heat resistance when used as a gasket. It is more preferably 30 ⁇ m or more and 500 ⁇ m or less.
  • the rubber metal laminate according to the above embodiment contains a metal member such as a stainless steel plate, a rubber component, carbon black, an amine-based cross-linking agent and a foaming agent, and if necessary, a cross-linking accelerator, calcium carbonate, silica. , A plasticizer and various auxiliaries, and a rubber composition kneaded with a sealed kneader such as an intermix, a kneader, or a Banbury mixer or an open roll is dissolved in an organic solvent to produce the rubber composition.
  • the rubber composition is applied at 160 ° C. or higher and 250 ° C.
  • a resin-based or graphite-based coating agent may be applied onto the rubber layer from the viewpoint of preventing rubber adhesion.
  • the method of applying the rubber composition onto the metal member is not particularly limited as long as the rubber composition can be applied onto the metal member.
  • the rubber composition include a spray method, a dipping method, a roll coating method, and a dispenser method.
  • an organic solvent may be added to the rubber composition to adjust the viscosity, if necessary.
  • the organic solvent is not particularly limited as long as the viscosity of the rubber composition can be adjusted to a desired viscosity.
  • examples of the organic solvent include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, aromatic hydrocarbon solvents such as toluene, and ester solvents such as ethyl acetate.
  • ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone
  • aromatic hydrocarbon solvents such as toluene
  • ester solvents such as ethyl acetate.
  • One of these organic solvents may be used alone, or two or more of them may be used in combination.
  • the ethylene acrylate rubber is crosslinked with the amine-based cross-linking agent, it is not necessary to use the sulfur component for the cross-linking of the ethylene acrylate rubber.
  • the content of the sulfur component in the rubber composition after cross-linking is significantly reduced in the rubber composition as compared with the case where a sulfur-based cross-linking agent is used, so that the sulfur component in the rubber composition after cross-linking is significantly reduced. It is possible to prevent corrosion of metal members due to the release of sulfur.
  • the rubber composition contains ethylene acrylate rubber having better heat resistance than nitrile rubber as a rubber component, it is possible to obtain excellent heat resistance that can be used even in an environment of 100 ° C.
  • the rubber metal laminate can prevent the reaction between the amine-based cross-linking agent and air, the ethylene acrylate rubber can be sufficiently cross-linked even when the rubber composition is cross-linked in an oven. , It is possible to prevent the rubber composition from adhering to the metal member after cross-linking. Since the rubber metal laminate is provided with the foamed rubber layer by the rubber composition containing the foaming agent, the compression ratio when used for the gasket can be increased due to the large number of air bubbles existing in the foamed rubber layer, and the surface roughness can be increased. Excellent sealing performance under rough flanges and low surface pressure. As a result, the rubber composition can prevent metal corrosion due to the sulfur component, and can obtain a gasket having excellent heat resistance.
  • the present inventor produced a rubber metal laminate according to the above embodiment, and evaluated the produced rubber metal laminate by performing a compression test.
  • the contents investigated by the present inventor will be described.
  • Example 1 ⁇ Preparation of sample for evaluation of foaming characteristics> A cold-rolled steel sheet (SPCC: Steel Plate Cold Commercial) having a thickness of 600 ⁇ m was subjected to chemical conversion treatment by zinc phosphate treatment. Next, a primer solution obtained by diluting a primer (Chemlock (registered trademark) AP133, manufactured by LOAD) with methanol to a solid content of 2% by mass was immersed and applied to a cold-rolled steel sheet subjected to chemical conversion treatment, and the mixture was applied at 200 ° C. for 10 minutes. The heat treatment was carried out to provide a primer layer having a thickness of 1 ⁇ m or less on the cold-rolled steel sheet.
  • SPCC Steel Plate Cold Commercial
  • ethylene acrylate rubber trade name "VAMAC (registered trademark) GLS", manufactured by DuPont
  • carbon black A intermediate grain thermal decomposition carbon black: trade name "THERMAX (registered trademark) N990 LSR”
  • Curve Co., Ltd. 2 parts by mass of Curve Co., Ltd.
  • 2 parts by mass of stearic acid trade name "DTST”, manufactured by Miyoshi Oil & Fat Co., Ltd.
  • anti-aging agent (4,4'-bis ( ⁇ , ⁇ -dimethylbenzyl) diphenylamine: trade name "Nocrack” (Registered trademark) CD ”, manufactured by Rankses
  • 2 parts by mass, amine-based cross-linking agent hexamethylenediamine carbamate: trade name“ Cheminox AC6-66 ”, manufactured by Unimatec
  • the rubber composition solution was prepared. Next, the rubber composition solution was uniformly applied onto the adhesive layer on one main surface of the cold-rolled steel sheet, and then dried at 60 ° C. for 5 minutes to evaluate the foaming characteristics of the rubber metal laminate. Was produced.
  • Foaming ratio (thickness of rubber metal laminate after cross-linking-steel plate thickness) / (thickness of rubber metal laminate before cross-linking-steel plate thickness) ⁇ ⁇ ⁇ Equation (1)
  • the heat resistance is evaluated by measuring the pencil hardness by the hand-scratch method in accordance with JIS K5600-5-4 "Mechanical properties of coating film-scratch hardness (pencil method)". Carried out.
  • As the pencil a pencil with a hardness of 6B to 6H (manufactured by Mitsubishi Pencil Co., Ltd.) certified by the Japan Paint Certification Association was used.
  • the pencil hardness was determined by the hardness type measured by starting the measurement of the scratch hardness from the pencil having the highest hardness and gradually decreasing the hardness of the pencil until the foam rubber layer was no longer scraped.
  • a primer solution obtained by diluting a primer (Chemlock (registered trademark) AP133, manufactured by LOAD) with methanol to a solid content of 2% by mass was immersed and coated on a 200 ⁇ m-thick stainless steel sheet (model number “SUS301H”), and 10 at 200 ° C.
  • a primer layer was provided on the cold-rolled steel sheet by heat treatment for 1 minute.
  • the rubber composition solution used when preparing the sample for evaluating the foaming characteristics was applied so that the thickness of the foamed rubber layer before cross-linking was 80 ⁇ m or more and 100 ⁇ m on the adhesive layer on one main surface of the stainless steel sheet. was evenly applied and dried at 60 ° C. for 5 minutes.
  • the rubber composition solution was uniformly applied onto the adhesive layer on the other main surface of the stainless steel sheet so that the thickness of the foamed rubber layer before cross-linking was 80 ⁇ m or more and 100 ⁇ m, and the thickness was 5 at 60 ° C. Allowed to dry for minutes.
  • a stainless steel plate provided with a foam rubber layer was crosslinked in an oven at 200 ° C. for 3 minutes to prepare a sample for evaluation of the corrosiveness and stickiness of the rubber metal laminate.
  • Corrosion evaluation and stickiness evaluation were carried out in accordance with JIS B2403 9.2 "Corrosion and stickiness test” used in V packing.
  • the prepared evaluation sample was cut into a width of 25 mm and a length of 50 mm, and four test pieces were taken out.
  • Sandpaper the surface of three types of metal plates: brass plate (model number "C2801”), steel plate (model number “SS400”) and stainless steel plate (model number "SUS304”) with a thickness of 3 mm, width of 25 mm and length of 50 mm. After polishing well with # 400), it was degreased and washed in hexane by ultrasonic cleaning, and the test pieces and metal plates were alternately brought into close contact with each other and stacked and sandwiched.
  • FIG. 1 is an explanatory diagram of a corrosion and stickiness test according to an embodiment of the present invention.
  • the first test piece 100-1 to the fourth test piece 100-4 of the rubber metal laminated plate were used in the corrosion and stickiness test.
  • the first test pieces 100-1 to the fourth test pieces 100-4 are provided on one main surface of the stainless steel plates 101-1 to 101-4 and the stainless steel plates 101-1 to 101-4, respectively.
  • the rubber layers 101a-1 to 104a-1 and the second rubber layers 101b-1 to 104b-1 provided on the other main surface of the stainless steel plates 101-1 to 101-4 are provided.
  • the brass plate 201 was laminated on the first rubber layer 102a-1 of the first test piece 100-1, and the second rubber layer 102b- of the second test piece 100-2 was laminated on the brass plate 201. 2 is laminated, the steel plate 202 is laminated on the first rubber layer 102a-2 of the second test piece 100-2, and the second rubber layer 102b-3 of the third test piece 100-3 is laminated on the steel plate 202.
  • Example 2 Same as Example 1 except that 9 parts by mass of a thermal expansion foaming agent (microcapsule: trade name "Advancel (registered trademark) EM304", manufactured by Sekisui Chemical Co., Ltd.) was used instead of the pyrolysis foaming agent. A rubber metal laminate was prepared, and the foaming characteristics, heat resistance, and corrosiveness were evaluated. The evaluation results are shown in Table 1 below.
  • a thermal expansion foaming agent microcapsule: trade name "Advancel (registered trademark) EM304", manufactured by Sekisui Chemical Co., Ltd.
  • Example 3 A rubber metal laminate was prepared in the same manner as in Example 2 except that the blending amount of the heat-expandable foaming agent was 16 parts by mass, and the foaming characteristics, heat resistance and corrosiveness were evaluated. The evaluation results are shown in Table 1 below.
  • Example 4 Furthermore, 54 parts by mass of carbon black B (medium reinforcing (SRF: Semi-Reinforcing Furnace) carbon black: trade name "HTC # SS", manufactured by Nittetsu Carbon Co., Ltd.) was used, and a heat-expandable foaming agent was blended.
  • a rubber metal laminate was prepared in the same manner as in Example 3 except that the amount was 20 parts by mass, and foaming characteristics evaluation, heat resistance evaluation, and corrosiveness evaluation were carried out. The evaluation results are shown in Table 1 below.
  • Example 5 A rubber metal laminate was prepared in the same manner as in Example 4 except that the blending amount of the heat-expandable foaming agent was 30 parts by mass, and foaming characteristics evaluation, heat resistance evaluation, and corrosiveness evaluation were carried out. The evaluation results are shown in Table 1 below.
  • Example 6 Except that the amount of the amine-based cross-linking agent was 5 parts by mass, the amount of the amine-based cross-linking accelerator was 2 parts by mass, and the amount of the heat-expandable foaming agent was 35 parts by mass.
  • a rubber metal laminate was prepared in the same manner as in Example 5, and foaming characteristics evaluation, heat resistance evaluation, and corrosiveness evaluation were carried out. The evaluation results are shown in Table 1 below.
  • Example 7 A rubber metal laminate was prepared in the same manner as in Example 6 except that the blending amount of the heat-expandable foaming agent was 20 parts by mass, and the foaming characteristics, heat resistance and corrosiveness were evaluated. The evaluation results are shown in Table 1 below.
  • sulfur-based cross-linking accelerator A dibenzothiazil disulfide: trade name "Noxeller DM-10", Ouchi Shinko Kagaku Co., Ltd.
  • sulfur-based cross-linking accelerator B tetramethylthiuram disulfide: trade name "Axel TS-10", Ouchi Shinko Kagaku Co., Ltd.
  • Ethylene acrylate rubber Brand name "VAMAC GLS” (manufactured by DuPont)
  • Nitrile rubber High nitrile rubber (bonded acrylonitrile content 41.5%):
  • Product name "JSR N220S” manufactured by JSR
  • Carbon Black A Medium-grain pyrolysis (MT: Medium Thermal) Carbon Black: Product name "THERMAX N990 LSR,” (manufactured by Cancurve)
  • Carbon Black B Medium Reinforcement (SRF: Semi-Reinforcing Furnace) Carbon Black: Product Name "HTC # SS” (manufactured by Nittetsu Carbon Co., Ltd.)
  • Amine-based cross-linking agent Hexamethylenediamine carbamate: Trade name "Cheminox AC6-66” (manufactured by Unimatec)
  • Amine-based cross-linking accelerator Amination derivative (tertiary amine complex adsorbed on an
  • the rubber metal laminate in which the rubber layer contains ethylene acrylate rubber and an amine-based cross-linking agent not only provides a sufficient foaming ratio of the rubber layer, but also has heat resistance, corrosiveness and stickiness.
  • Example 1 and Examples 2 to 7 are compared, stable foaming characteristics can be obtained regardless of whether a heat-expandable foaming agent or a thermally decomposable foaming agent is used as the foaming agent, which is excellent. It can be seen that heat resistance, corrosiveness and stickiness can be obtained.
  • the rubber composition, the rubber metal laminate, the gasket and the rubber metal can prevent metal corrosion due to the sulfur component and can obtain a gasket having excellent heat resistance. It has the effect of realizing a method for manufacturing a laminate, and is particularly used for gaskets such as inverter cases for electric vehicles (EV: Electric Metal) and hybrid electric vehicles (HEV: Hybrid Electric Metal) and gaskets such as heat-resistant gaskets. be able to.
  • gaskets such as inverter cases for electric vehicles (EV: Electric Metal) and hybrid electric vehicles (HEV: Hybrid Electric Metal) and gaskets such as heat-resistant gaskets.
  • the embodiment of the present invention is not limited by the content of the present embodiment.
  • the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those having a so-called equal range.
  • the components described above can be combined as appropriate. Further, various omissions, replacements or changes of the components can be made without departing from the gist of the above-described embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)
  • Gasket Seals (AREA)

Abstract

The present invention can realize: a rubber composition which can prevent metal corrosion caused by a sulfur component and can give a gasket having excellent heat resistance; a rubber/metal layered product; a gasket; and a method for producing a rubber/metal layered product. This rubber composition contains 100 parts by mass of an ethylene-acrylate rubber; 1-200 parts by mass of carbon black; 0.1-20 parts by mass of an amine-based crosslinking agent; and 1-50 parts by mass of a foaming agent.

Description

ゴム組成物、ゴム金属積層体、ガスケット及びゴム金属積層体の製造方法Manufacturing method of rubber composition, rubber metal laminate, gasket and rubber metal laminate
 本発明は、ゴム組成物、ゴム金属積層体、ガスケット及びゴム金属積層体の製造方法に関し、詳しくは、エチレンアクリレートゴムを含有するゴム組成物、ゴム金属積層体、ガスケット及びゴム金属積層体の製造方法に関する。 The present invention relates to a method for producing a rubber composition, a rubber metal laminate, a gasket and a rubber metal laminate. Specifically, the present invention is to produce a rubber composition containing ethylene acrylate rubber, a rubber metal laminate, a gasket and a rubber metal laminate. Regarding the method.
 近年、NBR、H-NBR及び変性NBRなどのニトリルゴムを含有するゴム組成物が、自動車などのガスケット材料として用いられている。これらのゴム組成物では、硫黄系架橋剤、架橋促進剤及び老化防止剤として硫黄及び硫黄化合物などの硫黄成分が配合されることが多い。しかしながら、ニトリルゴム及び硫黄成分を含有するゴム組成物では、ゴム組成物から硫黄が遊離して電飾部品などの金属を腐食する場合がある。そこで、硫黄成分を用いずにニトリルゴムを架橋するガスケット用素材(例えば、特許文献1参照)及びガスケット材料(例えば、特許文献2参照)が提案されている。 In recent years, rubber compositions containing nitrile rubber such as NBR, H-NBR and modified NBR have been used as gasket materials for automobiles and the like. In these rubber compositions, sulfur components such as sulfur and sulfur compounds are often blended as sulfur-based cross-linking agents, cross-linking accelerators and anti-aging agents. However, in a rubber composition containing nitrile rubber and a sulfur component, sulfur may be liberated from the rubber composition and corrode metals such as illuminated parts. Therefore, a gasket material (for example, see Patent Document 1) and a gasket material (for example, see Patent Document 2) for cross-linking nitrile rubber without using a sulfur component have been proposed.
 特許文献1に記載のガスケット用素材では、キノイド系架橋剤を用いてニトリルゴムを架橋することにより、ガスケット用素材を電装部品に使用した際のガスケット用素材中の硫黄成分に基づく電装部品などの金属腐食を防いでいる。また、特許文献2に記載のガスケット材料では、エポキシ化合物を架橋剤として用いてカルボキシル基変性ニトリルゴムを加硫することにより、ガスケット材料を電子部品に用いた際のガスケット材料中の硫黄成分に基づく電子部品などの金属腐食を防いでいる。 In the gasket material described in Patent Document 1, by cross-linking nitrile rubber with a quinoid-based cross-linking agent, an electrical component based on the sulfur component in the gasket material when the gasket material is used for the electrical component, etc. Prevents metal corrosion. Further, the gasket material described in Patent Document 2 is based on the sulfur component in the gasket material when the gasket material is used for electronic parts by vulcanizing a carboxyl group-modified nitrile rubber using an epoxy compound as a cross-linking agent. Prevents metal corrosion of electronic parts.
特開2011-99558号公報Japanese Unexamined Patent Publication No. 2011-99558 国際公開第2013/011918号International Publication No. 2013/011918
 ところで、ニトリルゴムのゴム材料では、ニトリルゴムの架橋に過酸化物を含有する過酸化物系架橋剤(パーオキサイド系架橋剤)も用いられている。しかしながら、過酸化物系架橋剤を含有するゴム組成物は、過酸化物が空気中の酸素と反応するので、一般的にオーブン内で加硫するオーブン加硫を用いる発泡ゴム層を有するガスケットの製造には用いることができない。また、特許文献1に記載のガスケット用素材及び特許文献2に記載のガスケット材料では、硫黄成分に基づく電子部品などの腐食を防ぐことができる一方、ゴム材料としてニトリルゴムを用いているので、必ずしも十分な耐熱性が得られず、100℃以上の環境では使用することができない場合がある。 By the way, in the rubber material of nitrile rubber, a peroxide-based cross-linking agent (peroxide-based cross-linking agent) containing a peroxide for cross-linking the nitrile rubber is also used. However, in the rubber composition containing a peroxide-based cross-linking agent, since the peroxide reacts with oxygen in the air, a gasket having a foam rubber layer using oven vulcanization, which is generally vulcanized in an oven, is used. It cannot be used in manufacturing. Further, the gasket material described in Patent Document 1 and the gasket material described in Patent Document 2 can prevent corrosion of electronic parts and the like based on the sulfur component, while nitrile rubber is used as the rubber material, so that it is not always necessary. Sufficient heat resistance may not be obtained, and it may not be possible to use it in an environment of 100 ° C. or higher.
 本発明は、このような実情に鑑みてなされたものであり、硫黄成分に基づく金属腐食を防ぐことができ、しかも、耐熱性に優れるガスケットが得られるゴム組成物、ゴム金属積層体、ガスケット及びゴム金属積層体の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a rubber composition, a rubber metal laminate, a gasket, and a rubber composition, which can prevent metal corrosion due to a sulfur component and can obtain a gasket having excellent heat resistance. It is an object of the present invention to provide a method for producing a rubber metal laminate.
 本発明に係るゴム組成物は、エチレンアクリレートゴム100質量部と、カーボンブラック1質量部以上200質量部以下と、アミン系架橋剤0.1質量部以上20質量部以下と、発泡剤を1質量部以上50質量部以下と、を含むことを特徴とする。 The rubber composition according to the present invention contains 100 parts by mass of ethylene acrylate rubber, 1 part by mass or more and 200 parts by mass or less of carbon black, 0.1 parts by mass or more and 20 parts by mass or less of an amine-based cross-linking agent, and 1 part by mass of a foaming agent. It is characterized by containing more than 50 parts by mass and less.
 本発明に係るゴム組成物によれば、アミン系架橋剤によりエチレンアクリレートゴムを架橋するので、エチレンアクリレートゴムの架橋に硫黄成分を用いる必要がない。これにより、ゴム組成物は、硫黄系架橋剤を用いる場合と比較して、架橋後のゴム組成物中の硫黄成分の含有量が大幅に少なくなるので、架橋後のゴム組成物中の硫黄成分の遊離に基づく金属部材の腐食を防ぐことができる。また、ゴム組成物は、ゴム成分としてニトリルゴムより耐熱性に優れたエチレンアクリレートゴムを含むので、100℃以上の環境でも使用可能となる優れた耐熱性を得ることができる。さらに、ゴム組成物は、アミン系架橋剤と空気との反応を防ぐこともできるので、オーブン架橋を行った場合であっても、エチレンアクリレートゴムを十分に架橋することができ、架橋後のゴム組成物の金属部材への付着を防ぐことができる。これらにより、ゴム組成物は、硫黄成分に基づく金属腐食を防ぐことができると共に、耐熱性に優れたガスケットを得ることが可能となる。 According to the rubber composition according to the present invention, since the ethylene acrylate rubber is crosslinked with an amine-based cross-linking agent, it is not necessary to use a sulfur component for cross-linking the ethylene acrylate rubber. As a result, the content of the sulfur component in the rubber composition after cross-linking is significantly reduced in the rubber composition as compared with the case where a sulfur-based cross-linking agent is used, so that the sulfur component in the rubber composition after cross-linking is significantly reduced. It is possible to prevent corrosion of metal members due to the release of sulfur. Further, since the rubber composition contains ethylene acrylate rubber having higher heat resistance than nitrile rubber as a rubber component, it is possible to obtain excellent heat resistance that can be used even in an environment of 100 ° C. or higher. Further, since the rubber composition can prevent the reaction between the amine-based cross-linking agent and air, the ethylene acrylate rubber can be sufficiently cross-linked even when cross-linking is performed in an oven, and the rubber after cross-linking can be sufficiently cross-linked. It is possible to prevent the composition from adhering to the metal member. As a result, the rubber composition can prevent metal corrosion due to the sulfur component, and can obtain a gasket having excellent heat resistance.
 上記ゴム組成物においては、前記アミン系架橋剤が、ジアミン類を含有することが好ましい。この構成により、アミン系架橋剤を介してエチレンアクリレートゴムが効率よく架橋できるので、架橋後のゴム組成物の耐熱性がより向上する。 In the rubber composition, it is preferable that the amine-based cross-linking agent contains diamines. With this configuration, the ethylene acrylate rubber can be efficiently crosslinked via an amine-based crosslinking agent, so that the heat resistance of the rubber composition after cross-linking is further improved.
 上記ゴム組成物においては、前記発泡剤が、熱膨張型発泡剤及び熱分解型発泡剤からなる群から選択された少なくとも1種であることが好ましい。この構成により、ゴム組成物がオーブン架橋により架橋時に効率よく発泡するので、耐熱性に優れた発泡ゴム層をえることが可能となる。 In the rubber composition, it is preferable that the foaming agent is at least one selected from the group consisting of a heat expansion type foaming agent and a pyrolysis type foaming agent. With this configuration, the rubber composition is efficiently foamed at the time of cross-linking by oven cross-linking, so that it is possible to obtain a foamed rubber layer having excellent heat resistance.
 本発明に係るゴム金属積層体は、金属部材と、前記金属部材上に設けられ、上記ゴム組成物が架橋されてなる発泡ゴム層と、を備えたことを特徴とする。 The rubber-metal laminate according to the present invention is characterized by including a metal member and a foamed rubber layer provided on the metal member and formed by cross-linking the rubber composition.
 本発明に係るゴム金属積層体によれば、アミン系架橋剤によりエチレンアクリレートゴムを架橋するので、ゴム組成物のエチレンアクリレートゴムの架橋に硫黄成分を用いる必要がない。これにより、ゴム金属積層体は、硫黄系架橋剤を用いる場合と比較して、架橋後の発泡ゴム層物中の硫黄成分の含有量が大幅に少なくなるので、架橋後の発泡ゴム層中の硫黄成分の遊離に基づく金属部材の腐食を防ぐことができる。また、ゴム金属積層体は、ゴム成分としてニトリルゴムより耐熱性に優れたエチレンアクリレートゴムを含むので、100℃以上の環境でも使用可能となる優れた耐熱性を得ることができる。さらに、ゴム金属積層体は、アミン系架橋剤と空気との反応を防ぐこともできるので、ゴム組成物のオーブン架橋を行った場合であっても、エチレンアクリレートゴムを十分に架橋することができ、架橋後のゴム組成物の金属部材への付着を防ぐことができる。これらにより、ゴム金属積層体は、硫黄成分に基づく金属腐食を防ぐことができると共に、耐熱性に優れたガスケットを得ることが可能となる。 According to the rubber metal laminate according to the present invention, since the ethylene acrylate rubber is crosslinked with an amine-based cross-linking agent, it is not necessary to use a sulfur component for cross-linking the ethylene acrylate rubber in the rubber composition. As a result, the content of the sulfur component in the foamed rubber layer after cross-linking is significantly reduced in the rubber metal laminate as compared with the case where a sulfur-based cross-linking agent is used. It is possible to prevent corrosion of metal members due to the release of sulfur components. Further, since the rubber metal laminate contains ethylene acrylate rubber having better heat resistance than nitrile rubber as a rubber component, it is possible to obtain excellent heat resistance that can be used even in an environment of 100 ° C. or higher. Further, since the rubber metal laminate can prevent the reaction between the amine-based cross-linking agent and air, the ethylene acrylate rubber can be sufficiently cross-linked even when the rubber composition is cross-linked in an oven. , It is possible to prevent the rubber composition from adhering to the metal member after cross-linking. As a result, the rubber metal laminate can prevent metal corrosion due to the sulfur component and can obtain a gasket having excellent heat resistance.
 上記ゴム金属積層体においては、JIS B2403 9.2項に準拠した腐食及び粘り付き試験において、黄銅板、鋼板及びステンレス鋼板に腐食が生じないことが好ましい。この構成により、ゴム金属積層体は、発泡ゴム層から遊離した成分に基づく金属部材などの腐食を防ぐことが可能となる。 In the rubber metal laminate, it is preferable that the brass plate, the steel plate and the stainless steel plate do not corrode in the corrosion and stickiness test according to JIS B2403 9.2. With this configuration, the rubber-metal laminate can prevent corrosion of metal members and the like based on the components released from the foamed rubber layer.
 上記ゴム金属積層体においては、150℃にて24時間の熱老化前後のJIS K5600-5-4に準拠した引っかき硬度試験(鉛筆法)における前記発泡ゴム層の鉛筆硬度の硬度変化が3ポイント以下であることが好ましい。この構成により、ゴム金属積層体は、耐熱性に優れた発泡ゴム層を得ることが可能となる。 In the rubber metal laminate, the hardness change of the pencil hardness of the foamed rubber layer in the scratch hardness test (pencil method) based on JIS K5600-5-4 before and after heat aging at 150 ° C. for 24 hours is 3 points or less. Is preferable. With this configuration, the rubber metal laminate can obtain a foamed rubber layer having excellent heat resistance.
 本発明に係るガスケットは、上記ゴム金属積層体を備えたことを特徴とする。 The gasket according to the present invention is characterized by including the above-mentioned rubber metal laminate.
 本発明に係るガスケットによれば、アミン系架橋剤によりエチレンアクリレートゴムを架橋するので、ゴム組成物のエチレンアクリレートゴムの架橋に硫黄成分を用いる必要がない。これにより、ガスケットは、硫黄系架橋剤を用いる場合と比較して、架橋後の発泡ゴム層物中の硫黄成分の含有量が大幅に少なくなるので、架橋後の発泡ゴム層中の硫黄成分の遊離に基づく金属部材の腐食を防ぐことができる。また、ガスケットは、ゴム成分としてニトリルゴムより耐熱性に優れたエチレンアクリレートゴムを含むので、100℃以上の環境でも使用可能となる優れた耐熱性を得ることができる。さらに、ガスケットは、アミン系架橋剤と空気との反応を防ぐこともできるので、ゴム組成物のオーブン架橋を行った場合であっても、エチレンアクリレートゴムを十分に架橋することができ、架橋後のゴム組成物の金属部材への付着を防ぐことができる。これらにより、ガスケットは、硫黄成分に基づく金属腐食を防ぐことができると共に、耐熱性に優れることが可能となる。 According to the gasket according to the present invention, since the ethylene acrylate rubber is crosslinked with an amine-based cross-linking agent, it is not necessary to use a sulfur component for cross-linking the ethylene acrylate rubber in the rubber composition. As a result, the gasket contains significantly less sulfur component in the foamed rubber layer after cross-linking than when a sulfur-based cross-linking agent is used, so that the sulfur component in the foamed rubber layer after cross-linking is significantly reduced. Corrosion of metal members due to liberation can be prevented. Further, since the gasket contains ethylene acrylate rubber, which has higher heat resistance than nitrile rubber as a rubber component, it is possible to obtain excellent heat resistance that can be used even in an environment of 100 ° C. or higher. Further, since the gasket can prevent the reaction between the amine-based cross-linking agent and air, the ethylene acrylate rubber can be sufficiently cross-linked even when the rubber composition is cross-linked in an oven, and after the cross-linking. Can be prevented from adhering to the metal member of the rubber composition. As a result, the gasket can prevent metal corrosion due to the sulfur component and can have excellent heat resistance.
 本実施の形態に係るゴム金属積層体の製造方法は、エチレンアクリレートゴム100質量部、カーボンブラック1質量部以上200質量部以下、アミン系架橋剤0.1質量部以上20質量部以下及び発泡剤1質量部以上50質量部以下を混連してゴム組成物を得るゴム組成物調製工程と、前記ゴム組成物を金属部材上に塗布してオーブン架橋により架橋してゴム金属積層体を得る架橋工程とを含むことを特徴とする。 The method for producing the rubber metal laminate according to the present embodiment includes 100 parts by mass of ethylene acrylate rubber, 1 part by mass or more and 200 parts by mass or less of carbon black, 0.1 parts by mass or more and 20 parts by mass or less of an amine-based cross-linking agent, and a foaming agent. A rubber composition preparation step of mixing 1 part by mass or more and 50 parts by mass or less to obtain a rubber composition, and cross-linking by applying the rubber composition on a metal member and cross-linking by oven cross-linking to obtain a rubber metal laminate. It is characterized by including a step.
 本発明に係るゴム金属積層体の製造方法によれば、アミン系架橋剤によりエチレンアクリレートゴムを架橋するので、ゴム組成物のエチレンアクリレートゴムの架橋に硫黄成分を用いる必要がない。これにより、製造されるゴム金属積層体は、硫黄系架橋剤を用いる場合と比較して、架橋後の発泡ゴム層物中の硫黄成分の含有量が大幅に少なくなるので、架橋後の発泡ゴム層中の硫黄成分の遊離に基づく金属部材の腐食を防ぐことができる。また、製造されるゴム金属積層体は、ゴム成分としてニトリルゴムより耐熱性に優れたエチレンアクリレートゴムを含むので、100℃以上の環境でも使用可能となる優れた耐熱性を得ることができる。さらに、製造されるゴム金属積層体は、アミン系架橋剤と空気との反応を防ぐこともできるので、ゴム組成物のオーブン架橋を行った場合であっても、エチレンアクリレートゴムを十分に架橋することができ、架橋後のゴム組成物の金属部材への付着を防ぐことができる。これらにより、ゴム金属積層体の製造方法は、硫黄成分に基づく金属腐食を防ぐことができると共に、耐熱性に優れたガスケットが得られるゴム金属積層体を得ることが可能となる。 According to the method for producing a rubber metal laminate according to the present invention, since the ethylene acrylate rubber is crosslinked with an amine-based cross-linking agent, it is not necessary to use a sulfur component for cross-linking the ethylene acrylate rubber of the rubber composition. As a result, the produced rubber metal laminate has a significantly smaller content of the sulfur component in the foamed rubber layer after cross-linking as compared with the case where a sulfur-based cross-linking agent is used. It is possible to prevent corrosion of the metal member due to the release of the sulfur component in the layer. Further, since the produced rubber metal laminate contains ethylene acrylate rubber having higher heat resistance than nitrile rubber as a rubber component, it is possible to obtain excellent heat resistance that can be used even in an environment of 100 ° C. or higher. Further, since the produced rubber metal laminate can prevent the reaction between the amine-based cross-linking agent and air, the ethylene acrylate rubber is sufficiently cross-linked even when the rubber composition is cross-linked in an oven. It is possible to prevent the rubber composition from adhering to the metal member after cross-linking. As a result, the method for producing a rubber metal laminate can prevent metal corrosion due to a sulfur component and can obtain a rubber metal laminate capable of obtaining a gasket having excellent heat resistance.
 本発明によれば、硫黄成分に基づく金属腐食を防ぐことができ、しかも、耐熱性に優れるガスケットが得られるゴム組成物、ゴム金属積層体、ガスケット及びゴム金属積層体の製造方法を実現できる。 According to the present invention, it is possible to realize a method for producing a rubber composition, a rubber metal laminate, a gasket and a rubber metal laminate, which can prevent metal corrosion due to a sulfur component and can obtain a gasket having excellent heat resistance.
図1は、本発明の実施例に係る腐食及び粘り付き試験の説明図である。FIG. 1 is an explanatory diagram of a corrosion and stickiness test according to an embodiment of the present invention.
 以下、本発明の実施の形態について詳細に説明する。なお、本発明は、以下の実施の形態に限定されず、適宜変更して実施可能である。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be modified as appropriate.
(ゴム組成物)
 ゴム組成物は、エチレンアクリレートゴム100質量部と、カーボンブラック1質量部以上200質量部以下と、アミン系架橋剤0.1質量部以上20質量部以下と、発泡剤を1質量部以上50質量部以下と、を含有する。以下、ゴム組成物の各構成要素について詳細に説明する。
(Rubber composition)
The rubber composition comprises 100 parts by mass of ethylene acrylate rubber, 1 part by mass or more and 200 parts by mass or less of carbon black, 0.1 parts by mass or more and 20 parts by mass or less of an amine-based cross-linking agent, and 1 part by mass or more and 50 parts by mass of a foaming agent. It contains less than one part. Hereinafter, each component of the rubber composition will be described in detail.
 エチレンアクリレートゴム(AEM)は、良好な耐熱性及び耐寒性を有する物質であり、エチレンとアクリル酸エステル類との共重合体である。エチレンアクリレートゴムには、過酸化物系架橋剤により架橋されるエチレンとアクリル酸エステルとの2元共重合体と、エチレンとアクリル酸エステル類とカルボキシル基含有不飽和化合物との3元共重合体とがある。本実施の形態では、エチレンアクリレートゴムとしては、エチレンとアクリル酸エステル類とアミン系架橋剤により架橋されるカルボキシル基含有不飽和化合物との3元共重合体を用いる。このエチレンアクリレートゴムは、カルボキシル基含有不飽和化合物が架橋点となる特殊架橋タイプのアクリルゴム材料である。 Ethylene acrylate rubber (AEM) is a substance having good heat resistance and cold resistance, and is a copolymer of ethylene and acrylic acid esters. The ethylene acrylate rubber includes a binary copolymer of ethylene and acrylic acid ester crosslinked by a peroxide-based cross-linking agent, and a ternary copolymer of ethylene, acrylic acid esters and a carboxyl group-containing unsaturated compound. There is. In the present embodiment, as the ethylene acrylate rubber, a ternary copolymer of ethylene, acrylic acid esters, and a carboxyl group-containing unsaturated compound crosslinked by an amine-based cross-linking agent is used. This ethylene acrylate rubber is a special cross-linked type acrylic rubber material in which a carboxyl group-containing unsaturated compound serves as a cross-linking point.
 アクリル酸エステル類としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸n-オクチル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸n-オクチルなどの炭素数1以上8以下のアルキル基を有するアクリル酸アルキルエステル、及びアクリル酸メトキシメチル、アクリル酸メトキシエチル、アクリル酸エトキシエチル、アクリル酸n-ブトキシエチル、アクリル酸エトキシプロピルなどの炭素数1以上8以下のアルコキシアルキル基を有するアクリル酸アルコキシアルキルエステルが用いられる。アクリル酸エステル類は、一般的に、アルキル基の鎖長が長くなると耐寒性の点では有利となり、アルキル基の鎖長が短くなると耐油性の点では有利となる。アクリル酸アルキルエステルとしては、例えば、耐油性及び耐寒性のバランスの観点から、エチルアクリレート及びn-ブチルアクリレートが好ましい。 Examples of acrylate esters include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, n-octyl acrylate, and methacrylic acid. Alkyl groups having 1 to 8 carbon atoms such as methyl acetate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, n-octyl methacrylate, etc. Acrylic acid alkyl ester having, and acrylic acid alkoxy having an alkoxyalkyl group having 1 to 8 carbon atoms such as methoxymethyl acrylate, methoxyethyl acrylate, ethoxyethyl acrylate, n-butoxyethyl acrylate, and ethoxypropyl acrylate. Alkyl esters are used. In general, acrylic acid esters are advantageous in terms of cold resistance when the chain length of the alkyl group is long, and are advantageous in terms of oil resistance when the chain length of the alkyl group is short. As the acrylic acid alkyl ester, for example, ethyl acrylate and n-butyl acrylate are preferable from the viewpoint of the balance between oil resistance and cold resistance.
 カルボキシル基含有不飽和化合物としては、アクリル酸、メタクリル酸、クロトン酸、2-ペンテン酸、マレイン酸、フマル酸及びイタコン酸などの不飽和カルボン酸、並びに、マレイン酸、フマル酸、イタコン酸、シトラコン酸などの不飽和ジカルボン酸のメチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチルなどのモノアルキルエステルなどが挙げられる。これらの中でも、カルボキシル基含有不飽和化合物としては、マレイン酸モノn-ブチルエステル、フマル酸モノエチルエステル、フマル酸モノn-ブチルエステルが好ましい。 Examples of the unsaturated compound containing a carboxyl group include unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, 2-pentenoic acid, maleic acid, fumaric acid and itaconic acid, and maleic acid, fumaric acid, itaconic acid and citracon. Examples thereof include monoalkyl esters of unsaturated dicarboxylic acids such as acids such as methyl, ethyl, propyl, isopropyl, n-butyl and isobutyl. Among these, as the carboxyl group-containing unsaturated compound, maleic acid mono-n-butyl ester, fumaric acid monoethyl ester, and fumaric acid mono-n-butyl ester are preferable.
 エチレンアクリレートゴムは、更に他の共重合可能なエチレン性不飽和単量体を共重合してもよい。他の共重合可能なエチレン性不飽和単量体としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、ビニルナフタレン、アクリロニトリル、メタアクリロニトリル、アクリル酸アミド、酢酸ビニル、シクロヘキシルアクリレート、ベンジルアクリレート、2-ヒドロキシエチルアクリレート、4-ヒドロキシブチルアクリレート、エチレン、プロピレン、ピペリレン、ブタジエン、イソプレン、ペンタジエンなどが挙げられる。 The ethylene acrylate rubber may be further copolymerized with another copolymerizable ethylenically unsaturated monomer. Other copolymerizable ethylenically unsaturated monomers include, for example, styrene, α-methylstyrene, vinyltoluene, vinylnaphthalene, acrylonitrile, metaacrylonitrile, acrylate amide, vinyl acetate, cyclohexyl acrylate, benzyl acrylate, 2 -Hydroxyethyl acrylate, 4-hydroxybutyl acrylate, ethylene, propylene, piperylene, butadiene, isoprene, pentadiene and the like can be mentioned.
 エチレンアクリレートゴムは、上述したエチレン、アクリル酸エステル類及びカルボキシル基含有不飽和化合物、並びに、他の共重合可能なエチレン性不飽和単量体成分を、乳化重合、懸濁重合、溶液重合、塊状重合などの公知の重合方法で共重合させることにより得られる。 Ethylene acrylate rubber is obtained by emulsifying, suspending, polymerizing, solution-polymerizing, or lumping the above-mentioned ethylene, acrylic acid esters, carboxyl group-containing unsaturated compounds, and other copolymerizable ethylenically unsaturated monomer components. It is obtained by copolymerizing with a known polymerization method such as polymerization.
 エチレンアクリレートゴムとしては、例えば、商品名「Vamac(登録商標) GLS」及び「Vamac G」(デュポン・ダウ・エラストマー社製)などの市販品を用いてもよい。 As the ethylene acrylate rubber, for example, commercially available products such as the trade names "Vamac (registered trademark) GLS" and "Vamac G" (manufactured by DuPont Dow Elastomer) may be used.
 ゴム組成物におけるエチレンアクリレートゴムの配合量としては、ゴム組成物より得られたガスケットのシール性及び耐熱性を向上する観点から、40質量%以上90質量%以下であることが好ましく、45質量%以上85質量%以下であることがより好ましく、50質量%以上80質量%以下であることが更に好ましい。 The blending amount of the ethylene acrylate rubber in the rubber composition is preferably 40% by mass or more and 90% by mass or less, preferably 45% by mass, from the viewpoint of improving the sealing property and heat resistance of the gasket obtained from the rubber composition. It is more preferably 85% by mass or less, and further preferably 50% by mass or more and 80% by mass or less.
 カーボンブラックは、ゴム組成物中に充填材及び補強材として配合される。カーボンブラックとしては、超耐摩耗性(SAF:Super Abrasion Furnace)カーボンブラック、準超耐摩耗性(ISAF:Intermediate Super Abrasion Furnace)カーボンブラック、高耐摩耗性(HAF:High Abrasion Furnace)カーボンブラック及び良加工性チャンネル(EPC:Easy Processing Channel)カーボンブラックなどのハードカーボン、並びに、導電性(XCF:Extra Conductive Furnace)カーボンブラック、良押出性(FEF:Fast Extruding Furnace)カーボンブラック、汎用性(GPF:General Purpose Furnace)カーボンブラック、高応力(HMF:High Modulus Furnace)カーボンブラック、中補強性(SRF:Semi-Reinforcing Furnace)カーボンブラック、微粒熱分解(FT:Fine Thermal)カーボンブラック、及び中粒熱分解(MT:Medium Thermal)カーボンブラックなどのソフトカーボンなどが挙げられる。これらのカーボンブラックは、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、カーボンブラックとしては、ソフトカーボンが好ましく、ソフトカーボンの中でも、中補強性カーボンブラック及び中粒熱分解カーボンブラックがより好ましい。カーボンブラックとしては、商品名「THERMAX(登録商標) N990 LSR」(キャンカーブ社製)などの中粒熱分解カーボンブラックの市販品を用いてもよく、商品名「HTC♯SS」(日鉄カーボン社製)及び商品名「ASAHI♯50HG」(旭カーボン社製)などの中補強性カーボンブラックの市販品を用いてもよい。 Carbon black is blended in the rubber composition as a filler and a reinforcing material. Examples of carbon black include super wear resistant (SAF: Super Abrasion Finance) carbon black, semi-super wear resistant (ISAF: Intermediate Super Abrasion Furnace) carbon black, high wear resistance (HAF: High Brazil Furnace) carbon black, and carbon black. Hard carbon such as processable channel (EPC: Easy Processing Channel) carbon black, conductive (XCF: Extra Conducive Furnace) carbon black, good extrusion (FEF: Fast Extruding Furnace) carbon black, versatility (G) Purpose (Furnace) carbon black, high stress (HMF: High Modulus Furnace) carbon black, medium reinforcing (SRF: Semi-Reinforcing Furnace) carbon black, fine grain thermal decomposition (FT: Fine Thermal) carbon black, and medium grain thermal decomposition (FT) MT: Medium Thermal) Soft carbon such as carbon black can be mentioned. One type of these carbon blacks may be used alone, or two or more types may be used in combination. Among these, soft carbon is preferable as the carbon black, and among the soft carbons, medium-reinforced carbon black and medium-grain pyrolysis carbon black are more preferable. As the carbon black, a commercially available medium-grain pyrolyzed carbon black product such as the product name "THERMAX (registered trademark) N990 LSR" (manufactured by Cancurve) may be used, and the product name "HTC # SS" (Nittetsu Carbon) may be used. A commercially available product of medium reinforcing carbon black such as (manufactured by Asahi Carbon Co., Ltd.) and the trade name “ASAHI # 50HG” (manufactured by Asahi Carbon Co., Ltd.) may be used.
 カーボンブラックの配合量としては、ゴム組成物より得られたゴム金属積層体のシール性及び耐熱性を向上する観点から、エチレンアクリレート100質量部に対して、1質量部以上200質量部以下であり、5質量部以上150質量部以下であることが好ましく、10質量部以上100質量部以下であることがより好ましく、15質量部以上80質量部以下であることが更に好ましい。 The amount of carbon black blended is 1 part by mass or more and 200 parts by mass or less with respect to 100 parts by mass of ethylene acrylate from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition. It is preferably 5 parts by mass or more and 150 parts by mass or less, more preferably 10 parts by mass or more and 100 parts by mass or less, and further preferably 15 parts by mass or more and 80 parts by mass or less.
 カーボンブラックの配合量としては、ゴム組成物より得られたゴム金属積層体のシール性及び耐熱性を向上する観点から、ゴム組成物の全質量に対して、5質量%以上60質量%以下であることが好ましく、10質量%以上50質量%以下であることがより好ましく、15質量%以上45質量%以下であることが更に好ましい。 The amount of carbon black to be blended is 5% by mass or more and 60% by mass or less with respect to the total mass of the rubber composition from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition. It is more preferably 10% by mass or more and 50% by mass or less, and further preferably 15% by mass or more and 45% by mass or less.
 また、カーボンブラックが中粒熱分解カーボンである場合には、カーボンブラックの配合量は、ゴム組成物より得られたゴム金属積層体のシール性及び耐熱性を向上する観点から、エチレンアクリレート100質量部に対して、5質量部以上50質量部以下であることが好ましく、10質量部以上30質量部以下であることがより好ましく、15質量部以上25質量部以下であることが更に好ましい。 When the carbon black is medium-grain thermally decomposed carbon, the blending amount of the carbon black is 100 mass of ethylene acrylate from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition. It is preferably 5 parts by mass or more and 50 parts by mass or less, more preferably 10 parts by mass or more and 30 parts by mass or less, and further preferably 15 parts by mass or more and 25 parts by mass or less.
 カーボンブラックが中粒熱分解カーボンである場合には、カーボンブラックの配合量は、ゴム組成物より得られたゴム金属積層体のシール性及び耐熱性を向上する観点から、ゴム組成物の全質量に対して、2.5質量%以上40質量%以下であることが好ましく、7.5質量%以上20質量%以下であることがより好ましく、10質量%以上17.5質量%以下であることが更に好ましい。 When the carbon black is medium-grain thermally decomposed carbon, the blending amount of the carbon black is the total mass of the rubber composition from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition. On the other hand, it is preferably 2.5% by mass or more and 40% by mass or less, more preferably 7.5% by mass or more and 20% by mass or less, and 10% by mass or more and 17.5% by mass or less. Is more preferable.
 また、カーボンブラックが中補強性カーボンである場合には、カーボンブラックの配合量は、ゴム組成物より得られたゴム金属積層体のシール性及び耐熱性を向上する観点から、エチレンアクリレート100質量部に対して、10質量部以上200質量部以下であることが好ましく、25質量部以上100質量部以下であることがより好ましく、45質量部以上65質量部以下であることが更に好ましい。 When the carbon black is medium reinforcing carbon, the blending amount of the carbon black is 100 parts by mass of ethylene acrylate from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition. On the other hand, it is preferably 10 parts by mass or more and 200 parts by mass or less, more preferably 25 parts by mass or more and 100 parts by mass or less, and further preferably 45 parts by mass or more and 65 parts by mass or less.
 カーボンブラックが中補強性カーボンである場合には、カーボンブラックの配合量は、ゴム組成物より得られたゴム金属積層体のシール性及び耐熱性を向上する観点から、ゴム組成物の全質量に対して、5質量%以上70質量%以下であることが好ましく、10質量%以上50質量%以下であることがより好ましく、15質量%以上45質量%以下であることが更に好ましい。 When the carbon black is a medium reinforcing carbon, the blending amount of the carbon black is the total mass of the rubber composition from the viewpoint of improving the sealing property and heat resistance of the rubber metal laminate obtained from the rubber composition. On the other hand, it is preferably 5% by mass or more and 70% by mass or less, more preferably 10% by mass or more and 50% by mass or less, and further preferably 15% by mass or more and 45% by mass or less.
<架橋剤>
 架橋剤(加硫剤)は、エチレンアクリレートゴム間に架橋結合を形成する。本実施の形態では、架橋剤としては、アミン系架橋剤が用いられる。アミン系架橋剤としては、エチレンアクリレートゴムに含まれるカルボキシル基含有不飽和化合物由来の架橋点であるカルボキシル基と容易に架橋構造を形成し得る観点から、ジアミン類が好ましい。
<Crosslinking agent>
The cross-linking agent (vulcanizing agent) forms a cross-linking bond between the ethylene acrylate rubbers. In the present embodiment, an amine-based cross-linking agent is used as the cross-linking agent. As the amine-based cross-linking agent, diamines are preferable from the viewpoint of easily forming a cross-linked structure with a carboxyl group which is a cross-linking point derived from a carboxyl group-containing unsaturated compound contained in ethylene acrylate rubber.
 ジアミン類としては、脂肪族であってもよく、芳香族であってもよい。ジアミン類としては、例えば、ヘキサメチレンジアミン、ヘキサメチレンジアミンカルバメート、N,N’-ジシンナミリデン-1,6-ヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)カルバメート、4,4’-メチレンジアニリン、4,4’-オキシフェニルジフェニルアミン、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-メチレンビス(o-クロロアニリン)、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-(m-フェニレンジイソプロピリデン)ジアニリン、4,4’-(p-フェニレンジイソプロピリデン)ジアニリン、2,2’-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、4,4’-ジアミノベンズアニリド、4,4’-ビス(4-アミノフェノキシ)ビフェニル、m-キシリレンジアミン、p-キシリレンジアミン、ヘキサメチレンジアミン-シンナムアルデヒド付加物及びヘキサメチレンジアミン-ジベンゾエート塩などが挙げられる。これらの中でも、アミン系架橋剤としては、ヘキサメチレンジアミンカルバメート、N,N’-ジシンナミリデン-1,6-ヘキサンジアミン、4,4’-メチレンビス(シクロヘキシルアミン)カルバメート及び4,4’-ジアミノジフェニルエーテルからなる群から選択された少なくとも1種のアルキレンジアミン類が好ましく、ヘキサメチレンジアミンカルバメートを含むアルキレンジアミン類がより好ましい。また、アミン系架橋剤としては、例えば、商品名「ケミノックス AC6-66(ヘキサメチレンジアミンカルバメート)」(ユニマテック社製)、商品名「Diak No.1(ヘキサメチレンジアミンカルバメート)」(デュポン・ダウ・エラストマー社製)、商品名「Diak No.3:N,N’-ジシンナミリデン-1,6-ヘキサンジアミン」(デュポン・ダウ・エラストマー社製)、商品名「Diak No.4(4,4’-メチレンビス(シクロヘキシルアミン)カルバメート)」(デュポン・ダウ・エラストマー社製)、商品名「DADPE:(4,4’-ジアミノジフェニルエーテル)」(サンケミカル社製)などの市販品を用いてもよい。 The diamines may be aliphatic or aromatic. Examples of diamines include hexamethylenediamine, hexamethylenediamine carbamate, N, N'-dicinnamylidene-1,6-hexanediamine, 4,4'-methylenebis (cyclohexylamine) carbamate, and 4,4'-methylenedianiline. , 4,4'-Oxyphenyldiphenylamine, m-phenylenediamine, p-phenylenediamine, 4,4'-methylenebis (o-chloroaniline), 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4 , 4'-(m-phenylenediisopropyridene) dianiline, 4,4'-(p-phenylenediisopropyridene) dianiline, 2,2'-bis [4- (4-aminophenoxy) phenyl] propane, 4, 4'-diaminobenzanilide, 4,4'-bis (4-aminophenoxy) biphenyl, m-xylylenediamine, p-xylylenediamine, hexamethylenediamine-cinnamaldehyde adduct, hexamethylenediamine-dibenzoate salt, etc. Can be mentioned. Among these, amine-based cross-linking agents include hexamethylenediamine carbamate, N, N'-dicinnamylidene-1,6-hexanediamine, 4,4'-methylenebis (cyclohexylamine) carbamate, and 4,4'-diaminodiphenyl ether. At least one kind of alkylenediamines selected from the above group is preferable, and alkylenediamines containing hexamethylenediamine carbamate are more preferable. Examples of the amine-based cross-linking agent include the trade name "Cheminox AC6-66 (hexamethylenediamine carbamate)" (manufactured by Unimatec) and the trade name "Diak No. 1 (hexamethylenediamine carbamate)" (Dupont Dow. Elastomer), product name "Diak No. 3: N, N'-dicinnamilyden-1,6-hexanediamine" (Dupont Dow Elastomer), product name "Diak No. 4 (4,4'-" Commercially available products such as "methylenebis (cyclohexylamine) carbamate)" (manufactured by DuPont Dow Elastomer) and trade name "DADPE: (4,4'-diaminodiphenyl ether)" (manufactured by Sun Chemical) may be used.
 アミン系架橋剤の配合量としては、架橋密度を向上してゴム組成物の耐熱性を向上する観点から、エチレンアクリレートゴム100質量部に対して、0.1質量部以上20質量部以下であることが好ましく、0.5質量部以上10質量部以下であることがより好ましく、1質量部以上7.5質量部以下であることが更に好ましい。 The blending amount of the amine-based cross-linking agent is 0.1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of ethylene acrylate rubber from the viewpoint of improving the cross-linking density and improving the heat resistance of the rubber composition. It is more preferable, it is more preferably 0.5 parts by mass or more and 10 parts by mass or less, and further preferably 1 part by mass or more and 7.5 parts by mass or less.
 また、アミン系架橋剤の配合量としては、架橋密度を向上してゴム組成物の耐熱性を向上する観点から、ゴム組成物の全質量に対して、エチレンアクリレートゴム100質量部に対して、0.5質量%以上10質量%以下であることが好ましく、0.75質量%以上5質量%以下であることがより好ましく、1質量%以上3質量%以下であることが更に好ましい。 The amount of the amine-based cross-linking agent blended is based on 100 parts by mass of ethylene acrylate rubber with respect to the total mass of the rubber composition from the viewpoint of improving the cross-linking density and improving the heat resistance of the rubber composition. It is preferably 0.5% by mass or more and 10% by mass or less, more preferably 0.75% by mass or more and 5% by mass or less, and further preferably 1% by mass or more and 3% by mass or less.
 アミン系架橋促進剤は、アミン系架橋剤によるエチレンアクリレートゴムの架橋反応の形成を促進する。アミン系架橋促進剤としては、例えば、非晶質シリカ担体に吸着した第3級アミン錯体などのアミン系架橋促進剤が挙げられる。アミン系架橋促進剤としては、例えば、「Vulcofac(登録商標) ACT-55(アミノ化誘導体:非晶質シリカ担体に吸着した第3級アミン錯体)」(デュポン社製)などの市販品を用いてもよい。 The amine-based cross-linking accelerator promotes the formation of a cross-linking reaction of ethylene acrylate rubber by the amine-based cross-linking agent. Examples of the amine-based cross-linking accelerator include amine-based cross-linking accelerators such as a tertiary amine complex adsorbed on an amorphous silica carrier. As the amine-based cross-linking accelerator, for example, a commercially available product such as "Vulcofac (registered trademark) ACT-55 (amination derivative: tertiary amine complex adsorbed on an amorphous silica carrier)" (manufactured by DuPont) is used. You may.
 アミン系架橋促進剤の配合量は、例えば、架橋密度を向上してゴム組成物の耐熱性を向上する観点から、エチレンアクリレートゴム100質量部に対して、0.1質量部以上15質量部以下であることが好ましく、0.5質量部以上10質量部以下であることがより好ましく、1質量部以上5質量部以下であることが更に好ましい。 The blending amount of the amine-based cross-linking accelerator is, for example, 0.1 part by mass or more and 15 parts by mass or less with respect to 100 parts by mass of ethylene acrylate rubber from the viewpoint of improving the cross-linking density and improving the heat resistance of the rubber composition. It is more preferably 0.5 parts by mass or more and 10 parts by mass or less, and further preferably 1 part by mass or more and 5 parts by mass or less.
 アミン系架橋促進剤の配合量は、例えば、架橋密度を向上してゴム組成物の耐熱性を向上する観点から、ゴム組成物の全質量に対して、0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上5質量%以下であることがより好ましく、0.75質量%以上3質量%以下であることが更に好ましい。 The blending amount of the amine-based cross-linking accelerator is, for example, 0.1% by mass or more and 10% by mass or less with respect to the total mass of the rubber composition from the viewpoint of improving the cross-linking density and improving the heat resistance of the rubber composition. It is more preferably 0.5% by mass or more and 5% by mass or less, and further preferably 0.75% by mass or more and 3% by mass or less.
 発泡剤としては、本発明の効果を奏する範囲で各種発泡剤を用いることができる。発泡剤としては、例えば、各種熱膨張型発泡剤及び各種熱分解型発泡剤が用いられる。熱膨張型発泡剤としては、例えば、低沸点炭化水素膨張剤を封入した熱膨張性マイクロカプセルが挙げられる。また、熱分解型発泡剤としては、例えば、熱分解性を有する有機化合物又は無機化合物を含有する化学発泡剤が挙げられる。化学発泡剤としては、例えば、アゾジカルボンアミド、N,N’-ジニトロソペンタメチレンテトラミン及びN,N’-ジニトロソペンタメチレンテトラミンなどの有機化合物を含有する化学発泡剤、並びに、炭酸水素ナトリウムなどの無機化合物を含有する化学発泡剤が挙げられる。これらの中でも、発泡剤としては、ゴム組成物から得られるガスケットのシール性及び耐熱性を向上する観点から、熱膨張性マイクロカプセル及びアゾジカルボンアミドを含有する化学発泡剤が好ましい。 As the foaming agent, various foaming agents can be used as long as the effects of the present invention are exhibited. As the foaming agent, for example, various thermal expansion type foaming agents and various thermal decomposition type foaming agents are used. Examples of the heat-expandable foaming agent include heat-expandable microcapsules in which a low-boiling hydrocarbon expansion agent is encapsulated. Moreover, as a pyrolysis type foaming agent, for example, a chemical foaming agent containing an organic compound or an inorganic compound having a pyrolysis property can be mentioned. Examples of the chemical foaming agent include a chemical foaming agent containing an organic compound such as azodicarboxylic amide, N, N'-dinitrosopentamethylenetetramine and N, N'-dinitrosopentamethylenetetramine, and sodium hydrogencarbonate. Examples thereof include chemical foaming agents containing the above inorganic compounds. Among these, as the foaming agent, a chemically expandable microcapsule and a chemical foaming agent containing azodicarbonamide are preferable from the viewpoint of improving the sealing property and heat resistance of the gasket obtained from the rubber composition.
 発泡剤としては、例えば、商品名「アドバンセル EM304(熱膨張性マイクロカプセル)」(積水化学社製)及び商品名「ビニホール AC♯3(アゾジカルボンアミド)」(永和化成社製)などの市販品を用いてもよい。 As the foaming agent, for example, the trade name "Advancel EM304 (thermally expandable microcapsule)" (manufactured by Sekisui Chemical Co., Ltd.) and the trade name "Vinihole AC # 3 (azodicarbonamide)" (manufactured by Eiwa Kasei Co., Ltd.) Goods may be used.
 発泡剤の配合量としては、架橋時にゴム組成物を効率よく発泡させてゴム組成物を用いたガスケットのシール性及び耐熱性に優れた発泡ゴム層を得る観点から、エチレンアクリレートゴム100質量部に対して、1質量部以上50質量部以下であることが好ましく、5質量部以上45質量部以下であることがより好ましく、7.5質量部以上40質量部以下であることが更に好ましい。 The amount of the foaming agent to be blended is 100 parts by mass of ethylene acrylate rubber from the viewpoint of efficiently foaming the rubber composition at the time of crosslinking to obtain a foamed rubber layer having excellent sealing properties and heat resistance of the gasket using the rubber composition. On the other hand, it is preferably 1 part by mass or more and 50 parts by mass or less, more preferably 5 parts by mass or more and 45 parts by mass or less, and further preferably 7.5 parts by mass or more and 40 parts by mass or less.
 発泡剤の配合量としては、架橋時にゴム組成物を効率よく発泡させてゴム組成物を用いたガスケットのシール性及び耐熱性に優れた発泡ゴム層を得る観点から、ゴム組成物の全質量に対して、1質量%以上50質量%以下であることが好ましく、2.5質量%以上30質量%以下であることがより好ましく、5質量%以上25質%以下であることが更に好ましい。 The amount of the foaming agent to be blended is set to the total mass of the rubber composition from the viewpoint of efficiently foaming the rubber composition at the time of crosslinking to obtain a foamed rubber layer having excellent sealing properties and heat resistance of the gasket using the rubber composition. On the other hand, it is preferably 1% by mass or more and 50% by mass or less, more preferably 2.5% by mass or more and 30% by mass or less, and further preferably 5% by mass or more and 25% by mass or less.
 また、ゴム組成物は、必要に応じて、炭酸カルシウム及びシリカなどの充填剤を含んでいてもよい。炭酸カルシウムとしては、重質炭酸カルシウム及び合成炭酸カルシウムなどの各種炭酸カルシウムを用いることができる。 Further, the rubber composition may contain a filler such as calcium carbonate and silica, if necessary. As the calcium carbonate, various calcium carbonates such as heavy calcium carbonate and synthetic calcium carbonate can be used.
 また、ゴム組成物は、必要に応じて、酸化亜鉛、可塑剤、ステアリン酸、老化防止剤及びパラフィンワックスなどのゴム工業で一般的に用いられている助剤を含有してもよい。 Further, the rubber composition may contain an auxiliary agent generally used in the rubber industry, such as zinc oxide, a plasticizer, stearic acid, an antiaging agent, and paraffin wax, if necessary.
 可塑剤は、ゴム組成物の粘度を適度に下げて加工性を向上する加工助剤として機能する。可塑剤としては、例えば、商品名「メザモール(登録商標)」(ランクセス社製)などの市販品が挙げられる。可塑剤の配合量は、ゴム成分100質量部に対して、例えば、1質量部以上50質量部以下である。 The plasticizer functions as a processing aid that appropriately lowers the viscosity of the rubber composition and improves workability. Examples of the plasticizer include commercially available products such as the trade name "Mezamol (registered trademark)" (manufactured by LANXESS). The blending amount of the plasticizer is, for example, 1 part by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the rubber component.
 ステアリン酸としては、例えば、商品名「DTST」(ミヨシ油脂社製)などの市販品を用いてもよい。ステアリン酸の配合量は、ゴム成分100質量部に対して、例えば、0.1質量部以上10質量部以下である。 As the stearic acid, for example, a commercially available product such as the trade name "DTST" (manufactured by Miyoshi Oil & Fat Co., Ltd.) may be used. The blending amount of stearic acid is, for example, 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component.
 老化防止剤としては、例えば、商品名「ノクラック(登録商標) CD」(4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン)などの市販品を用いてもよい。老化防止剤の配合量は、ゴム成分100質量部に対して、例えば、0.1質量部以上10質量部以下である。 As the anti-aging agent, for example, a commercially available product such as the trade name "Nocrack (registered trademark) CD" (4,4'-bis (α, α-dimethylbenzyl) diphenylamine) may be used. The blending amount of the anti-aging agent is, for example, 0.1 part by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the rubber component.
(ゴム金属積層体)
 次に、本実施の形態に係るゴム金属積層体について説明する。本実施の形態に係るゴム金属積層体は、金属部材と、金属部材上に設けられ、上記ゴム組成物が架橋されてなる発泡ゴム層とを備える。このゴム金属積層体は、各種ガスケットなどのシール部材として好適に用いることができる。
(Rubber metal laminate)
Next, the rubber metal laminate according to the present embodiment will be described. The rubber-metal laminate according to the present embodiment includes a metal member and a foamed rubber layer provided on the metal member and formed by cross-linking the rubber composition. This rubber metal laminate can be suitably used as a sealing member for various gaskets and the like.
 本実施の形態に係るゴム金属積層体においては、発泡ゴム層は、150℃にて24時間の熱老化前後のJIS K5600-5-4に準拠した引っかき硬度試験(鉛筆法)における鉛筆硬度の硬度変化が3ポイント以下であることが好ましい。これにより、ゴム金属積層体は、耐熱性に優れた発泡ゴム層を得ることが可能となる。ここでの硬度変化とは、鉛筆硬度の変化量である。硬度変化は、例えば、150℃にて24時間の熱老化前の鉛筆硬度が6Bであって、150℃にて24時間の熱老化後の鉛筆硬度が5Bである場合には、硬度変化は1ポイントとなる。また、150℃にて24時間の熱老化前の鉛筆硬度がFであって、150℃にて24時間の熱老化後の鉛筆硬度がHである場合には、硬度変化は1ポイントとなる。上記鉛筆硬度の硬度変化は、2ポイント以下であることがより好ましく、1ポイント以下であることが更に好ましい。 In the rubber metal laminate according to the present embodiment, the foamed rubber layer is the hardness of the pencil hardness in the scratch hardness test (pencil method) according to JIS K5600-5-4 before and after heat aging at 150 ° C. for 24 hours. The change is preferably 3 points or less. This makes it possible to obtain a foamed rubber layer having excellent heat resistance in the rubber metal laminate. The hardness change here is the amount of change in pencil hardness. For example, when the pencil hardness before heat aging at 150 ° C. for 24 hours is 6B and the pencil hardness after heat aging at 150 ° C. for 24 hours is 5B, the hardness change is 1. It will be a point. Further, when the pencil hardness before heat aging at 150 ° C. for 24 hours is F and the pencil hardness after heat aging at 150 ° C. for 24 hours is H, the hardness change is 1 point. The hardness change of the pencil hardness is more preferably 2 points or less, and further preferably 1 point or less.
 発泡ゴム層の発泡倍率は、ゴム金属積層体を用いたガスケットなどのシール部材のシール性を向上する観点から、2倍以上であることが好ましく、2.5倍以上であることがより好ましく、3倍以上であることが更に好ましく、また20倍以下であることが好ましく、10倍以下であることがより好ましく、7.5倍以下であることが更に好ましい。ここでの発泡倍率とは、下記式(1)に基づいて算出されるものである。
 発泡倍率=(架橋後のゴム金属積層体の厚さ-鋼板厚さ)/(架橋前のゴム金属積層体の厚さ-鋼板厚み) ・・・ 式(1)
The foaming ratio of the foamed rubber layer is preferably 2 times or more, more preferably 2.5 times or more, from the viewpoint of improving the sealing property of a sealing member such as a gasket using a rubber metal laminate. It is more preferably 3 times or more, more preferably 20 times or less, further preferably 10 times or less, and further preferably 7.5 times or less. The foaming ratio here is calculated based on the following formula (1).
Foaming ratio = (thickness of rubber metal laminate after cross-linking-steel plate thickness) / (thickness of rubber metal laminate before cross-linking-steel plate thickness) ... Equation (1)
 本実施の形態に係るゴム積層体においては、JIS B2403 9.2項に準拠した腐食及び粘り付き試験において、黄銅板、鋼板及びステンレス鋼板に腐食が生じないことが好ましい。これにより、ゴム金属積層体は、発泡ゴム層から遊離した成分に基づく金属部材などの腐食を防ぐことが可能となる。 In the rubber laminate according to the present embodiment, it is preferable that the brass plate, the steel plate and the stainless steel plate do not corrode in the corrosion and stickiness test according to JIS B2403 9.2. This makes it possible for the rubber-metal laminate to prevent corrosion of metal members and the like based on the components released from the foamed rubber layer.
 また、本実施の形態に係るゴム積層体においては、JIS B2403 9.2項に準拠した腐食及び粘り付き試験において、黄銅板、鋼板及びステンレス鋼板に転写(粘り付き)が生じないことが好ましい。これにより、ゴム金属積層体は、発泡ゴム層から金属部材などへのゴム成分の転写を防ぐことが可能となる。以下、本実施の形態に係るゴム金属積層体の各種構成要素について詳細に説明する。 Further, in the rubber laminate according to the present embodiment, it is preferable that transfer (stickiness) does not occur on the brass plate, the steel plate and the stainless steel plate in the corrosion and stickiness test according to JIS B2403 9.2. This makes it possible for the rubber-metal laminate to prevent the transfer of the rubber component from the foamed rubber layer to the metal member or the like. Hereinafter, various components of the rubber metal laminate according to the present embodiment will be described in detail.
 金属部材としては、例えば、鉄、ステンレス鋼、アルミニウム、マグネシウム、亜鉛メッキ鋼及び銅などの金属板が用いられる。鉄としては、例えば、冷間圧延鋼板(SPCC:Steel Plate Cold Commerical)、高張力鋼板及び軟鋼板などが用いられる。また、ステンレス鋼としては、例えば、フェライト系、マルテンサイト系、オーステナイト系などのステンレス鋼板を用いることができる。ステンレス鋼の具体例としては、例えば、SUS304、SUS301、SUS301H及びSUS430などが挙げられる。アルミニウムとしては、アルミニウム板及びアルミニウムダイキャスト板などが用いられる。 As the metal member, for example, a metal plate such as iron, stainless steel, aluminum, magnesium, zinc-plated steel and copper is used. As the iron, for example, cold-rolled steel sheet (SPCC: Steel Plate Cold Commercial), high-strength steel sheet, mild steel sheet and the like are used. Further, as the stainless steel, for example, a stainless steel plate such as a ferrite type, a martensitic type, or an austenitic type can be used. Specific examples of stainless steel include SUS304, SUS301, SUS301H and SUS430. As aluminum, an aluminum plate, an aluminum die-cast plate, or the like is used.
 金属部材は、アルカリ脱脂処理などにより表面を脱脂した状態で用いることが好ましい。また、金属部材は、必要に応じて金属表面をショットブラスト、スコッチブライド(登録商標)、ヘアーライン及びダル仕上げなどで粗面化して用いられる。 It is preferable to use the metal member in a state where the surface is degreased by an alkaline degreasing treatment or the like. Further, the metal member is used by roughening the metal surface by shot blasting, Scotch bride (registered trademark), hairline, dull finish or the like, if necessary.
 金属部材は、接着剤との接着面が下地処理(表面処理)されてなることが好ましい。下地処理としては、特に制限はなく、公知の下地処理を用いることができる。下地処理としては、金属部材として冷間圧延鋼板、高張力鋼板などの鉄材やステンレス材を用いる際には、各種化成処理剤を用いた化成処理法や、亜鉛などの金属による電気めっき、溶融めっきなどの各種めっき法が好ましい。金属部材の化成処理剤としては、例えば、リン酸亜鉛処理剤やリン酸鉄処理剤等のリン酸系処理剤、塗布型クロメート処理剤などが挙げられる。化成処理剤としては、環境保護の観点から、クロムを実質的に含まないクロムフリーの化成処理剤が好ましい。 It is preferable that the surface of the metal member to be adhered to the adhesive is surface-treated. The base treatment is not particularly limited, and a known base treatment can be used. As the base treatment, when iron materials such as cold-rolled steel sheets and high-tensile steel sheets and stainless steel materials are used as metal members, chemical conversion treatment methods using various chemical conversion treatment agents, electroplating with metals such as zinc, and hot-dip plating are performed. Various plating methods such as are preferable. Examples of the chemical conversion treatment agent for metal members include phosphoric acid-based treatment agents such as zinc phosphate treatment agents and iron phosphate treatment agents, and coating-type chromate treatment agents. As the chemical conversion treatment agent, a chromium-free chemical conversion treatment agent that does not substantially contain chromium is preferable from the viewpoint of environmental protection.
 化成処理剤による金属部材の下地処理は、噴霧、スプレー、浸漬、刷毛塗り及びロールコーターなどの公知の接液方法によって化成処理剤を金属部材に接液することによって行われる。反応性の化成処理剤の場合には、反応に必要な時間及び温度を確保することが求められる。 The base treatment of the metal member with the chemical conversion treatment agent is performed by contacting the metal member with the chemical conversion treatment agent by a known liquid contact method such as spraying, spraying, dipping, brush coating and a roll coater. In the case of a reactive chemical conversion treatment agent, it is required to secure the time and temperature required for the reaction.
 ゴム金属積層体は、下地処理に加え、あるいは、下地処理に代えて、金属部材上にプライマー層が形成されていることが好ましい。下地処理を施したり、プライマー層を設けたりすることにより、ゴム金属積層体におけるゴム層と金属部材との接着性が向上し、ゴム金属積層体の耐熱性及び耐水性を大幅に向上することができる。また、ゴム金属積層体は、下地処理を施したり、プライマー層を形成したりすることにより、ゴム金属積層体と他の金属板などとを積層した積層複合金属であるガスケットとして好適に用いることができる。 In the rubber metal laminate, it is preferable that a primer layer is formed on the metal member in addition to the base treatment or instead of the base treatment. By applying a base treatment or providing a primer layer, the adhesiveness between the rubber layer and the metal member in the rubber metal laminate can be improved, and the heat resistance and water resistance of the rubber metal laminate can be significantly improved. it can. Further, the rubber metal laminate can be suitably used as a gasket which is a laminated composite metal in which a rubber metal laminate and another metal plate or the like are laminated by subjecting a base treatment or forming a primer layer. it can.
 プライマー層は、シリコン化合物や、チタン、ジルコニウム、バナジウム、アルミニウム、モリブデン、タングステン、マンガン、亜鉛及びセリウムなどの金属の化合物、並びに、これらの酸化物などの無機系化合物、シリコーン樹脂、フェノール樹脂、エポキシ樹脂及びポリウレタンなどの有機系化合物、などにより設けることができる。プライマー層は、一般に市販されているプライマー溶液を用いてもよいし、その他、各種公知技術によるプライマー溶液を用いて、設けることが可能である。 The primer layer includes silicon compounds, metal compounds such as titanium, zirconium, vanadium, aluminum, molybdenum, tungsten, manganese, zinc and cerium, inorganic compounds such as these oxides, silicone resins, phenolic resins and epoxies. It can be provided by a resin, an organic compound such as polyurethane, or the like. As the primer layer, a commercially available primer solution may be used, or other primer solutions according to various known techniques can be used for the primer layer.
 プライマー層は、上述した各種無機系化合物や有機系化合物を含む原料を有機溶剤や水系溶剤に溶解乃至分散させたプライマー溶液により設けられる。使用可能な有機溶剤としては、例えば、メタノール、エタノール及びイソプロピルアルコールなどのアルコール類、アセトン及びメチルエチルケトンなどのケトン類などを挙げることができる。プライマー溶液は、液安定性が保たれる限りにおいては、水系溶剤を用いた水性溶液として調製してもよい。 The primer layer is provided by a primer solution in which a raw material containing the above-mentioned various inorganic compounds and organic compounds is dissolved or dispersed in an organic solvent or an aqueous solvent. Examples of the organic solvent that can be used include alcohols such as methanol, ethanol and isopropyl alcohol, and ketones such as acetone and methyl ethyl ketone. The primer solution may be prepared as an aqueous solution using an aqueous solvent as long as the liquid stability is maintained.
 得られたプライマー溶液は、金属板上にスプレー、浸漬、刷毛及びロールコーターなどを用いて塗布する。そして、プライマー層は、金属板上に塗布したプライマー溶液を室温又は温風にて乾燥させたり、焼付け処理したりすることにより設けられる。 The obtained primer solution is applied onto a metal plate by spraying, dipping, brushing, a roll coater, or the like. Then, the primer layer is provided by drying the primer solution applied on the metal plate at room temperature or warm air, or by baking the primer solution.
 接着剤は、ゴム層と金属部材とを接着する。接着剤としては、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂及びシランなどの一般に市販されている接着剤が用いられる。これらの接着剤は、ゴム金属積層体の用途に応じて適宜選択することができる。 The adhesive adheres the rubber layer and the metal member. As the adhesive, generally commercially available adhesives such as phenol resin, epoxy resin, polyurethane resin and silane are used. These adhesives can be appropriately selected depending on the use of the rubber metal laminate.
 ゴム金属積層体においては、金属板とゴム層とが、フェノール樹脂及びエポキシ樹脂からなる群から選択された少なくとも1種を介して接着されてなることが好ましい。これにより、ゴム金属積層体は、金属板とゴム層との接着性が向上するので、各種ガスケットなどに用いた際のシール対象部材のシール性がより向上する。 In the rubber metal laminate, it is preferable that the metal plate and the rubber layer are adhered to each other via at least one selected from the group consisting of phenol resin and epoxy resin. As a result, the rubber-metal laminate improves the adhesiveness between the metal plate and the rubber layer, so that the sealing property of the member to be sealed when used for various gaskets and the like is further improved.
 フェノール樹脂としては、例えば、ノボラック型フェノール樹脂及びレゾール型フェノール樹脂が用いられる。ノボラック型フェノール樹脂及びレゾール型フェノール樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。また、接着剤としては、ノボラック型フェノール樹脂及びレゾール型フェノール樹脂の2種類のフェノール樹脂並びに未架橋ニトリルゴムを含むものを用いてもよい。 As the phenol resin, for example, a novolak type phenol resin and a resol type phenol resin are used. As the novolak type phenol resin and the resol type phenol resin, one type may be used alone, or two or more types may be used in combination. Further, as the adhesive, one containing two types of phenolic resins, a novolak type phenolic resin and a resole type phenolic resin, and uncrosslinked nitrile rubber may be used.
 ノボラック型フェノール樹脂としては、フェノール類とホルムアルデヒドとを酸触媒の存在下において縮合反応させたものが用いられる。フェノール類としては、例えば、フェノール、p-クレゾール、m-クレゾール、p-第3ブチルフェノール、p-フェニルフェノール、ビスフェノールAなどのフェノール性水酸基に対してo-位及びp-位の少なくとも1つに2個又は3個の置換可能な水素原子を有するものが用いられる。これらのフェノール樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。酸触媒としては、例えば、シュウ酸、塩酸及びマレイン酸などが用いられる。これらの中でも、ノボラック型フェノール樹脂としては、金属板とゴム層との接着性を向上する観点から、融点80℃以上150℃以下のものが好ましく、m-クレゾールとホルムアルデヒドとを用いて得られた融点120度以上のものがより好ましい。 As the novolak type phenol resin, one obtained by condensation reaction of phenols and formaldehyde in the presence of an acid catalyst is used. As the phenols, for example, at least one of the o-position and the p-position with respect to the phenolic hydroxyl group such as phenol, p-cresol, m-cresol, p-third butylphenol, p-phenylphenol, and bisphenol A. Those having two or three substitutable hydrogen atoms are used. One of these phenolic resins may be used alone, or two or more thereof may be used in combination. As the acid catalyst, for example, oxalic acid, hydrochloric acid, maleic acid and the like are used. Among these, as the novolak type phenol resin, those having a melting point of 80 ° C. or higher and 150 ° C. or lower are preferable from the viewpoint of improving the adhesiveness between the metal plate and the rubber layer, and obtained by using m-cresol and formaldehyde. Those having a melting point of 120 degrees or higher are more preferable.
 レゾール型フェノール樹脂としては、フェノール類とホルムアルデヒドとを塩基触媒の存在下において縮合反応させたものが用いられる。フェノール類としては、例えば、フェノール、p-クレゾール、m-クレゾール及び、p-第3ブチルフェノール、p-フェニルフェノール、ビスフェノールAなどのフェノール性水酸基に対してo-位及びp-位の少なくとも1つに2個又は3個の置換可能な水素原子を有するものが用いられる。これらのフェノール樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。塩基触媒としては、例えば、アンモニア、水酸化ナトリウムなどのアルカリ金属水酸化物、水酸化マグネシウム、炭酸ナトリウムなどが用いられる。 As the resol type phenol resin, one obtained by condensation reaction of phenols and formaldehyde in the presence of a base catalyst is used. Examples of phenols include at least one of the o- and p-positions with respect to phenolic hydroxyl groups such as phenol, p-cresol, m-cresol, and p-third butylphenol, p-phenylphenol, and bisphenol A. The one having 2 or 3 replaceable hydrogen atoms is used. One of these phenolic resins may be used alone, or two or more thereof may be used in combination. As the base catalyst, for example, alkali metal hydroxides such as ammonia and sodium hydroxide, magnesium hydroxide, sodium carbonate and the like are used.
 エポキシ樹脂としては、ビスフェノールA型、クレゾールノボラック型、ビフェニル型、臭素化エポキシ樹脂などが挙げられる。これらのエポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。これらのエポキシ樹脂の中でも、市販品の入手が容易である観点及び耐熱性に優れる観点から、ビスフェノールA型エポキシ樹脂及びクレゾールノボラック型エポキシ樹脂が好ましい。ビスフェノールA型エポキシ樹脂としては、例えば、DIC社製の商品名「EPICLON 860」、「EPICLON 1055」、「EPICON 2050」、「EPICLON 3050」、商品名「EPICLON 4050」、「EPICLON 7050」、「EPICLON HM-091」などの市販品を用いてもよい。また、クレゾールノボラック型エポキシ樹脂の市販品としては、例えば、DIC社製の商品名「EPICLON N-660」、「EPICLON N-670」、「EPICLON N-680」、「EPICLON N-690」などの市販品を用いてもよい。 Examples of the epoxy resin include bisphenol A type, cresol novolac type, biphenyl type, and brominated epoxy resin. One of these epoxy resins may be used alone, or two or more of these epoxy resins may be used in combination. Among these epoxy resins, bisphenol A type epoxy resin and cresol novolac type epoxy resin are preferable from the viewpoint of easy availability of commercially available products and excellent heat resistance. Examples of the bisphenol A type epoxy resin include DIC's product names "EPICON 860", "EPICON 1055", "EPICON 2050", "EPICON 3050", product names "EPICON 4050", "EPICON 7050", and "EPICON". Commercially available products such as "HM-091" may be used. As commercially available cresol novolac type epoxy resins, for example, DIC's trade names "EPICLON N-660", "EPICLON N-670", "EPICLON N-680", "EPICLON N-690", etc. Commercially available products may be used.
 上述した各種接着剤は、有機溶剤に溶解させた溶液として用いられる。有機溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、トルエン、キシレンなどの芳香族炭化水素類などが用いられる。これらの有機溶剤は、1種を単独で用いてもよく、2種以上を併用して用いてもよい。 The above-mentioned various adhesives are used as a solution dissolved in an organic solvent. As the organic solvent, for example, ketones such as methyl ethyl ketone and methyl isobutyl ketone, aromatic hydrocarbons such as toluene and xylene, and the like are used. One of these organic solvents may be used alone, or two or more of these organic solvents may be used in combination.
 接着剤は、例えば、ノボラック型フェノール樹脂100質量部に対して、レゾール型フェノール樹脂10質量部以上1000質量部以下の割合で配合することが好ましく、60質量部以上400質量部以下の割合で配合することがより好ましい。接着剤は、ノボラック型フェノール樹脂100質量部に対して、レゾール型フェノール樹脂を1000質量部以下とすることにより、ゴム層の接着性の低下を防ぐことができ、また10質量部以上とすることにより、金属部材の表面との接着性の低下を防ぐことが可能となる。 The adhesive is preferably blended in a ratio of 10 parts by mass or more and 1000 parts by mass or less, and 60 parts by mass or more and 400 parts by mass or less, with respect to 100 parts by mass of the novolak type phenol resin. It is more preferable to do so. By using 1000 parts by mass or less of the resol type phenol resin with respect to 100 parts by mass of the novolak type phenol resin, it is possible to prevent a decrease in the adhesiveness of the rubber layer, and the adhesive should be 10 parts by mass or more. This makes it possible to prevent a decrease in adhesiveness with the surface of the metal member.
 接着剤は、金属部材とゴム層との接着性を向上する観点から、プライマー層を形成した金属板上に設けることが好ましい。また、接着剤層は、一層として設けてもよく、多層として設けてもよい。接着剤層は、金属部材上に設けられたプライマー層上に有紀金属化合物を含むフェノール系接着剤層を形成した後、当該接着剤層上に更にフェノール系接着剤層を設けて接着剤を多段構造として設けてもよい。このような多段構造の接着剤層とすることにより、プライマー層とゴム層との接着性をより強固にすることが可能となる。 The adhesive is preferably provided on the metal plate on which the primer layer is formed from the viewpoint of improving the adhesiveness between the metal member and the rubber layer. Further, the adhesive layer may be provided as one layer or may be provided as multiple layers. In the adhesive layer, a phenol-based adhesive layer containing a Yuki metal compound is formed on a primer layer provided on a metal member, and then a phenol-based adhesive layer is further provided on the adhesive layer to spread an adhesive in multiple stages. It may be provided as a structure. By forming the adhesive layer having such a multi-stage structure, the adhesiveness between the primer layer and the rubber layer can be further strengthened.
 接着剤は、アセトン、メチルエチルケトン及びメチルイソブチルケトンなどのケトン系有機溶剤及びこれらの混合溶媒を用いて固形分濃度が1質量%以上10質量%以下の接着剤溶液として調整される。接着剤の溶液は、金属部材上に塗布された後、100℃以上250℃以下の条件で1分間以上30分間程度の乾燥及び焼付け処理することにより、接着剤層となる。接着剤の塗工量は、塗布後の乾燥及び焼付け処理後に、50mg/m以上2000mg/m以下の範囲とすることが好ましい。また、接着剤は、乾燥後の接着剤層の厚さが0.5μm以上5μm以下となるように塗布することが好ましい。 The adhesive is prepared as an adhesive solution having a solid content concentration of 1% by mass or more and 10% by mass or less by using a ketone-based organic solvent such as acetone, methyl ethyl ketone and methyl isobutyl ketone and a mixed solvent thereof. The adhesive solution is applied onto the metal member and then dried and baked for about 1 minute or more and 30 minutes under the conditions of 100 ° C. or higher and 250 ° C. or lower to form an adhesive layer. The amount of the adhesive applied is preferably in the range of 50 mg / m 2 or more and 2000 mg / m 2 or less after the drying and baking treatment after the application. Further, the adhesive is preferably applied so that the thickness of the adhesive layer after drying is 0.5 μm or more and 5 μm or less.
 また、発泡ゴム層は、本発明の効果を奏する範囲で他のゴム成分を含有してもよい。他のゴム成分としては、例えば、アクリロニトリル-ブタジエン共重合体であるニトリルゴム(NBR:Nitrile Butadiene Rubber)、ニトリルゴムの不飽和結合部分を水素化した水素化ニトリルゴム(H-NBR)、ニトリルゴムを変性した変性ニトリルゴム、及びフッ素ゴムなどの各種ゴム材料が挙げられる。 Further, the foam rubber layer may contain other rubber components as long as the effects of the present invention are exhibited. Examples of other rubber components include nitrile rubber (NBR: Nitrile Butadiene Rubber), which is an acrylonitrile-butadiene copolymer, hydride nitrile rubber (H-NBR) in which the unsaturated bond portion of nitrile rubber is hydrogenated, and nitrile rubber. Examples thereof include modified nitrile rubber modified from the above, and various rubber materials such as fluorine rubber.
 発泡ゴム層は、ガスケットとして用いた際に十分なシール性及び耐熱性を得る観点から、架橋後の厚さが10μm以上700μm以下であることが好ましく、20μm以上600μm以下であることがより好ましく、30μm以上500μm以下であることが更に好ましい。 The thickness of the foamed rubber layer after cross-linking is preferably 10 μm or more and 700 μm or less, and more preferably 20 μm or more and 600 μm or less, from the viewpoint of obtaining sufficient sealing properties and heat resistance when used as a gasket. It is more preferably 30 μm or more and 500 μm or less.
 上記実施の形態に係るゴム金属積層体は、ステンレス鋼板などの金属部材と、ゴム成分、カーボンブラック、アミン系架橋剤及び発泡剤を配合し、必要に応じて、架橋促進剤、炭酸カルシウム、シリカ、可塑剤及び各種助剤を配合し、インタミックス、ニーダ、バンバリーミキサなどの密封混練機又はオープンロールにて混練したゴム組成物を有機溶剤に溶解した溶液を用いて製造される。ゴム金属積層体は、必要に応じて表面処理した金属部材上に、接着層を介して上記ゴム組成物を塗布した後、例えば、ゴム組成物を160℃以上250℃以下で0.5分以上30分以下程度の条件のオーブン内で架橋するオーブン架橋により発泡ゴム層とすることにより製造される。なお、ゴム金属積層体は、ゴムの粘着防止の観点から、樹脂系及びグラファイト系などのコーティング剤をゴム層上に塗布してもよい。 The rubber metal laminate according to the above embodiment contains a metal member such as a stainless steel plate, a rubber component, carbon black, an amine-based cross-linking agent and a foaming agent, and if necessary, a cross-linking accelerator, calcium carbonate, silica. , A plasticizer and various auxiliaries, and a rubber composition kneaded with a sealed kneader such as an intermix, a kneader, or a Banbury mixer or an open roll is dissolved in an organic solvent to produce the rubber composition. In the rubber metal laminate, after applying the rubber composition to the surface-treated metal member as necessary via an adhesive layer, for example, the rubber composition is applied at 160 ° C. or higher and 250 ° C. or lower for 0.5 minutes or longer. It is produced by forming a foam rubber layer by cross-linking in an oven under conditions of about 30 minutes or less. In the rubber metal laminate, a resin-based or graphite-based coating agent may be applied onto the rubber layer from the viewpoint of preventing rubber adhesion.
 ゴム組成物の金属部材上への塗布方法は、金属部材上にゴム組成物を塗布できるものであれば特に制限はない。ゴム組成物は、スプレー法、ディッピング法、ロールコート法、ディスペンサー法などが挙げられる。 The method of applying the rubber composition onto the metal member is not particularly limited as long as the rubber composition can be applied onto the metal member. Examples of the rubber composition include a spray method, a dipping method, a roll coating method, and a dispenser method.
 ゴム組成物の製造時及び金属部材上への塗布時には、必要に応じてゴム組成物に有機溶剤を加えて粘度調整をしてもよい。有機溶剤としては、ゴム組成物の粘度を所望の粘度に調整できるものであれば特に制限はない。有機溶剤としては、例えば、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、トルエンなどの芳香族炭化水素系溶剤、酢酸エチルなどのエステル系溶剤などが挙げられる。これらの有機溶剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 At the time of manufacturing the rubber composition and applying it on the metal member, an organic solvent may be added to the rubber composition to adjust the viscosity, if necessary. The organic solvent is not particularly limited as long as the viscosity of the rubber composition can be adjusted to a desired viscosity. Examples of the organic solvent include ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone, aromatic hydrocarbon solvents such as toluene, and ester solvents such as ethyl acetate. One of these organic solvents may be used alone, or two or more of them may be used in combination.
 以上説明したように、上記実施の形態によれば、アミン系架橋剤によりエチレンアクリレートゴムを架橋するので、エチレンアクリレートゴムの架橋に硫黄成分を用いる必要がない。これにより、ゴム組成物は、硫黄系架橋剤を用いる場合と比較して、架橋後のゴム組成物中の硫黄成分の含有量が大幅に少なくなるので、架橋後のゴム組成物中の硫黄成分の遊離に基づく金属部材の腐食を防ぐことができる。また、ゴム組成物は、ゴム成分としてニトリルゴムより耐熱性に優れたエチレンアクリレートゴムを含むので、100℃以上の環境でも使用可能となる優れた耐熱性を得ることができ、耐熱用途への適用も可能となる。さらに、ゴム金属積層体は、アミン系架橋剤と空気との反応を防ぐこともできるので、ゴム組成物のオーブン架橋を行った場合であっても、エチレンアクリレートゴムを十分に架橋することができ、架橋後のゴム組成物の金属部材への付着を防ぐことができる。そして、ゴム金属積層体は、発泡剤を含有するゴム組成物により発泡ゴム層を設けるので、発泡ゴム層中に存在する多くの気泡により、ガスケットに用いた際の圧縮率を大きくでき、面粗度の粗いフランジ及び低面圧下でのシール性に優れる。これらにより、ゴム組成物は、硫黄成分に基づく金属腐食を防ぐことができると共に、耐熱性に優れたガスケットを得ることが可能となる。 As described above, according to the above embodiment, since the ethylene acrylate rubber is crosslinked with the amine-based cross-linking agent, it is not necessary to use the sulfur component for the cross-linking of the ethylene acrylate rubber. As a result, the content of the sulfur component in the rubber composition after cross-linking is significantly reduced in the rubber composition as compared with the case where a sulfur-based cross-linking agent is used, so that the sulfur component in the rubber composition after cross-linking is significantly reduced. It is possible to prevent corrosion of metal members due to the release of sulfur. Further, since the rubber composition contains ethylene acrylate rubber having better heat resistance than nitrile rubber as a rubber component, it is possible to obtain excellent heat resistance that can be used even in an environment of 100 ° C. or higher, and it can be applied to heat resistant applications. Is also possible. Further, since the rubber metal laminate can prevent the reaction between the amine-based cross-linking agent and air, the ethylene acrylate rubber can be sufficiently cross-linked even when the rubber composition is cross-linked in an oven. , It is possible to prevent the rubber composition from adhering to the metal member after cross-linking. Since the rubber metal laminate is provided with the foamed rubber layer by the rubber composition containing the foaming agent, the compression ratio when used for the gasket can be increased due to the large number of air bubbles existing in the foamed rubber layer, and the surface roughness can be increased. Excellent sealing performance under rough flanges and low surface pressure. As a result, the rubber composition can prevent metal corrosion due to the sulfur component, and can obtain a gasket having excellent heat resistance.
 以下、本発明の効果を明確にするために行った実施例に基づいて本発明をより詳細に説明する。なお、本発明は、以下の実施例及び比較例によって何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples carried out to clarify the effects of the present invention. The present invention is not limited to the following examples and comparative examples.
 本発明者は、上記実施の形態に係るゴム金属積層体を作製し、作製したゴム金属積層体について圧縮試験を実施して評価した。以下、本発明者が調べた内容について説明する。 The present inventor produced a rubber metal laminate according to the above embodiment, and evaluated the produced rubber metal laminate by performing a compression test. Hereinafter, the contents investigated by the present inventor will be described.
(実施例1)
<発泡特性評価用サンプルの作製>
 厚さ600μmの冷間圧延鋼板(SPCC:Steel Plate Cold Commerical)をリン酸亜鉛処理による化成処理を施した。次に、化成処理を施した冷間圧延鋼板にプライマー(ケムロック(登録商標) AP133、LOAD社製)をメタノールで固形分2質量%に希釈したプライマー溶液を浸漬塗布し、200℃にて10分間の熱処理を行って冷間圧延鋼板上に厚さ1μm以下のプライマー層を設けた。次に、プライマー層上にフェノール樹脂系接着剤(シクソン 715A、ロームアンドハース社製)97質量%及びヘキサメチレンテトラミン含有硬化剤B(シクソン 715B、ロームアンドハース社製)3質量%をメチルエチルケトン440質量部及びメタノール110質量部の混合溶媒にて固形分濃度6質量%に希釈して浸漬塗布した後、170℃にて5分間の熱処理を行って接着剤層を設けた。
(Example 1)
<Preparation of sample for evaluation of foaming characteristics>
A cold-rolled steel sheet (SPCC: Steel Plate Cold Commercial) having a thickness of 600 μm was subjected to chemical conversion treatment by zinc phosphate treatment. Next, a primer solution obtained by diluting a primer (Chemlock (registered trademark) AP133, manufactured by LOAD) with methanol to a solid content of 2% by mass was immersed and applied to a cold-rolled steel sheet subjected to chemical conversion treatment, and the mixture was applied at 200 ° C. for 10 minutes. The heat treatment was carried out to provide a primer layer having a thickness of 1 μm or less on the cold-rolled steel sheet. Next, on the primer layer, 97% by mass of a phenol resin adhesive (Sixon 715A, manufactured by Roam & Haas) and 3% by mass of a hexamethylenetetramine-containing curing agent B (Sixon 715B, manufactured by Roam & Haas) were added to 440% by mass of methyl ethyl ketone. After diluting to a solid content concentration of 6% by mass with a mixed solvent of 110 parts by mass of methanol and parts and dipping coating, heat treatment was performed at 170 ° C. for 5 minutes to provide an adhesive layer.
 次に、エチレンアクリレートゴム(商品名「VAMAC(登録商標) GLS」、デュポン社製)100質量部、カーボンブラックA(中粒熱分解カーボンブラック:商品名「THERMAX(登録商標) N990 LSR、」キャンカーブ社製)20質量部、ステアリン酸(商品名「DTST」、ミヨシ油脂社製)2質量部、老化防止剤(4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン:商品名「ノクラック(登録商標) CD」、ランクセス社製)2質量部、アミン系架橋剤(ヘキサメチレンジアミンカルバメート:商品名「ケミノックス AC6-66」、ユニマテック社製)2質量部、アミン系架橋促進剤(非晶質シリカ担体に吸着した第3級アミン錯体:商品名「バルコファック ACT-55」、デュポン社製)1.6質量部、及び熱分解型発泡剤(アゾジカルボンアミド:商品名「ビニホール AC♯3」、永和化成社製)30質量部をニーダ及びオープンロールなどで混練してゴム組成物を得た。得られたゴム組成物を質量比でメチルエチルケトン:トルエン=2:8の比率で混合した混合溶媒に溶解させて、ゴム組成分の固形分濃度が25質量%以上35質量%以下となるようにしてゴム組成溶液を調整した。次に、ゴム組成物溶液を冷間圧延鋼板の一方の主面上の接着剤層上に均一に塗布した後、60℃にて5分間乾燥することによりゴム金属積層体の発泡特性評価用サンプルを作製した。 Next, 100 parts by mass of ethylene acrylate rubber (trade name "VAMAC (registered trademark) GLS", manufactured by DuPont), carbon black A (medium grain thermal decomposition carbon black: trade name "THERMAX (registered trademark) N990 LSR," can 20 parts by mass of Curve Co., Ltd., 2 parts by mass of stearic acid (trade name "DTST", manufactured by Miyoshi Oil & Fat Co., Ltd.), anti-aging agent (4,4'-bis (α, α-dimethylbenzyl) diphenylamine: trade name "Nocrack" (Registered trademark) CD ”, manufactured by Rankses, 2 parts by mass, amine-based cross-linking agent (hexamethylenediamine carbamate: trade name“ Cheminox AC6-66 ”, manufactured by Unimatec), 2 parts by mass, amine-based cross-linking accelerator (amorphic) Tertiary amine complex adsorbed on quality silica carrier: trade name "Balcofuck ACT-55", manufactured by DuPont) 1.6 parts by mass, and thermal decomposition foaming agent (azodicarboxylic amide: trade name "Vinihole AC # 3" , Eiwa Kasei Co., Ltd.) 30 parts by mass was kneaded with a kneader, an open roll, or the like to obtain a rubber composition. The obtained rubber composition is dissolved in a mixed solvent mixed at a mass ratio of methyl ethyl ketone: toluene = 2: 8 so that the solid content concentration of the rubber composition is 25% by mass or more and 35% by mass or less. The rubber composition solution was prepared. Next, the rubber composition solution was uniformly applied onto the adhesive layer on one main surface of the cold-rolled steel sheet, and then dried at 60 ° C. for 5 minutes to evaluate the foaming characteristics of the rubber metal laminate. Was produced.
<発泡特性評価>
 作製した発泡特性評価用サンプルの架橋前のゴム金属積層体全体の厚さ及び冷間圧延鋼板の厚さを測定した後、200℃にて3分間架橋して架橋後のゴム金属積層体全体の厚さを測定した。発泡倍率は、下記式(1)にて算出した。
 発泡倍率=(架橋後のゴム金属積層体の厚さ-鋼板厚さ)/(架橋前のゴム金属積層体の厚さ-鋼板厚さ) ・・・ 式(1)
<Evaluation of foaming characteristics>
After measuring the thickness of the entire rubber metal laminate before cross-linking and the thickness of the cold-rolled steel sheet of the prepared sample for evaluation of foaming characteristics, the entire rubber metal laminate after cross-linking was crosslinked at 200 ° C. for 3 minutes. The thickness was measured. The foaming ratio was calculated by the following formula (1).
Foaming ratio = (thickness of rubber metal laminate after cross-linking-steel plate thickness) / (thickness of rubber metal laminate before cross-linking-steel plate thickness) ・ ・ ・ Equation (1)
<耐熱性評価>
 発泡特性評価用サンプルを架橋した後、JIS K5600-5-4の「塗膜の機械的性質-引っかき硬度(鉛筆法)」に準拠し、手かき法により鉛筆硬度を測定して耐熱性評価を実施した。鉛筆としては、日本塗料検定協会検定の硬度6B~6Hの鉛筆(三菱鉛筆社製)を使用した。鉛筆硬度は、硬度が高い鉛筆から引っかき硬度の測定を開始し、発泡ゴム層の削れが生じなくなるまで鉛筆の硬度を順に下げて測定した硬度種別により判定した。本実施例では、ゴム金属積層体のゴム層が発泡ゴムであることから下記判断基準に基づいて判定した。
・鉛筆で引っかいた際に、引っかいた箇所が単に白く線状に跡がつく程度の凹みについては削れではないと判定した。
・鉛筆で引っかいた際に、引っかいた箇所がスティックスリップにより凸凹の傷がついた場合は、ゴムが削れたと判定した。
・鉛筆で引っかいた際に、引っかいた箇所のゴムがはがれた場合は、ゴムが削れたと判定した。
 引っかき硬度の測定は、150℃24時間の熱航路前後で実施し、熱老化による鉛筆硬度の硬度変化度が小さいものを耐熱性が良好と判断した。硬度変化度は、例えば、老化前硬度が6Bであり、老化後硬度が3Bの場合には、+3ポイントとして評価した。耐熱性評価は、下記評価基準に基づいて評価した。
 ○:硬度変化度が+2ポイント以内
 ×:硬度変化度が+3ポイント以上
<Heat resistance evaluation>
After cross-linking the sample for evaluation of foaming characteristics, the heat resistance is evaluated by measuring the pencil hardness by the hand-scratch method in accordance with JIS K5600-5-4 "Mechanical properties of coating film-scratch hardness (pencil method)". Carried out. As the pencil, a pencil with a hardness of 6B to 6H (manufactured by Mitsubishi Pencil Co., Ltd.) certified by the Japan Paint Certification Association was used. The pencil hardness was determined by the hardness type measured by starting the measurement of the scratch hardness from the pencil having the highest hardness and gradually decreasing the hardness of the pencil until the foam rubber layer was no longer scraped. In this example, since the rubber layer of the rubber metal laminate is foam rubber, the determination was made based on the following criteria.
・ When scratched with a pencil, it was judged that the dents where the scratched part simply left a white linear mark were not scraped.
-When scratching with a pencil, if the scratched part is scratched by stick slip, it is judged that the rubber has been scraped.
-If the rubber at the scratched part is peeled off when scratched with a pencil, it is judged that the rubber has been scraped.
The scratch hardness was measured before and after the heat route at 150 ° C. for 24 hours, and those having a small degree of change in pencil hardness due to heat aging were judged to have good heat resistance. For example, when the hardness before aging was 6B and the hardness after aging was 3B, the degree of change in hardness was evaluated as +3 points. The heat resistance evaluation was evaluated based on the following evaluation criteria.
◯: Hardness change is within +2 points ×: Hardness change is +3 points or more
<腐食性評価及び粘り付き性評価>
 厚さ200μmのステンレス鋼板(型番「SUS301H」)に、プライマー(ケムロック(登録商標)AP133、LOAD社製)をメタノールで固形分2質量%に希釈したプライマー溶液を浸漬塗布し、200℃にて10分間の熱処理を行って冷間圧延鋼板上にプライマー層を設けた。次に、プライマー層上にフェノール樹脂系接着剤(シクソン 715A、ロームアンドハース社製)97質量%及びヘキサメチレンテトラミン含有硬化剤B(シクソン 715B、ロームアンドハース社製)3質量%をメチルエチルケトン440質量部及びメタノール110質量部の混合溶媒にて固形分濃度6質量%に希釈して浸漬塗布した後、170℃にて5分間の熱処理を行って接着剤層を設けた。
<Corrosiveness evaluation and stickiness evaluation>
A primer solution obtained by diluting a primer (Chemlock (registered trademark) AP133, manufactured by LOAD) with methanol to a solid content of 2% by mass was immersed and coated on a 200 μm-thick stainless steel sheet (model number “SUS301H”), and 10 at 200 ° C. A primer layer was provided on the cold-rolled steel sheet by heat treatment for 1 minute. Next, on the primer layer, 97% by mass of a phenol resin adhesive (Sixon 715A, manufactured by Roam & Haas) and 3% by mass of a hexamethylenetetramine-containing curing agent B (Sixon 715B, manufactured by Roam & Haas) were added to 440% by mass of methyl ethyl ketone. After diluting to a solid content concentration of 6% by mass with a mixed solvent of 110 parts by mass of methanol and parts and dipping coating, heat treatment was performed at 170 ° C. for 5 minutes to provide an adhesive layer.
 次に、上記発泡特性評価用サンプルの作成時に用いたゴム組成物溶液を、ステンレス鋼板の一方の主面上の接着剤層上に架橋前の発泡ゴム層の厚さが80μm以上100μmとなるように均一に塗布し、60℃にて5分間乾燥させた。次に、上記ゴム組成物溶液をステンレス鋼板の他方の主面上の接着剤層上に架橋前の発泡ゴム層の厚さが80μm以上100μmとなるように均一に塗布し、60℃にて5分間乾燥させた。次に、発泡ゴム層を設けたステンレス鋼板をオーブンで200℃にて3分間架橋してゴム金属積層体の腐食性及び粘り付き性評価の評価用サンプルを作製した。 Next, the rubber composition solution used when preparing the sample for evaluating the foaming characteristics was applied so that the thickness of the foamed rubber layer before cross-linking was 80 μm or more and 100 μm on the adhesive layer on one main surface of the stainless steel sheet. Was evenly applied and dried at 60 ° C. for 5 minutes. Next, the rubber composition solution was uniformly applied onto the adhesive layer on the other main surface of the stainless steel sheet so that the thickness of the foamed rubber layer before cross-linking was 80 μm or more and 100 μm, and the thickness was 5 at 60 ° C. Allowed to dry for minutes. Next, a stainless steel plate provided with a foam rubber layer was crosslinked in an oven at 200 ° C. for 3 minutes to prepare a sample for evaluation of the corrosiveness and stickiness of the rubber metal laminate.
 腐食性評価及び粘り付き性評価は、Vパッキンで使用されているJIS B2403 9.2項の「腐食及び粘り付き試験」に準拠して実施した。作製した評価用サンプルを幅25mm、長さ50mmに裁断して4個の試験片を取り出した。厚さ3mm、幅25mm、長さ50mmの黄銅板(型番「C2801」)、鋼板(型番「SS400」)及びステンレス鋼板(型番「SUS304」)の3種類の金属板の表面を紙やすり(番手:♯400)でよく磨いた後、ヘキサン中で超音波洗浄により脱脂洗浄し、試験片と金属板とを交互に密着させて積み重ねて挟んだ。 Corrosion evaluation and stickiness evaluation were carried out in accordance with JIS B2403 9.2 "Corrosion and stickiness test" used in V packing. The prepared evaluation sample was cut into a width of 25 mm and a length of 50 mm, and four test pieces were taken out. Sandpaper the surface of three types of metal plates: brass plate (model number "C2801"), steel plate (model number "SS400") and stainless steel plate (model number "SUS304") with a thickness of 3 mm, width of 25 mm and length of 50 mm. After polishing well with # 400), it was degreased and washed in hexane by ultrasonic cleaning, and the test pieces and metal plates were alternately brought into close contact with each other and stacked and sandwiched.
 図1は、本発明の実施例に係る腐食及び粘り付き試験の説明図である。図1に示すように、腐食及び粘り付き試験では、ゴム金属積層板の第1試験片100-1から第4試験片100-4を用いた。第1試験片100-1~第4試験片100-4は、それぞれステンレス鋼板101-1~101-4と、ステンレス鋼板101-1~101-4の一方の主面上に設けられた第1ゴム層101a-1~104a-1と、ステンレス鋼板101-1~101-4の他方の主面上に設けられた第2ゴム層101b-1~104b-1とを備える。腐食及び粘り付き試験では、第1試験片100-1の第1ゴム層102a-1上に黄銅板201を積層し、黄銅板201上に第2試験片100-2の第2ゴム層102b-2を積層し、第2試験片100-2の第1ゴム層102a-2上に鋼板202を積層し、鋼板202上に第3試験片100-3の第2ゴム層102b-3を積層し、第3試験片100-3の第1ゴム層102a-3上にステンレス鋼板203を積層し、ステンレス鋼板203上に第4試験片100-4の第2ゴム層102b-4を積層した試験体10を用いた。試験体10を70℃に保った恒温槽に24時間入れた後に、黄銅板201、鋼板202及びステンレス鋼板203の各金属板の腐食及び粘着の状態をそれぞれ目視にて確認し、下記評価基準にて評価した。評価結果を下記表1に示す。
<腐食性評価基準>
 ○:金属板に腐食がない
 ×:金属板に腐食がある
<粘り付き性評価基準>
 ○:金属板への転写(粘り付き)がない
 ×:金属板への転写(粘り付き)がある
FIG. 1 is an explanatory diagram of a corrosion and stickiness test according to an embodiment of the present invention. As shown in FIG. 1, in the corrosion and stickiness test, the first test piece 100-1 to the fourth test piece 100-4 of the rubber metal laminated plate were used. The first test pieces 100-1 to the fourth test pieces 100-4 are provided on one main surface of the stainless steel plates 101-1 to 101-4 and the stainless steel plates 101-1 to 101-4, respectively. The rubber layers 101a-1 to 104a-1 and the second rubber layers 101b-1 to 104b-1 provided on the other main surface of the stainless steel plates 101-1 to 101-4 are provided. In the corrosion and stickiness test, the brass plate 201 was laminated on the first rubber layer 102a-1 of the first test piece 100-1, and the second rubber layer 102b- of the second test piece 100-2 was laminated on the brass plate 201. 2 is laminated, the steel plate 202 is laminated on the first rubber layer 102a-2 of the second test piece 100-2, and the second rubber layer 102b-3 of the third test piece 100-3 is laminated on the steel plate 202. , A test piece in which a stainless steel plate 203 is laminated on the first rubber layer 102a-3 of the third test piece 100-3, and a second rubber layer 102b-4 of the fourth test piece 100-4 is laminated on the stainless steel plate 203. 10 was used. After the test piece 10 was placed in a constant temperature bath kept at 70 ° C. for 24 hours, the corrosion and adhesive states of the brass plate 201, the steel plate 202, and the stainless steel plate 203 were visually confirmed, and the evaluation criteria were as follows. Evaluated. The evaluation results are shown in Table 1 below.
<Corrosiveness evaluation criteria>
◯: No corrosion on the metal plate ×: Corrosion on the metal plate <Criteria for evaluation of stickiness>
◯: No transfer to metal plate (sticky) ×: Transfer to metal plate (sticky)
(実施例2)
 熱分解型発泡剤に代えて、熱膨張型発泡剤(マイクロカプセル:商品名「アドバンセル(登録商標) EM304」、積水化学社製)9質量部を用いたこと以外は、実施例1と同様にしてゴム金属積層体を作製し、発泡特性評価、耐熱性評価及び腐食性評価を実施した。評価結果を下記表1に示す。
(Example 2)
Same as Example 1 except that 9 parts by mass of a thermal expansion foaming agent (microcapsule: trade name "Advancel (registered trademark) EM304", manufactured by Sekisui Chemical Co., Ltd.) was used instead of the pyrolysis foaming agent. A rubber metal laminate was prepared, and the foaming characteristics, heat resistance, and corrosiveness were evaluated. The evaluation results are shown in Table 1 below.
(実施例3)
 熱膨張型発泡剤の配合量を16質量部としたこと以外は、実施例2と同様にしてゴム金属積層体を作製し、発泡特性評価、耐熱性評価及び腐食性評価を実施した。評価結果を下記表1に示す。
(Example 3)
A rubber metal laminate was prepared in the same manner as in Example 2 except that the blending amount of the heat-expandable foaming agent was 16 parts by mass, and the foaming characteristics, heat resistance and corrosiveness were evaluated. The evaluation results are shown in Table 1 below.
(実施例4)
 さらに、カーボンブラックB(中補強性(SRF:Semi―Reinforcing Furnace)カーボンブラック:商品名「HTC♯SS」、日鉄カーボン社製)54質量部を用いたこと、及び熱膨張型発泡剤の配合量を20質量部としたこと以外は、実施例3と同様にしてゴム金属積層体を作製し、発泡特性評価、耐熱性評価及び腐食性評価を実施した。評価結果を下記表1に示す。
(Example 4)
Furthermore, 54 parts by mass of carbon black B (medium reinforcing (SRF: Semi-Reinforcing Furnace) carbon black: trade name "HTC # SS", manufactured by Nittetsu Carbon Co., Ltd.) was used, and a heat-expandable foaming agent was blended. A rubber metal laminate was prepared in the same manner as in Example 3 except that the amount was 20 parts by mass, and foaming characteristics evaluation, heat resistance evaluation, and corrosiveness evaluation were carried out. The evaluation results are shown in Table 1 below.
(実施例5)
 熱膨張型発泡剤の配合量を30質量部としたこと以外は、実施例4と同様にしてゴム金属積層体を作製し、発泡特性評価、耐熱性評価及び腐食性評価を実施した。評価結果を下記表1に示す。
(Example 5)
A rubber metal laminate was prepared in the same manner as in Example 4 except that the blending amount of the heat-expandable foaming agent was 30 parts by mass, and foaming characteristics evaluation, heat resistance evaluation, and corrosiveness evaluation were carried out. The evaluation results are shown in Table 1 below.
(実施例6)
 アミン系架橋剤の配合量を5質量部としたこと、及びアミン系架橋促進剤の配合量を2質量部としたこと及び熱膨張型発泡剤の配合量を35質量部としたこと以外は、実施例5と同様にしてゴム金属積層体を作製し、発泡特性評価、耐熱性評価及び腐食性評価を実施した。評価結果を下記表1に示す。
(Example 6)
Except that the amount of the amine-based cross-linking agent was 5 parts by mass, the amount of the amine-based cross-linking accelerator was 2 parts by mass, and the amount of the heat-expandable foaming agent was 35 parts by mass. A rubber metal laminate was prepared in the same manner as in Example 5, and foaming characteristics evaluation, heat resistance evaluation, and corrosiveness evaluation were carried out. The evaluation results are shown in Table 1 below.
(実施例7)
 熱膨張型発泡剤の配合量を20質量部としたこと以外は、実施例6と同様にしてゴム金属積層体を作製し、発泡特性評価、耐熱性評価及び腐食性評価を実施した。評価結果を下記表1に示す。
(Example 7)
A rubber metal laminate was prepared in the same manner as in Example 6 except that the blending amount of the heat-expandable foaming agent was 20 parts by mass, and the foaming characteristics, heat resistance and corrosiveness were evaluated. The evaluation results are shown in Table 1 below.
(比較例1)
 エチレンアクリレートゴムに変えて、ニトリルゴム(高ニトリル:結合アクリロニトリル含量41.5%:商品名「JSR N220S」、JSR社製)100質量部を用いたこと、酸化亜鉛(正同化学社製)5質量部を用いたこと、可塑剤(非フタル酸系可塑剤:商品名「メザモール」、ランクセス社製)8質量部を用いたこと、アミン系架橋剤に代えて、硫黄系架橋剤(商品名「コロイド硫黄A」、鶴見化学社製)1.2質量部を用いたこと、アミン系促進剤に代えて、硫黄系架橋促進剤A(ジベンゾチアジルジスルフィド:商品名「ノクセラーDM-10」、大内新興化学社製)0.6質量部及び硫黄系架橋促進剤B(テトラメチルチウラムジスルフィド:商品名「アクセルTS-10」、大内新興化学社製)2.2質量部を用いたこと、及び熱分解型発泡剤に代えて、熱膨張型発泡剤(マイクロカプセル:商品名「アドバンセル(登録商標) EM304」、積水化学社製)12質量部を用いたこと以外は、実施例1と同様にしてゴム金属積層体を作製し、発泡特性評価、耐熱性評価及び腐食性評価を実施した。評価結果を下記表1に示す。
(Comparative Example 1)
Using 100 parts by mass of nitrile rubber (high nitrile: bonded acrylonitrile content 41.5%: trade name "JSR N220S", manufactured by JSR) instead of ethylene acrylate rubber, zinc oxide (manufactured by Shodo Chemical Co., Ltd.) 5 A part by mass was used, a plasticizer (non-phthalic acid-based plastic agent: trade name "Mezamol", manufactured by Rankses) was used, and a sulfur-based cross-linking agent (trade name) was used instead of the amine-based cross-linking agent. Using 1.2 parts by mass of "colloidal sulfur A" (manufactured by Tsurumi Chemical Co., Ltd.), instead of the amine-based accelerator, sulfur-based cross-linking accelerator A (dibenzothiazil disulfide: trade name "Noxeller DM-10", Ouchi Shinko Kagaku Co., Ltd.) 0.6 parts by mass and sulfur-based cross-linking accelerator B (tetramethylthiuram disulfide: trade name "Axel TS-10", Ouchi Shinko Kagaku Co., Ltd.) 2.2 parts by mass were used. , And 12 parts by mass of a heat-expandable foaming agent (microcapsule: trade name "Advancel (registered trademark) EM304", manufactured by Sekisui Chemical Co., Ltd.) instead of the thermally decomposable foaming agent. A rubber metal laminate was prepared in the same manner as in the above, and foaming characteristics evaluation, heat resistance evaluation and corrosiveness evaluation were carried out. The evaluation results are shown in Table 1 below.
(比較例2)
 硫黄系架橋剤に代えて、キノイド系架橋剤(p-キノンジオキシム:商品名「バルノック GM-P」、大内新興化学社製)8質量部を用いたこと、架橋促進剤A、Bに代えて、架橋助剤(m-フェニレンジマレイミド商品名「バルノック PM」、大内新興化学社製)3質量部を用いたこと以外は、比較例1と同様にしてゴム金属積層体を作製し、発泡特性評価、耐熱性評価及び腐食性評価を実施した。評価結果を下記表1に示す。
(Comparative Example 2)
Instead of the sulfur-based cross-linking agent, 8 parts by mass of a quinoid-based cross-linking agent (p-quinone dioxime: trade name "Barnock GM-P", manufactured by Ouchi Shinko Kagaku Co., Ltd.) was used, and the cross-linking accelerators A and B A rubber metal laminate was prepared in the same manner as in Comparative Example 1 except that 3 parts by mass of a cross-linking aid (m-phenylenedi maleimide trade name "Barnock PM", manufactured by Ouchi Shinko Kagaku Co., Ltd.) was used instead. , Foaming characteristics evaluation, heat resistance evaluation and corrosiveness evaluation were carried out. The evaluation results are shown in Table 1 below.
(比較例3)
 硫黄系架橋剤に代えて、過酸化物系架橋剤(ジクミルパーオキサイド:商品名「パークミル D」、日油社製)2質量部を用いたこと、架橋助剤を用いなかったこと以外は、比較例2と同様にしてゴム金属積層体を作製し、発泡特性評価、耐熱性評価及び腐食性評価を実施した。評価結果を下記表1に示す。
(Comparative Example 3)
Except for the fact that 2 parts by mass of a peroxide-based cross-linking agent (dicumyl peroxide: trade name "Park Mill D", manufactured by Nichiyu Co., Ltd.) was used instead of the sulfur-based cross-linking agent, and no cross-linking aid was used. , A rubber metal laminate was prepared in the same manner as in Comparative Example 2, and foaming property evaluation, heat resistance evaluation and corrosiveness evaluation were carried out. The evaluation results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記表1における各成分の配合量は、下記の通りである。
 エチレンアクリレートゴム:商品名「VAMAC GLS」(デュポン社製)
 ニトリルゴム:高ニトリルゴム(結合アクリロニトリル含量41.5%):商品名「JSR N220S」(JSR社製)
 カーボンブラックA:中粒熱分解(MT:Medium Thermal)カーボンブラック:商品名「THERMAX N990 LSR、」(キャンカーブ社製)
 カーボンブラックB:中補強性(SRF:Semi―Reinforcing Furnace)カーボンブラック:商品名「HTC♯SS」(日鉄カーボン社製)
 アミン系架橋剤:ヘキサメチレンジアミンカルバメート:商品名「ケミノックス AC6-66」(ユニマテック社製)
 アミン系架橋促進剤:アミノ化誘導体(非晶質シリカ担体に吸着した第3級アミン錯体):商品名「Vulcofac ACT-55」(デュポン社製)
 硫黄系架橋剤:コロイド硫黄A(鶴見化学社製)
 硫黄系架橋促進剤A:ジベンゾチアジルジスルフィド:商品名「ノクセラー DM-10」(大内新興化学社製)
 硫黄系架橋促進剤B:テトラメチルチウラムジスルフィド:商品名「アクセル TS-10」(大内新興化学社製)
 キノイド系架橋剤:p-キノンジオキシム:商品名「バルノック GM-P」(大内新興化学社製)
 架橋助剤:m-フェニレンジマレイミド:商品名「バルノック PM」(大内新興化学社製)
 過酸化物系架橋剤:ジクミルパーオキサイド:商品名「パークミル D」(日油社製)
 ステアリン酸:商品名「DTST」(ミヨシ油脂社製)
 老化防止剤:4,4'-ビス(α,α-ジメチルベンジル)ジフェニルアミン:商品名「ノクラック CD」(ランクセス社製)
 酸化亜鉛(正同化学社製)
 可塑剤:非フタル酸系可塑剤:商品名「メザモール」(ランクセス社製)
 熱分解型発泡剤:アゾジカルボンアミド:商品名「ビニホール AC♯3」(永和化成社製)
 熱膨張型発泡剤:マイクロカプセル:商品名「アドバンセル EM304」(積水化学社製)
The blending amount of each component in Table 1 above is as follows.
Ethylene acrylate rubber: Brand name "VAMAC GLS" (manufactured by DuPont)
Nitrile rubber: High nitrile rubber (bonded acrylonitrile content 41.5%): Product name "JSR N220S" (manufactured by JSR)
Carbon Black A: Medium-grain pyrolysis (MT: Medium Thermal) Carbon Black: Product name "THERMAX N990 LSR," (manufactured by Cancurve)
Carbon Black B: Medium Reinforcement (SRF: Semi-Reinforcing Furnace) Carbon Black: Product Name "HTC # SS" (manufactured by Nittetsu Carbon Co., Ltd.)
Amine-based cross-linking agent: Hexamethylenediamine carbamate: Trade name "Cheminox AC6-66" (manufactured by Unimatec)
Amine-based cross-linking accelerator: Amination derivative (tertiary amine complex adsorbed on an amorphous silica carrier): Trade name "Vulcofac ACT-55" (manufactured by DuPont)
Sulfur-based cross-linking agent: Colloidal sulfur A (manufactured by Tsurumi Chemical Co., Ltd.)
Sulfur-based cross-linking accelerator A: Dibenzothiazil disulfide: Trade name "Noxeller DM-10" (manufactured by Ouchi Shinko Kagaku Co., Ltd.)
Sulfur-based cross-linking accelerator B: Tetramethylthiuram disulfide: Trade name "Axel TS-10" (manufactured by Ouchi Shinko Kagaku Co., Ltd.)
Quinone-based cross-linking agent: p-quinone dioxime: trade name "Barnock GM-P" (manufactured by Ouchi Shinko Kagaku Co., Ltd.)
Crosslinking aid: m-phenylenedimaleimide: Brand name "Barnock PM" (manufactured by Ouchi Shinko Kagaku Co., Ltd.)
Peroxide cross-linking agent: Dikmyl peroxide: Brand name "Park Mill D" (manufactured by NOF CORPORATION)
Stearic acid: Brand name "DTST" (manufactured by Miyoshi Oil & Fat Co., Ltd.)
Anti-aging agent: 4,4'-bis (α, α-dimethylbenzyl) diphenylamine: Trade name "Nocrack CD" (manufactured by LANXESS)
Zinc oxide (manufactured by Shodo Chemical Co., Ltd.)
Plasticizer: Non-phthalate plasticizer: Brand name "Mezamol" (manufactured by LANXESS)
Pyrolytic foaming agent: Azodicarbonamide: Trade name "Vinihole AC # 3" (manufactured by Eiwa Kasei Co., Ltd.)
Thermal expansion foaming agent: Microcapsules: Product name "Advancel EM304" (manufactured by Sekisui Chemical Co., Ltd.)
 表1から分かるように、ゴム層がエチレンアクリレートゴム及びアミン系架橋剤を含有するゴム金属積層体は、ゴム層の発泡倍率が十分に得られるだけでなく、耐熱性、腐食性及び粘り付き性に優れることが分かる(実施例1~実施例7参照)。また、実施例1と実施例2~実施例7とを対比すると、発泡剤としては、熱膨張性型発泡剤及び熱分解型発泡剤のいずれを用いても安定した発泡特性が得られ、優れた耐熱性、腐食性及び粘り付き性が得られることが分かる。また、実施例1~実施例7から分かるように、発泡剤の配合量、カーボンブラックの配合量、アミン系架橋剤の配合量を変化させても優れた耐熱性、腐食性及び粘り付き性が得られることが分かる。 As can be seen from Table 1, the rubber metal laminate in which the rubber layer contains ethylene acrylate rubber and an amine-based cross-linking agent not only provides a sufficient foaming ratio of the rubber layer, but also has heat resistance, corrosiveness and stickiness. (See Examples 1 to 7). Further, when Example 1 and Examples 2 to 7 are compared, stable foaming characteristics can be obtained regardless of whether a heat-expandable foaming agent or a thermally decomposable foaming agent is used as the foaming agent, which is excellent. It can be seen that heat resistance, corrosiveness and stickiness can be obtained. Further, as can be seen from Examples 1 to 7, excellent heat resistance, corrosiveness and stickiness can be obtained even if the amount of the foaming agent, the amount of carbon black and the amount of the amine-based cross-linking agent are changed. It turns out that it can be obtained.
 これに対して、ニトリルゴムを硫黄系架橋剤で架橋した場合には、腐食及び粘り付き試験で黄銅板が腐食する結果となり腐食性が不良となった(比較例1参照)。この結果は、ゴム層中に含まれる硫黄系架橋剤に基づく硫黄成分により黄銅板が腐食されたためと考えられる。また、ニトリルゴムを過酸化物系架橋剤で架橋した場合には、腐食及び粘り付き試験で腐食が生じなかった一方、鋼板及びステンレス鋼板にゴムが貼り付き一部が転写する結果となり、粘り付き性が不良となった(比較例3参照)。この結果は、過酸化物系架橋剤は、空気中の酸素と反応したために、空気中で十分な架橋ができなかったためと考えられる。また、比較例1、比較例2では、耐熱試験前後での鉛筆硬度変化が大きく、耐熱性が不良となった。この結果は、ニトリルゴムを用いたために、十分な耐熱性が得られなかったためと考えられる。さらに、ニトリルゴムをキノイド系架橋剤で架橋した場合は、腐食性及び粘り付き性が良好となる一方、比較例1、比較例3と同様に、耐熱試験前後での鉛筆硬度変化が大きく、耐熱性が不良となった(比較例2参照)。 On the other hand, when nitrile rubber was crosslinked with a sulfur-based cross-linking agent, the brass plate was corroded in the corrosion and stickiness test, resulting in poor corrosiveness (see Comparative Example 1). It is considered that this result is because the brass plate was corroded by the sulfur component based on the sulfur-based cross-linking agent contained in the rubber layer. In addition, when nitrile rubber was crosslinked with a peroxide-based cross-linking agent, corrosion did not occur in the corrosion and stickiness test, but the rubber adhered to the steel plate and stainless steel plate, resulting in partial transfer, resulting in stickiness. The sex was poor (see Comparative Example 3). This result is considered to be because the peroxide-based cross-linking agent reacted with oxygen in the air and could not sufficiently cross-link in the air. Further, in Comparative Example 1 and Comparative Example 2, the change in pencil hardness before and after the heat resistance test was large, and the heat resistance was poor. It is considered that this result is because sufficient heat resistance could not be obtained because nitrile rubber was used. Further, when the nitrile rubber is crosslinked with a quinoid-based cross-linking agent, the corrosiveness and the stickiness are good, while the pencil hardness changes significantly before and after the heat resistance test as in Comparative Examples 1 and 3, and the heat resistance is high. The sex became poor (see Comparative Example 2).
 以上の結果から、上記実施の形態によれば、エチレンアクリレートゴムをアミン系架橋剤で架橋することにより、十分な発泡倍率が得られるだけでなく、腐食性及び粘り付き性が良好となると共に優れた耐熱性が得られるゴム金属積層体が得られるゴム組成物、ゴム組成物を用いたゴム金属積層体及びゴム金属積層体を備えたガスケットを実現できることが分かる。 From the above results, according to the above embodiment, by cross-linking the ethylene acrylate rubber with an amine-based cross-linking agent, not only a sufficient foaming ratio can be obtained, but also corrosiveness and stickiness are improved and excellent. It can be seen that a rubber composition capable of obtaining a rubber metal laminate having heat resistance, a rubber metal laminate using the rubber composition, and a gasket provided with the rubber metal laminate can be realized.
 以上説明したように、上記実施の形態によれば、硫黄成分に基づく金属腐食を防ぐことができ、しかも、耐熱性に優れたガスケットが得られるゴム組成物、ゴム金属積層体、ガスケット及びゴム金属積層体の製造方法を実現できるという効果を有し、特に、電気自動車(EV:Electric Vehicle)及びハイブリッド自動車(HEV:Hybrid Electric Vehicle)用インバータケースなどのガスケット及び耐熱用ガスケットなどのガスケット全般に用いることができる。 As described above, according to the above embodiment, the rubber composition, the rubber metal laminate, the gasket and the rubber metal can prevent metal corrosion due to the sulfur component and can obtain a gasket having excellent heat resistance. It has the effect of realizing a method for manufacturing a laminate, and is particularly used for gaskets such as inverter cases for electric vehicles (EV: Electric Metal) and hybrid electric vehicles (HEV: Hybrid Electric Metal) and gaskets such as heat-resistant gaskets. be able to.
 以上、本発明の一実施の形態について説明したが、本実施の形態の内容により本発明の実施の形態が限定されるものではない。また、上述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施の形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Although one embodiment of the present invention has been described above, the embodiment of the present invention is not limited by the content of the present embodiment. In addition, the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those having a so-called equal range. Furthermore, the components described above can be combined as appropriate. Further, various omissions, replacements or changes of the components can be made without departing from the gist of the above-described embodiment.

Claims (8)

  1.  エチレンアクリレートゴム100質量部と、
     カーボンブラック1質量部以上200質量部以下と、
     アミン系架橋剤0.1質量部以上20質量部以下と、
     発泡剤を1質量部以上50質量部以下と、
     を含有することを特徴とする、ゴム組成物。
    With 100 parts by mass of ethylene acrylate rubber
    Carbon black 1 part by mass or more and 200 parts by mass or less,
    Amine-based cross-linking agent 0.1 parts by mass or more and 20 parts by mass or less,
    1 part by mass or more and 50 parts by mass or less of the foaming agent
    A rubber composition comprising.
  2.  前記アミン系架橋剤が、ジアミン類を含む、請求項1に記載のゴム組成物。 The rubber composition according to claim 1, wherein the amine-based cross-linking agent contains diamines.
  3.  前記発泡剤が、熱膨張型発泡剤及び熱分解型発泡剤からなる群から選択された少なくとも1種を含む、請求項1又は請求項2に記載のゴム組成物。 The rubber composition according to claim 1 or 2, wherein the foaming agent contains at least one selected from the group consisting of a thermal expansion type foaming agent and a thermal decomposition type foaming agent.
  4.  金属部材と、
     前記金属部材上に設けられ、請求項1から請求項3のいずれか1項に記載のゴム組成物が架橋されてなる発泡ゴム層と、
     を備えたことを特徴とする、ゴム金属積層体。
    With metal parts
    A foamed rubber layer provided on the metal member and crosslinked with the rubber composition according to any one of claims 1 to 3.
    A rubber-metal laminate characterized by being equipped with.
  5.  JIS B2403 9.2項に準拠した腐食及び粘り付き試験において、黄銅板、鋼板及びステンレス鋼板に腐食が生じない、請求項4に記載のゴム金属積層体。 The rubber metal laminate according to claim 4, wherein the brass plate, the steel plate, and the stainless steel plate are not corroded in the corrosion and stickiness test according to JIS B2403 9.2.
  6.  150℃にて24時間の熱老化前後のJIS K5600-5-4に準拠した引っかき硬度試験における前記発泡ゴム層の鉛筆硬度の硬度変化が3ポイント以下である、請求項4又は請求項5に記載のゴム金属積層体。 The fourth or fifth aspect, wherein the change in the hardness of the pencil hardness of the foam rubber layer in the scratch hardness test based on JIS K5600-5-4 before and after heat aging at 150 ° C. for 24 hours is 3 points or less. Rubber metal laminate.
  7.  請求項4から請求項6のいずれか1項に記載のゴム金属積層体を備えたことを特徴とする、ガスケット。 A gasket comprising the rubber metal laminate according to any one of claims 4 to 6.
  8.  エチレンアクリレートゴム100質量部、カーボンブラック1質量部以上200質量部以下、アミン系架橋剤0.1質量部以上20質量部以下及び発泡剤1質量部以上50質量部以下を混連してゴム組成物を得るゴム組成物調製工程と、
     前記ゴム組成物を金属部材上に塗布してオーブン架橋により架橋してゴム金属積層体を得る架橋工程と、
    を含むことを特徴とする、ゴム金属積層体の製造方法。
    A rubber composition obtained by mixing 100 parts by mass of ethylene acrylate rubber, 1 part by mass or more and 200 parts by mass or less of carbon black, 0.1 parts by mass or more and 20 parts by mass or less of an amine-based cross-linking agent, and 1 part by mass or more and 50 parts by mass or less of a foaming agent The rubber composition preparation process to obtain the product and
    A cross-linking step of applying the rubber composition onto a metal member and cross-linking by oven cross-linking to obtain a rubber metal laminate.
    A method for producing a rubber metal laminate, which comprises.
PCT/JP2020/022670 2019-06-28 2020-06-09 Rubber composition, rubber/metal layered product, gasket, and method for producing rubber/metal layered product WO2020261975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021528111A JPWO2020261975A1 (en) 2019-06-28 2020-06-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019121432 2019-06-28
JP2019-121432 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020261975A1 true WO2020261975A1 (en) 2020-12-30

Family

ID=74059743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022670 WO2020261975A1 (en) 2019-06-28 2020-06-09 Rubber composition, rubber/metal layered product, gasket, and method for producing rubber/metal layered product

Country Status (2)

Country Link
JP (1) JPWO2020261975A1 (en)
WO (1) WO2020261975A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188445A (en) * 1993-11-16 1995-07-25 Sumitomo Chem Co Ltd Sponge rubber composition
JPH10505894A (en) * 1994-09-21 1998-06-09 レイケム・リミテッド Sealing member
JP2004524407A (en) * 2001-02-23 2004-08-12 ファット クッション リミテッド ライアビリティ カンパニー Foam cushion and method of making and using same
JP2006206644A (en) * 2005-01-25 2006-08-10 Jsr Corp Gasket material and metal-integrated gasket
JP2007161869A (en) * 2005-12-14 2007-06-28 Nok Corp Sealant vulcanization molding ethylene-alkylacrylate copolymer rubber composition
US20080265516A1 (en) * 2006-11-08 2008-10-30 Zephyros, Inc. Two stage sealants and method of forming and/or using the same
JP2009500473A (en) * 2005-06-30 2009-01-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Ethylene / alkyl acrylate copolymers and compounds and vulcanizates thereof
JP2010059438A (en) * 2003-06-26 2010-03-18 Zephyros Inc Expandable material and fastenable member for sealing, baffling or reinforcing, and method of forming the same
JP2010270172A (en) * 2009-05-19 2010-12-02 Nakanishi Metal Works Co Ltd Acrylic rubber composition and sealing material
WO2017065218A1 (en) * 2015-10-15 2017-04-20 日本ゼオン株式会社 Crosslinkable rubber composition manufacturing method
JP2018172670A (en) * 2017-03-31 2018-11-08 積水化学工業株式会社 Sealant for electronic apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4040925B2 (en) * 2001-10-30 2008-01-30 電気化学工業株式会社 Acrylic rubber composition
WO2006129705A1 (en) * 2005-05-31 2006-12-07 Zeon Corporation Acrylic rubber composition and crosslinked product
DE102008020196B4 (en) * 2008-04-15 2013-10-17 Elringklinger Ag Crosslinking agents and their use, diamine crosslinked AEM and ACM elastomers and seals made therefrom
JP2010090351A (en) * 2008-10-11 2010-04-22 Nok Corp Acrylic rubber composition and seal parts vulcanized and molded using same
TWI509007B (en) * 2010-10-06 2015-11-21 Vanderbilt Chemicals Llc Elastomer product and method of making thereof
US11760821B2 (en) * 2017-10-16 2023-09-19 Denka Company Limited Method for producing acrylic rubber, acrylic rubber, acrylic rubber composition, vulcanized substance thereof, and application for vulcanized substance

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188445A (en) * 1993-11-16 1995-07-25 Sumitomo Chem Co Ltd Sponge rubber composition
JPH10505894A (en) * 1994-09-21 1998-06-09 レイケム・リミテッド Sealing member
JP2004524407A (en) * 2001-02-23 2004-08-12 ファット クッション リミテッド ライアビリティ カンパニー Foam cushion and method of making and using same
JP2010059438A (en) * 2003-06-26 2010-03-18 Zephyros Inc Expandable material and fastenable member for sealing, baffling or reinforcing, and method of forming the same
JP2006206644A (en) * 2005-01-25 2006-08-10 Jsr Corp Gasket material and metal-integrated gasket
JP2009500473A (en) * 2005-06-30 2009-01-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Ethylene / alkyl acrylate copolymers and compounds and vulcanizates thereof
JP2007161869A (en) * 2005-12-14 2007-06-28 Nok Corp Sealant vulcanization molding ethylene-alkylacrylate copolymer rubber composition
US20080265516A1 (en) * 2006-11-08 2008-10-30 Zephyros, Inc. Two stage sealants and method of forming and/or using the same
JP2010270172A (en) * 2009-05-19 2010-12-02 Nakanishi Metal Works Co Ltd Acrylic rubber composition and sealing material
WO2017065218A1 (en) * 2015-10-15 2017-04-20 日本ゼオン株式会社 Crosslinkable rubber composition manufacturing method
JP2018172670A (en) * 2017-03-31 2018-11-08 積水化学工業株式会社 Sealant for electronic apparatus

Also Published As

Publication number Publication date
JPWO2020261975A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
JP5830898B2 (en) NBR composition and rubber metal laminate
WO2007145026A1 (en) Rubber-metal laminate
US10280869B2 (en) Rubber-metal laminated gasket material
JP5971247B2 (en) Gasket material
JP6103072B2 (en) Nitrile rubber-metal laminated gasket material
WO2007119770A1 (en) Vulcanizing adhesive composition
JPWO2009122618A1 (en) Fluoro rubber-metal laminated gasket material
JP4483610B2 (en) Fluoro rubber-metal laminated gasket material
JP4483611B2 (en) Nitrile rubber-metal laminated gasket material
JP6990253B2 (en) NBR composition for rubber laminated metal
JP2006218630A5 (en)
JP2005226064A (en) Vulcanizing and bonding composition
WO2020261975A1 (en) Rubber composition, rubber/metal layered product, gasket, and method for producing rubber/metal layered product
US9925741B2 (en) Acrylic rubber-metal composite
JP2005299823A (en) Rubber-metal laminated gasket raw material
JP7538854B2 (en) Rubber metal laminate and gasket
JP3407651B2 (en) Rubber laminated metal plate
JP2005249031A (en) Rubber-metal laminated gasket raw material
JP2009084453A (en) Material for use in gasket, and manufacturing method thereof
JP2003261850A (en) Vulcanizing adhesive composition
WO2022176955A1 (en) Fluororubber-metal laminate
JP4576932B2 (en) Vulcanization primer
WO2021187274A1 (en) Rubber-metal laminate and gasket
JP2008075808A (en) Marine (hydrogenated) nitrile rubber-metal laminated gasket material
JP3407637B2 (en) Rubber laminated metal plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021528111

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831559

Country of ref document: EP

Kind code of ref document: A1