WO2020261916A1 - Flexible wire - Google Patents

Flexible wire Download PDF

Info

Publication number
WO2020261916A1
WO2020261916A1 PCT/JP2020/022085 JP2020022085W WO2020261916A1 WO 2020261916 A1 WO2020261916 A1 WO 2020261916A1 JP 2020022085 W JP2020022085 W JP 2020022085W WO 2020261916 A1 WO2020261916 A1 WO 2020261916A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive structure
electric wire
flexible electric
metal fibers
present
Prior art date
Application number
PCT/JP2020/022085
Other languages
French (fr)
Japanese (ja)
Inventor
英輝 森内
仁朗 白鳥
高橋 真一
一樹 石原
Original Assignee
株式会社巴川製紙所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社巴川製紙所 filed Critical 株式会社巴川製紙所
Priority to JP2021527567A priority Critical patent/JP7323613B2/en
Publication of WO2020261916A1 publication Critical patent/WO2020261916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/04Flexible cables, conductors, or cords, e.g. trailing cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/08Flat or ribbon cables

Definitions

  • the present invention relates to a flexible electric wire.
  • Flexible electric wires are suitably used for wiring of devices having bent portions such as bending and stretching, such as body-mounted devices and clothes-wearing devices, including the robot field.
  • the flexible electric wire examples include a flexible electric wire that can be used in the field of robots and the like and is composed of a core portion, a conductor portion, a covering portion, and the like (Patent Document 1).
  • a flexible electric wire that deforms according to various movements and is hard to break one or more elastic conductors are integrated with a flexible resin molded body, and a flexible electric wire that satisfies a predetermined requirement is also known.
  • Patent Document 3 As a band-shaped transmission line that is hard to be broken even if it is expanded and contracted, there is also known a means for arranging a conductor wire coated with an insulator on an elastic cloth having an elastic thread in a zigzag shape
  • Patent Document 1 requires that the conductor wire be an aggregate of at least two or more thin wires in order to exhibit elasticity even with a small load. In other words, the wire break resistance is improved by double tracking.
  • Patent Document 2 secures disconnection resistance by adjusting the relationship between the elongation force of a plurality of conductors and a resin molded body and the elongation length of the conductors. In Patent Document 3, disconnection resistance is ensured in the relationship between the conductor wires arranged in a zigzag shape and the stretchable fabric.
  • disconnection resistance can be improved by using a plurality of conductor thin wires or adjusting the relationship between the elongation force of the resin molded body and the elongation length of the conductor.
  • the current situation is that we are getting it.
  • it is practically impossible to make the conductor single-core and miniaturize (make it inconspicuous) while ensuring the disconnection resistance.
  • the bending stress of the solid conductor thin wire tends to be concentrated at one point, so that there is a limit to the single core and miniaturization of the conductor.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a flexible electric wire which has sufficient flexibility, is hard to break, and can be miniaturized (made inconspicuous).
  • the present invention provides the following flexible electric wires.
  • the outer layer coating portion is a flexible electric wire formed of a resin material filled between a plurality of metal fibers forming a conductive structure.
  • the flexible electric wire according to (2) which includes two or more of the conductive structures.
  • the "mean fiber diameter” is a cross-sectional area perpendicular to the longitudinal direction of a metal fiber calculated by a known calculation method based on a vertical cross section at any plurality of points of the conductive structure imaged with a microscope. It is an additive mean value of the area diameter derived by calculating the diameter of a perfect circle having the same area as the area.
  • the plurality of locations may be, for example, 20 locations.
  • the "average fiber length” is an arithmetic mean value obtained by measuring the lengths of a plurality of metal fibers randomly selected with a microscope in the longitudinal direction. If the fiber is not straight, it shall be the length of the curve along the fiber.
  • the plurality of lines may be, for example, 20 lines.
  • the "space factor” is the ratio of the portion where the fiber exists to the volume of the conductive structure, and is calculated by the following formula from the basis weight, thickness, and true density of the fiber of the conductive structure.
  • the space factor can be calculated by adopting a true density value that reflects the composition ratio of each fiber.
  • the "thickness of the conductive structure” is, for example, measuring any 20 measurement points of the conductive structure with a film thickness meter of the terminal drop type by air (for example, "Digimatic Indicator ID-C112X” manufactured by Mitutoyo Co., Ltd.). It may be the additive average value in the case of the above, or it may be the additive average value when the vertical cross section of the conductive structure when the cross section is observed with an electron microscope or the like is measured at 20 measurement points, for example. ..
  • “Homogeneity” means that there is little variation in the electrical characteristics, physical characteristics, and other characteristics of the conductive structure composed of metal fibers.
  • the coefficient of variation (CV value) of the basis weight specified in JIS Z8101 per 1 cm 2 can be adopted.
  • the "porosity” is the ratio of the portion where the void exists to the volume of the conductive structure, and is calculated by the following formula from the basis weight, the thickness, and the true density of the metal fiber of the conductive structure.
  • the flexible electric wire 1 of the present embodiment includes a conductive structure 20 including a plurality of metal fibers in which at least a part thereof is bonded to each other, and an outer layer covering portion 3 covering the conductive structure 20. It is roughly composed of. Further, the outer layer covering portion 3 is formed on at least the surface of the conductive structure 20 by filling a resin material between a plurality of metal fibers forming the conductive structure 20.
  • the conductive structure 20 and the outer layer covering portion 3 forming the flexible electric wire will be described in detail.
  • the conductive structure 20 may be composed of metal fibers having a single composition, or may be composed of two or more types of metal fibers in combination. Alternatively, it may be composed of a metal-coated fiber in which the circumference of the organic fiber is coated with a metal or a structure containing the metal-coated fiber.
  • the metal-coated fibers the metal-coated organic fibers may be made into paper and then fused between the fibers, or the organic fibers may be made into paper and then metal-coated.
  • the "metal fiber” means a fiber containing a metal as a main component.
  • copper fiber means a fiber containing copper as a main component.
  • copper as a main component means a state in which a certain amount of other components may be contained, including unavoidable impurities, as long as the effects of the present invention are not impaired.
  • the metal component constituting the metal fiber include copper, stainless steel, iron, aluminum, nickel, chromium and the like, but are not particularly limited.
  • the metal component may be a noble metal such as gold, platinum, silver, palladium, rhodium, iridium, ruthenium, and osmium.
  • copper, stainless steel, and aluminum are preferable as the metal component constituting the metal fiber.
  • copper fiber is preferable because it has an excellent balance between rigidity and plastic deformability.
  • components other than metal include polyethylene terephthalate (PET) resin, polyvinyl alcohol (PVA), polyethylene, and polyolefins such as polypropylene, polyvinyl chloride resin, aramid resin, nylon, acrylic resin, and fibrous materials thereof.
  • PET polyethylene terephthalate
  • PVA polyvinyl alcohol
  • polyolefins such as polypropylene, polyvinyl chloride resin, aramid resin, nylon, acrylic resin, and fibrous materials thereof.
  • organic substances having a binding property and a supporting property can be used, for example, to assist / improve the morphological maintainability and functionality when the conductive structure 20 is produced.
  • the metal fibers forming the conductive structure 20 are partially bonded.
  • the fact that the metal fibers are bound means that the metal fibers are physically fixed to each other to form a binding portion.
  • the metal fibers may be directly fixed to each other at the binding portion, or a part of the metal fibers may be indirectly fixed to each other via a component other than the above metal component. Good.
  • the thermal conductivity and homogeneity of the conductive structure 20 are stable, and it is easy to obtain excellent flexibility and disconnection resistance.
  • voids may be formed between the metal fibers.
  • the metal fibers forming the conductive structure 20 are deformed, whereby the flexible electric wire 1 itself can be deformed, contracted, or stretched, which is excellent. Flexibility can be obtained.
  • the porosity of the conductive structure 20 is preferably 30% or more. When the porosity of the conductive structure 20 is 30% or more, the shape of the conductive structure 20 itself can be easily maintained, and an appropriate void necessary for filling the resin material is provided therein.
  • the sheet resistivity of the conductive structure 20 is designed according to the energization conditions of the flexible electric wire, and is not limited, but is preferably 100 m ⁇ / ⁇ or less, more preferably 50 m ⁇ / ⁇ or less, and further preferably 30 m ⁇ / ⁇ . The following, and most preferably 10 m ⁇ / ⁇ or less.
  • the sheet resistivity of the conductive structure is 100 m ⁇ / ⁇ or less, it is easy to suppress heat generation when the flexible electric wire 1 is energized.
  • the structure of the conductive structure 20 is preferably strip-shaped.
  • the strip-shaped conductive structure 20 may be a non-woven fabric in which metal fibers are randomly bonded, a woven fabric having regularity, or a mesh material.
  • the surface of the conductive structure 20 may be flat, corrugated, etc., and may have irregularities, and is not particularly limited.
  • the vertical thickness of the conductive structure 20 is preferably in the range of 0.005 mm to 10 mm, more preferably 5 mm or less, further preferably 1 mm or less, and most preferably 0.5 mm or less. If the thickness of the conductive structure 20 is 0.005 mm or more, it is difficult to break the flexible electric wire 1 even if it is deformed. When the thickness of the conductive structure 20 is 10 mm or less, excellent flexibility can be easily obtained. The thickness of the conductive structure 20 can be appropriately adjusted in a pressing process described later.
  • the basis weight of the conductive structure 20 is preferably in the range of 10 g / m 2 to 1,000 g / m 2 .
  • the basis weight of the conductive structure 20 is 10 g / m 2 or more, a predetermined thickness can be obtained and it is difficult to break the wire.
  • the basis weight of the conductive structure 20 is 1,000 g / m 2 or less, the weight of the conductive structure 20 can be easily reduced, and the weight of the flexible electric wire 1 can be easily reduced.
  • the average fiber diameter of the metal fiber can be arbitrarily set as long as the effect of the present invention is not impaired.
  • the average fiber diameter of the metal fibers is preferably 0.1 ⁇ m to 100 ⁇ m, more preferably 0.5 ⁇ m to 50 ⁇ m, and even more preferably 1 to 30 ⁇ m.
  • the average fiber diameter of the metal fibers is 0.1 ⁇ m or more, appropriate rigidity of the conductive metal fibers can be obtained, so that so-called lumps are unlikely to occur when the conductive structure 20 is manufactured. If no lumps occur, the homogeneity of the conductive structure 20 tends to be stable. This makes it easy to obtain excellent flexibility and disconnection resistance.
  • the average fiber diameter of the metal fibers is 30 ⁇ m or less, appropriate rigidity of the metal fibers can be obtained, so that entanglement of the fibers is unlikely to occur.
  • the shape of the cross section perpendicular to the longitudinal direction of the metal fiber can be any shape.
  • the shape of such a cross section may be any shape such as a circular shape, an elliptical shape, a substantially quadrangular shape, and an amorphous shape.
  • the average fiber length of the metal fiber can be arbitrarily set as long as the effect of the present invention is not impaired.
  • the average fiber length of the metal fibers is preferably in the range of 0.1 mm to 10 mm, more preferably in the range of 0.3 mm to 5 mm, and even more preferably in the range of 0.5 to 3 mm.
  • the aspect ratio of the metal fiber is preferably 10 to 10,000.
  • the aspect ratio is 10 or more, the metal fibers can be easily partially bonded to each other, and the flexible electric wire 1 can maintain an appropriate strength.
  • the aspect ratio is 10,000 or less, it is easy to obtain excellent homogeneity of the conductive structure 20, and by extension, it is easy to obtain excellent flexibility.
  • the space factor of the conductive structure 20 is preferably 70% or less, more preferably 50% or less, and further preferably 30% or less. When the space factor is 70% or less, the flexibility of the conductive structure 20 can be maintained, and the resin material can be uniformly filled.
  • the coefficient of variation (CV value) of the basis weight specified in JIS Z8101 per 1 cm 2 of the conductive structure 20 is preferably 10% or less. Since the basis weight is an index indicating the weight per unit volume, it can be said that the coefficient of variation of the basis weight is not more than a certain value, which is also a stable value for the space factor of the conductive structure 20. That is, when the coefficient of variation of the basis weight of the conductive structure 20 is 10% or less, the conductive structure 20 is less likely to have lumps and voids of an extreme size, the conductivity of the conductive structure 20 is excellent, and the flexible electric wire is used. It is easy to obtain the excellent flexibility and disconnection resistance of 1.
  • the outer layer coating portion 3 is obtained by at least partially filling the resin material between the plurality of metal fibers forming the conductive structure 20 so as to cover the conductive structure 20.
  • the resin material forming the outer layer coating portion 3 may be filled only on the outer peripheral surface of the conductive structure 20, but may be filled on the entire conductive structure 20.
  • air having poor thermal conductivity remains inside the flexible electric wire, and the outer peripheral surface is insulated with a resin material, so that the temperature is kept constant. This is advantageous when you want to keep the electric wire warm.
  • the outer layer covering portion 3 is filled in the entire conductive structure 20, it is easy to obtain a contracting force after the flexible electric wire is stretched.
  • the thickness of the outer layer covering portion 3 is preferably 0.3 to 10,000 times, more preferably 1 to 1,000 times, still more preferably 2 to 100 times the thickness of the conductive structure 20.
  • the resin material forming the outer layer coating portion 3 a known resin material having insulating properties and flexibility can be used.
  • polyacrylic acid resin such as polymethacrylic acid and polycyanoacrylate (polycyanoacrylate); polyvinylpyrrolidone resin; polyester resin such as polyethylene terephthalate; polypropylene resin; fluororesin such as polytetrafluoroethylene; polyimide resin; Polyamide resin containing aramid; polyparaphenylene benzobisoxazole resin, silicone resin, silicone rubber, fluororubber, acrylic rubber and the like can be mentioned. These resins can be used alone or in admixture of two or more. Among these, silicone, a fluororesin, acrylic rubber, or the like is preferable in consideration of the followability when the conductive structure 20 is deformed.
  • the conductive structure 20 is manufactured.
  • the method for producing the conductive structure 20 include a dry method by compression molding and the like, a method of papermaking by a wet papermaking method, and the like.
  • a web mainly composed of metal fibers obtained by the card method, the airlaid method, or the like is compression-molded.
  • the metal fibers can be partially bonded to each other by impregnating the metal fibers with a binder.
  • a binder a known organic binder such as an acrylic adhesive and a known inorganic binder such as colloidal silica can be used.
  • the obtained conductive structure 20 may be sintered or the like to bind the metal fibers to each other.
  • wet papermaking can be performed with a paper machine using a slurry in which metal fibers and the like are dispersed in an aqueous medium.
  • the aqueous medium is usually water, but a water-soluble solvent such as alcohol can be added.
  • known additives such as fillers, dispersants, thickeners, defoamers, paper strength enhancers, sizing agents, coagulants, colorants, and fixing agents may be appropriately added to the above slurry. it can.
  • a binding point forming step of partially binding metal fibers and the like to each other may be carried out.
  • a method of injecting a high-pressure jet water stream onto the wet body tape surface can be adopted. After passing through this step, the wet body sheet (conductive structure) is wound up through a dryer step.
  • the pressing process can be performed before the binding point forming process and the dryer process.
  • the thickness of the conductive structure 20 can be adjusted by appropriately adjusting the pressure at the time of pressing during the pressing process. For example, in the case of producing a conductive structure 20 having a thickness of about 170 ⁇ m, the homogeneity of the conductive structure 20 and thus the flexibility and disconnection resistance can be improved by applying pressure at a linear pressure of less than 300 kg / cm.
  • a method for binding metal fibers and the like there is a method of sintering the conductive structure 20 in addition to the method of using the above binder and the method of injecting a high-pressure jet water stream.
  • the metal fibers and the like can be reliably bound and the metal fibers can be fixed, so that the basis weight of the conductive structure 20 can be increased.
  • the fluctuation coefficient (CV value) tends to be stable.
  • the binding portion can be reliably provided, it is easy to secure stable homogeneity and thermal conductivity of the conductive structure 20. Further, since a large number of binding portions are formed, when the flexible electric wire receives bending stress, the stress is dispersed and the flexibility is easily improved.
  • the conductive structure 20 that has undergone the sintering step further undergoes a pressing step.
  • the homogeneity of the conductive structure 20 can be more easily improved, and the conductive structure 20 can be made thinner.
  • the pressing process after sintering causes a shift of metal fibers and the like not only in the thickness direction but also in the surface direction. As a result, the metal fibers and the like are arranged even in the places that were voids at the time of sintering, the homogeneity is improved, and such a state is maintained by the plastic deformation characteristics of the metal fibers.
  • the pressure in the pressing step performed after the sintering step can be appropriately set in consideration of the thickness of the conductive structure 20.
  • the conductive structure 20 is made of a woven cloth, a mesh, or the like, a known manufacturing method can be used.
  • the cross section of the conductive structure 20 When the cross section of the conductive structure 20 has a corrugated shape, it may be press-processed using an embossing machine or the like so that the cross section of the obtained conductive structure 20 has a desired shape.
  • a desired cross-sectional shape can be imparted by attaching a pair of gear-shaped embossing rolls that mesh with each other to a general embossing machine and passing the conductive structure 20 between the male and female embossing rolls.
  • the outer layer covering portion 3 is formed so as to cover the obtained conductive structure 20.
  • the resin material is selected in consideration of the flexibility required for the flexible electric wire 1.
  • the obtained resin material is impregnated with the conductive structure 20.
  • the outer layer covering portion 3 that covers only the outer peripheral surface of the conductive structure 20 can be formed, and the inside of the conductive structure 20 is included.
  • the entire surface can be covered with the outer layer covering portion 3. Further, the thickness of the outer layer covering portion 3 when forming the outer layer covering portion 3 covering only the outer peripheral surface can be adjusted.
  • a resin material may be applied to the outer peripheral surface of the conductive structure 20.
  • a tubular outer layer coating layer 3 is formed using a resin material, the tubular outer layer coating layer 3 is covered with the conductive structure 20, and then heat is applied to the outer layer coating layer 3 to form the outer layer coating layer 3.
  • a resin material may be filled between the metal fibers forming the conductive structure 20 by partially melting the inner peripheral side. For example, by heating the conductive structure 20, only the inner peripheral side of the outer layer coating layer 3 is melted, and a resin material can be filled between the metal fibers forming the conductive structure 20.
  • the electrode When an electrode is provided on the flexible electric wire, the electrode may be formed in advance at the end of the conductive structure 20, or a through hole may be provided after the outer coating portion 3 is provided to form the electrode.
  • the flexible electric wire 1 of the present embodiment has a three-dimensional structure in which the metal fibers of the conductive structure 20 are partially bonded. As described above, since the portion where the material constituting the conductive structure 20 does not exist is formed inside the conductive structure 20, the conductive structure 20 can be easily deformed, contracted, or stretched. Further, the outer layer covering portion 3 can follow the deformation, contraction, or elongation of the conductive structure 20. Further, the bending stress applied to the flexible electric wire 1 can be dispersed and absorbed at the binding points of the metal fibers and the individual metal fibers. Therefore, although the flexible electric wire 1 of the present embodiment has excellent flexibility, it has high disconnection resistance against bending stress. Therefore, it is possible to wire along the unevenness on the surface of the device provided with the unevenness while maintaining high disconnection property.
  • the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the first embodiment in that the cross section of the conductive structure 21 contained therein is corrugated.
  • the manufacturing method of the flexible electric wire 1 of this embodiment will be described. First, a copper fiber sheet is obtained by a papermaking method, and then the copper fibers are partially bonded to each other by sintering to obtain a copper fiber paper having a thickness of 1.0 mm.
  • the copper fiber paper can be obtained, for example, by the production method described in WO2018 / 131658.
  • the obtained copper fiber paper is cut into a size of 50 x 200 mm, a pair of gear-shaped emboss rolls that mesh with male and female are attached to a general embossing machine, and the copper fiber paper is passed between the male and female emboss rolls.
  • the cross section is corrugated so that it becomes corrugated.
  • the copper fiber paper can be corrugated so that the height of the peaks and valleys is 1 mm, the distance between the peaks and the pitch are 0.5 mm.
  • the conductive structure 21 is obtained by making a notch in the corrugated copper fiber paper using a cutting tool.
  • the voids of the conductive structure 21 are impregnated with silicone rubber, and the silicone rubber is also adhered to the surface of the conductive structure 21 so that the total thickness is 1.2 mm. After that, air is removed as much as possible by vacuum defoaming, and thermosetting is performed. As a result, the flexible electric wire 1 of the present embodiment can be obtained.
  • the flexible electric wire 1 of the present embodiment can be extended not only in the length direction but also in the width direction.
  • the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that the conductive structure 22 is provided with a linear notch along the longitudinal direction. Notches are not provided in the upper end and the lower end in the length direction so that the conductive structure 22 is not divided into a plurality of parts.
  • the conductive structure 22 is provided with three notches, but the present invention is not limited to this.
  • the number of cuts can be determined in consideration of the flexibility and elasticity required for the flexible electric wire 1. It is preferable that the notch is provided through the conductive structure 22, but it is not always necessary to penetrate the notch. The depth of cut can be appropriately adjusted in consideration of the flexibility and elasticity required for the flexible electric wire 1.
  • the flexible electric wire 1 of the present embodiment similarly to the second embodiment, after obtaining the copper fiber paper, the obtained copper fiber paper is cut to 50 ⁇ 200 mm, and a plurality of cuts are made by using a cutting tool. Then, the flexible electric wire 1 of the present embodiment is obtained by corrugating in the same manner as in the second embodiment, impregnating with silicone rubber and adhering it on the surface.
  • the flexible electric wire 1 of the present embodiment can be extended not only in the length direction but also in the width direction.
  • the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that the conductive structure 23 is provided with a broken line-shaped notch along the longitudinal direction.
  • a broken line-shaped notch is provided so that the conductive structure 23 is not divided into a plurality of parts.
  • the conductive structure 23 is provided with three broken-line notches, but the present invention is not limited to this.
  • the number of fractured cuts can be determined in consideration of the flexibility required for the flexible electric wire 1. Further, the length and depth of the cut can be appropriately adjusted in consideration of the flexibility required for the flexible electric wire 1.
  • the flexible electric wire 1 of the present embodiment similarly to the second embodiment, after obtaining the copper fiber paper, the obtained copper fiber paper is cut into a size of 50 ⁇ 200 mm, and a fractured cut is made using a cutting tool. .. Next, the flexible electric wire 1 of the present embodiment is obtained by corrugating in the same manner as in the second embodiment, impregnating with silicone rubber and adhering it on the surface.
  • the flexible electric wire 1 of the present embodiment can be extended not only in the length direction but also in the width direction.
  • the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that the conductive structure 24 is provided with one notch in a square spiral shape along the outer circumference. It's different. Since the conductive structure 24 is provided with one notch in a square spiral shape along the outer circumference, the conductive structure 24 is not divided into a plurality of parts. The interval between the cuts and the depth of the cuts can be appropriately adjusted in consideration of the flexibility required for the flexible electric wire 1. Next, a method of manufacturing the flexible electric wire 1 of the present embodiment will be described.
  • the flexible electric wire 1 of the present embodiment similarly to the second embodiment, after obtaining the copper fiber paper, the obtained copper fiber paper is cut into a size of 50 ⁇ 200 mm, and a blade is used to cover the outer periphery of the copper fiber paper. Make a square spiral cut along it. Next, corrugated processing is performed in the same manner as in the second embodiment. Then, the flexible electric wire 1 of the present embodiment is obtained by impregnating the corrugated copper fiber paper with silicone rubber and adhering it on the surface.
  • the flexible electric wire 1 of the present embodiment can be extended not only in the length direction but also in the width direction and the thickness direction.
  • the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that the conductive structure 25 has a net shape.
  • the manufacturing method of the flexible electric wire 1 of this embodiment will be described.
  • a conductive structure is obtained and then a pattern is cut by a fiber laser in the same manner as in the second embodiment.
  • the waveform is processed in the same manner as in the second embodiment.
  • the flexible electric wire 1 of the present embodiment is obtained by impregnating the corrugated copper fiber paper with silicone rubber and adhering it on the surface.
  • the flexible electric wire 1 of the present embodiment can be extended not only in the length direction but also in the width direction.
  • the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that a plurality of conductive structures 20A and 20B are arranged in the thickness direction.
  • two conductive structures 20A and 20B having a zigzag cross section are arranged so that their waveforms match.
  • the two conductive structures 20A and 20B need not be arranged so as to overlap at all parts.
  • Two or more corrugated copper fiber papers obtained in the second embodiment are laminated without changing the phase of the peaks and valleys, and then silicone rubber is impregnated and adhered to the surface in the same manner as in the second embodiment.
  • the flexible electric wire 1 of the present embodiment is obtained.
  • the flexible electric wire 1 of the present embodiment can be sufficiently extended in the length direction and has high disconnection resistance.
  • the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that a plurality of conductive structures 2 are arranged in the thickness direction.
  • two conductive structures 2 having a zigzag cross section are arranged so as to have their waveforms in opposite phases.
  • the two conductive structures 2 do not have to be in contact with each other, and may not be in contact with each other.
  • Two or more corrugated copper fiber papers obtained in the second embodiment are laminated so that the phases of the peaks and valleys are opposite to each other, and then silicone rubber is impregnated and adhered to the surface in the same manner as in the second embodiment.
  • the flexible electric wire 1 of the present embodiment can be obtained.
  • the flexible electric wire 1 of the present embodiment can be sufficiently extended in the length direction.
  • the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that the sheet-shaped conductive structure 2 is die-cut.
  • the sheet-shaped conductive structure 2 is die-cut into a bellows shape, but the present invention is not limited to this.
  • the flexible electric wire 1 may be die-cut into a desired shape in consideration of the flexibility and elasticity required for the flexible electric wire 1.
  • a method of manufacturing the flexible electric wire 1 of the present embodiment will be described.
  • the corrugated copper fiber paper obtained in the second embodiment was cut out in a flat bellows shape by a fiber laser.
  • the flexible electric wire 1 of the present embodiment is obtained by impregnating the copper fiber paper cut out in a flat bellows shape with silicone rubber and adhering it on the surface.
  • the flexible electric wire 1 of the present embodiment can be sufficiently extended in the length direction.
  • the cross sections of the conductive structures 21, 22, 23, 24, 25, 20A and 20B, and 20C and 20D are zigzag. Shape, but not limited to it.
  • the conductive structure has a sine curve shape (FIG. 9), a shape having a quadrangular convex portion and a quadrangular concave portion (FIG. 10), or a plurality of cross sections. It may have a shape formed of a right triangle (FIG. 11).
  • Examples 1-10 Copper fibers having the fiber diameter and fiber length shown in Table 1 below were dispersed in water, and a thickener, a dispersant, etc. were appropriately added to prepare a papermaking slurry.
  • the obtained papermaking slurry having a basis weight of 300 g / m 2 was put on a papermaking net, dehydrated under reduced pressure, and dried at 100 ° C. for 60 minutes to obtain copper fiber paper.
  • the obtained copper fiber paper was pressed at a linear pressure of 80 kg / cm at room temperature, and then heated at 1020 ° C. for 40 minutes in an atmosphere of 75% hydrogen gas and 25% nitrogen gas to partially gap the copper fibers. It was sintered.
  • the obtained copper fiber paper was cut into a size of 50 x 200 mm, a pair of gear-shaped emboss rolls meshed with male and female were attached to the embossing machine, and the copper fiber paper was passed between the male and female emboss rolls to cross-section.
  • Table 1 shows the wavelength, amplitude, width, and thickness of the corrugated copper fiber paper.
  • the corrugated copper fiber paper was impregnated with the silicone resin and then dried to provide an outer layer coating portion.
  • the thickness of the obtained flexible electric wire was 1.2 mm.
  • Comparative Examples 1 to 4 As shown in Table 2, as the material of the conductive structure, copper foil was used in Comparative Examples 1 and 4, perforated copper foil was used in Comparative Example 2, and copper wire (single wire) was used in Comparative Example 3. A flexible electric wire was obtained in the same manner as in Examples 1 to 10 except for the above.
  • the flexible electric wires obtained in Examples 1 to 10 and Comparative Examples 1 to 4 were evaluated as follows. The results are also shown in Table 1 or Table 2. (Evaluation of miniaturization)
  • the evaluation of miniaturization used the thickness of the sheet-shaped conductive structure before corrugating as an index.
  • the thickness of the conductive structure was preferably 0.5 mm or less, more than 0.5 mm, and 1.0 mm or less.
  • the obtained flexible electric wire is supported so as to be sandwiched from the vertical direction, bent by + 90 ° so as to contact the side surface of the upper support member from that state, and then contacted with the side surface of the lower support member. It was bent by -90 ° so as to.
  • the resistance change was 5% or less and the flexible electric wire or the conductive structure in the portion sandwiched between the support members was visually inspected, the number of bendings in which there was no significant change in appearance (no cracks or breaks) was examined. Those that cannot withstand 500 bending tests are not allowed, those that can withstand 1,000 or more and less than 2,000 bending tests are good, and those that can withstand 2,000 or more bending tests. To be excellent.
  • the obtained flexible electric wire is supported so as to be sandwiched from the vertical direction, twisted 90 ° (+ 90 °) clockwise from that state, returned to the original position (0 °), and then counterclockwise. Twisted 90 ° (-90 °).
  • the resistance change was 5% or less and the flexible electric wire or the conductive structure in the portion sandwiched between the support members was visually inspected, the number of twists without any significant change in appearance (no cracks or breaks) was examined.
  • the breaking resistance those that cannot withstand 500 times of tests are not allowed, those that can withstand 1,000 times of tests are good, and those that can withstand 2,000 or more times of tests are excellent.
  • FIG. 15 Sheet resistance value
  • the voltage and current of each piece were measured according to the individual piece resistance measurement procedure shown in FIG. 15, and the sheet resistance value was calculated from the following number 1 by the van der Pauw method.
  • reference numeral 1 indicates a flexible electric wire.
  • the black circles in FIG. 15 indicate the contacts between the wiring for resistance measurement and the conductive structure constituting the flexible electric wire. The contact may be formed by removing the outer layer coating portion by an arbitrary method or the like.
  • Voltmeter KEITHLEY DMM7510 7 1/2
  • DIGIT MULTIMETER manufactured by Tektronix
  • I AB includes an electrode A, when you connect DC power to the electrode B, and through the flexible wire means the magnitude of the current flowing from electrode A to electrode B.
  • VDC means the voltage between the power supply D and the power supply C when a DC power supply is connected to the electrode A and the electrode B.
  • RAB and CD mean the resistance of the flexible electric wire when the electrode A and the DC power supply are connected to the electrode B.
  • I BC includes an electrode B, when you connect DC power to the electrode C, and through the flexible wire means the magnitude of the current flowing from the electrode B to the electrode C.
  • V AD means an electrode B, when you connect DC power to the electrode C, and the voltage between the source A and source D.
  • RBC and DA mean the resistance of the flexible electric wire when the electrode B and the DC power supply are connected to the electrode C.
  • f means a factor related to the correction of current wraparound due to the difference in resistance value.
  • the flexible electric wires of Examples 1 to 10 in which the silicone resin as the outer layer coating portion is filled between the plurality of metal fibers forming the conductive structure are the same as the flexible electric wires of Comparative Examples 1 to 4.
  • the balance between the flexibility and the disconnection resistance is excellent even though the sheet resistance value is not a problem in practical use.
  • the flexible electric wire of the present invention is suitably used for wiring of devices having a bent portion such as bending and stretching, such as body-worn devices and clothes-worn devices, including the robot field.
  • devices having a bent portion such as bending and stretching
  • body-worn devices and clothes-worn devices including the robot field.
  • humanoid robots internal wiring, outer wiring
  • power assist devices wearable electronic devices, etc.
  • it is preferably used for rehabilitation aids, vital data measuring devices, motion capture, game controllers, microphones, headphones, etc., and is particularly suitable for applications where the presence of wiring is not desired to be noticed.

Landscapes

  • Insulated Conductors (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

In order to address the problem of providing a flexible wire that has superior flexibility, does not break easily, and can be made more compact (so as not to stand out), the present invention provides a flexible wire (1) comprising: a conductive structure (20) that includes a plurality of metal fibers, which are bound to one another in at least one section; and an outer layer covering section (3) that covers the conductive structure (20), wherein the outer layer covering section (3) is formed from a resin material that is filled in between the plurality of metal fibers making up the conductive structure (20).

Description

フレキシブル電線Flexible electric wire
 本発明は、フレキシブル電線に関する。 The present invention relates to a flexible electric wire.
 フレキシブル電線は、ロボット分野をはじめ、身体装着機器、衣服装着機器等、曲げ伸ばしなどの屈曲部を有する装置の配線に好適に使用されている。 Flexible electric wires are suitably used for wiring of devices having bent portions such as bending and stretching, such as body-mounted devices and clothes-wearing devices, including the robot field.
 フレキシブル電線としては、例えば、ロボット分野等に使用可能であって、芯部、導体部、被覆部等で構成されるフレキシブル電線がある(特許文献1)。
 また、多彩な動きに追随して変形し、断線しにくい電線として、1本以上の伸縮性導体が、柔軟性を有する樹脂成型体と一体化し、かつ所定の要件を満足させたフレキシブル電線も知られている(特許文献2)。
 さらには、伸縮させても断線し難い帯状伝送路として、弾性糸を有する伸縮性布帛に絶縁体で被覆された導体線をジグザグ状に配する手段も知られている(特許文献3)。
Examples of the flexible electric wire include a flexible electric wire that can be used in the field of robots and the like and is composed of a core portion, a conductor portion, a covering portion, and the like (Patent Document 1).
In addition, as an electric wire that deforms according to various movements and is hard to break, one or more elastic conductors are integrated with a flexible resin molded body, and a flexible electric wire that satisfies a predetermined requirement is also known. (Patent Document 2).
Further, as a band-shaped transmission line that is hard to be broken even if it is expanded and contracted, there is also known a means for arranging a conductor wire coated with an insulator on an elastic cloth having an elastic thread in a zigzag shape (Patent Document 3).
 このような屈曲部を有する装置に用いられるフレキシブル電線にあっては、特に優れた耐断線性が求められている。
 特許文献1は、小荷重に対しても伸縮性を発揮するために、導体線は少なくとも2本以上の細線の集合体であることが必要である。つまり、複線化により耐断線性を高めている。
 特許文献2は、複数本の導体と、樹脂成形体の伸長力と、導体の伸長時長さとの関係を調整することで耐断線性を確保している。
 特許文献3では、ジグザグ状に配した導体線と伸縮性布帛との関係において耐断線性を担保している。
Flexible electric wires used in devices having such bent portions are required to have particularly excellent disconnection resistance.
Patent Document 1 requires that the conductor wire be an aggregate of at least two or more thin wires in order to exhibit elasticity even with a small load. In other words, the wire break resistance is improved by double tracking.
Patent Document 2 secures disconnection resistance by adjusting the relationship between the elongation force of a plurality of conductors and a resin molded body and the elongation length of the conductors.
In Patent Document 3, disconnection resistance is ensured in the relationship between the conductor wires arranged in a zigzag shape and the stretchable fabric.
国際公開第2008/078780号International Publication No. 2008/07780 特開2009-266401号公報JP-A-2009-266401 特開2014-229568号公報Japanese Unexamined Patent Publication No. 2014-229568
 すなわち、中実な導体細線を導体として使用する限り、複数の導体細線を用いたり、樹脂成形体の伸長力と、導体の伸長時長さとの関係を調整したりすることで、耐断線性を得ているのが現状である。
 また、このような構成において、耐断線性を確保しつつ、導体の単芯化及び、小型化(目立たないようにすること)は実質的に不可能であった。
 特に、中実な導体細線を導体として使用すると、中実な導体細線は曲げ応力が1点に集中しやすいため、導体の単芯化及び、小型化には限界があった。
That is, as long as a solid conductor thin wire is used as a conductor, disconnection resistance can be improved by using a plurality of conductor thin wires or adjusting the relationship between the elongation force of the resin molded body and the elongation length of the conductor. The current situation is that we are getting it.
Further, in such a configuration, it is practically impossible to make the conductor single-core and miniaturize (make it inconspicuous) while ensuring the disconnection resistance.
In particular, when a solid conductor thin wire is used as a conductor, the bending stress of the solid conductor thin wire tends to be concentrated at one point, so that there is a limit to the single core and miniaturization of the conductor.
 本発明は上記事情に鑑みてなされたものであり、十分な屈曲性を有するとともに、断線し難く、小型化(目立たないようにすること)が可能なフレキシブル電線を提供することを課題とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a flexible electric wire which has sufficient flexibility, is hard to break, and can be miniaturized (made inconspicuous).
 上記課題を解決するために、本発明は、以下のフレキシブル電線を提供する。
(1)少なくとも一部が互いに結着された複数の金属繊維を含む導電構造体と、
 前記導電構造体を覆う外層被覆部とを備え、
 前記外層被覆部は、導電構造体をなす複数の金属繊維の間に充填された樹脂材料で形成されるフレキシブル電線。
(2)前記導電構造体の断面は波形である(1)に記載のフレキシブル電線。
(3)2以上の前記導電構造体を備えた(2)に記載のフレキシブル電線。
(4)前記導電構造体が切り込みを有する(1)~(3)いずれかに記載のフレキシブル電線。
(5)前記導電構造体がネット形状を有する(1)~(3)いずれかに記載のフレキシブル電線。
In order to solve the above problems, the present invention provides the following flexible electric wires.
(1) A conductive structure containing a plurality of metal fibers, at least partially bonded to each other,
It is provided with an outer layer coating portion that covers the conductive structure.
The outer layer coating portion is a flexible electric wire formed of a resin material filled between a plurality of metal fibers forming a conductive structure.
(2) The flexible electric wire according to (1), wherein the cross section of the conductive structure is corrugated.
(3) The flexible electric wire according to (2), which includes two or more of the conductive structures.
(4) The flexible electric wire according to any one of (1) to (3), wherein the conductive structure has a notch.
(5) The flexible electric wire according to any one of (1) to (3), wherein the conductive structure has a net shape.
 本発明によれば、優れた屈曲性を有し、断線し難く、小型化(目立たないようにすること)が可能なフレキシブル電線を提供することができる。 According to the present invention, it is possible to provide a flexible electric wire having excellent flexibility, which is hard to break, and which can be miniaturized (make it inconspicuous).
第一実施形態のフレキシブル電線を示す斜視図である。It is a perspective view which shows the flexible electric wire of 1st Embodiment. 第二実施形態のフレキシブル電線が具備する導電構造体を説明するための図であり、平面視した場合の導電構造体の形状を示す図である。It is a figure for demonstrating the conductive structure provided by the flexible electric wire of the 2nd Embodiment, and is the figure which shows the shape of the conductive structure when viewed in a plan view. 第三実施形態のフレキシブル電線が具備する導電構造体を説明するための図であり、平面視した場合の導電構造体の形状を示す図である。It is a figure for demonstrating the conductive structure provided by the flexible electric wire of the 3rd Embodiment, and is the figure which shows the shape of the conductive structure when viewed in a plan view. 第四実施形態のフレキシブル電線が具備する導電構造体を説明するための図であり、平面視した場合の導電構造体の形状を示す図である。It is a figure for demonstrating the conductive structure provided by the flexible electric wire of 4th Embodiment, and is the figure which shows the shape of the conductive structure when viewed in a plan view. 第五実施形態のフレキシブル電線が具備する導電構造体を説明するための図であり、平面視した場合の導電構造体の形状を示す図である。It is a figure for demonstrating the conductive structure provided in the flexible electric wire of the 5th Embodiment, and is the figure which shows the shape of the conductive structure when viewed in a plan view. 第六実施形態のフレキシブル電線が具備する導電構造体を説明するための図であり、平面視した場合の導電構造体の形状を示す図である。It is a figure for demonstrating the conductive structure provided in the flexible electric wire of the sixth embodiment, and is the figure which shows the shape of the conductive structure when viewed in a plan view. 第七実施形態のフレキシブル電線が具備する導電構造体を説明するための図であり、その長さ方向に沿って断面視した場合の導電構造体の形状を示す図である。It is a figure for demonstrating the conductive structure provided by the flexible electric wire of 7th Embodiment, and is the figure which shows the shape of the conductive structure when cross-sectional view is seen along the length direction thereof. 第八実施形態のフレキシブル電線が具備する導電構造体を説明するための図であり、その長さ方向に沿って断面視した場合の導電構造体の形状を示す図である。It is a figure for demonstrating the conductive structure provided in the flexible electric wire of 8th Embodiment, and is the figure which shows the shape of the conductive structure when cross-sectional view is seen along the length direction thereof. フレキシブル電線をその長さ方向に沿って断面視した場合の導電構造体の他の形状を示す図である。It is a figure which shows the other shape of the conductive structure when the flexible electric wire is cross-sectionally viewed along the length direction. フレキシブル電線をその長さ方向に沿って断面視した場合の導電構造体の他の形状を示す図である。It is a figure which shows the other shape of the conductive structure when the flexible electric wire is cross-sectionally viewed along the length direction. フレキシブル電線をその長さ方向に沿って断面視した場合の導電構造体の他の形状を示す図である。It is a figure which shows the other shape of the conductive structure when the flexible electric wire is cross-sectionally viewed along the length direction. 第九実施形態のフレキシブル電線が具備する導電構造体を説明するための図であり、平面視した場合の導電構造体の形状を示す図である。It is a figure for demonstrating the conductive structure provided by the flexible electric wire of the 9th Embodiment, and is the figure which shows the shape of the conductive structure when viewed in a plan view. フレキシブル電線の屈曲性の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of the flexibility of a flexible electric wire. フレキシブル電線の耐破断性の評価方法を説明するための図である。It is a figure for demonstrating the evaluation method of the fracture resistance of a flexible electric wire. フレキシブル電線のシート抵抗値の測定方法を説明するための図である。It is a figure for demonstrating the measuring method of the sheet resistance value of a flexible electric wire.
 「平均繊維径」とは、顕微鏡で撮像された導電構造体の任意の複数の箇所における垂直断面に基づいて、金属繊維の長手方向に垂直な断面積を公知の計算手法で算出し、当該断面積と同一面積を有する真円の直径を算出することにより導かれた面積径の相加平均値である。上記複数の箇所は、例えば、20箇所とすることができる。
 「平均繊維長」とは、顕微鏡でランダムに選択した複数本の金属繊維の長手方向の長さを測定した値の相加平均値である。繊維が直線状でない場合には、繊維に沿った曲線の長さとする。上記複数本は、例えば、20本とすることができる。
The "mean fiber diameter" is a cross-sectional area perpendicular to the longitudinal direction of a metal fiber calculated by a known calculation method based on a vertical cross section at any plurality of points of the conductive structure imaged with a microscope. It is an additive mean value of the area diameter derived by calculating the diameter of a perfect circle having the same area as the area. The plurality of locations may be, for example, 20 locations.
The "average fiber length" is an arithmetic mean value obtained by measuring the lengths of a plurality of metal fibers randomly selected with a microscope in the longitudinal direction. If the fiber is not straight, it shall be the length of the curve along the fiber. The plurality of lines may be, for example, 20 lines.
 「占積率」とは、導電構造体の体積に対して繊維が存在する部分の割合で、導電構造体の坪量、厚み、及び繊維の真密度から以下の式により算出される。導電構造体が複数の種類の繊維を含む場合には、各繊維の組成比率を反映した真密度値を採用することで占積率を算出することができる。
 (占積率(%))=(導電構造体の坪量)/((導電構造体の厚み)×(真密度))×100
 「導電構造体の厚み」とは、空気による端子落下方式の膜厚計(例えば、ミツトヨ社製「デジマチックインジケータID-C112X」等)で、例えば、導電構造体の任意の20測定点を測定した場合の相加平均値であってもよいし、電子顕微鏡等で断面観察を行った際の導電構造体の垂直断面を、例えば20測定点測定した場合の相加平均値であってもよい。
 「均質性」とは、金属繊維で構成される導電構造体の電気特性、物理特性などの特性の導電構造体におけるバラツキが少ないことを意味する。均質性の指標として、例えば、1cm当たりのJIS Z8101に規定する坪量の変動係数(CV値)を採用することができる。
 「空隙率」とは、導電構造体の体積に対して空隙が存在する部分の割合で、導電構造体の坪量、厚み、及び金属繊維の真密度から以下の式により算出される。導電構造体が複数の種類の繊維を含む場合には、各繊維の組成比率を反映した真密度値を採用することで占積率を算出することができる。
 (空隙率(%))= (1-(導電構造体の坪量)/((導電構造体の厚み)×(真密度)))×100
The "space factor" is the ratio of the portion where the fiber exists to the volume of the conductive structure, and is calculated by the following formula from the basis weight, thickness, and true density of the fiber of the conductive structure. When the conductive structure contains a plurality of types of fibers, the space factor can be calculated by adopting a true density value that reflects the composition ratio of each fiber.
(Space factor (%)) = (Basis weight of conductive structure) / ((Thickness of conductive structure) x (True density)) x 100
The "thickness of the conductive structure" is, for example, measuring any 20 measurement points of the conductive structure with a film thickness meter of the terminal drop type by air (for example, "Digimatic Indicator ID-C112X" manufactured by Mitutoyo Co., Ltd.). It may be the additive average value in the case of the above, or it may be the additive average value when the vertical cross section of the conductive structure when the cross section is observed with an electron microscope or the like is measured at 20 measurement points, for example. ..
“Homogeneity” means that there is little variation in the electrical characteristics, physical characteristics, and other characteristics of the conductive structure composed of metal fibers. As an index of homogeneity, for example, the coefficient of variation (CV value) of the basis weight specified in JIS Z8101 per 1 cm 2 can be adopted.
The "porosity" is the ratio of the portion where the void exists to the volume of the conductive structure, and is calculated by the following formula from the basis weight, the thickness, and the true density of the metal fiber of the conductive structure. When the conductive structure contains a plurality of types of fibers, the space factor can be calculated by adopting a true density value that reflects the composition ratio of each fiber.
(Porosity (%)) = (1- (Basis weight of conductive structure) / ((Thickness of conductive structure) x (True density))) x 100
 以下、図面を用いて本発明のフレキシブル電線を詳細に説明する。
(第一実施形態)
 図1に示されるように、本実施形態のフレキシブル電線1は、少なくとも一部が互いに結着された複数の金属繊維を含む導電構造体20と、前記導電構造体20を覆う外層被覆部3とから概略構成されている。
 また、前記外層被覆部3は、導電構造体20をなす複数の金属繊維の間に樹脂材料を充填することで導電構造体20の少なくとも表面に形成されている。
 以下フレキシブル電線をなす導電構造体20および外層被覆部3について詳細に説明する。
Hereinafter, the flexible electric wire of the present invention will be described in detail with reference to the drawings.
(First Embodiment)
As shown in FIG. 1, the flexible electric wire 1 of the present embodiment includes a conductive structure 20 including a plurality of metal fibers in which at least a part thereof is bonded to each other, and an outer layer covering portion 3 covering the conductive structure 20. It is roughly composed of.
Further, the outer layer covering portion 3 is formed on at least the surface of the conductive structure 20 by filling a resin material between a plurality of metal fibers forming the conductive structure 20.
Hereinafter, the conductive structure 20 and the outer layer covering portion 3 forming the flexible electric wire will be described in detail.
(導電構造体)
 導電構造体20は、単独組成の金属繊維で構成されていてもよく、2種類以上の金属繊維を併用して構成されていてもよい。または、有機物繊維の周りを金属で被覆された金属被覆繊維あるいは金属被覆繊維を含有する構造体で構成されていてもよい。
 金属被覆繊維は、金属被覆された有機物繊維を抄紙してから繊維間を融着しても良く、有機物繊維を抄紙してから金属被覆しても良い。
 本発明において 「金属繊維」とは、金属を主成分とする繊維を意味する。例えば「銅繊維」とは、銅を主成分とする繊維を意味する。銅を主成分とするとは、不可避的不純物を含め、本発明の効果を妨げない限り、その他の成分を一定量含んでいてもよい状態を意味する。
 金属繊維を構成する金属成分としては、銅、ステンレス、鉄、アルミニウム、ニッケル、及びクロム等が挙げられるが特に制限されない。前記金属成分は、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、及びオスミウム等の貴金属であってもよい。これらの中でも金属繊維を構成する金属成分としては、銅、ステンレス、及びアルミニウムが好ましい。特に、銅繊維は、剛直性と塑性変形性とのバランスに優れるため好ましい。
(Conductive structure)
The conductive structure 20 may be composed of metal fibers having a single composition, or may be composed of two or more types of metal fibers in combination. Alternatively, it may be composed of a metal-coated fiber in which the circumference of the organic fiber is coated with a metal or a structure containing the metal-coated fiber.
As the metal-coated fibers, the metal-coated organic fibers may be made into paper and then fused between the fibers, or the organic fibers may be made into paper and then metal-coated.
In the present invention, the "metal fiber" means a fiber containing a metal as a main component. For example, "copper fiber" means a fiber containing copper as a main component. The term "copper as a main component" means a state in which a certain amount of other components may be contained, including unavoidable impurities, as long as the effects of the present invention are not impaired.
Examples of the metal component constituting the metal fiber include copper, stainless steel, iron, aluminum, nickel, chromium and the like, but are not particularly limited. The metal component may be a noble metal such as gold, platinum, silver, palladium, rhodium, iridium, ruthenium, and osmium. Among these, copper, stainless steel, and aluminum are preferable as the metal component constituting the metal fiber. In particular, copper fiber is preferable because it has an excellent balance between rigidity and plastic deformability.
 金属以外の成分としては、ポリエチレンテレフタラート(PET)樹脂、ポリビニルアルコール(PVA)、ポリエチレン、及びポリプロピレン等のポリオレフィン、ポリ塩化ビニル樹脂、アラミド樹脂、ナイロン、及びアクリル樹脂、並びにこれらの繊維状物等の結着性、及び担持性を有する有機物等が挙げられる。これらの有機物は、例えば導電構造体20を作製する時の形態維持性、及び機能性を補助・向上させるため等に用いることができる。 Examples of components other than metal include polyethylene terephthalate (PET) resin, polyvinyl alcohol (PVA), polyethylene, and polyolefins such as polypropylene, polyvinyl chloride resin, aramid resin, nylon, acrylic resin, and fibrous materials thereof. Examples thereof include organic substances having a binding property and a supporting property. These organic substances can be used, for example, to assist / improve the morphological maintainability and functionality when the conductive structure 20 is produced.
 導電構造体20をなす金属繊維は部分的に結着されている。金属繊維が結着されているとは、金属繊維同士が物理的に固定され、結着部を形成していることを意味する。導電構造体20は、金属繊維同士が結着部で直接的に固定されていてもよいし、金属繊維の一部同士が、上記金属成分以外の成分を介して間接的に固定されていてもよい。
 例えば、金属繊維が焼結されて結着していると、導電構造体20の熱伝導性、及び均質性が安定し、ひいては優れた屈曲性および耐断線性を得やすい。
 複数の金属繊維が結着されていると、金属繊維間に空隙が形成され得る。導電構造体20が結着による複数の固定部と、当該空隙を備えることにより、導電構造体20をなす金属繊維が変形し、これによりフレキシブル電線1自体が変形、収縮、または伸長でき、優れた屈曲性を得ることができる。  
The metal fibers forming the conductive structure 20 are partially bonded. The fact that the metal fibers are bound means that the metal fibers are physically fixed to each other to form a binding portion. In the conductive structure 20, the metal fibers may be directly fixed to each other at the binding portion, or a part of the metal fibers may be indirectly fixed to each other via a component other than the above metal component. Good.
For example, when the metal fibers are sintered and bonded, the thermal conductivity and homogeneity of the conductive structure 20 are stable, and it is easy to obtain excellent flexibility and disconnection resistance.
When a plurality of metal fibers are bound together, voids may be formed between the metal fibers. When the conductive structure 20 is provided with a plurality of fixed portions by binding and the gap, the metal fibers forming the conductive structure 20 are deformed, whereby the flexible electric wire 1 itself can be deformed, contracted, or stretched, which is excellent. Flexibility can be obtained.
 導電構造体20の空隙率は、30%以上であることが好ましい。
 導電構造体20の空隙率が30%以上であれば、導電構造体20自体の形状を容易に維持でき、その内部に樹脂材料の充填に必要な適度な空隙を有する。
The porosity of the conductive structure 20 is preferably 30% or more.
When the porosity of the conductive structure 20 is 30% or more, the shape of the conductive structure 20 itself can be easily maintained, and an appropriate void necessary for filling the resin material is provided therein.
 導電構造体20のシート抵抗率はフレキシブル電線の通電条件によって設計されるものであり、限定されないが、100mΩ/□以下であることが好ましく、より好ましくは50mΩ/□以下、さらに好ましくは30mΩ/□以下、そして最も好ましくは10mΩ/□以下である。導電構造体のシート抵抗率が100mΩ/□以下であれば、フレキシブル電線1に通電した際の発熱を抑え易い。 The sheet resistivity of the conductive structure 20 is designed according to the energization conditions of the flexible electric wire, and is not limited, but is preferably 100 mΩ / □ or less, more preferably 50 mΩ / □ or less, and further preferably 30 mΩ / □. The following, and most preferably 10 mΩ / □ or less. When the sheet resistivity of the conductive structure is 100 mΩ / □ or less, it is easy to suppress heat generation when the flexible electric wire 1 is energized.
 導電構造体20の構造は、帯状であることが好ましい。例えば、帯状の導電構造体20は、金属繊維がランダムに結着している不織布であってもよく、規則性を有する織布、又はメッシュ材であってもよい。
 また、導電構造体20の表面は、平らであってもよく、コルゲート加工等が施され、凹凸を有していてもよく、特に制限されない。
The structure of the conductive structure 20 is preferably strip-shaped. For example, the strip-shaped conductive structure 20 may be a non-woven fabric in which metal fibers are randomly bonded, a woven fabric having regularity, or a mesh material.
Further, the surface of the conductive structure 20 may be flat, corrugated, etc., and may have irregularities, and is not particularly limited.
 また、導電構造体20の鉛直方向の厚みは、0.005mm~10mmの範囲であることが好ましく、より好ましくは5mm以下、さらに好ましくは1mm以下、そして最も好ましくは0.5mm以下である。導電構造体20の厚みが0.005mm以上であれば、フレキシブル電線1が変形した場合であっても断線し難い。導電構造体20の厚みが10mm以下であれば、優れた屈曲性を得やすい。
 導電構造体20の厚みは、後述するプレス工程で適宜調整することができる。
The vertical thickness of the conductive structure 20 is preferably in the range of 0.005 mm to 10 mm, more preferably 5 mm or less, further preferably 1 mm or less, and most preferably 0.5 mm or less. If the thickness of the conductive structure 20 is 0.005 mm or more, it is difficult to break the flexible electric wire 1 even if it is deformed. When the thickness of the conductive structure 20 is 10 mm or less, excellent flexibility can be easily obtained.
The thickness of the conductive structure 20 can be appropriately adjusted in a pressing process described later.
 導電構造体20の坪量は、10g/m~1,000g/mの範囲であることが好ましい。導電構造体20の坪量が10g/m以上であれば、所定の厚さを得ることができ、断線し難い。導電構造体20の坪量が1,000g/m以下であれば、導電構造体20を軽量化しやすくなり、ひいてはフレキシブル電線1を軽量化しやすい。 The basis weight of the conductive structure 20 is preferably in the range of 10 g / m 2 to 1,000 g / m 2 . When the basis weight of the conductive structure 20 is 10 g / m 2 or more, a predetermined thickness can be obtained and it is difficult to break the wire. When the basis weight of the conductive structure 20 is 1,000 g / m 2 or less, the weight of the conductive structure 20 can be easily reduced, and the weight of the flexible electric wire 1 can be easily reduced.
 金属繊維の平均繊維径は、本発明の効果を損なわない範囲で任意に設定することができる。金属繊維の平均繊維径は、0.1μm~100μmであることが好ましく、0.5μm~50μmであることがより好ましく、1~30μmであることがさらに好ましい。金属繊維の平均繊維径が0.1μm以上であれば、適度な導電金属繊維の剛直性が得られるため、導電構造体20を製造する際に所謂ダマが生じ難い。ダマが生じないと、導電構造体20の均質性が安定し易い。これにより優れた屈曲性および耐断線性を得やすい。金属繊維の平均繊維径が30μm以下であれば、適度な金属繊維の剛直性が得られるため、繊維の絡まりが発生し難い。 The average fiber diameter of the metal fiber can be arbitrarily set as long as the effect of the present invention is not impaired. The average fiber diameter of the metal fibers is preferably 0.1 μm to 100 μm, more preferably 0.5 μm to 50 μm, and even more preferably 1 to 30 μm. When the average fiber diameter of the metal fibers is 0.1 μm or more, appropriate rigidity of the conductive metal fibers can be obtained, so that so-called lumps are unlikely to occur when the conductive structure 20 is manufactured. If no lumps occur, the homogeneity of the conductive structure 20 tends to be stable. This makes it easy to obtain excellent flexibility and disconnection resistance. When the average fiber diameter of the metal fibers is 30 μm or less, appropriate rigidity of the metal fibers can be obtained, so that entanglement of the fibers is unlikely to occur.
 金属繊維の長手方向に垂直な断面の形状は、任意の形状とすることができる。かかる断面の形状は、例えば、円形、楕円形、略四角形、及び不定形等のいずれの形状であってもよい。 The shape of the cross section perpendicular to the longitudinal direction of the metal fiber can be any shape. The shape of such a cross section may be any shape such as a circular shape, an elliptical shape, a substantially quadrangular shape, and an amorphous shape.
 金属繊維の平均繊維長は、本発明の効果を損なわない範囲で任意に設定することができる。金属繊維の平均繊維長は、0.1mm~10mmの範囲であることが好ましく、0.3mm~5mmの範囲であることがより好ましく、0.5~3mmであることがさらに好ましい。金属繊維の平均繊維長が0.1mm~10mmの範囲であれば、導電構造体20を抄造により得る場合であっても、均質性が安定しやすい。
 金属繊維のアスペクト比は、10~10,000であることが好ましい。アスペクト比が10以上であれば、金属繊維同士を部分的に結着し易く、フレキシブル電線1の適度な強度を保つことができる。一方、アスペクト比が10,000以下であれば、導電構造体20の優れた均質性を得やすく、ひいては優れた屈曲性を得易い。
The average fiber length of the metal fiber can be arbitrarily set as long as the effect of the present invention is not impaired. The average fiber length of the metal fibers is preferably in the range of 0.1 mm to 10 mm, more preferably in the range of 0.3 mm to 5 mm, and even more preferably in the range of 0.5 to 3 mm. When the average fiber length of the metal fibers is in the range of 0.1 mm to 10 mm, the homogeneity is likely to be stable even when the conductive structure 20 is obtained by papermaking.
The aspect ratio of the metal fiber is preferably 10 to 10,000. When the aspect ratio is 10 or more, the metal fibers can be easily partially bonded to each other, and the flexible electric wire 1 can maintain an appropriate strength. On the other hand, when the aspect ratio is 10,000 or less, it is easy to obtain excellent homogeneity of the conductive structure 20, and by extension, it is easy to obtain excellent flexibility.
 導電構造体20の占積率は、70%以下であることが好ましく、50%以下であることがより好ましく、30%以下であることがさらに好ましい。占積率が70%以下であれば、導電構造体20の柔軟性を維持でき、また樹脂材料を均一に充填できる。 The space factor of the conductive structure 20 is preferably 70% or less, more preferably 50% or less, and further preferably 30% or less. When the space factor is 70% or less, the flexibility of the conductive structure 20 can be maintained, and the resin material can be uniformly filled.
 導電構造体20の1cm当たりのJIS Z8101に規定する坪量の変動係数(CV値)は、10%以下であることが好ましい。坪量は、単位体積当たりの重量を示す指標であるから、坪量の変動係数が一定の値以下であることは、導電構造体20の占積率についても安定した値であるといえる。すなわち、導電構造体20の坪量の変動係数が10%以下であれば、導電構造体20に極端なサイズのダマ、及び空隙が存在しにくく、導電構造体20の均質性が優れ、フレキシブル電線1の優れた屈曲性および耐断線性を得やすい。 The coefficient of variation (CV value) of the basis weight specified in JIS Z8101 per 1 cm 2 of the conductive structure 20 is preferably 10% or less. Since the basis weight is an index indicating the weight per unit volume, it can be said that the coefficient of variation of the basis weight is not more than a certain value, which is also a stable value for the space factor of the conductive structure 20. That is, when the coefficient of variation of the basis weight of the conductive structure 20 is 10% or less, the conductive structure 20 is less likely to have lumps and voids of an extreme size, the conductivity of the conductive structure 20 is excellent, and the flexible electric wire is used. It is easy to obtain the excellent flexibility and disconnection resistance of 1.
(外層被覆部)
 外層被覆部3は、上記導電構造体20をなす複数の金属繊維の間に樹脂材料を、導電構造体20を覆うように、少なくとも部分的に充填することで得られる。外層被覆部3をなす樹脂材料は導電構造体20の外周面のみに充填されてもよいが、導電構造体20全体に充填されてもよい。
 外層被覆部3が導電構造体20の外周面のみに充填されている場合、フレキシブル電線の内部に熱伝導性の悪い空気が残存し、外周面が樹脂材料で断熱されているため、一定温度に電線を保温したい場合等に有利である。また、外層被覆部3が導電構造体20全体に充填されている場合、フレキシブル電線が伸ばされた後に、縮む力を得やすい。
 なお、外層被覆部3の厚さは、好ましくは導電構造体20の厚みの0.3~1万倍、より好ましくは1~1、000倍、さらに好ましくは2~100倍である。
 外層被覆部3をなす樹脂材料としては、絶縁性および柔軟性を有する公知の樹脂材料を使用することができる。
 例えば、ポリメタクリル酸、及びポリシアノアクリル酸(ポリシアノアクリレート)等のポリアクリル酸樹脂;ポリビニルピロリドン樹脂;ポリエチレンテレフタラート等のポリエステル樹脂;ポリプロピレン樹脂;ポリテトラフルオロエチレン等のフッ素樹脂;ポリイミド樹脂;アラミドを含むポリアミド樹脂;ポリパラフェニレンベンゾビスオキサゾール樹脂、シリコーン樹脂、シリコーンゴム、フッ素ゴム、アクリルゴム等を挙げることができる。これら樹脂は1種類で用いることもできるし、2種以上を混合して用いることもできる。
 これらの中でも、導電構造体20が変形した際の追随性を考慮すると、シリコーンまたはフッ素系樹脂またはアクリルゴムなどが好ましい。
(Outer layer coating)
The outer layer coating portion 3 is obtained by at least partially filling the resin material between the plurality of metal fibers forming the conductive structure 20 so as to cover the conductive structure 20. The resin material forming the outer layer coating portion 3 may be filled only on the outer peripheral surface of the conductive structure 20, but may be filled on the entire conductive structure 20.
When the outer layer coating portion 3 is filled only on the outer peripheral surface of the conductive structure 20, air having poor thermal conductivity remains inside the flexible electric wire, and the outer peripheral surface is insulated with a resin material, so that the temperature is kept constant. This is advantageous when you want to keep the electric wire warm. Further, when the outer layer covering portion 3 is filled in the entire conductive structure 20, it is easy to obtain a contracting force after the flexible electric wire is stretched.
The thickness of the outer layer covering portion 3 is preferably 0.3 to 10,000 times, more preferably 1 to 1,000 times, still more preferably 2 to 100 times the thickness of the conductive structure 20.
As the resin material forming the outer layer coating portion 3, a known resin material having insulating properties and flexibility can be used.
For example, polyacrylic acid resin such as polymethacrylic acid and polycyanoacrylate (polycyanoacrylate); polyvinylpyrrolidone resin; polyester resin such as polyethylene terephthalate; polypropylene resin; fluororesin such as polytetrafluoroethylene; polyimide resin; Polyamide resin containing aramid; polyparaphenylene benzobisoxazole resin, silicone resin, silicone rubber, fluororubber, acrylic rubber and the like can be mentioned. These resins can be used alone or in admixture of two or more.
Among these, silicone, a fluororesin, acrylic rubber, or the like is preferable in consideration of the followability when the conductive structure 20 is deformed.
 次に、本実施形態のフレキシブル電線の製造方法を説明する。
 まず、導電構造体20を製造する。
 導電構造体20を製造する方法としては、圧縮成形等による乾式法、及び湿式抄造法で抄紙する方法等が挙げられる。
 乾式法により、導電構造体20を得る場合には、カード法、及びエアレイド法等により得られた金属繊維を主体とするウェブを圧縮成形する。圧縮成形する際、バインダーを金属繊維に含浸させることで金属繊維同士を部分的に結着させることができる。かかるバインダーとしては、アクリル系接着剤等の公知の有機バインダー、及びコロイダルシリカ等の公知の無機質バインダーを用いることができる。上記工程の後、得られた導電構造体20を焼結等して、金属繊維同士を結着させてもよい。
Next, a method of manufacturing the flexible electric wire of the present embodiment will be described.
First, the conductive structure 20 is manufactured.
Examples of the method for producing the conductive structure 20 include a dry method by compression molding and the like, a method of papermaking by a wet papermaking method, and the like.
When the conductive structure 20 is obtained by the dry method, a web mainly composed of metal fibers obtained by the card method, the airlaid method, or the like is compression-molded. At the time of compression molding, the metal fibers can be partially bonded to each other by impregnating the metal fibers with a binder. As such a binder, a known organic binder such as an acrylic adhesive and a known inorganic binder such as colloidal silica can be used. After the above step, the obtained conductive structure 20 may be sintered or the like to bind the metal fibers to each other.
 湿式抄造法により導電構造体20を製造する場合には、金属繊維等が水性媒体に分散しているスラリーを用いて、抄紙機にて湿式抄造を行うことができる。
 水性媒体としては、通常は水であるが、アルコール等水溶性の溶剤等を添加することもできる。また、上記のスラリーには、填料、分散剤、増粘剤、消泡剤、紙力増強剤、サイズ剤、凝集剤、着色剤、及び定着剤等の公知の添加剤を適宜添加することができる。
 湿式抄造法では、金属繊維等を互いに部分的に結着させる結着点形成工程を実施してもよい。結着点形成工程としては、湿体テープ面に高圧ジェット水流を噴射する方法を採用することができる。この工程を経た後に、湿体シート(導電構造体)は、ドライヤー工程を経て巻取り等される。
When the conductive structure 20 is manufactured by the wet papermaking method, wet papermaking can be performed with a paper machine using a slurry in which metal fibers and the like are dispersed in an aqueous medium.
The aqueous medium is usually water, but a water-soluble solvent such as alcohol can be added. Further, known additives such as fillers, dispersants, thickeners, defoamers, paper strength enhancers, sizing agents, coagulants, colorants, and fixing agents may be appropriately added to the above slurry. it can.
In the wet papermaking method, a binding point forming step of partially binding metal fibers and the like to each other may be carried out. As the binding point forming step, a method of injecting a high-pressure jet water stream onto the wet body tape surface can be adopted. After passing through this step, the wet body sheet (conductive structure) is wound up through a dryer step.
 湿式抄造法では、結着点形成工程とドライヤー工程との前に、プレス工程を実施することができる。プレス工程を実施することで、金属繊維間に形成されている極端に大きな空隙を減らし、均質性を高めることができる。また、プレス工程の際に、プレス時の圧力を適宜調整することにより、導電構造体20の厚みを調整することができる。例えば、厚み170μm程度の導電構造体20を製造する場合、線圧300kg/cm未満で加圧することにより、導電構造体20の均質性ひいては屈曲性および耐断線性を向上させることができる。 In the wet papermaking method, the pressing process can be performed before the binding point forming process and the dryer process. By carrying out the pressing process, extremely large voids formed between the metal fibers can be reduced and homogeneity can be improved. In addition, the thickness of the conductive structure 20 can be adjusted by appropriately adjusting the pressure at the time of pressing during the pressing process. For example, in the case of producing a conductive structure 20 having a thickness of about 170 μm, the homogeneity of the conductive structure 20 and thus the flexibility and disconnection resistance can be improved by applying pressure at a linear pressure of less than 300 kg / cm.
 金属繊維等を結着させる方法としては、上記バインダーを使用する方法、および高圧ジェット水流を噴射する方法の他に、導電構造体20を焼結する方法がある。
 導電構造体20を焼結して金属繊維を部分的に結着することで、金属繊維等を確実に結着し、金属繊維間を固定することができるため、導電構造体20の坪量の変動係数(CV値)が安定しやすくなる。また、確実に結着部を設けることができるため、導電構造体20の安定した均質性、熱伝導性を確保しやすい。また、結着部が多数形成されるため、フレキシブル電線が曲げ応力を受けた時、応力の分散が成され、屈曲性を高め易い。
 焼結工程を経た導電構造体20は、さらにプレス工程を経ることが好ましい。焼結工程の後、さらにプレス工程を経ることで、導電構造体20の均質性がより向上しやすくなるとともに、導電構造体20を薄型化することができる。焼結後のプレス工程によって、厚み方向だけでなく、面方向にも金属繊維等のシフトが生じる。これにより焼結時には空隙であった箇所にも金属繊維等が配置され、均質性が向上し、かかる状態が金属繊維の有する塑性変形特性によって維持される。なお、焼結工程の後に実施されるプレス工程の圧力は、導電構造体20の厚みを考慮して適宜設定することができる。
As a method for binding metal fibers and the like, there is a method of sintering the conductive structure 20 in addition to the method of using the above binder and the method of injecting a high-pressure jet water stream.
By sintering the conductive structure 20 and partially binding the metal fibers, the metal fibers and the like can be reliably bound and the metal fibers can be fixed, so that the basis weight of the conductive structure 20 can be increased. The fluctuation coefficient (CV value) tends to be stable. Further, since the binding portion can be reliably provided, it is easy to secure stable homogeneity and thermal conductivity of the conductive structure 20. Further, since a large number of binding portions are formed, when the flexible electric wire receives bending stress, the stress is dispersed and the flexibility is easily improved.
It is preferable that the conductive structure 20 that has undergone the sintering step further undergoes a pressing step. By further passing through the pressing step after the sintering step, the homogeneity of the conductive structure 20 can be more easily improved, and the conductive structure 20 can be made thinner. The pressing process after sintering causes a shift of metal fibers and the like not only in the thickness direction but also in the surface direction. As a result, the metal fibers and the like are arranged even in the places that were voids at the time of sintering, the homogeneity is improved, and such a state is maintained by the plastic deformation characteristics of the metal fibers. The pressure in the pressing step performed after the sintering step can be appropriately set in consideration of the thickness of the conductive structure 20.
 導電構造体20が織布、メッシュ等からなる場合には、公知の製造方法を用いることができる。 When the conductive structure 20 is made of a woven cloth, a mesh, or the like, a known manufacturing method can be used.
 導電構造体20の断面を波形とする場合、得られた導電構造体20の断面が所望の形状となるように、エンボスマシン等を使用してプレス加工すればよい。例えば、一般的なエンボスマシンにオスメスで噛み合う1対の歯車状のエンボスロールを取り付け、オスメスのエンボスロールの間に導電構造体20を通過させることで、所望の断面形状を付与できる。 When the cross section of the conductive structure 20 has a corrugated shape, it may be press-processed using an embossing machine or the like so that the cross section of the obtained conductive structure 20 has a desired shape. For example, a desired cross-sectional shape can be imparted by attaching a pair of gear-shaped embossing rolls that mesh with each other to a general embossing machine and passing the conductive structure 20 between the male and female embossing rolls.
 次に、得られた導電構造体20を覆うように外層被覆部3を形成する。
 まず、フレキシブル電線1に求められる屈曲性を考慮して樹脂材料を選択する。
 ついで、得られた樹脂材料に導電構造体20を含浸させる。この時、使用する樹脂材料の粘度、含浸させる時間、硬化時間などを調整することで、導電構造体20の外周面のみを覆う外層被覆部3を形成できるし、導電構造体20の内部を含めた全体を外層被覆部3で覆うこともできる。さらには、外周面のみを覆う外層被覆部3を形成する場合の外層被覆部3の厚さも調整できる。
 また、導電構造体20の外周面のみを覆う外層被覆部3を形成する場合には、樹脂材料を導電構造体20の外周面に塗布してもよい。
 さらにまた、樹脂材料を用いてチューブ状の外層被覆層3を形成し、そのチューブ状の外層被覆層3を導電構造体20に被せ、次いで外層被覆層3に熱をかけ、外層被覆層3の内周側を一部溶融させ、導電構造体20をなす金属繊維の間に樹脂材料を充填させてもよい。例えば、導電構造体20を加熱することにより、外層被覆層3の内周側のみを溶融させ、導電構造体20をなす金属繊維の間に樹脂材料を充填させることもできる。
Next, the outer layer covering portion 3 is formed so as to cover the obtained conductive structure 20.
First, the resin material is selected in consideration of the flexibility required for the flexible electric wire 1.
Then, the obtained resin material is impregnated with the conductive structure 20. At this time, by adjusting the viscosity of the resin material to be used, the impregnation time, the curing time, etc., the outer layer covering portion 3 that covers only the outer peripheral surface of the conductive structure 20 can be formed, and the inside of the conductive structure 20 is included. The entire surface can be covered with the outer layer covering portion 3. Further, the thickness of the outer layer covering portion 3 when forming the outer layer covering portion 3 covering only the outer peripheral surface can be adjusted.
Further, when forming the outer layer covering portion 3 that covers only the outer peripheral surface of the conductive structure 20, a resin material may be applied to the outer peripheral surface of the conductive structure 20.
Furthermore, a tubular outer layer coating layer 3 is formed using a resin material, the tubular outer layer coating layer 3 is covered with the conductive structure 20, and then heat is applied to the outer layer coating layer 3 to form the outer layer coating layer 3. A resin material may be filled between the metal fibers forming the conductive structure 20 by partially melting the inner peripheral side. For example, by heating the conductive structure 20, only the inner peripheral side of the outer layer coating layer 3 is melted, and a resin material can be filled between the metal fibers forming the conductive structure 20.
 なお、フレキシブル電線に電極を設ける場合、電極は導電構造体20の端部に予め形成してもよいし、外部被覆部3を設けた後に貫通孔を設けそこに電極を形成してもよい。 When an electrode is provided on the flexible electric wire, the electrode may be formed in advance at the end of the conductive structure 20, or a through hole may be provided after the outer coating portion 3 is provided to form the electrode.
 本実施形態のフレキシブル電線1においては、導電構造体20の金属繊維が部分的に結着した三次元構造している。このように、導電構造体20の内部に導電構造体20を構成する材料が存在しない部分が形成されているため、導電構造体20が容易に変形、収縮、または伸長できる。さらに、外層被覆部3は、導電構造体20の変形、収縮、または伸長に追随することができる。
 また、フレキシブル電線1に加えられた曲げ応力は、上記金属繊維の結着点や個々の金属繊維に分散して吸収することができる。
 したがって、本実施形態のフレキシブル電線1は、優れた屈曲性を持つにもかかわらず、曲げ応力に対して高い耐断線性を有する。このため、高い断線性を保持したまま、凹凸が設けられた装置表面などにもその凹凸に沿うように配線することができる。
The flexible electric wire 1 of the present embodiment has a three-dimensional structure in which the metal fibers of the conductive structure 20 are partially bonded. As described above, since the portion where the material constituting the conductive structure 20 does not exist is formed inside the conductive structure 20, the conductive structure 20 can be easily deformed, contracted, or stretched. Further, the outer layer covering portion 3 can follow the deformation, contraction, or elongation of the conductive structure 20.
Further, the bending stress applied to the flexible electric wire 1 can be dispersed and absorbed at the binding points of the metal fibers and the individual metal fibers.
Therefore, although the flexible electric wire 1 of the present embodiment has excellent flexibility, it has high disconnection resistance against bending stress. Therefore, it is possible to wire along the unevenness on the surface of the device provided with the unevenness while maintaining high disconnection property.
(第二実施形態)
 図2に示されるように、本実施形態のフレキシブル電線1は、それが含有する導電構造体21の断面が波形である点で上記第一実施形態のフレキシブル電線と相違する。
 本実施形態のフレキシブル電線1の製造方法を説明する。
 まず、抄造法により銅繊維シートを得た後、焼結により銅繊維同士を部分的に結着させることで厚さ1.0mmの銅繊維ペーパーを得る。なお、銅繊維ペーパーは、例えばWO2018/131658号公報に記載の製造方法にて得ることができる。次いで得られた銅繊維ペーパーを50×200mmサイズにカットし、一般的なエンボスマシンにオスメスで噛み合う1対の歯車状のエンボスロールを取り付け、オスメスのエンボスロールの間に銅繊維ペーパーを通過させることで、断面が波形になるように波型加工する。例えば、山谷の高さが1mm、山と山の距離、ピッチが0.5mmになるように銅繊維ペーパーを波型加工できる。波型加工後の銅繊維ペーパーに刃物を使って切り込みを入れることで導電構造体21を得る。
 次いで導電構造体21の空隙にシリコーンゴムを含侵させ、さらに総厚が1.2mmになるように導電構造体21の表面上にもシリコーンゴムを付着させる。その後、真空脱泡により空気を極力除き、熱硬化する。
 これにより、本実施形態のフレキシブル電線1を得ることができる。
 本実施形態のフレキシブル電線1は、長さ方向だけでなく、幅方向にも延伸できる。
(Second Embodiment)
As shown in FIG. 2, the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the first embodiment in that the cross section of the conductive structure 21 contained therein is corrugated.
The manufacturing method of the flexible electric wire 1 of this embodiment will be described.
First, a copper fiber sheet is obtained by a papermaking method, and then the copper fibers are partially bonded to each other by sintering to obtain a copper fiber paper having a thickness of 1.0 mm. The copper fiber paper can be obtained, for example, by the production method described in WO2018 / 131658. Next, the obtained copper fiber paper is cut into a size of 50 x 200 mm, a pair of gear-shaped emboss rolls that mesh with male and female are attached to a general embossing machine, and the copper fiber paper is passed between the male and female emboss rolls. Then, the cross section is corrugated so that it becomes corrugated. For example, the copper fiber paper can be corrugated so that the height of the peaks and valleys is 1 mm, the distance between the peaks and the pitch are 0.5 mm. The conductive structure 21 is obtained by making a notch in the corrugated copper fiber paper using a cutting tool.
Next, the voids of the conductive structure 21 are impregnated with silicone rubber, and the silicone rubber is also adhered to the surface of the conductive structure 21 so that the total thickness is 1.2 mm. After that, air is removed as much as possible by vacuum defoaming, and thermosetting is performed.
As a result, the flexible electric wire 1 of the present embodiment can be obtained.
The flexible electric wire 1 of the present embodiment can be extended not only in the length direction but also in the width direction.
(第三実施形態)
 図3に示されるように、本実施形態のフレキシブル電線1は、導電構造体22に長手方向に沿って直線状の切込みが設けられている点で上記第二実施形態のフレキシブル電線と相違する。 
 導電構造体22が複数に分割されないように、長さ方向の上端部および下端部には切込みは設けられていない。本実施形態では導電構造体22に3本の切込み設けられているが、これには限定されない。フレキシブル電線1に求められる屈曲性、伸縮性を考慮して切込みの本数は決めることができる。 
 なお、切込みは導電構造体22を貫通して設けられていることが好ましいが、必ずしも貫通している必要はない。フレキシブル電線1に求められる屈曲性、伸縮性を考慮して、切込みの深さは適宜調整できる。
 次に、本実施形態のフレキシブル電線1の製造方法を説明する。
 本実施形態のフレキシブル電線1は、上記第二実施形態と同様に、銅繊維ペーパーを得た後、得られた銅繊維ペーパーを50×200mmにカットし、刃物を使って複数本の切り込みを入れ、次いで上記第二実施形態と同様に波型加工し、シリコーンゴムを含浸および表面上に付着させることで本実施形態のフレキシブル電線1が得られる。 
 本実施形態のフレキシブル電線1は、長さ方向だけでなく、幅方向にも延伸できる。
(Third Embodiment)
As shown in FIG. 3, the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that the conductive structure 22 is provided with a linear notch along the longitudinal direction.
Notches are not provided in the upper end and the lower end in the length direction so that the conductive structure 22 is not divided into a plurality of parts. In the present embodiment, the conductive structure 22 is provided with three notches, but the present invention is not limited to this. The number of cuts can be determined in consideration of the flexibility and elasticity required for the flexible electric wire 1.
It is preferable that the notch is provided through the conductive structure 22, but it is not always necessary to penetrate the notch. The depth of cut can be appropriately adjusted in consideration of the flexibility and elasticity required for the flexible electric wire 1.
Next, a method of manufacturing the flexible electric wire 1 of the present embodiment will be described.
In the flexible electric wire 1 of the present embodiment, similarly to the second embodiment, after obtaining the copper fiber paper, the obtained copper fiber paper is cut to 50 × 200 mm, and a plurality of cuts are made by using a cutting tool. Then, the flexible electric wire 1 of the present embodiment is obtained by corrugating in the same manner as in the second embodiment, impregnating with silicone rubber and adhering it on the surface.
The flexible electric wire 1 of the present embodiment can be extended not only in the length direction but also in the width direction.
(第四実施形態)
 図4に示されるように、本実施形態のフレキシブル電線1は、導電構造体23に長手方向に沿って破線状の切込みが設けられている点で上記第二実施形態のフレキシブル電線と相違する。
 導電構造体23が複数に分割されないように、破線状の切込みが設けられている。本実施形態では導電構造体23に3本の破線状の切込みが設けられているが、これには限定されない。フレキシブル電線1に求められる屈曲性を考慮して破断状の切込みの本数は決めることができる。また、フレキシブル電線1に求められる屈曲性を考慮して、切込みの長さおよび深さは適宜調整できる。
 次に、本実施形態のフレキシブル電線1の製造方法を説明する。
 本実施形態のフレキシブル電線1は、上記第二実施形態と同様に、銅繊維ペーパーを得た後、得られた銅繊維ペーパーを50×200mmにカットし、刃物を使って破断状の切り込みを入れる。次いで上記第二実施形態と同様に波型加工し、シリコーンゴムを含浸および表面上に付着させることで本実施形態のフレキシブル電線1が得られる。
 本実施形態のフレキシブル電線1は、長さ方向だけでなく、幅方向にも延伸できる。
(Fourth Embodiment)
As shown in FIG. 4, the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that the conductive structure 23 is provided with a broken line-shaped notch along the longitudinal direction.
A broken line-shaped notch is provided so that the conductive structure 23 is not divided into a plurality of parts. In the present embodiment, the conductive structure 23 is provided with three broken-line notches, but the present invention is not limited to this. The number of fractured cuts can be determined in consideration of the flexibility required for the flexible electric wire 1. Further, the length and depth of the cut can be appropriately adjusted in consideration of the flexibility required for the flexible electric wire 1.
Next, a method of manufacturing the flexible electric wire 1 of the present embodiment will be described.
In the flexible electric wire 1 of the present embodiment, similarly to the second embodiment, after obtaining the copper fiber paper, the obtained copper fiber paper is cut into a size of 50 × 200 mm, and a fractured cut is made using a cutting tool. .. Next, the flexible electric wire 1 of the present embodiment is obtained by corrugating in the same manner as in the second embodiment, impregnating with silicone rubber and adhering it on the surface.
The flexible electric wire 1 of the present embodiment can be extended not only in the length direction but also in the width direction.
(第五実施形態)
 図5に示されるように、本実施形態のフレキシブル電線1は、導電構造体24に外周に沿って四角らせん状に一本の切込みが設けられている点で上記第二実施形態のフレキシブル電線と相違する。
 導電構造体24に外周に沿って四角らせん状に一本の切込みが設けられているため、導電構造体24は複数に分割されていない。フレキシブル電線1に求められる屈曲性を考慮して、切込みと切込みとの間隔および切込みの深さは、適宜調整できる。
 次に、本実施形態のフレキシブル電線1の製造方法を説明する。
 本実施形態のフレキシブル電線1は、上記第二実施形態と同様に、銅繊維ペーパーを得た後、得られた銅繊維ペーパーを50×200mmにカットし、刃物を使って銅繊維ペーパーの外周に沿って四角らせん状に切り込みを入れる。次いで上記第二実施形態と同様に波型加工する。その後、波型加工後の銅繊維ペーパーにシリコーンゴムを含浸および表面上に付着させることで本実施形態のフレキシブル電線1が得られる。
 本実施形態のフレキシブル電線1は、長さ方向だけでなく、幅方向および厚み方向にも延伸できる。
(Fifth Embodiment)
As shown in FIG. 5, the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that the conductive structure 24 is provided with one notch in a square spiral shape along the outer circumference. It's different.
Since the conductive structure 24 is provided with one notch in a square spiral shape along the outer circumference, the conductive structure 24 is not divided into a plurality of parts. The interval between the cuts and the depth of the cuts can be appropriately adjusted in consideration of the flexibility required for the flexible electric wire 1.
Next, a method of manufacturing the flexible electric wire 1 of the present embodiment will be described.
In the flexible electric wire 1 of the present embodiment, similarly to the second embodiment, after obtaining the copper fiber paper, the obtained copper fiber paper is cut into a size of 50 × 200 mm, and a blade is used to cover the outer periphery of the copper fiber paper. Make a square spiral cut along it. Next, corrugated processing is performed in the same manner as in the second embodiment. Then, the flexible electric wire 1 of the present embodiment is obtained by impregnating the corrugated copper fiber paper with silicone rubber and adhering it on the surface.
The flexible electric wire 1 of the present embodiment can be extended not only in the length direction but also in the width direction and the thickness direction.
(第六実施形態)
 図6に示されるように、本実施形態のフレキシブル電線1は、導電構造体25がネット形状を有する点で上記第二実施形態のフレキシブル電線と相違する。
 本実施形態のフレキシブル電線1の製造方法を説明する。
 本実施形態のフレキシブル電線1を得るには、まず上記第二実施形態と同様に、導電構造体を得て、次いでファイバーレーザーによるパターンカットをする。次いで上記第二実施形態と同様に波形加工する。その後、波形加工後の銅繊維ペーパーにシリコーンゴムを含浸および表面上に付着させることで本実施形態のフレキシブル電線1が得られる。
 本実施形態のフレキシブル電線1は、長さ方向だけでなく、幅方向にも延伸できる。
(Sixth Embodiment)
As shown in FIG. 6, the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that the conductive structure 25 has a net shape.
The manufacturing method of the flexible electric wire 1 of this embodiment will be described.
In order to obtain the flexible electric wire 1 of the present embodiment, first, a conductive structure is obtained and then a pattern is cut by a fiber laser in the same manner as in the second embodiment. Next, the waveform is processed in the same manner as in the second embodiment. Then, the flexible electric wire 1 of the present embodiment is obtained by impregnating the corrugated copper fiber paper with silicone rubber and adhering it on the surface.
The flexible electric wire 1 of the present embodiment can be extended not only in the length direction but also in the width direction.
(第七実施形態)
 図7に示されるように、本実施形態のフレキシブル電線1は、厚さ方向に複数の導電構造体20Aおよび20Bが配置された点で上記第二実施形態のフレキシブル電線と相違する。
 本実施形態のフレキシブル電線1では、断面がジグザグ形状の導電構造体20Aおよび20Bがその波形が一致するように2枚重ねて配置されている。2枚の導電構造体20Aおよび20Bは、すべての部分で重なるように配置される必要はない。 
 次に、本実施形態のフレキシブル電線1の製造方法を説明する。
 上記第二実施形態で得られた波形加工した銅繊維ペーパーを山谷の位相を変えずに2枚以上積層し、次いで上記第二実施形態と同様にシリコーンゴムを含侵及び表面に付着させることで本実施形態のフレキシブル電線1が得られる。
 本実施形態のフレキシブル電線1は、長さ方向に十分に延伸でき、高い耐断線性を有する。
(Seventh Embodiment)
As shown in FIG. 7, the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that a plurality of conductive structures 20A and 20B are arranged in the thickness direction.
In the flexible electric wire 1 of the present embodiment, two conductive structures 20A and 20B having a zigzag cross section are arranged so that their waveforms match. The two conductive structures 20A and 20B need not be arranged so as to overlap at all parts.
Next, a method of manufacturing the flexible electric wire 1 of the present embodiment will be described.
Two or more corrugated copper fiber papers obtained in the second embodiment are laminated without changing the phase of the peaks and valleys, and then silicone rubber is impregnated and adhered to the surface in the same manner as in the second embodiment. The flexible electric wire 1 of the present embodiment is obtained.
The flexible electric wire 1 of the present embodiment can be sufficiently extended in the length direction and has high disconnection resistance.
(第八実施形態)
 図8に示されるように、本実施形態のフレキシブル電線1は、厚さ方向に複数の導電構造体2が配置された点で上記第二実施形態のフレキシブル電線と相違する。
 本実施形態のフレキシブル電線1では、断面がジグザグ形状の導電構造体2がその波形の位相が逆になるように2枚重ねて配置されている。2枚の導電構造体2は、接点同士が接している必要はなく、接してなくともよい。
 次に、本実施形態のフレキシブル電線1の製造方法を説明する。
 上記第二実施形態で得られた波形加工した銅繊維ペーパーを山谷の位相が逆向きになるように2枚以上積層し、次いで上記第二実施形態と同様にシリコーンゴムを含侵及び表面に付着させることで本実施形態のフレキシブル電線1が得られる。
 本実施形態のフレキシブル電線1は、長さ方向に十分に延伸できる。
(Eighth embodiment)
As shown in FIG. 8, the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that a plurality of conductive structures 2 are arranged in the thickness direction.
In the flexible electric wire 1 of the present embodiment, two conductive structures 2 having a zigzag cross section are arranged so as to have their waveforms in opposite phases. The two conductive structures 2 do not have to be in contact with each other, and may not be in contact with each other.
Next, a method of manufacturing the flexible electric wire 1 of the present embodiment will be described.
Two or more corrugated copper fiber papers obtained in the second embodiment are laminated so that the phases of the peaks and valleys are opposite to each other, and then silicone rubber is impregnated and adhered to the surface in the same manner as in the second embodiment. By doing so, the flexible electric wire 1 of the present embodiment can be obtained.
The flexible electric wire 1 of the present embodiment can be sufficiently extended in the length direction.
(第九実施形態)
 図12に示されるように、本実施形態のフレキシブル電線1は、シート状の導電構造体2を型抜きした点で上記第二実施形態のフレキシブル電線と相違する。
 本実施形態では、シート状の導電構造体2を蛇腹状に型抜きしたが、これには限定されない。フレキシブル電線1に求められる屈曲性、伸縮性を考慮して所望の形状に型抜きすればよい。
 次に、本実施形態のフレキシブル電線1の製造方法を説明する。
 上記第二実施形態で得られた波形加工した銅繊維ペーパーをファイバーレーザーで平面蛇腹状に切り出した。その後、上記第二実施形態と同様に、平面蛇腹状に切り出した銅繊維ペーパーにシリコーンゴムを含浸および表面上に付着させることで本実施形態のフレキシブル電線1が得られる。
 本実施形態のフレキシブル電線1は、長さ方向に十分に延伸できる。
(Ninth Embodiment)
As shown in FIG. 12, the flexible electric wire 1 of the present embodiment is different from the flexible electric wire of the second embodiment in that the sheet-shaped conductive structure 2 is die-cut.
In the present embodiment, the sheet-shaped conductive structure 2 is die-cut into a bellows shape, but the present invention is not limited to this. The flexible electric wire 1 may be die-cut into a desired shape in consideration of the flexibility and elasticity required for the flexible electric wire 1.
Next, a method of manufacturing the flexible electric wire 1 of the present embodiment will be described.
The corrugated copper fiber paper obtained in the second embodiment was cut out in a flat bellows shape by a fiber laser. Then, similarly to the second embodiment, the flexible electric wire 1 of the present embodiment is obtained by impregnating the copper fiber paper cut out in a flat bellows shape with silicone rubber and adhering it on the surface.
The flexible electric wire 1 of the present embodiment can be sufficiently extended in the length direction.
 なお、図2~図8および図12で示される第二実施形態から第九実施形態では、導電構造体21、22、23、24、25、20Aおよび20B、および20Cおよび20Dはその断面がジグザグ形状であるが、それに限定されない。例えば、図9~11に示されるように、導電構造体は、その断面がサインカーブ形状(図9)、断面が四角形凸部と四角形凹部とからなる形状(図10)、または断面が複数の直角三角形からなる形状(図11)であってもよい。 In addition, in the second to ninth embodiments shown in FIGS. 2 to 8 and 12, the cross sections of the conductive structures 21, 22, 23, 24, 25, 20A and 20B, and 20C and 20D are zigzag. Shape, but not limited to it. For example, as shown in FIGS. 9 to 11, the conductive structure has a sine curve shape (FIG. 9), a shape having a quadrangular convex portion and a quadrangular concave portion (FIG. 10), or a plurality of cross sections. It may have a shape formed of a right triangle (FIG. 11).
実施例1~10
 下記表1に記載の繊維径および繊維長を有する銅繊維を、水中に分散し、適宜、増粘剤や分散剤等を添加して抄造スラリーとした。得られた抄造スラリー、坪量300g/mを抄造網上に投入し、減圧脱水し、100℃60分の乾燥を経て銅繊維ペーパーを得た。 その後、得られた銅繊維ペーパーを、常温で線圧80kg/cmでプレスした後、水素ガス75%、窒素ガス25%の雰囲気中で1020℃、40分間加熱して銅繊維間を部分的に焼結させた。
 次いで得られた銅繊維ペーパーを50×200mmサイズにカットし、エンボスマシンにオスメスで噛み合う1対の歯車状のエンボスロールを取り付け、オスメスのエンボスロールの間に銅繊維ペーパーを通過させることで、断面が波形になるように波型加工した。波形加工後の銅繊維ペーパーの波長、振幅、幅、および厚さを表1に示す。
 次いで波形加工後の銅繊維ペーパーを、シリコーン樹脂に含浸させた後、乾燥させて外層被覆部を設けた。得られたフレキシブル電線の厚さは、1.2mmであった。
Examples 1-10
Copper fibers having the fiber diameter and fiber length shown in Table 1 below were dispersed in water, and a thickener, a dispersant, etc. were appropriately added to prepare a papermaking slurry. The obtained papermaking slurry having a basis weight of 300 g / m 2 was put on a papermaking net, dehydrated under reduced pressure, and dried at 100 ° C. for 60 minutes to obtain copper fiber paper. Then, the obtained copper fiber paper was pressed at a linear pressure of 80 kg / cm at room temperature, and then heated at 1020 ° C. for 40 minutes in an atmosphere of 75% hydrogen gas and 25% nitrogen gas to partially gap the copper fibers. It was sintered.
Next, the obtained copper fiber paper was cut into a size of 50 x 200 mm, a pair of gear-shaped emboss rolls meshed with male and female were attached to the embossing machine, and the copper fiber paper was passed between the male and female emboss rolls to cross-section. Was corrugated so that Table 1 shows the wavelength, amplitude, width, and thickness of the corrugated copper fiber paper.
Next, the corrugated copper fiber paper was impregnated with the silicone resin and then dried to provide an outer layer coating portion. The thickness of the obtained flexible electric wire was 1.2 mm.
比較例1~4
 表2に示すように、導電構造体の材料として、比較例1および4では銅箔を使用し、比較例2では孔あき銅箔を使用し、比較例3では銅線(単線)を使用した以外は、実施例1~10と同様にしてフレキシブル電線を得た。
Comparative Examples 1 to 4
As shown in Table 2, as the material of the conductive structure, copper foil was used in Comparative Examples 1 and 4, perforated copper foil was used in Comparative Example 2, and copper wire (single wire) was used in Comparative Example 3. A flexible electric wire was obtained in the same manner as in Examples 1 to 10 except for the above.
 実施例1~10および比較例1~4で得られたフレキシブル電線につき、以下の通り評価を行った。その結果を合わせて表1または表2に示す。
(小型化の評価)
 小型化の評価は、波型加工する前のシート状の導電構造体の厚みを指標とした。
 導電構造体の厚みが、0.5mm以下を優とし、0.5mmを超え、かつ1.0mm以下を良とした。
The flexible electric wires obtained in Examples 1 to 10 and Comparative Examples 1 to 4 were evaluated as follows. The results are also shown in Table 1 or Table 2.
(Evaluation of miniaturization)
The evaluation of miniaturization used the thickness of the sheet-shaped conductive structure before corrugating as an index.
The thickness of the conductive structure was preferably 0.5 mm or less, more than 0.5 mm, and 1.0 mm or less.
(屈曲性の評価)
 図13に示すように、得られたフレキシブル電線を上下方向から挟むように支持し、その状態から上側支持部材の側面に接触するように、+90°屈曲させ、次いで下側支持部材の側面に接触するように-90°屈曲させた。
 抵抗変化が5%以下であり、かつ支持部材に挟まれた部分のフレキシブル電線、または導電構造体を目視した場合、外観に著しい変化(ひび割れ、破断なき事)がない屈曲回数を調べた。
 500回の屈曲試験に耐えられないものを不可とし、1,000回以上、かつ2,000回未満の屈曲試験に耐えうるものを良とし、そして2,000回以上の屈曲試験に耐えうるものを優とする。
(Evaluation of flexibility)
As shown in FIG. 13, the obtained flexible electric wire is supported so as to be sandwiched from the vertical direction, bent by + 90 ° so as to contact the side surface of the upper support member from that state, and then contacted with the side surface of the lower support member. It was bent by -90 ° so as to.
When the resistance change was 5% or less and the flexible electric wire or the conductive structure in the portion sandwiched between the support members was visually inspected, the number of bendings in which there was no significant change in appearance (no cracks or breaks) was examined.
Those that cannot withstand 500 bending tests are not allowed, those that can withstand 1,000 or more and less than 2,000 bending tests are good, and those that can withstand 2,000 or more bending tests. To be excellent.
(耐破断性の評価)
 図14に示すように、得られたフレキシブル電線を上下方向から挟むように支持し、その状態から時計回りに90°(+90°)捩り、元の位置(0°)に戻し、次いで反時計回りに90°(-90°)捩った。
 抵抗変化が5%以下であり、かつ支持部材に挟まれた部分のフレキシブル電線、または導電構造体を目視した場合、外観に著しい変化(ひび割れ、破断なき事)がない捩り回数を調べた。
 耐破断性は、500回試験に耐えられないものを不可とし、1,000回試験に耐えうるものを良とし、2,000回以上の試験に耐えうるものを優とする。
(Evaluation of fracture resistance)
As shown in FIG. 14, the obtained flexible electric wire is supported so as to be sandwiched from the vertical direction, twisted 90 ° (+ 90 °) clockwise from that state, returned to the original position (0 °), and then counterclockwise. Twisted 90 ° (-90 °).
When the resistance change was 5% or less and the flexible electric wire or the conductive structure in the portion sandwiched between the support members was visually inspected, the number of twists without any significant change in appearance (no cracks or breaks) was examined.
As for the breaking resistance, those that cannot withstand 500 times of tests are not allowed, those that can withstand 1,000 times of tests are good, and those that can withstand 2,000 or more times of tests are excellent.
(シート抵抗値)
 図15に示す個片抵抗測定要領にて、各個片の電圧と電流を測定し、下記数1からvan der Pauw法により、シート抵抗値を算出した。なお、図15中、参照番号1は、フレキシブル電線を示す。なお、図15の黒丸は、抵抗測定用の配線と、フレキシブル電線を構成する導電構造体の接点を示す。前記接点は、任意の方法で外層被覆部を取り除く等して形成すればよい。
電源:PA250-0.25A(KENWOOD社製)
電圧計:KEITHLEY DMM7510 7 1/2 DIGIT MULTIMETER(Tektronix社製)
(Sheet resistance value)
The voltage and current of each piece were measured according to the individual piece resistance measurement procedure shown in FIG. 15, and the sheet resistance value was calculated from the following number 1 by the van der Pauw method. In FIG. 15, reference numeral 1 indicates a flexible electric wire. The black circles in FIG. 15 indicate the contacts between the wiring for resistance measurement and the conductive structure constituting the flexible electric wire. The contact may be formed by removing the outer layer coating portion by an arbitrary method or the like.
Power supply: PA250-0.25A (manufactured by KENWOOD)
Voltmeter: KEITHLEY DMM7510 7 1/2 DIGIT MULTIMETER (manufactured by Tektronix)
(1)図15に示すように、2種類のI-V特性を測定し、それから抵抗を求める。 (1) As shown in FIG. 15, two types of IV characteristics are measured, and then resistance is obtained.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図15の左図に示すように、IABは、電極Aと、電極Bとに直流電源をつないだ時に、フレキシブル電線を通って、電極Aから電極Bに流れる電流の大きさを意味する。VDCは、電極Aと、電極Bとに直流電源をつないだ時の、電源Dと電源Cとの間の電圧を意味する。RAB、CDは、電極Aと、電極Bとに直流電源をつないだ時のフレキシブル電線の抵抗を意味する。
 図15の渦に示すように、IBCは、電極Bと、電極Cとに直流電源をつないだ時に、フレキシブル電線を通って、電極Bから電極Cに流れる電流の大きさを意味する。VADは、電極Bと、電極Cとに直流電源をつないだ時の、電源Aと電源Dとの間の電圧を意味する。RBC、DAは、電極Bと、電極Cとに直流電源をつないだ時のフレキシブル電線の抵抗を意味する。
As shown in the left diagram of FIG. 15, I AB includes an electrode A, when you connect DC power to the electrode B, and through the flexible wire means the magnitude of the current flowing from electrode A to electrode B. VDC means the voltage between the power supply D and the power supply C when a DC power supply is connected to the electrode A and the electrode B. RAB and CD mean the resistance of the flexible electric wire when the electrode A and the DC power supply are connected to the electrode B.
As shown in swirl of FIG 15, I BC includes an electrode B, when you connect DC power to the electrode C, and through the flexible wire means the magnitude of the current flowing from the electrode B to the electrode C. V AD means an electrode B, when you connect DC power to the electrode C, and the voltage between the source A and source D. RBC and DA mean the resistance of the flexible electric wire when the electrode B and the DC power supply are connected to the electrode C.
(2)以下の式でRs(シート抵抗)を計算する。 (2) Calculate Rs (sheet resistance) using the following formula.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 なお、上記式中、fは 抵抗値の違いによる電流の回り込みの補正に関するファクターを意味する。 In the above equation, f means a factor related to the correction of current wraparound due to the difference in resistance value.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003


Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表1および表2から、外層被覆部であるシリコーン樹脂が導電構造体をなす複数の金属繊維の間に充填された実施例1~10のフレキシブル電線は、比較例1~4のフレキシブル電線と比較して、実用上問題のないシート抵抗値を具備するにもかかわらず、屈曲性と、耐断線性とのバランスに優れていることがわかる。 From Tables 1 and 2, the flexible electric wires of Examples 1 to 10 in which the silicone resin as the outer layer coating portion is filled between the plurality of metal fibers forming the conductive structure are the same as the flexible electric wires of Comparative Examples 1 to 4. In comparison, it can be seen that the balance between the flexibility and the disconnection resistance is excellent even though the sheet resistance value is not a problem in practical use.
 以上、本発明のフレキシブル電線のいくつかの実施形態を説明したが、これは例として提示したものであり、発明の範囲を限定することは意図していない。上述の実施形態のフレキシブル電線は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の置換、及び変更等を行うことができる。 Although some embodiments of the flexible electric wire of the present invention have been described above, they are presented as examples and are not intended to limit the scope of the invention. The flexible electric wire of the above-described embodiment can be implemented in various other forms, and various substitutions, modifications, and the like can be made without departing from the gist of the invention.
 本発明のフレキシブル電線は、ロボット分野をはじめ、身体装着機器、衣服装着機器等、曲げ伸ばしなどの屈曲部を有する装置の配線に好適に使用される。
 特にヒューマノイド型ロボット(内部配線、外被配線)、パワーアシスト装置、ウエアラブル電子機器等。その他リハビリ用補助具、バイタルデータ測定機器、モーションキャプチャ、ゲーム用コントローラ、マイクロホン、ヘッドホン等に好適に使用され、中でも特に配線の存在を意識させたくない用途に好適に使用される。
The flexible electric wire of the present invention is suitably used for wiring of devices having a bent portion such as bending and stretching, such as body-worn devices and clothes-worn devices, including the robot field.
Especially humanoid robots (internal wiring, outer wiring), power assist devices, wearable electronic devices, etc. In addition, it is preferably used for rehabilitation aids, vital data measuring devices, motion capture, game controllers, microphones, headphones, etc., and is particularly suitable for applications where the presence of wiring is not desired to be noticed.
1 フレキシブル電線
20~25、20A~20G、26 導電構造体
3 外層被覆部
1 Flexible electric wire 20-25, 20A-20G, 26 Conductive structure 3 Outer layer coating

Claims (5)

  1. 少なくとも一部が互いに結着された複数の金属繊維を含む導電構造体と、
     前記導電構造体を覆う外層被覆部とを備え、
     前記外層被覆部は、導電構造体をなす複数の金属繊維の間に充填された樹脂材料で形成されるフレキシブル電線。
    A conductive structure containing a plurality of metal fibers, at least partially bonded to each other,
    It is provided with an outer layer coating portion that covers the conductive structure.
    The outer layer coating portion is a flexible electric wire formed of a resin material filled between a plurality of metal fibers forming a conductive structure.
  2. 前記導電構造体の断面は波形である請求項1に記載のフレキシブル電線。 The flexible electric wire according to claim 1, wherein the cross section of the conductive structure is corrugated.
  3. 2以上の前記導電構造体を備えた請求項2記載のフレキシブル電線。 The flexible electric wire according to claim 2, further comprising two or more of the conductive structures.
  4. 前記導電構造体が切り込みを有する請求項1~3いずれか一項に記載のフレキシブル電線。 The flexible electric wire according to any one of claims 1 to 3, wherein the conductive structure has a notch.
  5. 前記導電構造体がネット形状を有する請求項1~3いずれか一項に記載のフレキシブル電線。 The flexible electric wire according to any one of claims 1 to 3, wherein the conductive structure has a net shape.
PCT/JP2020/022085 2019-06-27 2020-06-04 Flexible wire WO2020261916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021527567A JP7323613B2 (en) 2019-06-27 2020-06-04 flexible wire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-119790 2019-06-27
JP2019119790 2019-06-27

Publications (1)

Publication Number Publication Date
WO2020261916A1 true WO2020261916A1 (en) 2020-12-30

Family

ID=74059705

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022085 WO2020261916A1 (en) 2019-06-27 2020-06-04 Flexible wire

Country Status (2)

Country Link
JP (1) JP7323613B2 (en)
WO (1) WO2020261916A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757412A (en) * 1980-09-24 1982-04-06 Shinko Electric Co Ltd Taped wire
JP2007261471A (en) * 2006-03-29 2007-10-11 Honda Motor Co Ltd Belt with built-in electric wire
JP2013149895A (en) * 2012-01-23 2013-08-01 Auto Network Gijutsu Kenkyusho:Kk Electromagnetic shielding tool and wire harness
WO2018131706A1 (en) * 2017-01-16 2018-07-19 株式会社巴川製紙所 Copper-fiber non-woven cloth for wiring, wiring unit, method for cooling copper-fiber non-woven cloth for wiring, and temperature control method for copper-fiber non-woven cloth for wiring
JP2018116786A (en) * 2017-01-16 2018-07-26 ヤマハ株式会社 Elastic wire and method of manufacturing elastic wire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007311233A (en) * 2006-05-19 2007-11-29 Yazaki Corp Shield electric wire
EP3145283A4 (en) * 2014-05-16 2018-02-28 National Institute of Advanced Industrial Science and Technology Stretchable electrically-conductive circuit and manufacturing method therefor
JP6949320B2 (en) * 2016-11-15 2021-10-13 株式会社Shindo Conductive stretch continuous body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757412A (en) * 1980-09-24 1982-04-06 Shinko Electric Co Ltd Taped wire
JP2007261471A (en) * 2006-03-29 2007-10-11 Honda Motor Co Ltd Belt with built-in electric wire
JP2013149895A (en) * 2012-01-23 2013-08-01 Auto Network Gijutsu Kenkyusho:Kk Electromagnetic shielding tool and wire harness
WO2018131706A1 (en) * 2017-01-16 2018-07-19 株式会社巴川製紙所 Copper-fiber non-woven cloth for wiring, wiring unit, method for cooling copper-fiber non-woven cloth for wiring, and temperature control method for copper-fiber non-woven cloth for wiring
JP2018116786A (en) * 2017-01-16 2018-07-26 ヤマハ株式会社 Elastic wire and method of manufacturing elastic wire

Also Published As

Publication number Publication date
JPWO2020261916A1 (en) 2020-12-30
JP7323613B2 (en) 2023-08-08

Similar Documents

Publication Publication Date Title
CN107432083B (en) Retractable cable and retractable circuit board
CN106705829A (en) Flexible wearable conductive fiber sensor and preparation method and application thereof
JP6625877B2 (en) Conductor, strain sensor, and method of manufacturing conductor
CN109891016B (en) Metal fiber non-woven fabric
US20100018751A1 (en) Insulating structure with screens shaping an electric field
JP2010203809A (en) Pressure-sensitive sheet and pressure-sensitive sensor using the same
JP5426759B2 (en) Hook and loop element
JP2011175628A5 (en)
CN102056064A (en) Loudspeaker
JP2006160243A5 (en)
KR101297369B1 (en) Multilayer Elastomer Components having electric and elastic properties and Method for manufacturing the same
TW201816217A (en) Nonwoven copper fabric and process for producing nonwoven copper fabric
KR101938214B1 (en) Flexible printed electrically conductive fabric and method for fabricating the same
WO2020261916A1 (en) Flexible wire
JP5722121B2 (en) Touch pen
JP2012004028A (en) Heater of piping
CN110140185B (en) Resistance element
JP2020061289A (en) Enamel wire and method for producing enamel wire
KR102304602B1 (en) Pressure sensing sensor and pressure sensing apparatus comprising the same
JP6822855B2 (en) Telescopic wiring and manufacturing method of telescopic wiring
CN105097079A (en) Electric wire, harness, electrical circuit, fabric, garment and sheet
CN102034467B (en) Sound production device
KR20200142287A (en) Graphene-coated carbon fiber cushion with exothermic function
JP2021082583A (en) Wire
KR200472593Y1 (en) Weaving Electric Resistance Element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831875

Country of ref document: EP

Kind code of ref document: A1