WO2020261901A1 - Gel producing method and gel producing apparatus - Google Patents

Gel producing method and gel producing apparatus Download PDF

Info

Publication number
WO2020261901A1
WO2020261901A1 PCT/JP2020/021844 JP2020021844W WO2020261901A1 WO 2020261901 A1 WO2020261901 A1 WO 2020261901A1 JP 2020021844 W JP2020021844 W JP 2020021844W WO 2020261901 A1 WO2020261901 A1 WO 2020261901A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
raw material
sheet
transport sheet
material liquid
Prior art date
Application number
PCT/JP2020/021844
Other languages
French (fr)
Japanese (ja)
Inventor
室伏 英伸
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2020261901A1 publication Critical patent/WO2020261901A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/28Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum

Definitions

  • the present disclosure relates to a gel manufacturing method and a gel manufacturing apparatus.
  • Patent Document 1 discloses a method for continuously producing a wet gel. According to this method, while continuously pouring the second liquid material onto the first liquid layer, the second liquid material formed on the first liquid layer is formed with the second liquid material. It is continuously moved on the first liquid layer so as to move away from the pouring position. The second liquid layer is continuously gelled while the second liquid layer is continuously moved on the first liquid layer, and the formed wet gel is continuously transferred from above the first liquid layer. Extract.
  • the equilibrium thickness HA0 is obtained from the following equation (1).
  • the equilibrium thickness HA0 is determined by the combination of the material of the raw material liquid A and the material of the liquid layer B.
  • the thickness of the raw material liquid A can be changed by applying a force to the layer of the raw material liquid A on the liquid layer B, but the control of the applied force is complicated.
  • the raw material liquid A is put into the inside of the container, and the raw material liquid A is gelled inside the container. After that, when the gelled gel was taken out from the container, the gel sometimes cracked.
  • One aspect of the present disclosure provides a technique for easily adjusting the thickness of the gel and suppressing the gel from cracking.
  • a raw material liquid for gel is continuously supplied from above to a moving flexible transport sheet, and the raw material liquid is spread on the transport sheet. It is molded into a ribbon and gels.
  • the transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and has a flat portion and an upper surface of the flat portion in a moving direction of the transport sheet. It has a pair of bank portions formed at intervals in the width direction orthogonal to.
  • the transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and has a flat portion and an upper surface of the flat portion on the moving direction of the transport sheet. It has a pair of surface-modified portions having a surface tension smaller than that of the flat portion, which are formed at intervals in the width direction orthogonal to the above.
  • the gel manufacturing apparatus is a flexible transfer sheet that supports and moves the raw material solution of the gel from below, and the raw material solution is continuously provided from above with respect to the transfer sheet. It has a raw material liquid supply unit for supplying to.
  • the transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and has a flat portion and an upper surface of the flat portion on the moving direction of the transport sheet. It has a pair of bank portions formed at intervals in the width direction orthogonal to.
  • the transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and has a flat portion and an upper surface of the flat portion on the moving direction of the transport sheet. It has a pair of surface-modified portions having a surface tension smaller than that of the flat portion, which are formed at intervals in the width direction orthogonal to the above.
  • the transport sheet is an endless belt circulated between the sheet peeling portion and the raw material liquid supply portion.
  • the thickness of the gel can be easily adjusted and the gel can be prevented from cracking.
  • FIG. 1 is a cross-sectional view showing a gel manufacturing apparatus according to an embodiment.
  • FIG. 2 is a cross-sectional view showing a first modification of the molded portion shown in FIG.
  • FIG. 3A is a cross-sectional view showing a first example of the transport sheet.
  • FIG. 3B is a cross-sectional view showing a second example of the transport sheet.
  • FIG. 3C is a cross-sectional view showing a third example of the transport sheet.
  • FIG. 3D is a cross-sectional view showing a fourth example of the transport sheet.
  • FIG. 4 is a flowchart showing a method for producing a gel according to an embodiment.
  • FIG. 5 is a cross-sectional view showing a second modification of the molded portion shown in FIG.
  • FIG. 6 is a plan view showing the accommodating portion shown in FIG.
  • FIG. 7 is a cross-sectional view showing a manufacturing apparatus according to a modified example.
  • Gel includes both “wet gel” and “xerogel”.
  • Weight gel means a gel in which the three-dimensional network is swollen by a swelling agent. It includes hydrogels in which the swelling agent is water, alcohol gels in which the swelling agent is alcohol, and organogels in which the swelling agent is an organic solvent.
  • Xerogel is a technical term for the structure and process of sol, gel, mesh, and inorganic-organic composite materials of the "International Union of Pure and Applied Chemistry (IUPAC) Inorganic Chemistry Subcommittee and Polymer Subcommittee, Polymer Terminology Subcommittee”. According to the definition (IUPAC Recommendation 2007), it means “a gel consisting of an open network formed by removing a swelling agent from a gel.” There is also a classification method in which the swelling agent is removed by supercritical drying as airgel, the swelling agent removed by normal evaporation drying as xerogel, and the swelling agent removed by freeze-drying as cryogel. In the scope of claims, these are collectively referred to as xerogel.
  • “Surface tension” is the force acting on the boundary between a liquid or solid and a gas (for example, air).
  • the X-axis direction, Y-axis direction, and Z-axis direction are perpendicular to each other.
  • the X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is a vertical direction.
  • FIG. 1 is a cross-sectional view showing a gel manufacturing apparatus according to an embodiment.
  • the gel manufacturing apparatus 1 includes a molding section 2, a take-out section 3, a solvent replacement section 4, a relay section 5, a drying section 6, and a winding section 7.
  • the molding unit 2 molds the raw material liquid A of the gel C into a ribbon shape and gels it.
  • the ribbon shape is a sheet shape.
  • the take-out part 3 takes out the ribbon-shaped gel C from the molding part 2.
  • the solvent replacement unit 4 replaces the solvent contained inside the gel C with another solvent.
  • the relay unit 5 conveys the gel C from the solvent replacement unit 4 to the drying unit 6.
  • the drying unit 6 removes the solvent contained inside the gel C.
  • the winding unit 7 winds the gel C that has passed through the drying unit 6 in a roll shape.
  • the manufacturing apparatus 1 Since the manufacturing apparatus 1 is in-lined and a series of processes are carried out all at once, the ribbon-shaped gel C can be efficiently manufactured.
  • the molding section 2, the taking-out section 3, the solvent replacing section 4, the relay section 5, the drying section 6, and the winding section 7 are arranged in this order along the passage of the ribbon-shaped gel C.
  • the ribbon-shaped gel C continuously continues from the molding portion 2 to the winding portion 7. Since the gel C continues uninterrupted, there is no need to move the gel C extra between steps, and no extra operation or work is required. Therefore, it is possible to prevent unintended deformation when the gel C is moved excessively between steps, and it is possible to prevent the gel C from cracking.
  • the gel C of the present embodiment continuously continues from the molding portion 2 to the winding portion 7, but the technique of the present disclosure is not limited to this.
  • the gel C does not have to reach the winding section 7 by continuing from the molding section 2 to the drying section 6.
  • the gel C does not have to reach the drying portion 6 by continuing from the molding portion 2 to the solvent substitution portion 4.
  • it is a continuous type, it is possible to suppress the gel C from cracking.
  • the manufacturing apparatus 1 may be installed in a clean room in order to suppress the mixing of foreign substances into the gel C.
  • the molding unit 2 has a transport sheet 11 that supports the raw material liquid A of the gel C from below and moves, and a raw material liquid supply section 22 that continuously supplies the raw material liquid A to the transport sheet 11 from above.
  • the raw material liquid supply unit 22 is arranged above the transport path of the transport sheet 11, and supplies the raw material liquid A over the entire width direction orthogonal to the transport direction, which is the movement direction of the transport sheet 11.
  • the raw material liquid A is supplied from above to the transport sheet 11 that moves in the horizontal direction or the oblique direction.
  • the transport sheet 11 has a strip shape and is transported in the longitudinal direction thereof.
  • the raw material liquid A is supplied onto, for example, a horizontal transport sheet 11, is formed in a ribbon shape on the horizontal transport sheet 11, and is gelled.
  • the raw material liquid A may be supplied onto the transport sheet 11 inclined with respect to the horizontal plane, formed in a ribbon shape on the inclined transport sheet 11, and may be gelled.
  • the transport sheet 11 is bent at a position downstream of the position where the raw material liquid A is supplied in the transport direction of the raw material liquid A, and is continuously peeled from the gel C. Since the gel C and the transport sheet 11 can be opened in a wedge shape while supporting the gel C flatly, the stress acting on the gel C can be reduced and the gel C can be suppressed from cracking.
  • the peeling of the transport sheet 11 and the gel C may be performed after the transport sheet 11 is wound together with the gel C in a roll shape, that is, may be performed when the transport sheet 11 is unwound from the roll shape. Good.
  • the gel C can be prevented from cracking by performing the same peeling operation regardless of the time when the peeling is performed.
  • the molding unit 2 has a sheet supply unit 12 that supplies the transport sheet 11 toward the raw material liquid supply unit 22.
  • the sheet supply unit 12 has a supply roller 121, and the supply roller 121 rotates to feed out a transport sheet 11 previously wound around the outer periphery thereof.
  • the sheet supply unit 12 may further have a direction changing roller 122 that changes the moving direction of the conveying sheet 11 along the outer periphery thereof by rotating.
  • the number and position of the direction changing rollers are not particularly limited.
  • the supply core 123 may be detachably attached to the outer circumference of the supply roller 121. If a plurality of supply cores 123 are prepared, the transfer sheet 11 can be wound around another supply core 123 while the transfer sheet 11 is fed out from one supply core 123. Therefore, the roll-shaped transport sheet 11 can be prepared in advance, and the waiting time can be shortened. Further, the transport sheet 11 can be transported in a state of being wound around the supply core 123, and the shape can be prevented from being lost during the transport.
  • the outer circumference of the supply roller 121 may be provided with irregularities. Due to the unevenness, slippage of the supply core 123 (however, the transport sheet 11 when the supply core 123 is not provided) can be suppressed. Similarly, the outer circumference of the supply core 123 may be provided with irregularities. The unevenness can suppress the slip of the transport sheet 11.
  • the material of the supply roller 121 is not particularly limited, but is, for example, metal or resin.
  • the resin is excellent in light weight and excellent transportability.
  • Non-slip rubber may be attached to the outer circumference of the supply roller 121.
  • the material of the supply core 123 is not particularly limited, but is, for example, metal or resin.
  • the resin is excellent in light weight and excellent transportability.
  • Non-slip rubber may be attached to the outer periphery of the supply core 123.
  • the molding unit 2 has a sheet peeling portion 13 that bends the transport sheet 11 and peels the transport sheet 11 from the gel C at a position downstream of the position where the raw material liquid A is supplied in the transport direction of the raw material liquid A.
  • the transport sheet 11 peeled off from the gel C can be reused. As described above, the transport sheet 11 may be sent to the winding unit 7 together with the gel C and wound in a roll shape together with the gel C without being peeled off from the gel C.
  • the sheet peeling portion 13 has, for example, a peeling roller 131 around which the transport sheet 11 is wound so as to peel off from the gel C, and a recovery roller 132 for collecting the transport sheet 11 from the peel roller 131.
  • the transport sheet 11 is curved along the outer circumference of the release roller 131 to change the moving direction.
  • the peeling roller 131 is a direction changing roller that changes the moving direction of the transport sheet 11 along the outer circumference thereof by rotating.
  • the recovery roller 132 winds the transport sheet 11 around its outer circumference by rotating.
  • a recovery core 133 may be detachably attached to the outer circumference of the recovery roller 132.
  • the transport sheet 11 is wound around the outer circumference of the recovery core 133.
  • the roll-shaped transport sheet 11 is removed from the recovery roller 132 together with the recovery core 133. Therefore, it is possible to prevent the shape from being lost during removal and subsequent transportation.
  • the outer circumference of the recovery roller 132 may be provided with irregularities. Due to the unevenness, slippage of the recovery core 133 (however, if the recovery core 133 is not provided, the transport sheet 11) can be suppressed. Similarly, the outer circumference of the recovery core 133 may be provided with irregularities. The unevenness can suppress the slip of the transport sheet 11.
  • the material of the recovery roller 132 is not particularly limited, but is, for example, metal or resin.
  • the resin is excellent in light weight and excellent transportability.
  • Non-slip rubber may be attached to the outer circumference of the recovery roller 132.
  • the material of the recovery core 133 is not particularly limited, but is, for example, metal or resin.
  • the resin is excellent in light weight and excellent transportability.
  • Non-slip rubber may be attached to the outer periphery of the recovery core 133.
  • the recovery core 133 may be removed from the recovery roller 132 with the transport sheet 11 wound around the outer circumference thereof, and then attached to the supply roller 121 as the supply core 123.
  • the supply core 123 may be removed from the supply roller 121 after feeding out the transport sheet 11, and then attached to the recovery roller 132 as the recovery core 133.
  • the sheet peeling portion 13 may have only the peeling roller 131, and the peeling roller 131 may also serve as the recovery roller 132. That is, the transport sheet 11 may be wound around the outer circumference of the release roller 131. In this case, the peeling roller 131 is actively rotated by the rotary motor.
  • the recovery roller 132 is actively rotated by the rotary motor.
  • the peeling roller 131 may rotate actively, but in the present embodiment, it rotates passively.
  • the supply roller 121 and the direction change roller 122 may also be actively rotated, but in the present embodiment, they are passively rotated.
  • FIG. 2 is a cross-sectional view showing a modified example of the manufacturing apparatus shown in FIG.
  • the transport sheet 11 is an endless belt and is hung around the supply roller 121, the direction change roller 122, the release roller 131, and the recovery roller 132.
  • the direction changing roller 122 and the peeling roller 131 are direction change rollers.
  • the number of the direction changing rollers may be two or more, and the transport sheet 11 may be hung only on the direction changing rollers 122 and the peeling rollers 131 shown in FIG.
  • At least one of the plurality of direction changing rollers (for example, the peeling roller 131) is actively rotated by a rotary motor. All of the plurality of directional rollers may rotate actively, but some of the directional rollers may rotate passively.
  • the transport sheet 11 is circulated between the sheet peeling section 13 and the sheet supply section 12, and is circulated between the sheet peeling section 13 and the raw material liquid supply section 22. It is possible to save the trouble of attaching the roll-shaped transport sheet 11 to the supply roller 121 and removing the roll-shaped transport sheet 11 from the collection roller 132. Further, the supply core 123 and the recovery core 133 shown in FIG. 1 are unnecessary.
  • the transport sheet 11 may have a single-layer structure or a multi-layer structure. If the transport sheet 11 has a multi-layer structure, damage to the gel C can be prevented and the durability of the transport sheet 11 can be improved.
  • the layer in contact with the gel C may be, for example, a flexible, smooth, seamless resin film to prevent damage to the gel C.
  • the layer in contact with various rollers may be a rubber belt or a resin belt usually used in a belt conveyor or the like in order to improve the durability of the transport sheet 11.
  • the molding and gelation of the raw material liquid A is carried out on the transport sheet 11 as described above. Since the transport sheet 11 is a solid, the raw material liquid A naturally becomes thin and easily spreads. Further, since the transport sheet 11 is a solid, the width of the raw material liquid A can be determined by the shape and the like.
  • the thickness of the raw material liquid A is determined by the moving speed of the transport sheet 11 and the supply speed of the raw material liquid A. Since the moving speed of the transport sheet 11 and the supply speed of the raw material liquid A can be easily changed, the thickness of the raw material liquid A and thus the thickness of the gel C can be easily changed.
  • FIG. 3A is a cross-sectional view showing a first example of the transport sheet.
  • the transport sheet 11 according to the first example has a cross section orthogonal to the moving direction (X-axis direction) of the transport sheet 11, and has a width orthogonal to the moving direction of the transport sheet 11 on the flat portion 111 and the upper surface of the flat portion 111. It has a pair of bank portions 112 formed at intervals in the direction (Y-axis direction).
  • the raw material liquid A is supplied to the groove formed by the flat portion 111 and the pair of bank portions 112.
  • the pair of bank portions 112 prevent the raw material liquid A from spreading in the width direction, and determine the width of the raw material liquid A.
  • the height of the bank portion 112 may be smaller than the thickness of the raw material liquid A, but may be larger than the thickness of the raw material liquid A in order to surely prevent the raw material liquid A from spreading in the width direction.
  • the surface tension of the flat portion 111 is preferably larger than the surface tension of the raw material liquid A. Specific examples of the material of such a flat portion 111 include polyester and nylon.
  • the material of the bank portion 112 may be the same as the material of the flat portion 111. If the bank portion 112 and the flat portion 111 are made of the same material, the bank portion 112 and the flat portion 111 can be integrally formed, and the manufacturing cost of the transport sheet 11 can be reduced. Therefore, the surface tension of the bank portion 112 may be larger than the surface tension of the raw material liquid A.
  • the transport sheet 11 according to the second example shown in FIG. 3B has a surface modification portion 113 on the side wall surface on the inner side in the width direction of the bank portion 112.
  • the surface tension of the surface modification portion 113 is smaller than the surface tension of the bank portion 112 and the flat portion 111, preferably less than or equal to the surface tension of the raw material liquid A, and more preferably smaller than the surface tension of the raw material liquid A.
  • the surface modifying portion 113 repels the raw material liquid A as shown in FIG. 3B, so that the upwardly convex meniscus is the liquid of the raw material liquid A. Formed on the surface.
  • an obtuse chamfered portion is formed at the corner portion of the gel C. Therefore, it is possible to prevent the corners of the gel C from being chipped when the gel C and the transport sheet 11 are peeled off.
  • the effect of suppressing the corners of the gel C from being chipped can be obtained if the surface tension of the surface modification portion 113 is smaller than the surface tension of the bank portion 112 and the flat portion 111.
  • the surface tension of the surface modification portion 113 is smaller than the surface tension of the bank portion 112 and the flat portion 111.
  • the surface modification portion 113 may be a solid film or a liquid film.
  • the solid film include a coating film made of a fluororesin.
  • Specific examples of the liquid film include a fluorine-based oil coating film and a silicone oil coating film.
  • the surface modification portion 113 is preferably a solid film from the viewpoint of durability and stability. Since the surface modification section 113 repels the raw material liquid A, it also serves as a release agent for the gel C.
  • the flat portion 111 and the bank portion 112 are formed of the same material, and the surface modification portion 113 is formed on the side wall surface on the inner side in the width direction of the bank portion 112.
  • the flat portion 111 and the bank portion 112 may be formed of different materials, and the surface tension of the bank portion 112 may be smaller than the surface tension of the flat portion 111. Also in this case, a thin gel C can be produced, and chipping of the corners of the gel C can be suppressed.
  • the side wall surface on the inner side in the width direction of the bank portion 112 is perpendicular to the upper surface of the flat portion 111.
  • the side wall surface on the inner side in the width direction of the bank portion 112 is inclined with respect to the upper surface of the flat portion 111, and specifically, the lateral side in the width direction is directed upward. Tilt to. Due to this inclination, the gel C and the transport sheet 11 can be easily peeled off.
  • the contents of the first example shown in FIG. 3A and the second example shown in FIG. 3B can also be applied to the third example shown in FIG. 3C.
  • FIG. 3D is a cross-sectional view showing a fourth example of the transport sheet.
  • the transport sheet 11 of the fourth example has a surface modification portion 115 shown in FIG. 3D instead of the bank portion 112 shown in FIGS. 3A to 3C.
  • a pair of surface modification portions 115 are formed on the upper surface of the flat portion 111 at intervals in the width direction (Y-axis direction).
  • the raw material liquid A is supplied between the pair of surface modification portions 115 on the upper surface of the flat portion 111.
  • the surface tension of the surface modification portion 115 is smaller than the surface tension of the flat portion 111, preferably smaller than the surface tension of the raw material liquid A.
  • the pair of surface modification portions 115 prevent the raw material liquid A from spreading in the width direction, and determine the width of the raw material liquid A.
  • the surface modification portion 115 may be a solid film or a liquid film.
  • the solid film include a coating film made of a fluororesin.
  • Specific examples of the liquid film include a fluorine-based oil coating film and a silicone oil coating film.
  • the surface modification portion 115 is preferably a solid film from the viewpoint of durability and stability.
  • the thickness of the surface modification portion 115 may be thicker than the thickness of the raw material liquid A, but may be thinner. Even if the thickness of the surface modification portion 115 is about 1 nm, leakage of the raw material liquid A having a thickness of about 1 mm can be prevented.
  • the thickness of the surface modification portion 115 may be thicker than the thickness of the gel C, but may be thinner. If the thickness of the surface modification portion 115 is thinner than the thickness of the gel C, the transport sheet 11 can be easily wound together with the gel C in a roll shape. This is because the gel C and the flat portion 111 are repeatedly laminated without a gap at the time of winding.
  • the thickness of the surface modification portion 115 is thinner than the thickness of the gel C, the thickness of the surface modification portion 115 is thin and the variation in the thickness of the transfer sheet 11 is small, so that the transfer sheet after peeling from the gel C is small. It is easy to wind 11 by itself into a roll.
  • the material of the transport sheet 11 is appropriately selected according to the solvent of the raw material liquid A.
  • the material of the transport sheet 11 is not particularly limited, but a resin is preferable from the viewpoint of flexibility.
  • Specific examples of the transport sheet 11 include a polyester film and a nylon film. It is preferable to use a transport sheet 11 which does not deteriorate or swell due to the raw material liquid A and does not react with each other so that the layer of the raw material liquid A is stably present on the transport sheet 11.
  • the gel C obtained in the molding unit 2 is a wet gel containing a solvent as a swelling agent.
  • the thickness of the wet gel is, for example, 0.1 mm to 20 mm, preferably 0.5 mm to 10 mm.
  • the wet gel is dried in the drying section 6 to become a xerogel.
  • the thickness of the xerogel is, for example, 0.1 mm to 20 mm, preferably 0.5 mm to 10 mm.
  • the xerogel may be a porous monolith that is transparent and heat insulating. Xerogel having transparency and heat insulating property is used as a transparent heat insulating material in, for example, window glass for automobiles and window glass for buildings.
  • the transmittance of xerogel at a wavelength of 500 nm is preferably 70% or more, preferably 80% or more, and preferably 90% or more in terms of thickness of 1 mm.
  • the transmittance is measured in accordance with the Japanese Industrial Standards (JIS R 3106: 1998).
  • xerogel examples include filters, adsorbents, sound absorbing materials, moisture absorbing materials, oil absorbing materials, and separation membranes, in addition to heat insulating materials.
  • Xerogel may not be transparent or may be opaque depending on the application.
  • xerogel The type of xerogel is (1) polysiloxane xerogel in the present embodiment, but may be (2) polymer xerogel or (3) polysaccharide xerogel such as cellulose xerogel.
  • the raw material liquid A contains, for example, a raw material for gel C (hereinafter, also referred to as “gel raw material”) and a solvent for dissolving the gel raw material.
  • the gel raw material is appropriately selected according to the type of xerogel finally obtained.
  • the solvent is, for example, water or an organic solvent.
  • organic solvent examples include alcohols (methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, benzyl alcohol, etc.), aprotic polar organic solvents (N, N-dimethylformamide, dimethylsulfoxide, N, N-dimethylacetamide, etc.), Examples thereof include ketones (cyclopentanone, cyclohexanone, methylethylketone, methylisobutylketone, acetone, etc.), hydrocarbons (n-hexane, heptane, etc.) and the like.
  • alcohols methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, benzyl alcohol, etc.
  • aprotic polar organic solvents N, N-dimethylformamide, dimethylsulfoxide, N, N-dimethylacetamide, etc.
  • ketones cyclopentanone, cyclohexanone, methylethylketone,
  • examples of the gel raw material include those containing (1A) a silane compound and (1B) a catalyst. (1B) The catalyst is for uniformly promoting gelation.
  • the gel raw material may further contain (1C) a surfactant.
  • silane compound examples include alkoxysilane, a 6-membered ring-containing silane compound having a 6-membered ring-containing skeleton and a hydrolyzable silyl group, and a silyl group-containing polymer having an organic polymer skeleton and a hydrolyzable silyl group. Can be mentioned.
  • alkoxysilane examples include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), monoalkyltrialkoxysilane (methyltrimethoxysilane, methyltriethoxysilane, etc.), and dialkyldialkoxysilane (dimethyldimethoxysilane, dimethyldiethoxysilane, etc.).
  • trimethoxyphenylsilane compounds having alkoxysilyl groups at both ends of the alkylene group (1,6-bis (trimethoxysilyl) hexane, 1,6-bis (methyldimethoxysilyl) hexane, 1,6-bis (Methyldiethoxysilyl) hexane, 1,2-bis (trimethoxysilyl) ethane, 1,2-bis (methyldimethoxysilyl) ethane, 1,2-bis (methyldiethoxysilyl) ethane, etc.), perfluoropolyether Alkoxysilane having a group (perfluoropolyether triethoxysilane, perfluoropolyether methyldiethoxysilane, etc.), alkoxysilane having a perfluoroalkyl group (perfluoroethyltriethoxysilane, etc.), pentafluorophenylethoxydimethylsi
  • the 6-membered ring-containing skeleton in the 6-membered ring-containing silane compound is an organic skeleton having at least one 6-membered ring selected from the group consisting of an isocyanul ring, a triazine ring and a benzene ring.
  • the organic polymer skeleton of the silyl group-containing polymer is an organic skeleton having at least one chain selected from the group consisting of polyethylene chains, polyether chains, polyester chains and polycarbonate chains.
  • Examples of the (1B) catalyst include a base catalyst and an acid catalyst, and an aqueous solution thereof may be used.
  • the base catalyst include amines (triethylamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, etc.), urea, ammonia, sodium hydroxide, potassium hydroxide and the like.
  • the acid catalyst include inorganic acids (nitric acid, sulfuric acid, hydrochloric acid, etc.) and organic acids (girate, oxalic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monofluoroacetic acid, trifluoroacetic acid, etc.).
  • (1C) surfactant examples include hexadecyltrimethylammonium bromide, hexadecyltrimethylammonium chloride, Pluronic F127 (trade name of BASF), EH-208 (trade name of NOF Corporation) and the like.
  • the gel raw material includes a thermoplastic resin, a curable resin, and the like.
  • thermoplastic resin examples include those capable of dissolving in a solvent when heated and forming a monolith (porous body) when cooled, and specific examples thereof include polymethylmethacrylate and polystyrene.
  • Examples of the curable resin include a photocurable resin and a thermosetting resin.
  • Examples of the photocurable resin include those containing either one or both of acrylate and methacrylate and a photopolymerization initiator.
  • Examples of the thermosetting resin include those containing either one or both of acrylate and methacrylate and a thermal polymerization initiator, an addition condensate of resorcinol and formaldehyde, and an addition condensate of melamine and formaldehyde. Be done.
  • examples of the gel raw material include those containing (3A) polysaccharide nanofibers and (3B) acid.
  • examples of polysaccharides include chitin, chitosan, and gellan gum in addition to cellulose.
  • Examples of the (3A) polysaccharide nanofiber include 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidized cellulose nanofiber.
  • Examples of the (3A) polysaccharide nanofiber include chitin nanofiber and chitosan nanofiber in addition to cellulose nanofiber.
  • Examples of the (3B) acid include the inorganic acid and the organic acid. Bases can be used instead of acids.
  • the gel raw material contains (1A) a silane compound and (1B) a catalyst
  • gelation of the raw material liquid A is performed by heating.
  • the silane compound is hydrolyzed by an acid catalyst or the like to form a sol having a silanol group (Si—OH).
  • the sol is heated, the silanol groups undergo a dehydration condensation reaction between the molecules to form a Si—O—Si bond, and the raw material liquid A is gelled.
  • the raw material liquid supply unit 22 includes, for example, a mixing tank for mixing a silane compound and a catalyst.
  • the mixing tank may include a cooling device for cooling the raw material liquid A in order to suppress the progress of gelation.
  • the temperature of the mixing tank is preferably lower from the viewpoint of suppressing the progress of gelation, but may be set higher than the freezing point of the raw material liquid A from the viewpoint of preventing freezing, and is set to, for example, 0 ° C to 20 ° C.
  • the mixing tank may include a stirring device that stirs the raw material liquid A.
  • the silane compound and the catalyst can be mixed in a short time, and the raw material liquid A can be homogenized in a short time.
  • the mixing tank is connected to the silane compound supply source via the first pipe, and is connected to the catalyst supply source via the second pipe.
  • the first pipe is provided with a first flow rate controller that controls the flow rate of the silane compound
  • the second pipe is provided with a second flow rate controller that controls the flow rate of the catalyst. Since the flow rate of the silane compound and the flow rate of the catalyst can be controlled, the residence time in the mixing tank can be shortened.
  • the flow rate of the silane compound and the flow rate of the catalyst are appropriately determined according to the flow rate of the raw material liquid A supplied on the transport sheet 11.
  • the molding unit 2 has a first heater 23 and a second heater 24 in order to gel the raw material liquid A on the transport sheet 11.
  • the first heater 23 is arranged above the transport sheet 11 and heats the raw material liquid A from above.
  • the second heater 24 is arranged below the transport sheet 11, and by heating the transport sheet 11, the raw material liquid A is heated from below. By heating the raw material liquid A from both the upper and lower sides, gelation can proceed from both the upper and lower sides.
  • a plurality of first heaters 23 may be arranged at intervals along the transport direction (X-axis direction) of the transport sheet 11. By independently controlling the plurality of first heaters 23, the temperature distribution in the transport direction of the raw material liquid A can be controlled. The temperature distribution may be uniform over the entire transport direction, may be higher toward the downstream, or may be lower toward the downstream.
  • the second heater 24 may also be arranged and controlled in the same manner as the first heater 23.
  • the heating method of the first heater 23 and the second heater 24 is not particularly limited, but is appropriately selected from, for example, a resistance heating type, an infrared heating type, an arc heating type, and the like according to the installation location. ..
  • the molding unit 2 may have at least one of the first heater 23 and the second heater 24. Further, although not shown, the heater may be installed so as to heat from the side surface of the transport sheet 11. Further, the means for gelling the raw material liquid A is not limited to the heater, and is appropriately selected according to the type of the gel raw material.
  • the means for gelling the raw material liquid A is a cooler.
  • the cooler cools the raw material liquid A on the transport sheet 11 and gels the raw material liquid A.
  • the cooler may be arranged and controlled in the same manner as the heater. Natural cooling may be performed instead of forced cooling by the cooler.
  • the means for gelling the raw material liquid A is a light source.
  • the light source irradiates the raw material liquid A existing on the transport sheet 11 with light such as ultraviolet rays to cure the photocurable monomer and gel the raw material liquid A.
  • the light source may be arranged and controlled in the same manner as the heater.
  • the means for gelling the raw material liquid A is a heater.
  • the gel raw material is a polysaccharide nanofiber
  • the polysaccharide nanofiber gels in a short time when it comes into contact with an acid catalyst or a base catalyst. Therefore, the raw material liquid A may contain polysaccharide nanofibers and may not contain an acid catalyst or a base catalyst.
  • the acid catalyst or the base catalyst may be supplied in a shower shape from above to the layer of the raw material liquid A formed on the transport sheet 11.
  • the means for gelling the raw material liquid A is a feeder that supplies an acid catalyst or a base catalyst to the layer of the raw material liquid A from above.
  • the take-out part 3 continuously takes out the ribbon-shaped gel C from the molding part 2.
  • the take-out portion 3 is arranged on the downstream side of the molding portion 2 and pulls the ribbon-shaped gel C. As shown in FIG. 1, since the take-out portion 3 supports the gel C, the transport sheet 11 can be bent and deformed below the gel C, and the gel C can be continuously fed.
  • the take-out portion 3 includes, for example, a tension roller 31.
  • the tension roller 31 sandwiches the ribbon-shaped gel C from both the upper and lower sides and rotates the gel C to send the gel C to the downstream side.
  • An upper tension roller 31 the distance between the tension roller 31 of the lower, so that the thickness H C gel C is not excessively compressed, that is, are set to gel C is not cracked.
  • the thickness H C of the gel C is equal to the final thickness H A raw material liquid A.
  • the gel C only conveying sheet 11 rather than be passed between the pair of tension rollers 31, and, when the thickness of the bank portion 112 of the transfer sheet 11 is thicker than the thickness H C of the gel C is a pair tensile rollers 31 sandwiches the transport sheet 11 and sends it out.
  • the distance between the upper tension roller 31 and the lower tension roller 31 may be slightly smaller than the sum of the thickness of the bank portion 112 and the thickness of the flat portion 111.
  • gel C only conveying sheet 11 rather than be passed between the pair of tension rollers 31, and the thickness of the surface modification portion 115 of the transfer sheet 11 when thinner than the thickness H C of the gel C is a pair
  • the tension roller 31 sandwiches the gel C and the transport sheet 11 and feeds them out.
  • the distance between the upper tension roller 31 and the lower tension roller 31 may be slightly smaller than the sum of the thickness of the gel C and the thickness of the flat portion 111.
  • the tension roller 31 may not be arranged on both the upper and lower sides of the ribbon-shaped gel C, and may be arranged only on the lower side, for example.
  • the tension roller 31 arranged on the lower side rotates while carrying the ribbon-shaped gel C, and sends the gel C to the downstream side.
  • the tension roller 31 is made of a metal such as stainless steel, rubber, or a material such as resin.
  • the tension roller 31 may be a metal surface coated with rubber, resin, or the like.
  • the tension roller 31 may have irregularities on its outer circumference. Due to the unevenness, the slip of the gel C can be suppressed, and the gel C can be reliably sent to the downstream side.
  • the solvent replacement unit 4 replaces the solvent contained inside the ribbon-shaped gel C with another solvent.
  • Gel C is a fine porous body and contains a solvent inside. The solvent substitution is carried out before drying for the purpose of suppressing the shrinkage of the gel C due to the surface tension of the solvent during drying and suppressing the damage of the fine structure of the gel C.
  • the solvent replacement unit 4 replaces the solvent contained inside the gel C with a solvent suitable for gelation (that is, the solvent of the raw material liquid A) with a solvent suitable for drying.
  • the solvent after the replacement is appropriately selected depending on the drying method. As the drying method, supercritical drying, freeze drying, or atmospheric drying is used.
  • the solvent contained inside the gel C is replaced with a supercritical fluid.
  • a solvent suitable for supercritical drying for example, methanol, ethanol, isopropyl alcohol and the like are used.
  • the supercritical fluid carbon dioxide gas in a supercritical state is generally used. Supercritical drying is carried out inside a closed high-pressure container.
  • freeze-drying the solvent contained inside the gel C is frozen and then evaporated in a vacuum. This is usually called sublimation.
  • a solvent suitable for freeze-drying water, tert-butyl alcohol, cyclohexane, 1,4-dioxane, a fluorine-based solvent and the like are used. Freeze-drying is carried out inside a closed vacuum vessel.
  • Normal pressure drying evaporates the solvent contained inside the gel C under normal pressure. Since it is important to reduce the contraction force of the fine skeleton of gel C due to the capillary force accompanying solvent evaporation, a solvent suitable for atmospheric drying is a solvent having a small surface tension, for example, a low molecular weight aliphatic such as hexane or heptane. A hydrocarbon solvent or a fluorine solvent is used. Since normal pressure drying is performed at normal pressure, a closed container is not required. Therefore, when the ribbon-shaped gel C continues from the molding portion 2 to the drying portion 6, atmospheric drying is adopted.
  • the solvent replacement unit 4 forms a passage through which the ribbon-shaped gel C continuously taken out from the molding unit 2 passes, and replaces the solvent contained inside the gel C with a solvent suitable for atmospheric drying. .. Specifically, the solvent replacement unit 4 replaces the solvent contained inside the gel C with a solvent having a surface tension smaller than that of the raw material liquid A from the solvent of the raw material liquid A.
  • Solvent substitution is carried out at a temperature below the boiling point of the solvent in order to prevent the microstructure of the gel from being damaged by boiling of the solvent.
  • the solvent may be heated at a temperature below the boiling point.
  • the heating temperature is, for example, 40 ° C to 100 ° C.
  • the number of times the solvent is replaced is once in this embodiment, but it may be a plurality of times. That is, the solvent contained inside the gel C is replaced with a first solvent different from the solvent of the raw material liquid A from the solvent of the raw material liquid A, and further, a solvent of the raw material liquid A and a second solvent different from the first solvent. May be replaced with.
  • the compatibility between the solvent of the raw material liquid A and the second solvent is low, the substitution efficiency becomes poor. Therefore, by temporarily introducing the substitution with the first solvent in the meantime, the solvent of the raw material liquid A can be seconded. The time required for replacement with a solvent can be shortened.
  • the first solvent a solvent having high compatibility with both the solvent of the raw material liquid A and the second solvent is used.
  • the solvent replacement unit 4 has, for example, a storage tank 41 for storing a solvent in which the ribbon-shaped gel C is immersed.
  • a storage tank 41 for storing a solvent in which the ribbon-shaped gel C is immersed.
  • a support roller 42 that supports the gel C may be arranged inside the storage tank 41.
  • the number of support rollers 42 may be one or more, and in the case of a plurality of support rollers 42, they are arranged at intervals along the passage of the gel C.
  • the support roller 42 may be actively rotated by a rotation motor or the like, or may be passively rotated.
  • the passage of the gel C does not have a U-shaped folded portion inside the storage tank 41 in the present embodiment, but may have a U-shaped folded portion.
  • a support roller 42 is arranged at the folded-back portion, the gel C is curved along the outer circumference of the support roller 42, and the moving direction of the gel C is reversed.
  • the liquid overflowing from the storage tank 41 may be collected and recycled. Since the liquid overflowing from the storage tank 41 contains the solvent of the raw material liquid A and the like, it may be purified by means such as distillation before being recycled. By purification, the solvent, catalyst, surfactant and the like of the raw material liquid A can be removed.
  • the solvent replacement unit 4 may have a solvent supply unit 43 that supplies a shower-like solvent to the ribbon-shaped gel C from above. Since the shower-like solvent is supplied from above, the immersion depth of the gel C can be made shallow. Since the radius of curvature of the passage of the gel C is large and the bending stress of the gel C is small, it is possible to suppress the gel C from cracking.
  • the solvent replacement unit 4 When the solvent replacement unit 4 has the solvent supply unit 43, it does not have to have the storage tank 41. Without the storage tank 41, the passage of gel C can be straightened. Since the bending stress of the gel C becomes zero, it is possible to further suppress the gel C from cracking.
  • the solvent replacement is not necessary, so that the manufacturing apparatus 1 does not have to have the solvent replacement part 4.
  • the relay unit 5 conveys the ribbon-shaped gel C from the solvent replacement unit 4 to the drying unit 6.
  • the speed at which the gel C is conveyed by the relay unit 5 is set so that the gel C passes through the inside of the solvent stored in the storage tank 41, and the gel C flexes downward convexly inside the storage tank 41. Will be done.
  • the relay unit 5 includes, for example, a relay roller 51.
  • the relay roller 51 is actively rotated by a rotary motor or the like to send the gel C to the downstream side. Since the relay roller 51 is configured in the same manner as the tension roller 31, the description thereof will be omitted.
  • the drying unit 6 removes the solvent contained inside the gel C.
  • the method for drying the gel C as described above, supercritical drying, freeze drying, or atmospheric drying is used, but in the present embodiment, atmospheric drying suitable for in-line is used.
  • the drying portion 6 forms a passage through which the ribbon-shaped gel C continuously taken out from the molding portion 2 passes, and removes the solvent contained in the gel C by atmospheric pressure drying.
  • the drying unit 6 has, for example, a drying furnace 61 that forms a passage through which the gel C passes.
  • a support roller 62 for supporting the gel C may be arranged inside the drying furnace 61.
  • the number of support rollers 62 may be one or more, and in the case of a plurality of support rollers 62, the support rollers 62 are arranged at intervals along the passage of the gel C.
  • the support roller 62 may be actively rotated by a rotation motor or the like, or may be passively rotated.
  • the passage of the gel C does not have a U-shaped folded portion inside the drying oven 61 in the present embodiment, but may have a U-shaped folded portion.
  • a support roller 62 is arranged at the folded-back portion, the gel C is curved along the outer circumference of the support roller 62, and the moving direction of the gel C is reversed.
  • the residence time of the gel C inside the drying oven 61 can be lengthened. Further, when the residence time of the gel C inside the drying furnace 61 is the same, the length of the drying furnace 61 can be shortened and the drying furnace 61 can be miniaturized.
  • Drying of gel C is carried out at a temperature below the boiling point of the solvent in order to prevent the fine structure of the gel from being damaged by boiling of the solvent.
  • the gel C may be heated at a temperature below the boiling point.
  • the drying temperature of gel C is, for example, room temperature to 100 ° C.
  • the drying unit 6 may have a heater 63 for heating the gel C.
  • a plurality of heaters 63 may be arranged on both the upper and lower sides of the gel C passage, and may be arranged at intervals along the gel C passage.
  • the heater 63 is arranged inside the drying furnace 61.
  • the heating method of the heater 63 is not particularly limited, but is appropriately selected from, for example, a resistance heating type and an infrared heating type, depending on the installation location.
  • the drying unit 6 may have a blower (not shown) that blows air to the gel C. By sending wind to the gel C, the evaporation of the solvent contained inside the gel C can be promoted. The solvent evaporated in the drying unit 6 is recovered and discarded or recycled as needed.
  • the gel C obtained in the dry portion 6 is a xerogel, which is a porous monolith.
  • the winding unit 7 winds the ribbon-shaped gel C that has passed through the drying unit 6 into a roll shape.
  • the take-up portion 7 has a take-up roller 71, and the take-up roller 71 is actively rotated by a rotary motor or the like, and a ribbon-shaped gel C is taken up on the outer periphery thereof.
  • the outer diameter of the winding roller 71 is set appropriately according to the thickness H C and the material of the gel C, it is set to a gel C is not cracked.
  • a take-up core 72 may be detachably attached to the outer circumference of the take-up roller 71, and a ribbon-shaped gel C may be taken up on the outer circumference of the take-up core 72. If the take-up core 72 is used, the roll-shaped gel C can be removed without losing its shape, and the handleability is good.
  • the outer circumference of the take-up roller 71 may be provided with irregularities. Due to the unevenness, slippage of the winding core 72 (however, gel C when there is no winding core 72) can be suppressed. Similarly, the outer circumference of the winding core 72 may be provided with irregularities. The unevenness can suppress the slip of the gel C.
  • the material of the take-up roller 71 is not particularly limited, but is, for example, metal or resin.
  • the resin is excellent in light weight and excellent transportability.
  • Non-slip rubber may be attached to the outer circumference of the take-up roller 71.
  • the material of the winding core 72 is not particularly limited, but is, for example, metal or resin.
  • the resin is excellent in light weight and excellent transportability.
  • Non-slip rubber may be attached to the outer circumference of the take-up core 72.
  • FIG. 4 is a flowchart showing a method for producing a gel according to an embodiment.
  • the method for producing a gel includes molding (S1), solvent substitution (S2), drying (S3), and winding (S4).
  • the molding unit 2 performs molding (S1)
  • the solvent replacement unit 4 performs solvent substitution (S2)
  • the drying unit 6 performs drying (S3)
  • the winding unit 7 performs winding (S4). To do.
  • the gel production method does not have to include all the treatments shown in FIG. 4, for example, when the solvent of the raw material liquid A is suitable for drying (S3), even if solvent substitution (S2) is not performed. Good. Further, the method for producing the gel may include a treatment different from the treatment shown in FIG. 4, for example, packaging may be included instead of winding (S4). In packing, the ribbon-shaped gel C is cut, and the cut gels are stacked in a packing container.
  • FIG. 5 is a cross-sectional view showing a second modification of the molded portion shown in FIG.
  • the molding unit 2 may further have an accommodating portion 21 accommodating the liquid layer B. If the transport sheet 11 floats on the liquid layer B, the density of the liquid layer B may be higher or lower than the density of the liquid layer B, but is preferably higher. The density of the raw material liquid A may be higher or lower than the density of the liquid layer B as long as the gel C can be formed on the transport sheet 11, but it is preferably low.
  • the transport sheet 11 slides on the liquid surface of the liquid layer B.
  • the raw material liquid A is formed into a ribbon shape and gelled on the transport sheet 11 floating on the liquid layer B.
  • the transport sheet 11 Since the liquid level of the liquid layer B naturally becomes horizontal due to gravity, the transport sheet 11 also becomes horizontal, and a flat and uniform gel C can be easily obtained by using the horizontal liquid level. Further, since the entire lower surface of the transport sheet 11 is horizontally supported, the area of the transport sheet 11 can be increased, and the area of the gel C can be increased. Further, since the transport sheet 11 prevents the liquid layer B from coming into contact with the raw material liquid A, the options for the combination of the liquid layer B and the raw material liquid A can be expanded. For example, even if the liquid layer B and the raw material liquid A are compatible with each other, since the transport sheet 11 exists between the liquid layer B and the raw material liquid A, the liquid layer B and the raw material liquid A are mixed. There is no such thing. Further, if water can be selected as the material of the liquid layer B, the cost can be reduced.
  • the liquid layer B preferably has a large density difference between the transport sheet 11 and the raw material liquid A so that the transport sheet 11 and the raw material liquid A layer can stably exist on the liquid layer B.
  • the density difference is preferably 0.1 g / cm 3 or more, and more preferably 0.5 g / cm 3 or more. From the viewpoint of weight reduction, the density difference is preferably 3.0 g / cm 3 or less, and more preferably 2.0 g / cm 3 or less.
  • liquid layer B it is preferable to use a liquid layer B that does not deteriorate or swell the transport sheet 11 and does not react with each other so that the transport sheet 11 can stably exist on the liquid layer B.
  • the material of the liquid layer B is appropriately selected according to the transport sheet 11.
  • the material of the liquid layer B include a liquid compound having a fluorine atom, a liquid compound having a chlorine atom, a liquid compound having a silicon atom, water, mercury and the like, and if there is a density difference from the raw material liquid A, fluorine. , Chlorine, bromine, or halogen atoms such as iodine, silicon atoms, etc. need not be contained.
  • the water may contain water-soluble salts to adjust the density of the liquid layer B. Examples of the water-soluble salt include sodium chloride and the like.
  • liquid compound having a fluorine atom examples include a fluorine-based solvent and a fluorine-based oil.
  • Fluorine-based solvents include hydrofluoroalkanes, chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluoromonoethers, perfluoromonoethers, perfluoroalkanes, perfluoropolyethers, perfluoroamines, fluorine atom-containing alkanes, fluorine atom-containing aromatic compounds, and fluorine. Examples thereof include atom-containing ketones and fluorine atom-containing esters.
  • fluorine-based oils examples include Solvay's brand name Fomblin and Daikin Industries' brand name Demnum and Daikin Industries.
  • liquid compound having a chlorine atom examples include chlorine-based solvents and chlorine-based oils.
  • chlorine-based solvent examples include carbon tetrachloride, chloroform, methylene chloride and the like.
  • Examples of the liquid compound having a silicon atom include silicone oil and the like.
  • Examples of the silicone oil include dimethyl silicone oil and methyl phenyl silicone oil.
  • Examples of commercially available silicone oil products include KF-96, which is a trade name of Shin-Etsu Chemical Co., Ltd.
  • the molding unit 2 has a first heater 23, a second heater 24, and a third heater 25 in order to gel the raw material liquid A on the liquid layer B.
  • the first heater 23 is arranged above the accommodating portion 21, the second heater 24 is arranged inside the liquid layer B, and the third heater 25 is arranged below the accommodating portion 21.
  • the operation of these heaters is the same as in the first embodiment.
  • FIG. 6 is a plan view showing the accommodating portion shown in FIG.
  • the accommodating portion 21 is, for example, a rectangular container in a plan view, and has an upstream wall 211, a downstream wall 212, a pair of side walls 213 and 214, and a bottom wall 215 (see FIG. 5). ..
  • the length L1 of the accommodating portion 21, that is, the length L1 from the upstream wall 211 to the downstream wall 212 is not particularly limited, but is, for example, 1 m to 100 m from the viewpoint of residence time and productivity.
  • a length L1 of the housing portion 21 is constant, if the thickness H C gel C is the same, as the progress of gelation of the raw material liquid A is high, and the retrieval speed of the feed rate and the gel C raw material liquid is greater Therefore, the production volume per unit time is improved.
  • the region from the upstream wall 211 to the downstream wall 212 can be distinguished in the transport direction of the raw material liquid A, for example, the first region A1, the second region A2, and the third region A3.
  • the first region A1, the second region A2, and the third region A3 are arranged in this order from the upstream side to the downstream side.
  • the first region A1 is a region where gelation of the raw material liquid A starts, and is a region where cross-linking starts in a part of the raw material liquid A.
  • the raw material liquid A is supplied onto the transport sheet 11 floating on the liquid layer B in the vicinity of the upstream wall 211 of the first region A1 and moves toward the downstream wall 212 together with the transport sheet 11.
  • cross-linking starts with a part of the raw material liquid A, the viscosity increases.
  • the second region A2 is a region in which gelation of the raw material liquid A progresses, cross-linking proceeds in the entire raw material liquid A, and a three-dimensional skeleton structure of a polymer is formed. At the downstream end of the second region A2, the viscous flow of the raw material liquid A is lost.
  • the third region A3 is a region in which the gelation of the raw material liquid A further progresses and a finer three-dimensional skeleton structure is formed.
  • the third region A3 is a region where the gel C is aged.
  • the gel raw material contains (1A) a silane compound and (1B) a catalyst
  • the third region A3 is a region where dehydration condensation is completed.
  • the gel C is lifted from the liquid surface of the liquid layer B in the vicinity of the downstream wall 212 of the third region A3, and is taken out to the downstream side of the accommodating portion 21.
  • the gel C may be slid out by an oblique plate-like body (not shown) provided on the downstream wall 212 of the accommodating portion 21 so that the gel C does not hit the downstream wall 212 of the accommodating portion 21. Since the gel C may be taken out from the accommodating portion 21, the taking-out portion 3 may be inside the accommodating portion 21 or may be outside the accommodating portion 21.
  • the first region A1, the second region A2, and the third region A3 may have the same temperature or different temperatures, but may be lower than the boiling point of the solvent in order to suppress boiling of the solvent. .. It is possible to prevent the three-dimensional skeleton structure of the polymer from being damaged by boiling the solvent.
  • the third region A3 may have a higher temperature than the first region A1 and the second region A2. Gelation can proceed slowly until most of the three-dimensional skeletal structure is formed, and then gelation can proceed rapidly. Therefore, the length L1 of the accommodating portion 21 can be shortened.
  • the temperature difference is, for example, 10 ° C to 50 ° C, preferably about 20 ° C.
  • the width W1 of the accommodating portion 21, that is, the width W1 of the pair of side walls 213 and 214 is not particularly limited, but is, for example, 1 cm to 10 m.
  • FIG. 7 is a cross-sectional view showing a manufacturing apparatus according to a modified example.
  • the manufacturing apparatus 1 of this modification has a molding unit 2, a take-out unit 3, a solvent replacement unit 4, a relay unit 5, a drying unit 6, a winding unit 7, and a delivery unit 8. ..
  • the delivery unit 8 sends out the support sheet 100 toward the confluence of the ribbon-shaped gel C peeled off from the transport sheet 11 and the support sheet 100 that supports the ribbon-shaped gel C from below. After merging with the gel C, the support sheet 100 is continuously conveyed together with the gel C. Since the support sheet 100 supports the gel C from below during the transfer of the gel C, unintended deformation due to the weight of the gel C can be suppressed, and the gel C can be suppressed from cracking.
  • the support sheet 100 preferably merges with the gel C on the upstream side as much as possible so that the gel C can be protected for as long as possible, and may merge with the gel C between the accommodating portion 21 and the solvent replacement portion 4.
  • the support sheet 100 is curved along the outer circumference of the tension roller 31 below the gel C, then merges with the gel C, and then is sent out from the tension roller 31 to the downstream side. Since the distance between the gel C and the support sheet 100 is gradually shortened on the upstream side of the confluence point, air can be expelled and the biting of air bubbles can be suppressed.
  • the support sheet 100 may be sent to the winding unit 7 together with the gel C and wound in a roll together with the gel C so that the gel C can be protected for as long as possible. Since the gel C and the support sheet 100 are alternately laminated on the outer circumference of the take-up roller 71, it is possible to prevent the gel C from adhering to each other.
  • the support sheet 100 does not deteriorate or swell with the solvent of the gel C or the solvent of the solvent substitution, withstands the drying temperature of the gel C, and is slippery with respect to the gel C so as not to hinder the shrinkage and expansion of the gel C during drying. Anything is not particularly limited, but may be, for example, a resin sheet. In general, gel C shrinks once and then expands when it dries.
  • the support sheet 100 may be dense, but is preferably porous. Since the solvent can evaporate on both the upper and lower sides during drying, the drying can proceed evenly from both the upper and lower sides. It is also possible to proceed with solvent substitution evenly from both the upper and lower sides.
  • a porous film of polyethylene terephthalate is used as the porous support sheet 100.
  • the support sheet 100 comes into contact with the gel C. Since the gel C has been solidified, even if the surface of the support sheet 100 is rough, the surface shape of the gel C is not transferred to the gel C.
  • the thickness of the support sheet 100 is, for example, 0.01 mm to 1 mm.
  • the width of the support sheet 100 may be narrower than the width of the gel C, but may be equal to or larger than the width of the gel C. If the width of the support sheet 100 is equal to or greater than the width of the gel C, the support sheet 100 can support the entire width direction of the gel C.
  • the delivery unit 8 has a delivery roller 81, and the delivery roller 81 rotates with the movement of the support sheet 100 pulled by the tension roller 31, and feeds out the support sheet 100 wound around the outer circumference.
  • a delivery core 82 may be detachably attached to the outer circumference of the delivery roller 81. If a plurality of delivery cores 82 are prepared, the support sheet 100 can be wound around another delivery core 82 while the support sheet 100 is fed out from one delivery core 82. Therefore, the roll-shaped support sheet 100 can be prepared in advance, and the waiting time can be shortened. Further, the support sheet 100 can be transported in a state of being wound around the delivery core 82, and the shape of the support sheet 100 can be prevented from being lost during transportation.
  • the outer circumference of the delivery roller 81 may be provided with irregularities. Due to the unevenness, slippage of the delivery core 82 (however, the support sheet 100 when the delivery core 82 is not provided) can be suppressed. Similarly, the outer circumference of the delivery core 82 may be provided with irregularities. The unevenness can suppress the slip of the support sheet 100.
  • the material of the delivery roller 81 is not particularly limited, but is, for example, metal or resin.
  • the resin is excellent in light weight and excellent transportability.
  • Non-slip rubber may be attached to the outer circumference of the delivery roller 81.
  • the material of the delivery core 82 is not particularly limited, but is, for example, metal or resin.
  • the resin is excellent in light weight and excellent transportability.
  • Non-slip rubber may be attached to the outer circumference of the delivery core 82.
  • the support sheet 100 merges with the gel C between the accommodating portion 21 and the solvent replacement portion 4, but merges with the gel C between the solvent replacement portion 4 and the drying portion 6. May be good.
  • the support sheet 100 may be curved along the outer circumference of the relay roller 51 below the gel C, subsequently merge with the gel C, and then sent out from the relay roller 51 to the downstream side. Since the distance between the gel C and the support sheet 100 is gradually shortened on the upstream side of the confluence point, air can be expelled and the biting of air bubbles can be suppressed.

Abstract

Provided is a gel producing method in which a gel raw material solution is continuously supplied from above a flexible conveyance sheet which is moving, and the raw material solution is formed into a ribbon shape and gelled on the conveyance sheet.

Description

ゲルの製造方法、及びゲルの製造装置Gel manufacturing method and gel manufacturing equipment
 本開示は、ゲルの製造方法、及びゲルの製造装置に関する。 The present disclosure relates to a gel manufacturing method and a gel manufacturing apparatus.
 特許文献1には、湿潤ゲルを連続生産する方法が開示されている。この方法によれば、第1の液層の上に第2の液状物を連続的に流し込みながら、第1の液層の上に形成される第2の液層を、第2の液状物を流し込む位置から遠ざかるように第1の液層の上で連続的に移動させる。第2の液層を第1の液層の上で連続的に移動させながら第2の液層を連続的にゲル化させ、形成された湿潤ゲルを第1の液層の上から連続的に抜き出す。 Patent Document 1 discloses a method for continuously producing a wet gel. According to this method, while continuously pouring the second liquid material onto the first liquid layer, the second liquid material formed on the first liquid layer is formed with the second liquid material. It is continuously moved on the first liquid layer so as to move away from the pouring position. The second liquid layer is continuously gelled while the second liquid layer is continuously moved on the first liquid layer, and the formed wet gel is continuously transferred from above the first liquid layer. Extract.
国際公開第2019/044669号International Publication No. 2019/0464669
 ゲルの原料液Aを、原料液Aよりも高密度の液層Bの上に供給すると、液層Bの上に原料液Aの層が形成される。液層Bが原料液Aの層よりも十分に広ければ、原料液Aの層の厚みは自然に一定の厚みになろうとする。その厚みを、平衡厚みとも呼ぶ。平衡厚みHA0は、下記式(1)から求められる。 When the raw material liquid A of the gel is supplied onto the liquid layer B having a higher density than the raw material liquid A, a layer of the raw material liquid A is formed on the liquid layer B. If the liquid layer B is sufficiently wider than the layer of the raw material liquid A, the thickness of the layer of the raw material liquid A naturally tends to be constant. The thickness is also called the equilibrium thickness. The equilibrium thickness HA0 is obtained from the following equation (1).
Figure JPOXMLDOC01-appb-M000001
 
 平衡厚みHA0(m)は、上記式(1)に示すように、原料液Aの密度ρ(kg/m)と、液層Bの密度ρ(kg/m)と、原料液Aの表面張力σ(N/m)と、液層Bの表面張力σ(N/m)と、原料液Aと液層Bとの界面張力σA-B(N/m)とから求められる。なお、上記式(1)において「g」は、重力加速度であり、9.8(m/s)である。
Figure JPOXMLDOC01-appb-M000001

Equilibrium thickness H A0 (m), as shown in the equation (1), and the density of the raw material solution A [rho A (kg / m 3), the density [rho B of the liquid layer B and (kg / m 3), the raw material a liquid surface tension of a σ a (N / m) , and the surface tension of the liquid layer B σ B (N / m) , and the surface tension of the raw material liquid a and liquid layer B σ a-B (N / m) Is required from. In the above equation (1), "g" is the gravitational acceleration, which is 9.8 (m / s 2 ).
 平衡厚みHA0は、原料液Aの材料と液層Bの材料との組み合せで決まる。液層Bの上で原料液Aの層に対して力を加えれば、原料液Aの厚みを変更可能であるが、加える力の制御が複雑であった。 The equilibrium thickness HA0 is determined by the combination of the material of the raw material liquid A and the material of the liquid layer B. The thickness of the raw material liquid A can be changed by applying a force to the layer of the raw material liquid A on the liquid layer B, but the control of the applied force is complicated.
 一方、バッチ式の場合、容器の内部に原料液Aを投入し、容器の内部で原料液Aをゲル化する。その後、ゲル化したゲルを容器から取り出す時に、ゲルが割れてしまうことがあった。 On the other hand, in the case of the batch type, the raw material liquid A is put into the inside of the container, and the raw material liquid A is gelled inside the container. After that, when the gelled gel was taken out from the container, the gel sometimes cracked.
 本開示の一態様は、ゲルの厚みを容易に調整でき、且つゲルが割れるのを抑制する技術を提供する。 One aspect of the present disclosure provides a technique for easily adjusting the thickness of the gel and suppressing the gel from cracking.
 〔1〕本開示の一態様に係るゲルの製造方法は、移動する可撓性の搬送シートに対して上方からゲルの原料液を連続的に供給し、前記搬送シートの上で前記原料液をリボン状に成形すると共にゲル化する。 [1] In the method for producing a gel according to one aspect of the present disclosure, a raw material liquid for gel is continuously supplied from above to a moving flexible transport sheet, and the raw material liquid is spread on the transport sheet. It is molded into a ribbon and gels.
 〔2〕上記〔1〕に記載の方法であって、前記搬送シートは、前記搬送シートの移動方向に直交する断面にて、平坦部と、前記平坦部の上面に、前記搬送シートの移動方向に直交する幅方向に間隔をおいて形成される一対の土手部とを有する。 [2] In the method according to the above [1], the transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and has a flat portion and an upper surface of the flat portion in a moving direction of the transport sheet. It has a pair of bank portions formed at intervals in the width direction orthogonal to.
 〔3〕上記〔1〕に記載の方法であって、前記搬送シートは、前記搬送シートの移動方向に直交する断面にて、平坦部と、前記平坦部の上面に、前記搬送シートの移動方向に直交する幅方向に間隔をおいて形成される一対の、前記平坦部よりも小さい表面張力の表面改質部とを有する。 [3] In the method according to the above [1], the transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and has a flat portion and an upper surface of the flat portion on the moving direction of the transport sheet. It has a pair of surface-modified portions having a surface tension smaller than that of the flat portion, which are formed at intervals in the width direction orthogonal to the above.
 〔4〕上記〔1〕乃至〔3〕のいずれか一つに記載の方法であって、前記原料液を供給した位置よりも前記原料液の搬送方向下流の位置にて、前記搬送シートを曲げ、前記リボン状に成形されたゲルから前記搬送シートを連続的に剥離する。 [4] The method according to any one of [1] to [3] above, in which the transport sheet is bent at a position downstream of the position where the raw material liquid is supplied in the transport direction of the raw material liquid. , The transport sheet is continuously peeled from the ribbon-shaped gel.
 〔5〕上記〔4〕に記載の方法であって、更に、前記搬送シートから連続的に剥離された前記リボン状のゲルと、前記リボン状のゲルを下方から支持する支持シートとを合流させ、前記リボン状のゲルと前記支持シートとを連続的に搬送する。 [5] The method according to the above [4], further, the ribbon-shaped gel continuously peeled from the transport sheet and the support sheet that supports the ribbon-shaped gel from below are merged. , The ribbon-shaped gel and the support sheet are continuously conveyed.
 〔6〕上記〔1〕乃至〔5〕のいずれか一つに記載の方法であって、更に、前記リボン状に成形されたゲルが囲われた領域を通過する間に、前記リボン状のゲルの内部に含まれる溶媒を別の溶媒に置換する。 [6] The method according to any one of [1] to [5] above, and further, while the ribbon-shaped gel passes through the enclosed region, the ribbon-shaped gel. The solvent contained inside the ribbon is replaced with another solvent.
 〔7〕上記〔1〕乃至〔6〕のいずれか一つに記載の方法であって、更に、前記リボン状に成形されたゲルが囲われた領域を通過する間に、前記リボン状のゲルの内部に含まれる溶媒を除去する。 [7] The method according to any one of [1] to [6] above, and further, while the ribbon-shaped gel passes through the enclosed region, the ribbon-shaped gel. Remove the solvent contained inside the ribbon.
 〔8〕上記〔7〕に記載の方法であって、更に、前記溶媒を除去する領域を通過した前記リボン状のゲルを、ロール状に巻き取る。 [8] The ribbon-shaped gel that has passed through the region for removing the solvent according to the method according to the above [7] is wound into a roll.
 〔9〕上記〔1〕乃至〔8〕のいずれか一つに記載の方法であって、前記搬送シートを液層に浮かべ、前記液層に浮かべた前記搬送シートの上で、前記原料液を前記リボン状に成形すると共にゲル化する。 [9] The method according to any one of the above [1] to [8], wherein the transport sheet is floated on a liquid layer, and the raw material liquid is floated on the transport sheet floated on the liquid layer. It is molded into the ribbon shape and gelled.
 〔10〕本開示の一態様に係るゲルの製造装置は、ゲルの原料液を下方から支持し、移動する可撓性の搬送シートと、前記搬送シートに対して上方から前記原料液を連続的に供給する原料液供給部と、を有する。 [10] The gel manufacturing apparatus according to one aspect of the present disclosure is a flexible transfer sheet that supports and moves the raw material solution of the gel from below, and the raw material solution is continuously provided from above with respect to the transfer sheet. It has a raw material liquid supply unit for supplying to.
 〔11〕上記〔10〕に記載の装置であって、前記搬送シートは、前記搬送シートの移動方向に直交する断面にて、平坦部と、前記平坦部の上面に、前記搬送シートの移動方向に直交する幅方向に間隔をおいて形成される一対の土手部とを有する。 [11] In the apparatus according to the above [10], the transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and has a flat portion and an upper surface of the flat portion on the moving direction of the transport sheet. It has a pair of bank portions formed at intervals in the width direction orthogonal to.
 〔12〕上記〔10〕に記載の装置であって、前記搬送シートは、前記搬送シートの移動方向に直交する断面にて、平坦部と、前記平坦部の上面に、前記搬送シートの移動方向に直交する幅方向に間隔をおいて形成される一対の、前記平坦部よりも小さい表面張力の表面改質部とを有する。 [12] In the apparatus according to the above [10], the transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and has a flat portion and an upper surface of the flat portion on the moving direction of the transport sheet. It has a pair of surface-modified portions having a surface tension smaller than that of the flat portion, which are formed at intervals in the width direction orthogonal to the above.
 〔13〕上記〔10〕乃至〔12〕のいずれか一つに記載の装置であって、更に、前記原料液供給部よりも前記原料液の搬送方向下流の位置にて、前記原料液をゲル化したリボン状のゲルから前記搬送シートを連続的に剥離するシート剥離部を有する。 [13] The apparatus according to any one of the above [10] to [12], and further gels the raw material liquid at a position downstream of the raw material liquid supply unit in the transport direction of the raw material liquid. It has a sheet peeling portion that continuously peels the conveyed sheet from the formed ribbon-shaped gel.
 〔14〕上記〔13〕に記載の装置であって、前記搬送シートは、前記シート剥離部と、前記原料液供給部との間で循環される無端ベルトである。 [14] The device according to the above [13], the transport sheet is an endless belt circulated between the sheet peeling portion and the raw material liquid supply portion.
 〔15〕上記〔13〕又は〔14〕に記載の装置であって、更に、前記搬送シートから連続的に剥離された前記リボン状のゲルと、前記リボン状のゲルを下方から支持する支持シートとの合流地点に向けて、前記支持シートを送り出す送出部を有する。 [15] The apparatus according to the above [13] or [14], further, the ribbon-shaped gel continuously peeled from the transport sheet, and a support sheet for supporting the ribbon-shaped gel from below. It has a delivery unit that sends out the support sheet toward the confluence point with.
 〔16〕上記〔10〕乃至〔15〕のいずれか一つに記載の装置であって、更に、前記原料液をゲル化したリボン状のゲルをロール状に巻き取る巻取部を有する。 [16] The apparatus according to any one of the above [10] to [15], further comprising a winding portion for winding a ribbon-shaped gel obtained by gelling the raw material liquid into a roll shape.
 〔17〕上記〔10〕乃至〔16〕のいずれか一つに記載の装置であって、更に、前記搬送シートを浮かべる液層を収容する前記液層の収容部を有する。 [17] The device according to any one of the above [10] to [16], further comprising a storage portion for the liquid layer for accommodating the liquid layer for floating the transport sheet.
 本開示の一態様によれば、ゲルの厚みを容易に調整でき、且つゲルが割れるのを抑制できる。 According to one aspect of the present disclosure, the thickness of the gel can be easily adjusted and the gel can be prevented from cracking.
図1は、一実施形態に係るゲルの製造装置を示す断面図である。FIG. 1 is a cross-sectional view showing a gel manufacturing apparatus according to an embodiment. 図2は、図1に示す成形部の第1変形例を示す断面図である。FIG. 2 is a cross-sectional view showing a first modification of the molded portion shown in FIG. 図3Aは、搬送シートの第1例を示す断面図である。FIG. 3A is a cross-sectional view showing a first example of the transport sheet. 図3Bは、搬送シートの第2例を示す断面図である。FIG. 3B is a cross-sectional view showing a second example of the transport sheet. 図3Cは、搬送シートの第3例を示す断面図である。FIG. 3C is a cross-sectional view showing a third example of the transport sheet. 図3Dは、搬送シートの第4例を示す断面図である。FIG. 3D is a cross-sectional view showing a fourth example of the transport sheet. 図4は、一実施形態に係るゲルの製造方法を示すフローチャートである。FIG. 4 is a flowchart showing a method for producing a gel according to an embodiment. 図5は、図1に示す成形部の第2変形例を示す断面図である。FIG. 5 is a cross-sectional view showing a second modification of the molded portion shown in FIG. 図6は、図5に示す収容部を示す平面図である。FIG. 6 is a plan view showing the accommodating portion shown in FIG. 図7は、変形例に係る製造装置を示す断面図である。FIG. 7 is a cross-sectional view showing a manufacturing apparatus according to a modified example.
 先ず、本明細書及び特許請求の範囲における用語について説明する。「ゲル」とは、「湿潤ゲル」と「キセロゲル」との両方を含む。 First, the terms used in the present specification and the claims will be described. "Gel" includes both "wet gel" and "xerogel".
 「湿潤ゲル」とは、三次元網目が膨潤剤によって膨潤したゲルを意味する。膨潤剤が水であるヒドロゲル、膨潤剤がアルコールであるアルコゲル、膨潤剤が有機溶媒であるオルガノゲルを包含する。 "Wet gel" means a gel in which the three-dimensional network is swollen by a swelling agent. It includes hydrogels in which the swelling agent is water, alcohol gels in which the swelling agent is alcohol, and organogels in which the swelling agent is an organic solvent.
 「キセロゲル」とは、「国際純正応用化学連合(IUPAC)無機化学部会及び高分子部会高分子用語法小委員会」の「ゾル,ゲル,網目,及び無機有機複合材料の構造とプロセスに関する術語の定義(IUPAC勧告2007)」によれば「ゲルから膨潤剤を除去して形成された開放網目からなるゲル。」を意味する。超臨界乾燥によって膨潤剤を除去したものをエアロゲル、通常の蒸発乾燥によって膨潤剤を除去したものをキセロゲル、凍結乾燥によって膨潤剤を除去したものをクライオゲルとする分類法もあるが、本明細書及び特許請求の範囲においては、これらを総称してキセロゲルと称する。 "Xerogel" is a technical term for the structure and process of sol, gel, mesh, and inorganic-organic composite materials of the "International Union of Pure and Applied Chemistry (IUPAC) Inorganic Chemistry Subcommittee and Polymer Subcommittee, Polymer Terminology Subcommittee". According to the definition (IUPAC Recommendation 2007), it means "a gel consisting of an open network formed by removing a swelling agent from a gel." There is also a classification method in which the swelling agent is removed by supercritical drying as airgel, the swelling agent removed by normal evaporation drying as xerogel, and the swelling agent removed by freeze-drying as cryogel. In the scope of claims, these are collectively referred to as xerogel.
 「表面張力」とは、液体又は固体の、気体(例えば空気)との境界に作用する力である。 "Surface tension" is the force acting on the boundary between a liquid or solid and a gas (for example, air).
 数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 “~” Indicates a numerical range means that the numerical values before and after it are included as the lower limit value and the upper limit value.
 X軸方向、Y軸方向及びZ軸方向は互いに垂直な方向である。X軸方向及びY軸方向は水平方向であり、Z軸方向は鉛直方向である。 The X-axis direction, Y-axis direction, and Z-axis direction are perpendicular to each other. The X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is a vertical direction.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In each drawing, the same or corresponding configurations may be designated by the same reference numerals and description thereof may be omitted.
 (ゲルの製造装置)
 図1は、一実施形態に係るゲルの製造装置を示す断面図である。図1に示すように、ゲルの製造装置1は、成形部2と、取出部3と、溶媒置換部4と、中継部5と、乾燥部6と、巻取部7とを有する。成形部2は、ゲルCの原料液Aを、リボン状に成形すると共にゲル化する。リボン状とは、シート状のことである。取出部3は、リボン状のゲルCを成形部2から取り出す。溶媒置換部4は、ゲルCの内部に含まれる溶媒を別の溶媒に置換する。中継部5は、ゲルCを溶媒置換部4から乾燥部6に搬送する。乾燥部6は、ゲルCの内部に含まれる溶媒を除去する。巻取部7は、乾燥部6を通過したゲルCをロール状に巻き取る。
(Gel manufacturing equipment)
FIG. 1 is a cross-sectional view showing a gel manufacturing apparatus according to an embodiment. As shown in FIG. 1, the gel manufacturing apparatus 1 includes a molding section 2, a take-out section 3, a solvent replacement section 4, a relay section 5, a drying section 6, and a winding section 7. The molding unit 2 molds the raw material liquid A of the gel C into a ribbon shape and gels it. The ribbon shape is a sheet shape. The take-out part 3 takes out the ribbon-shaped gel C from the molding part 2. The solvent replacement unit 4 replaces the solvent contained inside the gel C with another solvent. The relay unit 5 conveys the gel C from the solvent replacement unit 4 to the drying unit 6. The drying unit 6 removes the solvent contained inside the gel C. The winding unit 7 winds the gel C that has passed through the drying unit 6 in a roll shape.
 製造装置1は、インライン化されており、一連の処理を一気通貫で実施するので、リボン状のゲルCを効率的に製造できる。成形部2と、取出部3と、溶媒置換部4と、中継部5と、乾燥部6と、巻取部7とは、この順番で、リボン状のゲルCの通路に沿って並ぶ。リボン状のゲルCは、成形部2から巻取部7まで連続的に続く。ゲルCが途切れることなく続くので、ゲルCを工程間で余分に移動させる必要もなく、余分な操作や作業をする必要がない。このため、ゲルCを工程間で余分に移動させる際の意図しない変形を防止でき、ゲルCが割れるのを抑制できる。 
 なお、本実施形態のゲルCは成形部2から巻取部7まで連続的に続くが、本開示の技術はこれに限定されない。例えば、ゲルCは成形部2から乾燥部6まで続き、巻取部7には達しなくてもよい。また、ゲルCは成形部2から溶媒置換部4まで続き、乾燥部6には達しなくてもよい。いずれにしろ、連続式であれば、ゲルCが割れるのを抑制できる。
Since the manufacturing apparatus 1 is in-lined and a series of processes are carried out all at once, the ribbon-shaped gel C can be efficiently manufactured. The molding section 2, the taking-out section 3, the solvent replacing section 4, the relay section 5, the drying section 6, and the winding section 7 are arranged in this order along the passage of the ribbon-shaped gel C. The ribbon-shaped gel C continuously continues from the molding portion 2 to the winding portion 7. Since the gel C continues uninterrupted, there is no need to move the gel C extra between steps, and no extra operation or work is required. Therefore, it is possible to prevent unintended deformation when the gel C is moved excessively between steps, and it is possible to prevent the gel C from cracking.
The gel C of the present embodiment continuously continues from the molding portion 2 to the winding portion 7, but the technique of the present disclosure is not limited to this. For example, the gel C does not have to reach the winding section 7 by continuing from the molding section 2 to the drying section 6. Further, the gel C does not have to reach the drying portion 6 by continuing from the molding portion 2 to the solvent substitution portion 4. In any case, if it is a continuous type, it is possible to suppress the gel C from cracking.
 製造装置1は、ゲルCへの異物の混入を抑制すべく、クリーンルーム内に設置されてもよい。 The manufacturing apparatus 1 may be installed in a clean room in order to suppress the mixing of foreign substances into the gel C.
 (成形部)
 成形部2は、ゲルCの原料液Aを下方から支持し、移動する搬送シート11と、搬送シート11に対して上方から原料液Aを連続的に供給する原料液供給部22とを有する。原料液供給部22は、搬送シート11の搬送経路の上方に配置され、搬送シート11の移動方向である搬送方向に直交する幅方向全体に亘って原料液Aを供給する。原料液Aは、水平方向又は斜め方向に移動する搬送シート11に対して上方から供給される。
(Molding part)
The molding unit 2 has a transport sheet 11 that supports the raw material liquid A of the gel C from below and moves, and a raw material liquid supply section 22 that continuously supplies the raw material liquid A to the transport sheet 11 from above. The raw material liquid supply unit 22 is arranged above the transport path of the transport sheet 11, and supplies the raw material liquid A over the entire width direction orthogonal to the transport direction, which is the movement direction of the transport sheet 11. The raw material liquid A is supplied from above to the transport sheet 11 that moves in the horizontal direction or the oblique direction.
 搬送シート11は、帯状であり、その長手方向に搬送される。原料液Aは、例えば水平な搬送シート11の上に供給され、水平な搬送シート11の上でリボン状に形成されると共にゲル化される。なお、原料液Aは、水平面に対して傾斜した搬送シート11の上に供給され、傾斜した搬送シート11の上でリボン状に形成されると共に、ゲル化されてもよい。 The transport sheet 11 has a strip shape and is transported in the longitudinal direction thereof. The raw material liquid A is supplied onto, for example, a horizontal transport sheet 11, is formed in a ribbon shape on the horizontal transport sheet 11, and is gelled. The raw material liquid A may be supplied onto the transport sheet 11 inclined with respect to the horizontal plane, formed in a ribbon shape on the inclined transport sheet 11, and may be gelled.
 搬送シート11は、原料液Aを供給した位置よりも原料液Aの搬送方向下流の位置にて、曲げられ、ゲルCから連続的に剥離される。ゲルCを平坦に支持しながら、ゲルCと搬送シート11とをくさび状に開くことができるので、ゲルCに作用する応力を低減でき、ゲルCが割れるのを抑制できる。 The transport sheet 11 is bent at a position downstream of the position where the raw material liquid A is supplied in the transport direction of the raw material liquid A, and is continuously peeled from the gel C. Since the gel C and the transport sheet 11 can be opened in a wedge shape while supporting the gel C flatly, the stress acting on the gel C can be reduced and the gel C can be suppressed from cracking.
 なお、搬送シート11とゲルCとの剥離は、搬送シート11がゲルCと共にロール状に巻き取られた後に行われてもよく、つまり、ロール状のものから巻き出される際に行われてもよい。剥離が行われる時点に関係なく、同様の剥離の操作を行えば、ゲルCが割れるのを抑制できる。 The peeling of the transport sheet 11 and the gel C may be performed after the transport sheet 11 is wound together with the gel C in a roll shape, that is, may be performed when the transport sheet 11 is unwound from the roll shape. Good. The gel C can be prevented from cracking by performing the same peeling operation regardless of the time when the peeling is performed.
 また、成形部2は、原料液供給部22に向けて搬送シート11を供給するシート供給部12を有する。シート供給部12は供給ローラー121を有し、供給ローラー121は、回転することにより、その外周に予め巻き付けられた搬送シート11を繰り出す。シート供給部12は、更に、回転することにより、その外周に沿って搬送シート11の移動方向を転換する方向転換ローラー122を有してよい。方向転換ローラーの数及び位置は特に限定されない。 Further, the molding unit 2 has a sheet supply unit 12 that supplies the transport sheet 11 toward the raw material liquid supply unit 22. The sheet supply unit 12 has a supply roller 121, and the supply roller 121 rotates to feed out a transport sheet 11 previously wound around the outer periphery thereof. The sheet supply unit 12 may further have a direction changing roller 122 that changes the moving direction of the conveying sheet 11 along the outer periphery thereof by rotating. The number and position of the direction changing rollers are not particularly limited.
 供給ローラー121の外周には、供給芯123が取り外し可能に取り付けられてよい。供給芯123を複数個用意すれば、一の供給芯123から搬送シート11を繰り出す間に、別の供給芯123に搬送シート11を巻き付けることができる。従って、ロール状の搬送シート11を予め用意でき、待ち時間を短縮できる。また、搬送シート11を供給芯123に巻き付けた状態で搬送でき、搬送時の型崩れを防止できる。 The supply core 123 may be detachably attached to the outer circumference of the supply roller 121. If a plurality of supply cores 123 are prepared, the transfer sheet 11 can be wound around another supply core 123 while the transfer sheet 11 is fed out from one supply core 123. Therefore, the roll-shaped transport sheet 11 can be prepared in advance, and the waiting time can be shortened. Further, the transport sheet 11 can be transported in a state of being wound around the supply core 123, and the shape can be prevented from being lost during the transport.
 供給ローラー121の外周には、凹凸が設けられてもよい。その凹凸によって、供給芯123(但し、供給芯123が無い場合には搬送シート11)の滑りを抑制できる。同様に、供給芯123の外周には凹凸が設けられてもよい。その凹凸によって搬送シート11の滑りを抑制できる。 The outer circumference of the supply roller 121 may be provided with irregularities. Due to the unevenness, slippage of the supply core 123 (however, the transport sheet 11 when the supply core 123 is not provided) can be suppressed. Similarly, the outer circumference of the supply core 123 may be provided with irregularities. The unevenness can suppress the slip of the transport sheet 11.
 供給ローラー121の材料は、特に限定されないが、例えば、金属又は樹脂である。樹脂は、軽量性に優れ、運搬性に優れている。供給ローラー121の外周には、滑り止めのゴムが貼り付けられてもよい。 The material of the supply roller 121 is not particularly limited, but is, for example, metal or resin. The resin is excellent in light weight and excellent transportability. Non-slip rubber may be attached to the outer circumference of the supply roller 121.
 同様に、供給芯123の材料は、特に限定されないが、例えば、金属又は樹脂である。樹脂は、軽量性に優れ、運搬性に優れている。供給芯123の外周には、滑り止めのゴムが貼り付けられてもよい。 Similarly, the material of the supply core 123 is not particularly limited, but is, for example, metal or resin. The resin is excellent in light weight and excellent transportability. Non-slip rubber may be attached to the outer periphery of the supply core 123.
 また、成形部2は、原料液Aを供給した位置よりも原料液Aの搬送方向下流の位置にて、搬送シート11を曲げ、搬送シート11をゲルCから剥離するシート剥離部13を有する。ゲルCから剥離した搬送シート11は、再利用可能である。なお、搬送シート11は、上記の通り、ゲルCから剥離されることなく、ゲルCと共に巻取部7に送られ、ゲルCと共にロール状に巻き取られてもよい。 Further, the molding unit 2 has a sheet peeling portion 13 that bends the transport sheet 11 and peels the transport sheet 11 from the gel C at a position downstream of the position where the raw material liquid A is supplied in the transport direction of the raw material liquid A. The transport sheet 11 peeled off from the gel C can be reused. As described above, the transport sheet 11 may be sent to the winding unit 7 together with the gel C and wound in a roll shape together with the gel C without being peeled off from the gel C.
 シート剥離部13は、例えば、搬送シート11がゲルCから剥離するように巻き付く剥離ローラー131と、剥離ローラー131から搬送シート11を回収する回収ローラー132とを有する。搬送シート11は、剥離ローラー131の外周に沿って湾曲し、移動方向を転換する。剥離ローラー131は、回転することにより、その外周に沿って搬送シート11の移動方向を転換する方向転換ローラーである。一方、回収ローラー132は、回転することにより、その外周に搬送シート11を巻き取る。 The sheet peeling portion 13 has, for example, a peeling roller 131 around which the transport sheet 11 is wound so as to peel off from the gel C, and a recovery roller 132 for collecting the transport sheet 11 from the peel roller 131. The transport sheet 11 is curved along the outer circumference of the release roller 131 to change the moving direction. The peeling roller 131 is a direction changing roller that changes the moving direction of the transport sheet 11 along the outer circumference thereof by rotating. On the other hand, the recovery roller 132 winds the transport sheet 11 around its outer circumference by rotating.
 回収ローラー132の外周には、回収芯133が取り外し可能に取り付けられてよい。回収芯133の外周に、搬送シート11が巻き付けられる。ロール状の搬送シート11は回収芯133と共に、回収ローラー132から取り外される。従って、取り外し時、及びその後の運搬時に、型崩れを抑制できる。 A recovery core 133 may be detachably attached to the outer circumference of the recovery roller 132. The transport sheet 11 is wound around the outer circumference of the recovery core 133. The roll-shaped transport sheet 11 is removed from the recovery roller 132 together with the recovery core 133. Therefore, it is possible to prevent the shape from being lost during removal and subsequent transportation.
 回収ローラー132の外周には凹凸が設けられてもよい。凹凸によって、回収芯133(但し、回収芯133が無い場合には搬送シート11)の滑りを抑制できる。同様に、回収芯133の外周には凹凸が設けられてもよい。凹凸によって搬送シート11の滑りを抑制できる。 The outer circumference of the recovery roller 132 may be provided with irregularities. Due to the unevenness, slippage of the recovery core 133 (however, if the recovery core 133 is not provided, the transport sheet 11) can be suppressed. Similarly, the outer circumference of the recovery core 133 may be provided with irregularities. The unevenness can suppress the slip of the transport sheet 11.
 回収ローラー132の材料は、特に限定されないが、例えば、金属又は樹脂である。樹脂は、軽量性に優れ、運搬性に優れている。回収ローラー132の外周には、滑り止めのゴムが貼り付けられてもよい。 The material of the recovery roller 132 is not particularly limited, but is, for example, metal or resin. The resin is excellent in light weight and excellent transportability. Non-slip rubber may be attached to the outer circumference of the recovery roller 132.
 同様に、回収芯133の材料は、特に限定されないが、例えば、金属又は樹脂である。樹脂は、軽量性に優れ、運搬性に優れている。回収芯133の外周には、滑り止めのゴムが貼り付けられてもよい。 Similarly, the material of the recovery core 133 is not particularly limited, but is, for example, metal or resin. The resin is excellent in light weight and excellent transportability. Non-slip rubber may be attached to the outer periphery of the recovery core 133.
 回収芯133は、その外周に搬送シート11を巻き付けた状態で、回収ローラー132から取り外され、次いで、供給芯123として供給ローラー121に取り付けられてもよい。同様に、供給芯123は、搬送シート11を繰り出した後、供給ローラー121から取り外され、次いで、回収芯133として回収ローラー132に取り付けられてもよい。 The recovery core 133 may be removed from the recovery roller 132 with the transport sheet 11 wound around the outer circumference thereof, and then attached to the supply roller 121 as the supply core 123. Similarly, the supply core 123 may be removed from the supply roller 121 after feeding out the transport sheet 11, and then attached to the recovery roller 132 as the recovery core 133.
 なお、シート剥離部13は剥離ローラー131のみを有してもよく、剥離ローラー131が回収ローラー132を兼ねてもよい。つまり、搬送シート11は、剥離ローラー131の外周に巻き取られてもよい。この場合、剥離ローラー131は、回転モータによって能動的に回転する。 The sheet peeling portion 13 may have only the peeling roller 131, and the peeling roller 131 may also serve as the recovery roller 132. That is, the transport sheet 11 may be wound around the outer circumference of the release roller 131. In this case, the peeling roller 131 is actively rotated by the rotary motor.
 なお、剥離ローラー131と回収ローラー132とが別々に設けられる場合、回収ローラー132は、回転モータによって能動的に回転する。剥離ローラー131は、能動的に回転してもよいが、本実施形態では受動的に回転する。また、供給ローラー121と方向転換ローラー122も、能動的に回転してもよいが、本実施形態では受動的に回転する。 When the peeling roller 131 and the recovery roller 132 are provided separately, the recovery roller 132 is actively rotated by the rotary motor. The peeling roller 131 may rotate actively, but in the present embodiment, it rotates passively. Further, the supply roller 121 and the direction change roller 122 may also be actively rotated, but in the present embodiment, they are passively rotated.
 図2は、図1に示す製造装置の変形例を示す断面図である。本変形例では、搬送シート11は、無端ベルトであって、供給ローラー121と、方向転換ローラー122と、剥離ローラー131と、回収ローラー132とに掛け回される。本変形例では、方向転換ローラー122及び剥離ローラー131だけではなく、供給ローラー121及び回収ローラー132も方向転換ローラーである。なお、方向転換ローラーの数は2つ以上であればよく、搬送シート11は図2に示す方向転換ローラー122と剥離ローラー131とのみに掛け回されてもよい。複数の方向転換ローラーのうちの少なくとも1つ(例えば剥離ローラー131)は、回転モータによって能動的に回転する。複数の方向転換ローラーの全てが能動的に回転してもよいが、方向転換ローラーのうちの一部は受動的に回転してもよい。 FIG. 2 is a cross-sectional view showing a modified example of the manufacturing apparatus shown in FIG. In this modification, the transport sheet 11 is an endless belt and is hung around the supply roller 121, the direction change roller 122, the release roller 131, and the recovery roller 132. In this modification, not only the direction changing roller 122 and the peeling roller 131 but also the supply roller 121 and the recovery roller 132 are direction change rollers. The number of the direction changing rollers may be two or more, and the transport sheet 11 may be hung only on the direction changing rollers 122 and the peeling rollers 131 shown in FIG. At least one of the plurality of direction changing rollers (for example, the peeling roller 131) is actively rotated by a rotary motor. All of the plurality of directional rollers may rotate actively, but some of the directional rollers may rotate passively.
 搬送シート11は、シート剥離部13とシート供給部12との間で循環され、シート剥離部13と原料液供給部22との間で循環される。ロール状の搬送シート11を供給ローラー121に取り付けたり、ロール状の搬送シート11を回収ローラー132から取り外したりする手間を省略できる。また、図1に示す供給芯123及び回収芯133が不要である。 The transport sheet 11 is circulated between the sheet peeling section 13 and the sheet supply section 12, and is circulated between the sheet peeling section 13 and the raw material liquid supply section 22. It is possible to save the trouble of attaching the roll-shaped transport sheet 11 to the supply roller 121 and removing the roll-shaped transport sheet 11 from the collection roller 132. Further, the supply core 123 and the recovery core 133 shown in FIG. 1 are unnecessary.
 搬送シート11は、単層構造でもよいし、複数層構造でもよい。搬送シート11が複数層構造であれば、ゲルCの損傷を防止でき、且つ、搬送シート11の耐久性を向上できる。例えば、ゲルCと接触する層は、ゲルCの損傷を防止すべく、例えば柔軟で滑らかで継ぎ目のない樹脂フィルムであってよい。また、各種のローラーと接触する層は、搬送シート11の耐久性を向上すべく、ベルトコンベアなどで通常用いられるゴムベルト又は樹脂ベルトなどであってよい。 The transport sheet 11 may have a single-layer structure or a multi-layer structure. If the transport sheet 11 has a multi-layer structure, damage to the gel C can be prevented and the durability of the transport sheet 11 can be improved. For example, the layer in contact with the gel C may be, for example, a flexible, smooth, seamless resin film to prevent damage to the gel C. Further, the layer in contact with various rollers may be a rubber belt or a resin belt usually used in a belt conveyor or the like in order to improve the durability of the transport sheet 11.
 ところで、原料液Aの成形及びゲル化は、上記の通り、搬送シート11の上で実施される。搬送シート11は固体であるので、原料液Aが自然に薄く広がりやすい。また、搬送シート11は、固体であるので、その形状等によって原料液Aの幅を決めることができる。 By the way, the molding and gelation of the raw material liquid A is carried out on the transport sheet 11 as described above. Since the transport sheet 11 is a solid, the raw material liquid A naturally becomes thin and easily spreads. Further, since the transport sheet 11 is a solid, the width of the raw material liquid A can be determined by the shape and the like.
 原料液Aの幅が決まれば、原料液Aの厚みは搬送シート11の移動速度と原料液Aの供給速度とで決まる。搬送シート11の移動速度、及び原料液Aの供給速度の変更は容易であるので、原料液Aの厚み、ひいてはゲルCの厚みの変更が容易である。 Once the width of the raw material liquid A is determined, the thickness of the raw material liquid A is determined by the moving speed of the transport sheet 11 and the supply speed of the raw material liquid A. Since the moving speed of the transport sheet 11 and the supply speed of the raw material liquid A can be easily changed, the thickness of the raw material liquid A and thus the thickness of the gel C can be easily changed.
 図3Aは、搬送シートの第1例を示す断面図である。第1例に係る搬送シート11は、搬送シート11の移動方向(X軸方向)に直交する断面にて、平坦部111と、平坦部111の上面に、搬送シート11の移動方向に直交する幅方向(Y軸方向)に間隔をおいて形成される一対の土手部112とを有する。 FIG. 3A is a cross-sectional view showing a first example of the transport sheet. The transport sheet 11 according to the first example has a cross section orthogonal to the moving direction (X-axis direction) of the transport sheet 11, and has a width orthogonal to the moving direction of the transport sheet 11 on the flat portion 111 and the upper surface of the flat portion 111. It has a pair of bank portions 112 formed at intervals in the direction (Y-axis direction).
 原料液Aは、平坦部111と一対の土手部112とで形成される溝に供給される。一対の土手部112は、原料液Aが幅方向に広がるのを防止し、原料液Aの幅を決める。土手部112の高さは、原料液Aの厚みよりも小さくてもよいが、原料液Aが幅方向に広がるのを確実に防止すべく、原料液Aの厚みよりも大きくてよい。 The raw material liquid A is supplied to the groove formed by the flat portion 111 and the pair of bank portions 112. The pair of bank portions 112 prevent the raw material liquid A from spreading in the width direction, and determine the width of the raw material liquid A. The height of the bank portion 112 may be smaller than the thickness of the raw material liquid A, but may be larger than the thickness of the raw material liquid A in order to surely prevent the raw material liquid A from spreading in the width direction.
 平坦部111の表面張力が大きいほど、原料液Aが薄く濡れ広がり、厚みの薄いゲルCの製造が可能になる。厚みの厚いゲルCの製造も、当然に可能である。平坦部111の表面張力は、原料液Aの表面張力よりも大きいことが好ましい。そのような平坦部111の材料の具体例として、ポリエステルやナイロン等が挙げられる。 The greater the surface tension of the flat portion 111, the thinner the raw material liquid A gets wet and spreads, and the thinner the gel C can be produced. Of course, it is also possible to produce a thick gel C. The surface tension of the flat portion 111 is preferably larger than the surface tension of the raw material liquid A. Specific examples of the material of such a flat portion 111 include polyester and nylon.
 土手部112の材料は、平坦部111の材料と同じであってよい。土手部112と平坦部111とが同じ材料であれば、土手部112と平坦部111とを一体に成形でき、搬送シート11の製造コストを低減できる。それゆえ、土手部112の表面張力は、原料液Aの表面張力よりも大きくてよい。 The material of the bank portion 112 may be the same as the material of the flat portion 111. If the bank portion 112 and the flat portion 111 are made of the same material, the bank portion 112 and the flat portion 111 can be integrally formed, and the manufacturing cost of the transport sheet 11 can be reduced. Therefore, the surface tension of the bank portion 112 may be larger than the surface tension of the raw material liquid A.
 土手部112の表面張力が原料液Aの表面張力よりも大きいと、図3Aに示すように、上に凹のメニスカス(Meniscus)が原料液Aの液面に形成される。その状態で原料液Aがゲル化されると、ゲルCの角部に鋭角のバリが生じる。このバリは小さく、ゲルCの厚みは全体的には均一であるので、バリは残したままでもよいが、切り落として取り除いてもよい。但し、ゲルCと搬送シート11との剥離時に、バリが欠けてしまったり、クラックが発生したりすると、そこが起点となり、ゲルCが割れてしまうことがある。 When the surface tension of the bank portion 112 is larger than the surface tension of the raw material liquid A, a concave Meniscus is formed on the liquid surface of the raw material liquid A as shown in FIG. 3A. When the raw material liquid A is gelled in this state, sharp burrs are generated at the corners of the gel C. Since the burrs are small and the thickness of the gel C is uniform as a whole, the burrs may be left as they are, or may be cut off and removed. However, if burrs are chipped or cracks occur when the gel C and the transport sheet 11 are peeled off, the gel C may be cracked at that point.
 そこで、図3Bに示す第2例に係る搬送シート11は、土手部112の幅方向内側の側壁面に、表面改質部113を有する。表面改質部113の表面張力は、土手部112及び平坦部111の表面張力よりも小さく、好ましくは原料液Aの表面張力以下、より好ましくは原料液Aの表面張力よりも小さい。 Therefore, the transport sheet 11 according to the second example shown in FIG. 3B has a surface modification portion 113 on the side wall surface on the inner side in the width direction of the bank portion 112. The surface tension of the surface modification portion 113 is smaller than the surface tension of the bank portion 112 and the flat portion 111, preferably less than or equal to the surface tension of the raw material liquid A, and more preferably smaller than the surface tension of the raw material liquid A.
 表面改質部113の表面張力が原料液Aの表面張力よりも小さいと、図3Bに示すように表面改質部113が原料液Aをはじくので、上に凸のメニスカスが原料液Aの液面に形成される。その状態で原料液Aがゲル化されると、ゲルCの角部に鈍角な面取部が形成される。従って、ゲルCと搬送シート11との剥離時に、ゲルCの角部が欠けるのを抑制できる。 When the surface tension of the surface modifying portion 113 is smaller than the surface tension of the raw material liquid A, the surface modifying portion 113 repels the raw material liquid A as shown in FIG. 3B, so that the upwardly convex meniscus is the liquid of the raw material liquid A. Formed on the surface. When the raw material liquid A is gelled in this state, an obtuse chamfered portion is formed at the corner portion of the gel C. Therefore, it is possible to prevent the corners of the gel C from being chipped when the gel C and the transport sheet 11 are peeled off.
 但し、ゲルCの角部が欠けるのを抑制する効果は、表面改質部113の表面張力が土手部112及び平坦部111の表面張力よりも小さければ、得られる。平坦部111と表面改質部113との間で表面張力に差を付けることで、厚みの薄いゲルCを製造でき、且つ、ゲルCの角部の欠けを抑制できる。 However, the effect of suppressing the corners of the gel C from being chipped can be obtained if the surface tension of the surface modification portion 113 is smaller than the surface tension of the bank portion 112 and the flat portion 111. By making a difference in surface tension between the flat portion 111 and the surface modification portion 113, a thin gel C can be produced, and chipping of the corners of the gel C can be suppressed.
 表面改質部113は、固体膜でもよいし、液体膜でもよい。固体膜の具体例として、例えばフッ素系樹脂のコーティング膜が挙げられる。液体膜の具体例として、フッ素系オイルの塗布膜やシリコーンオイルの塗布膜が挙げられる。表面改質部113は、耐久性及び安定性の観点から、好ましくは固体膜である。表面改質部113は、原料液Aをはじくので、ゲルCの離型剤としての役割も果たす。 The surface modification portion 113 may be a solid film or a liquid film. Specific examples of the solid film include a coating film made of a fluororesin. Specific examples of the liquid film include a fluorine-based oil coating film and a silicone oil coating film. The surface modification portion 113 is preferably a solid film from the viewpoint of durability and stability. Since the surface modification section 113 repels the raw material liquid A, it also serves as a release agent for the gel C.
 なお、図3Bに示す第2例では、平坦部111と土手部112とが同じ材料で形成され、且つ、土手部112の幅方向内側の側壁面に表面改質部113が形成されるが、平坦部111と土手部112とが異なる材料で形成され、土手部112の表面張力が平坦部111の表面張力よりも小さくもよい。この場合も、厚みの薄いゲルCを製造でき、且つ、ゲルCの角部の欠けを抑制できる。 In the second example shown in FIG. 3B, the flat portion 111 and the bank portion 112 are formed of the same material, and the surface modification portion 113 is formed on the side wall surface on the inner side in the width direction of the bank portion 112. The flat portion 111 and the bank portion 112 may be formed of different materials, and the surface tension of the bank portion 112 may be smaller than the surface tension of the flat portion 111. Also in this case, a thin gel C can be produced, and chipping of the corners of the gel C can be suppressed.
 ところで、図3Aに示す第1例及び図3Bに示す第2例では、土手部112の幅方向内側の側壁面は、平坦部111の上面に対して垂直である。これに対し、図3Cに示す第3例では、土手部112の幅方向内側の側壁面は、平坦部111の上面に対して傾斜しており、具体的には、上方に向うほど幅方向外側に傾斜する。この傾斜によって、ゲルCと搬送シート11とを容易に剥離できる。尚、図3Cに示す第3例にも、図3Aに示す第1例や図3Bに示す第2例の内容を適用できる。 By the way, in the first example shown in FIG. 3A and the second example shown in FIG. 3B, the side wall surface on the inner side in the width direction of the bank portion 112 is perpendicular to the upper surface of the flat portion 111. On the other hand, in the third example shown in FIG. 3C, the side wall surface on the inner side in the width direction of the bank portion 112 is inclined with respect to the upper surface of the flat portion 111, and specifically, the lateral side in the width direction is directed upward. Tilt to. Due to this inclination, the gel C and the transport sheet 11 can be easily peeled off. The contents of the first example shown in FIG. 3A and the second example shown in FIG. 3B can also be applied to the third example shown in FIG. 3C.
 図3Dは、搬送シートの第4例を示す断面図である。第4例の搬送シート11は、図3A~図3Cに示す土手部112の代わりに、図3Dに示す表面改質部115を有する。表面改質部115は、平坦部111の上面に、幅方向(Y軸方向)に間隔をおいて一対形成される。 FIG. 3D is a cross-sectional view showing a fourth example of the transport sheet. The transport sheet 11 of the fourth example has a surface modification portion 115 shown in FIG. 3D instead of the bank portion 112 shown in FIGS. 3A to 3C. A pair of surface modification portions 115 are formed on the upper surface of the flat portion 111 at intervals in the width direction (Y-axis direction).
 原料液Aは、平坦部111の上面のうち、一対の表面改質部115の間に供給される。表面改質部115の表面張力は、平坦部111の表面張力よりも小さく、好ましくは原料液Aの表面張力よりも小さい。一対の表面改質部115は、原料液Aが幅方向に広がるのを防止し、原料液Aの幅を決める。 The raw material liquid A is supplied between the pair of surface modification portions 115 on the upper surface of the flat portion 111. The surface tension of the surface modification portion 115 is smaller than the surface tension of the flat portion 111, preferably smaller than the surface tension of the raw material liquid A. The pair of surface modification portions 115 prevent the raw material liquid A from spreading in the width direction, and determine the width of the raw material liquid A.
 表面改質部115は、固体膜でもよいし、液体膜でもよい。固体膜の具体例として、例えばフッ素系樹脂のコーティング膜が挙げられる。液体膜の具体例として、フッ素系オイルの塗布膜やシリコーンオイルの塗布膜が挙げられる。表面改質部115は、耐久性及び安定性の観点から、好ましくは固体膜である。 The surface modification portion 115 may be a solid film or a liquid film. Specific examples of the solid film include a coating film made of a fluororesin. Specific examples of the liquid film include a fluorine-based oil coating film and a silicone oil coating film. The surface modification portion 115 is preferably a solid film from the viewpoint of durability and stability.
 表面改質部115の厚みは、原料液Aの厚みよりも厚くてもよいが、薄くてもよい。表面改質部115の厚みが、1nm程度であっても、厚み1mm程度の原料液Aの液漏れを防止できる。 The thickness of the surface modification portion 115 may be thicker than the thickness of the raw material liquid A, but may be thinner. Even if the thickness of the surface modification portion 115 is about 1 nm, leakage of the raw material liquid A having a thickness of about 1 mm can be prevented.
 表面改質部115の厚みは、ゲルCの厚みよりも厚くてもよいが、薄くてもよい。表面改質部115の厚みがゲルCの厚みよりも薄ければ、搬送シート11をゲルCと共にロール状に巻き取りやすい。巻き取り時に、ゲルCと平坦部111とが、隙間なく、繰り返し積層されるからである。 The thickness of the surface modification portion 115 may be thicker than the thickness of the gel C, but may be thinner. If the thickness of the surface modification portion 115 is thinner than the thickness of the gel C, the transport sheet 11 can be easily wound together with the gel C in a roll shape. This is because the gel C and the flat portion 111 are repeatedly laminated without a gap at the time of winding.
 また、表面改質部115の厚みがゲルCの厚みよりも薄ければ、表面改質部115の厚みが薄く、搬送シート11の厚みのばらつきが小さいので、ゲルCから剥離した後の搬送シート11を単体でロール状に巻き取りやすい。 Further, if the thickness of the surface modification portion 115 is thinner than the thickness of the gel C, the thickness of the surface modification portion 115 is thin and the variation in the thickness of the transfer sheet 11 is small, so that the transfer sheet after peeling from the gel C is small. It is easy to wind 11 by itself into a roll.
 搬送シート11の材質は、原料液Aの溶媒に応じて適宜選択される。搬送シート11の材質は、特に限定されないが、可撓性の観点から、樹脂が好ましい。搬送シート11の具体例として、ポリエステルフィルムやナイロンフィルム等が挙げられる。搬送シート11は、その上に原料液Aの層を安定的に存在させるべく、原料液Aによって変質や膨潤せず、かつ、互いに反応しないものを用いることが好ましい。 The material of the transport sheet 11 is appropriately selected according to the solvent of the raw material liquid A. The material of the transport sheet 11 is not particularly limited, but a resin is preferable from the viewpoint of flexibility. Specific examples of the transport sheet 11 include a polyester film and a nylon film. It is preferable to use a transport sheet 11 which does not deteriorate or swell due to the raw material liquid A and does not react with each other so that the layer of the raw material liquid A is stably present on the transport sheet 11.
 成形部2で得られるゲルCは、膨潤剤である溶媒を含む湿潤ゲルである。湿潤ゲルの厚みは、例えば0.1mm~20mm、好ましくは0.5mm~10mmである。湿潤ゲルは、乾燥部6にて乾燥され、キセロゲルになる。キセロゲルの厚みは、例えば0.1mm~20mm、好ましくは0.5mm~10mmである。キセロゲルは、多孔質なモノリスであって、透明性と断熱性を有するものであってよい。透明性と断熱性を有するキセロゲルは、例えば、自動車用窓ガラスや建物用窓ガラスにおける透明断熱材として用いられる。 The gel C obtained in the molding unit 2 is a wet gel containing a solvent as a swelling agent. The thickness of the wet gel is, for example, 0.1 mm to 20 mm, preferably 0.5 mm to 10 mm. The wet gel is dried in the drying section 6 to become a xerogel. The thickness of the xerogel is, for example, 0.1 mm to 20 mm, preferably 0.5 mm to 10 mm. The xerogel may be a porous monolith that is transparent and heat insulating. Xerogel having transparency and heat insulating property is used as a transparent heat insulating material in, for example, window glass for automobiles and window glass for buildings.
 キセロゲルの用途が透明断熱材である場合、キセロゲルの波長500nmにおける透過率は、厚み1mm換算で70%以上が好ましく、80%以上が好ましく、90%以上が好ましい。透過率は、日本工業規格(JIS R 3106:1998)に準拠して測定される。 When the use of xerogel is a transparent heat insulating material, the transmittance of xerogel at a wavelength of 500 nm is preferably 70% or more, preferably 80% or more, and preferably 90% or more in terms of thickness of 1 mm. The transmittance is measured in accordance with the Japanese Industrial Standards (JIS R 3106: 1998).
 キセロゲルの用途としては、例えば、断熱材の他に、フィルター、吸着剤、吸音材、吸湿材、吸油材、又は分離膜が挙げられる。キセロゲルは、用途によっては透明でなくてもよく、不透明でもよい。 Examples of applications of xerogel include filters, adsorbents, sound absorbing materials, moisture absorbing materials, oil absorbing materials, and separation membranes, in addition to heat insulating materials. Xerogel may not be transparent or may be opaque depending on the application.
 キセロゲルの種類は、本実施形態では(1)ポリシロキサンキセロゲルであるが、(2)ポリマーキセロゲル、又は(3)セルロースキセロゲルなどの多糖類キセロゲルであってもよい。 The type of xerogel is (1) polysiloxane xerogel in the present embodiment, but may be (2) polymer xerogel or (3) polysaccharide xerogel such as cellulose xerogel.
 原料液Aは、例えばゲルCの原料(以下、「ゲル原料」とも呼ぶ。)と、ゲル原料を溶かす溶媒とを含む。ゲル原料は、最終的に得られるキセロゲルの種類に応じて適宜選択される。溶媒は、例えば水又は有機溶媒である。有機溶媒としては、アルコール(メタノール、エタノール、イソプロピルアルコール、tert-ブチルアルコール、ベンジルアルコール等)、非プロトン性極性有機溶媒(N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド等)、ケトン(シクロペンタノン、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン、アセトン等)、炭化水素(n-ヘキサン、ヘプタン等)等が挙げられる。 The raw material liquid A contains, for example, a raw material for gel C (hereinafter, also referred to as “gel raw material”) and a solvent for dissolving the gel raw material. The gel raw material is appropriately selected according to the type of xerogel finally obtained. The solvent is, for example, water or an organic solvent. Examples of the organic solvent include alcohols (methanol, ethanol, isopropyl alcohol, tert-butyl alcohol, benzyl alcohol, etc.), aprotic polar organic solvents (N, N-dimethylformamide, dimethylsulfoxide, N, N-dimethylacetamide, etc.), Examples thereof include ketones (cyclopentanone, cyclohexanone, methylethylketone, methylisobutylketone, acetone, etc.), hydrocarbons (n-hexane, heptane, etc.) and the like.
 キセロゲルが(1)ポリシロキサンキセロゲルの場合、ゲル原料としては、例えば(1A)シラン化合物と(1B)触媒とを含むものが挙げられる。(1B)触媒は、ゲル化を均一に促進するためのものである。ゲル原料は、(1C)界面活性剤を更に含んでもよい。 When the xerogel is (1) polysiloxane xerogel, examples of the gel raw material include those containing (1A) a silane compound and (1B) a catalyst. (1B) The catalyst is for uniformly promoting gelation. The gel raw material may further contain (1C) a surfactant.
 (1A)シラン化合物としては、アルコキシシラン、6員環含有骨格と加水分解性シリル基とを有する6員環含有シラン化合物、有機ポリマー骨格と加水分解性シリル基とを有するシリル基含有ポリマー等が挙げられる。 Examples of the silane compound include alkoxysilane, a 6-membered ring-containing silane compound having a 6-membered ring-containing skeleton and a hydrolyzable silyl group, and a silyl group-containing polymer having an organic polymer skeleton and a hydrolyzable silyl group. Can be mentioned.
 アルコキシシランとしては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン等)、モノアルキルトリアルコキシシラン(メチルトリメトキシシラン、メチルトリエトキシシラン等)、ジアルキルジアルコキシシラン(ジメチルジメトキシシラン、ジメチルジエトキシシラン等)、トリメトキシフェニルシラン、アルキレン基の両末端にアルコキシシリル基を有する化合物(1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(メチルジメトキシシリル)ヘキサン、1,6-ビス(メチルジエトキシシリル)ヘキサン、1,2-ビス(トリメトキシシリル)エタン、1,2-ビス(メチルジメトキシシリル)エタン、1,2-ビス(メチルジエトキシシリル)エタン等)、ペルフルオロポリエーテル基を有するアルコキシシラン(ペルフルオロポリエーテルトリエトキシシラン、ペルフルオロポリエーテルメチルジエトキシシラン等)、ペルフルオロアルキル基を有するアルコキシシラン(ペルフルオロエチルトリエトキシシラン等)、ペンタフルオロフェニルエトキシジメチルシラン、トリメトキシ(3,3,3-トリフルオロプロピル)シラン、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン等)、アリル基を有するアルコキシシラン(アリルトリメトキシシラン、アリルジメトキシメチルシラン、アリルジエトキシメチルシラン等)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等)、アクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルオキシプロピルメチルジメトキシシラン等)、メタクリロイルオキシ基を有するアルコキシシラン(3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン等)等及び上記のアルコキシシランのオリゴマーが挙げられる。 Examples of the alkoxysilane include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, etc.), monoalkyltrialkoxysilane (methyltrimethoxysilane, methyltriethoxysilane, etc.), and dialkyldialkoxysilane (dimethyldimethoxysilane, dimethyldiethoxysilane, etc.). Etc.), trimethoxyphenylsilane, compounds having alkoxysilyl groups at both ends of the alkylene group (1,6-bis (trimethoxysilyl) hexane, 1,6-bis (methyldimethoxysilyl) hexane, 1,6-bis (Methyldiethoxysilyl) hexane, 1,2-bis (trimethoxysilyl) ethane, 1,2-bis (methyldimethoxysilyl) ethane, 1,2-bis (methyldiethoxysilyl) ethane, etc.), perfluoropolyether Alkoxysilane having a group (perfluoropolyether triethoxysilane, perfluoropolyether methyldiethoxysilane, etc.), alkoxysilane having a perfluoroalkyl group (perfluoroethyltriethoxysilane, etc.), pentafluorophenylethoxydimethylsilane, trimethoxy (3, 3,3-Trifluoropropyl) Alkoxy, Alkoxysilane with Vinyl Group (Vinyltrimethoxysilane, Vinyltriethoxysilane, Dimethoxymethylvinylsilane, Diethoxymethylvinylsilane, etc.), Alkoxysilane with Allyl Group (Allyltrimethoxysilane, etc.) Allyldimethoxymethylsilane, allyldiethoxymethylsilane, etc.), alkoxysilane with an epoxy group (2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxy) (Propylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, etc.), alkoxysilane having an acryloyloxy group (3-acryloyloxypropyltrimethoxysilane, 3-acryloyloxypropylmethyldimethoxysilane, etc.), methacryloyloxy group Examples thereof include an alkoxysilane (3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, etc.) and the above-mentioned alkoxysilane oligomer.
 6員環含有シラン化合物における6員環含有骨格は、イソシアヌル環、トリアジン環及びベンゼン環からなる群から選ばれる少なくとも1種の6員環を有する有機骨格である。 The 6-membered ring-containing skeleton in the 6-membered ring-containing silane compound is an organic skeleton having at least one 6-membered ring selected from the group consisting of an isocyanul ring, a triazine ring and a benzene ring.
 シリル基含有ポリマーにおける有機ポリマー骨格は、ポリエチレン鎖、ポリエーテル鎖、ポリエステル鎖及びポリカーボネート鎖からなる群から選ばれる少なくとも1種の鎖を有する有機骨格である。 The organic polymer skeleton of the silyl group-containing polymer is an organic skeleton having at least one chain selected from the group consisting of polyethylene chains, polyether chains, polyester chains and polycarbonate chains.
 (1B)触媒としては、塩基触媒又は酸触媒が挙げられ、それらの水溶液であってもよい。塩基触媒としては、アミン(トリエチルアミン、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等)、尿素、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。酸触媒としては、無機酸(硝酸、硫酸、塩酸等)、有機酸(ギ酸、シュウ酸、酢酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸、モノフルオロ酢酸、トリフルオロ酢酸等)が挙げられる。 Examples of the (1B) catalyst include a base catalyst and an acid catalyst, and an aqueous solution thereof may be used. Examples of the base catalyst include amines (triethylamine, tetramethylammonium hydroxide, tetraethylammonium hydroxide, etc.), urea, ammonia, sodium hydroxide, potassium hydroxide and the like. Examples of the acid catalyst include inorganic acids (nitric acid, sulfuric acid, hydrochloric acid, etc.) and organic acids (girate, oxalic acid, acetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, monofluoroacetic acid, trifluoroacetic acid, etc.).
 (1C)界面活性剤としては、例えば、ヘキサデシルトリメチルアンモニウムブロミド、ヘキサデシルトリメチルアンモニウムクロリド、プルロニックF127(BASF社商品名)、又はEH-208(日油社商品名)などが挙げられる。 Examples of the (1C) surfactant include hexadecyltrimethylammonium bromide, hexadecyltrimethylammonium chloride, Pluronic F127 (trade name of BASF), EH-208 (trade name of NOF Corporation) and the like.
 キセロゲルが(2)ポリマーキセロゲルの場合、ゲル原料としては、熱可塑性樹脂又は硬化性樹脂等が挙げられる。 When the xerogel is (2) polymer xerogel, the gel raw material includes a thermoplastic resin, a curable resin, and the like.
 熱可塑性樹脂としては、加熱すると溶媒に溶解し、冷却するとモノリス(多孔体)を形成できるものが挙げられ、具体的には、ポリメチルメタクリレート、ポリスチレン等が挙げられる。 Examples of the thermoplastic resin include those capable of dissolving in a solvent when heated and forming a monolith (porous body) when cooled, and specific examples thereof include polymethylmethacrylate and polystyrene.
 硬化性樹脂としては、光硬化性樹脂又は熱硬化性樹脂が挙げられる。光硬化性樹脂としては、アクリレート及びメタクリレートのいずれか一方又は両方と光重合開始剤とを含むもの等が挙げられる。熱硬化性樹脂としては、アクリレート及びメタクリレートのいずれか一方又は両方と熱重合開始剤とを含むものなどの他に、レゾルシノールとホルムアルデヒドとの付加縮合物、メラミンとホルムアルデヒドとの付加縮合物等が挙げられる。 Examples of the curable resin include a photocurable resin and a thermosetting resin. Examples of the photocurable resin include those containing either one or both of acrylate and methacrylate and a photopolymerization initiator. Examples of the thermosetting resin include those containing either one or both of acrylate and methacrylate and a thermal polymerization initiator, an addition condensate of resorcinol and formaldehyde, and an addition condensate of melamine and formaldehyde. Be done.
 キセロゲルが(3)多糖類キセロゲルの場合、ゲル原料としては、(3A)多糖類ナノファイバーと(3B)酸とを含むものが挙げられる。多糖類としては、セルロースの他に、キチン、キトサン、ジェランガムなども挙げられる。 When the xerogel is (3) polysaccharide xerogel, examples of the gel raw material include those containing (3A) polysaccharide nanofibers and (3B) acid. Examples of polysaccharides include chitin, chitosan, and gellan gum in addition to cellulose.
 (3A)多糖類ナノファイバーとしては、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)酸化セルロースナノファイバー等が挙げられる。(3A)多糖類ナノファイバーとしては、セルロースナノファイバーの他に、キチンナノファイバー、キトサンナノファイバーなども挙げられる。 Examples of the (3A) polysaccharide nanofiber include 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidized cellulose nanofiber. Examples of the (3A) polysaccharide nanofiber include chitin nanofiber and chitosan nanofiber in addition to cellulose nanofiber.
 (3B)酸としては、前記無機酸又は前記有機酸が挙げられる。酸の代わりに、塩基も使用可能である。 Examples of the (3B) acid include the inorganic acid and the organic acid. Bases can be used instead of acids.
 ところで、ゲル原料が(1A)シラン化合物と(1B)触媒とを含むものである場合、原料液Aのゲル化は、加熱によって行われる。シラン化合物は、酸触媒などで加水分解され、シラノール基(Si-OH)を有するゾルになる。ゾルが加熱されると、シラノール基同士が分子間で脱水縮合反応しSi-O-Si結合を形成し、原料液Aがゲル化される。 By the way, when the gel raw material contains (1A) a silane compound and (1B) a catalyst, gelation of the raw material liquid A is performed by heating. The silane compound is hydrolyzed by an acid catalyst or the like to form a sol having a silanol group (Si—OH). When the sol is heated, the silanol groups undergo a dehydration condensation reaction between the molecules to form a Si—O—Si bond, and the raw material liquid A is gelled.
 原料液供給部22は、例えばシラン化合物と触媒とを混合する混合槽を含む。混合槽は、ゲル化の進行を抑制すべく、原料液Aを冷却する冷却装置を含んでもよい。混合槽の温度は、ゲル化の進行抑止の観点からは低いほど好ましいが、凍結防止の観点から、原料液Aの凝固点よりも高く設定されてよく、例えば0℃~20℃に設定される。 The raw material liquid supply unit 22 includes, for example, a mixing tank for mixing a silane compound and a catalyst. The mixing tank may include a cooling device for cooling the raw material liquid A in order to suppress the progress of gelation. The temperature of the mixing tank is preferably lower from the viewpoint of suppressing the progress of gelation, but may be set higher than the freezing point of the raw material liquid A from the viewpoint of preventing freezing, and is set to, for example, 0 ° C to 20 ° C.
 混合槽は、原料液Aを撹拌する撹拌装置を含んでもよい。シラン化合物と触媒とを短時間で混合でき、原料液Aを短時間で均一化できる。 The mixing tank may include a stirring device that stirs the raw material liquid A. The silane compound and the catalyst can be mixed in a short time, and the raw material liquid A can be homogenized in a short time.
 混合槽は、図示していないが、第1配管を介してシラン化合物の供給源と接続され、第2配管を介して触媒の供給源と接続される。第1配管にはシラン化合物の流量を制御する第1流量制御器が設けられ、第2配管には触媒の流量を制御する第2流量制御器が設けられる。シラン化合物の流量と触媒の流量とを制御できるので、混合槽での滞留時間を短くできる。シラン化合物の流量と触媒の流量とは、搬送シート11の上に供給される原料液Aの流量に応じて適宜決定される。 Although not shown, the mixing tank is connected to the silane compound supply source via the first pipe, and is connected to the catalyst supply source via the second pipe. The first pipe is provided with a first flow rate controller that controls the flow rate of the silane compound, and the second pipe is provided with a second flow rate controller that controls the flow rate of the catalyst. Since the flow rate of the silane compound and the flow rate of the catalyst can be controlled, the residence time in the mixing tank can be shortened. The flow rate of the silane compound and the flow rate of the catalyst are appropriately determined according to the flow rate of the raw material liquid A supplied on the transport sheet 11.
 成形部2は、搬送シート11の上で原料液Aをゲル化すべく、第1加熱器23と、第2加熱器24とを有する。第1加熱器23は、搬送シート11の上方に配置され、原料液Aを上方から加熱する。第2加熱器24は、搬送シート11の下方に配置され、搬送シート11を加熱することで、原料液Aを下方から加熱する。原料液Aを上下両側から加熱することにより、ゲル化を上下両側から進行できる。 The molding unit 2 has a first heater 23 and a second heater 24 in order to gel the raw material liquid A on the transport sheet 11. The first heater 23 is arranged above the transport sheet 11 and heats the raw material liquid A from above. The second heater 24 is arranged below the transport sheet 11, and by heating the transport sheet 11, the raw material liquid A is heated from below. By heating the raw material liquid A from both the upper and lower sides, gelation can proceed from both the upper and lower sides.
 第1加熱器23は、搬送シート11の搬送方向(X軸方向)に沿って間隔をおいて複数配置されてよい。複数の第1加熱器23を独立に制御することで、原料液Aの搬送方向における温度分布を制御できる。その温度分布は、搬送方向全体に亘って均一でもよいし、下流に向うほど高温でもよいし、下流に向うほど低温でもよい。第2加熱器24も、第1加熱器23と同様に、配置され、制御されてよい。 A plurality of first heaters 23 may be arranged at intervals along the transport direction (X-axis direction) of the transport sheet 11. By independently controlling the plurality of first heaters 23, the temperature distribution in the transport direction of the raw material liquid A can be controlled. The temperature distribution may be uniform over the entire transport direction, may be higher toward the downstream, or may be lower toward the downstream. The second heater 24 may also be arranged and controlled in the same manner as the first heater 23.
 第1加熱器23、及び第2加熱器24の加熱方式は、特に限定されないが、例えば、抵抗加熱式、赤外線加熱式、及びアーク加熱式などのなかから、設置場所に応じて適宜選択される。 The heating method of the first heater 23 and the second heater 24 is not particularly limited, but is appropriately selected from, for example, a resistance heating type, an infrared heating type, an arc heating type, and the like according to the installation location. ..
 なお、成形部2は、第1加熱器23、及び第2加熱器24のうちの少なくとも1つを有すればよい。更に、図示していないが、加熱器は、搬送シート11の側面から加熱するように設置してもよい。また、原料液Aをゲル化させる手段は、加熱器には限定されず、ゲル原料の種類に応じて適宜選択される。 The molding unit 2 may have at least one of the first heater 23 and the second heater 24. Further, although not shown, the heater may be installed so as to heat from the side surface of the transport sheet 11. Further, the means for gelling the raw material liquid A is not limited to the heater, and is appropriately selected according to the type of the gel raw material.
 例えば、ゲル原料が熱可塑性樹脂である場合、原料液Aをゲル化させる手段は、冷却器である。冷却器は、搬送シート11の上で原料液Aを冷却し、原料液Aをゲル化させる。冷却器も、加熱器と同様に、配置され、制御されてよい。冷却器による強制冷却の代わりに、自然冷却が実施されてもよい。 For example, when the gel raw material is a thermoplastic resin, the means for gelling the raw material liquid A is a cooler. The cooler cools the raw material liquid A on the transport sheet 11 and gels the raw material liquid A. The cooler may be arranged and controlled in the same manner as the heater. Natural cooling may be performed instead of forced cooling by the cooler.
 また、ゲル原料が光硬化性樹脂である場合、原料液Aをゲル化させる手段は、光源である。光源は、搬送シート11の上に存在する原料液Aに対して紫外線等の光を照射し、光硬化性モノマーを硬化し、原料液Aをゲル化する。光源も、加熱器と同様に、配置され、制御されてよい。 When the gel raw material is a photocurable resin, the means for gelling the raw material liquid A is a light source. The light source irradiates the raw material liquid A existing on the transport sheet 11 with light such as ultraviolet rays to cure the photocurable monomer and gel the raw material liquid A. The light source may be arranged and controlled in the same manner as the heater.
 また、ゲル原料が熱硬化性樹脂である場合、原料液Aをゲル化させる手段は、加熱器である。 When the gel raw material is a thermosetting resin, the means for gelling the raw material liquid A is a heater.
 また、ゲル原料が多糖類ナノファイバーである場合、多糖類ナノファイバーは酸触媒又は塩基触媒に接触すると、短時間でゲル化する。従って、原料液Aは、多糖類ナノファイバーを含み、酸触媒又は塩基触媒を含まなくてよい。酸触媒又は塩基触媒は、搬送シート11の上に形成された原料液Aの層に対して、上方からシャワー状に供給されてよい。この場合、原料液Aをゲル化させる手段は、原料液Aの層に対して上方から酸触媒又は塩基触媒を供給する供給器である。 Further, when the gel raw material is a polysaccharide nanofiber, the polysaccharide nanofiber gels in a short time when it comes into contact with an acid catalyst or a base catalyst. Therefore, the raw material liquid A may contain polysaccharide nanofibers and may not contain an acid catalyst or a base catalyst. The acid catalyst or the base catalyst may be supplied in a shower shape from above to the layer of the raw material liquid A formed on the transport sheet 11. In this case, the means for gelling the raw material liquid A is a feeder that supplies an acid catalyst or a base catalyst to the layer of the raw material liquid A from above.
 (取出部)
 取出部3は、リボン状のゲルCを、成形部2から連続的に取り出す。取出部3は、成形部2よりも下流側に配置され、リボン状のゲルCを引っ張る。図1に示すように取出部3がゲルCを支持するので、ゲルCの下方で搬送シート11を曲げ変形でき、ゲルCを連続的に送ることができる。
(Ejection section)
The take-out part 3 continuously takes out the ribbon-shaped gel C from the molding part 2. The take-out portion 3 is arranged on the downstream side of the molding portion 2 and pulls the ribbon-shaped gel C. As shown in FIG. 1, since the take-out portion 3 supports the gel C, the transport sheet 11 can be bent and deformed below the gel C, and the gel C can be continuously fed.
 取出部3は、例えば引張ローラー31を含む。引張ローラー31は、例えば、リボン状のゲルCを上下両側から挟み、回転することにより、ゲルCを下流側に送り出す。上側の引張ローラー31と、下側の引張ローラー31との間隔は、ゲルCの厚みHが過剰に圧縮されないように、つまり、ゲルCが割れないように設定される。なお、ゲルCの厚みHは、原料液Aの最終的な厚みHに等しい。 The take-out portion 3 includes, for example, a tension roller 31. For example, the tension roller 31 sandwiches the ribbon-shaped gel C from both the upper and lower sides and rotates the gel C to send the gel C to the downstream side. An upper tension roller 31, the distance between the tension roller 31 of the lower, so that the thickness H C gel C is not excessively compressed, that is, are set to gel C is not cracked. The thickness H C of the gel C is equal to the final thickness H A raw material liquid A.
 なお、ゲルCだけではなく搬送シート11も一対の引張ローラー31の間を通り、且つ、搬送シート11の土手部112の厚みがゲルCの厚みHよりも厚い場合には、一対の引張ローラー31は搬送シート11を挟んで送り出す。この場合、上側の引張ローラー31と、下側の引張ローラー31との間隔は、土手部112の厚みと平坦部111の厚みとの合計よりも僅かに小さくてよい。 Further, the gel C only conveying sheet 11 rather than be passed between the pair of tension rollers 31, and, when the thickness of the bank portion 112 of the transfer sheet 11 is thicker than the thickness H C of the gel C is a pair tensile rollers 31 sandwiches the transport sheet 11 and sends it out. In this case, the distance between the upper tension roller 31 and the lower tension roller 31 may be slightly smaller than the sum of the thickness of the bank portion 112 and the thickness of the flat portion 111.
 また、ゲルCだけではなく搬送シート11も一対の引張ローラー31の間を通り、且つ、搬送シート11の表面改質部115の厚みがゲルCの厚みHよりも薄い場合には、一対の引張ローラー31はゲルCと搬送シート11とを挟んで送り出す。この場合、上側の引張ローラー31と、下側の引張ローラー31との間隔は、ゲルCの厚みと平坦部111の厚みとの合計よりも僅かに小さくてよい。 Further, gel C only conveying sheet 11 rather than be passed between the pair of tension rollers 31, and the thickness of the surface modification portion 115 of the transfer sheet 11 when thinner than the thickness H C of the gel C is a pair The tension roller 31 sandwiches the gel C and the transport sheet 11 and feeds them out. In this case, the distance between the upper tension roller 31 and the lower tension roller 31 may be slightly smaller than the sum of the thickness of the gel C and the thickness of the flat portion 111.
 なお、引張ローラー31は、リボン状のゲルCの上下両側に配置されなくてもよく、例えば下側にのみ配置されてもよい。下側に配置された引張ローラー31は、リボン状のゲルCを載せながら回転し、ゲルCを下流側に送り出す。 The tension roller 31 may not be arranged on both the upper and lower sides of the ribbon-shaped gel C, and may be arranged only on the lower side, for example. The tension roller 31 arranged on the lower side rotates while carrying the ribbon-shaped gel C, and sends the gel C to the downstream side.
 引張ローラー31は、ステンレスなどの金属、ゴム、又は樹脂などの材料で形成される。引張ローラー31は、金属の表面に、ゴム又は樹脂などをコーティングしたものであってよい。 The tension roller 31 is made of a metal such as stainless steel, rubber, or a material such as resin. The tension roller 31 may be a metal surface coated with rubber, resin, or the like.
 引張ローラー31は、その外周に凹凸を有してもよい。凹凸によって、ゲルCの滑りを抑制でき、ゲルCを下流側に確実に送り出すことができる。 The tension roller 31 may have irregularities on its outer circumference. Due to the unevenness, the slip of the gel C can be suppressed, and the gel C can be reliably sent to the downstream side.
 (溶媒置換部)
 溶媒置換部4は、リボン状のゲルCの内部に含まれる溶媒を別の溶媒に置換する。ゲルCは、微細な多孔質体であり、内部に溶媒を含む。溶媒の置換は、乾燥の前に実施され、乾燥時に溶媒の表面張力によってゲルCが収縮するのを抑制し、ゲルCの微細構造が破損するのを抑制する目的で実施される。
(Solvent replacement part)
The solvent replacement unit 4 replaces the solvent contained inside the ribbon-shaped gel C with another solvent. Gel C is a fine porous body and contains a solvent inside. The solvent substitution is carried out before drying for the purpose of suppressing the shrinkage of the gel C due to the surface tension of the solvent during drying and suppressing the damage of the fine structure of the gel C.
 溶媒置換部4は、ゲルCの内部に含まれる溶媒を、ゲル化に適した溶媒(つまり、原料液Aの溶媒)から、乾燥に適した溶媒に置換する。置換後の溶媒は、乾燥方法に応じて適宜選択される。乾燥方法としては、超臨界乾燥、凍結乾燥、又は常圧乾燥が用いられる。 The solvent replacement unit 4 replaces the solvent contained inside the gel C with a solvent suitable for gelation (that is, the solvent of the raw material liquid A) with a solvent suitable for drying. The solvent after the replacement is appropriately selected depending on the drying method. As the drying method, supercritical drying, freeze drying, or atmospheric drying is used.
 超臨界乾燥は、ゲルCの内部に含まれる溶媒を、超臨界流体に置換する。超臨界乾燥に適した溶媒として、例えばメタノール、エタノール、又はイソプロピルアルコールなどが用いられる。超臨界流体として、一般的に、超臨界状態の二酸化炭素ガスが用いられる。超臨界乾燥は、密閉式の高圧容器の内部で実施される。 In supercritical drying, the solvent contained inside the gel C is replaced with a supercritical fluid. As a solvent suitable for supercritical drying, for example, methanol, ethanol, isopropyl alcohol and the like are used. As the supercritical fluid, carbon dioxide gas in a supercritical state is generally used. Supercritical drying is carried out inside a closed high-pressure container.
 凍結乾燥は、ゲルCの内部に含まれる溶媒を凍結した後で、真空中で蒸発させる。通常これを、昇華と呼ぶ。凍結乾燥に適した溶媒として、水、tert-ブチルアルコール、シクロヘキサン、1,4-ジオキサン、又はフッ素系溶媒等が用いられる。凍結乾燥は、密閉式の真空容器の内部で実施される。 In freeze-drying, the solvent contained inside the gel C is frozen and then evaporated in a vacuum. This is usually called sublimation. As a solvent suitable for freeze-drying, water, tert-butyl alcohol, cyclohexane, 1,4-dioxane, a fluorine-based solvent and the like are used. Freeze-drying is carried out inside a closed vacuum vessel.
 常圧乾燥は、ゲルCの内部に含まれる溶媒を、常圧下で蒸発させる。溶媒蒸発に伴う毛細管力によるゲルCの微細骨格の収縮力を小さくすることが重要なので、常圧乾燥に適した溶媒としては、表面張力の小さな溶媒、例えばヘキサン若しくはヘプタンなどの低分子量の脂肪族炭化水素系の溶媒、又はフッ素系溶媒が用いられる。常圧乾燥は、常圧で行われるので、密閉式の容器が不要である。それゆえ、リボン状のゲルCが成形部2から乾燥部6まで連続的に続く場合には、常圧乾燥が採用される。 Normal pressure drying evaporates the solvent contained inside the gel C under normal pressure. Since it is important to reduce the contraction force of the fine skeleton of gel C due to the capillary force accompanying solvent evaporation, a solvent suitable for atmospheric drying is a solvent having a small surface tension, for example, a low molecular weight aliphatic such as hexane or heptane. A hydrocarbon solvent or a fluorine solvent is used. Since normal pressure drying is performed at normal pressure, a closed container is not required. Therefore, when the ribbon-shaped gel C continues from the molding portion 2 to the drying portion 6, atmospheric drying is adopted.
 溶媒置換部4は、成形部2から連続的に取り出されたリボン状のゲルCが通る通路を内部に形成し、ゲルCの内部に含まれる溶媒を、常圧乾燥に適した溶媒に置換する。具体的には、溶媒置換部4は、ゲルCの内部に含まれる溶媒を、原料液Aの溶媒から、原料液Aよりも小さな表面張力を有する溶媒に置換する。 The solvent replacement unit 4 forms a passage through which the ribbon-shaped gel C continuously taken out from the molding unit 2 passes, and replaces the solvent contained inside the gel C with a solvent suitable for atmospheric drying. .. Specifically, the solvent replacement unit 4 replaces the solvent contained inside the gel C with a solvent having a surface tension smaller than that of the raw material liquid A from the solvent of the raw material liquid A.
 溶媒の置換は、溶媒の沸騰によってゲルの微細構造が破損するのを抑制すべく、溶媒の沸点以下の温度で実施される。但し、溶媒の置換効率を高めるべく、溶媒を沸点以下の温度で加熱してもよい。加熱温度は、例えば40℃~100℃である。 Solvent substitution is carried out at a temperature below the boiling point of the solvent in order to prevent the microstructure of the gel from being damaged by boiling of the solvent. However, in order to increase the solvent replacement efficiency, the solvent may be heated at a temperature below the boiling point. The heating temperature is, for example, 40 ° C to 100 ° C.
 溶媒の置換回数は、本実施形態では1回であるが、複数回であってもよい。つまり、ゲルCの内部に含まれる溶媒は、原料液Aの溶媒から、原料液Aの溶媒とは異なる第1溶媒に置換され、更に原料液Aの溶媒及び第1溶媒とは異なる第2溶媒に置換されてもよい。 The number of times the solvent is replaced is once in this embodiment, but it may be a plurality of times. That is, the solvent contained inside the gel C is replaced with a first solvent different from the solvent of the raw material liquid A from the solvent of the raw material liquid A, and further, a solvent of the raw material liquid A and a second solvent different from the first solvent. May be replaced with.
 原料液Aの溶媒と第2溶媒との相溶性が低い場合には、置換効率が悪くなるので、その間に一旦、第1溶媒での置換を導入することで、原料液Aの溶媒から第2溶媒への置換にかかる時間を短縮できる。第1溶媒としては、原料液Aの溶媒と第2溶媒との両方に対し高い相溶性を有するものが用いられる。 When the compatibility between the solvent of the raw material liquid A and the second solvent is low, the substitution efficiency becomes poor. Therefore, by temporarily introducing the substitution with the first solvent in the meantime, the solvent of the raw material liquid A can be seconded. The time required for replacement with a solvent can be shortened. As the first solvent, a solvent having high compatibility with both the solvent of the raw material liquid A and the second solvent is used.
 溶媒置換部4は、例えばリボン状のゲルCが浸漬される溶媒を貯留する貯留槽41を有する。ゲルCが貯留槽41に貯留された溶媒の内部を通過すると、ゲルCの内部に含まれる溶媒が、拡散の自然法則によって、原料液Aの溶媒から、貯留槽41に貯留された溶媒に置換される。 The solvent replacement unit 4 has, for example, a storage tank 41 for storing a solvent in which the ribbon-shaped gel C is immersed. When the gel C passes through the inside of the solvent stored in the storage tank 41, the solvent contained in the gel C is replaced with the solvent stored in the storage tank 41 from the solvent of the raw material liquid A according to the natural law of diffusion. Will be done.
 貯留槽41の内部には、ゲルCを支持する支持ローラー42が配置されてよい。支持ローラー42は、1以上でよく、複数の場合にはゲルCの通路に沿って間隔をおいて配置される。支持ローラー42は、回転モータなどによって能動的に回転してもよいし、受動的に回転してもよい。 A support roller 42 that supports the gel C may be arranged inside the storage tank 41. The number of support rollers 42 may be one or more, and in the case of a plurality of support rollers 42, they are arranged at intervals along the passage of the gel C. The support roller 42 may be actively rotated by a rotation motor or the like, or may be passively rotated.
 ゲルCの通路は、本実施形態では貯留槽41の内部にU字状の折返し部を有しないが、U字状の折返し部を有してもよい。折返し部には支持ローラー42が配置され、支持ローラー42の外周に沿ってゲルCが湾曲し、ゲルCの移動方向が反転する。貯留槽41の長さが同じ場合、貯留槽41の内部でのゲルCの滞留時間を長くできる。また、貯留槽41の内部でのゲルCの滞留時間が同じ場合、貯留槽41の長さを短くでき、貯留槽41を小型化できる。 The passage of the gel C does not have a U-shaped folded portion inside the storage tank 41 in the present embodiment, but may have a U-shaped folded portion. A support roller 42 is arranged at the folded-back portion, the gel C is curved along the outer circumference of the support roller 42, and the moving direction of the gel C is reversed. When the length of the storage tank 41 is the same, the residence time of the gel C inside the storage tank 41 can be lengthened. Further, when the residence time of the gel C inside the storage tank 41 is the same, the length of the storage tank 41 can be shortened and the storage tank 41 can be miniaturized.
 貯留槽41からあふれ出た液体は、回収され、リサイクルされてもよい。貯留槽41からあふれ出た液体は、原料液Aの溶媒などを含むので、リサイクルされる前に、蒸留などの手段で精製されてよい。精製によって、原料液Aの溶媒、触媒及び界面活性剤などを除去できる。 The liquid overflowing from the storage tank 41 may be collected and recycled. Since the liquid overflowing from the storage tank 41 contains the solvent of the raw material liquid A and the like, it may be purified by means such as distillation before being recycled. By purification, the solvent, catalyst, surfactant and the like of the raw material liquid A can be removed.
 溶媒置換部4は、リボン状のゲルCに対し、上方からシャワー状の溶媒を供給する溶媒供給部43を有してよい。上方からシャワー状の溶媒を供給するので、ゲルCの浸漬深さを浅くできる。ゲルCの通路の曲率半径が大きく、ゲルCの曲げ応力が小さいので、ゲルCが割れるのを抑制できる。 The solvent replacement unit 4 may have a solvent supply unit 43 that supplies a shower-like solvent to the ribbon-shaped gel C from above. Since the shower-like solvent is supplied from above, the immersion depth of the gel C can be made shallow. Since the radius of curvature of the passage of the gel C is large and the bending stress of the gel C is small, it is possible to suppress the gel C from cracking.
 溶媒置換部4が、溶媒供給部43を有する場合、貯留槽41を有しなくてもよい。貯留槽41がなければ、ゲルCの通路を直線にできる。ゲルCの曲げ応力がゼロになるので、ゲルCが割れるのをより抑制できる。 When the solvent replacement unit 4 has the solvent supply unit 43, it does not have to have the storage tank 41. Without the storage tank 41, the passage of gel C can be straightened. Since the bending stress of the gel C becomes zero, it is possible to further suppress the gel C from cracking.
 なお、原料液Aの溶媒が乾燥に適したものである場合、溶媒置換は不要であるので、製造装置1は溶媒置換部4を有しなくてよい。 When the solvent of the raw material liquid A is suitable for drying, the solvent replacement is not necessary, so that the manufacturing apparatus 1 does not have to have the solvent replacement part 4.
 (中継部)
 中継部5は、リボン状のゲルCを溶媒置換部4から乾燥部6に搬送する。中継部5によってゲルCを搬送する速度は、ゲルCが貯留槽41に貯留された溶媒の内部を通過するように設定され、ゲルCが貯留槽41の内部にて下に凸に撓むように設定される。
(Relay part)
The relay unit 5 conveys the ribbon-shaped gel C from the solvent replacement unit 4 to the drying unit 6. The speed at which the gel C is conveyed by the relay unit 5 is set so that the gel C passes through the inside of the solvent stored in the storage tank 41, and the gel C flexes downward convexly inside the storage tank 41. Will be done.
 中継部5は、例えば中継ローラー51を含む。中継ローラー51は、回転モータなどよって能動的に回転し、ゲルCを下流側に送り出す。中継ローラー51は、引張ローラー31と同様に構成されるので、説明を省略する。 The relay unit 5 includes, for example, a relay roller 51. The relay roller 51 is actively rotated by a rotary motor or the like to send the gel C to the downstream side. Since the relay roller 51 is configured in the same manner as the tension roller 31, the description thereof will be omitted.
 (乾燥部)
 乾燥部6は、ゲルCの内部に含まれる溶媒を除去する。ゲルCの乾燥方法としては、上記の通り、超臨界乾燥、凍結乾燥、又は常圧乾燥が用いられるが、本実施形態ではインライン化に適した常圧乾燥が用いられる。
(Dry part)
The drying unit 6 removes the solvent contained inside the gel C. As the method for drying the gel C, as described above, supercritical drying, freeze drying, or atmospheric drying is used, but in the present embodiment, atmospheric drying suitable for in-line is used.
 乾燥部6は、成形部2から連続的に取り出されたリボン状のゲルCが通る通路を内部に形成し、ゲルCの内部に含まれる溶媒を、常圧乾燥によって除去する。乾燥部6は、例えば、ゲルCが通る通路を内部に形成する乾燥炉61を有する。 The drying portion 6 forms a passage through which the ribbon-shaped gel C continuously taken out from the molding portion 2 passes, and removes the solvent contained in the gel C by atmospheric pressure drying. The drying unit 6 has, for example, a drying furnace 61 that forms a passage through which the gel C passes.
 乾燥炉61の内部には、ゲルCを支持する支持ローラー62が配置されてよい。支持ローラー62は、1以上でよく、複数の場合にはゲルCの通路に沿って間隔をおいて配置される。支持ローラー62は、回転モータなどによって能動的に回転してもよいし、受動的に回転してもよい。 A support roller 62 for supporting the gel C may be arranged inside the drying furnace 61. The number of support rollers 62 may be one or more, and in the case of a plurality of support rollers 62, the support rollers 62 are arranged at intervals along the passage of the gel C. The support roller 62 may be actively rotated by a rotation motor or the like, or may be passively rotated.
 ゲルCの通路は、本実施形態では乾燥炉61の内部にU字状の折返し部を有しないが、U字状の折返し部を有してもよい。折返し部には支持ローラー62が配置され、支持ローラー62の外周に沿ってゲルCが湾曲し、ゲルCの移動方向が反転する。乾燥炉61の長さが同じ場合、乾燥炉61の内部でのゲルCの滞留時間を長くできる。また、乾燥炉61の内部でのゲルCの滞留時間が同じ場合、乾燥炉61の長さを短くでき、乾燥炉61を小型化できる。 The passage of the gel C does not have a U-shaped folded portion inside the drying oven 61 in the present embodiment, but may have a U-shaped folded portion. A support roller 62 is arranged at the folded-back portion, the gel C is curved along the outer circumference of the support roller 62, and the moving direction of the gel C is reversed. When the length of the drying oven 61 is the same, the residence time of the gel C inside the drying oven 61 can be lengthened. Further, when the residence time of the gel C inside the drying furnace 61 is the same, the length of the drying furnace 61 can be shortened and the drying furnace 61 can be miniaturized.
 ゲルCの乾燥は、溶媒の沸騰によってゲルの微細構造が破損するのを抑制すべく、溶媒の沸点以下の温度で実施される。但し、溶媒の除去効率を高めるべく、ゲルCを沸点以下の温度で加熱してもよい。ゲルCの乾燥温度は、例えば室温~100℃である。 Drying of gel C is carried out at a temperature below the boiling point of the solvent in order to prevent the fine structure of the gel from being damaged by boiling of the solvent. However, in order to increase the solvent removal efficiency, the gel C may be heated at a temperature below the boiling point. The drying temperature of gel C is, for example, room temperature to 100 ° C.
 乾燥部6は、ゲルCを加熱する加熱器63を有してよい。加熱器63は、ゲルCの通路の上下両側に配置され、ゲルCの通路に沿って間隔をおいて複数配置されてよい。加熱器63は、乾燥炉61の内部に配置される。 The drying unit 6 may have a heater 63 for heating the gel C. A plurality of heaters 63 may be arranged on both the upper and lower sides of the gel C passage, and may be arranged at intervals along the gel C passage. The heater 63 is arranged inside the drying furnace 61.
 加熱器63の加熱方式は、特に限定されないが、例えば、抵抗加熱式、及び赤外線加熱式などのなかから、設置場所に応じて適宜選択される。 The heating method of the heater 63 is not particularly limited, but is appropriately selected from, for example, a resistance heating type and an infrared heating type, depending on the installation location.
 乾燥部6は、ゲルCに対して風を送る不図示の送風機を有してもよい。ゲルCに対して風を送ることで、ゲルCの内部に含まれる溶媒の蒸発を促進できる。乾燥部6で蒸発させた溶媒は、回収され、廃棄又は必要に応じてリサイクルされる。 The drying unit 6 may have a blower (not shown) that blows air to the gel C. By sending wind to the gel C, the evaporation of the solvent contained inside the gel C can be promoted. The solvent evaporated in the drying unit 6 is recovered and discarded or recycled as needed.
 乾燥部6で得られるゲルCは、キセロゲルであり、多孔質なモノリスである。 The gel C obtained in the dry portion 6 is a xerogel, which is a porous monolith.
 (巻取部)
 巻取部7は、乾燥部6を通過したリボン状のゲルCを、ロール状に巻き取る。巻取部7は巻取ローラー71を有し、巻取ローラー71は回転モータなどによって能動的に回転し、その外周にリボン状のゲルCを巻き取る。巻取ローラー71の外径は、ゲルCの厚みHと材質とに応じて適宜設定され、ゲルCが割れないように設定される。
(Winding section)
The winding unit 7 winds the ribbon-shaped gel C that has passed through the drying unit 6 into a roll shape. The take-up portion 7 has a take-up roller 71, and the take-up roller 71 is actively rotated by a rotary motor or the like, and a ribbon-shaped gel C is taken up on the outer periphery thereof. The outer diameter of the winding roller 71 is set appropriately according to the thickness H C and the material of the gel C, it is set to a gel C is not cracked.
 巻取ローラー71の外周には巻取芯72が取り外し可能に取り付けられ、巻取芯72の外周にリボン状のゲルCが巻き取られてよい。巻取芯72を利用すれば、ロール状のゲルCを型崩れせずに取り外すことができ、ハンドリング性が良い。 A take-up core 72 may be detachably attached to the outer circumference of the take-up roller 71, and a ribbon-shaped gel C may be taken up on the outer circumference of the take-up core 72. If the take-up core 72 is used, the roll-shaped gel C can be removed without losing its shape, and the handleability is good.
 巻取ローラー71の外周には凹凸が設けられてもよい。凹凸によって、巻取芯72(但し、巻取芯72が無い場合にはゲルC)の滑りを抑制できる。同様に、巻取芯72の外周には凹凸が設けられてもよい。凹凸によってゲルCの滑りを抑制できる。 The outer circumference of the take-up roller 71 may be provided with irregularities. Due to the unevenness, slippage of the winding core 72 (however, gel C when there is no winding core 72) can be suppressed. Similarly, the outer circumference of the winding core 72 may be provided with irregularities. The unevenness can suppress the slip of the gel C.
 巻取ローラー71の材料は、特に限定されないが、例えば、金属又は樹脂である。樹脂は、軽量性に優れ、運搬性に優れている。巻取ローラー71の外周には、滑り止めのゴムが貼り付けられてもよい。 The material of the take-up roller 71 is not particularly limited, but is, for example, metal or resin. The resin is excellent in light weight and excellent transportability. Non-slip rubber may be attached to the outer circumference of the take-up roller 71.
 同様に、巻取芯72の材料は、特に限定されないが、例えば、金属又は樹脂である。樹脂は、軽量性に優れ、運搬性に優れている。巻取芯72の外周には、滑り止めのゴムが貼り付けられてもよい。 Similarly, the material of the winding core 72 is not particularly limited, but is, for example, metal or resin. The resin is excellent in light weight and excellent transportability. Non-slip rubber may be attached to the outer circumference of the take-up core 72.
 (ゲルの製造方法)
 図4は、一実施形態に係るゲルの製造方法を示すフローチャートである。図4に示すように、ゲルの製造方法は、成形(S1)と、溶媒置換(S2)と、乾燥(S3)と、巻取(S4)とを含む。成形部2が成形(S1)を実施し、溶媒置換部4が溶媒置換(S2)を実施し、乾燥部6が乾燥(S3)を実施し、巻取部7が巻取(S4)を実施する。
(Gel manufacturing method)
FIG. 4 is a flowchart showing a method for producing a gel according to an embodiment. As shown in FIG. 4, the method for producing a gel includes molding (S1), solvent substitution (S2), drying (S3), and winding (S4). The molding unit 2 performs molding (S1), the solvent replacement unit 4 performs solvent substitution (S2), the drying unit 6 performs drying (S3), and the winding unit 7 performs winding (S4). To do.
 なお、ゲルの製造方法は図4に示す処理を全て含まなくてもよく、例えば原料液Aの溶媒が乾燥(S3)に適したものである場合、溶媒置換(S2)が実施されなくてもよい。また、ゲルの製造方法は、図4に示す処理とは別の処理を含んでもよく、例えば巻取(S4)の代わりに、梱包を含んでもよい。梱包では、リボン状のゲルCを切断し、切断したゲルを梱包容器内で積み重ねる。 The gel production method does not have to include all the treatments shown in FIG. 4, for example, when the solvent of the raw material liquid A is suitable for drying (S3), even if solvent substitution (S2) is not performed. Good. Further, the method for producing the gel may include a treatment different from the treatment shown in FIG. 4, for example, packaging may be included instead of winding (S4). In packing, the ribbon-shaped gel C is cut, and the cut gels are stacked in a packing container.
 (収容部)
 図5は、図1に示す成形部の第2変形例を示す断面図である。図5に示すように、成形部2は、液層Bを収容する収容部21をさらに有してよい。液層Bの密度は、搬送シート11が液層Bの上に浮けば、搬送シート11の密度よりも大きくても小さくてもよいが、大きいことが好ましい。また、原料液Aの密度は、搬送シート11の上でゲルCの成形ができる限り、液層Bの密度に対して大きくても小さくてもよいが、小さいことが好ましい。
(Accommodation)
FIG. 5 is a cross-sectional view showing a second modification of the molded portion shown in FIG. As shown in FIG. 5, the molding unit 2 may further have an accommodating portion 21 accommodating the liquid layer B. If the transport sheet 11 floats on the liquid layer B, the density of the liquid layer B may be higher or lower than the density of the liquid layer B, but is preferably higher. The density of the raw material liquid A may be higher or lower than the density of the liquid layer B as long as the gel C can be formed on the transport sheet 11, but it is preferably low.
 搬送シート11は、液層Bの液面の上を滑る。原料液Aは、液層Bに浮かべた搬送シート11の上で、リボン状に成形されると共にゲル化される。 The transport sheet 11 slides on the liquid surface of the liquid layer B. The raw material liquid A is formed into a ribbon shape and gelled on the transport sheet 11 floating on the liquid layer B.
 液層Bの液面は重力によって自然に水平になるので、搬送シート11も水平になり、その水平な液面を利用して平坦で厚みの均一なゲルCが容易に得られる。また、搬送シート11の下面全体が水平に支持されるので、搬送シート11の大面積化、ひいてはゲルCの大面積化が可能である。さらに、搬送シート11が液層Bと原料液Aとの接触を防止するので、液層Bと原料液Aの組み合わせの選択肢を広げられる。例えば、液層Bと原料液Aとが相溶性を有しても、液層Bと原料液Aとの間には搬送シート11が存在するので、液層Bと原料液Aとが混じり合うことはない。また、液層Bの材料として水を選択できれば、コストを削減できる。 Since the liquid level of the liquid layer B naturally becomes horizontal due to gravity, the transport sheet 11 also becomes horizontal, and a flat and uniform gel C can be easily obtained by using the horizontal liquid level. Further, since the entire lower surface of the transport sheet 11 is horizontally supported, the area of the transport sheet 11 can be increased, and the area of the gel C can be increased. Further, since the transport sheet 11 prevents the liquid layer B from coming into contact with the raw material liquid A, the options for the combination of the liquid layer B and the raw material liquid A can be expanded. For example, even if the liquid layer B and the raw material liquid A are compatible with each other, since the transport sheet 11 exists between the liquid layer B and the raw material liquid A, the liquid layer B and the raw material liquid A are mixed. There is no such thing. Further, if water can be selected as the material of the liquid layer B, the cost can be reduced.
 液層Bは、その上に搬送シート11及び原料液Aの層を安定的に存在させるべく、搬送シート11及び原料液Aとの密度差の大きい方が好ましい。その密度差は、好ましくは0.1g/cm以上であり、より好ましくは0.5g/cm以上である。なお、軽量化の観点から、その密度差は、好ましくは3.0g/cm以下であり、より好ましくは2.0g/cm以下である。 The liquid layer B preferably has a large density difference between the transport sheet 11 and the raw material liquid A so that the transport sheet 11 and the raw material liquid A layer can stably exist on the liquid layer B. The density difference is preferably 0.1 g / cm 3 or more, and more preferably 0.5 g / cm 3 or more. From the viewpoint of weight reduction, the density difference is preferably 3.0 g / cm 3 or less, and more preferably 2.0 g / cm 3 or less.
 また、液層Bは、その上に搬送シート11を安定的に存在させるべく、搬送シート11を変質も膨潤もさせず、かつ、互いに反応しないものを用いることが好ましい。 Further, as the liquid layer B, it is preferable to use a liquid layer B that does not deteriorate or swell the transport sheet 11 and does not react with each other so that the transport sheet 11 can stably exist on the liquid layer B.
 液層Bの材料は、搬送シート11に応じて適宜選択される。液層Bの材料としては、フッ素原子を有する液状化合物、塩素原子を有する液状化合物、ケイ素原子を有する液状化合物、水、水銀等が挙げられ、原料液Aと密度差があるのであれば、フッ素、塩素、臭素、あるいは、ヨウ素などのハロゲン原子や、ケイ素原子などを含む必要はない。水は、液層Bの密度を調整するために水溶性塩を含んでいてもよい。水溶性塩としては、塩化ナトリウム等が挙げられる。 The material of the liquid layer B is appropriately selected according to the transport sheet 11. Examples of the material of the liquid layer B include a liquid compound having a fluorine atom, a liquid compound having a chlorine atom, a liquid compound having a silicon atom, water, mercury and the like, and if there is a density difference from the raw material liquid A, fluorine. , Chlorine, bromine, or halogen atoms such as iodine, silicon atoms, etc. need not be contained. The water may contain water-soluble salts to adjust the density of the liquid layer B. Examples of the water-soluble salt include sodium chloride and the like.
 フッ素原子を有する液状化合物としては、フッ素系溶媒、フッ素系オイル等が挙げられる。 Examples of the liquid compound having a fluorine atom include a fluorine-based solvent and a fluorine-based oil.
 フッ素系溶媒としては、ハイドロフルオロアルカン、クロロフルオロカーボン、ハイドロクロロフルオロカーボン、ハイドロフルオロモノエーテル、パーフルオロモノエーテル、ペルフルオロアルカン、ペルフルオロポリエーテル、ペルフルオロアミン、フッ素原子含有アルケン、フッ素原子含有芳香族化合物、フッ素原子含有ケトン、フッ素原子含有エステル等が挙げられる。フッ素系溶媒の市販品としては、旭硝子社登録商標のアサヒクリンAK-225(CFCFCHCl)、AC-2000(CFCFCFCFCFCHF)、AC-6000(CFCFCFCFCFCFCHCH)、AE-3000(CFCHOCFCHF);3M社商品名のフロリナートやノベック7100(COCH)、7200(COC)、7300(CCF(OCH)CF(CF);三井・デュポンフロロケミカル社商品名のバートレルXF(CFCHFCHFC)、MCA、XH;日本ゼオン社商品名のゼオローラH(ヘプタフルオロシクロペンタン)等が挙げられる。 Fluorine-based solvents include hydrofluoroalkanes, chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluoromonoethers, perfluoromonoethers, perfluoroalkanes, perfluoropolyethers, perfluoroamines, fluorine atom-containing alkanes, fluorine atom-containing aromatic compounds, and fluorine. Examples thereof include atom-containing ketones and fluorine atom-containing esters. Commercially available products of fluorine-based solvents include Asahi Clean AK-225 (CF 3 CF 2 CHCl 2 ), AC-2000 (CF 3 CF 2 CF 2 CF 2 CF 2 CHF 2 ), AC-6000 (C F 2 CF 2 CHF 2 ), which are registered trademarks of Asahi Glass Co., Ltd. CF 3 CF 2 CF 2 CF 2 CF 2 CF 2 CH 2 CH 3 ), AE-3000 (CF 3 CH 2 OCF 2 CHF 2 ); 3M company brand name Fluorinert and Novell 7100 (C 4 F 9 OCH 3 ), 7200 (C 4 F 9 OC 2 H 5), 7300 (C 2 F 5 CF (OCH 3) CF (CF 3) 2); Du Pont-Mitsui Fluorochemicals Co., Ltd. trade name Vertrel XF (CF 3 CHFCHFC 2 F 5 ) , MCA, XH; Zeolora H (Heptafluorocyclopentane), which is a trade name of Nippon Zeon Co., Ltd., and the like.
 フッ素系オイルの市販品としては、ソルベイ社商品名のフォンブリン、ダイキン工業社商品名のデムナムやダイフロイル等が挙げられる。 Examples of commercially available fluorine-based oils include Solvay's brand name Fomblin and Daikin Industries' brand name Demnum and Daikin Industries.
 塩素原子を有する液状化合物としては、塩素系溶媒、塩素系オイル等が挙げられる。塩素系溶媒としては、四塩化炭素、クロロホルム、塩化メチレン等が挙げられる。 Examples of the liquid compound having a chlorine atom include chlorine-based solvents and chlorine-based oils. Examples of the chlorine-based solvent include carbon tetrachloride, chloroform, methylene chloride and the like.
 ケイ素原子を有する液状化合物としては、シリコーンオイル等が挙げられる。シリコーンオイルとしては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル等が挙げられる。シリコーンオイルの市販品としては、信越化学工業社商品名のKF-96等が挙げられる。 Examples of the liquid compound having a silicon atom include silicone oil and the like. Examples of the silicone oil include dimethyl silicone oil and methyl phenyl silicone oil. Examples of commercially available silicone oil products include KF-96, which is a trade name of Shin-Etsu Chemical Co., Ltd.
 成形部2は、液層Bの上で原料液Aをゲル化すべく、第1加熱器23と、第2加熱器24と、第3加熱器25とを有する。第1加熱器23は収容部21の上方に配置され、第2加熱器24は液層Bの内部に配置され、第3加熱器25は収容部21の下方に配置される。これらの加熱器の作用は、第1実施形態と同様である。 The molding unit 2 has a first heater 23, a second heater 24, and a third heater 25 in order to gel the raw material liquid A on the liquid layer B. The first heater 23 is arranged above the accommodating portion 21, the second heater 24 is arranged inside the liquid layer B, and the third heater 25 is arranged below the accommodating portion 21. The operation of these heaters is the same as in the first embodiment.
 図6は、図5に示す収容部を示す平面図である。図6に示すように、収容部21は、例えば平面視長方形の容器であり、上流壁211と、下流壁212と、一対の側壁213、214と、底壁215(図5参照)とを有する。 FIG. 6 is a plan view showing the accommodating portion shown in FIG. As shown in FIG. 6, the accommodating portion 21 is, for example, a rectangular container in a plan view, and has an upstream wall 211, a downstream wall 212, a pair of side walls 213 and 214, and a bottom wall 215 (see FIG. 5). ..
 収容部21の長さL1、つまり、上流壁211から下流壁212までの長さL1は、特に限定されないが、滞留時間と生産性の観点から、例えば1m~100mである。収容部21の長さL1が一定で、ゲルCの厚みHが同じ場合、原料液Aのゲル化の進行が速いほど、原料液の供給速度とゲルCの取出速度とが大きく設定されるので、単位時間当たりの生産量が向上する。 The length L1 of the accommodating portion 21, that is, the length L1 from the upstream wall 211 to the downstream wall 212 is not particularly limited, but is, for example, 1 m to 100 m from the viewpoint of residence time and productivity. A length L1 of the housing portion 21 is constant, if the thickness H C gel C is the same, as the progress of gelation of the raw material liquid A is high, and the retrieval speed of the feed rate and the gel C raw material liquid is greater Therefore, the production volume per unit time is improved.
 上流壁211から下流壁212までの領域は、原料液Aの搬送方向に、例えば第1領域A1と第2領域A2と第3領域A3とに区別できる。第1領域A1と第2領域A2と第3領域A3とは、この順で、上流側から下流側に向けて並ぶ。 The region from the upstream wall 211 to the downstream wall 212 can be distinguished in the transport direction of the raw material liquid A, for example, the first region A1, the second region A2, and the third region A3. The first region A1, the second region A2, and the third region A3 are arranged in this order from the upstream side to the downstream side.
 第1領域A1は、原料液Aのゲル化が始まる領域であり、原料液Aの一部で架橋が始まる領域である。原料液Aは、第1領域A1の上流壁211の近傍にて、液層Bに浮かべた搬送シート11の上に供給され、搬送シート11と共に下流壁212に向けて移動する。原料液Aの一部で架橋が始まると、粘度が上昇する。 The first region A1 is a region where gelation of the raw material liquid A starts, and is a region where cross-linking starts in a part of the raw material liquid A. The raw material liquid A is supplied onto the transport sheet 11 floating on the liquid layer B in the vicinity of the upstream wall 211 of the first region A1 and moves toward the downstream wall 212 together with the transport sheet 11. When cross-linking starts with a part of the raw material liquid A, the viscosity increases.
 第2領域A2は、原料液Aのゲル化が進み、原料液Aの全体で架橋が進み、高分子の三次元骨格構造が形成される領域である。第2領域A2の下流端では、原料液Aの粘性流動が失われる。 The second region A2 is a region in which gelation of the raw material liquid A progresses, cross-linking proceeds in the entire raw material liquid A, and a three-dimensional skeleton structure of a polymer is formed. At the downstream end of the second region A2, the viscous flow of the raw material liquid A is lost.
 第3領域A3は、原料液Aのゲル化がさらに進み、さらに微細な三次元骨格構造が形成される領域である。第3領域A3は、ゲルCの熟成が行われる領域である。例えば、ゲル原料が(1A)シラン化合物と(1B)触媒とを含むものである場合、第3領域A3は脱水縮合が完了する領域である。ゲルCは、第3領域A3の下流壁212の近傍にて液層Bの液面から持ち上げられ、収容部21よりも下流側に取り出される。ゲルCが、収容部21の下流壁212に当たらないように、収容部21の下流壁212の上に設けた図示しない斜めの板状体によってゲルCを滑らせて取り出してもよい。なお、取出部3は、ゲルCを収容部21から取り出せればよいので、収容部21の内部にあってもよいし、収容部21の外部にあってもよい。 The third region A3 is a region in which the gelation of the raw material liquid A further progresses and a finer three-dimensional skeleton structure is formed. The third region A3 is a region where the gel C is aged. For example, when the gel raw material contains (1A) a silane compound and (1B) a catalyst, the third region A3 is a region where dehydration condensation is completed. The gel C is lifted from the liquid surface of the liquid layer B in the vicinity of the downstream wall 212 of the third region A3, and is taken out to the downstream side of the accommodating portion 21. The gel C may be slid out by an oblique plate-like body (not shown) provided on the downstream wall 212 of the accommodating portion 21 so that the gel C does not hit the downstream wall 212 of the accommodating portion 21. Since the gel C may be taken out from the accommodating portion 21, the taking-out portion 3 may be inside the accommodating portion 21 or may be outside the accommodating portion 21.
 第1領域A1と、第2領域A2と、第3領域A3とは、同じ温度でもよいし、異なる温度でもよいが、溶媒の沸騰を抑制すべく、溶媒の沸点よりも低い温度であってよい。溶媒の沸騰によって高分子の三次元骨格構造が破損するのを抑制できる。 The first region A1, the second region A2, and the third region A3 may have the same temperature or different temperatures, but may be lower than the boiling point of the solvent in order to suppress boiling of the solvent. .. It is possible to prevent the three-dimensional skeleton structure of the polymer from being damaged by boiling the solvent.
 第3領域A3は、第1領域A1及び第2領域A2よりも高温であってもよい。三次元骨格構造の大半ができるまではゲル化を緩やかに進め、その後に、ゲル化を急速に進めることができる。従って、収容部21の長さL1を短縮可能である。 The third region A3 may have a higher temperature than the first region A1 and the second region A2. Gelation can proceed slowly until most of the three-dimensional skeletal structure is formed, and then gelation can proceed rapidly. Therefore, the length L1 of the accommodating portion 21 can be shortened.
 第3領域A3が第1領域A1及び第2領域A2よりも高温である場合、その温度差は例えば10℃~50℃であり、好ましくは20℃程度である。 When the third region A3 has a higher temperature than the first region A1 and the second region A2, the temperature difference is, for example, 10 ° C to 50 ° C, preferably about 20 ° C.
 収容部21の幅W1、つまり、一対の側壁213、214の幅W1は、特に限定されないが、例えば1cm~10mである。 The width W1 of the accommodating portion 21, that is, the width W1 of the pair of side walls 213 and 214 is not particularly limited, but is, for example, 1 cm to 10 m.
 (支持シート)
 図7は、変形例に係る製造装置を示す断面図である。以下、上記実施形態の製造装置1と、本変形例の製造装置1との相違点について主に説明する。本変形例の製造装置1は、成形部2と、取出部3と、溶媒置換部4と、中継部5と、乾燥部6と、巻取部7との他に、更に送出部8を有する。
(Support sheet)
FIG. 7 is a cross-sectional view showing a manufacturing apparatus according to a modified example. Hereinafter, the differences between the manufacturing apparatus 1 of the above embodiment and the manufacturing apparatus 1 of the present modification will be mainly described. The manufacturing apparatus 1 of this modification has a molding unit 2, a take-out unit 3, a solvent replacement unit 4, a relay unit 5, a drying unit 6, a winding unit 7, and a delivery unit 8. ..
 送出部8は、搬送シート11から剥離されたリボン状のゲルCと、リボン状のゲルCを下方から支持する支持シート100との合流地点に向けて、支持シート100を送り出す。支持シート100は、ゲルCと合流した後、ゲルCと共に連続的に搬送される。支持シート100は、ゲルCの搬送中にゲルCを下方から支持するので、ゲルCの自重による意図しない変形を抑制でき、ゲルCが割れるのを抑制できる。 The delivery unit 8 sends out the support sheet 100 toward the confluence of the ribbon-shaped gel C peeled off from the transport sheet 11 and the support sheet 100 that supports the ribbon-shaped gel C from below. After merging with the gel C, the support sheet 100 is continuously conveyed together with the gel C. Since the support sheet 100 supports the gel C from below during the transfer of the gel C, unintended deformation due to the weight of the gel C can be suppressed, and the gel C can be suppressed from cracking.
 支持シート100は、できるだけ長くゲルCを保護できるように、できるだけ上流側でゲルCと合流するのが好ましく、収容部21と溶媒置換部4との間にてゲルCと合流してよい。例えば、支持シート100は、ゲルCよりも下側の引張ローラー31の外周に沿って湾曲し、続いて、ゲルCと合流した後、引張ローラー31から下流側に送り出される。合流地点よりも上流側にて、ゲルCと支持シート100との距離が徐々に縮まるので、空気を追い出すことができ、気泡の噛み込みを抑制できる。 The support sheet 100 preferably merges with the gel C on the upstream side as much as possible so that the gel C can be protected for as long as possible, and may merge with the gel C between the accommodating portion 21 and the solvent replacement portion 4. For example, the support sheet 100 is curved along the outer circumference of the tension roller 31 below the gel C, then merges with the gel C, and then is sent out from the tension roller 31 to the downstream side. Since the distance between the gel C and the support sheet 100 is gradually shortened on the upstream side of the confluence point, air can be expelled and the biting of air bubbles can be suppressed.
 支持シート100は、できるだけ長くゲルCを保護できるように、ゲルCと共に巻取部7に送られ、ゲルCと共にロール状に巻き取られてよい。巻取ローラー71の外周にはゲルCと支持シート100とが交互に積層されるので、ゲルC同士の密着を防止できる。 The support sheet 100 may be sent to the winding unit 7 together with the gel C and wound in a roll together with the gel C so that the gel C can be protected for as long as possible. Since the gel C and the support sheet 100 are alternately laminated on the outer circumference of the take-up roller 71, it is possible to prevent the gel C from adhering to each other.
 支持シート100は、ゲルCの溶媒や溶媒置換の溶媒で変質や膨潤せず、ゲルCの乾燥温度に耐え、乾燥時のゲルCの収縮及び膨張を妨げないようにゲルCに対して滑り易いものであれば特に限定されないが、例えば樹脂シートであってよい。一般的に、ゲルCは、乾燥時に、一旦収縮し、その後膨張する。 The support sheet 100 does not deteriorate or swell with the solvent of the gel C or the solvent of the solvent substitution, withstands the drying temperature of the gel C, and is slippery with respect to the gel C so as not to hinder the shrinkage and expansion of the gel C during drying. Anything is not particularly limited, but may be, for example, a resin sheet. In general, gel C shrinks once and then expands when it dries.
 支持シート100は、緻密であってもよいが、多孔質であることが好ましい。乾燥時に溶媒が上下両側に蒸発できるので、上下両側から均等に乾燥を進めることができる。また、上下両側から均等に溶媒置換を進めることもできる。多孔質な支持シート100として、例えばポリエチレンテレフタレートの多孔質フィルムが用いられる。 The support sheet 100 may be dense, but is preferably porous. Since the solvent can evaporate on both the upper and lower sides during drying, the drying can proceed evenly from both the upper and lower sides. It is also possible to proceed with solvent substitution evenly from both the upper and lower sides. As the porous support sheet 100, for example, a porous film of polyethylene terephthalate is used.
 支持シート100は、ゲルCと接触する。ゲルCは、固化済みであるので、支持シート100の表面が荒れていても、その表面形状がゲルCに転写されることはない。 The support sheet 100 comes into contact with the gel C. Since the gel C has been solidified, even if the surface of the support sheet 100 is rough, the surface shape of the gel C is not transferred to the gel C.
 支持シート100の厚みは、例えば0.01mm~1mmである。 The thickness of the support sheet 100 is, for example, 0.01 mm to 1 mm.
 支持シート100の幅は、ゲルCの幅よりも狭くてもよいが、ゲルCの幅以上であってよい。支持シート100の幅がゲルCの幅以上であれば、支持シート100によってゲルCの幅方向全体を支持できる。 The width of the support sheet 100 may be narrower than the width of the gel C, but may be equal to or larger than the width of the gel C. If the width of the support sheet 100 is equal to or greater than the width of the gel C, the support sheet 100 can support the entire width direction of the gel C.
 送出部8は送出ローラー81を有し、送出ローラー81は引張ローラー31によって引っ張られる支持シート100の移動に伴って回転し、外周に巻き付けられた支持シート100を繰り出す。 The delivery unit 8 has a delivery roller 81, and the delivery roller 81 rotates with the movement of the support sheet 100 pulled by the tension roller 31, and feeds out the support sheet 100 wound around the outer circumference.
 送出ローラー81の外周には、送出芯82が取り外し可能に取り付けられてよい。送出芯82を複数個用意すれば、一の送出芯82から支持シート100を繰り出す間に、別の送出芯82に支持シート100を巻き付けることができる。従って、ロール状の支持シート100を予め用意でき、待ち時間を短縮できる。また、支持シート100を送出芯82に巻き付けた状態で搬送でき、搬送時の型崩れを防止できる。 A delivery core 82 may be detachably attached to the outer circumference of the delivery roller 81. If a plurality of delivery cores 82 are prepared, the support sheet 100 can be wound around another delivery core 82 while the support sheet 100 is fed out from one delivery core 82. Therefore, the roll-shaped support sheet 100 can be prepared in advance, and the waiting time can be shortened. Further, the support sheet 100 can be transported in a state of being wound around the delivery core 82, and the shape of the support sheet 100 can be prevented from being lost during transportation.
 送出ローラー81の外周には凹凸が設けられてもよい。その凹凸によって、送出芯82(但し、送出芯82が無い場合には支持シート100)の滑りを抑制できる。同様に、送出芯82の外周には凹凸が設けられてもよい。その凹凸によって支持シート100の滑りを抑制できる。 The outer circumference of the delivery roller 81 may be provided with irregularities. Due to the unevenness, slippage of the delivery core 82 (however, the support sheet 100 when the delivery core 82 is not provided) can be suppressed. Similarly, the outer circumference of the delivery core 82 may be provided with irregularities. The unevenness can suppress the slip of the support sheet 100.
 送出ローラー81の材料は、特に限定されないが、例えば、金属又は樹脂である。樹脂は、軽量性に優れ、運搬性に優れている。送出ローラー81の外周には、滑り止めのゴムが貼り付けられてもよい。 The material of the delivery roller 81 is not particularly limited, but is, for example, metal or resin. The resin is excellent in light weight and excellent transportability. Non-slip rubber may be attached to the outer circumference of the delivery roller 81.
 同様に、送出芯82の材料は、特に限定されないが、例えば、金属又は樹脂である。樹脂は、軽量性に優れ、運搬性に優れている。送出芯82の外周には、滑り止めのゴムが貼り付けられてもよい。 Similarly, the material of the delivery core 82 is not particularly limited, but is, for example, metal or resin. The resin is excellent in light weight and excellent transportability. Non-slip rubber may be attached to the outer circumference of the delivery core 82.
 なお、支持シート100は、本変形例では収容部21と溶媒置換部4との間にてゲルCと合流するが、溶媒置換部4と乾燥部6との間にてゲルCと合流してもよい。例えば、支持シート100は、ゲルCよりも下側の中継ローラー51の外周に沿って湾曲し、続いて、ゲルCと合流した後、中継ローラー51から下流側に送り出されてもよい。合流地点よりも上流側にて、ゲルCと支持シート100との距離が徐々に縮まるので、空気を追い出すことができ、気泡の噛み込みを抑制できる。 In this modification, the support sheet 100 merges with the gel C between the accommodating portion 21 and the solvent replacement portion 4, but merges with the gel C between the solvent replacement portion 4 and the drying portion 6. May be good. For example, the support sheet 100 may be curved along the outer circumference of the relay roller 51 below the gel C, subsequently merge with the gel C, and then sent out from the relay roller 51 to the downstream side. Since the distance between the gel C and the support sheet 100 is gradually shortened on the upstream side of the confluence point, air can be expelled and the biting of air bubbles can be suppressed.
 以上、本開示に係るゲルの製造方法、及びゲルの製造装置について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 The gel manufacturing method and the gel manufacturing apparatus according to the present disclosure have been described above, but the present disclosure is not limited to the above embodiment. Various changes, modifications, replacements, additions, deletions, and combinations are possible within the scope of the claims. These also naturally belong to the technical scope of the present disclosure.
 本出願は、2019年6月28日に日本国特許庁に出願された特願2019-122347号に基づく優先権を主張するものであり、特願2019-122347号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2019-122347 filed with the Japan Patent Office on June 28, 2019, and the entire contents of Japanese Patent Application No. 2019-122347 are incorporated into this application. To do.
1  製造装置
11 搬送シート
111 平坦部
112 土手部
115 表面改質部
12 シート供給部
13 シート剥離部
2  成形部
21 収容部
22 原料液供給部
3  取出部
4  溶媒置換部
6  乾燥部
7  巻取部
A  原料液
B  液層
C  ゲル
1 Manufacturing equipment 11 Conveying sheet 111 Flat part 112 Bank part 115 Surface modification part 12 Sheet supply part 13 Sheet peeling part 2 Molding part 21 Storage part 22 Raw material liquid supply part 3 Extraction part 4 Solvent replacement part 6 Drying part 7 Winding part A Raw material liquid B Liquid layer C Gel

Claims (17)

  1.  移動する可撓性の搬送シートに対して上方からゲルの原料液を連続的に供給し、
     前記搬送シートの上で前記原料液をリボン状に成形すると共にゲル化する、
     ゲルの製造方法。
    The gel raw material liquid is continuously supplied from above to the moving flexible transport sheet,
    The raw material liquid is formed into a ribbon shape and gelled on the transport sheet.
    How to make a gel.
  2.  前記搬送シートは、前記搬送シートの移動方向に直交する断面にて、平坦部と、前記平坦部の上面に、前記搬送シートの移動方向に直交する幅方向に間隔をおいて形成される一対の土手部とを有する、請求項1に記載の方法。 The transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and is formed on a flat portion and an upper surface of the flat portion at intervals in a width direction orthogonal to the moving direction of the transport sheet. The method according to claim 1, which has a bank portion.
  3.  前記搬送シートは、前記搬送シートの移動方向に直交する断面にて、平坦部と、前記平坦部の上面に、前記搬送シートの移動方向に直交する幅方向に間隔をおいて形成される一対の、前記平坦部よりも小さい表面張力の表面改質部とを有する、請求項1に記載の方法。 The transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and is formed on a flat portion and an upper surface of the flat portion at intervals in a width direction orthogonal to the moving direction of the transport sheet. The method according to claim 1, further comprising a surface modification portion having a surface tension smaller than that of the flat portion.
  4.  前記原料液を供給した位置よりも前記原料液の搬送方向下流の位置にて、前記搬送シートを曲げ、前記リボン状に成形されたゲルから前記搬送シートを連続的に剥離する、請求項1乃至3のいずれか一項に記載の方法。 Claims 1 to 1, wherein the transport sheet is bent at a position downstream of the position where the raw material liquid is supplied in the transport direction of the raw material liquid, and the transport sheet is continuously peeled off from the ribbon-shaped gel. The method according to any one of 3.
  5.  更に、前記搬送シートから連続的に剥離された前記リボン状のゲルと、前記リボン状のゲルを下方から支持する支持シートとを合流させ、前記リボン状のゲルと前記支持シートとを連続的に搬送する、請求項4に記載の方法。 Further, the ribbon-shaped gel continuously peeled from the transport sheet and the support sheet that supports the ribbon-shaped gel from below are merged, and the ribbon-shaped gel and the support sheet are continuously connected. The method according to claim 4, wherein the product is transported.
  6.  更に、前記リボン状に成形されたゲルが囲われた領域を通過する間に、前記リボン状のゲルの内部に含まれる溶媒を別の溶媒に置換する、請求項1乃至5のいずれか一項に記載の方法。 Further, any one of claims 1 to 5, wherein the solvent contained inside the ribbon-shaped gel is replaced with another solvent while the ribbon-shaped gel passes through the enclosed region. The method described in.
  7.  更に、前記リボン状に成形されたゲルが囲われた領域を通過する間に、前記リボン状のゲルの内部に含まれる溶媒を除去する、請求項1乃至6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, further comprising removing the solvent contained inside the ribbon-shaped gel while passing through the enclosed region of the ribbon-shaped gel. ..
  8.  更に、前記溶媒を除去する領域を通過した前記リボン状のゲルを、ロール状に巻き取る、請求項7に記載の方法。 The method according to claim 7, wherein the ribbon-shaped gel that has passed through the region from which the solvent is removed is wound into a roll.
  9.  前記搬送シートを液層に浮かべ、前記液層に浮かべた前記搬送シートの上で、前記原料液を前記リボン状に成形すると共にゲル化する、請求項1乃至8のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the transport sheet is floated on a liquid layer, and the raw material liquid is formed into a ribbon shape and gelled on the transport sheet floated on the liquid layer. Method.
  10.  ゲルの原料液を下方から支持し、移動する可撓性の搬送シートと、
     前記搬送シートに対して上方から前記原料液を連続的に供給する原料液供給部と、
     を有する、ゲルの製造装置。
    A flexible transfer sheet that supports and moves the gel raw material liquid from below,
    A raw material liquid supply unit that continuously supplies the raw material liquid from above to the transport sheet,
    A gel manufacturing device having.
  11.  前記搬送シートは、前記搬送シートの移動方向に直交する断面にて、平坦部と、前記平坦部の上面に、前記搬送シートの移動方向に直交する幅方向に間隔をおいて形成される一対の土手部とを有する、請求項10に記載の装置。 The transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and is formed on a flat portion and an upper surface of the flat portion at intervals in a width direction orthogonal to the moving direction of the transport sheet. The device according to claim 10, further comprising a bank portion.
  12.  前記搬送シートは、前記搬送シートの移動方向に直交する断面にて、平坦部と、前記平坦部の上面に、前記搬送シートの移動方向に直交する幅方向に間隔をおいて形成される一対の、前記平坦部よりも小さい表面張力の表面改質部とを有する、請求項10に記載の装置。 The transport sheet has a cross section orthogonal to the moving direction of the transport sheet, and is formed on a flat portion and an upper surface of the flat portion at intervals in a width direction orthogonal to the moving direction of the transport sheet. The apparatus according to claim 10, further comprising a surface modification portion having a surface tension smaller than that of the flat portion.
  13.  更に、前記原料液供給部よりも前記原料液の搬送方向下流の位置にて、前記原料液をゲル化したリボン状のゲルから前記搬送シートを連続的に剥離するシート剥離部を有する、請求項10乃至12のいずれか一項に記載の装置。 Further, the claim has a sheet peeling portion for continuously peeling the transport sheet from the ribbon-shaped gel obtained by gelling the raw material liquid at a position downstream of the raw material liquid supply unit in the transport direction of the raw material liquid. The apparatus according to any one of 10 to 12.
  14.  前記搬送シートは、前記シート剥離部と、前記原料液供給部との間で循環される無端ベルトである、請求項13に記載の装置。 The device according to claim 13, wherein the transport sheet is an endless belt circulated between the sheet peeling section and the raw material liquid supply section.
  15.  更に、前記搬送シートから連続的に剥離された前記リボン状のゲルと、前記リボン状のゲルを下方から支持する支持シートとの合流地点に向けて、前記支持シートを送り出す送出部を有する、請求項13又は14に記載の装置。 Further, a claim having a delivery unit that feeds out the support sheet toward a confluence point between the ribbon-shaped gel continuously peeled from the transport sheet and the support sheet that supports the ribbon-shaped gel from below. Item 13. The apparatus according to item 13.
  16.  更に、前記原料液をゲル化したリボン状のゲルをロール状に巻き取る巻取部を有する、請求項10乃至15のいずれか一項に記載の装置。 The apparatus according to any one of claims 10 to 15, further comprising a winding portion for winding a ribbon-shaped gel obtained by gelling the raw material liquid into a roll shape.
  17.  更に、前記搬送シートを浮かべる液層を収容する収容部を有する、請求項10乃至16のいずれか一項に記載の装置。 The device according to any one of claims 10 to 16, further comprising an accommodating portion for accommodating a liquid layer that floats the transport sheet.
PCT/JP2020/021844 2019-06-28 2020-06-02 Gel producing method and gel producing apparatus WO2020261901A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019122347A JP2022123156A (en) 2019-06-28 2019-06-28 Gel production method and gel production device
JP2019-122347 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020261901A1 true WO2020261901A1 (en) 2020-12-30

Family

ID=74061621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021844 WO2020261901A1 (en) 2019-06-28 2020-06-02 Gel producing method and gel producing apparatus

Country Status (2)

Country Link
JP (1) JP2022123156A (en)
WO (1) WO2020261901A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013573A1 (en) * 2021-08-04 2023-02-09 宇部エクシモ株式会社 Low-density gel body, and method for producing low-density gel body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445612A (en) * 1987-01-31 1989-02-20 Cubic Eng Kk Production equipment of silicone gel sheet
JPH01138210A (en) * 1987-07-28 1989-05-31 Dai Ichi Kogyo Seiyaku Co Ltd Continuous preparation of acrylic polymer gel
JPH0475000U (en) * 1990-11-08 1992-06-30
JP2008291232A (en) * 2007-04-23 2008-12-04 Sansui Shoko:Kk Production method of silicone gel sheet
WO2019044669A1 (en) * 2017-09-01 2019-03-07 Agc株式会社 Methods for producing wet gel and xerogel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6445612A (en) * 1987-01-31 1989-02-20 Cubic Eng Kk Production equipment of silicone gel sheet
JPH01138210A (en) * 1987-07-28 1989-05-31 Dai Ichi Kogyo Seiyaku Co Ltd Continuous preparation of acrylic polymer gel
JPH0475000U (en) * 1990-11-08 1992-06-30
JP2008291232A (en) * 2007-04-23 2008-12-04 Sansui Shoko:Kk Production method of silicone gel sheet
WO2019044669A1 (en) * 2017-09-01 2019-03-07 Agc株式会社 Methods for producing wet gel and xerogel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023013573A1 (en) * 2021-08-04 2023-02-09 宇部エクシモ株式会社 Low-density gel body, and method for producing low-density gel body

Also Published As

Publication number Publication date
JP2022123156A (en) 2022-08-24

Similar Documents

Publication Publication Date Title
JP7001098B2 (en) Manufacturing method of xerogel, heat insulating material and laminated glass
CN102933373B (en) Method for producing article having fine surface irregularities
WO2012161315A1 (en) Method for producing article having fine concavo-convex structure on surface
WO2020261901A1 (en) Gel producing method and gel producing apparatus
US20130236647A1 (en) Machine and treatment process via chromatogenous grafting of a hydroxylated substrate
WO2020261900A1 (en) Gel production method and gel production device
WO2020261899A1 (en) Gel production method and gel production device
JPWO2011118591A1 (en) Method for producing mold and method for producing article having fine uneven structure on surface
JP2008247507A (en) Web transport device and solution film manufacturing method
WO2001018065A1 (en) Process for producing porous crosslinked polymer
JP6917476B2 (en) Container for use in stereolithography system
TWI376302B (en)
WO2021010216A1 (en) Gel manufacturing method and gel manufacturing apparatus
JP5365718B2 (en) Coating film drying method
WO2021010215A1 (en) Gel production method and gel production device
WO2021010214A1 (en) Gel production method and gel production device
JP5364964B2 (en) Coating film drying method
TW201637811A (en) Method and apparatus of forming solution film
US20110206837A1 (en) Method of producing laminate film
JP5192334B2 (en) Method for producing porous body
JP4419583B2 (en) Endless belt and fixing belt manufacturing method
JP5592923B2 (en) Web transport device
WO2015118983A1 (en) Method for producing glass sheet with resin coating film
JP5038914B2 (en) Solution casting method
JP6108556B2 (en) Method for producing a film with a coating film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20831962

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP