WO2020261851A1 - Projection device - Google Patents

Projection device Download PDF

Info

Publication number
WO2020261851A1
WO2020261851A1 PCT/JP2020/020909 JP2020020909W WO2020261851A1 WO 2020261851 A1 WO2020261851 A1 WO 2020261851A1 JP 2020020909 W JP2020020909 W JP 2020020909W WO 2020261851 A1 WO2020261851 A1 WO 2020261851A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
optical system
projection device
state
receiving surface
Prior art date
Application number
PCT/JP2020/020909
Other languages
French (fr)
Japanese (ja)
Inventor
林 健吉
和紀 井上
伊藤 研治
米山 一也
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2020261851A1 publication Critical patent/WO2020261851A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/48Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus
    • G03B17/54Details of cameras or camera bodies; Accessories therefor adapted for combination with other photographic or optical apparatus with projector
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a projection device.
  • Patent Document 1 describes a digital camera with a built-in projector.
  • This digital camera with a built-in projector has an imaging angle of view adjustment function that makes the imaging area slightly larger than the projection area and makes the imaging area equal to or slightly smaller than the projection area.
  • Patent Document 2 describes that the imaging region is wider than the image projection region.
  • Patent Document 3 a light-shielding portion is provided in the imaging unit, and when the projection range is narrowed, the imaging range is narrowed by the light-shielding portion to prevent light incident from other than the projection range from entering the imaging unit. Is described.
  • One embodiment according to the technique of the present disclosure provides a projection device capable of capturing the entire projected image and being useful for controlling the projected image or the like.
  • the projection device of the present invention includes an optical system that projects an image from a display unit onto a projection object, and an image pickup element that images the projection object through a part of the optical system.
  • the image of the above has a light receiving surface arranged in a two-dimensional shape in the first direction and the second direction in which the first direction intersects, and the image projected on the projection object is the part of the optical system.
  • the image in the state of being imaged at the position of the light receiving surface was defined as a projected image
  • the width of the projected image in the first direction was defined as L1
  • the width of the light receiving surface in the first direction was defined as D1.
  • the relationship L1 ⁇ D1 is established, and further, the first position of the projected image in the first direction and the light receiving surface in the first direction having the same positional relationship as the first position in the projected image.
  • the distance from the second position of is B1
  • the relationship of 0 ⁇ B1 ⁇ (D1-L1) ⁇ 0.5 is established.
  • a projection device capable of capturing the entire projected image and being useful for controlling the projected image.
  • FIG. 3 is a schematic view of the lens 34 of the optical unit 6 in the reference rotation state shown in FIG. 3 as viewed from the screen SC side. It is a schematic diagram for demonstrating the relationship between the image displayed by a display part, and the image projected on a screen. It is a schematic diagram which shows the image which image
  • FIG. 5 is a diagram corresponding to FIG. 5 showing an example in which the projection optical system of the optical unit 6 and the light modulation element 12a are designed so that the center of the projected image G1 and the optical axis K coincide with each other.
  • FIG. 5 is a schematic view showing a state in which the projected image G1 in the reference rotation state shown in FIG. 8 is formed on the light receiving surface 38a.
  • FIG. 1 is a schematic view showing an external configuration of a projector 100, which is an embodiment of the projection device of the present invention.
  • FIG. 2 is a schematic view showing an example of the internal configuration of the light source unit 11 of FIG.
  • FIG. 3 is a schematic cross-sectional view of the optical unit 6 of the projector 100 shown in FIG. FIG. 3 shows a cross section of the light emitted from the main body 1 along the optical path.
  • the projector 100 includes a main body portion 1 and an optical unit 6 provided so as to project from the main body portion 1.
  • the optical unit 6 includes a first member 2 supported by the main body 1 and a second member 3 rotatably supported by the first member 2.
  • the optical unit 6 may be detachably configured (in other words, interchangeable) in the main body 1.
  • the main body 1 has a housing 15 (see FIG. 3) in which an opening 15a (see FIG. 3) for passing light is formed in a portion connected to the optical unit 6.
  • the light source unit 11 As shown in FIG. 1, inside the housing 15 of the main body 1, the light source unit 11 and the light modulation element that spatially modulates the light emitted from the light source unit 11 based on the input image data to generate an image.
  • An optical modulation unit 12 including 12a (see FIG. 2) is provided.
  • the display unit is composed of the light source unit 11 and the light modulation unit 12.
  • the light source unit 11 includes a light source 41 that emits white light, a color wheel 42, and an illumination optical system 43.
  • the light source 41 is configured to include a light emitting element such as a laser or an LED (Light Emitting Diode).
  • the color wheel 42 is arranged between the light source 41 and the illumination optical system 43.
  • the color wheel 42 is a disk-shaped member, and an R filter that transmits red light, a G filter that transmits green light, and a B filter that transmits blue light are provided along the circumferential direction thereof.
  • the color wheel 42 is rotated about an axis, and the white light emitted from the light source 41 is separated into red light, green light, and blue light in a time-divided manner and guided to the illumination optical system 43.
  • the light emitted from the illumination optical system 43 is incident on the light modulation element 12a.
  • a DMD Digital Micromirror Device
  • LCOS Liquid crystal on silicon
  • MEMS Micro Electro Mechanical Systems
  • liquid crystal display element or the like can also be used.
  • the image formed by the light spatially modulated by the optical modulation unit 12 passes through the opening 15a of the housing 15 and is incident on the optical unit 6 to be projected. It is projected onto the screen SC as an object, and the projected image G1 becomes visible to the observer.
  • the light modulation element 12a has a configuration in which display pixels for forming one pixel of the projected image G1 have a display surface arranged in a two-dimensional manner.
  • the optical unit 6 includes a first member 2 having a hollow portion 2A connected to the inside of the main body portion 1, a second member 3 having a hollow portion 3A connected to the hollow portion 2A, and a hollow portion 2A.
  • the first optical system 21 and the reflecting member 22 arranged, and the second optical system 31, the branch member 32, the third optical system 33, the fourth optical system 37, the image sensor 38, and the lens 34 arranged in the hollow portion 3A.
  • a rotation mechanism 4 4.
  • the first member 2 is a member having a rectangular cross-sectional outer shape, and the openings 2a and 2b are formed on surfaces perpendicular to each other.
  • the first member 2 is supported by the main body 1 in a state where the opening 2a is arranged at a position facing the opening 15a of the main body 1.
  • the light emitted from the light modulation element 12a of the light modulation unit 12 of the main body 1 passes through the openings 15a and 2a and is incident on the hollow portion 2A of the first member 2.
  • the incident direction of the light incident on the hollow portion 2A from the main body portion 1 is described as the direction X1, the opposite direction of the direction X1 is described as the direction X2, and the direction X1 and the direction X2 are collectively referred to as the direction X.
  • the direction from the front to the back of the paper and the opposite direction are described as the direction Z.
  • the direction from the front to the back of the paper is described as the direction Z1
  • the direction from the back to the front of the paper is described as the direction Z2.
  • the direction perpendicular to the direction X and the direction Z is described as the direction Y, and among the directions Y, the upward direction in FIG. 3 is described as the direction Y1, and the downward direction in FIG. 3 is described as the direction Y2. ..
  • the projector 100 is arranged so that the direction Y2 is the vertical direction.
  • the direction Y constitutes the first direction.
  • the first optical system 21, the reflective member 22, the second optical system 31, the branch member 32, the third optical system 33, and the lens 34 are optical systems for projecting the image formed by the light modulation element 12a onto the screen SC. It constitutes (hereinafter referred to as a projection optical system).
  • FIG. 3 shows the optical axis K of this projection optical system.
  • the first optical system 21, the reflective member 22, the second optical system 31, the branch member 32, the third optical system 33, and the lens 34 are arranged along the optical axis K in this order from the light modulation element 12a side.
  • the light modulation element 12a is eccentrically arranged on the direction Y2 side with respect to the optical axis K.
  • the center of the image formed by the light modulation element 12a does not coincide with the optical axis K and is located on the direction Y2 side of the optical axis K.
  • the first optical system 21 includes at least one lens, and guides light traveling from the main body 1 to the first member 2 in the direction X1 to the reflecting member 22.
  • the reflecting member 22 reflects the light incident from the first optical system 21 in the direction Y1.
  • the reflective member 22 is composed of, for example, a mirror or the like.
  • the first member 2 has an opening 2b formed on the optical path of the light reflected by the reflecting member 22, and the reflected light passes through the opening 2b and proceeds to the hollow portion 3A of the second member 3.
  • the second member 3 is a member having a substantially T-shaped cross section, and an opening 3a is formed at a position facing the opening 2b of the first member 2.
  • the light from the main body 1 that has passed through the opening 2b of the first member 2 is incident on the hollow portion 3A of the second member 3 through the opening 3a.
  • the cross-sectional outer shape of the first member 2 and the second member 3 is arbitrary and is not limited to those described above.
  • the second optical system 31 includes at least one lens, and guides the light incident from the first member 2 to the branch member 32.
  • the branch member 32 reflects the light incident from the second optical system 31 in the direction X2 and guides it to the third optical system 33. Further, the branch member 32 transmits the subject light incident on the lens 34 from the screen SC side and traveling in the direction X1 passing through the third optical system 33, and guides the subject light to the fourth optical system 37.
  • the branch member 32 is composed of a member having a certain thickness, for example, a half mirror or a polarizing plate.
  • the third optical system 33 includes at least one lens, and guides the light reflected by the branch member 32 to the lens 34.
  • the lens 34 is arranged at this end so as to close the opening 3c formed at the end of the second member 3 on the direction X2 side.
  • the lens 34 projects the light incident from the third optical system 33 onto the screen SC.
  • the fourth optical system 37 includes at least one lens and is arranged next to the branch member 32 on the direction X1 side, and guides the subject light that passes through the branch member 32 and travels in the direction X1 to the image sensor 38.
  • the optical axis of the fourth optical system 37 coincides with the optical axis of the lens 34 and the third optical system 33.
  • the fourth optical system 37 includes a lens having a variable focal length.
  • the fourth optical system 37 constitutes an imaging optical system.
  • the fourth optical system 37 does not have to include a lens having a variable focal length.
  • the image sensor 38 is a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or the like.
  • the image sensor 38 images the screen SC through the lens 34, the third optical system 33, the branch member 32, and the fourth optical system 37.
  • the lens 34, the third optical system 33, and the branch member 32 form a part of the projection optical system.
  • the rotation mechanism 4 is a mechanism for rotatably connecting the second member 3 to the first member 2.
  • the second member 3 is rotatably configured around a rotation axis (specifically, an optical axis K) extending in the direction Y. That is, the rotation mechanism 4 makes it possible to partially rotate the projection optical system in the optical unit 6.
  • the rotation mechanism 4 causes the second member 3 to be rotated by 90 degrees from the reference rotation state (hereinafter referred to as the reference rotation state) and the rotation state (hereinafter, referred to as the reference rotation state) shown in FIG. A left rotation state), a rotation state rotated 90 degrees to the back side of the paper surface from the reference rotation state (hereinafter referred to as a right rotation state), and a rotation state rotated 180 degrees from the reference rotation state (hereinafter referred to as a 180 degree rotation state). It can take four rotation states. Regardless of which of the four rotational states the second member 3 is in, the screen SC is provided at a position facing the lens 34 and is used.
  • the rotation mechanism 4 may be one that manually rotates the second member 3 or one that electrically rotates the second member 3.
  • the reference rotation state and the 180 degree rotation state each constitute the first state.
  • the counterclockwise rotation state constitutes the second state
  • the clockwise rotation state constitutes the third state.
  • the rotation mechanism 4 is not limited to the arrangement position shown in FIG. 3, as long as the projection optical system can be rotated. Further, the number of rotation mechanisms is not limited to one, and a plurality of rotation mechanisms may be provided.
  • FIG. 4 is a schematic view of the lens 34 of the optical unit 6 in the reference rotation state shown in FIG. 3 as viewed from the screen SC side.
  • FIG. 4 shows a straight line l2 that passes through the optical axis K and extends in the direction Y, and a straight line l1 that passes through the optical axis K and extends in the direction Z.
  • the lens 34 can be divided into four regions, region 34A, region 34B, region 34C, and region 34D, by the straight line l1 and the straight line l2.
  • the images generated by the light modulation elements 12a can be ejected from different regions of the lens 34 and projected toward the screen SC according to the rotational state of the second member 3 by the rotation mechanism 4.
  • the projection optical system and the light modulation element 12a have been designed.
  • the first projection mode in which the image is projected from the areas 34A and 34D shown in FIG. 4 toward the screen SC and the first projection mode in which the image is projected from the areas 34A and 34B shown in FIG. 4 toward the screen SC. It is possible to switch between the two projection modes and the third projection mode in which an image is projected from the areas 34C and 34D shown in FIG. 4 toward the screen SC.
  • the rotation state of the second member 3 is the reference rotation state and the rotation state of 180 degrees, in other words, the portion of the optical axis K between the branch member 32 and the lens 34 extends in the direction X. In this state, the image is projected in the first projection mode.
  • the rotation state of the second member 3 is a clockwise rotation state, in other words, the portion of the optical axis K between the branch member 32 and the lens 34 extends in the direction Z, and the lens 34 is the branch member 32.
  • the lens is located closer to the direction Z1, the image is projected in the second projection mode.
  • the rotation state of the second member 3 is the left rotation state, in other words, the portion of the optical axis K between the branch member 32 and the lens 34 extends in the direction Z, and the lens 34 is the branch member 32.
  • the lens is located closer to the direction Z2, the image is projected in the third projection mode.
  • the lens 34, the third optical system 33, the branch member 32, the fourth optical system 37, and the image sensor 38 rotate integrally with the rotation of the second member 3. Therefore, in the following, of the directions perpendicular to the direction Y and the optical axis K when the lens 34 is viewed from the screen SC side, one side (left side) is described as the direction Z3, and the other side (right side) is described as the direction Z4.
  • the direction Z1 is read as the direction Z3, and the direction Z2 is read as the direction Z4.
  • Direction Z3 and direction Z4 are collectively referred to as direction ZZ, and direction ZZ constitutes the second direction.
  • FIG. 5 is a schematic diagram for explaining the relationship between the image displayed by the display unit and the image projected on the screen.
  • the image d1 generated by the light modulation element 12a in a state where the display surface 12A of the light modulation element 12a is viewed from the opening 15a side in the direction X2 is shown at the uppermost part.
  • the image d1 shows an image of the maximum size that can be projected on the screen SC by the projector 100, in other words, corresponds to a screen on which the image can be displayed.
  • an L-shaped mark is attached to the upper left corner of the image d1, and this mark is for facilitating the recognition of the orientation of the image d1 and is actually projected on the screen SC. is not.
  • the right side in the figure is the direction Z1 side
  • the left side in the figure is the direction Z2 side
  • the upper side in the figure is the direction Y1 side
  • the lower side in the figure is the direction Y2 side.
  • FIG. 5 shows a projected image G1 of the image d1 projected on the screen SC when the screen SC is viewed from the side opposite to the lens 34 side in the reference rotation state, and an image pickup range IM of the image sensor 38 in the screen SC. It is shown.
  • FIG. 5 shows a projected image G1 of the image d1 projected on the screen SC when the screen SC is viewed from the side opposite to the lens 34 side in the counterclockwise rotation state, and an image pickup range IM of the image sensor 38 in the screen SC. It is shown.
  • FIG. 5 shows a projected image G1 of the image d1 projected on the screen SC when the screen SC is viewed from the side opposite to the lens 34 side in the clockwise rotation state, and an image pickup range IM of the image sensor 38 in the screen SC. It is shown.
  • the position of the projected image G1 in the left rotation state and the position of the projected image G1 in the right rotation state have a line-symmetrical relationship with respect to a straight line passing through the optical axis K and extending in the direction Y. Further, the projected image G1 in the left rotation state and the projected image G1 in the right rotation state have a point-symmetrical relationship with respect to the optical axis K.
  • FIG. 5 shows an image G1 of the image d1 projected on the screen SC when the screen SC is viewed from the side opposite to the lens 34 side in a 180-degree rotation state, and an image sensor 38 on the screen SC.
  • the range IM is shown.
  • the position of the projected image G1 in the 180-degree rotation state coincides with the position of the projected image G1 in the reference projection state. Further, the projected image G1 in the 180-degree rotation state is a 180-degree rotation of the projected image G1 in the reference rotation state as it is.
  • the positions of the projected image G1 can take three positions in the imaging range IM depending on the rotational state of the second member 3. Specifically, the position of the projected image G1 in the reference rotation state and the 180-degree rotation state is a position above the optical axis K in FIG. Further, the position of the projected image G1 in the left rotation state is a position on the left side of the optical axis K in FIG. Further, the position of the projected image G1 in the clockwise rotation state is the position on the right side of the optical axis K in FIG.
  • FIG. 6 is a schematic view showing an image formed on the image sensor 38 in each rotation state shown in FIG.
  • FIG. 6 shows the light receiving surface 38a of the image sensor 38.
  • FIG. 6 shows a state in which the focal length of the fourth optical system 37 is maximum.
  • FIG. 6 shows a state in which the image sensor 38 is viewed from the fourth optical system 37 side (a state viewed from the front side).
  • the image sensor 38 has a light receiving surface 38a in which pixels are arranged two-dimensionally in a direction ZZ and a direction Y intersecting the direction ZZ (orthogonal in this embodiment).
  • the light receiving surface 38a has a rectangular shape in which the direction Y is the lateral direction and the direction ZZ is the longitudinal direction. That is, assuming that the length of the light receiving surface 38a in the direction Y is D1 and the length of the light receiving surface 38a in the direction ZZ is D2, the relationship is D2> D1.
  • FIG. 6 the image quality of the subject range formed by the lens 34, the third optical system 33, the branch member 32, and the fourth optical system 37 at the same position as the position of the light receiving surface 38a in the direction X is guaranteed.
  • An imaging image circle PC in a range (a range in which distortion and aberration are sufficiently small) is shown.
  • the center of the imaging image circle PC coincides with the optical axis K
  • the center of the optical axis K coincides with the center of the light receiving surface 38a.
  • FIG. 6 shows a state in which the projected image G1 projected on the screen SC is imaged at the position of the light receiving surface 38a by the lens 34, the third optical system 33, the branch member 32, and the fourth optical system 37.
  • the projected image g1 is shown as the image.
  • FIG. 7 is a schematic view of the display surface of the light modulation element 12a viewed in the direction X2.
  • a display image circle DC which is a range in which image quality is guaranteed (a range with less distortion and aberration) in the light focusing range of the projection optical system It is shown.
  • the center of the display surface 12A is eccentric to the direction Y2 with respect to the center of the display image circle DC.
  • the width of the direction Y of the projected image g1 is set to L1 in each of the reference rotation state and the 180 degree rotation state in the state where the focal length of the fourth optical system 37 is maximum, and the direction ZZ of the projected image g1.
  • the width is L2
  • the distance between the center position of the projected image g1 in the direction Y and the center position of the light receiving surface 38a is B1
  • the distance between the center position of the projected image g1 and the center position of the light receiving surface 38a in the direction ZZ is set. Let it be B2.
  • the distance between the center position of the direction ZZ of the projected image g1 in the counterclockwise rotation state and the center position of the direction ZZ of the projected image g1 in the clockwise rotation state is defined as S2.
  • the projected image g1 can be imaged on the light receiving surface 38a without omission in any rotation state regardless of the focal length of the fourth optical system 37. it can.
  • the relational expression between (D) and (E) is for forming the projected image g1 in the light receiving surface 38a in both the left rotation state and the right rotation state.
  • B1 is set to a value larger than 0 because there is a positional shift in the direction Y of the image that occurs when the image passes through the branch member 32.
  • the image incident on the lens 34 from the screen SC side is slightly displaced in the direction Y due to the thickness of the branch member 32 when passing through the branch member 32.
  • FIG. 8 is a diagram corresponding to FIG. 5 showing an example in which the projection optical system of the optical unit 6 and the light modulation element 12a are designed so that the center of the projected image G1 and the optical axis K coincide with each other.
  • the center of the display image circle DC shown in FIG. 7 and the center of the display surface 12A are made to coincide with each other.
  • the optical axis K is either the case where the center of the projected image G1 and the optical axis K are aligned, or the case where the center of the projected image G1 and the optical axis K are not aligned as shown in FIG.
  • Matching the center of the light receiving surface 38a with the center of the light receiving surface 38a has great manufacturing merits (such as being able to use existing manufacturing technology) and image processing merits (such as facilitating image correction based on optical characteristics). Therefore, it is preferable.
  • the thickness of the branch member 32 causes the projected image G1 to actually pass.
  • the projected image G1 is displaced in the direction Y and is imaged on the light receiving surface 38a.
  • FIG. 9 is a schematic view showing a state in which the projected image G1 in the reference rotation state shown in FIG. 8 is formed on the light receiving surface 38a.
  • the projected image G1 shifts in the direction Y when passing through the branch member 32. Therefore, as shown in FIG. 9, the center of the projected image g1 is deviated from the center of the light receiving surface 38a toward the direction Y2 in the example of FIG. Even in this state, since the projected image G1 can be captured, no particular problem occurs.
  • the minimum value of B1 is a value (a value larger than 0) corresponding to the amount of image deviation caused by the thickness of the branch member 32.
  • the above B1 The value is inevitably greater than 0.
  • the upper limit value of B1 to (D1-L1) ⁇ 0.5, the projected image g1 can be completely applied to the light receiving surface 38a while enjoying the advantages in manufacturing and image processing. It can be imaged.
  • the optical unit 6 is configured so that the relational expressions (A) and (B) above are satisfied. Therefore, the optical axis K and the center of the light receiving surface 38a can be aligned with each other, and the projected image g1 can be imaged on the light receiving surface 38a without omission while enjoying the advantages in manufacturing and image processing. Can be done.
  • the optical unit 6 is further configured so that the relational expressions (D) and (E) above are satisfied. Therefore, even when the projected image G1 is rotated, the projected image g1 can be imaged on the light receiving surface 38a without omission.
  • the optical unit 6 is further configured so that the relational expression (C) above holds.
  • the relational expression (C) defines the position of the direction ZZ of the projected image g1 in the reference rotation state and the 180 degree rotation state.
  • B2 0 that is, at a position close to the center of the image pickup image circle PC.
  • the projected image g1 can be imaged. Therefore, the quality of the captured image can be improved.
  • the size of one pixel of the projected image g1 is preferably larger than the size of one pixel of the light receiving surface 38a. By doing so, one pixel of the projected image g1 can be imaged by one or more pixels of the image sensor 38, and high-resolution imaging becomes possible.
  • the radius of the imaged image circle PC is R3
  • the radius of the display image circle DC is R1
  • the light receiving surface 38a is R3
  • the focal length of the fourth optical system 37 is either maximum or minimum, and (P1 / P3) ⁇ (R3 /). R1)
  • the relationship of ⁇ 1 may be established.
  • the projector 100 can rotate a part of the projection optical system by the rotation mechanism 4, but the rotation mechanism 4 is not essential.
  • the rotation mechanism 4 may be deleted from the projector 100 so that the image can be projected only in the reference rotation state described above.
  • the optical unit 6 may be designed so that the above relational expressions (A), (B), and (C) and the relational expression L2 ⁇ D2 are satisfied.
  • “B1” described in FIG. 6 is the distance between the center position of the projection image g1 in the direction Y and the center position of the light receiving surface 38a in the direction Y, but is not limited to this. This first from the distance from the end position of the direction Y1 of the projected image g1 to an arbitrary position (first position) and the position of the end of the direction Y2 of the projected image g1 in the reference rotation state and the 180 degree rotation state. The ratio to the distance to the position is defined as the first ratio.
  • the ratio of the distance from the position of the end of the direction Y1 of the light receiving surface 38a to an arbitrary position (second position) and the distance from the position of the end of the direction Y2 of the light receiving surface 38a to this second position is the second.
  • the first position and the second position may be the positions where the first ratio and the second ratio are the same, and the above "B1" may be replaced with the distance between the first position and the second position.
  • the configuration in which the first ratio and the second ratio are 1: 1 respectively is the configuration shown in FIG.
  • S2 described with reference to FIG. 6 is the distance between the center position of the direction ZZ of the projected image g1 in the counterclockwise rotation state and the center position of the direction ZZ of the projected image g1 in the clockwise rotation state. Not limited to this.
  • the ratio of be the third ratio.
  • the ratio with the distance is defined as the fourth ratio.
  • the third position and the fourth position may be the positions where the third ratio and the fourth ratio are the same, and the above "S2" may be replaced with the distance between the third position and the fourth position.
  • the configuration in which the third ratio and the fourth ratio are 1: 1 respectively is the configuration shown in FIG.
  • the rotation mechanism 4 rotates the projected image G1 in the reference rotation state by 90 degrees clockwise in the figure, or rotates the projection image G1 in the reference rotation state by 90 degrees. It is assumed that it can be rotated 90 degrees counterclockwise in the figure.
  • the rotation angle of the projected image G1 when the projected image G1 is configured to be rotatable is not limited to 90 degrees, and any rotation angle can be adopted.
  • the optical unit 6 of the projector 100 simply uses the branch member 32 as a mirror, and reflects the light emitted from the lens 34 in front of the lens 34 and projects it onto the screen SC, and transmits the subject light from the screen SC.
  • a member similar to the branch member 32 may be arranged, and the fourth optical system 37 and the image pickup element 38 may be arranged on the optical path of the light transmitted through the optical member.
  • An optical system that projects an image from the display onto an object to be projected, An image sensor that images the projection object through a part of the optical system is provided.
  • the image pickup device has a light receiving surface in which a plurality of pixels are two-dimensionally arranged in a first direction and a second direction in which the first direction intersects.
  • the image in a state where the image projected on the projection object is formed at the position of the light receiving surface by the part of the optical system is defined as a projection image, and the width of the projection image in the first direction. Is L1, and the width of the light receiving surface in the first direction is D1, the relationship of L1 ⁇ D1 is established.
  • the distance between the first position of the projected image in the first direction and the second position of the light receiving surface in the first direction having the same positional relationship as the first position in the projected image is defined as B1. If you do A projection device having a relationship of 0 ⁇ B1 ⁇ (D1-L1) ⁇ 0.5.
  • the projection device according to the above.
  • the radius of the imaging image circle in the subject range imaged at the position of the light receiving surface by the part of the optical system is R3, and the light condensing range of the optical system at the position of the display unit.
  • the radius of the display image circle is R1
  • the size of the pixel on the light receiving surface is P3
  • the size of the display pixel of the display unit is P1.
  • the projection device according to any one of (1) to (4). Equipped with a rotation mechanism that rotates the above optical system
  • the rotation mechanism has a first state in which one side of the projected image is parallel to the first direction, and a second state in which the projected image is rotated in one rotation direction with respect to the first state.
  • the image is rotated between the state and the third state in which the projected image is rotated in the other rotation direction with respect to the first state.
  • the above relationship of 0 ⁇ B1 ⁇ (D1-L1) ⁇ 0.5 is established.
  • a projection device in which the projected image is formed in the light receiving surface in each of the second state and the third state.
  • the projection device has the same positional relationship as the third position of the projected image in the second state in the second direction and the third position of the projected image in the second direction in the second state in the third state.
  • the width of the projected image in the first state in the first direction is L1
  • the width of the light receiving surface in the second direction is D2.
  • the projection device according to any one of (1) to (5).
  • the first position is the center position of the projected image.
  • the second position is a projection device which is the center position of the light receiving surface.
  • the projection device according to the above.
  • the first position, the third position, and the fourth position are the center positions of the projected image, respectively.
  • the second position is a projection device which is the center position of the light receiving surface.
  • the projection device according to any one of (1) to (8).
  • the part of the optical system is a projection device including an optical member that reflects an image from the display unit and guides the image to the projection object, and transmits light from the projection object to guide the image sensor. ..
  • the projection device is a projection device that is a half mirror or a polarizing plate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

Provided is a projection device that can capture the entire projection image and can be useful for controlling the projection image. A projector (100) comprises an imaging element (38) that captures an image of a screen SC through a portion of an optical system that projects an image from a display unit onto the screen SC. The imaging element (38) has a light reception surface (38a) in which a plurality of pixels are arranged two-dimensionally. In a state in which the image projected on the screen SC is formed at a position of the light reception surface (38a) by a portion of the optical system, when the image is set as a projected capture image g1, the width of the projected capture image g1 in a direction Y is set as L1, and the width of the light reception surface (38a) in the direction Y is set as D1, the relationship L1<D1 is satisfied. Furthermore, when the distance between the center position of the projected capture image g1 in the direction Y and the center position of the light reception surface (38a) in the direction Y is set as B1, the relationship (0)<B1≤(D1-L1)×(0).5 is satisfied.

Description

投影装置Projection device
 本発明は、投影装置に関する。 The present invention relates to a projection device.
 撮像装置と投影装置とを組み合わせたシステムが提案されている。例えば、特許文献1には、プロジェクタ内蔵デジタルカメラが記載されている。このプロジェクタ内蔵デジタルカメラは、撮像領域を投影領域よりも若干大きくしたり、撮像領域を投影領域と同等か若干小さくしたりする撮像画角の調整機能を備えている。 A system that combines an imaging device and a projection device has been proposed. For example, Patent Document 1 describes a digital camera with a built-in projector. This digital camera with a built-in projector has an imaging angle of view adjustment function that makes the imaging area slightly larger than the projection area and makes the imaging area equal to or slightly smaller than the projection area.
 撮像装置と投影装置とを組み合わせたシステムには、特許文献2及び特許文献3のように、投影画像の光路と、撮像素子に受光される投影画像からの被写体光の光路とが一部重複する構成が知られている。特許文献2には、撮像領域を画像投影領域よりも広くすることが記載されている。特許文献3には、撮像部に遮光部を設け、投影範囲が狭くなる場合には、遮光部によって撮像範囲を狭くし、投影範囲以外から入射される光が撮像部に入らないようにすることが記載されている。 In a system that combines an image pickup device and a projection device, the optical path of the projected image and the optical path of the subject light from the projected image received by the image sensor partially overlap as in Patent Documents 2 and 3. The composition is known. Patent Document 2 describes that the imaging region is wider than the image projection region. In Patent Document 3, a light-shielding portion is provided in the imaging unit, and when the projection range is narrowed, the imaging range is narrowed by the light-shielding portion to prevent light incident from other than the projection range from entering the imaging unit. Is described.
日本国特開2012-027302号公報Japanese Patent Application Laid-Open No. 2012-027302 日本国特開2017-201380号公報Japanese Patent Application Laid-Open No. 2017-201380 日本国特開2011-186704号公報Japanese Patent Application Laid-Open No. 2011-186704
 本開示の技術に係る1つの実施形態は、投影画像の全体を撮像可能として投影画像の制御等に役立てることのできる投影装置を提供する。 One embodiment according to the technique of the present disclosure provides a projection device capable of capturing the entire projected image and being useful for controlling the projected image or the like.
 本発明の投影装置は、表示部からの画像を投影対象物に投影する光学系と、上記光学系の一部を通して上記投影対象物を撮像する撮像素子と、を備え、上記撮像素子は、複数の画素が第一方向と上記第一方向に交差する第二方向とに二次元状に配置された受光面を有し、上記投影対象物に投影された上記画像が上記光学系の上記一部によって上記受光面の位置に結像された状態におけるその画像を投影撮像画像とし、上記投影撮像画像の上記第一方向の幅をL1とし、上記受光面の上記第一方向の幅をD1とした場合にL1<D1の関係が成り立ち、更に、上記第一方向における上記投影撮像画像の第1位置と、上記投影撮像画像における上記第1位置と同じ位置関係にある上記第一方向における上記受光面の第2位置との距離をB1とした場合に、0<B1≦(D1-L1)×0.5の関係が成り立つものである。 The projection device of the present invention includes an optical system that projects an image from a display unit onto a projection object, and an image pickup element that images the projection object through a part of the optical system. The image of the above has a light receiving surface arranged in a two-dimensional shape in the first direction and the second direction in which the first direction intersects, and the image projected on the projection object is the part of the optical system. The image in the state of being imaged at the position of the light receiving surface was defined as a projected image, the width of the projected image in the first direction was defined as L1, and the width of the light receiving surface in the first direction was defined as D1. In this case, the relationship L1 <D1 is established, and further, the first position of the projected image in the first direction and the light receiving surface in the first direction having the same positional relationship as the first position in the projected image. When the distance from the second position of is B1, the relationship of 0 <B1 ≦ (D1-L1) × 0.5 is established.
 本発明によれば、投影画像の全体を撮像可能として投影画像の制御等に役立てることのできる投影装置を提供することができる。 According to the present invention, it is possible to provide a projection device capable of capturing the entire projected image and being useful for controlling the projected image.
本発明の投影装置の一実施形態であるプロジェクタ100の外観構成を示す模式図である。It is a schematic diagram which shows the appearance structure of the projector 100 which is one Embodiment of the projection apparatus of this invention. 図1の光源ユニット11の内部構成の一例を示す模式図である。It is a schematic diagram which shows an example of the internal structure of the light source unit 11 of FIG. 図1に示すプロジェクタ100の光学ユニット6の断面模式図である。It is sectional drawing of the optical unit 6 of the projector 100 shown in FIG. 図3に示す基準回転状態における光学ユニット6のレンズ34をスクリーンSC側から見た模式図である。FIG. 3 is a schematic view of the lens 34 of the optical unit 6 in the reference rotation state shown in FIG. 3 as viewed from the screen SC side. 表示部によって表示される画像とスクリーンに投影される画像との関係を説明するための模式図である。It is a schematic diagram for demonstrating the relationship between the image displayed by a display part, and the image projected on a screen. 図5に示した各回転状態において撮像素子38に結像する画像を示す模式図である。It is a schematic diagram which shows the image which image | formed on the image sensor 38 in each rotation state shown in FIG. 光変調素子12aの表示面を方向X2に見た模式図である。It is a schematic diagram which looked at the display surface of the light modulation element 12a in the direction X2. 投影画像G1の中心と光軸Kとが一致するように光学ユニット6の投影光学系及び光変調素子12aを設計した例を示す図5に対応する図である。FIG. 5 is a diagram corresponding to FIG. 5 showing an example in which the projection optical system of the optical unit 6 and the light modulation element 12a are designed so that the center of the projected image G1 and the optical axis K coincide with each other. 図8に示す基準回転状態における投影画像G1が受光面38aに結像された状態を示す模式図である。FIG. 5 is a schematic view showing a state in which the projected image G1 in the reference rotation state shown in FIG. 8 is formed on the light receiving surface 38a.
 以下、本発明の実施形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の投影装置の一実施形態であるプロジェクタ100の外観構成を示す模式図である。図2は、図1の光源ユニット11の内部構成の一例を示す模式図である。図3は、図1に示すプロジェクタ100の光学ユニット6の断面模式図である。図3は、本体部1から出射される光の光路に沿った面での断面を示している。 FIG. 1 is a schematic view showing an external configuration of a projector 100, which is an embodiment of the projection device of the present invention. FIG. 2 is a schematic view showing an example of the internal configuration of the light source unit 11 of FIG. FIG. 3 is a schematic cross-sectional view of the optical unit 6 of the projector 100 shown in FIG. FIG. 3 shows a cross section of the light emitted from the main body 1 along the optical path.
 図1に示すように、プロジェクタ100は、本体部1と、本体部1から突出して設けられた光学ユニット6と、を備える。光学ユニット6は、本体部1に支持される第一部材2と、第一部材2に回転自在に支持された第二部材3と、を備える。なお、光学ユニット6は、本体部1に着脱自在に構成(換言すると交換可能に構成)されていてもよい。 As shown in FIG. 1, the projector 100 includes a main body portion 1 and an optical unit 6 provided so as to project from the main body portion 1. The optical unit 6 includes a first member 2 supported by the main body 1 and a second member 3 rotatably supported by the first member 2. The optical unit 6 may be detachably configured (in other words, interchangeable) in the main body 1.
 本体部1は、光学ユニット6と連結される部分に光を通すための開口15a(図3参照)が形成された筐体15(図3参照)を有する。 The main body 1 has a housing 15 (see FIG. 3) in which an opening 15a (see FIG. 3) for passing light is formed in a portion connected to the optical unit 6.
 本体部1の筐体15の内部には、図1に示すように、光源ユニット11と、光源ユニット11から出射される光を入力画像データに基づいて空間変調して画像を生成する光変調素子12a(図2参照)を含む光変調ユニット12と、が設けられている。光源ユニット11と光変調ユニット12によって表示部が構成される。 As shown in FIG. 1, inside the housing 15 of the main body 1, the light source unit 11 and the light modulation element that spatially modulates the light emitted from the light source unit 11 based on the input image data to generate an image. An optical modulation unit 12 including 12a (see FIG. 2) is provided. The display unit is composed of the light source unit 11 and the light modulation unit 12.
 図2に示す例では、光源ユニット11は、白色光を出射する光源41と、カラーホイール42と、照明光学系43と、を備える。光源41は、レーザ又はLED(Light Emitting Diode)等の発光素子を含んで構成される。カラーホイール42は、光源41と照明光学系43の間に配置されている。カラーホイール42は、円板状の部材であり、その周方向に沿って、赤色光を透過するRフィルタ、緑色光を透過するGフィルタ、及び青色光を透過するBフィルタが設けられている。カラーホイール42は軸周りに回転され、光源41から出射される白色光を時分割にて赤色光、緑色光、及び青色光に分光して照明光学系43に導く。照明光学系43から出射された光は光変調素子12aに入射される。 In the example shown in FIG. 2, the light source unit 11 includes a light source 41 that emits white light, a color wheel 42, and an illumination optical system 43. The light source 41 is configured to include a light emitting element such as a laser or an LED (Light Emitting Diode). The color wheel 42 is arranged between the light source 41 and the illumination optical system 43. The color wheel 42 is a disk-shaped member, and an R filter that transmits red light, a G filter that transmits green light, and a B filter that transmits blue light are provided along the circumferential direction thereof. The color wheel 42 is rotated about an axis, and the white light emitted from the light source 41 is separated into red light, green light, and blue light in a time-divided manner and guided to the illumination optical system 43. The light emitted from the illumination optical system 43 is incident on the light modulation element 12a.
 光変調ユニット12に含まれる光変調素子12aは、図2の光源ユニット11の構成であればDMD(Digital Micromirror Device)が例えば用いられる。光変調素子12aとしては、LCOS(Liquid crystal on silicon)、MEMS(Micro Electro Mechanical Systems)素子、又は液晶表示素子等を用いることもできる。図3に示すように、光変調ユニット12によって空間変調された光によって形成される画像(表示部の表示画像)は、筐体15の開口15aを通過して光学ユニット6に入射され、投影対象物としてのスクリーンSCに投影されて、投影画像G1が観察者から視認可能となる。 As the light modulation element 12a included in the light modulation unit 12, a DMD (Digital Micromirror Device) is used, for example, in the case of the configuration of the light source unit 11 of FIG. As the light modulation element 12a, an LCOS (Liquid crystal on silicon) element, a MEMS (Micro Electro Mechanical Systems) element, a liquid crystal display element, or the like can also be used. As shown in FIG. 3, the image formed by the light spatially modulated by the optical modulation unit 12 (display image of the display unit) passes through the opening 15a of the housing 15 and is incident on the optical unit 6 to be projected. It is projected onto the screen SC as an object, and the projected image G1 becomes visible to the observer.
 光変調素子12aは、この投影画像G1の1画素を形成するための表示画素が二次元状に配置された表示面を有する構成である。 The light modulation element 12a has a configuration in which display pixels for forming one pixel of the projected image G1 have a display surface arranged in a two-dimensional manner.
 図3に示すように、光学ユニット6は、本体部1の内部と繋がる中空部2Aを有する第一部材2と、中空部2Aと繋がる中空部3Aを有する第二部材3と、中空部2Aに配置された第一光学系21及び反射部材22と、中空部3Aに配置された第二光学系31、分岐部材32、第三光学系33、第四光学系37、撮像素子38、及びレンズ34と、回転機構4と、を備える。 As shown in FIG. 3, the optical unit 6 includes a first member 2 having a hollow portion 2A connected to the inside of the main body portion 1, a second member 3 having a hollow portion 3A connected to the hollow portion 2A, and a hollow portion 2A. The first optical system 21 and the reflecting member 22 arranged, and the second optical system 31, the branch member 32, the third optical system 33, the fourth optical system 37, the image sensor 38, and the lens 34 arranged in the hollow portion 3A. And a rotation mechanism 4.
 第一部材2は、断面外形が矩形の部材であり、開口2aと開口2bが互いに垂直な面に形成されている。第一部材2は、本体部1の開口15aと対面する位置に開口2aが配置される状態にて、本体部1によって支持されている。本体部1の光変調ユニット12の光変調素子12aから射出された光は、開口15a及び開口2aを通って第一部材2の中空部2Aに入射される。 The first member 2 is a member having a rectangular cross-sectional outer shape, and the openings 2a and 2b are formed on surfaces perpendicular to each other. The first member 2 is supported by the main body 1 in a state where the opening 2a is arranged at a position facing the opening 15a of the main body 1. The light emitted from the light modulation element 12a of the light modulation unit 12 of the main body 1 passes through the openings 15a and 2a and is incident on the hollow portion 2A of the first member 2.
 本体部1から中空部2Aに入射される光の入射方向を方向X1と記載し、方向X1の逆方向を方向X2と記載し、方向X1と方向X2を総称して方向Xと記載する。また、図3において、紙面手前から奥に向かう方向とその逆方向を方向Zと記載する。方向Zのうち、紙面手前から奥に向かう方向を方向Z1と記載し、紙面奥から手前に向かう方向を方向Z2と記載する。また、方向X及び方向Zに垂直な方向を方向Yと記載し、方向Yのうち、図3において上に向かう方向を方向Y1と記載し、図3において下に向かう方向を方向Y2と記載する。図3の例では、方向Y2が鉛直方向となるようにプロジェクタ100が配置されている。本明細書においては、方向Yは第一方向を構成する。 The incident direction of the light incident on the hollow portion 2A from the main body portion 1 is described as the direction X1, the opposite direction of the direction X1 is described as the direction X2, and the direction X1 and the direction X2 are collectively referred to as the direction X. Further, in FIG. 3, the direction from the front to the back of the paper and the opposite direction are described as the direction Z. Of the directions Z, the direction from the front to the back of the paper is described as the direction Z1, and the direction from the back to the front of the paper is described as the direction Z2. Further, the direction perpendicular to the direction X and the direction Z is described as the direction Y, and among the directions Y, the upward direction in FIG. 3 is described as the direction Y1, and the downward direction in FIG. 3 is described as the direction Y2. .. In the example of FIG. 3, the projector 100 is arranged so that the direction Y2 is the vertical direction. In the present specification, the direction Y constitutes the first direction.
 第一光学系21、反射部材22、第二光学系31、分岐部材32、第三光学系33、及びレンズ34は、光変調素子12aによって形成された画像をスクリーンSCに投影するための光学系(以下、投影光学系という)を構成している。図3には、この投影光学系の光軸Kが示されている。第一光学系21、反射部材22、第二光学系31、分岐部材32、第三光学系33、及びレンズ34は、光変調素子12a側からこの順に光軸Kに沿って配置されている。図3の例では、光変調素子12aは、光軸Kよりも方向Y2側に偏心して配置されている。換言すると、光変調素子12aによって形成される画像の中心(後述の表示面12Aの中心)は、光軸Kとは一致しておらず、光軸Kよりも方向Y2側に位置する。 The first optical system 21, the reflective member 22, the second optical system 31, the branch member 32, the third optical system 33, and the lens 34 are optical systems for projecting the image formed by the light modulation element 12a onto the screen SC. It constitutes (hereinafter referred to as a projection optical system). FIG. 3 shows the optical axis K of this projection optical system. The first optical system 21, the reflective member 22, the second optical system 31, the branch member 32, the third optical system 33, and the lens 34 are arranged along the optical axis K in this order from the light modulation element 12a side. In the example of FIG. 3, the light modulation element 12a is eccentrically arranged on the direction Y2 side with respect to the optical axis K. In other words, the center of the image formed by the light modulation element 12a (the center of the display surface 12A described later) does not coincide with the optical axis K and is located on the direction Y2 side of the optical axis K.
 第一光学系21は、少なくとも1つのレンズを含み、本体部1から第一部材2に入射された方向X1に進む光を反射部材22に導く。 The first optical system 21 includes at least one lens, and guides light traveling from the main body 1 to the first member 2 in the direction X1 to the reflecting member 22.
 反射部材22は、第一光学系21から入射された光を方向Y1に反射させる。反射部材22は、例えばミラー等によって構成される。第一部材2には、反射部材22にて反射した光の光路上に開口2bが形成されており、この反射した光は開口2bを通過して第二部材3の中空部3Aへと進む。 The reflecting member 22 reflects the light incident from the first optical system 21 in the direction Y1. The reflective member 22 is composed of, for example, a mirror or the like. The first member 2 has an opening 2b formed on the optical path of the light reflected by the reflecting member 22, and the reflected light passes through the opening 2b and proceeds to the hollow portion 3A of the second member 3.
 第二部材3は、断面外形が略T字状の部材であり、第一部材2の開口2bと対面する位置に開口3aが形成されている。第一部材2の開口2bを通過した本体部1からの光は、この開口3aを通って第二部材3の中空部3Aに入射される。なお、第一部材2や第二部材3の断面外形は任意であり、上述したものには限定されない。 The second member 3 is a member having a substantially T-shaped cross section, and an opening 3a is formed at a position facing the opening 2b of the first member 2. The light from the main body 1 that has passed through the opening 2b of the first member 2 is incident on the hollow portion 3A of the second member 3 through the opening 3a. The cross-sectional outer shape of the first member 2 and the second member 3 is arbitrary and is not limited to those described above.
 第二光学系31は、少なくとも1つのレンズを含み、第一部材2から入射された光を、分岐部材32に導く。 The second optical system 31 includes at least one lens, and guides the light incident from the first member 2 to the branch member 32.
 分岐部材32は、第二光学系31から入射される光を方向X2に反射させて第三光学系33に導く。また、分岐部材32は、スクリーンSC側からレンズ34に入射されて第三光学系33を通過した方向X1に進む被写体光を透過させて、第四光学系37に導く。分岐部材32は、ある程度の厚みを持つ部材、例えばハーフミラー又は偏光板等によって構成される。 The branch member 32 reflects the light incident from the second optical system 31 in the direction X2 and guides it to the third optical system 33. Further, the branch member 32 transmits the subject light incident on the lens 34 from the screen SC side and traveling in the direction X1 passing through the third optical system 33, and guides the subject light to the fourth optical system 37. The branch member 32 is composed of a member having a certain thickness, for example, a half mirror or a polarizing plate.
 第三光学系33は、少なくとも1つのレンズを含み、分岐部材32にて反射された光をレンズ34に導く。 The third optical system 33 includes at least one lens, and guides the light reflected by the branch member 32 to the lens 34.
 レンズ34は、第二部材3の方向X2側の端部に形成された開口3cを塞ぐ形でこの端部に配置されている。レンズ34は、第三光学系33から入射された光をスクリーンSCに投影する。 The lens 34 is arranged at this end so as to close the opening 3c formed at the end of the second member 3 on the direction X2 side. The lens 34 projects the light incident from the third optical system 33 onto the screen SC.
 第四光学系37は、少なくとも1つのレンズを含み、分岐部材32の方向X1側の隣に配置されており、分岐部材32を透過して方向X1に進む被写体光を撮像素子38に導く。第四光学系37の光軸と、レンズ34及び第三光学系33の光軸とは一致している。第四光学系37は、焦点距離が可変のレンズを含む。第四光学系37は、撮像光学系を構成する。なお、第四光学系37は焦点距離が可変のレンズを含んでいなくともよい。 The fourth optical system 37 includes at least one lens and is arranged next to the branch member 32 on the direction X1 side, and guides the subject light that passes through the branch member 32 and travels in the direction X1 to the image sensor 38. The optical axis of the fourth optical system 37 coincides with the optical axis of the lens 34 and the third optical system 33. The fourth optical system 37 includes a lens having a variable focal length. The fourth optical system 37 constitutes an imaging optical system. The fourth optical system 37 does not have to include a lens having a variable focal length.
 撮像素子38は、CCD(Charge Coupled Device)イメージセンサ又はCMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等である。撮像素子38は、レンズ34、第三光学系33、分岐部材32、及び第四光学系37を通して、スクリーンSCを撮像する。レンズ34、第三光学系33、分岐部材32は、投影光学系の一部を構成している。 The image sensor 38 is a CCD (Charge Coupled Device) image sensor, a CMOS (Complementary Metal Oxide Semiconductor) image sensor, or the like. The image sensor 38 images the screen SC through the lens 34, the third optical system 33, the branch member 32, and the fourth optical system 37. The lens 34, the third optical system 33, and the branch member 32 form a part of the projection optical system.
 回転機構4は、第一部材2に対して第二部材3を回転自在に連結する機構である。この回転機構4によって、第二部材3は、方向Yに延びる回転軸(具体的には光軸K)の回りに回転自在に構成されている。つまり、この回転機構4によって、光学ユニット6内の投影光学系を部分的に回転させることが可能になっている。 The rotation mechanism 4 is a mechanism for rotatably connecting the second member 3 to the first member 2. By this rotation mechanism 4, the second member 3 is rotatably configured around a rotation axis (specifically, an optical axis K) extending in the direction Y. That is, the rotation mechanism 4 makes it possible to partially rotate the projection optical system in the optical unit 6.
 具体的には、回転機構4により、第二部材3は、図3に示す回転状態(以下、基準回転状態という)と、基準回転状態から紙面手前側に90度回転された回転状態(以下、左回転状態という)と、基準回転状態から紙面奥側に90度回転された回転状態(以下、右回転状態という)と、基準回転状態から180度回転された回転状態(以下、180度回転状態という)と、の4つの回転状態をとることができる。第二部材3が、この4つの回転状態のどの回転状態となっている場合でも、レンズ34に対向する位置にスクリーンSCが設けられて使用される。なお、回転機構4は、手動にて第二部材3を回転させるものの他、電動にて第二部材3を回転させるものであってもよい。本明細書においては、基準回転状態と180度回転状態は、それぞれ第一状態を構成する。また、左回転状態は第二状態を構成し、右回転状態は第三状態を構成する。なお、回転機構4は、投影光学系を回転させることができればよく、図3に示した配置位置に限定されない。また、回転機構の数も1つに限らず、複数設けられていてもよい。 Specifically, the rotation mechanism 4 causes the second member 3 to be rotated by 90 degrees from the reference rotation state (hereinafter referred to as the reference rotation state) and the rotation state (hereinafter, referred to as the reference rotation state) shown in FIG. A left rotation state), a rotation state rotated 90 degrees to the back side of the paper surface from the reference rotation state (hereinafter referred to as a right rotation state), and a rotation state rotated 180 degrees from the reference rotation state (hereinafter referred to as a 180 degree rotation state). It can take four rotation states. Regardless of which of the four rotational states the second member 3 is in, the screen SC is provided at a position facing the lens 34 and is used. The rotation mechanism 4 may be one that manually rotates the second member 3 or one that electrically rotates the second member 3. In the present specification, the reference rotation state and the 180 degree rotation state each constitute the first state. Further, the counterclockwise rotation state constitutes the second state, and the clockwise rotation state constitutes the third state. The rotation mechanism 4 is not limited to the arrangement position shown in FIG. 3, as long as the projection optical system can be rotated. Further, the number of rotation mechanisms is not limited to one, and a plurality of rotation mechanisms may be provided.
 図4は、図3に示す基準回転状態における光学ユニット6のレンズ34をスクリーンSC側から見た模式図である。図4には、光軸Kを通り且つ方向Yに延びる直線l2と、光軸Kを通り且つ方向Zに延びる直線l1とが示されている。 FIG. 4 is a schematic view of the lens 34 of the optical unit 6 in the reference rotation state shown in FIG. 3 as viewed from the screen SC side. FIG. 4 shows a straight line l2 that passes through the optical axis K and extends in the direction Y, and a straight line l1 that passes through the optical axis K and extends in the direction Z.
 図4に示すように、レンズ34は、直線l1と直線l2によって領域34A、領域34B、領域34C、及び領域34Dの4つの領域に分割することができる。プロジェクタ100では、回転機構4による第二部材3の回転状態によって、光変調素子12aによって生成された画像を、レンズ34の異なる領域から射出させてスクリーンSCに向けて投影することができるように、投影光学系及び光変調素子12aの設計が行われている。 As shown in FIG. 4, the lens 34 can be divided into four regions, region 34A, region 34B, region 34C, and region 34D, by the straight line l1 and the straight line l2. In the projector 100, the images generated by the light modulation elements 12a can be ejected from different regions of the lens 34 and projected toward the screen SC according to the rotational state of the second member 3 by the rotation mechanism 4. The projection optical system and the light modulation element 12a have been designed.
 具体的には、図4に示した領域34A及び34DからスクリーンSCに向けて画像を投影する第一投影モードと、図4に示した領域34A及び34BからスクリーンSCに向けて画像を投影する第二投影モードと、図4に示した領域34C及び34DからスクリーンSCに向けて画像を投影する第三投影モードと、を切り替え可能となっている。 Specifically, the first projection mode in which the image is projected from the areas 34A and 34D shown in FIG. 4 toward the screen SC, and the first projection mode in which the image is projected from the areas 34A and 34B shown in FIG. 4 toward the screen SC. It is possible to switch between the two projection modes and the third projection mode in which an image is projected from the areas 34C and 34D shown in FIG. 4 toward the screen SC.
 より具体的には、第二部材3の回転状態が基準回転状態と180度回転状態である場合、換言すると、光軸Kのうちの分岐部材32とレンズ34の間の部分が方向Xに延びている状態である場合には、第一投影モードにて画像の投影が行われる。 More specifically, when the rotation state of the second member 3 is the reference rotation state and the rotation state of 180 degrees, in other words, the portion of the optical axis K between the branch member 32 and the lens 34 extends in the direction X. In this state, the image is projected in the first projection mode.
 また、第二部材3の回転状態が右回転状態である場合、換言すると、光軸Kのうちの分岐部材32とレンズ34の間の部分が方向Zに延び、且つ、レンズ34が分岐部材32よりも方向Z1側に位置する状態である場合には、第二投影モードにて画像の投影が行われる。 When the rotation state of the second member 3 is a clockwise rotation state, in other words, the portion of the optical axis K between the branch member 32 and the lens 34 extends in the direction Z, and the lens 34 is the branch member 32. When the lens is located closer to the direction Z1, the image is projected in the second projection mode.
 また、第二部材3の回転状態が左回転状態である場合、換言すると、光軸Kのうちの分岐部材32とレンズ34の間の部分が方向Zに延び、且つ、レンズ34が分岐部材32よりも方向Z2側に位置する状態である場合には、第三投影モードにて画像の投影が行われる。 Further, when the rotation state of the second member 3 is the left rotation state, in other words, the portion of the optical axis K between the branch member 32 and the lens 34 extends in the direction Z, and the lens 34 is the branch member 32. When the lens is located closer to the direction Z2, the image is projected in the third projection mode.
 なお、レンズ34、第三光学系33、分岐部材32、第四光学系37、及び撮像素子38は、第二部材3の回転に伴って一体的に回転する。そのため、以下では、スクリーンSC側からレンズ34を見た状態における、方向Y及び光軸Kに垂直な方向のうち、一方側(左側)を方向Z3と記載し、他方側(右側)を方向Z4と記載して、第二部材3の内部の構成要素の方向を規定する。すなわち、図4の例では、方向Z1を方向Z3として読み替えるものとし、方向Z2を方向Z4として読み替えるものとする。方向Z3と方向Z4を総称して方向ZZと記載し、方向ZZが第二方向を構成する。 The lens 34, the third optical system 33, the branch member 32, the fourth optical system 37, and the image sensor 38 rotate integrally with the rotation of the second member 3. Therefore, in the following, of the directions perpendicular to the direction Y and the optical axis K when the lens 34 is viewed from the screen SC side, one side (left side) is described as the direction Z3, and the other side (right side) is described as the direction Z4. To specify the direction of the internal components of the second member 3. That is, in the example of FIG. 4, the direction Z1 is read as the direction Z3, and the direction Z2 is read as the direction Z4. Direction Z3 and direction Z4 are collectively referred to as direction ZZ, and direction ZZ constitutes the second direction.
 図5は、表示部によって表示される画像とスクリーンに投影される画像との関係を説明するための模式図である。図5には、光変調素子12aの表示面12Aを開口15a側から方向X2に見た状態における光変調素子12aによって生成される画像d1が最上部に示されている。画像d1は、プロジェクタ100によってスクリーンSCに投影可能な最大サイズの画像を示しており、換言すると、画像を表示可能な画面に相当する。図5では、画像d1の左上隅にL字状のマークを付してあるが、このマークは、画像d1の向きを認識しやすくするためのものであり、実際にスクリーンSCに投影されるものではない。図5に示す画像d1は、図中右側が方向Z1側であり、図中左側が方向Z2側であり、図中上側が方向Y1側であり、図中下側が方向Y2側である。 FIG. 5 is a schematic diagram for explaining the relationship between the image displayed by the display unit and the image projected on the screen. In FIG. 5, the image d1 generated by the light modulation element 12a in a state where the display surface 12A of the light modulation element 12a is viewed from the opening 15a side in the direction X2 is shown at the uppermost part. The image d1 shows an image of the maximum size that can be projected on the screen SC by the projector 100, in other words, corresponds to a screen on which the image can be displayed. In FIG. 5, an L-shaped mark is attached to the upper left corner of the image d1, and this mark is for facilitating the recognition of the orientation of the image d1 and is actually projected on the screen SC. is not. In the image d1 shown in FIG. 5, the right side in the figure is the direction Z1 side, the left side in the figure is the direction Z2 side, the upper side in the figure is the direction Y1 side, and the lower side in the figure is the direction Y2 side.
 図5には、基準回転状態においてスクリーンSCをレンズ34側と反対側から見た状態におけるスクリーンSC上に投影された画像d1の投影画像G1と、そのスクリーンSCにおける撮像素子38の撮像範囲IMとが示されている。 FIG. 5 shows a projected image G1 of the image d1 projected on the screen SC when the screen SC is viewed from the side opposite to the lens 34 side in the reference rotation state, and an image pickup range IM of the image sensor 38 in the screen SC. It is shown.
 図5には、左回転状態においてスクリーンSCをレンズ34側と反対側から見た状態におけるスクリーンSC上に投影された画像d1の投影画像G1と、そのスクリーンSCにおける撮像素子38の撮像範囲IMとが示されている。 FIG. 5 shows a projected image G1 of the image d1 projected on the screen SC when the screen SC is viewed from the side opposite to the lens 34 side in the counterclockwise rotation state, and an image pickup range IM of the image sensor 38 in the screen SC. It is shown.
 図5には、右回転状態においてスクリーンSCをレンズ34側と反対側から見た状態におけるスクリーンSC上に投影された画像d1の投影画像G1と、そのスクリーンSCにおける撮像素子38の撮像範囲IMとが示されている。 FIG. 5 shows a projected image G1 of the image d1 projected on the screen SC when the screen SC is viewed from the side opposite to the lens 34 side in the clockwise rotation state, and an image pickup range IM of the image sensor 38 in the screen SC. It is shown.
 撮像範囲IMにおいて、左回転状態における投影画像G1の位置と右回転状態における投影画像G1の位置とは、光軸Kを通り且つ方向Yに延びる直線に対して線対称の関係となっている。また、左回転状態における投影画像G1と右回転状態における投影画像G1は、光軸Kに対して点対称の関係となっている。 In the imaging range IM, the position of the projected image G1 in the left rotation state and the position of the projected image G1 in the right rotation state have a line-symmetrical relationship with respect to a straight line passing through the optical axis K and extending in the direction Y. Further, the projected image G1 in the left rotation state and the projected image G1 in the right rotation state have a point-symmetrical relationship with respect to the optical axis K.
 また、図5には、180度回転状態においてスクリーンSCをレンズ34側と反対側から見た状態におけるスクリーンSC上に投影された画像d1の投影画像G1と、そのスクリーンSCにおける撮像素子38の撮像範囲IMとが示されている。 Further, FIG. 5 shows an image G1 of the image d1 projected on the screen SC when the screen SC is viewed from the side opposite to the lens 34 side in a 180-degree rotation state, and an image sensor 38 on the screen SC. The range IM is shown.
 撮像範囲IMにおいて、180度回転状態における投影画像G1の位置は、基準投影状態における投影画像G1の位置と一致している。また、180度回転状態における投影画像G1は、基準回転状態における投影画像G1をそのまま180度回転させたものとなっている。 In the imaging range IM, the position of the projected image G1 in the 180-degree rotation state coincides with the position of the projected image G1 in the reference projection state. Further, the projected image G1 in the 180-degree rotation state is a 180-degree rotation of the projected image G1 in the reference rotation state as it is.
 このように、投影画像G1の位置は、第二部材3の回転状態によって、撮像範囲IMにおいて3つの位置を取り得る。具体的には、基準回転状態及び180度回転状態における投影画像G1の位置は、図5において光軸Kよりも上側の位置となっている。また、左回転状態における投影画像G1の位置は、図5において光軸Kよりも左側の位置となっている。また、右回転状態における投影画像G1の位置は、図5において光軸Kよりも右側の位置となっている。 As described above, the positions of the projected image G1 can take three positions in the imaging range IM depending on the rotational state of the second member 3. Specifically, the position of the projected image G1 in the reference rotation state and the 180-degree rotation state is a position above the optical axis K in FIG. Further, the position of the projected image G1 in the left rotation state is a position on the left side of the optical axis K in FIG. Further, the position of the projected image G1 in the clockwise rotation state is the position on the right side of the optical axis K in FIG.
 図6は、図5に示した各回転状態において撮像素子38に結像する画像を示す模式図である。図6には、撮像素子38の受光面38aが示されている。なお、図6は、第四光学系37の焦点距離が最大の状態を示している。また、図6は、撮像素子38を第四光学系37側から見た状態(正面側から見た状態)を示している。 FIG. 6 is a schematic view showing an image formed on the image sensor 38 in each rotation state shown in FIG. FIG. 6 shows the light receiving surface 38a of the image sensor 38. Note that FIG. 6 shows a state in which the focal length of the fourth optical system 37 is maximum. Further, FIG. 6 shows a state in which the image sensor 38 is viewed from the fourth optical system 37 side (a state viewed from the front side).
 撮像素子38は、方向ZZと、方向ZZに交差(本形態では直交)する方向Yとに画素が二次元状に配置された受光面38aを有する。受光面38aは、方向Yが短手方向であり、方向ZZが長手方向である矩形形状となっている。つまり、受光面38aの方向Yの長さをD1とし、受光面38aの方向ZZの長さをD2とすると、D2>D1の関係となっている。 The image sensor 38 has a light receiving surface 38a in which pixels are arranged two-dimensionally in a direction ZZ and a direction Y intersecting the direction ZZ (orthogonal in this embodiment). The light receiving surface 38a has a rectangular shape in which the direction Y is the lateral direction and the direction ZZ is the longitudinal direction. That is, assuming that the length of the light receiving surface 38a in the direction Y is D1 and the length of the light receiving surface 38a in the direction ZZ is D2, the relationship is D2> D1.
 図6には、レンズ34、第三光学系33、分岐部材32、及び第四光学系37によって受光面38aの方向Xの位置と同じ位置に結像される被写体範囲のうちの画質が保証される範囲(歪や収差が十分に少ない範囲)である撮像イメージサークルPCが示されている。図6の例では、撮像イメージサークルPCの中心が光軸Kと一致しており、光軸Kと受光面38aの中心とが一致している。 In FIG. 6, the image quality of the subject range formed by the lens 34, the third optical system 33, the branch member 32, and the fourth optical system 37 at the same position as the position of the light receiving surface 38a in the direction X is guaranteed. An imaging image circle PC in a range (a range in which distortion and aberration are sufficiently small) is shown. In the example of FIG. 6, the center of the imaging image circle PC coincides with the optical axis K, and the center of the optical axis K coincides with the center of the light receiving surface 38a.
 また、図6には、スクリーンSCに投影された投影画像G1が、レンズ34、第三光学系33、分岐部材32、及び第四光学系37によって受光面38aの位置に結像された状態におけるその結像画像として投影撮像画像g1が示されている。 Further, FIG. 6 shows a state in which the projected image G1 projected on the screen SC is imaged at the position of the light receiving surface 38a by the lens 34, the third optical system 33, the branch member 32, and the fourth optical system 37. The projected image g1 is shown as the image.
 本形態では、第四光学系37の焦点距離が最大の状態における基準回転状態と180度回転状態の各々において、以下の関係式(A)、(B)、(C)、(D)、(E)が成り立つように、投影光学系、第四光学系37、光変調素子12a、及び撮像素子38の特性、配置、サイズ等が決められている。 In this embodiment, the following relational expressions (A), (B), (C), (D), and (D) are used in each of the reference rotation state and the 180 degree rotation state in the state where the focal length of the fourth optical system 37 is maximum. The characteristics, arrangement, size, and the like of the projection optical system, the fourth optical system 37, the light modulation element 12a, and the image pickup element 38 are determined so that E) holds.
 図7は、光変調素子12aの表示面を方向X2に見た模式図である。図7に示す表示面12Aの方向Xの位置と同じ位置には、投影光学系による光の集光範囲のうち画質が保証される範囲(歪や収差の少ない範囲)である表示イメージサークルDCが示されている。図7の例では、表示面12Aの中心は、表示イメージサークルDCの中心に対し方向Y2側に偏心している。 FIG. 7 is a schematic view of the display surface of the light modulation element 12a viewed in the direction X2. At the same position as the position of the direction X of the display surface 12A shown in FIG. 7, a display image circle DC, which is a range in which image quality is guaranteed (a range with less distortion and aberration) in the light focusing range of the projection optical system It is shown. In the example of FIG. 7, the center of the display surface 12A is eccentric to the direction Y2 with respect to the center of the display image circle DC.
 以下では、第四光学系37の焦点距離が最大の状態での基準回転状態と180度回転状態の各々において、投影撮像画像g1の方向Yの幅をL1とし、投影撮像画像g1の方向ZZの幅をL2とし、方向Yにおける投影撮像画像g1の中心位置と受光面38aの中心位置との距離をB1とし、方向ZZにおける投影撮像画像g1の中心位置と受光面38aの中心位置との距離をB2とする。また、左回転状態における投影撮像画像g1の方向ZZの中心位置と、右回転状態における投影撮像画像g1の方向ZZの中心位置との距離をS2とする。 In the following, the width of the direction Y of the projected image g1 is set to L1 in each of the reference rotation state and the 180 degree rotation state in the state where the focal length of the fourth optical system 37 is maximum, and the direction ZZ of the projected image g1. The width is L2, the distance between the center position of the projected image g1 in the direction Y and the center position of the light receiving surface 38a is B1, and the distance between the center position of the projected image g1 and the center position of the light receiving surface 38a in the direction ZZ is set. Let it be B2. Further, the distance between the center position of the direction ZZ of the projected image g1 in the counterclockwise rotation state and the center position of the direction ZZ of the projected image g1 in the clockwise rotation state is defined as S2.
(A)L1<D1
(B)0<B1≦(D1-L1)×0.5
(C)B2=0
(D)L2≦D1
(E)S2+L1≦D2
(A) L1 <D1
(B) 0 <B1 ≦ (D1-L1) × 0.5
(C) B2 = 0
(D) L2 ≤ D1
(E) S2 + L1 ≦ D2
 これら(A)から(E)の関係式が成り立つことにより、第四光学系37の焦点距離にかかわらず、どの回転状態においても、投影撮像画像g1を漏れなく受光面38aに結像させることができる。 By satisfying the relational expressions (A) to (E), the projected image g1 can be imaged on the light receiving surface 38a without omission in any rotation state regardless of the focal length of the fourth optical system 37. it can.
 (D)と(E)の関係式は、左回転状態と右回転状態のいずれにおいても、投影撮像画像g1を受光面38a内に結像させるためのものとなる。 The relational expression between (D) and (E) is for forming the projected image g1 in the light receiving surface 38a in both the left rotation state and the right rotation state.
 なお、(B)の関係式において、B1を0よりも大きい値としているのは、分岐部材32を画像が透過する際に生じるその画像の方向Yの位置ずれがあるからである。スクリーンSC側からレンズ34に入射する画像は、分岐部材32を透過する際に、分岐部材32の厚みに起因して、方向Yに僅かに位置がずれる。 In the relational expression (B), B1 is set to a value larger than 0 because there is a positional shift in the direction Y of the image that occurs when the image passes through the branch member 32. The image incident on the lens 34 from the screen SC side is slightly displaced in the direction Y due to the thickness of the branch member 32 when passing through the branch member 32.
 ここで、例えば、投影画像G1の中心と光軸Kとが一致するように光学ユニット6を設計する場合を想定する。図8は、投影画像G1の中心と光軸Kとが一致するように光学ユニット6の投影光学系及び光変調素子12aを設計した例を示す図5に対応する図である。図8に示す構成を実現するには、例えば図7に示した表示イメージサークルDCの中心と表示面12Aの中心とを一致させる。 Here, for example, it is assumed that the optical unit 6 is designed so that the center of the projected image G1 and the optical axis K coincide with each other. FIG. 8 is a diagram corresponding to FIG. 5 showing an example in which the projection optical system of the optical unit 6 and the light modulation element 12a are designed so that the center of the projected image G1 and the optical axis K coincide with each other. In order to realize the configuration shown in FIG. 8, for example, the center of the display image circle DC shown in FIG. 7 and the center of the display surface 12A are made to coincide with each other.
 このように、投影画像G1の中心と光軸Kとを一致させた場合や、図5のように投影画像G1の中心と光軸Kとを一致させない場合のどちらであっても、光軸Kと受光面38aの中心とを一致させることが、製造上のメリット(既存の製造技術を援用できること等)や画像処理上のメリット(光学特性に基づく画像の補正が容易となること等)が大きくなるため好ましい。このようにすると、実際には、図8の例えば基準回転状態と180度回転状態における投影画像G1が、レンズ34を通って分岐部材32を通過する際には、分岐部材32の厚みによって、この投影画像G1が方向Yにずれて受光面38aに結像されることになる。 In this way, the optical axis K is either the case where the center of the projected image G1 and the optical axis K are aligned, or the case where the center of the projected image G1 and the optical axis K are not aligned as shown in FIG. Matching the center of the light receiving surface 38a with the center of the light receiving surface 38a has great manufacturing merits (such as being able to use existing manufacturing technology) and image processing merits (such as facilitating image correction based on optical characteristics). Therefore, it is preferable. In this way, when the projected image G1 in the reference rotation state and the 180 degree rotation state of FIG. 8 passes through the lens 34 and the branch member 32, the thickness of the branch member 32 causes the projected image G1 to actually pass. The projected image G1 is displaced in the direction Y and is imaged on the light receiving surface 38a.
 図9は、図8に示す基準回転状態における投影画像G1が受光面38aに結像された状態を示す模式図である。投影画像G1は、分岐部材32を透過する際に方向Yにずれる。このため、図9に示すように、投影撮像画像g1の中心は、受光面38aの中心よりも図9の例では方向Y2側にずれた状態となる。この状態であっても、投影画像G1を撮像することができるため、特に支障は生じない。 FIG. 9 is a schematic view showing a state in which the projected image G1 in the reference rotation state shown in FIG. 8 is formed on the light receiving surface 38a. The projected image G1 shifts in the direction Y when passing through the branch member 32. Therefore, as shown in FIG. 9, the center of the projected image g1 is deviated from the center of the light receiving surface 38a toward the direction Y2 in the example of FIG. Even in this state, since the projected image G1 can be captured, no particular problem occurs.
 本形態では、光軸Kの一部(レンズ34及び第三光学系33の光軸)と受光面38aの中心とを一致させる構成としている。この構成では、投影画像G1の中心と光軸Kとを一致させる構成であっても、図9に示すように、投影撮像画像g1の中心と受光面38aの中心がずれることになる。このため、上記のB1の最小値は、分岐部材32の厚みに起因して生じる画像のずれ量に相当する値(0よりも大きい値)となる。B1の最小値が0よりも大きいのを許容することで、光軸Kと受光面38aの中心とを一致させることができる。このため、製造上のメリットや画像処理上のメリットを享受しつつ、投影撮像画像g1を漏れなく受光面38aに結像させることができる。 In this embodiment, a part of the optical axis K (the optical axis of the lens 34 and the third optical system 33) and the center of the light receiving surface 38a are aligned with each other. In this configuration, even if the center of the projected image G1 and the optical axis K are aligned with each other, the center of the projected image g1 and the center of the light receiving surface 38a are deviated as shown in FIG. Therefore, the minimum value of B1 is a value (a value larger than 0) corresponding to the amount of image deviation caused by the thickness of the branch member 32. By allowing the minimum value of B1 to be larger than 0, the optical axis K and the center of the light receiving surface 38a can be aligned. Therefore, the projected image g1 can be imaged on the light receiving surface 38a without omission while enjoying the advantages in manufacturing and image processing.
 なお、図5に示すように、光軸Kと受光面38aの中心とを一致させ、且つ、投影画像G1の中心と光軸Kとの距離を十分に大きくした構成においては、上記のB1の値が必然的に0よりも大きくなる。この場合には、B1の上限値を(D1-L1)×0.5とすることで、製造上のメリットや画像処理上のメリットを享受しつつ、投影撮像画像g1を漏れなく受光面38aに結像させることができる。 As shown in FIG. 5, in the configuration in which the optical axis K and the center of the light receiving surface 38a are aligned and the distance between the center of the projected image G1 and the optical axis K is sufficiently large, the above B1 The value is inevitably greater than 0. In this case, by setting the upper limit value of B1 to (D1-L1) × 0.5, the projected image g1 can be completely applied to the light receiving surface 38a while enjoying the advantages in manufacturing and image processing. It can be imaged.
 以上のように、プロジェクタ100によれば、上記(A)、(B)の関係式が成り立つように光学ユニット6が構成されている。このため、光軸Kと受光面38aの中心とを一致させることができ、製造上のメリットや画像処理上のメリットを享受しつつ、投影撮像画像g1を漏れなく受光面38aに結像させることができる。 As described above, according to the projector 100, the optical unit 6 is configured so that the relational expressions (A) and (B) above are satisfied. Therefore, the optical axis K and the center of the light receiving surface 38a can be aligned with each other, and the projected image g1 can be imaged on the light receiving surface 38a without omission while enjoying the advantages in manufacturing and image processing. Can be done.
 また、プロジェクタ100によれば、更に、上記(D)、(E)の関係式が成り立つように光学ユニット6が構成されている。このため、投影画像G1を回転させた状態であっても、投影撮像画像g1を漏れなく受光面38aに結像させることができる。 Further, according to the projector 100, the optical unit 6 is further configured so that the relational expressions (D) and (E) above are satisfied. Therefore, even when the projected image G1 is rotated, the projected image g1 can be imaged on the light receiving surface 38a without omission.
 また、プロジェクタ100によれば、更に、上記(C)の関係式が成り立つように光学ユニット6が構成されている。関係式(C)は、基準回転状態と180度回転状態における投影撮像画像g1の方向ZZの位置を規定するものである。B2=0、すなわち、基準回転状態と180度回転状態における方向ZZの投影撮像画像g1の中心位置と受光面38aの中心位置とを一致させることで、撮像イメージサークルPCの中心に近い位置にて投影撮像画像g1を結像させることができる。このため、撮像画像の品質を向上させることができる。なお、分岐部材32における画像の位置ずれは1つの方向(本形態では方向Y)にしか生じない。そのため、B2=0とする設計は容易に行うことができる。 Further, according to the projector 100, the optical unit 6 is further configured so that the relational expression (C) above holds. The relational expression (C) defines the position of the direction ZZ of the projected image g1 in the reference rotation state and the 180 degree rotation state. By matching the center position of the projected image g1 in the direction ZZ in the reference rotation state and the 180 degree rotation state with the center position of the light receiving surface 38a, B2 = 0, that is, at a position close to the center of the image pickup image circle PC. The projected image g1 can be imaged. Therefore, the quality of the captured image can be improved. The misalignment of the image in the branch member 32 occurs in only one direction (direction Y in this embodiment). Therefore, the design in which B2 = 0 can be easily performed.
 なお、第四光学系37の焦点距離が最小の状態において、投影撮像画像g1の1画素のサイズは、受光面38aの1画素のサイズ以上となっていることが好ましい。このようにすることで、投影撮像画像g1の1画素を、撮像素子38の1画素以上の画素にて撮像することができ、高解像度での撮像が可能となる。 In the state where the focal length of the fourth optical system 37 is the minimum, the size of one pixel of the projected image g1 is preferably larger than the size of one pixel of the light receiving surface 38a. By doing so, one pixel of the projected image g1 can be imaged by one or more pixels of the image sensor 38, and high-resolution imaging becomes possible.
 投影撮像画像g1の1画素のサイズを、受光面38aの1画素のサイズ以上とするためには、撮像イメージサークルPCの半径をR3とし、表示イメージサークルDCの半径をR1とし、受光面38aの画素のサイズをP3とし、表示面12Aの表示画素のサイズをP1とした場合に、第四光学系37の焦点距離が最大及び最小のいずれの状態においても、(P1/P3)×(R3/R1)≧1の関係が成り立つようにすればよい。 In order to make the size of one pixel of the projected image g1 larger than the size of one pixel of the light receiving surface 38a, the radius of the imaged image circle PC is R3, the radius of the display image circle DC is R1, and the light receiving surface 38a. When the pixel size is P3 and the display pixel size of the display surface 12A is P1, the focal length of the fourth optical system 37 is either maximum or minimum, and (P1 / P3) × (R3 /). R1) The relationship of ≧ 1 may be established.
 プロジェクタ100は、回転機構4によって投影光学系の一部を回転させることができるが、回転機構4は必須ではない。例えば、プロジェクタ100から回転機構4を削除して、上述してきた基準回転状態でのみ画像の投影が可能な構成としてもよい。この場合には、図8に示すように、投影画像G1の中心と光軸Kの中心とが一致するように、投影光学系と光変調素子12aを構成することが好ましい。また、この場合には、上記(A)、(B)、(C)の関係式と、L2≦D2の関係式とが成り立つように光学ユニット6を設計すればよい。 The projector 100 can rotate a part of the projection optical system by the rotation mechanism 4, but the rotation mechanism 4 is not essential. For example, the rotation mechanism 4 may be deleted from the projector 100 so that the image can be projected only in the reference rotation state described above. In this case, as shown in FIG. 8, it is preferable to configure the projection optical system and the light modulation element 12a so that the center of the projected image G1 and the center of the optical axis K coincide with each other. Further, in this case, the optical unit 6 may be designed so that the above relational expressions (A), (B), and (C) and the relational expression L2 ≦ D2 are satisfied.
 図6にて説明した“B1”は、投影撮像画像g1の方向Yの中心位置と、受光面38aの方向Yの中心位置との距離としたが、これに限らない。基準回転状態と180度回転状態において、投影撮像画像g1の方向Y1の端の位置から任意の位置(第1位置)までの距離と、投影撮像画像g1の方向Y2の端の位置からこの第1位置までの距離との比を第1比とする。また、受光面38aの方向Y1の端の位置から任意の位置(第2位置)までの距離と、受光面38aの方向Y2の端の位置からこの第2位置までの距離との比を第2比とする。この場合に、第1位置と第2位置を、第1比と第2比が同じになる位置とし、上記“B1”を第1位置と第2位置との距離に置き換えてもよい。第1比と第2比がそれぞれ1:1となる構成が、図6に示す構成である。 “B1” described in FIG. 6 is the distance between the center position of the projection image g1 in the direction Y and the center position of the light receiving surface 38a in the direction Y, but is not limited to this. This first from the distance from the end position of the direction Y1 of the projected image g1 to an arbitrary position (first position) and the position of the end of the direction Y2 of the projected image g1 in the reference rotation state and the 180 degree rotation state. The ratio to the distance to the position is defined as the first ratio. Further, the ratio of the distance from the position of the end of the direction Y1 of the light receiving surface 38a to an arbitrary position (second position) and the distance from the position of the end of the direction Y2 of the light receiving surface 38a to this second position is the second. The ratio. In this case, the first position and the second position may be the positions where the first ratio and the second ratio are the same, and the above "B1" may be replaced with the distance between the first position and the second position. The configuration in which the first ratio and the second ratio are 1: 1 respectively is the configuration shown in FIG.
 また、図6にて説明した“S2”は、左回転状態の投影撮像画像g1の方向ZZの中心位置と、右回転状態の投影撮像画像g1の方向ZZの中心位置との距離としたが、これに限らない。 Further, “S2” described with reference to FIG. 6 is the distance between the center position of the direction ZZ of the projected image g1 in the counterclockwise rotation state and the center position of the direction ZZ of the projected image g1 in the clockwise rotation state. Not limited to this.
 左回転状態において、投影撮像画像g1の方向Z3の端の位置から任意の位置(第3位置)までの距離と、投影撮像画像g1の方向Z4の端の位置からこの第3位置までの距離との比を第3比とする。また、右回転状態において、投影撮像画像g1の方向Z3の端の位置から任意の位置(第4位置)までの距離と、投影撮像画像g1の方向Z4の端の位置からこの第4位置までの距離との比を第4比とする。この場合に、第3位置と第4位置を、第3比と第4比が同じになる位置とし、上記“S2”を第3位置と第4位置との距離に置き換えてもよい。第3比と第4比がそれぞれ1:1となる構成が、図6に示す構成である。 In the counterclockwise rotation state, the distance from the end position of the direction Z3 of the projected image g1 to an arbitrary position (third position) and the distance from the end position of the direction Z4 of the projected image g1 to this third position. Let the ratio of be the third ratio. Further, in the clockwise rotation state, the distance from the position of the end of the direction Z3 of the projected image g1 to an arbitrary position (fourth position) and the position of the end of the direction Z4 of the projected image g1 to the fourth position. The ratio with the distance is defined as the fourth ratio. In this case, the third position and the fourth position may be the positions where the third ratio and the fourth ratio are the same, and the above "S2" may be replaced with the distance between the third position and the fourth position. The configuration in which the third ratio and the fourth ratio are 1: 1 respectively is the configuration shown in FIG.
 また、以上の説明では、図5又は図8に示すように、回転機構4によって、基準回転状態における投影画像G1を図中の右回りに90度回転したり、基準回転状態における投影画像G1を図中の左回りに90度回転したりできるものとした。この投影画像G1を回転可能に構成する際の投影画像G1の回転角度は90度には限定されず、任意の回転角度を採用することができる。 Further, in the above description, as shown in FIG. 5 or 8, the rotation mechanism 4 rotates the projected image G1 in the reference rotation state by 90 degrees clockwise in the figure, or rotates the projection image G1 in the reference rotation state by 90 degrees. It is assumed that it can be rotated 90 degrees counterclockwise in the figure. The rotation angle of the projected image G1 when the projected image G1 is configured to be rotatable is not limited to 90 degrees, and any rotation angle can be adopted.
 プロジェクタ100の光学ユニット6は、分岐部材32を単にミラーとし、レンズ34の前方に、レンズ34から射出された光を反射させてスクリーンSCに投影し且つスクリーンSCからの被写体光を透過させる光学部材(分岐部材32と同様の部材)を配置し、この光学部材を透過した光の光路上に第四光学系37及び撮像素子38を配置した構成であってもよい。 The optical unit 6 of the projector 100 simply uses the branch member 32 as a mirror, and reflects the light emitted from the lens 34 in front of the lens 34 and projects it onto the screen SC, and transmits the subject light from the screen SC. (A member similar to the branch member 32) may be arranged, and the fourth optical system 37 and the image pickup element 38 may be arranged on the optical path of the light transmitted through the optical member.
 以上説明してきたように、本明細書には以下の事項が開示されている。 As explained above, the following matters are disclosed in this specification.
(1)
 表示部からの画像を投影対象物に投影する光学系と、
 上記光学系の一部を通して上記投影対象物を撮像する撮像素子と、を備え、
 上記撮像素子は、複数の画素が第一方向と上記第一方向に交差する第二方向とに二次元状に配置された受光面を有し、
 上記投影対象物に投影された上記画像が上記光学系の上記一部によって上記受光面の位置に結像された状態におけるその画像を投影撮像画像とし、上記投影撮像画像の上記第一方向の幅をL1とし、上記受光面の上記第一方向の幅をD1とした場合にL1<D1の関係が成り立ち、
 更に、上記第一方向における上記投影撮像画像の第1位置と、上記投影撮像画像における上記第1位置と同じ位置関係にある上記第一方向における上記受光面の第2位置との距離をB1とした場合に、
 0<B1≦(D1-L1)×0.5の関係が成り立つ投影装置。
(1)
An optical system that projects an image from the display onto an object to be projected,
An image sensor that images the projection object through a part of the optical system is provided.
The image pickup device has a light receiving surface in which a plurality of pixels are two-dimensionally arranged in a first direction and a second direction in which the first direction intersects.
The image in a state where the image projected on the projection object is formed at the position of the light receiving surface by the part of the optical system is defined as a projection image, and the width of the projection image in the first direction. Is L1, and the width of the light receiving surface in the first direction is D1, the relationship of L1 <D1 is established.
Further, the distance between the first position of the projected image in the first direction and the second position of the light receiving surface in the first direction having the same positional relationship as the first position in the projected image is defined as B1. If you do
A projection device having a relationship of 0 <B1 ≦ (D1-L1) × 0.5.
(2)
 (1)記載の投影装置であって、
 上記光学系の上記一部と上記撮像素子の間に配置された焦点距離可変の撮像光学系を備え、
 上記撮像光学系の焦点距離が最大の状態において上記関係が成り立つ投影装置。
(2)
(1) The projection device according to the above.
An image pickup optical system having a variable focal length arranged between the part of the optical system and the image sensor is provided.
A projection device in which the above relationship holds when the focal length of the imaging optical system is maximum.
(3)
 (1)又は(2)記載の投影装置であって、
 上記投影撮像画像の1画素のサイズは、上記受光面の上記画素のサイズ以上となっている投影装置。
(3)
The projection device according to (1) or (2).
A projection device in which the size of one pixel of the projected image is larger than the size of the pixel on the light receiving surface.
(4)
 (3)記載の投影装置であって、
 上記光学系の上記一部によって上記受光面の位置に結像される被写体範囲のうちの撮像イメージサークルの半径をR3とし、上記表示部の位置における上記光学系の光の集光範囲のうちの表示イメージサークルの半径をR1とし、上記受光面の上記画素のサイズをP3とし、上記表示部の表示画素のサイズをP1とした場合に、
 (P1/P3)×(R3/R1)≧1の関係が成り立つ投影装置。
(4)
(3) The projection device according to the above.
The radius of the imaging image circle in the subject range imaged at the position of the light receiving surface by the part of the optical system is R3, and the light condensing range of the optical system at the position of the display unit. When the radius of the display image circle is R1, the size of the pixel on the light receiving surface is P3, and the size of the display pixel of the display unit is P1.
A projection device in which the relationship of (P1 / P3) × (R3 / R1) ≧ 1 holds.
(5)
 (1)から(4)のいずれか記載の投影装置であって、
 上記光学系を回転させる回転機構を備え、
 上記回転機構は、上記投影撮像画像の一辺が上記第一方向と平行になる第一状態と、上記投影撮像画像が上記第一状態に対して一方の回転方向に回転された状態となる第二状態と、上記投影撮像画像が上記第一状態に対して他方の回転方向に回転された状態となる第三状態と、の間にて上記画像を回転させるものであり、
 上記第一状態において0<B1≦(D1-L1)×0.5の上記関係が成り立ち、
 上記第二状態及び上記第三状態の各々において、上記投影撮像画像が上記受光面内に結像する投影装置。
(5)
The projection device according to any one of (1) to (4).
Equipped with a rotation mechanism that rotates the above optical system
The rotation mechanism has a first state in which one side of the projected image is parallel to the first direction, and a second state in which the projected image is rotated in one rotation direction with respect to the first state. The image is rotated between the state and the third state in which the projected image is rotated in the other rotation direction with respect to the first state.
In the first state, the above relationship of 0 <B1 ≦ (D1-L1) × 0.5 is established.
A projection device in which the projected image is formed in the light receiving surface in each of the second state and the third state.
(6)
 (5)記載の投影装置であって、
 上記第二状態における上記投影撮像画像の上記第二方向の第3位置と、上記第三状態における上記投影撮像画像の上記第二方向の上記第二状態における上記第3位置と同じ位置関係にある第4位置との距離をS2とし、上記第一状態における上記投影撮像画像の上記第一方向の幅をL1とし、上記第二方向の上記受光面の幅をD2とした場合に、
 S2+L1≦D2の関係が成り立つ投影装置。
(6)
(5) The projection device according to the above.
It has the same positional relationship as the third position of the projected image in the second state in the second direction and the third position of the projected image in the second direction in the second state in the third state. When the distance from the fourth position is S2, the width of the projected image in the first state in the first direction is L1, and the width of the light receiving surface in the second direction is D2.
A projection device in which the relationship of S2 + L1 ≦ D2 holds.
(7)
 (1)から(5)のいずれか記載の投影装置であって、
 上記第1位置は、上記投影撮像画像の中心位置であり、
 上記第2位置は、上記受光面の中心位置である投影装置。
(7)
The projection device according to any one of (1) to (5).
The first position is the center position of the projected image.
The second position is a projection device which is the center position of the light receiving surface.
(8)
 (6)記載の投影装置であって、
 上記第1位置と上記第3位置と上記第4位置は、それぞれ、上記投影撮像画像の中心位置であり、
 上記第2位置は、上記受光面の中心位置である投影装置。
(8)
(6) The projection device according to the above.
The first position, the third position, and the fourth position are the center positions of the projected image, respectively.
The second position is a projection device which is the center position of the light receiving surface.
(9)
 (1)から(8)のいずれか記載の投影装置であって、
 上記光学系の上記一部は、上記表示部からの画像を反射させて上記投影対象物に導き、且つ、上記投影対象物からの光を透過して上記撮像素子に導く光学部材を含む投影装置。
(9)
The projection device according to any one of (1) to (8).
The part of the optical system is a projection device including an optical member that reflects an image from the display unit and guides the image to the projection object, and transmits light from the projection object to guide the image sensor. ..
(10)
 (9)記載の投影装置であって、
 上記光学部材は、ハーフミラー又は偏光板である投影装置。
(10)
(9) The projection device according to the above.
The optical member is a projection device that is a half mirror or a polarizing plate.
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Although various embodiments have been described above with reference to the drawings, it goes without saying that the present invention is not limited to such examples. It is clear that a person skilled in the art can come up with various modifications or modifications within the scope of the claims, which naturally belong to the technical scope of the present invention. Understood. Further, each component in the above embodiment may be arbitrarily combined as long as the gist of the invention is not deviated.
 なお、本出願は、2019年6月28日出願の日本特許出願(特願2019-121539)に基づくものであり、その内容は本出願の中に参照として援用される。 Note that this application is based on a Japanese patent application filed on June 28, 2019 (Japanese Patent Application No. 2019-121539), the contents of which are incorporated herein by reference.
100 プロジェクタ
1 本体部
2 第一部材
2a、2b 開口
2A 中空部
21 第一光学系
22 反射部材
3 第二部材
3a、3c 開口
3A 中空部
31 第二光学系
32 分岐部材
33 第三光学系
34 レンズ
34A、34B、34C、34D 領域
l1、l2 直線
37 第四光学系
38 撮像素子
38a 受光面
4 回転機構
6 光学ユニット
11 光源ユニット
41 光源
42 カラーホイール
43 照明光学系
12 光変調ユニット
12a 光変調素子
12A 表示面
15 筐体
15a 開口
K 光軸
SC スクリーン
d1 画像
G1 投影画像
g1 投影撮像画像
IM 撮像範囲
 
100 Projector 1 Main body 2 First member 2a, 2b Opening 2A Hollow part 21 First optical system 22 Reflective member 3 Second member 3a, 3c Opening 3A Hollow part 31 Second optical system 32 Branch member 33 Third optical system 34 Lens 34A, 34B, 34C, 34D Region l1, l2 Straight line 37 Fourth optical system 38 Imaging element 38a Light receiving surface 4 Rotating mechanism 6 Optical unit 11 Light source unit 41 Light source 42 Color wheel 43 Illumination optical system 12 Optical modulation unit 12a Optical modulation element 12A Display surface 15 Housing 15a Opening K Optical axis SC screen d1 Image G1 Projection image g1 Projection image capture image IM Imaging range

Claims (10)

  1.  表示部からの画像を投影対象物に投影する光学系と、
     前記光学系の一部を通して前記投影対象物を撮像する撮像素子と、を備え、
     前記撮像素子は、複数の画素が第一方向と前記第一方向に交差する第二方向とに二次元状に配置された受光面を有し、
     前記投影対象物に投影された前記画像が前記光学系の前記一部によって前記受光面の位置に結像された状態における当該画像を投影撮像画像とし、前記投影撮像画像の前記第一方向の幅をL1とし、前記受光面の前記第一方向の幅をD1とした場合にL1<D1の関係が成り立ち、
     更に、前記第一方向における前記投影撮像画像の第1位置と、前記投影撮像画像における前記第1位置と同じ位置関係にある前記第一方向における前記受光面の第2位置との距離をB1とした場合に、
     0<B1≦(D1-L1)×0.5の関係が成り立つ投影装置。
    An optical system that projects an image from the display onto an object to be projected,
    An image pickup device that captures an image of the projection object through a part of the optical system is provided.
    The image pickup device has a light receiving surface in which a plurality of pixels are two-dimensionally arranged in a first direction and a second direction in which the first direction intersects.
    The image in a state where the image projected on the projection object is imaged at the position of the light receiving surface by the part of the optical system is defined as a projection image, and the width of the projection image in the first direction. Is L1, and the width of the light receiving surface in the first direction is D1, the relationship of L1 <D1 is established.
    Further, the distance between the first position of the projected image in the first direction and the second position of the light receiving surface in the first direction having the same positional relationship as the first position in the projected image is defined as B1. If you do
    A projection device having a relationship of 0 <B1 ≦ (D1-L1) × 0.5.
  2.  請求項1記載の投影装置であって、
     前記光学系の前記一部と前記撮像素子の間に配置された焦点距離可変の撮像光学系を備え、
     前記撮像光学系の焦点距離が最大の状態において前記関係が成り立つ投影装置。
    The projection device according to claim 1.
    An image pickup optical system having a variable focal length arranged between the part of the optical system and the image pickup element is provided.
    A projection device in which the above relationship holds when the focal length of the imaging optical system is maximum.
  3.  請求項1又は2記載の投影装置であって、
     前記投影撮像画像の1画素のサイズは、前記受光面の前記画素のサイズ以上となっている投影装置。
    The projection device according to claim 1 or 2.
    A projection device in which the size of one pixel of the projected image is equal to or larger than the size of the pixel on the light receiving surface.
  4.  請求項3記載の投影装置であって、
     前記光学系の前記一部によって前記受光面の位置に結像される被写体範囲のうちの撮像イメージサークルの半径をR3とし、前記表示部の位置における前記光学系の光の集光範囲のうちの表示イメージサークルの半径をR1とし、前記受光面の前記画素のサイズをP3とし、前記表示部の表示画素のサイズをP1とした場合に、
     (P1/P3)×(R3/R1)≧1の関係が成り立つ投影装置。
    The projection device according to claim 3.
    The radius of the imaging image circle in the subject range imaged at the position of the light receiving surface by the part of the optical system is R3, and the light condensing range of the optical system at the position of the display unit. When the radius of the display image circle is R1, the size of the pixel on the light receiving surface is P3, and the size of the display pixel of the display unit is P1.
    A projection device in which the relationship of (P1 / P3) × (R3 / R1) ≧ 1 holds.
  5.  請求項1から4のいずれか1項記載の投影装置であって、
     前記光学系を回転させる回転機構を備え、
     前記回転機構は、前記投影撮像画像の一辺が前記第一方向と平行になる第一状態と、前記投影撮像画像が前記第一状態に対して一方の回転方向に回転された状態となる第二状態と、前記投影撮像画像が前記第一状態に対して他方の回転方向に回転された状態となる第三状態と、の間にて前記画像を回転させるものであり、
     前記第一状態において0<B1≦(D1-L1)×0.5の前記関係が成り立ち、
     前記第二状態及び前記第三状態の各々において、前記投影撮像画像が前記受光面内に結像する投影装置。
    The projection device according to any one of claims 1 to 4.
    A rotation mechanism for rotating the optical system is provided.
    The rotation mechanism is a first state in which one side of the projected image is parallel to the first direction, and a second state in which the projected image is rotated in one rotation direction with respect to the first state. The image is rotated between a state and a third state in which the projected image is rotated in the other rotation direction with respect to the first state.
    In the first state, the above relationship of 0 <B1 ≦ (D1-L1) × 0.5 is established.
    A projection device in which the projected image is formed in the light receiving surface in each of the second state and the third state.
  6.  請求項5記載の投影装置であって、
     前記第二状態における前記投影撮像画像の前記第二方向の第3位置と、前記第三状態における前記投影撮像画像の前記第二方向の前記第二状態における前記第3位置と同じ位置関係にある第4位置との距離をS2とし、前記第一状態における前記投影撮像画像の前記第一方向の幅をL1とし、前記第二方向の前記受光面の幅をD2とした場合に、
     S2+L1≦D2の関係が成り立つ投影装置。
    The projection device according to claim 5.
    It has the same positional relationship as the third position in the second direction of the projected image in the second state and the third position in the second direction of the projected image in the third state. When the distance from the fourth position is S2, the width of the projected image in the first state in the first direction is L1, and the width of the light receiving surface in the second direction is D2.
    A projection device in which the relationship of S2 + L1 ≦ D2 holds.
  7.  請求項1から5のいずれか1項記載の投影装置であって、
     前記第1位置は、前記投影撮像画像の中心位置であり、
     前記第2位置は、前記受光面の中心位置である投影装置。
    The projection device according to any one of claims 1 to 5.
    The first position is the center position of the projected image.
    The second position is a projection device which is a central position of the light receiving surface.
  8.  請求項6記載の投影装置であって、
     前記第1位置と前記第3位置と前記第4位置は、それぞれ、前記投影撮像画像の中心位置であり、
     前記第2位置は、前記受光面の中心位置である投影装置。
    The projection device according to claim 6.
    The first position, the third position, and the fourth position are the center positions of the projected image, respectively.
    The second position is a projection device which is a central position of the light receiving surface.
  9.  請求項1から8のいずれか1項記載の投影装置であって、
     前記光学系の前記一部は、前記表示部からの画像を反射させて前記投影対象物に導き、且つ、前記投影対象物からの光を透過して前記撮像素子に導く光学部材を含む投影装置。
    The projection device according to any one of claims 1 to 8.
    The part of the optical system is a projection device including an optical member that reflects an image from the display unit and guides the image to the projection object, and transmits light from the projection object to guide the image sensor. ..
  10.  請求項9記載の投影装置であって、
     前記光学部材は、ハーフミラー又は偏光板である投影装置。
     
    The projection device according to claim 9.
    The optical member is a projection device that is a half mirror or a polarizing plate.
PCT/JP2020/020909 2019-06-28 2020-05-27 Projection device WO2020261851A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019121539 2019-06-28
JP2019-121539 2019-06-28

Publications (1)

Publication Number Publication Date
WO2020261851A1 true WO2020261851A1 (en) 2020-12-30

Family

ID=74059675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020909 WO2020261851A1 (en) 2019-06-28 2020-05-27 Projection device

Country Status (1)

Country Link
WO (1) WO2020261851A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201804194U (en) * 2010-09-21 2011-04-20 程抒一 Handheld projector with touch function
JP2013003859A (en) * 2011-06-16 2013-01-07 Sony Corp Projection device, projection method and program
JP2014006286A (en) * 2012-06-21 2014-01-16 Olympus Imaging Corp Image projection device and image projection method
JP2015064550A (en) * 2013-08-26 2015-04-09 ソニー株式会社 Projection type display device
CN105451007A (en) * 2015-11-16 2016-03-30 上海尚镜信息科技有限公司 Interactive projection system and method
JP2017111303A (en) * 2015-12-16 2017-06-22 コニカミノルタ株式会社 Image projection device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201804194U (en) * 2010-09-21 2011-04-20 程抒一 Handheld projector with touch function
JP2013003859A (en) * 2011-06-16 2013-01-07 Sony Corp Projection device, projection method and program
JP2014006286A (en) * 2012-06-21 2014-01-16 Olympus Imaging Corp Image projection device and image projection method
JP2015064550A (en) * 2013-08-26 2015-04-09 ソニー株式会社 Projection type display device
CN105451007A (en) * 2015-11-16 2016-03-30 上海尚镜信息科技有限公司 Interactive projection system and method
JP2017111303A (en) * 2015-12-16 2017-06-22 コニカミノルタ株式会社 Image projection device

Similar Documents

Publication Publication Date Title
TWI436150B (en) Projector with dual projection function and its external kit
US6714353B2 (en) Optical device with a function of homogenizing and color separation, and optical illumination system for a projector using the same
JP5428885B2 (en) projector
US8432595B2 (en) Scanning image displayer, mobile phone, mobile information processor, and mobile imager
US7993011B2 (en) Projection display device in which positions of projection lens unit and projection mirror unit relative to illumination optical systems are switched
US20080291400A1 (en) Projection display device
KR100381264B1 (en) Color division device for liquid crystal display projector of single panel type
US7145728B2 (en) Projection apparatus
JP5531618B2 (en) Projection optical system and projector
JP5544711B2 (en) projector
JP7014187B2 (en) Lens adjustment mechanism and projection type display device
US8226242B2 (en) Projection display for displaying a color image by modulating a plurality of single beams according to image information
WO2020261851A1 (en) Projection device
CN113176698A (en) Projection optical system and projector
WO2020261850A1 (en) Projection device
US11269117B2 (en) Projection display apparatus
JP2020098224A (en) Optical module and projector
JP2002182128A (en) Color filter device for image projection, and image projecting device
US7760437B2 (en) Projector apparatus having a shielding plate to prevent formation of ghost image in the projected image
WO2020261852A1 (en) Projection device
JP6997854B2 (en) Optical unit and projection device
JP2007034102A (en) Rear projection type projector
US12003897B2 (en) Projection display apparatus
KR100424767B1 (en) Apparatus for tracing image
CN114114804B (en) Optical system, projector, and image pickup apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20832444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP